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Abstract—Wireless visual sensor networks (VSNSs) are expected I. INTRODUCTION

to play a major role in future IEEE 802.15.4 personal area The intearation of low-power wireless networkina tech-
networks (PAN) under recently-established collision-free medium integrati W-power wi working

access control (MAC) protocols, such as the IEEE 802.15.4e-nologies such as IEEE 802.15.4-enabled transceivers with
2012 MAC. In such environments, the VSN energy consumption inexpensive camera hardware has enabled the development
is affected by the number of camera sensors deployed (spatial of the so-calledvisual sensor network¢VSNs) [1]. VSNs
coverage), as well as the number of captured video frames out o534 pe thought of as networks of wireless devices capable

of which each node processes and transmits data (temporal of sensina multimedia content. such as still images and video
coverage). In this paper, we explore this aspect founiformly- Ing muiti ' » SU fiimag vi '

formed VSN, i.e., networks comprising identical wireless visual @udio, depth maps, etc. Via the recent provisioning of an all-
sensor nodes connected to a collection node via a balanced clusterdPv6 network layer under 6LoWPAN [2] and the emergence
tree topology, with each node producing independent identically- of collision-free low-power medium access control (MAC)

distributed bitstream sizes after processing the video frames protocols, such as the time slotted channel hopping (TSCH) of

captured within each network activation interval. We derive .
analytic results for the energy-optimal spatio—temporal coverage IEEE 802.15.4e-2012 [3], VSNs are expected to play a major

parameters of such VSNs undera-priori known bounds for the ~fole in the Internet-of-Things (loT) paradigm [4], [5].
number of frames to process per sensor and the number of
nodes to deploy within each tier of the VSN. Our results are .
parametric to the probability density function characterizing A. Review of Visual Sensor Networks

the bitstream size produced by each node and the energy |n comparison to traditional wireless sensor networks, VSNs
consumption rates of the system of interest. Experimental results are uniquely challenging because of their heavy computational

derived from a deployment of TelosB motes under: a collision- . "
free transmission ppré/tocol, the IEEE 802.15.4 PAN physical and bandwidth requirements that stretch hardware and net-

layer (CC2420 transceiver) and Monte-Carlo—generated data working infrastructure_s to their limits. Hence, an increasi_ng
sets, reveal that our analytic results are always within 7% number of VSN solutions were proposed recently, focusing
of the energy consumption measurements for a wide range of on: new transmission protocols allowing for high-bandwidth
settings. In addl_tlon, results obtained viaa muI_tlmedlq subsyfstem collision-free communications [6] [7], in-network processing
(BeagleBone Linux Computer) performing differential Motion techni 8] and optimized multimedia pr ina 191, Al
JPEG encoding and local visual feature extraction from video echniques [8] and op ) e ultimedia process g_[ I So_’
frames show that the optimal spatio-temporal settings derived Several hardware solutions have been proposed, with the aim
by the proposed framework allow for substantial reduction of of finding a VSN platform that could be used for a broad range
energy consumption in comparison toad-hoc settings. As such, of multimedia tasks [10]-[12].
our analytic modeling is useful for early-stage studies of possible st of these proposed hardware solutions can be abstracted
VSN deployments under collision-free MAC protocols prior to two tiahtl led subsvst h in Ei 1(b):
costly and time-consuming experiments in the field. as \_NO '9 y-coupled subsystems, shown in 'QUfe (b): a
multimedia processor board and a low-power radio subsystem
Index Terms—visual sensor networks, energy consumption, [13]-[15], interconnected via a push model. Within each node
frame-rate, sensor coverage, |IEEE 802.15.4, Internet-of-Things of the VSN, the multimedia subsystem is responsible for
acquiring images, processing them and pushing the processed
visual data to the radio subsystem, which transmits it to a
remote location. For example, in a traditional surveillance
application, the multimedia subsystem would compress or
" _ _ - | EjeProcess (e.g., extract visual features [16], [17]) the acquired
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Figure 1. (a) Two-tier uniformly-formed cluster-tree topology in a visual sensor network for surveillance, where every visual sensor (video camera) has
own spatial coverage (and different channels are used within the indicated ellipsess, indticating the bits consumed by each receiver/relay node within
each active interval of” seconds. (b) Detail of the camera node system: each node comprises a multimedia subsystem and a radio subsystem. If requil
each node can buffer parts of its data stream for later transmission.

tradeoffs [20] and deployment strategies [21]. While existinguring the operational time interval of the VSN, i.e. each

work addresses transmission, scheduling and protocol desmpue’s temporal coverage, is controlling the frequency of the

aiming for energy efficiency, it does not consider the impapush operations. At the same time, the multimedia processing
of the spatio—temporal coverage in the energy consumptiontask itself (e.g., image/video compression or extraction of

VSNs. This is precisely the focus of this paper. visual features) controls the size of the bitstream pushed to
the radio subsystem within each frame’s duration. On the other
hand, the number of sensors in the same tier of the cluster-tree
) ) . .. topology, i.e., the VSN’s spatial coverage, and the number of
We consider wireless visual sensor networks comprising,dqes'\whose bitstreams must be relayed by each node (if any)
cluster-tree topology, such as the one illustrated in ,F'g%%ntrol the bandwidth available to each sensor (i.e., its average
1(a), where each camera node processes and transmits Viglalmission rate) in each tier under a collision-free MAC

data to the nodes of the higher tier, or to the Low-POWef oo Therefore, there is a fundamental tradeoff between
Border Router (LPBR) [2] that can relay the streams ig, gnatial and temporal coverage in a network: a large number
any IP address over the Internet for analysis and processiggames leads to high bandwidth requirement per transmitter,
Moreover, we focug on .the case anlforme-formeQVSN, which in turn decreases the number of sensors that can be
.e. a network of identical sensor nodes that, within e€ach.,modated within each tier of the VSN. Conversely, dense
activation interval, arefi) producing bitstream sizes with thespatial coverage via the use of a large number of visual sensors

same stgﬂshcsl Icharaciterlzatlon iyl clonnected to the b""Zeper tier decreases the available bandwidth per sensor, which
station via a balancedluster-tree topology22], represente reduces the number of frames per sensor.

by a symmetric and acyclic graph with balanced bandwidth
allocation per link. Each node also relays streams stemming

from d other nodes of lower tier(s). Within each node, the; Contribution and Paper Organization

multimedia and radio subsystems work in parallel [Figure ] . ] )

1(b)]: while the multimedia system acquires and processes dat& this paper, we derive analytic results concerning energy-
corresponding to the current video frame, the radio subsystéare VSN design under the push model of Figure 1. Specif-
transmits (or relays) the multimedia stream stemming from tiglly, we are interested in the link of the aforementioned
processing of previous video frame(s). spatio—temporal tradeoff vyl_th the |n.curred energy cons.umptlon
Let 2 kilobit-per-second (kbps) be the average bandwidth ypder we_ll—known probaplllty density .functlons. quellng the
each node (in transmit or receive mode), withindicating pushgd bitstream size of image and wdeq applications, such as
the bits consumed by each receiver/relay node over the Vgpgra/mter—frame'wcljeo coding and local wsugl featurgs extrac-
active interval of 7' seconds. For example, for a 802.15.4tion and transmission, and make the following contributions:
compliant VSN andl" = 1 second, the average consumptiom We derive an analytic model that captures the expected
rate would be 250 kbps at the physical layer. The MAC layerenergy consumption in function off) the number of visual

of the network is operating under a collision-free time-division sensors deployed at each tier of the cluster-tree topology,
(or time-frequency division) multiple access [3], [6], [7], [18], (ii)) the number of frames captured by each camera sensor
[23], so that each tier in the network can be configured inwithin the operational time interval an@i) the statistical

a way that simultaneous transmissions in the same channalharacterization of the bitstream data volume produced by
are avoided. The number of frames captured by each cameraach sensor after on-board multimedia processing.

B. Scenario



« The extrema of the derived energy consumption functiotot be stationary and/or this data may include multi-rate
are then analytically derived in order to provide closed-forrthannel codes (or retransmissions) to alleviate channel im-
expressions for the minimum energy consumption of eaglairments due to propagation and other environmental effects
case under consideration. of transmission, we assume marginal statistics fotyy),

« The analytic results are validated within two applicationsvhich are derived starting from a doubly-stochastic model
video coding and transmission based on differential Motiofier the multimedia processing. Specifically, such marginal
JPEG and visual feature extraction and transmission.  statistics can be obtained by [24], [25]) fitting PDFs to
While our results are directly applicable to uniformlySets of past measurements of bitstream sizes transmitted by

formed VSNs, we also indicate how they can be extend&dch sensor, with the statistical moments (parameters) of such
to non-uniformly formed VSNs with varying statistical chardistributions characterized by another PD) integrating
acterizations for the bitstream sizes of different sensors a@¥er the parameter space to derive the final formPdfy,).
unbalanced bandwidth allocation for the various links of eadtPr example, if the bitstream size is modeled as a Half-
VSN tier during each activation interval. Gaussian distribution with variance parameter that is itself
The rest of this paper is organized as follows: Section §xponentially distributed, by integrating over the parameter
presents the proposed system model, while Section 11l presefit@ce, the marginal statistics of the data rate become Laplacian
the theoretical results; Section IV presents real-world expet#4l, [25].
ments that validate the proposed framework under controlledThe disadvantage of using marginal statistics for the bit-
data production from each sensor, while Section V presefté€am size of each node during each activation interval is
results showcasing the accuracy of the proposed model undi& removal of the stochastic dependencies to its transient

in the expectedenergy consumption over a time interval and

not in the instantaneousariations of energy consumption.
Thus, a mean-based analysis using the marginal statistics of

the produced bitstream sizes is suitable for this purpose.
In the following sections we introduce the components of
the proposed system model. The corresponding nomenclatgreEnergy Consumption Penalties
is summarized in Table |. This sets the context for the

derivation of the expected energy consumption of each nodd °llowing the push model of the camera node subsystem

of the uniformly-formed visual sensor network in function Ofllus_trated in Flgure 1(b), each VSN node performs the fol-
the utilized spatio—temporal coverage settings. lowing operations:
1) Acquisition, processing and transmissioA: new frame
is acquired by means of a low-power camera sensor and
processed with a CPU-intensive algorithm, realized by the
multimedia subsystem. Each frame processing (possibly in-
We consider that the visual sensor network is established cluding coding to mitigate channel impairments) produces,
under the following two application constraints: on averager bits for transmission. These bits are pushed
. Spatia| coverage boundshe number of dep|oyed nodes at to the radio SubsyStem, which in turn transmits them to
each tier of the cluster-tree topology, is upper- and lower-  the higher tier or, eventually, to the LPBR. LetJoule
bounded, i.€ Nmin <7 < Nmax (J) be the energy expenditure for acquiring a fragée
. temporal coverage lower bounthe total frame acquisitions, ~ the average energy in Joule (J) required for processing and

k, within a pre-defined time interval, is lower-bounded,  Producing one bit of information to be transmitted and
i.e. k> Kmin the average energy required to transmit it to the LPBR or

a relay node. Different multimedia applications may incur
different levels of energy consumption for the production of

Il. PROPOSEDSYSTEM MODEL AND ITS EXPECTED
ENERGY CONSUMPTION

A. Spatio—Temporal Coverage and Statistical Characteriza-
tion of Bitstream Size per VSN Node

The bounds of the spatio—temporal coverage stem from
application specifics, such as: the cost of installing and main- . : ) .
taining visual sensors, the minimum and maximum spatial cov- each bit to be tra.nsmltted,.whne the average transmlss!qn
erage required for the area to be monitored, and the minimum EN€rdy consumption per bit depends only on the specific
number of frames that allows for visual data gathering and radio chip used by each wireless Sensor node. Her_lce, the
analysis with sufficient temporal resolution withihseconds, ~ 2verage energy consumed for acquisition, processing and

Since the multimedia subsystem of each visual sensor transmlss!on “YVIthIn the active mterva! ar second; IS
produces varying amounts of data depending on the mon-*¢* (9 ) Jo xiPOu)dx = ka+ (g + J)E[X;] . with
itored events and the specifics of the visual analysis andE[Xk] bits comprising t.he statistical expectation of the
processing under consideration, the bitstream size produc ata v_olume corrgspondmg ’Oframes-_ _
by each sensor node in such multimedia applications is a n _Buifering and Idling: As ShOW” in Figure 1, each ter
deterministic quantity. Therefore, the bitstream size produced of the sensor r_1etwork consisis of sensor nodes that
when each visual node procesgefsames within an activation c_ommumcate with the LPBR (9r the r-elay nodes of the
interval is a random variable (RV)¥,, characterized by its higher tier). The set of all receivers (sink nodes) of each

pTObabi"ty denSitY_ function (PDF)P_(Xk)- Xy P(xk)- le.g. the specifics of what is being monitored at each instant and how the
Since the underlying processes deriving this bitstream mayitimedia processing algorithm is operating on the input data



tier has predefined consumption rate $f kbps. Under
balanced coupling, each sensor node can trangnbits
during the analysis time interval &f seconds. We thus

Symbol

Unit

Table |
NOMENCLATURE TABLE.

Definition

identify two cases: if the amount of data generated by

secondsActive time interval

the processing phase and relayed frahmodes of the
lower tiers is less thary bits, the sensor node enters '™

an “idle” state, where J/bit is consumed for beaconing ..
and other synchronization operations. The energy spent

Number of transmitting sensor nodasthe same
tier of the cluster-tree topology and minimum &
maximum nodes allowed by the application

during the idle mode of the analysis time interval is: ,

bfo" (2 = Xk,as1) Pas1 (Xw,d+1)dX ka1 I, With Xy g1 ~ Kmin
Pii1(xk,a+1) the RV modeling the data rate of a node

Number of frames captured and processed within
T seconds and minimum-allowed by the
application

processing: frames and relaying data from other inde- r
pendent and identical nodes [wit}, ; = X} and Py (xx) =

P(xx)]. Conversely, if the data generated is greater than 4
£ bits, then the sensor node has to buffer the remaining
data in a high-power, typically off-chip, memory. Lettipg

J be the energy cost of storing one bit of information, the @
energy spent for buffering during the active time interval

is: p [ (Xk,ae1 = 2)Par1(Xk,a1)dXr,a+1 J. This case g

introduces delay, as buffered data will be scheduled for i

later transmission. Thus, the proposed model is suitable ,
for delay-tolerant multimedia applications [26].

3) Receiving/Buffering and Relaying Datdnder a multi-tier b
cluster-tree topology, each node receideadditional data

streams fromd nodes positioned at the lower tier(s) and
relays them along with its own data streams (see Figure

1 for an example withd = 2). Over the analysis interval s
of T seconds, the energy expenditure corresponding to

bit Average number of bits produced after processing
one frame
- Number ofadditional nodes whose traffic is
relayed by each node at a given tier of the
cluster-tree topology
J Energy to acquire one frame and initialize the
multimedia processing
J/bit  Energy for processing one bit
J/bit  Energy for transmitting one bit
J/ibit  Penalty energy for storing one bit during receiver
overloading
J/bit  Energy during idle periods for the time interval
corresponding to one bit transmission
h J/bit  Energy for receiving and temporary buffering one
bit under the relay case
bit Data volume (bits) of a relay node (or base

station) received withiri” seconds

this process is given byh + j) [ xk,aPa (Xk,a) dXk,d =

Xk, d+1 ~

bit
(h+37)E[X,q] 3, with & J/bit the average energy required Paer (Xk,a+1)

to receive and buffer one bit arifi[X}, 4] the statistical
expectation of the number of bits received from dll

RV modeling the cumulative bits transmitted by
each node, including the bits relayed frain
nodes of lower tiers, after each node processed
video frames

nodes of the lower tier(s) during the active time interval.E [Xk,a+1]

Statistical expectation ok, 4.1

In practice, this energy expenditure is dominated by the re- g,
ceiver power requiremerftsGiven that, for IEEE 802.15.4-

Energy consumption oéach individual nodever
the analysis time interval’

compliant transceivers, the transceiver power under receivep, 1o
mode is virtually the same regardless if the node is actu-
ally receiving data or not, it is irrelevant to the receiver

Parameters expressing the combination of the
system energy rates, receiver rate and the mean
of the utilized marginal PDF D for the solutions
obtained along the spatial and temporal direction

power whether the transmitting node(s) used their entire
transmission intervals or not.

C. Expected Energy Consumption
Summing all contributions 1~3 of the previous subsection;,

the energy consumption of each nodg;, over the time
interval T is:
Ec (TL, k) =ka + (g +_])E[Xk] + (h +j)E[Xk7d]

e S
+pf£ (Xk,d+1 — E)Pd+1(Xk,d+1)ka7d+1 1)

w8
+b fo (g = Xk,d+1) Pas1 (Xk,de1)dXk,dr1-

Adding and subtracting [," (x,d+1~ =) Pas1 (Xk,d+1)dXk,ds1
to (1) leads to:

2Energy rates:, g, j, p, b and h may also include fixed, rate-independen

Vd>0: E [qu,d-*—l] =

Ec(n, k) =ka+ (g+7)E[X] + (h+j)E[X 4]
S
+pE[ Xy a41] - % )
w8
+(b+p) ./o (5 = Xk,d+1) Pas1(Xk,a+1)dXk,ds1-

Since the VSN is uniformly formed, all sensors are indepen-
dent and identical. We can thus establish the relationships:

d+1

E[Xka], 3

Vd>0: E[Xq] = dE[X], 4)

which are based on the fact that the expected number of

costs of the particular multimedia or transceiver hardware (e.g., visual seniHF,S transmitted or received by a node increases linearly with

transceiver or buffer startup and shutdown costs).

respect tal. By modifying (2) based on (3) and (4), we reach:



Corollary 1. When Py.1(xk,4+1) is Uniform, there exists

. ps no global solution ta(6) in its unconstrained form.
Ee(n, k) =ka+[(p+7)(d+1) + hd +g]E[Xp] - = gProof: Using (8(;(ir2 (5) leads to:
+(b+p) ./o " (% = Xt,d+1) Pas1 (Xk,de1)dXk,dr1- Ecu(n,k)=k[a+7[(p+7)(d+1)+hd+g]] ()]
(5) _ps,_s'(b+p)

This equation is the basis for the analytic exploration of the n An?kr(d+1)

minimum energy consumption under several marginal PDFsTo obtain the solution to (6) under the energy consumption

characterizing the data production and transmission procesgiven by (9), one can search for critical points Bf y. By
definition, a critical point of a multidimensional function is

[1l. ANALYTIC DERIVATION OF MINIMUM ENERGY the point where the gradient of the function is equal to zero.
CONSUMPTION Imposing that the derivatives df; y with respect ton and k
Our objective is to derive the spatio—temporal parametef&e POth equal to zero leads to:
minimiz'ing E. (.n,k). in (5),. subject tq the spatio—temporal OBy _ ps _ _s’(b+p)  _ 0
constraints defined in Section I, that is: a%n n? ~ 2nkr(d+1)
i =a+r[(p+j)(d+1)+hd+g] (10)
. ___s2(bip) =0
{n",k"} = arg \rplgEC (n, k), (6) 4nZk2r(d+1)
with 7 Solving 22eY = ¢ for n givesn = %. Substituting this
solution in% = 0 and solving fora, leads taz < 0. However,
Nmin €1 < Nmaxand k > Kpin (7) this is not feasible since is the energy cost to acquire one

L. N o frame. Hence, under the physical constraints of the problem,
and {n*,k*} the values deriving the minimum energy conthere is no single (global) solutiofin*, k*} € R x R to (6) in

sumption. _ _ . o its unconstrained formi.e. when one ignores the constraints
In the following, we consider different distributions forg (7). n
Piv1 (Xr,a+1) and derive the solution fon and % that mini- e now extend the analysis towards other PDFs for the data

mizes the energy consumption, while ensuring the conditiofignsmission, which are frequently encountered in practice.
imposed by the application constraints are met. While our

analysis is assuming that and & are continuous variables, Definition 2. (Py1(xx,a+1) 1s Pareto): We consider
once the {n*,k*} values are derived, they can be disPa+1(xx,q4+1) as the Pareto distribution with scateand shape
cretized to the point§|n* |, [K* |}, {[n*],[k*]} {[n],[k*]} > 1 when:

{{n*],[k*]} [if all f_our s_atisfy the_constraints of (7)] in ang”l, Xk.dse1 2 U

order to check which discrete pair of values derives the Pas1(Xk,d+1) = 0 kol
minimum energy consumption in (5). This is becaugg: ’

the energy functions under consideration are continuous asgltingy = ©1kr(d + 1) leads toEp[X;] = kr, i.e. we match

differentiable; andii) we shall show that a unique minimumthe expected data volume to that of the Uniform PDF.
is found for (5) that is parametric to the setting of the temporal o
constraint &min). As such, the analysis on the continuous vari- The Pareto distribution has been used, amongst others, to

able space can be directly mapped onto the discrete variaiiedel the marginal data size distribution of TCP sessions that
set under the aforementioned discretization. contain substantial number of small files and a few very large

ones [27], [28]. It has also been used to model multimedia

A. Definitions of Data Transmission PDFs under ConsideratltalchC packet sizes in several works, e.g. by Kumar [29]

tion and Infeasibility of Global Minimum aF (n, k) Definition 3. (Pg1(xx,q+1) IS Exponential): We consider

When one has limited or no knowledge about the cumulative+1(Xk.4+1) as the Exponential distribution when:
data transmitted by each VSN node during the active time

. (11)
otherwise

interval, one can assume th&Y. 1 (xx,q+1) IS uniform over B 1 B 1

the interval[0, 2kr (d+1)]. FariOan) = gy o~y et ) (42)
Definition 1. (Pgi1(xka+1) 1S Uniform): We define with Eg[X)] = kr [and Eg[ X 4+1] = kr (d + 1)] correspond-
Pyi1(Xk.a+1) @s the Uniform distribution when: ing to the mean value of the data transmitted by a node that

producesk frames ofr bits each on average (and relays
8) information fromd other nodes).

1
srramy 0 < Xkae1 < 2kr d+1)
Paii(Xp,ae1) = 1 2Fr(d+D) - (
0 otherwise

We remark that the marginal statistics of MPEG video traffic
with Ey[ X% ] = kr [and Eu[Xk,q+1] = kr (d + 1)] correspond- have often been modeled as exponentially decaying [30].
ing to the mean value of the data transmitted by a node thatWe conclude by considerind’;.1(xx4+1) as the Half-
producesk frames ofr bits each on average (and relaysGaussian distribution with meaRy[Xy] = kr. This distri-
information fromd other nodes). bution has been widely used in data gathering problems in



science and engineering when the modeled data has nee- can identify if the derived minima are unique under the
negativity constraints. Some recent examples include the staposed constraints and whether the entire region of support of
tistical characterization of motion vector data sizes in Wynethe energy function under these constraints has been covered
Ziv video coding algorithms suitable for VSNs [31], or theby the derived solutions. Following this approach, the main
statistical characterization of sample amplitudes captured tBsults are presented in the following subsection. The detailed
an image sensor [24], [25], [32]. derivations are contained in the Appendices.

Definition 4. (Pi+1(xk.4+1) is Half-Gaussian): We consider g Main Results: Parametric Minima df. (n, k)

Pir1(x.a+1) as the Half-Gaussian distribution when: Proposition 1. When the data transmitted by each VSN node

follows the Uniform, Pareto or Exponential distributions of
9 o Definitions 1-3, the sets of solutions giving the minimum en-
Paot (Xeae1) = | (@D exp (_wk2r2(d+1)2 )v Xkd+1 20 ergy consumption if6) under the spatio~temporal constraints
' 0, Xk.ds1 <0 of (7) are:
(13) b i ’ 8}
with Eq[ X ] = kr [and En[ Xk, q+1] = k7 (d + 1)] correspond- (Nmax’ Nmax) ff Iig"" S Vo 5o
ing to the mean value of the data transmitted by a node that{n*’ k) = (Nmax, Kmin)  1f 2= < Kmin < 5>~ (17)

producesk frames ofr bits each on average (and relays (Ki?m’ Kmin) if fo’ax < Kmin < NBD
information fromd other nodes). (Nmin, Kmin)  if Kmin > N’A

Corollary 2. WhenPy,1(x,q4+1) is the Pareto, Exponential o o
or Half-Gaussian distribution, given bil1)«(13), there exists with D € {U, P, E} .|nd|cat|ng each of the three distributions,
no global solution ta(6) in its unconstrained form. and jp and yp defined by:

Proof: Under (11), the energy expression of (5) becomes: By = s(b+p) (18)
Eep=k[a+r[(p+j)(d+1)+hd+g]] 2pr(d+1)
bs vt ov _3 b+p 19
*T(’”p)(sa—qa_l)‘a_l)- as 2\/r<d+1)[a+r[<p+j><d+1>+hd+gu’ 4
In addition, replacing (12) in the energy expression of (5),7 _ s r[(b-37)(d+1)-hd-g]-a\""
we obtain: P r(a-1)(d+1) r(d+1)(b+p) (2(’))
EC,E:k[a+r[(p+j)(d+1)+hd+g]]+b—s (15) s b \1
n BP = ) (21)
+(b+p)[l€r(d+l)(exp(—;)—l)] rla a0y
nkr(d+1) ' fe= 51 — 22)
Finally, replacing (13) in the energy expression of (5), we r(d+1) H(T)
obtain: and
— ) - bs = :
Ecp= k[af [r(p+37)(d +_1) +hzl+g]] B +(b+p) YE deD) I:W(_Lfa+r[(‘b7j)(d+1?,hd79]) N 1]7 (23)
x[or (d+1) (exp (- iz ) - 1) o r@r ()
+ierf( — s(d ) with W (-) the Lambert product-log function [33]. For the
n mhkrn(d+1 :

(16) particular case wherD = E (Exponential PDF),(17) holds

To obtain the solution to (6) under the energy consumpti¢fider the condition that > b, i.e., the penalty energy to buffer
given by (9), one can search for critical points Bfp, E.¢ PItS iS higher than beaconing energy.

and E. . Similarly as for Corollary 1, it is straightforward Proof: See Appendix A. . u
to show that imposing that the derivatives Bfp, F.g and Proposition 2. When the data transmitted by each VSN node

Fen with respect ton and & are both equal to zero IeadsfoIIows the Half-Gaussian distribution of Definition 4, the set
C, . .. .. .
to solutions that require < 0 (detailed derivations omitted), of solutions giving the minimum energy consumptior(@h

which is not physically feasible sinaeis the energy cost to Under the spatio—temporal constraints () is:
acquire one frame. ]

It follows from Corollary 1 and 2 that, under the physical (Nmax, Kiin)  if Kinin < 52—
constraints of the problenthere is no single (global) solution  {n* k*},, = (%, Kmm) if Nﬁﬁ < Kmin < ]5—“. (24)
{n*,k*} ¢ RxR to (6) in its unconstrained formi.e., (Nm'." Kor)  if Ko a "
when one ignores the constraints of (7). However, we may miny ZEmin M~ Nin*
consider each dimension individually (i.e., perform univariat&ith s
minimization along then or k£ dimension) in order to find =
a local or global minimum for that particular dimension and Var(d+1) erf! (ﬁ)
then choose for the other dimension the value that minimizes Proof: The proof follows the same steps as for the
(6) under the spatio—temporal constraints of (7). Subsequengyevious cases and it is summarized in Appendix A-D.®

(25)



C. Discussion 1 and 2 can be used to provide a characterization of the
) . . available solution space. Moreover, given that the results of

The key observation from Propositions 1 and 2 is thabrgnositions 1 and 2 are applicable per node, if the considered
regardless to the distribution used for modeling the dadcnario involves a non uniformly-formed VSN, the same

production process, the solutions giving the minimum enerqy, s applies for each node of each cluster-tree tier, albeit
consumption attain the same mathematical form. Specificallyith, the use of:

when the initial constraint on the minimum number of frames
captured and processed withifi seconds,K,;,, is higher
than the threshold valueﬂ, the optimal solution is the . . . 2o

Nmi b the convolution of the intermediate distributions;

one whereN,,;, nodes processs,,;, frames each (i.e., the o ) :
minimum setting possible for nodes and frames-per-node .2) unbalapged coyplmgp (2) and (3)’. €. thath node
transmittings; bits during the analysis time interval 6f

If Knin is smaller or equal than this threshold, therefore 4 o .
facilitating more nodes within each tier of the VSN, the seconds, withy; allocated by the utilized protocol during
' the cluster formation [18], [22], [26], [34];

optimal number of nodes,*, derived by Propositions 1 and 2, ) : .
inF::reases 102 However. whem* yeachl?as the constraint 3) theith node of each cluster relaying traffic frafpnodes,
Kmin ! A i . | 1 i

on the maximum number of nodedl, .., then the optimal and, in general_dl #dy forizi _
solution for each node is to use a frame setting that is higtdjven that a numerical package (e.g., Mathematica or Matlab
than K,.;,. The latter is true for Proposition 1; however, foroyMbolic) can be used for the calculation (j: the convolu-
Proposition 2 (Half-Gaussian PDF), the corresponding optir" Of d: + 1 distributions Py, 1, (X.k’di“) (corresponding to
frame setting was found to be imaginary regardless to tHe mixture ofd; + 1 PDFs of theith node of each tier) and
specific system parameter. Therefore, the optimal solution 18 the /o (si = Xk, +1) Pa+1 (Xk,d,+1) dXk,a,+1 term of (2),
this case is always* = Kpin. we do not expand on these cases further.

In terms of relevance to practical applications, the results OVerall, our proposed energy consumption model and the

of this section can be used to assess the impact of the spafigsCciated analytic results can be used in many ways for early-
temporal constraints and the data production and transmissid€ exploration of system, network, and data production

process (as characterized by its marginal PDF) on the eneRgfameters in VSNs that match the design specifications of
consumption of VSNs, under a variety of energy consumpti sses of application domains. Such application examples are

rates for the radio and multimedia subsystems. For examp@é\{en in Section V.
under given energy availability from the node battery and
predetermined system activation tiniE){( this allows for the IV. EVALUATION OF THE ANALYTIC RESULTS

determination of appropriate hardware to be used fi.@, b, To validate the proposed analytic model of (5) and Proposi-
p, a and g parameters) in order to meet the spatio—tempor@igns 1 and 2 for the settings leading to the minimum energy
constraints of the application. Moreover, via the analysis of ﬂ&%nsumption, we performed a series of experiments based
previous four subsections, one can optimize the system unggr 3 visual sensor network matching the system model of
the assumption of a certain marginal PDF characterizing th@ction 1l and an energy-measurement testbed. Specifically,
data production and transmission process of each node. each visual node of the sensor network is composed of a Bea-
Conversely, under particular technology (i.e. giverh, b, gleBone Linux Computer (multimedia subsystem) attached to
p, a and g parameters) and given configuration for the VSN TelosB sensor node for low-power wireless communications
in terms of number of nodes and frames to capture with{fadio subsystem) [12]. Each BeagleBone is equipped with
the activation time interval, one can determine the requiredRadiumBoard CameraCape to provide for the video frame
energy in order to achieve the designated visual data gatheringuisition. For energy-efficient processing, we downsampled
task. Furthermore, under the proposed framework, one calhinput images to QVGA (320x240) resolution.
determine the data production and transmission (marginal)in order to measure the energy consumption of each VSN
PDFs that meet predetermined energy supply and spatifode, we captured the real-time current consumption at two
temporal constraints. high-tolerance 1 Ohm resistors, the first of which was placed
Although we do not claim that the utilized PDFs cover aih series with the multimedia and the second in series with the
possible scenarios that can be encountered in practice, thagio subsystem of each visual node. A Tektronix MDO4104-6
comprise an ensemble of distributions that includes several inscilloscope was used for the two current consumption cap-
portant aspects, i.e(j) the maximum-entropy PDF (Uniform); tures of each experiment. Further, our deployment involved:
(ii) well-known distributions characterizing the transmissio(i) a TelosB node serving as the LPBR and collecting all
rate of real-world systems (Exponential and Half-Gaussiahitstreams and 2 to 32 visual nodes positioned within four
[24], [25], [30]-[32], and (iii) a parameterized distributionadjacent rooms and the corridor of the same floor of the De-
(Pareto) that corresponds to the continuous equivalent to Zipfartment of Electrical and Electronic Engineering at University
law for generalized frequency of occurrences of physic@lollege London [following the layout of Figure 1(a)ji) a
phenomena; moreover, df = kr, the Pareto distribution corre- uniformly-formed hierarchical cluster-tree network topology
sponds to near fixed-rate transmission with fateBeyond the with n =2 to n = 16 nodes per network tier and the recently-
cases considered in this paper, if another distribution provideposed (and available as open source) TFDMA protocol [7]
a better fit to a particular deployment, the steps of Propositiofts contention-free MAC-layer coordinatiorijii) no WiFi or

1) a different PDF per sensor, leading to a mixture of PDFs
for the relayed traffic, with the resulting distribution being



Table I

other IEEE802.15.4 networks concurrently operating in the VISUAL SENSOR ENERGY AND BITRATE PARAMETERS
utilized channels of the 2.4 GHz band. Even if IEEE802.11
or other IEEE802.15.4 networks coexist with the proposed Parameter | Description [ Unit [ Value |
deployment, well-known channel hopping schemes like TSCH Radio Subsystem (TelosB) |
[35] or interference-avoidance schemes [36] can be used at 7 Data consumption rate | Kbps 144
the MAC layer to mitigate such external interference while L Tg‘gsg\‘/?;'ogocs‘tm ‘J];E:i z'zgx 18_6
maintaining a balanced cluster tree topology in the WSN. 5 Beaconing,ig"ng Cost Ibit T 1.90 i 07

TFDMA ensures collision-free multichannel communica- » Buffering cost Ibit | 2.86 x 10-7
tions with guaranteed timeslots via a fair time-division mul- Multimedia Subsystem (BeagleBone) ]
tiple access (TDMA) schedule constructed within each o aACQ Acquisition cost 3 500 x 103
the utilized channels of the IEEE802.15.4 physical layer vid  aspec Init. cost (JPEG) J [ 140x1072
beacon packet exchanges [7]. Protocols such as TFDMA, the__avr g*:;czzztm(\ﬁigi Eiaé(); ) J/f) - Z'Zg x 18:2

. X

TSCH mode of IEEE 802.15.4e-2012 [3] and other balanced 9;5? Processing Cist (Visual Featl) J/bit | 1.90 x 10~

cluster-tree—based MAC-layer protocols [2], [8], [22], [34],
allow for collision-free, uniformly-formed, cluster-tree based

VSNs to be formed via the combination of fair TDMA  gncqdeq. The encoding process follows the standard JPEG
scheduling and channel allocation or channel hopping. EXper- haqgiing, j.e., quantization of the Discrete Cosine Trans-
iments have shown that such protocols can scale to hundredsrOrm (DCT) coefficients followed by run length coding

or even thousands of nodes [37]. Therefore, our evaluation is (RLE) and Huffman coding.

pertinent to such scenarios that may be deployed in the n%t

s - Visual Features extractionSeveral visual analysis tasks
few years within the 10T paradigm [4], [5].

can be performed by disregarding the pixel representation
of an image, and relying only on a much more compact
A. Radio Subsystem representation based on local visual features [16]. In a
For what concerns the radio subsystem, each TelosB runsnutshell, salient keypoints of an image are identified by
the low-power Contiki 2.6 operating system. Given that the means of a detector, and a descriptor is computed from
utilized TFDMA protocol ensures collision-free transmissions the pixel values belonging to the image patch around each
from each node, we enabled the low-power NullMAC and keypoint. Here, we focus on corner-like local features
NullRDC options of the Contiki OS that disable the default produced by processing each frame of the input video
MAC queuing and backoff mechanisms. This led to data sequence with the FAST corner detector [42], which is
consumption rate at the application layer$f= 144 kbps. optimized for fast extraction of visual features on low-
Given that varying the transmission power level has minimal power devices. Each detected keypoint is then described by
effect on the VSN node energy consumption (since most of the means of a binary descriptor: we used the BRIEF algorithm
transceiver current consumption is due to reception) and may [43], which outputs descriptors of 64 bytes each.
compromise error-free data reception, we utilized the maxi- Dedicated energy-measurement tests were performed with
mum transmit power, which led to reliable data transmissiahe Beaglebone multimedia subsystem by varying the encod-
under the collision-free timeslot allocation of TFDMA. Undeiing quality factor for differential MJPEG, while for features
these operational settings, the average transmission cost g@raction, we varied the FAST detection threshold. This
bit of information, j J/bit, as well as the cost for beaconingallowed us to trace curves in the energy-rate plane and to
b J/bit, and bufferingp J/bit, were established experimentallyobtain the average energy cost per bit, as well as the average
by repeating several dedicated energy-measurement tests willialization cost per frame for both the application scenarios,
the TelosB subsystem; their values are shown at the top haffich are reported at the bottom half of Table Il. The cost of
of Table Il and we have experimentally verified that thegcquiring one frame was derived from the specifications of the

remained constant over several activation intervals. AptinaMT9M114 image sensor mounted on the CameraCape
and is reported in Table II. The overall acquisition cost for one
B. Multimedia Subsystem frame is established as= aacq+ajpecfor the JPEG case and

Since the energy consumption of the multimedia subsystéht @AcQ * avr for the visual-feature extraction case.
is application-dependent, we focused on two different appli-
cations, namely(i) encoding and transmission of JPEG vide&. Model Validation via Monte-Carlo—generated Data
frames and(ii) extraction and transmission of local features ynder the settings described previously and shown in Table
for visual analysis. These two scenarios represent a wide ramgeour first goal is to validate the analytic expressions of
of practical VSN-related deployments proposed recently [1$ection Il that form the mathematical foundation for Propo-
[10], [14], [17], [38]-[41]. sitions 1 and 2, namely (9), (14), (15) and (16). To this end,
1) Differential Motion JPEG (MJPEG) encodingVe used a we create a controlled multimedia data production process
hybrid DCT-DPCM encoder, such as the one presenteddn each VSN node by(i) artificially creating several sets of
[39]. In this system, the first frame of the video sequendststream sizes according to the marginal PDFs of Section lll
is JPEG encoded and transmitted. For the subsequeiat rejection sampling [44](ii) setting the mean data size per
frames, only the difference between two adjacent framesvigleo frame tor = 5.2 kbit; (iii) settingd = 0 (no relaying)
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Figure 2. Each column shows the results corresponding to a marginal PDF characterizing the data transmission process. The grayscale surfaces sho
energy consumption of a single camera sensor node in function of the number of frames per second and the total number of nodes. The blue crosses corre
to the value of the consumed energy as measured from the sensor network testbed. All energy values anfd) faaenesr(nalized to an one-second interval.

andd = 2 for each distribution. The sets containing data sizes

are copied onto the read-only memory of each sensor node 025
during deployment. At run time, each node fetches a new
frame size from the preloaded set, produces artificial data
according to it (akin to receiving the information from the
multimedia subsystem) and transmits the information to the
LPBR following the process described in the system model of
Section Il. Depending on the frame size, the node can enter
in idling/beaconing state, or it can buffer the data exceeding
the allocated TFDMA slots. This controlled experiment with
Monte-Carlo—generated datasets creates the conditions that

match our statistical characterization and can therefore confi'r:m 3. Predicted ( face) and d (o )
P H . . ijgure o. reaicte gray surface) and measure ue crosses) energy
the Va“dlty of our derivations. consumption of a single camera node in function of the number of frames per
We report here energy measurements obtained under vasgond and the total number of nodes,qfor the case of Uniform distribution
ing values ofn andk. The chosen active time interval was sef"9€" Vmin = 2, Nmax =6 and K = 5. All energy values and frames
. ) are normalized to an one-second interval.
to beT = 154 seconds and, beyond measuring the accuracy

of the model versus experiments, we also compared the
theoretically-optimal values fok andn according to Section .y active time interval durationsT)), number of relay nodes
[l with the ones producing the minimum energy consumptlow) and spatio—temporal constrain®(i,, Nimax and Kmin),

in the experiments. For the reported experiments Of Figuresigy omit these repetitive experiments for brevity of exposition.
and Table Ill, the spatio—temporal constraints We¥gin =2, As mentioned in Section IIl-C, the optimal solution does

Nmax = 16 and Kuyin = 2T frames, i.e. two frames perpq: gways correspond to the minimum allowable number of
second. All our reported measurements and the valuésdeg  ¢rames (i.e.,Kmnn). For instance, Figure 3 shows the theoret-
normalized to a one-second interval for easier interpretation;of| 5nq experimental results obtained by settilig;, = 2

m il

the results. Ninax = 6 and Ky, = £ (i.€., one frame every two seconds),

As one can see from Figures 2, and Table III, the the@nd using the Uniform distribution. Under these settings, the
retical results match the experimental results for all the testggtimal solution was found to bén* =6, k* = T), thereby

distributions, with the maximum percentile error between thegbnfirming the validity of the proposed model.
limited to 6.34% and all the coefficients of determinatidg?
between the experimental and the model points being above
0.995. In addition, the theoretically-obtained optimal values
for {n*,k*} from (17) and (24) are always in agreement with In order to assess the proposed model against real ap-
the experimentally-derived values that were found to off@lication data, we repeated the experimental measurements
the minimum energy consumption under the chosen spatidescribed in Section IV-C for both application scenarios and
temporal constraints. We have observed the same level unfder the same spatio—temporal constraiMs;(, = 2, Nyax =
accuracy for the proposed model under a variety of data sizés K,.;, = 27, i.e. two frames per second), this time capturing

Energy [J]
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V. APPLICATIONS
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Table Il
DIFFERENCES BETWEEN THE THEORETICAL AND EXPERIMENTAL RESULTS AND THE OPTIMAL VALUES{n*, k* } 5, FOR THE NUMBER OF NODES AND
THE FRAMES-PER-SECOND FOR THE CONSIDERED DATA TRANSMISSIONMARGINAL ) PDFS UNDER THE SETTINGS OFFIGURE 2 AND d = 2 (EACH NODE
RELAYING DATA FROM TWO OTHER NODES.

d =0 (no relay transmission) d = 2 (relaying from two other nodes)
Transmission Mean Max. R? Theoretical Mean Max. R? Theoretical
PDF error (%) error (%) coeff. optimum error (%) error (%) coeff. optimum
Uniform 1.19 2.24 0.9982 [ {12,2} 1.37 221 0.9921 14,2}
Pareto(a = 4) 1.40 3.6 0.9980 | {16,2) 151 6.34 0.99983 6,2}
Exponential 1.36 2.85 0.9984 | (15,2} 3.05 452 0.9895 {5,2}
Half-Gaussian 0.37 0.69 0.9991 | {13,2) 1.33 2.24 0.9977 {4,2}
Table IV Table V
MOTION JPEGAPPLICATION SCENARIO VISUAL FEATURES EXTRACTION APPLICATION SCENARIO
[ Constraints][ Ad-hocdeployment| Proposed approach Gain | [ Constraints [[ Ad-hocdeployment][ Proposed approach Gain |
Kmin=0.7 k=0.7 k=0.7 Kmin=1.25 k=1.25 k=1.25
Nmin =2 n=2 n =10 37.4% Nmin =2 n=2 n =10 30.8%
Nmax =10 Ec=0.027J Ec=0.017J Nmax =10 Ec=0.033J Ec=0.023J
Kumin = 2 k=2 k=2 Konin = 2 k=2 k=2
Npin =2 n=2 n=4 7.9% Npin =2 n=2 n="7 18.1%
Nmax =10 F¢=0.053J F¢=0.049 J Nmax =10 Ec=0.045J E¢=0.037J
and processing real data from our deployment and utilizing VI. CONCLUSIONS

the energy parameters of Table Il for the proposed analyticWe proposed an analytic model for the energy consumption
model. We then matchédhe energy measurements with onef a uniformly-formed wireless visual sensor network (VSN)
of the energy functions derived in Section lll. Specifically, wander varying spatio—temporal constraints, defined in terms
found that the results matched best the Pareto distribution with number of nodes to be deployed per network tier and
parametersy = 4, v = kr andr = 20.6 kbit for the JPEG case video frames to be captured by each node. Analytic con-
and r = 11.7 kbit for the visual features case, as shown iditions for the optimal spatio—temporal settings within the
Figures 4(a) and 4(b), with coefficient of determination valu¢SN were derived for different probability density functions
R? ~ 0.97 for the JPEG case anft? ~ 0.96 for the visual characterizing the multimedia data volume to be transmitted by
features case. Similarly as before, all reported energy valiegeh node. Monte-Carlo experiments performed via an energy-
and number of frames are normalized to a one-second intervaasurement testbed revealed that the proposed model's ac-
for easier interpretation of the results. curacy is within 7% of the obtained energy consumption.
Given the high accuracy of the Pareto-based energy mod@plying the model to two realistic scenarios for motion
against the application results, we utilized the settings for td€EG compression and local visual features extraction within
minimum energy consumption derived for the Pareto case [®&ch node in the VSN demonstrated that substantial energy
(17)] to ascertain the energy saving that can be potentiafigvings can be obtained via the proposed approach against
achieved against arbitranad-ho settings. As an example, hoc settings for the spatio-temporal parameters of the VSN.
in Tables IV and V, we consider two different cases fofis such, the proposed model can be used for early-stage
each application scenario, characterized by different spatistudies of VSNs to determine the best operational parameters
temporal constraints. For each case, we compare the optifape considered prior to cumbersome and costly real-world
solution given by (17) (for the Pareto case) with at-hoc deployment and testing.
“least-cost” solution that assumes values equal to the minimum
spatio—temporal constraints (under the intuitive assumption APPENDIXA

that less nodes and less frames-per-second lead to smallafje first present the detailed proof of Proposition 1 under
energy consumption). Evidently, the proposed approach allogg Uniform distribution (D= U). The proofs for the Pareto,
for 8% to 37% energy savings in comparison to @ Exponential and Half-Gaussian distributions (i.e., Proposition

hoc settings in both applications under consideration. A% are summarized afterward, since they follow the same steps
such, its usage can be envisaged for early-stage testinga8ffor the case of the Uniform.

plausible application deployments with respect to their energy
efficiency in order to determine the impact of various option&
for the multimedia and radio subsystems, as well as the best

spatio—temporal parameters to consider, prior to more detailed”) 'nvestigating the:-direction: We examine the function
experimentation in the field. E.y along the plané = k, k > Ky, and analyzeF, y(n, k)

which is now a function ofn only. It is straightforward
to show first-derivative analysis that the onl ndidat
SFitting is performed by matching the average data sizsf each distri- 0 sho by st-derivative a alysis tha € only ca didate

. . . T . _ B .
bution to the average data size of the JPEG compressed frames or the s@c’g{e_mum or |nf|ect|qn pomt_ ofcu(n, k) is nou = T with
visual features. Bu given by 18. This candidate extremum holds under the

Proof of Proposition 1 for the Uniform Distribution
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(a) DCT-DPCM coding,R? = 0.9698
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(b) Visual features extractior? = 0.9596

Figure 4. The energy function for the two considered application scenarios. The grayscale surfaces represent the fitted energy function obtained with
Pareto PDF, while the blue crosses represent the experimental measurements. All energy values ankl) femenesr(nalized to a one-second interval.

assumption thatNmin < nou < Nmax I-€. that the candidate Evidently, the value ofn minimizing (28) is the maximum
extremum or inflection point oft; y(n, k) falls within the allowable, i.e.n = Nnax. Hence, the solution when attempting
predefined spatial constraints of (7). Furthermore, we find thtat minimize (28) in thek-direction under the constraints of

2 L. . .
& Beu(n. k) >0, which demonstrates thaty is a local (7) is Sk, , = (Nmax, —IJnfaX) under the constraint:
n=no, 3 .
minimum. Given that local extrema must alternate within the
i i i : i Kopin < -2 29
region of support of a continuous and differentiable function min = N (29)
X

[45], noy is also the global minimum ofs. y(n, k) within
Nmin <n< Nmax B
Having derived the global minimum df. y(n, k) along an

3) Uniqueness of solution and solution wh@7) and (29)
do not hold: So far, we have found two solutions minimizing

arbitrary planek = &, k > Kpin, We can now attempt to find the energy consumption of each nod;, ,, which minimizes
the value ofk, k > Kmin, that minimizes the energy function.the energy in then-direction by appropriately choosing the

EvaluatingE¢ y(n, k) onn = ngy, we obtain:

Ecu(nou, k) =k[a+r[(p+7)(d+1)

2
—IMJthJFg]]
b+p

Evidently, the value oft minimizing (26) is the minimum
allowable, i.e.k = Kmin. Thus, the solution minimizing (6) in

(26)

the n-direction isS,, , = (Kﬁ—r‘:m, Kmin). This solution holds
under the constraint:
Nmin < - < Nmax- (27)
min
2) Investigating the k-direction: Similarly, we cut

Ecu(n, k) along the planen = 7, Nmin < 7 < Nmax, and
minimize E¢y(7, k) which is now a function ofk only.

number of nodes to deploy (spatial resolution), a#g .,
which minimizes the energy in thHedirection by appropriately
setting the optimal number of frames to capture (temporal res-
olution) during the active time interval. However, the following
issues arise:

1) Both solutions are only applicable under constraints (27)
and (29). Is it possible thdtoth constraints are satisfied
and, if so, then what is the best solution for (6)?

2) Conversely, ifneither of these two constraints is satisfied,
then what is the optimal solution for (6)?

It turns out that the answer to both questions can be derived
based on the value of the temporal constrakit,, as it is
clarified in the following analysis.

Starting from (27), with a few straightforward manipulations
we reach-?— < Kin < 2. The second constraint fdtmin
is provided by (29). It is now easy to prove thas > vy (see

Following the steps presented earlier, we can show by firdependix B-A), which demonstrates that the constraints of the

and second derivative analysis that the global minimum
Ecu(n, k) occurs atkoy = 2, with 4y given by (19). This
global minimum holds under the assumption that > Kuin,

Byo solutions arenon-overlappingas the lower bound of (27)
is larger than the upper bound of (29). This answers the first
guestion.

due the predefined temporal constraint of (7). Having derived TO address the second question, we have to analyze what

the global minimum ofE,y(7, k) along an arbitrary plane happens wheng- < Kpyin < 2

or Kmin > B

N as

max

n =7, Nmin <7t < Nmax, WE can now attempt to find the valueneither of S, , and Sy, , are applicable in such cases. It

of 1, Nmin € 7 < Nmax that minimizes the energy function.is straightforward to show thzﬁ% and

EvaluatingE¢ y(n, k) on k = ko y we obtain:

Eeu(n, kow) = ~[la+r[(p+)(d+1)+ hd+g]]w (28)

n
s2(b+p)

-ps + )
ps 4dr(d+ 1)y

9%y are never zero
within these intervals. Hence, the solution we are looking for
must lie on one of the two boundary poin{SVmin, Kmin) OF
(NmaXa Kmin)-

Let us focus on the case 01% < Kmin < foax and
evaluateF. y(n, k) on the boundary plane = Npax Since

E¢(Nmax, k) is monotonically increasing fok > JJTUM the
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optimal point is k& = Kmin, Which leads to the solution is greater than the energy during transmission. While this
Smaxmin = (Nmax, Kmin). Similarly, let us look at thé: direc- is possible from a mathematical point of view, the physical
tion by evaluating the energy function on the- K, plane. reality of wireless transceivers does not allow for this case to
Now ng y = If” is larger thanVnax and is thus not admissible. manifest in a practical setting. We also note that, beyond the
Since E¢ y(n, Km.n) is decreasing fon < noy, the optimal constraint of (33), the global minimum df p holds under
point isn = Nmax wh|ch also leads to the solutiaf,. min. the assumption that p > K., due the predefined temporal

Finally, when Knin > N , following a similar analysis we constraint of (7).

reach that the optimal squtlon Suinmin = (Nmin, Kmin)- EvaluatingEc p(n, k) on k = ko p, we obtain

Summarizing, when the data transmitted by each VSN node
follows the Uniform distribution of (8), the set of solutions b+p[ 1o Ber(a-1)(d+1) @
giving the minimum energy consumption in (6) under thé&cp(n, kop) = [ ( - )
spatio—temporal constraints of (7) is given by (17). .

x (a=1)"" = For (d+1)] (34)

B. Proof of Proposition 1 for the Pareto Distribution N bs L P Bela+r[(j+p)(d+1)+hd+g]]

Considering the energy consumption for the Pareto distri- n Nmax n

bution E¢p in (14), we follow the derivative-based analysi€vidently, for « > 1, the value ofn minimizing (34) is the
along each direction and join the obtained minima along withaximum allowable, i.en = Nqnax. Hence, the solution when

their constraints. attempting to minimize the energy consumption function in the
1) p-direction: The partial Qeriyative Opr?p with respect k-direction under the constraints of (7)S%, 5 = ( Nima, 1\7P
to n (i.e. under a plané = k with k > K,y) is: under the constraink i, < 5= It is now easy to prove that
3Ec,P bs s o \% Op > v (see Appendix B- B) which demonstrates that the
on e (b+p) (?) (30)  constraints of the two solutions aren- overlapping

The only solution for‘)E”’ 0 that can be admissible underC

the constraints of (7) iz p = =&, with Sp given by (21). It
is straightforward to show thato p corresponds to the global
minimum of E¢p(n, k). EvaluatingEcp for nop leads to

Exponential Distribution

The energy consumption in the case of Exponential distri-
bution is E¢ g, given by (15). We follow the derivative-based
analysis along each direction and join together the obtained
minima along with their constraints.

Eep(nop, k) =k[a+r[(j-b)(d+1)+hd+g 1) n-direction: The partial derivative ofF g with respect

as1 1 to n (i.e. under a plané = &k with & > K,.;,) is:
LA+ O)F 0ept]]. @y O P )
which attains its minimum value for the minimum allowable  9F, ¢ bs s s
k, i.e. at pointSy, , = ( Lo Kmm) Now we have to ensure o 2 (b+p)exp( o (d + 1)) (35)

that Ninin < n0,p < Nrnase, Which gives~2- < Komin < 22 . . .
min = 0P » “imax VS Ny = Lhmin < 77, which, under the constraints of 7, is equal to zerorfgg = 2&,

discussed for the Uniform case, for "Values i out5|de
hin iWith Be given by (22). It is straightforward to show thag e

this range, the optimal solution comprises the border poi oS t ,
(N, Kumin) OF (Nin, Kmin), depending on temporal Cor1_corresponds to the global minimum ﬁt,E(n,k). Evaluating
E¢ g for ng g leads to:

straint.
2) k-direction: The partial derivative off; p with respect Ece(nog k) =kla+r[j(d+1)+hd+g
to k (i.e. under a plane =7 with Ny, <7 < Nyay) IS: +p
+b(d+1)|n( )H (36)
aaElz’P =a+r[(j+p)(d+1)+hd+g] which has its minimum value for the minimum allowal#te

i.e. at pointS,,, . = ( Le Km.n) Now we have to ensure that

o ot Niin < 70 < Nmaxe which leads toﬁ—E < Kmin < 5. Again,
y l(ﬁ) (kﬂ“(a— 1)(d+ 1)) ~ 1]. for values of K, outside this range the optlmal solution
s o comprises the border point&Vmax, Kmin) O (Nmin, Kmin),
depending on temporal constraint.
dEcp -0 that is admissible under the 2) k-direction: The partial derivative off; g with respect

+r(b+p)(d+1) (32)

The only solution for==f

constraints of (7) |g€0'p— ® with e defined in (20). The 0 k (i.e. under a plane = i With Ny, < 72 < Nppay) IS:
:‘,ivrrs]itccr:]olr;satézir:; imposed Ohoﬁp is that it must be positive, 88le,e —la+r[(p+j)(d+1)+hd+qg]]
a hd+g +(b+p) [T (d+1) (exp (_ﬁkr(sdﬂ))_l) @37
b>j : 33 N
>ijr(dJrl)Jr d+1 (33) R eXp( nkr(d+1)

The last equation indicates that the global minimumkek The only solution for gle =0 that may be admissible under

holds only if the energy consumption during the idle statihe constraints of (7) isoe = =, with 1¢ defined in (23).
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The first constraint imposed df e is that it must be positive.  2) k-direction: The partial derivative off; 1 with respect
That is, the product-log function should be smaller than -10 & (i.e. under a plane = 7 with Ny, <7 < Npax) IS:

This is true when the argument of the product-log function is OF. 4
limited within (—i, o) [33]. That is: o =larl(p+5) (d+ 1)+ hd+g)
1 _a-r[(0-(d+)-hd-g] (38) +7(b+p)(d+1) (42)
exp exp xr(d+1)(b+p) ) y (exp (_ s )_ )
It is easy to verify that a necessary condition for (38) to hold mhk2r2n?(d + 1)

is (33). Thus, similar to the Pareto case, while the the globahich can be shown to be positive. Hence, the energy function
minimum of ko g is in principle possible, it is not expected tais increasing with respect tb and the optimal value is the
be encountered in a practical setup. Beyond the constraintnehimum allowablek. Thus, the solution is equal t8
(38), the global minimum ofg e holds under the assumption
thatko g > Kmin due the predefined temporal constraint of (7). APPENDIX B

Having derived the global minimum df. (7, k) along an
arbitrary planen = 71, Nmin £ 71 £ Nmax, WE Can now attempt A. Proof thatfy >
to find the value ofn, Nmin < 7 < Nmax that minimizes the  Replacingsy and4y from (18) and (19) in the inequality
energy function. Evaluatindi. g(n, k) on k = ko p we obtain we desire to prove, squaring both sides (since all terms are

positive) and rearranging terms, leads to

Eer(n, kop) = e +p)(d+1) (exp(—;)—l) r[b(g+j+p)+p(g+j+pd)+bd(h+j+p)
o n rye(d+1) ipd(h+j)]+a(b+p)>0, (43)
+b_s+’yE(a+r[(p+j)(d+1)+hd+g]'

TO,H"

which is indeed positive because all constants are positive
(39) quantities.

Evidently, for « > 1, the value ofn minimizing (39) is the

maximum allowable, i.en = Nmax. Hence, the solution when B. Proof thatge > +p

attempting to minimize the energy consumption function in the Replacing the termg and e from (20) and (21) in the
k-direction under the constraints of (7)$%, . = (NmaX7 ﬁmij) inequality we desire to prove, we reach:

under the constraink ,;, < NVE— It is now easy to prove that

Be > e (see Appendix BBm) which demonstrates that the

i . a%
constraints of the two solutions anen-overlapping b )"‘ o (zarrl(b-j)(d+1) ~hd-g]\*" (44)
b+p r(d+1)(b+p)
D. Half-Gaussian Distribution Now, recalling the constraint of (33), let us assume the

The energy consumption for half-Gaussian distribution [§inimum possible value fob, i.e.,

Ecn given by (16).
1) n-direction: The partial derivative off’;  with respect b=j+ ,
to n (i.e. under a plané = k with k£ > K ;) is:

a +hd+g+5
(d+1) d+1

with ¢ > 0. Evidently,b > § since all constants are positive.
OB _ps _s(b+p) £ _5 40) Substitutingd in the numerator of the right hand side of (44)
on  n? o VTkrn(d+1) )’ (40) = o

via (45), we obtair(#‘p)“ > (%)‘H. Sinceb > 8, in order
which, under the constraints of 7, is equal to zero7gk = o _ 1
%ﬁ, with By given by (25). It is easy to show thatyy to prove the last expression it suffices to prove %) >
corresponds to the global minimum &% (n,l?:) Evaluating (L
E.y for ngy leads to: bip

(49)

1
)"'1 holds. The last expression is indeed true because
b

FpSL

EC,H(nO,Ha k) =k [a’ +r [(p+]) (d + ]') +hd + g C. Proof thatﬁE > e

2
+ (b+p)(d+ l)exp([— erf! (L)] )H Replacingfe and~e from (23) and (22) in the inequality
b+p we desire to prove, we reach
(41)
_ 1 1
which has its minimum value for the minimum allowabie 1 (H_p) > —W(a,r[(b,j)(dﬂ)fhdfg]) S (46)
i.e. atSp,, = (Kﬂ—:m, Kmm). Now, we have to ensure that exp xr(d+1)(b+p)

Nnin € non € Nmax Which leads toj\fH < Kmin < J\f“_n. Recalling that, under the constraint (33), the Lamb#@ft
Similarly as for the previous distributions, for values 6k, function is upper-bounded by -1 we obtain
outside this range, the optimal solution comprises the border n(b +p)_1 N W(a -r[(b-j)(d+1)-hd-g]

pOIntS (Nmax, Kmm) or (]\fmin7 Kmin). P exp Xr (d + ].) (b +p)

) . (47)



Substitutingd in the numerator of the right side of (47) with[21]
the expression of (45) and using the definition of the product-
log function,z = W (2) exp (W (z)), the last inequality leads |,
top > *—‘fé The right-hand side is upper boundeé

by 9, sincéxptxﬁgpi_ambert function is upper bounded by -1.

Thus, to complete the proof, it suffices to prove that §. [23]
For derivating the solutions in the Exponential case, we have
assumed that > b and (45) shows thdt> 6. Thereforep > §.  [24]
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