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Abstract 

 

The gene underlying the classic neurodegenerative lysosomal storage disorder 

(LSD) juvenile neuronal ceroid lipofuscinosis (JNCL) in humans, CLN3, 

encodes a polytopic membrane spanning protein of unknown function. Several 

studies using simpler models have been performed in order to further 

understand this protein and its pathological mechanism. Schizosaccharomyces 

pombe provides an ideal model organism for the study of CLN3 function, due to 

its simplicity, genetic tractability and the presence of a single orthologue of 

CLN3 (Btn1p), which exhibits a functional profile comparable to its human 

counterpart. In this study, this model was used to explore the effect of different 

mutations in btn1 as well as phenotypes arising from complete deletion of the 

gene. Different btn1 mutations have different effects on the protein function, 

underlining different phenotypes and affecting the levels of expression of Btn1p. 

So far, there is no cure for JNCL and therefore it is of great importance to 

identify novel lead compounds that can be developed for disease therapy. To 

identify these compounds, a drug screen with btn1Δ cells based on their 

sensitivity to cyclosporine A, was developed. Positive hits from the screen were 

validated and tested for their ability to rescue other specific phenotypes also 

associated with the loss of btn1. The same hits were also tested in JNCL 

patient fibroblasts and in a zebrafish model of the disease. Promising results 

were obtained for three compounds: alloxazine, prochlorperazine dimaleate and 

E-64, with the latest being the one with the most potential for developing 

therapeutic tools. Yeast models for other LSDs (Chédiak Higashi Syndrome, 

Niemann-Pick disease type C2 and congenital CLN10 disease) were also 

characterised in terms of cellular phenotypes and the compounds described 

above were also tested in these models. Overlapping phenotypes were 

observed on all the yeast models, suggesting at least one common pathway 

between these LSDs. 
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1 Introduction 

 

Juvenile CLN3 disease is one type of a group of diseases known as the 

neuronal ceroid lipofuscinosis (NCL), and is caused by mutations in the CLN3 

gene. CLN3 encodes a polytopic membrane spanning protein of unknown 

function. It is conserved and all evidence obtained so far suggests the same 

function in simple yeast as in human cells. Work done in fission yeast has 

shown that complete loss of the CLN3 orthologue, Btn1p, has multiple effects 

within the cell. Current therapeutic strategies for other types of NCL caused by 

enzyme defects are not applicable to juvenile CLN3 disease (JNCL), and new 

strategies or tools are urgently required for treatment of this disease. 

This first chapter consists of an introductory description of different topics that 

are relevant for a better understanding of this project. First an overview of the 

lysosomal storage disorders (LSDs) group is presented, including a more 

detailed description of all types of NCL, particularly juvenile CLN3 disease. 

Descriptions of two other LSDs (Chédiak-Higashi Syndrome and Niemann Pick 

type C disease) are also included. Second, all previous work that has been 

done with fission yeast and the CLN3 orthologue, Btn1p, will be described. Last, 

the aims of this project will be presented.  
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1.1 Lysosomal storage disorders 

In simple terms, lysosomal storage disorders (LSDs) are rare monogenic 

diseases characterised by biological defects that lead to the accumulation of 

unmetabolised compounds in lysosomes. Until the present date, 70 disorders 

have been identified as part of this group, with a collective prevalence varying 

between 1 in 5000 and 1 in 1000 live births (Aerts et al. 2011). Most LSDs are 

inborn errors of metabolism that originate from a defective catabolism and 

consequent intralysosomal accumulation of endogenous undegraded 

molecules. The majority of LSDs results from loss of activity of a lysosomal 

catabolic enzyme, which may be related to a defective protein synthesis or 

folding, enzyme activation or membrane protein defects (Jeyakumar et al. 

2005). Niemman Pick type C and several NCL, among others, fall into this latter 

category. However, the broad clinical spectrum of LSDs are clearly not simply 

an effect of the intralysosomal compound storage, but a consequence of 

defects in signalling pathways that affect the cell far beyond the lysosome, both 

structurally and biochemically (Vellodi 2005). This is becoming more apparent 

as the lysosome is no longer considered to be a waste recycling centre but play 

a central role in several cellular functions such as energy metabolism, lipid 

homeostasis, membrane repair and defence against pathogens, among others 

(Settembre et al. 2012). The pathophysiology of LSDs varies between the 

different disorders depending on the underlying defect, the type of storage 

compound and how this storage affects the cell metabolism (Gieselmann 2006). 

The majority of affected individuals with any type of LSD often show 

abnormalities at a neurological level that can lead to neurodegeneration 

(Walkley 1998).   

 



Chapter 1 Introduction 

 16 

1.1.1 Neuronal ceroid lipofuscinosis 

The neuronal ceroid lipofuscinosis (NCL) are neurodegenerative disorders 

grouped together on a clinical basis, with onset usually in childhood (Mole et al. 

1999). Children with NCL can start manifesting symptoms at any age, even 

before birth. The order of onset of the symptoms varies between the different 

types of NCL, but the main symptoms are common to all types. These include 

seizures and blindness, as well as progressive decline of cognitive and motor 

functions, eventually leading to a premature death. 

NCL are the most common of this type of diseases, with an incidence that can 

be as high as 7 in 100,000 births in some countries (Kyttälä et al. 2006). NCL 

are characterised by accumulation of autofluorescent ceroid and lipofuscin-like 

pigments in lysosomes. The ceroid pigment accumulates in disease, particularly 

in diseases caused by lysosomal dysfunction (Sulzer et al. 2008), whereas 

lipofuscin is an age-associated pigment that accumulates in the brains of all 

individuals as they get older, but in NCL cases this accumulation occurs much 

earlier (Seehafer & Pearce 2006). This storage material is not an obvious result 

of a defect in a single catabolic step. The major protein component of the 

storage material varies according to the NCL type, but in the majority of cases it 

is the subunit c of mitochondrial adenosine triphosphate (ATP) synthase (Haltia 

2006). This storage material has a characteristic pattern when examined under 

the electron microscope (EM), which varies according to the type of NCL (e.g. a 

fingerprint-like pattern for juvenile CLN3 disease). Most patient cells show this 

accumulation, but characteristically this leads to death only in neurons. The 

reason why this happens is unknown, however it is thought that this is due to 

the increased energy and metabolism requirements of neurons, which may 

make them more sensitive to the accumulated material or other underlying 

molecular defects (Goebel & Lake 1998).  

There are many types of NCL, traditionally classified according to the age of 

onset and the order of appearance of clinical symptoms, but recently modified 

according to the underlying genetic defect (Mole et al. 2011). The term Batten 

disease can be used to describe all forms of NCL, or more specifically, the 
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juvenile type. A brief description of each NCL is included below, and a table 

summarising all of these types is also presented (Table 1.1). 

 

Congenital CLN10 disease 

The congenital form of NCL, known as congenital CLN10 disease, is the most 

aggressive form of all NCLs and the one with the earliest onset. This disease 

was firstly identified in 1941 (Norman & Wood 1941) and has been described in 

11 patients to date. CLN10 disease is a very rare form of NCL although many 

cases may be undiagnosed due to spontaneous abortions and stillborn unviable 

foetuses (Anderson et al. 2013). This disease is caused by at least seven 

different mutations in the CTSD gene, which encodes for cathepsin D (Warrier 

et al. 2013). Cathepsin D is a lysosomal protease of the pepsin family (Rawlings 

& Barrett 1995) that is involved in several biological processes such as 

apoptosis, cell invasion, proteolytic degradation and other brain biological 

functions such as aging or even homeostasis of neuronal structures (Koike et 

al. 2000; Steinfeld et al. 2006). It is suggested that the neuronal death seen in 

this form of NCL occurs due to defects in the macroautophagy-lysosomal 

degradation pathway (Kohan et al. 2011). More interestingly, CLN3 has been 

suggested to affect the transport and proteolytic maturation of cathepsin D, due 

to its effect on vesicular trafficking and in lysosomal pH, respectively (Golabek 

et al. 2000; Fossale et al. 2004). This establishes a link between these two 

proteins. 

The protein constituents of the storage material in CLN10 disease are mainly 

saposins A and D, and the material has a granular ultrastructure resembling 

granular osmiophilic deposits (GRODs). Individuals with congenital onset show 

different phenotypes, such as microcephaly at time of birth, cerebral and 

cerebellar atrophy, seizures, spasticity, low set ears and broad nasal bridge in 

some cases, and have postnatal respiratory insufficiency, leading to death 

within hours to weeks after birth (Siintola et al. 2006).  Missense mutations in 

CTSD can also cause a NCL disease with later ages of onset, where affected 
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individuals have a normal early development but start to manifest ataxia and 

visual defects in early childhood, with a progressive decline that will eventually 

lead to loss of psychomotor functions and death (Steinfeld et al. 2006). In these 

cases there is an evident reduction of the proteolytic activity of cathepsin D, and 

the amount of protein present in the cells is markedly reduced. It is therefore 

proposed that the level of residual enzyme activity in individuals with CTSD 

mutations is critical for the clinical manifestation of the CLN10 disease 

Mutations in the cathepsin D gene are also present in other animals, where 

phenotypes associated with the CLN10 disease are evident: sheep, mice and 

fruit fly (Drosophila melanogaster) (Koike et al. 2000; Tyynelä et al. 2000; 

Myllykangas et al. 2005). The CTSD gene is also conserved in fission yeast 

(see below, section 1.2.2). 

 

Infantile CLN1 disease 

The gene underlying infantile CLN1 disease, PPT1 (or CLN1) encodes for the 

palmitoyl-protein thiosterase protein (PPT1) and was identified in 1995 (Vesa et 

al. 1995). In individuals with the mutated gene, there is no detectable enzyme 

activity in the brain. PPT1 removes thioester-linked fatty acids from cysteine 

residues in proteins and facilitates their degradation and/or recycling in the 

lysosome (Das et al. 1998). Therefore cysteine-containing fatty acyl thioesters 

accumulate intracellularly in cells with defective PPT1. PPT1 has been 

associated with different cellular functions: cholesterol metabolism, neuronal 

maturation, calcium homeostasis, endocytosis, among other, and it also has an 

antiapoptotic effect by decreasing the rate of activation of Ras oncogenes (Cho 

& Dawson 2000; Ahtiainen et al. 2006; Ahtiainen et al. 2007). The 

neurodegeneration that occurs in the cases of infantile CLN1 disease was 

reported as being a result of neuronal apoptosis via endoplasmic reticulum (ER) 

stress-induced caspase-12 activation and high production of reactive oxygen 

species (ROS) (Kim et al. 2006). The PPT1 gene is conserved in many 

eukaryotic species, such as Caenorhabditis elegans, D. melanogaster and 
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Schizosaccharomyces pombe (Korey & MacDonald 2003; Cho & Hofmann 

2004; Porter et al. 2005). 

Classic infantile CLN1 disease is a rare disorder, with an incidence of 1 in 100 

000 births, but it is a devastating condition (Haltia et al. 1973). Symptoms 

appear before the age of 18 months and include: cerebellar atrophy, 

microcephaly, ataxia, blindness, seizures, frequent convulsions and a 

progressive psychomotor deterioration that starts at about 1 year of age. By 3 

years of age they are diagnosed with brain death, which persists until death 

between 10-14 years of age (Haltia et al. 1973; Santavuori et al. 1973). 

Histologically, the storage material is similar to that of congenital CLN10 

disease, with a GROD-like characteristic pattern and composition of mainly 

saposins A and D (Tyynelä et al. 1993). 

Nonsense biallelic mutations in the CLN1 gene result in infantile CLN1 disease; 

however, other type of mutations in this gene can cause forms of NCL with later 

onset. For instance, heterozygous mutations in the PPT1 gene were reported to 

underlie a type of NCL clinically consistent with juvenile NCL but with an 

ultrastructural profile similar to the infantile form, granular deposits consisted of 

saposins (Mitchison et al. 1998; Kalviainen et al. 2007). Furthermore, some 

missense mutations in the PPT1 gene result in phenotypes clinically similar to 

the late infantile and juvenile forms of NCL, with disease onset at 2-4 years and 

after 5 years of age, respectively. However, the storage material observed in 

these cases is once again GROD-like (Das et al. 1998). PPT1 deficiency can 

also be associated with adult-onset NCL where symptoms start occurring as 

late as in the third decade of life of the patients (van Diggelen et al. 2001; 

Ramadan et al. 2007). It is suggested that if there is sufficient enzyme function, 

even at low levels, this is enough to ameliorate the NCL phenotype and delay 

the onset of the disease. These findings are supportive for a therapeutic 

strategy that includes enzyme replacement therapy. In fact, recent work in 

PPT1 knockout mice injected from birth with purified recombinant PPT1 showed 

that the treatment was well tolerated and resulted in significant improvements in 

survival, motor performance and brain pathology of the mice (Hu et al. 2012). 
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Late infantile NCL 

There are different forms of late infantile NCL (LINCL), according to the gene 

that underlies the disease: CLN2, CLN5, CLN6, CLN7 or CLN8.  

Classic late infantile NCL (cLINCL, CLN2 disease) is caused by mutations in 

the CLN2 gene (also known as tripeptidyl peptidase 1, or TPP1) (Sleat et al. 

1997). TPP1 is a lysosomal peptidase, and mutations in the encoding gene lead 

to its retention in the ER and posterior degradation (Steinfeld et al. 2004). It is 

also thought that TPP1 may play a fundamental role in the degradation of 

subunit c of the mitochondrial ATP synthase, which accumulates in cLINCL as 

curvilinear bodies (Ezaki et al. 2000). The onset of symptoms in classic CLN2 

disease is between 2 and 4 years of age, and death of patients occurs between 

7 and 15 years of age (Sleat et al. 2008). Individuals show several symptoms, 

such as: speech impediments, epilepsy, mental deterioration and ataxia, 

followed by loss of vision and motor functions by the age of 10 years (Steinfeld 

et al. 2002). Mutations in CLN2 have on occasions also caused infantile NCL 

with an earlier onset before the first year of age, or more commonly a protracted 

form, with a juvenile age of onset (Ju et al. 2002; Bessa et al. 2008).  

A second type of LINCL is CLN5 disease, previously known as Finnish variant 

LINCL (vLINCL), and is caused by mutations in the CLN5 gene (Savukoski et 

al. 1998). This gene encodes a lysosomal glycoprotein of unknown function 

which traffics through the ER and Golgi apparatus to the lysosomes, and 

although originally reported as a membrane associated form, is now thought to 

be soluble (Isosomppi et al. 2002; Vesa et al. 2002; Larkin et al. 2013). When 

mutated, the CLN5 protein may not traffic to lysosomes (Schmiedt et al. 2010). 

CLN5 was also shown to interact directly with two other NCL proteins, TPP1 

and CLN3 (Vesa et al. 2002). In CLN5 disease, patients start manifesting 

symptoms at a slightly later age than in CLN2 disease (between 4 and 7 years 

of age) and the survival time is longer (up to 30 years of age) (Santavuori 1982; 

Moore et al. 2008). Symptoms vary between motor clumsiness, mental 

retardation, progressive visual failure, ataxia and myoclonic seizures 

(Savukoski et al. 1998). CLN5 disease patients can have mixed ultrastructural 
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patterns of inclusions: curvilinear, fingerprint and rectilinear; all containing 

subunit c of ATP synthase (Moore et al. 2008; Xin et al. 2010). Late infantile 

CLN5 disease is also manifested by Border Collie dogs (Melville et al. 2005). 

Certain mutations in CLN5 have been reported to underlie later forms of NCL, 

such as juvenile and adult forms (Sleat et al. 2009; Xin et al. 2010). 

Another variant form of LINCL is CLN6 disease, once known as Lake-

Cavanagh disease. This type is caused by mutations in the CLN6 gene, which 

encodes a putative transmembrane protein that localises to the ER (Gao et al. 

2002; Wheeler et al. 2002; Mole et al. 2004). CLN6 is highly conserved across 

vertebrates, with a orthologue in mice and in sheep (Broom & Zhou 2001; Gao 

et al. 2002; Tammen et al. 2006). Variant late infantile CLN6 disease is 

characterised by storage bodies containing subunit c of ATP synthase that can 

adopt a curvilinear, rectilinear or fingerprint profile (Moore et al. 2008). The 

disease course is similar to cLINCL; however, patients start manifesting 

symptoms slightly later, at 5 to 7 years of age, and survive until their second 

decade of life (Siintola et al. 2005; Moore et al. 2008). Symptoms include 

seizures and motor impairments in an early stage, and loss of vision later. 

A third type of LINCL, late infantile CLN7 disease, was first recognised in 

Turkish patients (Topçu et al. 2004). This variant form is caused by mutations in 

the major facilitator superfamily domain containing 8 (MFSD8 or CLN7) gene, 

which encodes a polytopic membrane protein with 12 membrane-spanning 

domains that is mainly localised in the lysosomes. MFSD8 belongs to a 

transporter superfamily and is conserved in vertebrates (Siintola et al. 2007). 

Compared to the classic form of CLN2 disease, patients with this variant show a 

slower but more severe course of the disease, with a higher frequency of 

seizures accompanied by a cerebral and cerebellar atrophy (Aiello et al. 2009). 

Other symptoms include motor impairment, ataxia, seizures and developmental 

regression (Topçu et al. 2004). Mutations in CLN7 can also underlie juvenile 

NCL (Kousi et al. 2009).  

The CLN8 gene was initially identified as the gene underlying progressive 

epilepsy with mental retardation (EPMR) (Ranta et al. 1999). It is now known 
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that EPMR (or Northern epilepsy) is a form of LINCL (more specifically a 

mutation-specific phenotype) with a more protracted course. The age of onset is 

between 5 and 10 years of age, when patients start manifesting seizures 

followed by a slow deterioration of mental capacities (Herva et al. 2000). Other 

mutations cause a more typical late infantile CLN8 disease. EM studies show 

that the storage bodies contain subunit c of ATP synthase and can have a 

fingerprint, curvilinear or rectilinear ultrastructural profile (Allen et al. 2012). 

CLN8 is a predicted transmembrane protein, which is located in the ER and 

traffics between the ER and the ER-Golgi intermediate compartments (Lonka et 

al. 2000). The function of CLN8 remains elusive but it has been associated with 

an indirect role of in protecting neurons from damage (Vantaggiato et al. 2009). 

Furthermore, a mutation in CLN8 underlies a NCL-like phenotype in English 

Setter dogs (Katz et al. 2005). 

 

Adult NCL 

The basis of adult-onset NCL is quite complex, since genes with different 

effects on the disease phenotype have been identified, all leading to an adult 

onset form of NCL (or ANCL). In general, the term adult NCL comprises a group 

of rare and genetically heterogeneous disorders with disease onset varying 

from 10 to 50 years of age (Berkovic et al. 1988). There are cases of ANCL 

where the genetic cause is still unknown. 

The form entitled adult CLN6 disease (or Kufs disease type A) is an autosomal 

recessive disease caused by mild mutations in the CLN6 gene, the same gene 

that is associated with disease onset in late infancy (Arsov et al. 2011). This 

form of NCL is characterised by progressive myoclonic epilepsy and ataxia, 

which start around the third decade of life, and no retinal degeneration 

(Berkovic et al. 1988). Storage material is mainly located in the neurons and 

can have three different profiles: fingerprint, rectilinear and GROD-like (Burneo 

et al. 2003).  
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Kufs type B disease is another type of ANCL. This type of Kufs disease differs 

from type A because it is mainly characterised by dementia, cerebellar signs, 

several motor deficiencies and behavioural disturbances, rather than epilepsy 

(Burneo et al. 2003). One gene, underlying the adult CLN13 disease, CTSF (or 

CLN13), was recently identified in some of these cases. CTSF encodes 

cathepsin F, a lysosomal protease (Smith et al. 2013). 

Another form of ANCL is known as adult CLN4 disease or Parry disease. It is 

autosomal dominant and caused by mutations in the deoxyribonucleic acid 

(DNA) J homologue subfamily C member 5 (DNAJC5 or CLN4) gene that 

encodes for cysteine-string protein α (CSPα), a highly conserved protein that is 

involved in the rescue of unfolded synaptic proteins (Cadieux-Dion et al. 2013). 

Mutations in DNAJC5 reduce the amount of functional CSPα affecting its 

location in neuronal cells, which might lead to dysfunction at a presynaptic level 

and to the neurodegeneration seen in affected individuals. There is also 

accumulation of misfolded proteins that are resistant to proteolysis in the 

neurons’ lysosomes (Noskova et al. 2011). The age of onset of symptoms in the 

affected individuals varies between 25 and 46 years of age and includes 

seizures, cognitive deterioration with loss of speech, cerebral atrophy, motor 

deficiencies (including Parkinsonism in some cases) and predominantly 

dementia, with no retinal degeneration (Nijssen et al. 2002; Burneo et al. 2003; 

Noskova et al. 2011). The storage material is arranged in three different 

ultrastructural profiles: fingerprint, rectilinear and GROD-like (Josephson et al. 

2001).  

Other more rare types of ANCL have been described. For instance, a 

homozygous mutation in the GRN gene (also known as CLN11), which encodes 

progranulin, has been identified in ANCL patients (Smith et al. 2012). 

Progranulin has been associated with several roles, such as inflammation, 

tumourigenesis and tissue repair (Bateman & Bennett 2009). Heterozygous 

mutations in this same gene are better known to cause frontotemporal lobar 

degeneration, the second most common early-onset dementia (Yu et al. 2010). 

In this CLN11 disease, affected individuals show visual failure and convulsions 
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in the second decade of life, followed by ataxia, cerebellar atrophy and early 

deterioration of cognitive capacities (Smith et al. 2012). Storage material with a 

rectilinear profile was identified in a progranulin-deficient mouse model (Petkau 

et al. 2012). 

In a mass spectrometry-based assay, mutations in further genes were shown to 

cause adult forms of NCL: two missense mutations in the CLN5 gene and a 

missense mutation in the N-sulphoglucosamine sulphohydrolase (SGSH) gene, 

which more usually underlies mucopolysaccharidoses III A (Sleat et al. 2009). 

Another study also showed that mutations in CLN5 cause ANCL (Xin et al. 

2010).  
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1.1.2 Juvenile CLN3 disease 

The juvenile form of NCL (JNCL), now known as juvenile CLN3 disease, is the 

most common form of NCL accounting for about 50% of all known NCL cases. 

The incidence of juvenile CLN3 disease can be as high as 7 births per 100,000 

in Scandinavia (Uvebrant & Hagberg 1997). 

Children with juvenile CLN3 disease start manifesting symptoms between the 

ages of 4 to 10 years. Symptoms start with visual impairment, followed by 

seizures and cognitive, speech and motor decline, progressively leading to 

death, usually in the second or third decade of life (Consortium 1995). Most 

patients also show behavioural problems with angry outbursts, physical 

violence, and features of depression. Magnetic resonance imaging 

examinations show cerebral and cerebellar atrophy (Mole et al. 2005).  

The juvenile CLN3 disease is characterised by the presence of lipofuscin with a 

fingerprint ultrastructural pattern (Palmer et al. 1992). These fingerprint profiles 

are often seen within large membrane-bound lysosomal vacuoles in the 

patients’ blood lymphocytes, but they are also found in neuronal tissues. 

Subunit c of ATP synthase complex is found in high concentrations in patients’ 

lysosomes, being the main protein component of the accumulated material in 

juvenile NCL. 

Juvenile CLN3 disease, like the majority of NCL disorders, is an autosomal 

recessive inherited condition, caused by mutations in the human gene CLN3 

(Consortium 1995). CLN3 encodes a polytopic membrane protein with 438 

amino acids. The proposed topology of the CLN3 protein consists of six 

transmembrane domains and a lumenal amphipathic helix (Nugent et al. 2008; 

Ratajczak et al. 2014) (Figure 1.1.1).  
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Figure 1.1.1 Proposed topologies of Btn1p showing the 
position of different mutations 
Proposed topology of Btn1p according to (A) Nugent et al and (B) Ratjaczak et al. Positions 
E295 and G187, where p.E295K and p.G187A mutations occur, are shown in the diagram by 
oval shapes. The region deleted in the 1-kb deletion is represented in light grey (Nugent et al. 
2008; Ratajczak et al. 2014). 
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Over 50 mutations have been described in CLN3 to date (NCL resource 

mutation database - http://www.ucl.ac.uk/ncl). The most common mutation, 

present in almost all patients, is a 1-kb intragenic deletion that removes two 

internal exons within the CLN3 gene, and that can be found on both disease 

alleles or in compound heterozygosity with a different mutation (Consortium 

1995; Munroe et al. 1997). This deletion is known to result in at least two 

different transcripts: one predicted to encode a truncated protein of just over 

100 amino acids and another lacking three internal exons. Thus, two mutant 

proteins may be expressed in cells of juvenile CLN3 disease patients 

(Kitzmuller et al. 2008). Previously it had been thought that these patients had 

lost all function of CLN3; however it was later shown that patients with this 

mutation have a mutation-specific phenotype since partial function of CLN3 

remains in all cells (Haines et al. 2009). Moreover, the mutant protein is able to 

rescue the enlarged lysosomes that arise from complete or severe loss of CLN3 

function (Kitzmuller et al. 2008). Furthermore, the existence of subclinical eye 

features was reported in healthy carriers of the 1-kb deletion (Gottlob et al. 

1988). 

Other mutations have been detected in CLN3. These mutations can be in 

compound heterozygosity with the 1-kb deletion. The majority are missense 

mutations, but other types have also been found:  nonsense mutations, small 

deletions, small insertions, intronic and splice-site mutations (Munroe et al. 

1997). Approximately 80% of mutations in CLN3 cause truncation of the protein 

resulting in prematurely truncated products (Kousi et al. 2012). The 

p.Glu295Lys is one of the mutations associated with the mildest form of juvenile 

CLN3 disease in patients also carrying the 1-kb disease allele, with blindness 

as a clinical symptom for several decades, before the remaining symptoms start 

to manifest (Wisniewski et al. 1998; Aberg et al. 2009). Another mutation, 

p.Gly187Ala, is predicted to cause complete loss of CLN3 function, perhaps 

through disruption of protein folding and eventual degradation (Haines et al. 

2009). There is evidence of correlation between genotype and phenotype in the 

CLN3 disease. For example, it has been reported that mutations in the lumenal 

regions, including the amphipathic helix, have the most significant impact on the 

http://www.ucl.ac.uk/ncl
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CLN3 function (Haines et al. 2009). Similarly, any mutation that will affect the 

protein structure will give rise to a classic juvenile NCL phenotype, whereas a 

more protracted disease course will be underlined by other mutations, 

presumably affecting less important CLN3 residues (Mole et al. 2005). 

Remarkably, several individuals whose only symptoms are visual failure, even 

in late adulthood, have recently been shown to harbour mutations in CLN3 

(Coppieters et al. 2014; Wang et al. 2014). This relationship between disease 

severity and the underlying mutation suggests that certain protein regions are 

more important for its activity than others. This makes it very important to further 

elucidate the protein function and predict which are the important regions, in 

order to reach a therapeutic goal. This will be further discussed later in the 

Discussion Chapter. 

CLN3 is the most highly conserved of the NCL genes, and it has been 

described in all eukaryotic species, except plants (Mole et al. 2005) (Figure 

1.1.2). This high conservation between species suggests an important role for 

this protein at the cellular level. The fact that the protein is greatly conserved 

also provides several simpler models for juvenile CLN3 disease. Organisms 

that have been used as models for the study of CLN3 include: the budding 

yeast Saccharomyces cerevisiae, fission yeast Schizosaccharomyces pombe, 

the nematode worm Caenorhabditis elegans, fruit fly Drosophila melanogaster, 

zebrafish Danio rerio and at least four different mouse models. In budding yeast, 

the orthologue of CLN3 is Btn1p. Btn1p is composed of 408 amino acids, and is 

59% similar and 39% identical to the human protein (Pearce & Sherman 1997). 

The fission yeast orthologue has the same denomination, Btn1p, but is slightly 

smaller, with 396 amino acids, and is 48% similar and 30% identical to its 

human orthologue (Gachet et al. 2005). C. elegans has three CLN3 gene 

orthologues: cln-3.1, cln-3.2, and cln-3.3, all with distinct expression patterns 

(de Voer et al. 2001). The fruit fly model of juvenile CLN3 disease is a gain-of-

function system, and the Drosophila cln3 is 60% similar to the human gene. 

Overexpression of cln3 causes degeneration and roughening of the fly eyes, 

duplicated macrochaetae on the thorax, thickening of wing veins and increased 

apoptosis in the wings (Tuxworth et al. 2009). A zebrafish model of CLN3 
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disease was generated by a Cln3-targeted morpholino approach. These fish 

show a spontaneous tail flicking phenotype, locomotion impairments with no 

movement, smaller eyes and premature death (Claire Russell and Kim Wager; 

personal communication). Finally, there are four mouse models with different 

deletions and insertions in the Cln3 gene. The first one was generated by 

targeted disruption of exons 1 to 6 of Cln3. These mice show accumulation of 

autofluorescent material in neurons, cortical atrophy and neurodegeneration 

(Mitchison et al. 1999). The second mouse model is also a knockout model, 

created by disruption of exons 7 and 8 of Cln3, and they also show storage 

material and neurodegeneration (Katz et al. 1999). The other two models are 

knock-in mice. One is a Cln3ex7-8 knock-in mouse, a genetic model of the 

common 1-kb deletion found in juvenile NCL patients, where exons 7 and 8 

have been deleted.  This mouse shows degeneration in the retina, cerebral 

cortex and cerebellum, neurological problems and suffers from a premature 

death (Cotman et al. 2002). The last mouse is another knock-in reporter model 

of the disease, where exons 1 to 8 of Cln3 are replaced with -galactosidase 

reporter. These mice show autofluorescent inclusions and neurological 

impairment, such as tremors, susceptibility to seizures and deficient motor 

functions (Eliason et al. 2007). All of these models contributed to important 

findings regarding the function of CLN3, and this is discussed below. 
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Figure 1.1.2  Conservation of CLN3 between several species 
Diagram of CLN3 amino acid conservation between human, mouse, Danio rerio (zebrafish), 
Drosophila melanogaster (fruit fly) and Schizosaccharomyces pombe (fission yeast). Each 
amino acid is represented by a letter and ‘-‘ represents the lack of those amino acids in the 
organism. Asterisks and grey rectangles represent residues that are known to be mutated in the 
human CLN3. The regions in black are regions that are exactly the same between the species; 
regions in grey correspond to regions where the amino acids are very similar respective to their 
properties. Lines above the amino acids correspond to the predicted transmembrane domains 
domains of the CLN3 protein according to the topology proposed by Nugent et al.. All mutated 
residues are highly conserved between species, as well as the transmembrane regions. 
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Table 1.1 Summary of different types of NCL 

NCL type Gene / Protein Protein function 

Congenital CLN10 disease  CTSD / cathepsin D Lysosomal protease 

Infantile CLN1 disease CLN1 / PPT1 Lysosomal thioesterase  

Late infantile CLN2 disease CLN2 / TPP1 Lysosomal peptidase 

Late infantile CLN5 disease CLN5  Lysosomal glycoprotein 

Late infantile CLN6 disease CLN6  ER transmembrane 

protein 

Late infantile CLN7 disease CLN7 / MFSD8 Membrane transporter 

protein 

Late infantile CLN8 disease 

or EPMR 

CLN8  Predicted 

transmembrane protein 

Juvenile CLN3 disease CLN3  Predicted 

transmembrane protein 

Adult CLN6 disease or Kufs 

disease type A 

CLN6  ER transmembrane 

protein 

Adult CLN13 disease or 

Kufs disease type B 

CTSF / cathepsin F Lysosomal protease 

Adult CLN4 disease or 

Parry disease 

DNAJC5 / CSPα Involved in protein folding 

Adult CLN11 disease GRN / progranulin Cell growth regulator 
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CLN3 function 

The exact function of CLN3 is still unknown and thought to be complex. Over 

the years, several important cellular roles have been associated with this 

protein such as autophagy, cytoskeletal organization, lysosomal homeostasis, 

lipid modification, apoptosis, trafficking, amino acid transport and metabolism. 

All of these functions are discussed below, together with a summary of the 

current information available on the CLN3 localisation and trafficking. 

 

CLN3 localisation and trafficking 

CLN3 has been reported at different locations in mammalian cells. These 

different locations include lysosomal or late endosomal compartments (Järvelä 

et al. 1998; Järvelä et al. 1999; Kida et al. 1999; Kyttälä et al. 2004) including 

the lysosomal membrane (Ezaki et al. 2003), the Golgi apparatus (Kida et al. 

1999; Kremmidiotis et al. 1999; Getty et al. 2013), the trans-Golgi network 

(TGN) (Tecedor et al. 2013), the endoplasmic reticulum (Kida et al. 1999), the 

nucleus (Margraf et al. 1999), the mitochondria (Katz et al. 1997) and in 

membrane lipid rafts (Rakheja et al. 2004). CLN3 has also been located in 

synaptosomes (Luiro et al. 2001). These studies were all done with 

overexpressed CLN3 as the amount of endogenous protein is too low to be 

detected using antibodies. 

Further work concerning CLN3 localisation was carried out in simpler disease 

models, again by studying ectopic expression with a GFP tag. Btn1p, the yeast 

orthologue of CLN3, is located in the perimeter membrane of vacuoles (the 

yeast organelles equivalent to mammalian lysosomes) and prevacuolar 

compartments, both in S. cerevisiae and S. pombe (Croopnick et al. 1998; 

Pearce et al. 1999b; Gachet et al. 2005). Additionally, Btn1p was observed in 

the Golgi apparatus at steady state with trafficking via the endocytic system to 

the vacuoles, in S. pombe (Gachet et al. 2005; Codlin & Mole 2009) and S. 

cerevisiae (Kama et al. 2011). 
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The effect of different mutations on the localisation of CLN3 has been reported 

in several studies. The presence of the common deletion in CLN3 has been 

shown to prevent exit of the protein from the ER and subsequent targeting to 

the endosomal/lysosomal compartments (Järvelä et al. 1999). Similarly, work 

done in the fission yeast model of juvenile CLN3 disease, showed that the 

missense mutation p.Gly187Ala (or p.Gly136Ala in Btn1p) and other mutations 

in the predicted second lumenal loop of Btn1p (according to (Nugent et al. 

2008) affect trafficking to the vacuoles and retain Btn1p in the ER (Codlin & 

Mole 2009; Haines et al. 2009). Other missense mutations in CLN3 were also 

studied. Work using mammalian cells showed that these mutations do not seem 

to affect CLN3 trafficking, since mutant CLN3 was observed in the same 

compartments as the wild-type protein, in the endosomal-lysosomal pathway 

(Järvelä et al. 1999; Haskell et al. 2000). However, recent work done in our 

group with fission yeast showed different results. In this study, mutations in the 

Btn1p C-terminal cysteine residues led to internalisation of the protein into the 

vacuoles (Haines et al. 2009).  

CLN3 undergoes several post-translational modifications. CLN3 is N-

glycosylated in two sites (asparagine residues 71 and 85) that are not essential 

for targeting CLN3 to the lysosomes, since the presence of mutations in these 

sites does not affect the lysosomal sorting of CLN3 (Storch et al. 2007). The C-

terminal of CLN3 contains a farnesylation motif (Pullarkat & Morris 1997). The 

inhibition of farnesylation in this motif appears to impair the sorting efficiency of 

CLN3 in early endosomes and subsequently increases the amount of CLN3 in 

the plasma membrane (Storch et al. 2007). Two other motifs are essential for 

CLN3 sorting to the lysosome both in neuronal and non-neuronal cells: one is 

located in the C-terminal and consists of a methionine and a glycine separated 

by nine amino acids [M(X)9G] (from 409 to 419), and the other is a dileucine 

motif (in hydrophobic amino acids 253 and 254) that resembles classic 

lysosomal targeting motifs in the second cytosolic loop domain of CLN3, LI 

(Kyttälä et al. 2004).  
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Lysosome homeostasis 

As mentioned above, CLN3 is localised in the membrane of late endosomes 

and lysosomes. Therefore, it is plausible that it exerts some functional roles in 

these organelles. Evidence of CLN3 function in lysosomal homeostasis has 

been reported in several studies. The lysosomal pH in fibroblasts is increased in 

several NCL, including the juvenile form (Holopainen et al. 2001). This is 

thought to result from a decrease in the vacuolar H+ ATPase complex (v-

ATPase) activity, reported in other study (Ramirez-Montealegre & Pearce 

2005). It is also thought that this decreased activity in the lysosomes disturbs 

the catalytic activity of lysosomal proteins and subsequently leads to 

accumulation of lipopigments, characteristically seen in NCL (Holopainen et al. 

2001).  

It was reported that the activities of several lysosomal enzymes are increased in 

Juvenile NCL patients (Sleat et al. 1998). Similarly, work done in a knockout 

mouse model of this disease showed that the activity of the lysosomal acid 

phosphatase LAP/ACP2 was significantly increased in the mice brain (Pohl et 

al. 2007). In the same study, this lysosomal phosphatase was reported as being 

present at high levels in juvenile NCL patient fibroblasts. This may reflect 

compensatory effects occurring in the cell that are initiated at the lysosome. 

The level of expression of CLN3 is thought to influence lysosome size in 

mammalian and yeast cells: in HeLa cells depleted for CLN3 by the action of 

small interfering ribonucleic acid (siRNA) lysosomes are larger than in control 

cells and overexpression of CLN3 decreases their size (Kitzmuller et al. 2008). 

Similar effects were seen in induced pluripotent stem cells derived from patient 

fibroblasts and in S. pombe (Gachet et al. 2005; Lojewski et al. 2014). 

Additionally, fibroblasts from patients containing the 1-kb common deletion 

when treated with siRNA against CLN3 showed an increase in lysosomes size. 

This result corroborates the finding that the 1-kb deletion retains some function 

and is not a null mutation (Kitzmuller et al. 2008).  

Alterations in lysosomal pH have also been reported in both yeast models of 
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juvenile CLN3 disease (S. cerevisiae and S. pombe), but with contradictory 

effects. Fission yeast cells show the same phenotype as mammalian cells: 

when btn1 is deleted vacuoles are larger and less acidic than in wild-type cells, 

and overexpression of btn1 increases acidity (Gachet et al. 2005). In contrast, 

in budding yeast, cells deleted for BTN1 have more acidic vacuoles, thought to 

be due to an increase in v-ATPase activity (Chattopadhyay et al. 2000). In 

fission yeast, ectopic expression of btn1 is able to compensate for v-ATPase 

function in cells deleted for genes encoding v-ATPase subunits, suggesting that 

its contribution to vacuole acidification is not only via an effect on the v-ATPase 

activity (see more details below, section 1.2.3) (Codlin et al. 2008a). This 

rescue may be due to an effect that Btn1p exerts on the activity of other ion 

transporters or channels, or as a direct consequence of its own activity.  

 

Trafficking, endocytosis and autophagy 

CLN3 dysfunction has been associated with defects in membrane trafficking 

routes and endocytosis. HeLa cells treated with CLN3 siRNA show a defect in 

trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR). 

This defect results in an impediment in the ability of CI-MPR to exit the TGN, 

where it accumulates (Metcalf et al. 2008). Furthermore, there was a reduction 

in the maturation rate and cellular activity of lysosomal cathepsins B and D, 

which suggests that CLN3 plays an essential role in trafficking and delivery of 

lysosomal enzymes, affecting the ability of lysosomes to perform their functions. 

Another study performed in cultured human embryonal kidney cells confirmed 

that the maturation process of cathepsin D is deficient when CLN3 function is 

inhibited (Golabek et al. 2000). The lysosomal degradation of the amyloid-β 

protein precursor was also affected in the absence of CLN3. Furthermore, 

processing and transport of cathepsin D are also disrupted in a knock-in mouse 

model of juvenile CLN3 disease (Fossale et al. 2004). However, these effects 

on cathepsin D activity are not as low as the levels required to directly induce 

disease resembling CLN10 disease. 
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In S. pombe, it was found that the post-Golgi trafficking of vacuolar protein 

sorting 10 protein (Vps10p), the sorting receptor of the vacuole hydrolase 

carboxypeptidase Y (Cpy1p), is impaired in btn1Δ cells (where btn1 is deleted). 

This leads to a defect in the sorting of Cpy1p so that it is secreted from the cell. 

The fact that Vps10p is not able to traffic from the Golgi to the TGN might be 

due to a direct effect that Btn1p exerts on the Golgi compartment, where it is 

located at steady state and which undergoes striking morphological changes in 

the absence of Btn1p (Codlin & Mole 2009).  

Studies in different CLN3 models reported defects in the endocytic process: S. 

pombe btn1Δ cells (Codlin et al. 2008b), knock-in mice neuronal precursor cells 

(Fossale et al. 2004) and juvenile NCL patient fibroblasts (Luiro et al. 2004). In 

a recent study with brain endothelial cells, CLN3 was reported to mediate the 

transport of microdomain-associated proteins, caveolin-1 and multidrug 

resistance protein 1, MDR1, from the TGN to the plasma membrane. Therefore, 

all functions associated with these proteins such as drug efflux, endocytosis 

and regulation of cell volume, were impaired in CLN3-null cells (Tecedor et al. 

2013). Another recent study performed in endothelial brain cells from a knock-in 

juvenile NCL mouse model revealed that these cells have defects in the ADP-

ribosylation factor 1-cell division control protein 42 homologue (ARF1-Cdc42) 

pathway (Schultz et al. 2014). These defects have a direct impact on the fluid-

phase endocytic process and other cellular processes such as filopodia 

formation and cell migration. 

In a study with the S. cerevisiae model of juvenile CLN3 disease, it was 

revealed that the expression of BTN2 (orthologue of the human Hook1) is 

elevated in BTN1Δ cells (Pearce et al. 1999b). Furthermore, Btn2p is involved 

in the regulation of the endocytic SNARE complex in yeast and mediates 

retrograde sorting of proteins from late endosomes back to Golgi compartments 

(Kama et al. 2007; Kama et al. 2011). The orthologue of Hook1 in Drosophila 

regulates endocytosis of surface ligands (Kramer & Phistry 1996, 1999) In 

fibroblasts from juvenile NCL patients; CLN3 overexpression induces 

aggregation of Hook1 and a weak interaction between these two proteins was 



Chapter 1 Introduction 

 37 

found (Luiro et al. 2004). Additionally, Hook1 has been shown to physically 

interact with endocytic Rab7, Rab9 and Rab11, suggesting a role for Hook1 in 

membrane trafficking.  

There is also evidence of autophagy disruption in a knock-in mouse model of 

juvenile CLN3 disease at the level of autophagic vacuole maturation. In these 

murine cells the levels of the autophagy marker LC3-II were increased, 

lysosomes and autophagic vacuoles were less mature than in wild-type mice, 

and there was accumulation of subunit c of mitochondrial ATP synthase in 

vacuoles (Cao et al. 2006). Another recent study showed an upregulation of the 

Akt-mTOR (mammalian target of rapamycin) signalling pathway and decreased 

acidity in juvenile NCL patient fibroblasts, both leading to macroautophagy and 

disrupted endocytosis (Vidal-Donet et al. 2013). The increased lysosomal pH 

affects the maturation of autophagosomes and impairs endocytosis. 

 

Cytoskeletal organization  

Since CLN3 and Hook1 may interact (see above), and Hook1 interacts with 

microtubules (Walenta et al. 2001), it is plausible that CLN3 function may be 

related to cytoskeletal organization (Luiro et al. 2004). In fact, gene expression 

profiling of embryonic cortical neurons of a knockout mouse model revealed a 

downregulation of dynactin (Luiro et al. 2006). Dynactin interacts with 

microtubules, suggesting a microtubule-related defect in this mouse model. In 

other studies, an interaction between CLN3 and the plasma membrane fodrin 

cytoskeleton was reported, since this structure has an abnormal appearance in 

patient fibroblasts and in brain cells from a knockout mouse model (Uusi-Rauva 

et al. 2008; Getty et al. 2011). A recent study showed that cells from a knockout 

mouse model have defects at a cytoskeletal level, due to alterations in the 

cytoskeleton-associated nonmuscle myosin-IIB activity (Getty et al. 2011). 

These mice fibroblasts appeared longer and thinner than those from wild-type 

mice. 
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Work using the S. pombe model of juvenile CLN3 disease also contributes to 

this idea that CLN3 (or Btn1p) function is linked to the cytoskeleton. Severe 

defects in the F-actin cytoskeleton were reported in yeast btn1 cells at a high 

temperature of growth (Codlin et al. 2008b). F-actin is depolarized which leads 

to an abnormal cell morphology. Moreover, at the same temperature, btn1 

yeast cells adopt a curved morphology and show bundling of microtubules 

(Haines et al. 2009). 

 

Amino acid transport 

Lysosomes isolated from lymphoblasts of juvenile NCL patients show defective 

transport of arginine, leading to a depletion of arginine in patient lysosomes 

(Ramirez-Montealegre & Pearce 2005). Arginine transport into the lysosomes is 

v-ATPase-dependent. Therefore, it is proposed that CLN3 has a role in the 

regulation of intracellular levels of arginine possibly due to decreased v-ATPase 

activity. The same phenotype was also seen in S. cerevisiae cells deleted for 

BTN1 (Kim et al. 2003). In these cells transport of arginine into vacuoles also 

requires a functional v-ATPase. Levels of vacuolar arginine are depleted and 

there is no transport of this amino acid into the vacuole. These defects are 

rescued by expression of Btn1p and human CLN3, suggesting a potential role 

of CLN3 (and Btn1p) in the transport and/or regulation of the transport of amino 

acids into the lysosome (or vacuole). However, more recently it was shown that 

mutations in CLN3 (and BTN1) predispose cells to keep low levels of arginine, 

since high levels are toxic to cells with no BTN1 (Vitiello et al. 2007). 

Additionally, in the same study, it was also shown that the decreased level of 

intracellular arginine is not a result of altered arginine uptake, arginine efflux or 

incorporation into peptides. The altered metabolism of arginine was also studied 

in brains of a knockout mouse model of juvenile CLN3 disease. In this study, no 

differences in brain arginine levels were observed between wild-type and 

knockout mouse (Chan et al. 2009). However, a decrease in arginine transport 

into cerebellar granule cells was observed. Additionally, there was an alteration 
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in the production of nitric oxide, which is synthesized from arginine and 

therefore dependent on its availability. Nitric oxide is involved in many 

physiological processes in the brain, suggesting that imbalances in arginine 

(and consequently nitric oxide) brain levels can have great implications in 

neuronal function and survival.  

Another study in S. pombe showed several metabolic abnormalities in the 

btn1Δ strain: increased glycolytic flux and glycolysis and amino acid changes 

(Pears et al. 2010). These phenotypes suggest that Btn1p has a role in the 

control of glycolytic rate and that vacuolar dysfunction may reflect the 

concentration of amino acids. This hypothesis is corroborated by the 

observation of high levels of glycogen storage in mammalian cells depleted for 

CLN3. In yeast cells, the increase in glycolytic flux may originate from increased 

activity of the v-ATPase as a compensatory mechanism for the increased 

vacuole pH in btn1Δ cells (mentioned above); or simply to meet energy 

demands of btn1Δ cells in which oxidative phosphorylation is suppressed.   

 

Other functions  

Another proposed function for CLN3 is an anti-apoptotic activity, reported in 

several studies. Overexpression of CLN3 reduced drug-mediated apoptosis in 

at least three studies (Puranam et al. 1999; Persaud-Sawin et al. 2002; 

Narayan et al. 2006a). However, in a more recent study the ectopic 

overexpression of cln3 in the wing of Drosophila increased apoptosis, opposing 

the previous idea of a CLN3 anti-apoptotic activity (Tuxworth et al. 2009). In the 

same study, it was revealed that cln3 expression activates the Jun N-terminal 

kinase (JNK) signalling pathway and inhibits the Notch signalling pathway. 

Several studies proposed that CLN3 confers resistance to oxidative stress. 

Cells from the knock-in Cln3∆ex7/8
 mouse showed abnormally elongated 

mitochondria and a reduced survival rate after being exposed to hydrogen 

peroxide, implying an increased sensitivity to oxidative stress and a defective 
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energy metabolism in these cells (Fossale et al. 2004). Similarly, the fruit fly 

model of juvenile CLN3 disease was reported as being hypersensitive to 

oxidative stress generated by hydrogen peroxide, diethylmaleate and paraquat 

(Tuxworth et al. 2011). Overexpression of cln3 in this model conferred 

resistance to this type of stress. In the same study, CLN3 was also shown to 

interact with JNK and FOXO stress signalling pathways, promoting stress 

resistance. Additionally, a study in SH-SY5Y neuroblastoma cells revealed that 

overexpressed CLN3 confers resistance to ER stress induced by treatment with 

tunicamycin (Wu et al. 2014). In another recent study, mitochondrial 

abnormalities such as increased distension, disruption of the internal 

architecture and loss of cristae were observed in neural progenitor cells from 

juvenile NCL patients (Lojewski et al. 2014). In an older study, other 

mitochondrial defects were reported in a knockout mouse model: lower 

mitochondrial oxygen consumption due to reduced activities of respiratory chain 

complexes in this organelle and a larger mitochondrial size when compared to 

wild-type mice (Luiro et al. 2006). 

Another proposed function of CLN3 is as a lipid catalyst or modifier. CLN3 was 

proposed to be a palmitoyl-protein Δ-9 desaturase, since a possible fatty acid 

desaturase domain was identified in a study using the Pfam server (Narayan et 

al. 2006b). This enzymatic activity is deficient in a knockout mouse model of 

juvenile CLN3 disease and in cultured SH-SY5Y neuroblastoma cells treated 

with Cln3 siRNA. However the motif is not conserved in yeast btn1 (Kitzmuller 

et al. 2008). CLN3 has been related to the production of the 

bis(monoacylglycerol)phosphate phospholipid, since it is reduced in extracts 

from juvenile NCL patient brains (Hobert & Dawson 2007).  

Finally, CLN3 interacts with a neuronal calcium-binding protein, Calsenilin, in 

vitro, and regulates intracellular levels of free calcium (Ca2+) in SH-SY5Y cells 

(Chang et al. 2007). This interaction was reported as being essential for 

supressing Ca2+-induced cell death in neurons. In fact, the level of intracellular 

calcium is increased in SH-SY5Y cells treated with CLN3 siRNA (An Haack et 

al. 2011); and a calcium channel antagonist, amlodipine, was reported as being 
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able to reverse elevated calcium levels in rat cortical neurons treated with 

siRNA against CLN3 (Warnock et al. 2013).  
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1.1.3 Chédiak-Higashi syndrome and Niemann-Pick type C disease 

Two further lysosomal storage disorders will be briefly described: the Chédiak-

Higashi syndrome (CHS) and the Niemann-Pick type C disease (NPC). Yeast 

strains for both of these diseases were characterised during this study (Results 

Chapter 4). 

Chédiak-Higashi syndrome (CHS) is a rare autosomal recessive disorder 

caused by mutations in the lysosomal trafficking regulator protein (LYST). 

Human LYST gene (also known as CHS1) was identified following identification 

of its murine orthologue, beige (Barbosa et al. 1996). LYST is known to be a 

large cytosolic- and microtubule-associated protein, however its exact function 

remains unknown. LYST has been associated with lysosomal homeostasis, 

more specifically fission and/or fusion of lysosomes (Holland et al. 2014). 

Symptoms of CHS include partial albinism of hair and eyes, progressive 

neurologic defects, severe immunodeficiency with impaired activity of natural 

killer cells and increasing susceptibility to infections (Higashi 1954; Barrat et al. 

1996). Death typically occurs in childhood, in the first decade of life, in a 

disease stage denominated ‘accelerated phase’, characterised by lymphocytic 

infiltration of various body organs. However, some patients with a mild disease 

course can survive until adulthood (Karim et al. 2002). The hallmark of CHS is 

the presence of abnormally large organelles (including lysosomes) and vesicles 

in different types of cells, such as granulocytes (Burkhardt et al. 1993; Karim et 

al. 1997). These defects may result from a defective trafficking of proteins 

involved in the genesis of these components (Faigle et al. 1998) or a problem in 

membrane remodelling. CHS can be treated by bone marrow transplantation, 

but since this does not apply to the central nervous system, patients eventually 

develop neurologic defects (Kaplan et al. 2008).  

There is a orthologue of LYST in fission yeast, lvs1 (large vacuoles size). This 

gene was identified after a BLAST (Basic Local Alignment Search Tool) search, 

as a protein containing a single BEACH domain, similar to the human 
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counterpart (Fred Chang, unpublished data). Other phenotypes observed in this 

yeast strain are discussed in this study (Results Chapter 4). 

 

Niemann-Pick disease type C (NPC) is one of the three Niemann-Pick diseases 

(types A-C) and has a prevalence as high as 1/120,000 live births in Western 

Europe (Vanier & Millat 2003). It is an autosomal recessive LSD with a highly 

variable clinical phenotype. NPC can be caused by mutations in two genes: 

NPC1, in approximately 95% of cases, and NPC2 (or HE1) (Carstea et al. 1997; 

Naureckiene et al. 2000). NPC1 is predicted to be a glycoprotein that localises 

to the limiting membrane of late endosomes and can be transiently associated 

with lysosomes and TGN (Higgins et al. 1999). NPC2 is a soluble glycoprotein 

present in the lumen of lysosomes that binds to mannose-6-phosphate receptor 

and to cholesterol, regulating their levels in the lysosomes (Ko et al. 2003; 

Vance 2006).  

The exact functions of NPC1 and NPC2 proteins are still unknown, but different 

studies have reported their involvement in the transport of cholesterol and other 

cargo in the late endosomes and lysosomes. In a recent study, a model of 

“hydrophobic handoff” of cholesterol between NPC1 and NPC2 was proposed 

(Wang et al. 2010). In this model, NPC2 accepts cholesterol in the lysosomal 

lumen, binds it and then directly transfers it to membrane-bound NPC1, for a 

consequent export from the lysosome membrane. Low density lipoprotein 

(LDL)-derived cholesterol is exported from lysosomes (or late endosomes) to 

the TGN for esterification or to the plasma membrane for efflux (Ioannou 2000). 

However, the mechanism responsible for this efflux is still unknown: NPC1 may 

act as a molecular pump, directly responsible for cholesterol efflux, or it may 

promote this trafficking process via membrane vesicles or sterol carrier proteins, 

such as oxysterol-binding protein (Yu et al. 2014). Cells with mutant NPC1 have 

been shown to have low levels of calcium in their lysosomes, caused by 

sphingosine storage and preceding cholesterol storage (Lloyd-Evans et al. 

2008). Therefore, it is possible that NPC1 is involved in the efflux of 

sphingosine from lysosomes.  
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The clinical presentation of NPC is highly variable, with age of onset varying 

from the perinatal period to adulthood. Symptoms can be hepatic, psychiatric or 

neurologic (Vanier & Millat 2003). Patients with the 'classic' late-infantile/juvenile 

form of NPC start manifesting symptoms between 3 and 5 years of age. They 

progressively develop neurologic abnormalities, such as: ataxia, seizures, 

spasticity, and loss of speech and other intellectual abilities.  

Death usually occurs in their teenage years but they can survive until their 

thirties (Vanier & Millat 2003). At a cellular level, NPC patients present 

excessive storage of endocytosed unesterified cholesterol, sphingomyelin and 

glycolipids in the lysosomal/late endosomal system, accumulated due to 

impaired cholesterol intracellular transport (Pentchev et al. 1985). This 

accumulation occurs in all tissues except the brain (Vance 2006). 

The S. cerevisiae orthologue of NPC1 is Ncr1p. Yeast cells lacking Ncr1p have 

mitochondrial dysfunctions such as sensitivity to oxidative stress, and a reduced 

chronological lifespan (survival of non-dividing stationary cells) (Vilaca et al. 

2014). S. pombe has a predicted orthologue of NPC2, but not NPC1. The 

npc2Δ strain had not been characterised prior to this study (Results Chapter 4). 
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1.2 Fission yeast: a model for juvenile CLN3 disease 

Schizosaccharomyces pombe is a genetically tractable unicellular eukaryote 

with only 5123 genes arranged in 3 chromosomes (Robinow 1977; Wood et al. 

2002) (http://www.pombase.org/). Fission yeast has a rod-like shape, grows by 

increasing its length and divides via the formation of a septum in the medial 

region of the region of the cell, where the division in two daughter cells occur 

(Forsburg & Rhind 2006) (see Figure 1.2.1 for examples of fission yeast cells 

with and without septa). These cells have a short generation time, with each 

cycle lasting 2 to 4 hours (Moreno et al. 1991). Together these characteristics 

make S. pombe an ideal model for the study of eukaryotic cell biology and gene 

function. Furthermore, fission yeast genes can be easily tagged, mutated and 

deleted.  

S. pombe cells are usually haploid and can have two mating types: h+ and h-. 

h+/h- heterozygous diploid zygotes can be created when a pair of haploid cells 

of opposite mating types mate after a period of starvation (Moreno et al. 1991). 

These zygotes undergo meiosis forming haploid spores that only germinate 

when in adequate nutritional conditions. Haploid fission yeast cells are 

commonly used as models in laboratory since only one copy of the gene is 

present in this organism, and this excludes any issue regarding dominant or 

recessive alleles or mutations expressed in diploid organisms.  

S. pombe and Saccharomyces cerevisiae are not closely related despite being 

from the same fungi division (Hedges 2002). S. pombe is functionally and 

genetically more similar to mammalian cells than S. cerevisiae, making it the 

favourite yeast to study processes such as the cell cycle, genetic recombination, 

chromosome structure, translation, meiosis, mitosis and RNA splicing (Moreno 

et al. 1991; Wood et al. 2002; Forsburg & Rhind 2006). The use of fission yeast 

in this project, instead of budding yeast, is mainly due to the fact that several 

phenotypes, associated with vacuole function and cell morphology, have 

already been described and developed in S. pombe (see below, section 1.2.3). 

Furthermore, it has numerous dynamic vacuoles making it a better model 

http://www.pombase.org/
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system to study LSDs. Therefore those phenotypes can be used in this project 

in order to further elucidate the molecular mechanisms of Btn1p, CLN3 and 

juvenile CLN3 disease. 
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1.2.1 Function of yeast vacuoles 

S. pombe contains many small circular vacuoles (around 50 to 80 per cell), 

contrary to budding yeast (with 2 to 4 large vacuoles) (Bone et al. 1998) (see 

Figure 1.2.1). However, vacuole function is the same in both strains. Therefore, 

much of what is known about the vacuoles in fission yeast was predicted from 

studies in S. cerevisiae and then confirmed in S. pombe.  

Vacuoles, like lysosomes, are acidic compartments containing several 

hydrolytic enzymes. They are responsible for degradation of macromolecules, 

and are also involved in osmoregulation, pH homeostasis and act as storage 

reservoirs for metabolites and amino acids (Klionsky et al. 1990). When S. 

pombe is placed in an aqueous environment, its vacuoles fuse with each other 

creating larger structures that occupy a great portion of the cell’s volume (Bone 

et al. 1998). S. cerevisiae YPT7 gene, encoding for a guanosine-5'-

triphosphate(GTP)ase protein of the Rab family, initiates vacuoles fusion, in a 

process called docking (Price et al. 2000). Similarly, the S. pombe Ypt7p is also 

responsible for the vacuolar fusion in these cells (Bone et al. 1998). ypt7Δ 

fission yeast cells have much smaller vacuoles than wild-type cells. Other 

factors can also influence vacuole size in fission yeast. Mutations in genes 

involved in vacuolar H+ ATPase function and in vps34 (a phosphoinositide-3-

Kinase) cause an increase in vacuole size (Iwaki et al. 2004). The same 

phenotype is observed in btn1Δ (see above, section 1.1.2). Vacuole size can be 

measured after labelling the vacuole membrane with the lipophilic dye N-(3-

triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) hexatrienyl) pyridinium 

dibromide (FM4-64). The presence of multiple vacuoles in S. pombe makes it a 

suitable organism for the study of NCLs, since lysosomes play a pivotal role in 

these disorders.  
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Figure 1.2.1  Fission yeast 
Schizosaccharomyces pombe cells stained with calcofluor in the left panel and with FM4-64 in 
the right panel, showing their cell walls/septa and vacuoles, respectively. Bold arrows indicate 
septated yeast cells. Scale bars – 10µm.  
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1.2.2 NCL genes in S. pombe  

At least three NCL genes have predicted orthologues in S. pombe: CLN1, CLN3 

and CLN10. 

The S. pombe CLN1 orthologue is called pdf1 (palmitoyl protein thioesterase- 

dolichol pyrophosphate phosphatase fusion 1) and encodes the orthologue of 

Ppt1p fused to dolichol pyrophosphate phosphatase 1 (Dolpp1p). The deletion 

of the entire open reading frame of pdf1 is nonviable for the cells. However, 

cells with mutations in the ppt1 domain are viable, but sensitive to growth in the 

presence of sodium orthovanadate and elevated pH (Cho & Hofmann 2004). 

These phenotypes can be rescued by the ectopic expression of human PPT1 

indicating that these proteins are functional orthologues. 

The orthologue of CLN10/CTSD in S. pombe is sxa1. This gene encodes for an 

aspartyl protease that is 40% identical and 22% similar to the human protein. 

Little is known about this yeast protein, except that it is involved in the mating 

response (Imai & Yamamoto 1992). Phenotypes of the sxa1Δ strain were 

characterised in this study and are described in Results Chapter 4. 

Finally, the fission yeast orthologue of CLN3 is btn1. As previously mentioned, 

Btn1p is 30% identical and 48% similar to human CLN3. Several phenotypes 

have been associated to the loss of btn1 (or mutant Btn1p) in yeast cells.  This 

is discussed in the section below. 
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1.2.3 Btn1p, the orthologue of CLN3 

All evidence supports the same function of CLN3 and its yeast orthologue 

Btn1p. Ectopic expression of the human CLN3 gene can rescue all tested 

phenotypes that arise in btn1 yeast cells that are deleted for btn1 (see below). 

Moreover, there are several highly conserved regions between CLN3 and Btn1p, 

and the hydropathy profiles of these proteins are similar (Nugent et al. 2008). 

The majority of amino acids that are affected by the described missense 

mutations in CLN3 are also conserved in S. pombe (Gachet et al. 2005; 

Kitzmuller et al. 2008).  

Several studies in fission yeast have shown multiple effects of complete loss of 

Btn1p function in btn1 cells. Btn1p is thought to be involved in vacuole 

homeostasis, cytokinesis, cell wall arrangement, cytoskeletal organisation, 

endocytosis, growth regulation, response to stress and trafficking. Some of 

these phenotypes were described above (section 1.1.2) and others are 

discussed below. A diagram representing the complexity of localisation of 

BTn1p and btn1 phenotypes is shown at the end of this subchapter (Figure 

1.2.2). 

 

Localisation and trafficking of Btn1p 

Ectopically expressed Btn1p tagged with green fluorescent protein (GFP) was 

first shown to be located in vacuoles of fission yeast cells, more specifically in 

the membrane of these organelles. Tagged Btn1p was tracked and observed to 

follow a trafficking route through small pre-vacuolar and endosomal 

compartments to the vacuolar membrane, within 3 hours of promoter 

repression, in a Ypt7p-dependent manner (Gachet et al. 2005). It was also 

shown that Btn1p exerts some function in its pre-vacuolar localisation, since in 

ypt7 cells that are also deleted for btn1, the vacuoles were still larger and 

more alkaline than those of ypt7 cells, where Btn1p is unable to traffic to the 

vacuoles. More recently, at steady-state, Btn1p was found to be located in the 
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Golgi complex and its loss showed a striking effect on the number of the Golgi 

compartments, their morphology and location within the cell (Codlin & Mole 

2009). The absence of Btn1p also affected trafficking through the Golgi. Thus, 

Btn1p protein, in S. pombe, is required for correct sorting and trafficking of 

molecules to or through the Golgi. The fact that Btn1p affects the Golgi, which is 

important for the correct trafficking and sorting of proteins and molecules, can 

explain the wide diversity of phenotypes that occur in btn1 cells. 

  

Defective vacuole homeostasis 

As mentioned before, btn1 cells have larger and less acidic vacuoles than 

wild-type cells, suggesting an imbalance in vacuole homeostasis. Growth of 

btn1 cells in acidic media led to a reduction in vacuole size, establishing a link 

between size and pH in these organelles (Gachet et al. 2005). Defects affecting 

vacuolar (and lysosomal) function will probably affect the autophagic process 

and/or the trafficking of proteins that may be involved in neurotransmission in 

humans (Kim et al. 2003; Gachet et al. 2005). 

 

Cytokinesis delay and cell wall defects 

btn1 cells are longer at division, have a slower growing rate and a higher 

septation index than wild-type cells (Gachet et al. 2005). This leads to a higher 

number of binucleate cells and suggests an abnormal cell cycle and a delay in 

the cytokinesis process in these cells. The secondary septum seen in some 

btn1 cells is significantly thicker than in wild-type cells, as are other regions of 

the cell wall on the sides of the cells (Codlin et al. 2008a). btn1 cells show 

defects in the cell wall glucan composition, noticeable by sensitivity to -

glucanase zymolyase-20T. A similar defect was observed in cells containing v-

ATPase mutants, vma1 or vma3. Growth in acidic media was sufficient to 

rescue the zymolase sensitivity in all of these strains (btn1, vma1 and 



Chapter 1 Introduction 

 52 

vma3) suggesting that this phenotype is pH-dependent and that defects in the 

vacuole homeostasis and cell wall composition are linked. On the other hand, 

the cytokinesis delay phenotype is pH-independent (it is not rescued by growth 

in acidic media) indicating that Btn1p acts in at least two different and 

independent pathways. 

 

Defective growth at 37ºC, cytoskeletal organization and endocytosis  

In a study of Codlin et al (2008), it was shown that the presence of Btn1p is 

essential for growth of yeast cells at 37C (Codlin et al. 2008b). At this 

temperature, btn1 cells have a pear-like shape, swell and eventually lyse after 

2 to 3 cell cycles. Phenotypes such as cytokinesis delay and zymolase 

sensitivity become more severe in btn1 cells grown at 37C. Moreover, their 

normal bipolarized growth is disturbed after 7 hours of growth, with an inability 

to set up growth at a new end following division, and with deposition of the cell 

wall being position and structurally affected. Therefore, btn1 cells grow in a 

monopolar manner from one tip only. This defect was shown to be due to a 

failure in the polarization of sterol-rich membrane domains and the formation 

and polarization of F-actin patches to the cell tips after cytokinesis. The 

localisation of Btn1p is dependent on the actin cytoskeleton and is altered at 

37ºC, where it localises near the cell tips and the septum. The defect that btn1 

cells show in the actin cytoskeleton may affect the trafficking and activity of the 

membrane v-ATPase. Since this protein is crucial for maintaining the vacuole 

pH, the actin phenotype may be linked and modulate the acidification of 

vacuoles, as seen in these btn1 cells.  

In the same study, it was also shown that the endocytosis process is defective 

in btn1 cells grown at high temperature, both in material uptake and in 

trafficking to the vacuole (Codlin et al. 2008b). In this case, the uptake of FM4-

64 was severely reduced after 7 hours at 37ºC. A similar defect in neurons 

could affect the movement, release and uptake of neurotransmitters, leading to 
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neurodegeneration.  

 

Effects of different mutations in Btn1p function 

In a recent study, four different phenotypes that have been characterised in 

btn1 cells were selected as marker phenotypes to further understand the 

effect of mutations in Btn1p (Haines et al. 2009). These phenotypes were: 

enlarged vacuoles and cytokinesis delay with an increased septation index at 

25C, and monopolar growth and cell curving at 37C. All of these phenotypes 

were rescued by expression of Btn1p and CLN3. Only the enlarged vacuoles 

phenotype was rescued by ectopic expression of the mutant btn1 containing the 

equivalent to the human 1-kb common deletion. This corroborated the fact that 

this mutation does not completely abolish CLN3/Btn1p function. On the other 

hand, the cell curving phenotype was rescued only by a mutant protein carrying 

the equivalent to the p.Glu295Lys human mutation, which was found in patients 

with a very mild form of juvenile NCL (Wisniewski et al. 1998; Aberg et al. 

2009), as previously mentioned. This suggests that further studies of the 

molecular basis of this mutation may reveal a novel target for therapies to delay 

onset of symptoms in juvenile CLN3 disease. Three of these phenotypes 

(enlarged vacuoles, increased septation index and cell curving at 37C) were 

investigated again in this study and are discussed in Results Chapter 1. 

 

Summary 

Taken together, all of the phenotypes described in btn1 cells, associated with 

the high degree of sequence identity between the human gene CLN3 and the 

yeast btn1, and the fact that CLN3 can compensate for loss of Btn1p, makes S. 

pombe a good candidate for the elucidation of the still unknown function of 

CLN3. Therefore, instead of using human or mammalian cells, one can use a 

simple model as fission yeast to overexpress, delete and model the effect of 

disease-causing or targeted mutations in btn1. This study of ectopic and 
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variable expression of Btn1p will be directly relevant to comprehend the function 

of human CLN3. Furthermore, therapeutic approaches for CLN3 disease can 

also be studied in S. pombe in the first instance before translation to higher 

eukaryotic organisms.  
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Figure 1.2.2  Complex picture of Btn1p localisation and function 
in a fission yeast cell 
Diagram of a fission yeast cell summarising the complexity of Btn1p, with regard to its 
localisation and function(s). Btn1p/CLN3 has been proposed to be localised in the Golgi 
apparatus, and/or in the endolysosomal pathway including the vacuole (both represented in the 
picture in blue boxes). This protein has also been reported to have multiple effects in the cell: it 
affects the vacuolar pH and size, probably when it is localised in this organelle; on the other 
hand, it affects the Golgi complex size, structure and number and the cellular post-Golgi 
trafficking, probably when Btn1p is localised here. Other phenotypes may be affected from both 
locations or one of them: increased septation index, cell wall integrity and morphology, heat 
tolerance, glycolytic process, and others not represented in this figure. GA – Golgi apparatus: 
VAC – vacuole. This diagram was adapted from (Bond et al. 2013). 
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1.3 Project aims 

So far, there is no cure for juvenile CLN3 disease and there is no available 

treatment for people manifesting the disease, mainly due to the fact that CLN3 

is an intracellular membrane protein, not suitable for enzyme replacement 

therapy. However, the fact that most patients retain some function of CLN3 

suggests that therapeutic methods that mimic the missing function, or improve 

the existing one, could be used to increase the quality of life of these patients 

and prevent or even halt the disease progression(Kitzmuller et al. 2008). 

Therefore, it is of great interest to identify novel lead compounds that revert 

phenotypes associated with juvenile CLN3 disease and that can be developed 

to treat the disease. However, screening for compounds in mammalian cells is 

not yet feasible, since no robust cellular phenotypes associated with juvenile 

NCL have been described to date. Therefore, in this study the identification of 

these compounds was done in a simple eukaryotic model, S. pombe, to simplify 

and accelerate the process. Although the work done in fission yeast is 

complementary, it is undoubtedly more far-reaching than candidate approaches 

in mammalian cells or other model systems. 

The aims of this project were: 

 To create yeast strains carrying endogenously expressed btn1 and 

btn1 containing the equivalent of disease-causing mutations, and 

investigate the localisation and the impact of these mutations on 

Btn1p function. 

 To find a robust and striking phenotype in the btn1 strain suitable for 

a high-throughput screening approach. 

 To identify potential therapeutic compounds in a library of 1280 Food 

and Drug Administration (FDA)-approved compounds, and test their 

ability to rescue phenotypes of S. pombe btn1 cells, juvenile CLN3 

disease patient fibroblasts and a zebrafish model of the disease. 
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 To characterise yeast strains modelling three other lysosomal storage 

disorders (Chédiak-Higashi syndrome, Niemann-Pick disease type 

C2 and congenital CLN10 disease) in terms of phenotypes and 

investigate the efficacy of potential therapeutic compounds in these 

strains.  
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2 Materials & Methods 
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2.1 List of reagents 

All the reagents used in this work, are summarised below, with details of the 

respective manufacturers: 

Adenine : Sigma Aldrich 

Agar : Formedium   

Agarose : Sigma Aldrich 

Alloxazine : Sigma Aldrich 

Amino acid supplements : Formedium 

Ammonium chloride (NH4Cl) : Sigma Aldrich 

Ammonium sulfate : Sigma Aldrich 

Ampicillin : Sigma Aldrich 

D-(-)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (ANP) : Sigma Aldrich 

Biotin : Sigma Aldrich 

BisBenzimide H33342 trihydrochloride (Hoechst) : Sigma-Aldrich 

Bovine serum albumin (BSA) : VWR 

Calcium chloride dihydrate (CaCl2.2H2O) : Sigma Aldrich 

Calcofluor : Sigma Aldrich 

Chloroquine diphosphate salt : Sigma Aldrich 

Citric acid : Sigma Aldrich 

Copper (II) sulfate pentahydrate (CuSO45H2O) : Sigma Aldrich  

Cyclosporine A (CsA) : Sigma Aldrich 

Dimethyl sulfoxide (DMSO) : Sigma Aldrich 

DNA 1kb ladder : Molecular Probes, Invitrogen 

Dropout mix : Formedium 

Dulbecco's modified eagle's medium (DMEM) : LMCB 

E-64 : Sigma Aldrich 

Ethidium bromide : Sigma Aldrich 

Ethylenediamine tetraacetic acid (EDTA) : Sigma Aldrich 

Foetal bovine serum (FBS) : Sigma Aldrich 

5-fluoroorotic acid (FOA) : Formedium 
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FM4-64 : Molecular Probes, Invitrogen 

Geneticin (G418) : Sigma Aldrich 

Glucose : Formedium 

Glycerol : BDH Prolabo, VWR 

Herring sperm DNA : Sigma Aldrich 

Histidine : Sigma Aldrich 

Hydrogen chloride (HCl) : Sigma Aldrich 

Inositol : Sigma Aldrich 

Iron (III) chloride hexahydrate (FeCl36H2O) : Sigma Aldrich 

Leucine : Formedium 

Lithium acetate : Sigma Aldrich 

Lysogeny broth (LB) : LMCB  

LysoSensor yellow/blue dextran : Molecular Probes, Invitrogen 

Magnesium chloride (MgCl2) : Sigma Aldrich  

Magnesium chloride hexahydrate (MgCl26H2O) : Sigma Aldrich 

Manganese sulfate (MnSO4) : Sigma Aldrich 

Molybdate dihydrate (MoO42H2O) : Sigma Aldrich 

Nicotinic acid : Sigma Aldrich 

Deoxyribonucleotide (dNTP) mix : Promega 

Orthoboric acid (H3BO3) : BDH GPR 

Pantothenic acid : Sigma Aldrich 

Paraformaldehyde (PFA) : Sigma Aldrich 

Penicillin streptomycin (PenStrap) : Sigma Aldrich 

Polyethylene glycol (PEG) 4000 : Sigma Aldrich 

Phosphate buffered saline (PBS) : LMCB  

Potassium chloride : Sigma Aldrich 

Potassium hydrogen phthalate : Sigma Aldrich 

Potassium iodide : Sigma Aldrich 

Prochlorperazine dimaleate : Sigma Aldrich 

Propidium iodide : Sigma Aldrich 

N-propyl-galate : Sigma Aldrich 

RNase : Sigma Aldrich 
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Saponin : Sigma Aldrich 

di-Sodium hydrogen phosphate (Na2HPO4) : Sigma Aldrich 

Sodium sulfate (Na2SO4) : Sigma Aldrich 

T4 DNA ligase : Promega 

Tris : Sigma Aldrich 

Triton X-100 : BDH Prolabo, VWR  

Trypsin : Sigma Aldrich 

Uracil : Formedium 

Yeast extract (YE) : Formedium 

Yeast nitrogen base : Formedium 

Zinc sulphate heptahydrate (ZnSO4.7H2O) : Sigma Aldrich 
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2.2 Table of yeast strains 

Table 2.1. Table of yeast strains 

Strain Genotype Source 

wild-type (wt) 972  h
-
 Laboratory stock 

btn1Δ h
-
, btn1::NatMx, leu1-32, 

ura4D18, his3
-
,  ade6-

210,  

This study 

btn1::ura h
-
, btn1::ura4, leu1-32, 

ura4D18, his3
-
, ade6-210 

Laboratory stock 

nmt3 h
-
, btn1::nmt3 gfp-btn1 This study 

nmt41 h
-
, btn1::nmt41 gfp-btn1 This study 

GFP-btn1 h
-
, btn1::gfp-btn1, leu1-

32, ura4D18, his3
-
, ade6-

210 

This study 

1kbΔ h
-
, btn1::gfp-btn1(1kbD), 

leu1-32, ura4D18, his3
-
, 

ade6-210 

This study 

E240K h
-
, btn1::gfp-

btn1(E240K), leu1-32, 
ura4D18, his3

-
, ade6-210 

This study 

G136A h
-
, btn1::gfp-

btn1(G136A), leu1-32, 
ura4D18, his3

-
, ade6-210 

This study 

btn1Δ+prep42GFPbtn1 h
-
, btn1::NatMx, leu1-32, 

ura4D18, his3
-
,  ade6-

210  

Laboratory stock 

btn1Δ+prep42 h
-
, btn1::NatMx, leu1-32, 

ura4D18, his3
-
,  ade6-

210 

Laboratory stock 

lvs1Δ h
-
, lvs1::kanMX6, leu1-

32, ura4D18, his3
-
,  

ade6-210  

Fred Chang laboratory 

sxa1Δ SPAC26A3.01, 
sxa1::kanMX 

Bioneer library 

npc2Δ SPAPB8E5.04c, 
npc2::kanMX 

Bioneer library 
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2.3 Fission yeast methods 

The majority of yeast methods was done according to (Moreno et al. 1991). 

2.3.1 Media  

Yeast extract with supplements (YES) 

Yeast extract  5g 

Glucose   30g 

Supplements stock (50X)   2ml 

Agar (for solid medium)   20g 

H2O    to 1 l 

Autoclaved. 

For experiments with CsA, this chemical was added to a final concentration of 

0.1 mg/ml in 1% DMSO as a carrier. (CsA stocks were prepared in DMSO in 

100 mg/ml, and stored at -20ºC until use). For experiments with G418, the 

chemical was added to a final concentration of 100 mg/L. (G418 stock was 

prepared in 1 M Tris.HCl, pH 8, in a final concentration of 50mg/ml, and stored 

at  -20ºC until use). 

Supplements stock (500X) 

Adenine 1.875g 

Histidine 1.875g 

Leucine 1.875g 

Uracil 1.875g 

H2O  to 50ml 

Diluted to 50X stock in sterile H2O, filter sterilised and stored at 4ºC until use. 
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Minimal media (MM) 

Ammonium Chloride (NH4Cl) 5g 

Potassium hydrogen phtalate 3g 

Na2HPO4      2.2g 

Adenine        500mg 

Uracil        250mg 

Leucine (if required)        250mg 

Histidine        250mg 

Agar (for solid medium)   20g 

H2O       to 0.9 l 

Autoclaved. 

 

Before use, the following were added to the initial solution: 

20% Glucose      100ml 

Salts stock (50X)     20ml 

Vitamins stock (1000X)  1ml 

Minerals stock (10.000X)      0.1ml 

 

In the experiments with compounds, they were added to the MM or YES 

medium to a final concentration of 10 M diluted in DMSO at the appropriate 

concentration (according to manufacturer’s instructions). 

For spot assays, ANP and chloroquine were added to a final concentration of 

0.75 or 1 mM, and 0.1 mM, respectively. Stocks were prepared as following: 

ANP (100 mM)                                   2.122g (in 20ml of DMSO) 

Chloroquine diphospate salt (10 mM)  0.26g (in 50ml H2O) 

Both stored at -20ºC until use. 
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Salts stock (50X) 

MgCl2.6H2O      53.3g 

CaCl2.2H2O         0.735g 

KCl   50g 

Na2SO4 2g 

H2O    to 1 l 

Filter sterilised and stored at 4ºC until use. 

Vitamins stock (1000X) 

Nicotinic acid 1g 

Inositol 1g 

Biotin    1mg 

Pantothenic acid     0.1g 

H2O            to 100ml 

Filter sterilised and stored at 4ºC until use. 

Minerals stock (10.000X) 

H3BO3     0.5g 

MnSO4     0.4g 

ZnSO4.7H2O     0.4g 

FeCl3.6H2O     0.2g 

MoO4.2H2O       0.16g 

KI     0.1g 

CuSO4.5H2O       0.04g 

Citric acid 1g 

H2O            to 100ml 

Filter sterilised and stored at 4ºC until use. 
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5-fluoroorotic acid (FOA) media 

Bottle 1: FOA      437mg 

              Uracil     50mg 

              Dropout Mix       750mg 

              Aminoacid supplements (-ura)250mg 

              Yeast Nitrogen Base       850mg 

              Ammonium sulphate   2.5g 

              H2O          to 250ml 

Sonicated and warmed to 50ºC. 

Bottle 2: Glucose   8.5g 

               Bacto Agar 12g 

               H2O          to 300ml 

Autoclaved immediately and poured to 250ml. 

Contents of Bottle 2 were added to Bottle 1, mixed and poured onto plates. 
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2.3.2 Growth of yeast cells 

To create stock collections of strains these were frozen at -80ºC. Cells were 

scraped from solid media after growth for 1 or 2 days, and mixed in 1ml of YES 

containing 20% (v/v) glycerol in a sterile cryotube. Tubes were briefly vortexed 

and stored at -80ºC. To re-isolate strains, a small amount of frozen stock was 

scraped and streaked onto a suitable plate and then incubated at 30°C for 1 to 

4 days. 

For yeast cells to grow they were incubated on YES or MM plates at 30°C for 1 

to 4 days. Plates were also stored at 4°C for a maximum period of 3 weeks.  

Cells were grown until the desired density, measured by spectrophotometry. 

Cell concentration measurements were based on optical density readings at 

600nm (OD600) using a Ultrospec 2000 spectrophotometer (Pharmacia Biotech) 

and adjusted for a 1:10 dilution in water. An OD600 of 0.1 was taken to 

correspond to 2 x 106 cells/ml. 

Liquid cultures were prepared by inoculating colonies from plates. The majority 

of experiments were carried out with cells in mid log phase growth (1 x 106 - 5 x 

106 cells/ml). These cultures were grown in 15ml in 50ml flasks and incubated 

at 30ºC with shaking (200 rpm).  

For plasmid selection, strains containing plasmids were grown on medium 

containing appropriate supplements (adenine, leucine, histidine and uracil). The 

same was done for viability assays where cyclosporine A was added to the 

liquid medium at a final concentration of 0.1 mg/ml, and this was used to 

inoculate cells previously grown to log phase. 
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2.3.3 Transformation of yeast cells 

btn1::ura strain (Table 2.1) was grown in 20ml of MM medium overnight at 30ºC 

to a density of approximately 1 x 107 cells/ml. The cell suspension was 

centrifuged in a Sigma 2-16K centrifuge (SciQuip, UK) at 2000 rpm for 5 

minutes and washed with sterile water. Cell pellet was resuspended in 1ml of 

0.1 M lithium acetate and 100l aliquoted in eppendorf tubes, one for each 

transformation. The adequate amount of DNA and 2µl of herring sperm DNA 

(from 9-12 mg/ml stock) were added to the cells and incubated at room 

temperature for 5 minutes. 280l of PEG solution (50% PEG 4000, 0.1 M 

lithium acetate, 0.01 M Tris.HCl) were added, mixed gently and suspensions 

incubated for 60 minutes at 30ºC. 43µL of DMSO were added and solutions 

heat shocked at 42ºC for 5 minutes.  

In case of cells with a kanamycin-resistance (kanR) marker, cells were 

centrifuged in a Sorvall Pico centrifuge at 5000 rpm for 2 minutes, resuspended 

in 500l of H2O and 250l of suspension plated onto YES plates. Plates were 

incubated for approximately 20 hours at 30ºC, replica plated onto YES plates 

with 100mg/L G418. Replica plates were incubated for 2 to 3 days at 30ºC and 

large colonies restreaked onto fresh YES plates with G418. Colonies were 

checked for homologous recombination by colony PCR and by sequencing with 

the appropriate primers (Table 2.2). 

In case of FOA selection, heat shocked cells were immediately incubated in 

500ml of YES and incubated at 30ºC with shaking (200 rpm) for 2 to 3 days. 

1ml was taken from each suspension, centrifuged and resuspended in 1ml of 

H2O. 100 l were plated onto FOA plates and incubated at 30ºC until colonies 

were visible. Colonies were checked for homologous recombination by colony 

PCR and by sequencing with the appropriate primers (Table 2.2). 
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2.3.4 Labelling vacuoles with FM4-64 and LysoSensor 

For labelling of vacuoles with the FM4-64 dye, cells were grown in MM 

overnight to mid-log phase. 1ml of cells was centrifuged for 5 minutes at 2000 

rpm. Cell pellets were resuspended in 50μl of YES with 1μl of FM4-64 and 

incubated in a 30ºC water bath for 20 minutes. 1ml of YES was added to each 

suspension and these were centrifuged at 2000 rpm for 5 minutes. Cell pellets 

were resuspended in 1ml of YES, 4ml of YES were added and cultures were 

incubated at 30ºC with shaking for 120 minutes. Cells were spun at 2000 rpm 

for 5 minutes and pellets were resuspended in 25μl of MM. 7μl of each sample 

were spotted onto microscope slides to be visualized. 

In order to measure the vacuole pH, vacuoles were labelled with LysoSensor 

dye. Cells were grown overnight to mig-log phase. 1ml of each culture was 

mixed by inversion with 5μl of LysoSensor. Suspensions were incubated in the 

dark at room temperature for 10 minutes. Tubes were spun for 3 minutes at 

2000 rpm, and cells were washed twice with MM. Cell pellets were 

resuspended in 50μl of MM and 5μl were spotted onto microscope slides to be 

visualized. 

 

2.3.5 Calcofluor staining 

For the septation index and cell curving assays, cells were grown overnight in 

MM to mid-log phase. For the cell curving assay, cells were grown for an 

additional 4 hours at 37ºC. Septation index corresponds to the number of cells 

with a clear septum stained with calcofluor (septated cells) divided by the total 

number of cells, in percentage. Septation index is an indication of the amount of 

cells that are halted in the cytokinesis process, and therefore, when this value is 

higher than normal it suggests a delay in the cell cycle. Cell curving is the 

percentage of cells with a curved or bent shape (instead of the normal rod 

shape) in the total number of cells. 5l of each culture were spread onto a 
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microscope slide, 1 l Calcofluor (50 μg/ml) was pipetted onto a coverslip, 

which was then used to cover the cells. Cells were visualized immediately. 

 

2.3.6 Viability assays 

For all the viability assays, cells were grown overnight in MM to mid-log phase. 

Cells were washed in sterile water, transferred to 20ml of YES medium (with or 

without 0.1mg/ml CsA) in a final density of 1 x108 cells/ml and incubated at 37ºC 

for 24 hours. Afterwards, 1ml of each culture was mixed by inversion with 15l 

of propidium iodide (1 mg/ml) and 10l of calcofluor (50 μg/ml). Cells were 

incubated in the dark at room temperature for 10 minutes. Suspensions were 

spun for 5 min at 2000 rpm and washed with 1X PBS. Pellets were 

resuspended in residual PBS and 5l were spotted onto microscope slides, in 

order to be visualized.  

 

2.3.7 Spot assays 

Spot assays were performed in order to evaluate the cell growth rate of yeast 

strains in a range of different conditions. For all the spot assays, cells were 

grown overnight in MM to mid-log phase. Cultures were washed and diluted in 

sterile water to a final density of 1 x 106 cells/ml and four serial dilutions were 

prepared. 10l of each dilution were spotted onto the appropriate plates. Plates 

were incubated at 37ºC for 1 to 5 days. In addition to the plates with chemicals 

used to test sensitivity, strains were also spotted onto plates with 1% DMSO to 

test their sensitivity to DMSO and ensure the sensitivity was due to the 

presence of the chemical and not the carrier (DMSO). 
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2.4 Molecular biology 

2.4.1 Site-directed mutagenesis 

Missense mutations in btn1 in the pREP42GFP-Btn1 plasmid were generated 

using the QuickChange Site-Directed Mutagenesis kit (Stratagene, UK), and 

appropriate primers (Table 2.2). Volumes of reagents were the following: 

10X reaction buffer    5l 

dNTP mix     1l  

Forward primer (100 ng/l)   1.25l 

Reverse primer (100 ng/l)   1.25l 

DNA template    1l  

PfuTurbo DNA polymerase (2.5 U/l) 1l 

ddH2O      40.5l 

   

The reactions were run in a PTC-100 programmable thermal controller machine 

(MJ Research) on the following program: 

1 cycle of  95ºC  30 s   

18 cycles of  95ºC  30 s 

   55ºC  1 min 

   68ºC  15 min 

 

1l of the DpnI restriction enzyme (10 U/l) was added to each amplification 

reaction. The reaction mixtures were spun down for 1 minute and immediately 

incubated at 37ºC for 1 hour, in order to digest the template DNA. Samples 

were stored at 4ºC or -20ºC for longer periods. 
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2.4.2 Polymerase chain reaction (PCR) 

To generate the constructs with the nmt1 promoter, templates were amplified 

using an Expand Long Template PCR system (Roche Applied Science). All the 

reagents that were used in these PCR reactions are listed below: 

10X Expand Long Template Buffer 2  5l 

dNTP mix (10 mM)     1.75l  

Forward primer (50 M)    0.3l  

Reverse primer (50 M)    0.3l  

DNA template (~300ng)    3l 

Expand Long Template enzyme mix (5 U/l) 0.75l 

ddH2O       to 50l 

 

Samples were run in a PTC-100 programmable thermal controller machine on 

the following program: 

1 cycle of  92ºC  2 min   

10 cycles of  92ºC  10 sec 

   60ºC  30 sec  

   68ºC  4 min 

20 cycles of  92ºC  15 sec 

   60ºC  30 sec  

68ºC  4 min + 20 sec for each successive cycle 

1 cycle of  68ºC  7 min 
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The remaining PCR reactions were done using the GoTaq Flexi enzyme 

(Promega) and using the appropriate primers (Table 2.2). Reagents and 

respective volumes for each reaction are listed below: 

5X GoTaq Flexi buffer   5l 

25mM MgCl2     5l  

dNTP mix (10 mM)    1l  

Forward primer (5 M)   1l (or 2 l for colony PCR) 

Reverse primer (5 M)   1l (or 2 l for colony PCR) 

DNA template (~200ng)   1 or 2l 

GoTaq Flexi DNA Polymerase (3 U/l) 0.5l 

ddH2O      to 50l 

 

In colony PCR reactions, a single colony from a plate was resuspended in 20l 

of sterile water and 2l of this suspension used in the PCR reaction. 

Samples were run in a PTC-100 programmable thermal controller machine on 

the following program: 

1 cycle of  95ºC  2 min   

30 cycles of  95ºC  1 min 

   55-65ºC 30 sec  

   72ºC  1 min/kb 

1 cycle of  72ºC  7 min 

 

For colony PCR reactions the PCR program was: 

1 cycle of  95ºC  10 min  

30 cycles of  95ºC  1 min 
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47-51ºC 1 min  

   72ºC  1 min/kb 

1 cycle of  72ºC  5 min 

 

All PCR products were purified using the QIAquick PCR Purification Kit 

(Qiagen), according to the manufacturer’s instructions. DNA was eluted in 50 l 

of H2O. 

 

2.4.3 Cloning 

Digestion 

Purified PCR products (GFP-btn1 with and without mutations) and plasmid 

pSL1180 were digested with restriction enzymes PstI and ApaI (Promega, UK): 

DNA (PCR product/plasmid)  15l 

10X Multicore Buffer (Promega)  5l  

BSA (10 mg/ml)    0.5l  

RNase (5 u/l)    1l 

Restriction enzymes   1l 

ddH2O      to 50l 

Reactions were incubated at 37ºC for approximately 2 hours. Cut products were 

run in a 1% agarose gel to confirm the digestion, and then the DNA was 

extracted with a QIAquick Gel Extraction kit (Qiagen), according to the 

manufacturer’s instructions. 

Ligation 

After being digested with restriction enzymes, products were ligated. 4l of 

insert and 3l of vector were mixed with 2l of 10X T4 DNA ligase buffer 
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(Promega) and 1l of T4 DNA ligase (3u/l; Promega). Reactions were 

incubated at 23ºC for 3 hours and at 4ºC overnight. 

Transformation in Escherichia coli competent cells 

Ligation products were mixed with 100l of thawed competent cells (DH5α from 

Laboratory stock) in chilled eppendorf tubes. Tubes were incubated on ice for 5 

minutes, heat shocked at 42ºC for 2 minutes and chilled on ice for 5 minutes. 

100l of SOC medium was added to the cells and they were incubated at 37ºC 

for 30 minutes with shaking (200 rpm). 200l were plated onto LB plates with 75 

g/ml ampicillin.  

DNA preparation 

Single colonies of transformed Escherichia coli competent cells were inoculated 

in 2 to 5 ml of LB and grown at 37ºC overnight with shaking (200 rpm). 1ml of 

culture was used for plasmid preparation. The preparation was done using a 

Spin Miniprep kit (Qiagen), according to the manufacturer’s instructions. DNA 

was eluted in water.  

Constructs for yeast transformation 

All constructs were confirmed prior to transformation by digestion with different 

enzymes (PstI+ApaI and MluI+AgeI) and sequencing. Once confirmed, 

plasmids were digested with the MluI and AgeI restriction enzymes, cleaned 

with a QIAquick Gel Extraction kit and the eluted DNA was directly used for 

transformation in yeast cells. 
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2.4.4 Sequencing 

To verify constructs, mutations or genes, samples were sent for sequencing to 

Source Bioscience (Nottingham, UK). Samples were supplied as following: 5l 

of 100 ng/l plasmid DNA and 1 ng/l per 100bp. Primers were sent at a 

concentration of 3.2 pmol/l. Sequence data was analysed using the ApE 

software (University of Utah). 

 

2.4.5  Electrophoresis in agarose gels 

All DNA samples were electrophoresed in 1% agarose gels. The agarose gels 

were prepared using agarose, 1X TBE buffer (AppliChem, Germany) and 

0.001% of 10 mg/ml ethidium bromide. A 1kb DNA ladder was used to check 

the size of the bands. Gels were electrophoresed at 110 Volts and 400 

milliAmperes for 40 minutes to 1 hour, with a PowerPac Basic system (BioRad, 

UK). Gels were visualized on a Geneflash UV transilluminator (Syngene, UK). 
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2.4.6 Table of primers 

Table 2.2. Table of primers 

Name Direction Sequence Description 

btn1-P-kan Forward 

CTATTTACAGTTTGTAACAAGTTAA 
CTCGTCTATGAAGTCATCGATAGAA 

GGGCTTTAAAGTGTGCTATTTGCGAA 
ACAACAGCAAATTTGTAGACTAGC – 

GAATTCGAGCTCGTTTAAAC 

Used to create nmt-
GFP-btn1 constructs 

for transformation 

GFP_btn1_orf Reverse 

CAGCGGATAAAATTATCACGTAGAG 
AAGGTTGTTTAACAATCCAAAAATTA 
GGAAGCAACACCCTACTTTCGCATC 
TTTTGTTAACCTCAATTTAATCAT - 

TTTGTATAGTTCATCCATGC 

Used to create nmt-
GFP-btn1 constructs 

for transformation 

btn1_P_check Forward TTTGAACCTGACAACATTACCG 
Used to check nmt-

GFP-btn1 constructs 

kan_check Reverse GTGATGTGAGAACTGTATCCTAGC 
Used to check nmt-

GFP-btn1 constructs 

nmt_check Forward GCTACTGGATGGTTCAGTCAC 

Used to check the 
homologous 

recombination of nmt-
GFP-btn1 constructs 

btn1_ORF_check Reverse AGATGCAAGAAAGAGATTTCGC 

Used to check the 
homologous 

recombination of nmt-
GFP-btn1 constructs, 
and to sequence btn1 

GFP_PstI Forward CCCCTGCAGATGAGTAAAGG 

Used to amplify GFP-
btn1 from the 

pREP42GFPbtn1 
plasmid 

btn1_ApaI Reverse GGTTGGGCCCTCAAGTTAAG 

Used to amplify GFP-
btn1 from the 

pREP42GFPbtn1 
plasmid 

btn1_1kbdel_ApaI Reverse GGTTGGGCCCCTACACAAAAAAG 

Used to amplify GFP-
btn1(1kbΔ) from the 

pREP42GFPbtn1 
plasmid, and to 

sequence btn1 with 
1kb-deletion 

mut_E240K Forward 
CGCAGTTCCTTGTATACTTCTCA 
AAATATACTATCAATATTGGTGTA 

Mutagenesis primer 
to generate the 

E240K mutation in 
btn1 

mut_E240K Reverse 
TACACCAATATTGATAGTATAT 

TTTGAGAAGTATACAAGGAACTGCG 

Mutagenesis primer 
to generate the 

E240K mutation in 
btn1 

mut_G136A Forward 
TGCTGGAGTTCCGCAACAGGCT 

TGGCC 

Mutagenesis primer 
to generate the 

G136A mutation in 
btn1 

mut_G136A Reverse 
GGCCAAGCCTGTTGCGGAAC 

TCCAGCA 

Mutagenesis primer 
to generate the 

G136A mutation in 
btn1 
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btn1 Forward ATGATTAAATTGAGGTTAAC 
Used to sequence 

btn1 

btn1_flanks Forward GTCTACTATCGTATTGCCGG 

Used to check the 
homologous 

recombination of 
GFP-btn1 constructs 

btn1_flanks Reverse GAAACGTCATAGGTTAACTC 

Used to check the 
homologous 

recombination of 
GFP-btn1 constructs 
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2.5 Work with mammalian models 

2.5.1 Mammalian cell culture and assays 

The fibroblast lines that were used were HF527N (control) and H480Pa (patient 

with 1-kb deletion). Fibroblasts were cultured in 1X DMEM with 10% FBS and 

1% PenStrep. The cultures were grown at 37ºC with 5% CO2 in a New 

Brunswick Galaxy 170R incubator (Eppendorf, USA). Cells were split using 

trypsin/EDTA and a final concentration of 3 x 104 cells/ml was used in each well 

of 24-well dishes (Nunc). After 1 to 2 days the compounds were added to the 

fibroblasts (at 5, 10 and 20 M concentrations) and incubated for 24 hours. 

For immunofluorescence, the cells were fixed in 4% PFA in PBS for 20 minutes 

at room temperature. After PFA was removed, cells were washed thrice with 1X 

PBS and 0.1% Triton X-100 in 1X PBS was added for 10 minutes. Cells were 

washed again (as before) and then blocked with 1% BSA (in 0.025% saponin in 

1X PBS) for 30 minutes at 4ºC. Cells were incubated with the primary antibody 

anti cis-Golgi marker protein GM130 (mouse) (BD Transduction LaboratoriesTM, 

UK), at 1:150 in 1%BSA in 0.025% saponin in 1X PBS for 1 hour at room 

temperature; and washed five times in 1x PBS afterwards. The second antibody 

was added to the cells: Alexafluor® 488 anti-mouse (Invitrogen, Life 

Technologies, UK), at 1:700 in 1% BSA in 1X PBS. Cells were washed five 

times as before. Nuclei were stained with Hoechst (diluted 1:10.000 in 1X PBS) 

for 2 minutes. After being washed twice, cells were fixed with 2% PFA (in 1X 

PBS), to prevent dissociation of the secondary antibody. Finally, cells were 

washed 3 times in 1X PBS and placed onto microscope slides with a drop of 

mountant (90% glycerol and 3% N-propyl-galate in 1X PBS) in order to be 

visualized.  

The extent of Golgi complex organization in mammalian cells was analysed 

using the compactness equation: 4π (Σ area)/(Σ perimeter)2. A value of 1.0 

indicates a perfect circle, and as the value approaches 0 it indicates an 

increasingly elongated and less compact object. The Golgi complex labeling 
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image threshold was set at ~45, where all the pixels with a value under 45 are 

excluded from the quantification. Region of interest was defined for each cell 

and the perimeter and area of the Golgi complex was measured using ImageJ. 

 

2.5.2 Zebrafish generation and assays 

All the work done with the juvenile CLN3 disease zebrafish model was done by Dr 

Claire Russell at the Royal Veterinary College of London.  

Zebrafish were housed in a multi-rack aquarium system at 28.5 ± 0.5°C on a 14 

hour light and 10 hours dark cycle to mimic the natural zebrafish environment. 

Following adult breeding, the embryos produced were incubated in the dark at 

28°C, in ‘fish water’, containing aquarium water and methylene blue (0.0002%). To 

generate cln3 morphant embryos, 2ng morpholino (MO) anti-sense 

oligonucleotides against cln3 messenger RNA were pressure-injected into 1-2 cell 

stage wild-type TupLF strain zebrafish embryos using a glass capillary injection 

needle. The sequence of MOs (from Gene Tools) were: cln3 ATG MO 

(CATtgcgactttcacaggagaaatg). 

Between 5 and 10 zebrafish embryos per well of a 24 well plate were arrayed and 

either 1ml of aquarium water, DMSO or test compound added at 12 hours post 

fertilization (hpf).  Compounds were supplied at 100x working strength and diluted 

into fish water. Test compounds and testing concentrations used were: E-64 50µM, 

Alloxazine 55µg/ml and Prochlorperazine dimaleate 62.5µM.  Embryos were 

incubated at 31°C and survival analysis and relative activity (at 36hpf) were 

conducted over the following 4 days. 

In the survival assays, animals were scored as dead (no heartbeat) or alive 

(heartbeat) at daily intervals and dead animals removed.  

In the assay measuring the relative activity, a 24 well plate was mounted on a 

Nikon SMZ1500 stereomicroscope. Videos were made of groups of fish in each 

well of the 24 well plate for 3 minutes using a DMK21AF04 (Imaging Source) 

camera at a frame rate of 30 frames/second (fms) and recorded using Media 

Recorder (Noldus). Each fish was then individually assessed for activity using 

Ethovision XT software (Noldus). This software detects the number of changes in 

pixel intensity, which is attributed to movement.   
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2.6 Microscopy 

2.6.1 Fluorescence microscopy 

All images were visualized using an Axioimager.A1 microscope (Carl Zeiss, UK) 

with x63 1.4 oil objective and a fitted Retiga EXi camera (QImaging, Canada). 

Images were acquired with the Openlab v5.5.2. software (Improvision Ltd).  

 

2.6.2 Confocal microscopy 

Images were acquired on the Leica SPE confocal microscope using a Leica x63 

1.3 oil objective with the Leica Application Suite Advanced Fluorescence 

software. Images were posteriorly analysed using ImageJ. 
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2.7 Drug screen 

For the drug screen, wild-type and btn1Δ strains were grown overnight in MM to 

mid-log phase. Afterwards, they were transferred to YES medium with 0.1mg/ml 

CsA at a final concentration of 5 x 104 cells/ml for the wild-type strain and 1 x 

105 cells/ml for the btn1Δ strain. 50μl of cultures were aliquoted into 384-well 

plates (Nunc) containing the library of pharmacologically active compounds 

(LoPac) 1280 Navigator collection (Sigma-Aldrich), with each compound 

replicated four times. The first column (16 wells) of each plate was aliquoted 

with btn1Δ untreated cells (negative control), and the last column (16 wells) 

aliquoted with wild-type untreated cells (positive control). Plates were incubated 

for 24 hours at 37°C. 10μl of a solution with 40% calcofluor and 60% propidium 

iodide diluted in 1X PBS (1:6 dilution) were added to each well, to label the cells. 

Plates were spun at 2000 rpm for 5 minutes and then imaged in the Opera 

imaging system. Six images per well were acquired, and all images were 

analysed in the CellProfiler software. The screen and analysis were performed 

by Dr Jamie Freeman of the Translational Research Resource Centre in the 

LMCB. 
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2.8 Data analysis and statistics 

All measurements in yeast and mammalian cells were performed using ImageJ 

v1.45s software (NIH, USA).  Preliminary data was analysed in Microsoft Excel 

v14.3.2. and subsequent statistical analysis were performed using Graphpad 

Prism 6.0c software (California, USA). Ordinary one-way ANOVA tests followed 

by Tukey’s multiple comparison post-tests were performed.  

All data shown represents the average value with the standard error of the 

mean (SEM) of at least three independent experiments. For the vacuoles size 

experiments, over 500 vacuoles were measured for each strain in each 

experiment; for the septation, cell curving, vacuole pH and viability assays over 

300 cells were considered in each independent experiment.  

The drug screen analysis was performed by Dr Jamie Freeman in the 

CellProfiler software and part of the mammalian cell data was analysed by 

Davide Marotta using the Fiji imaging software. 
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3 Results 1. Btn1p mutations affect the protein 

function in different manners 

 

The first aims of this project were: 

- to create fission yeast genomic integrants with GFP-tagged Btn1p expressed 

under the control of nmt1 promoters with different strengths, and the control of 

its native promoter to permit uniform endogenous expression; 

- to generate fission yeast genomic integrants with GFP-tagged btn1 containing 

a deletion equivalent to the human 1-kb deletion and equivalents to the human 

missense mutations p.Glu295Lys and p.Gly187Ala; 

-  to assess the relative localisation and expression levels of the different 

strains;  

- to characterise different yeast phenotypes associated with the complete loss 

of btn1 and with the newly generated strains: vacuole size, septation index and 

cell curving.   

 



Chapter 3 Results 1 

 

 85 

3.1 Generating S. pombe genomic integrants of GFP-tagged 

Btn1p 

In order to study and monitor the endogenous expression of Btn1p in S. pombe¸ 

the N-terminal of the protein was tagged with GFP. Different strains were 

generated, where GFP was under the control of the nmt1 promoter and of the 

btn1 native promoter.  

Three strains with the nmt1 promoter were generated, with three different types 

of this promoter: p3, wild-type strongest promoter (nmt3); p41, medium-strength 

promoter (nmt41); and p81, the weakest promoter (nmt81). The use of these 

promoters allowed the study of different levels of expression of Btn1p and their 

effects.  

Besides having Btn1p tagged with GFP under the control of different nmt1 

promoters, a strain with GFP-tagged Btn1p under the control of btn1 native 

promoter (GFP-btn1) was also created in order to study the endogenous level 

of this protein and look at its cellular location.  

Once the four different strains with GFP-tagged Btn1p (GFP-btn1, nmt3, nmt41 

and nmt81) were obtained, they were further analysed, along with a wild-type 

strain (wt, 972) and a btn1Δ strain (btn1Δ) (first two rows in Table 2.1). 

 

3.1.1 Making the constructs 

For the construction of the nmt1-GFP-tagged proteins, a DNA fragment with the 

GFP cDNA under the control of the nmt1 promoter (with different strengths) was 

created to replace the endogenous chromosomal btn1 promoter by homologous 

recombination. This DNA fragment originated from a plasmid with the kanr gene 

for selection, the nmt1 promoter and GFP (Bahler et al. 1998). By PCR 

amplification, 100bp of the 5’UTR (untranslated region) of btn1 were added 

upstream the kanr gene, and the first 100bp of btn1 open reading frame (ORF) 
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added downstream of GFP. The final purified PCR products were transformed 

into cells of S. pombe wild-type strain 972 (Figure 3.1.1 (A)).  

In order to tag Btn1p with GFP to allow its expression under the native promoter 

of btn1, a different strategy was used. This consisted of, firstly, amplifying GFP-

btn1 from the plasmid pREP42GFP-Btn1 with primers containing two specific 

restriction sites (PstI and ApaI). This product was then digested and ligated into 

a plasmid previously digested with the same enzymes and containing btn1 

flanks (pSL1180-Btn1flanks). Afterwards, the new construct was digested with 

two other specific enzymes (MluI and AgeI) in order to obtain a fragment with 

the btn1 gene, its flanks (both at 5' and 3'UTR) and the GFP gene upstream. 

The final fragment that was obtained was transformed in a btn1::ura4 strain 

(where the ura4 gene is replacing btn1 in the same locus; Table 2.1) and 

integrants were selected with 5-fluoroorotic acid (FOA) (Figure 3.1.1 (B)). FOA 

leads to cell death in the presence of a wild-type active ura3 gene in the yeast 

strain. FOA is converted to a toxic compound, 5-fluorouracil, and this reaction is 

mediated by an enzyme encoded by the ura3 gene. This allows for a negative 

selection against yeast strains carrying the ura3 gene. 

All constructs, including primer positions and restriction sites, are summarised 

in Figure 3.1.1. 

 

3.1.2 Protein expression levels and localisation 

The different strains showed different levels of GFP expression, since 

differences were detected in the intensity of fluorescent signal detected by the 

confocal microscope. The fluorescent signal in the nmt3 strain was quite high 

and clearly visible, showing that btn1 is overexpressed. The nmt41 strain 

showed faint but still visible fluorescence. The nmt81-bnt1 strain did not 

express GFP at sufficient levels for any fluorescence to be detected. The GFP-

btn1 strain showed a weak fluorescent signal, which was expected since native 

and endogenous levels of Btn1p are known to be very low (Codlin & Mole 2009). 
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Therefore, only nmt3-btn1 and GFP-btn1 strains were used for localisation 

experiments. 

The GFP tag at the N-terminal of the protein allowed for analysis of the 

localisation and trafficking of Btn1p. It was expected that, just like the 

ectopically expressed GFP-Btn1p, all the tagged integrated strains localise in 

the Golgi and are capable of trafficking to the vacuole (Codlin & Mole 2009). In 

fact, in both strains (nmt3 and GFP-btn1), Btn1p co-localised mostly with a 

vacuolar membrane marker, FM4-64. According to the images, Btn1p seems to 

localise in punctate structures as well, probably in the Golgi (Figure 3.1.2). In 

order to confirm this, other markers for these cell organelles have to be used in 

the future.  
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Figure 3.1.1.  Constructing different GFP-tagged Btn1p strains 
(A) Construction of nmt1-GFP-btn1 strains. Arrows within the boxes show directions of 
transcription; White boxes: kanMX6 module containing the promoter and terminator sequences 
of the Ashbya gossypii translation elongation factor 1α gene together with the kan

r
 gene from E. 

coli; S. pombe nmt1 promoter, and the GFP tag from the jellyfish Aequorea victoria. Grey 
boxes: sequences from btn1 gene, including its 5’UTR. The size of the boxes is not proportional 
to their real size. Forward primer (F primer) has 100bp of 5’UTR of btn1, including part of its 
promoter, and 20bp of the kan

r 
gene and its TEF terminator sequence. Reverse primer (R 

primer) has the first 100bp of the btn1 ORF and 20bp of GFP. Construct was integrated into the 
yeast genome by homologous recombination (HR), after being transformed into the cells. 
(B) Construction of GFP-tagged Btn1p under the control of its native promoter. GFP-btn1 
fragment was amplified from the pREP42GFP-Btn1 plasmid using primers containing two 
restriction sites, PstI and ApaI. Both primers and sites are indicated in the diagram. Bold arrows 
represent ligation between the GFP-btn1 fragment and the pSL1180 plasmid containing btn1 
flanks separated by multiple restriction sites including PstI and ApaI. White arrow represents 
digestion of pSl1180 plasmid (containing already inserted GFP-btn1) with MluI and AgeI 
restriction enzymes, in order to create the final fragment (right side panel) that was transformed 
into btn1::ura4 cells. After transformation, the ura4 gene was replaced with GFP-btn1 by HR. 
5’F and 3’F in the final fragment represent the 5’ and 3’ btn1 flanks, respectively. 
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Figure 3.1.2.  Localisation of GFP-Btn1p 
Strains with GFP-tagged Btn1p. Images obtained by confocal microscopy showing fluorescent 
signal from Btn1p in green. Strain with GFP-btn1 under the control of the nmt1 p3 promoter 
(nmt3-btn1) (upper left side panel) and strain with GFP-tagged Btn1p where Btn1p is expressed 
at its normal native levels (GFP-btn1) (upper right side panel). The image on the right panel was 
manipulated in order to increase the visible GFP signal that was originally very weak. Btn1p co-
localises with vacuolar membrane marker, FM4-64, but not totally (lower panel). Cells labelled 
with FM4-64 (red), expressing GFP from Btn1p (green) and co-localisation of GFP signal with 
labelled vacuoles. Scale bars – 4.38µm.  
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3.2 Generating S. pombe genomic btn1 mutants  

Three different strains with integrated GFP-tagged Btn1p containing three 

different mutations were generated.  

The first strain includes the deletion equivalent to the 1-kb deletion in CLN3 

(1kb∆ strain). More specifically, the equivalent to the transcript containing exons 

1-6 spliced to exon 9, which, if expressed, would encode the first 153 amino 

acids of CLN3 (or 102 amino acids in S. pombe) followed by a frame shift, 28 

novel amino acids and a stop codon (102fsX5). This strain was designated as 

1kbΔ and represents the most common CLN3 deletion present in juvenile NCL 

patients. 

Moreover, two other strains with genomic btn1 containing two missense 

mutations specific to juvenile CLN3 disease were generated: one with the 

p.E240K mutation (E240K strain), equivalent to the human p.Glu295Lys 

mutation in CLN3, and the other containing the p.G136A mutation (G136A 

strain), equivalent to the p.Gly187Ala mutation. The first mutation is associated 

with the mildest phenotype identified in juvenile NCL, and the second 

resembles the complete deleted strain btn1∆ in terms of phenotype (Haines et 

al. 2009). 

 

3.2.1 Generating the mutants 

To construct these three integrated GFP-tagged mutants, a similar approach 

used to create the GFP-btn1 strain was used (Figure 3.1.1 (B)).  

The initial plasmids used as templates for the first PCR reaction were 

pREP42GFP-Btn1 plasmids, with btn1 containing the desired mutations, such 

as the 1-kb deletion, the p.E240K and the p.G136A mutations. These mutations 

had been inserted into the btn1 gene using the QuickChange Site-Directed 

Mutagenesis approach. The primers used to amplify the mutated btn1 
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contained two specific restriction sites to facilitate the cloning into a plasmid 

containing btn1 flanks (pSL1180-Btn1flanks). Afterwards, this plasmid was 

digested with two other specific enzymes in order to obtain a fragment with the 

mutated btn1 gene, its flanks (both 5' and 3'UTR) and GFP upstream. The final 

fragment that was obtained was transformed in a btn1::ura4 strain (Table 2.1) 

and integrants were selected with FOA.  

 

3.2.2 Localisation and expression levels of integrated mutants 

One of the goals of tagging Btn1p in these three different mutant strains is to 

look at the localisation of these mutants in the cell and see how their levels of 

expression differ from wild-type Btn1p. Although it has been previously reported 

that the mutant protein with the 1-kb deletion and the p.G136A mutation are 

localised in the endoplasmic reticulum and/or the Golgi, and the one containing 

p.E240K in prevacuolar compartments (Haines et al. 2009), it was not possible 

to confirm this with certainty since no co-staining with subcellular markers was 

done. However, according to the GFP signal present in the cells, it is clear that 

there are differences between the mutant strains and the wild-type tagged 

strains mentioned in the sections above, more specifically in their expression 

levels. The strain with the p.G136A mutation is the one showing the less 

intense GFP signal, whereas the p.E240K mutation shows similar fluorescence 

intensity to wild-type Btn1p (Figure 3.2.1). This is expected in regards to the 

effects that the equivalent human mutations have in the juvenile NCL patients, 

where p.Glu295Lys underlies the mildest form of the disease. In summary, 

different mutations cause differences in the levels of GFP expression, based in 

different intensities of fluorescent signal detected by the confocal microscope. 

In order to confirm the exact localisation, other markers for cell organelles have 

to be used in the future. And also to confirm and quantify the differences in 

expression levels, a Western Blot assay has to be performed, since 

measurement based on the GFP microscope signal is merely qualitative and 

relative. 
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Figure 3.2.1.  Localisation of Btn1p integrated mutants 
Yeast strains with wild-type GFP-tagged Btn1p (upper left panel) and containing the 1-kb 
deletion (upper right panel), the G136A mutation (lower left panel) and the E240K mutation 
(lower right panel). Scale bars – 4.4μm  (GFP-btn1), 7μm (GFP-1kb∆) and 10 μm (GFP-E240K 
and G136A). 
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3.3 Characterising phenotypes of integrated Btn1p mutants 

It is known that cells deleted for btn1 exhibit many phenotypes, and that some 

disease mutant Btn1p proteins exhibit activity that restores one or more of these 

phenotypes, because the mutation does not completely abolish Btn1p function. 

Therefore, the newly created integrated mutant strains were investigated and 

characterised and the effect of the endogenously expressed mutant proteins 

analysed on the different phenotypes. Three phenotypes were chosen to be 

analysed first, since these were previously studied in btn1Δ cells with 

ectopically expressed mutant proteins (Haines et al. 2009).  Two of these 

phenotypes are present at the permissive growth temperature (30ºC), and the 

other becomes apparent at a high temperature of 37ºC: an increase in the 

vacuoles size, a delay in cytokinesis (illustrated by an increase in the number of 

septated cells) and curving of cells after 4 hours at 37ºC. All three of the 

phenotypes can be fully rescued by ectopic expression of GFP-Btn1p from the 

pREP42GFP-Btn1 plasmid (Figures 3.3.1, 3.3.2 and 3.3.3) but not by 

expression of the empty pREP42 vector (data not shown). 

Besides looking at different phenotypes in the mutant strains, the GFP-tagged 

strains were also analysed, to verify the effect of the tag protein and the Btn1p 

expression level in the phenotypes. Analysed strains included: the 972 wild-type 

(wt), the tagged strains where GFP is under the control of the strong nmt1 

promoter p3 (nmt3) and the medium promoter nmt1 p41 (nmt41), the tagged 

strain with GFP under the control of the native promoter of btn1 (GFP-btn1), the 

GFP-1kb∆ strain (1kb∆), the mutant tagged strains GFP-E240K (E240K) and 

GFP-G136A (G136A), and finally the btn1-deleted (btn1∆). 

 

3.3.1 Vacuole size 

The average vacuole size of different mutant and tagged wild-type strains was 

measured and compared to wild-type untagged cells and btn1 cells. Vacuoles 
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were measured in five independent experiments, where at least 500 vacuoles 

were measured in each one. 

Cells deleted for btn1 have significantly larger vacuoles than wild-type cells, and 

ectopic expression of Btn1p significantly reduces the vacuole size to a similar 

size to those of wild-type cells. In this case, the mean vacuole size of the 

G136A strain, which models a disease-causing missense mutation that had 

previously been shown as not being able to rescue vacuole size (Haines et al. 

2009), was included as an additional negative control, similar to btn1. 

Expression of any of the other mutants (1kbΔ and E240K) was sufficient to 

significantly rescue the vacuole size defect of btn1 cells as effectively as 

Btn1p, with the mean vacuole diameter being around 0.9 m for these mutants, 

compared to 1.02 m for btn1 cells or 1 m for G136A (Figure 3.3.1). This 

suggests that the 1-kb deletion and the p.E240K mutation of btn1 (and CLN3), 

are not complete null mutations, since expression of protein products modelling 

these mutations causes vacuole size to decrease in a significant manner, 

suggesting that they retain significant function in S. pombe, as documented 

before (Haines et al. 2009). This result has been confirmed in mammalian cell 

studies, at least for the 1-kb deletion, using expression of mammalian CLN3 

constructs similar to those described here (Kitzmuller et al. 2008).  

As expected, wild-type strains (wt, nmt3, nmt41, GFP-btn1) show the smaller 

vacuoles, with sizes ranging from 0,85 to 0,9 µm. Although slight variations are 

observed between the four wild-type strains, these differences in the vacuole 

size are not significant. (Figure 3.3.1).  
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Figure 3.3.1. Vacuole size of different strains 
The btn1 strain has larger vacuoles than wild-type strain. Images show vacuoles labeled with 

FM4-64 of wt (left) and btn1 (right) strains. Scale bars - 10µm. Graph shows the mean (±SEM) 
of the vacuoles diameter (in μm) in different strains from five independent experiments, where 
at least 500 vacuoles were measured in each one. Statistical significances between each strain 
were determined using a one-way ANOVA with a Tukey’s multiple comparison post-test. 

Statistical significances between wild-type and btn1 and G136A are represented in the graph 
above the bars (****p= <0.0001). Strains: wt – wild-type; nmt3 – GFP-btn1 under the control of 
the nmt1 p3 promoter; nmt41 - GFP-btn1 under the control of the nmt1 p41 promoter; GFPbtn1 

– GFP-tagged Btn1p; btn1d – btn1 strain; 1kbD – btn1 with 1-kb deletion; E240K – btn1 with 

the E240K mutation; G136A – btn1 with the G136A mutation; btn1D+btn1 – btn1 strain 
transformed with the pREP42GFPbtn1 plasmid. 
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3.3.2 Septation index 

Septation index (the percentage of septated cells in the total number of cells) of 

different strains was calculated and the obtained values from five independent 

experiments are shown in Figure 3.3.2. At least 300 cells were counted in each 

experiment. Septation index is an indication of the amount of cells that are 

halted in the cytokinesis process, and therefore, when this value is higher than 

normal it suggests a delay in the cell cycle 

Wild-type strains, as well as the mutant E240K strain, show significantly less 

septated cells than the G136A and btn1∆ strains. The wild-type strains show 

the same pattern as seen in the vacuoles size phenotype, where the nmt3 and 

the nmt41 strains have a slightly lower septation index (7% and 8.36%) than the 

wt strain (11.87%) and the GFP-btn1 (11.19%) is the one with the highest value 

from the four wild-type strains. In fact, there is a significant difference between 

the wild-type and the nmt3 strains. Once again this suggests that the level of 

expression of Btn1p influences the manifestation of the phenotypes associated 

with its deletion.  

The E240K strain has a septation index value that is very similar to the wt strain 

(11.27%), and the 1kb∆ strain showed a small but significant reduction (p=<0.1) 

in the septation index compared to btn1 cells (15.3%), suggesting once again 

that these mutant proteins retain significant function. The other two strains, 

G136A and btn1, showed a value significantly higher than the other six strains 

(23.28% and 20.26% respectively). Ectopic expression of Btn1p in the btn1 

strain significantly reduces the septation index to a similar value to wild-type 

strain (11.74%). 
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Figure 3.3.2. Septation index of different strains 
btn1 strain has a higher septation index than wild-type strain. Images show yeast cells stained 

with calcofluor, delineating cell walls and septa: wt (left) and btn1 (right) strains. Scale bars - 
10µm. Graph shows the mean (±SEM) septation index (percentage of septated cells in total 
number of cells) of different strains from five independent experiments, where at least 300 cells 
were counted in each one. Statistical significances between each strain were determined using 
a one-way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances 

between wild-type and btn1 and G136A are represented in the graph above the bars 
(*p=<0.1***p=<0.001****p=<0.0001). Strains: wt – wild-type; nmt3 – GFP-btn1 under the control 
of the nmt1 p3 promoter; nmt41 - GFP-btn1 under the control of the nmt1 p41 promoter; 

GFPbtn1 – GFP-tagged Btn1p; btn1D – btn1 strain; 1kbD  – btn1 with 1-kb deletion; E240K – 

btn1 with the E240K mutation; G136A – btn1 with the G136A mutation; btn1D+btn1 – btn1 
strain transformed with the pREP42GFPbtn1 plasmid. 
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3.3.3 Cell curving 

The number of curved cells (cells that lost their normal rod shape and became 

curved or bent) was calculated for eight different strains, and percentage of 

curved cells (in total number of cells) obtained from five independent 

experiments are shown in Figure 3.3.3. At least 300 cells were counted in each 

experiment. For this phenotype, the nmt41 strain was not included.  

1kb∆, G136A and btn1∆ strains show significantly more curved cells than the 

wild-type strains. The wild-type strains show the same pattern as mentioned 

above (sections 3.3.1 and 3.3.2), where the nmt3 strain shows slightly less 

curved cells (9.34%) than the wt strain (10.53%). However, in this case, the 

GFP-btn1 strain showed less curved cells than the other two (8.95%). 

Differences between these wild-type strains are not statistically significant. 

The E240K strain has a similar fraction of curved cells to the wt strain (9.02%) 

and significantly lower than the btn1Δ strain, suggesting once again that this 

mutant protein retains significant function. Other values of strains with higher 

percentage of curved cells are: 19.84% for the 1kbΔ strain, 23.99% for the 

G136A strain and 22.45% for the btn1Δ strain, the highest value, as expected. 

These values are significantly different from the three wild-type and the E240K 

strains. Ectopic expression of Btn1p in the btn1 strain significantly reduces the 

number of curved cells to a similar value than wild-type strain (10.58%). 
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Figure 3.3.3. Cell curving of different strains 
The btn1 strain shows more curved cells than wild-type strain. Images show yeast cells 

stained with calcofluor, after growth at 37°C for 4 hours: wild-type (left panel), btn1 (middle 

panel) and the 1kb (right panel) strains. Arrows indicate curved cells. Scale bars – 10µm. 
Graph shows the mean (±SEM) cell curving percentage (percentage of curved cells in total 
number of cells) of different strains from five independent experiments, where at least 300 cells 
were counted in each one. Statistical significances between each strain were determined using 
a one-way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances 

between wild-type and btn1, 1kb and G136A are represented in the graph above the bars 
(****p= <0.0001). Strains: wt – wild-type; nmt3 – GFP-btn1 under the control of the nmt1 p3 
promoter; nmt41 - GFP-btn1 under the control of the nmt1 p41 promoter; GFPbtn1 – GFP-

tagged Btn1p; btn1D – btn1 strain; 1kbD – btn1 with 1-kb deletion; E240K – btn1 with the 

E240K mutation; G136A – btn1 with the G136A mutation; btn1D+btn1 – btn1 strain 
transformed with the pREP42GFPbtn1 plasmid.  
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3.4 Summary 

Overexpression of btn1 (when under the control of the nmt1 p3 promoter) 

overcompensates phenotypes seen in btn1-deleted cells. Values recorded for 

the nmt3-GFP-btn1 strain were lower than the wild-type 972 strain values in all 

the phenotypes that were analysed: vacuole size, septation index and cell 

curving. This nmt3 strain also has smaller vacuoles and significantly less 

septated cells than the strain where Btn1p is tagged with GFP under the control 

of its native promoter.  

It had previously been demonstrated that the most common mutation of CLN3, 

a large intragenic deletion of about 1-kb is not a null mutation that completely 

abolishes CLN3 function, since the mutant protein retains some function 

(Kitzmuller et al. 2008; Haines et al. 2009). This observation was corroborated 

in this study, since the strain containing Btn1p102fsX5 (which models a transcript 

expressed in cells from patients homozygous for the 1-kb deletion) showed 

significant rescue of two phenotypes (increased vacuole size and septation 

index) almost as effectively as the full-length protein.  

As for the p.E240K mutation, the mutant Btn1 protein is able to rescue all three 

phenotypes examined in this chapter, showing that this mutation (which is 

equivalent to the human mutation that underlies a markedly protracted form of 

juvenile NCL) does not affect the function of Btn1p as much as the 1-kb deletion. 

Understanding why this is the only mutation capable of rescuing the cell curving 

phenotype and studying its molecular basis may reveal a novel target for 

therapies to delay onset of symptoms in juvenile CLN3 disease.  

On the other hand, the p.G136A mutation did not rescue any of the phenotypes, 

indicating that it affects the protein function to a greater extent than the other 

two mutations. This may be a null mutation that leads to a significant reduction 

in the protein levels. 

All the three mutations are sufficient to change the levels of expression of Btn1p 

and possibly its localisation, according to the GFP fluorescent signal that was 
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observed. All showed a different signal pattern when visualized under the 

microscope. To further clarify the localisation of the different mutant proteins, 

other organelle markers have to be used. 

Taken together these results show that different integrated mutations affect 

Btn1p function differently leading to diverse phenotypes. 
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4 Results 2. Drug Screen 

 

The aims of this part of the project were: 

- to explore different btn1∆ phenotypes in order to identify a robust and specific 

phenotype suitable for a high-throughput drug screen: sensitivity to chemicals 

such as ANP, chloroquine and cyclosporine A and to high temperature, and 

increased vacuole pH; 

- to optimise the conditions for the performance of the drug screen; 

- to perform the screen based on a library with 1280 FDA-approved small 

compounds in the Translational Research Resource Centre at the LMCB. 
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4.1 Exploring different phenotypes as basis of a screen 

In order to find a robust and striking phenotype that is easily identified when 

rescued and significantly different between wild-type and btn1-deleted strains, 

several conditions and characteristics were tested. These included sensitivity to 

certain chemicals such as ANP, chloroquine and cyclosporine A (CsA); growth 

at higher temperature (37°C) and differences in vacuole pH. The majority of 

these phenotypes were not adequate for the desired purposes. However, 

growth in the presence of cyclosporine A at 37°C was eventually selected as 

the basis for the drug screen. 

 

4.1.1 Sensitivity to ANP and chloroquine 

The first phenotype to be analysed was growth in the presence of ANP, a 

chemical that was previously reported to differentially affect the BTN1Δ strain in 

S. cerevisiae (Pearce & Sherman 1998). In budding yeast, this BTN1Δ strain 

shows resistance to ANP but the average vacuolar pH is more acidic than wild-

type cells, contrary to what is seen in fission yeast. Since the resistance to this 

chemical is pH-dependent, I hypothesized that btn1Δ S. pombe strain could be 

more sensitive to ANP than wild-type cells. Therefore, a spot assay was 

performed in MM plates containing ANP at two different concentrations (0.75 

mM and 1 mM) to determine if there was a difference in the growth of wild-type 

and btn1Δ S. pombe strains. This experiment was replicated three independent 

times with three similar plates in each. At both concentrations, there was no 

striking difference between the patterns of growth of the two strains (Figure 

4.1.1). Therefore, the loss of btn1 does not confer resistance or sensitivity to 

this chemical, and this phenotype cannot be used for a screen. Cells were also 

spotted onto MM plates without any added substance as a control (data not 

shown). 

Other chemical, chloroquine, was added to the medium to test if the 

combination of the two chemicals could reveal a difference between wild-type 
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and btn1Δ. In a study with budding yeast, chloroquine was shown to reverse the 

resistance of the BTN1Δ strain to ANP, by elevating the vacuole pH (Pearce et 

al. 1999a), and therefore this combination (ANP and chloroquine) was chosen 

to be tested in S. pombe to verify if there was sensitivity in the strain lacking 

btn1. The addition of 0.1 mM of chloroquine to the medium didn’t change the 

pattern of growth of the two strains in a significant manner (Figure 4.1.1).  
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Figure 4.1.1. Spot assays of wild-type and btn1Δ strains in 
plates with ANP and chloroquine 

btn1Δ strain is not sensitive to ANP and/or chloroquine. Wild-type and btn1Δ cells were serially 
diluted from a log-phase culture (1x10

6
 cells/ml) and spotted onto Minimal Medium (MM) plates 

containing either 0,75mM (upper left panel) or 1mM (upper right panel) of ANP; or 1mM 
ANP+0.1mM chloroquine (lower panel). Plates were then incubated at 30°C for 6-7 days to 
determine the growth in the presence of these chemicals. This assay was replicated thrice. wt – 
wild-type strain; btn1Δ – btn1-deleted strain. 
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4.1.2 Growth at high temperature (37°C) 

Growth in rich medium at a higher temperature than the permissive one, 37°C, 

was analysed at two different points, after 24 and after 48 hours. Cells were 

stained with the cell impermeant nucleotide stain propidium iodide to mark dead 

cells and calcofluor white to mark the total cell population. The viability 

(percentage of live cells in total number of cells) was measured for four strains: 

wild-type, btn1Δ, E240K and 1kbΔ. At least 300 cells were counted in three 

independent experiments. Besides this experiment, a spot assay in YES plates 

incubated at 37°C was done, with the same four strains (not shown). 

The high temperature of 37°C affects the growth of mutant and btn1-deleted 

strains but does not cause a strong complete inhibition of growth in these 

strains, which would be necessary for a rescue screen. For instance, although 

there was a significant difference between the wild-type and the btn1Δ strains, 

the percentage of dead cells with no btn1 was not high enough to be able to 

readily identify a significant rescue by any drug or compound (around 22.1% 

viability after 48 hours). Moreover, the viability of wild-type cells after 48 hours 

was not high enough (52.31%). Neither one of the mutant strains (1kbΔ and 

E240K) showed a significant difference from the wild-type strain (59.22% and 

47.83% after 48 hours, respectively) (Figure 4.1.2). 

Furthermore, liquid cultures, after growth for 48 hours at 37°C, were plated onto 

YES plates and incubated at 37°C again, to examine the extent of cell death. 

However, colonies were able to grow in the plates, and therefore, once again, it 

was proven that this phenotype is not adequate for developing a drug screen.  
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Figure 4.1.2. Growth of different strains at 37°C 
Cell viability of wt, E240K, 1kbΔ and btn1Δ strains upon growth in YES medium at a high 
temperature of 37°C over two periods of 24 and 48 hours (after the temperature shift). The 
graph shows the survival curve of different strains at three time points, after cultures were 
shifted from 30 to 37°C: 0, 24 and 48 hours. Data shown is a mean (±SEM) of 3 independent 
experiments. Survival is the percentage (%) of live cells in total number of cells. Statistical 
significances between each strain were determined using a one-way ANOVA with a Tukey’s 
multiple comparison post-test. Statistical significances between wild-type and btn1Δ are 

represented in the graph (***p= <0.001). wt – wild-type; btn1D – btn1 strain; 1kbD – btn1 with 
1-kb deletion; E240K – btn1 with the E240K mutation. 
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4.1.3 Vacuole pH 

It was previously shown that cells deleted for btn1 have larger and less acidic 

vacuoles than wild-type cells (Gachet et al. 2005). Therefore, these strains, 

along with 1kbΔ and E240K, were labelled with LysoSensor to compare vacuole 

pH, where the intensity of fluorescence obtained correlates with vacuole pH – 

the more intense the fluorescence, the lower the pH. Intensity was measured in 

units of corrected total cell fluorescence (CTCF). At least 300 cells were 

counted in three independent experiments. As expected, wild-type cells showed 

a significantly higher fluorescence than btn1Δ cells, corresponding to more 

acidic vacuoles. 1kbΔ cells showed an intermediate value of fluorescence, with 

a vacuole pH value between wild-type and btn1Δ, but not significantly different 

from any of them (Figure 4.1.3). 

Although this phenotype could be used for a drug screen, since there is a 

detectable and significant difference between cells with and without btn1, after 

further testing, it was shown that the intensity of fluorescence from the 

LysoSensor was not high enough to be differentially detected and measured in 

the Opera Software, and therefore, this phenotype was considered as not 

suitable for screening with this robot. 



Chapter 4 Results 2 

 

 109 

Figure 4.1.3. Vacuole pH of different strains 
btn1 strain have less acidic vacuoles than wild-type strain. The graph shows the mean (±SEM) 
corrected total cell fluorescence (CTCF) intensity of vacuoles of wild-type (wt), 1kbΔ and btn1Δ 
strains. Vacuoles were labelled with LysoSensor dye: the intensity of fluorescence inversely 
correlates with vacuole pH - the more intense the fluorescence, the lower the pH.  Data shown 
was collected from 3 independent experiments. Statistical significances between each strain 
were determined using a one-way ANOVA with a Tukey’s multiple comparison post-test. 
Statistical significances between wild-type and btn1Δ are represented in the graph above the 
btn1D bar (*p= <0.1). wt – wild-type; 1kbD – btn1 with 1-kb deletion; btn1D - btn1Δ strain. 

 

 



Chapter 4 Results 2 

 

 110 

4.1.4 Sensitivity to cyclosporine A at 37°C 

It was found that the btn1Δ strain is sensitive to cyclosporine A (CsA), an 

inhibitor of calcineurin. The link between Btn1p and calcineurin and/or CsA will 

be explored in the Discussion Chapter. Furthermore, in order to exacerbate the 

phenotype, strains were grown at 37°C. There was a significant difference 

between viability of wild-type and btn1Δ strains when grown in these conditions. 

In the presence of cyclosporine A (0.1 mg/ml) at a high temperature of 37°C, 

btn1∆ cells were not able to grow; the growth was completely inhibited, both in 

a spot assay (Figure 4.1.4 A) and when 106 cells were plated in plates with CsA 

(not shown). Since the presence of this chemical was shown to greatly affect 

the growth of btn1Δ strain, growth of all the integrated mutant strains were also 

analysed in these conditions: 1kbΔ, E240K and G136A. None of these strains 

showed sensitivity to the chemical, even at a higher concentration of 0.15mg/ml  

(Figure 4.1.4).  

Viability of liquid cultures in the presence of CsA and at 37°C, after 24 hours of 

growth, was also measured for all the five strains, following the same approach 

that was used for viability at 37°C with propidium iodide and calcofluor staining 

(section 4.1.2). At least 300 cells were counted in three independent 

experiments. A significant difference was seen between the number of wild-type 

and btn1Δ dead cells (viabilities of 94.07% and 5.68%, respectively). Regarding 

the mutant strains, the G136A strain is the only one showing sensitivity to CsA, 

in liquid culture (11.79%); E240K and 1kbΔ showed similar viability values to 

wild-type: 81.71% and 84.86%, respectively  (Figure 4.1.4). Thus, once again, 

partial function of Btn1p was able to be distinguished from complete lack of 

function. 

Therefore, this phenotype was selected to be the basis for a high-throughput 

screen using the btn1∆ strain. However, it was not suitable for mutation-specific 

screening. 
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Figure 4.1.4. Sensitivity of different strains to cyclosporine A at 
37°C 

btn1Δ is sensitive to cyclosporine A (CsA). Spot assays of different strains in YES plates with 
0.1 mg/ml of CsA were done by serially diluting cells from a log-phase culture (1x10

6
 cells/ml) 

and spotted onto YES plates containing 0.1 mg/ml of CsA. Plates were then incubated at 37°C 
for 3-4 days to determine growth at 37°C in the presence of CsA. Cells were also spotted onto 
YES plates lacking CsA as a control (data not shown). The graph represents the cell viability of 

wt, E240K, 1kb, G136A and btn1Δ strains upon growth in YES medium with CsA (0.1mg/ml) at 
a high temperature of 37°C over 24 hours (after the temperature shift). The graph shows the 
survival curve of different strains at two time points, after cultures were shifted from 30 to 37°C: 
0 and 24 hours. Data shown is a mean (±SEM) of 3 independent experiments. Viability is the 
percentage (%) of live cells in total number of cells. Statistical significances between each strain 
were determined using a one-way ANOVA with a Tukey’s multiple comparison post-test. 

Statistical significances between wild-type and btn1 and G136A are represented in the graph 

(****p= <0.0001). wt – wild-type; btn1 – btn1-deleted strain; 1kbΔ – btn1 with 1-kb deletion; 
E240K – btn1 with the E240K mutation; G136A - btn1 with the G136A mutation. 
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4.2 Drug screen 

After choosing the ideal phenotype to be used as basis of the screen, screening 

conditions were optimized. The developed high-throughput screen used a small 

compound library (LoPac collection), all at a concentration of 10μM, kindly 

provided by Dr. Robin Ketteler, and executed by the Opera® system. This 

screen was optimized and completed in collaboration with Dr Jamie Freeman. 

All the hits from the screen were validated in further experiments.  

 

4.2.1 Optimisation of the screen 

The high-throughput drug screen was executed by the Opera® High Content 

Screening System, a confocal microplate imaging robot. This system allows for 

the acquisition of several images in a rapid manner. These images are 

posteriorly analysed with the CellProfiler software, where the selected 

phenotype can be quantitatively measured in an automatic way. The analysis 

was based in the amount of fluorescence seen in the images from wild-type and 

btn1Δ untreated strains, and btn1Δ after being treated with the LoPac 

compounds. The detected fluorescence was from propidium iodide, which 

labels dead cells. Positive hits were compounds that were able to rescue cell 

death, characteristic of the btn1Δ strain in the presence of CsA at 37°C, and 

therefore showed less fluorescence than the untreated btn1Δ strain.  

Several conditions were tested before images with good quality and accurate 

amount of fluorescence were obtained: initial cell density, different manners of 

plating and amount of calcofluor and propidium iodide used to stain the cells, 

amongst others.  

All 1280 compounds were tested four times, and two controls, positive and 

negative, were included in each plate: wild-type and btn1Δ cells without any 

compound. 
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4.2.2 Results of the screen 

For each of the 384 wells in each plate, six images were acquired in order to 

cover a great part of the area. This means that for each compound that was 

tested, twenty-four images were acquired, since each compound was replicated 

in four wells. All images were analysed by Dr. Jamie Freeman using the 

CellProfiler software. A value corresponding to the amount of fluorescence in 

the whole area was given to each image, and an average of the different values 

was calculated for each compound. Values for the negative controls (cells with 

no btn1 and no added compound) and positive controls (wild-type cells with no 

added compound) were also calculated and compared to those of the samples 

(btn1Δ cells with compounds). The average value for the negative controls was 

0.723, and therefore only compounds giving numbers less than this value were 

considered further.  

Images corresponding to positive hits were all analysed individually in order to 

eliminate false positive results where, for instance, no cells were seen in the 

image.  

After the analysis, the six stronger hits were chosen to be validated in further 

experiments. These were atenolol, alloxazine, L-trans-Epoxysuccinyl-

leucylamido(4-guanidino)butane (E-64), prochlorperazine dimaleate, etoposide 

and daphnetin. Examples of screen images corresponding to controls (wild-type 

and btn1Δ untreated cells) and two positive hits are displayed in Figure 4.2.1. 
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Figure 4.2.1. Drug screen: negative and positive controls, and 
two positive hits  

Sample images obtained in the drug screen. Cells in log-phase were grown in YES medium with 
CsA (0.1mg/ml) and a randomly assigned compound of the LoPac collection (10μM) at a high 
temperature of 37°C over 24 hours. Cells were stained using the cell impermeant nucleotide 
stain propidium iodide to mark dead cells (red/pink) and calcofluor white to mark the total cell 
population (blue). Images correspond to: btn1∆ untreated cells with no added compound 
(negative control) (upper left side); wild-type untreated cells with no added compound (positive 
control) (upper right side); and two positive hits from the screen in the lower panel (btn1∆ cells 
treated with two compounds that were able to rescue the low viability seen in the presence of 
CsA). In smaller squares zoomed images of the respective larger pictures (positive and 
negative controls) are shown. 
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4.3 Summary 

The first step towards the development of the drug screen was to find a robust 

and striking phenotype that is easily identified when rescued and significantly 

different between strains with and without btn1. The ideal is a phenotype based 

on a type of assay that will assess something as basic as survival/death of the 

strains, where cells with defective or no Btn1p are unable to grow or survive as 

well as wild-type cells. These kind of selective screens are not yet possible to 

be performed in mammalian cells, since no robust adequate phenotype has 

been reported to date. On the other hand, the fission yeast model is ideal to 

perform this type of screen, since multiple phenotypes (caused by the loss of 

btn1 or associated with the 1-kb deletion mutant) have already been identified.  

Four different phenotypes were analysed, and they were chosen for different 

reasons. Firstly, the growth of btn1Δ in the presence of ANP and chloroquine 

was investigated. It was previously reported that S. cerevisiae strains lacking 

BTN1 are more resistant to ANP, in a pH-dependent manner (Pearce & 

Sherman 1998). Since in S. cerevisiae BTN1Δ strain the vacuole pH is more 

acidic, but in S. pombe this pH is higher than normal, it was thought that fission 

yeast strains without btn1 could be more sensitive to ANP.  Moreover, in other 

study in budding yeast, chloroquine was shown to reverse the resistance to 

ANP, elevating the vacuole pH (Pearce et al. 1999a), and therefore this 

combination (ANP and chloroquine) was tested in S. pombe to verify if there 

was an exacerbation in the sensitivity of strains without btn1 to these 

compounds. However, there was no striking difference between the pattern of 

growth of wild-type and btn1Δ strains, neither in the presence of ANP nor in the 

presence of ANP and chloroquine.  

The next phenotype to be analysed was the growth of strains at a high 

temperature of 37°C. In a study by Codlin and others (Codlin et al. 2008b) it 

was reported that Btn1p is essential for growth at 37°C, since its absence 

ultimately results in cell lysis. In fact, in this study, the high temperature was 
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shown to severely affect the growth of btn1Δ strain; however this was not a 

complete inhibition of growth, which would be desirable for a rescue screen. 

It was previously shown that cells deleted for btn1 have a higher vacuole pH 

than wild-type cells (Gachet et al. 2005), and therefore this was measured in 

these two types of strains (wild-type and btn1Δ). A significant difference was 

seen between these two strains, and therefore this phenotype was initially 

selected for the drug screen. However, after further testing by Dr Jamie 

Freeman, it was shown that the fluorescence intensity from the Lysosensor 

used to measure vacuole pH was difficult to measure in the Opera Software, 

and therefore, this phenotype was abandoned. 

Finally, work done by Dr Michael Bond (unpublished data) showed that the TOR 

complex 2 (TORC2) pathway is related to the function of Btn1p, and it was 

known that the calcineurin phosphatase is consistently active in yeast mutants 

defective for TORC2 (Mulet et al. 2006). Therefore, an inhibitor of calcineurin, 

cyclosporine A, was tested to verify its effect on the growth of btn1Δ strain at a 

concentration of 0.1mg/ml and at 37°C. btn1Δ cells are sensitive to growth in 

these conditions. Therefore, this phenotype was selected as basis of the drug 

screen. 

The developed high-throughput screen was performed using a library (LoPac 

collection) with 1280 FDA-approved compounds. The screen was optimized 

and completed in collaboration with Dr Jamie Freeman. This screen was 

performed in the Opera system, a high-throughput microscope suitable for this 

type of screening campaigns. 

After acquiring all the images from the screen, these were primarily analysed by 

Dr. Jamie Freeman using the Cell Profiler software. Afterwards, images from 

the positive hits were manual and individually analysed in order to eliminate 

false positive results. 

The six stronger hits were selected for further experiments of validation: 

atenolol, a selective β1 adrenoreceptor antagonist (β-blocker), used mainly in 
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treatment of cardiovascular diseases; alloxazine, an adenosine A2B receptor 

antagonist; E-64, an inhibitor of a range of cysteine peptidases; 

prochlorperazine dimaleate, a D2 dopamine receptor antagonist; etoposide, a 

topoisomerase inhibitor, used as an anticancer drug; and daphnetin, an inhibitor 

of several protein kinases, with antioxidant and immunosuppressant properties. 

Although some of these compounds do not have apparent targets in yeast, 

these were further explored in this model, since they could be acting in a 

different pathway than in humans. More details about these hits will be 

discussed in the following chapters.  
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5 Results 3. Compounds identified in drug screen are 

able to rescue other phenotypes arising from loss of 

btn1 in fission yeast 

 

The aims of this part of the project were: 

- to validate the six strongest positive hits obtained in the drug screen, by 

manually retesting these in the same conditions as the screen; 

- to test three hit compounds on their ability to rescue other phenotypes in 

btn1Δ cells: increased vacuole size, higher septation index and cell curving, and 

sensitivity to high temperature; 

- to test the same compounds for their ability to rescue compactness of the 

Golgi apparatus in fibroblasts from juvenile CLN3 disease patients;   

- to test the same compounds in a zebrafish juvenile NCL model to verify their 

ability to rescue other phenotypes associated with mutated cln3: increased 

relative activity of the fish and low survival rate.  
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5.1 Validating hits from the drug screen 

In order to validate the results obtained in the drug screen, the six strongest 

hits, that showed the most significant rescue of sensitivity to cyclosporine A in 

btn1Δ cells, were selected: atenolol, alloxazine, E-64, prochlorperazine 

dimaleate, etoposide and daphnetin. These compounds were added to both 

wild-type and btn1Δ strains and they were grown in the same exact conditions 

as the drug screen (Results 2.1.2), but in a larger volume. Strains were grown 

at 37°C in the presence of CsA (0.1mg/ml) and the respective compound 

(10μM) for 24 hours. Strains were also treated with the compounds’ carrier, 

DMSO, as a control. Images were taken and analysed manually. At least 300 

cells were counted in three independent experiments. 

Alloxazine was the first compound to be analysed: its presence significantly 

rescued the lower viability of the btn1Δ strain (49.25% instead of 3.36% in the 

untreated btn1Δ strain) and didn’t significantly alter the viability of the wild-type 

strain (88.93% with alloxazine, compared to 92.22% for untreated wt). Similar 

results were obtained for E-64 and prochlorperazine dimaleate. Both of these 

compounds slightly (but not significantly) decreased the viability of the wild-type 

strain (81.24% for E-64 and 84.32% for prochlorperazine) and significantly 

increased the viability of the btn1Δ strain, especially E-64, validating their ability 

to rescue the sensitivity to CsA (73.85% and 63.18%, respectively for E-64 and 

prochlorperazine) (Figure 5.1.1). Therefore, these three compounds (alloxazine, 

E-64 and prochlorperazine dimaleate) were all selected for further experiments, 

to verify their ability to rescue other phenotypes associated with the loss of 

btn1. 

Only compounds that rescued viability to values above 50% without affecting 

the wild-type strain were chosen for further studies. Therefore, the other three 

compounds, atenolol, etoposide and daphnetin were excluded. Atenolol was 

able to slightly rescue the CsA sensitivity of the btn1Δ strain (16.29% instead of 

3.36%). However, the rescue was not statistically significant and therefore 

atenolol was not further tested. On the other hand, the addition of etoposide 
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significantly rescued the growth of the btn1Δ, but also affected the wild-type 

strain (61.73% instead of 92.22%) and therefore it was not used in further 

experiments. A similar effect was observed with daphnetin, where the viability of 

wild-type significantly decreased after treatment (41.24%) (Figure 5.1.1). Due to 

time restrictions, only the three compounds that led to the strongest rescues 

were further explored in this project. However, the other three compounds 

should be considered in the future. 



Chapter 5 Results 3 

 

 121 

Figure 5.1.1. Validation of six strongest hits from the drug 
screen in wild-type and btn1Δ strains 

Alloxazine, E-64 and prochlorperazine dimaleate are able to significantly rescue sensitivity of 
btn1Δ strain to cyclosporine A (CsA). Cell viability of wild-type and btn1Δ strains upon growth in 
YES medium with CsA (0.1mg/ml) and six compounds (10μM) at a high temperature of 37°C 
after 24 hours. Graphs show the viability (percentage % of live cells in total number of cells) of 
wild-type (upper graph) and btn1Δ strains (lower graph) after treatment with different 
compounds: alloxazine, atenolol, etoposide, E-64, daphnetin and prochlorperazine dimaleate 
(proc dimaleate). Strains were also treated with the compounds’ carrier, DMSO, as a control. 
Data shown is a mean (±SEM) of 3 independent experiments. Statistical significances between 
each treatment were determined using a one-way ANOVA with a Tukey’s multiple comparison 
post-test. Statistical significances between wild-type and btn1Δ and all the six compounds are 
represented in the graph above the compounds’ bars (*p= <0.1; **p= <0.01; ****p= <0.0001). In 
the upper graph significances were calculated against the wild-type strain (wt), and in the lower 
graph against the btn1Δ strain (btn1D), both treated with DMSO. 

 

 



Chapter 5 Results 3 

 

 122 

5.2 Testing compounds’ ability to rescue other btn1Δ 

phenotypes 

The three compounds that were positively selected in the drug screen and 

subsequently validated (alloxazine, E-64 and prochlorperazine dimaleate) were 

used in further experiments to verify their ability to rescue other phenotypes 

associated with the loss of btn1: enlarged vacuoles, higher septation index, 

increased cell curving and sensitivity growth at high temperature.  

 

5.2.1 Vacuole size 

The first phenotype to be analysed was vacuole size, which was shown to be 

significantly larger in btn1Δ cells (Results 1.3.1). Wild-type and btn1Δ strains 

were grown in the presence of the three validated compounds prior to labelling 

the vacuoles: alloxazine, E-64 and prochlorperazine dimaleate. At least 500 

vacuoles for each compound were measured in three independent experiments. 

Strains were also treated with DMSO as a control. After measuring the average 

vacuole diameter, it was found that all three compounds were able to 

significantly rescue this phenotype. The average vacuole diameter is smaller in 

the presence of the compounds than in untreated btn1Δ cells, a similar size of 

vacuoles in wild-type cells: an average size of 0.87 μm for alloxazine, 0.9 μm for 

E-64 and prochlorperazine dimaleate, when compared to 0.87 μm in the wild-

type strain and 1.02 μm in the btn1Δ strain (Figure 5.2.1). None of the 

compounds significantly affected the size of wild-type vacuoles (data not 

shown). 
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Figure 5.2.1. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the vacuole size of btn1Δ strain 

Alloxazine, E-64 and prochlorperazine dimaleate are able to significantly rescue enlarged 
vacuoles of btn1Δ strain. The graph shows the mean (±SEM) of the vacuoles diameter (in μm) 
in the btn1Δ strain treated with DMSO (control) and different compounds (10μM): alloxazine, E-
64 and prochlorperazine dimaleate (proc). The average vacuole diameter of the wild-type strain 
is represented by a grid line in the graph (wt). Data was collected in three independent 
experiments. Statistical significances between each treatment were determined using a one-
way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances between 
btn1Δ treated with DMSO and with the three compounds are represented in the graph above 
the compounds’ bars (****p= <0.0001).  
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5.2.2 Septation index 

Wild-type and btn1Δ strains were grown in the presence of alloxazine, E-64 and 

prochlorperazine dimaleate and then imaged to calculate the respective 

septation index. Strains were also treated with DMSO as a control. At least 300 

cells were counted for each compound in three independent experiments. All 

three compounds were able to significantly rescue this phenotype, decreasing 

the number of septated cells to similar values to wild-type, or even slightly 

lower: 7.135% for alloxazine, 9.09% for E-64 and 12.87% for prochlorperazine 

dimaleate, when compared to 11.43% for wild-type strain and 20.67% for btn1Δ 

strain (Figure 5.2.2). None of the compounds significantly affected the number 

of septated cells in the wild-type strain or caused multiseptated cells (data not 

shown). 
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Figure 5.2.2. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the septation index of btn1Δ strain 

Alloxazine, E-64 and prochlorperazine dimaleate are able to significantly rescue the elevated 
septation index of btn1Δ strain. The graph shows the mean (±SEM) of septation index in the 
btn1Δ strain treated with DMSO (control) and different compounds (10μM): alloxazine, E-64 and 
prochlorperazine dimaleate (proc). The average septation index of the wild-type strain is 
represented by a grid line in the graph (wt). Septation index is the percentage of septated cells 
in total number of cells. Data was collected in three independent experiments. Statistical 
significances between each treatment were determined using a one-way ANOVA with a Tukey’s 
multiple comparison post-test. Statistical significances between btn1Δ treated with DMSO and 
with he three compounds are represented in the graph above the compounds’ bars (***p= 
<0.001; ****p= <0.0001).  
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5.2.3 Cell curving 

Wild-type and btn1Δ strains were treated with the same three compounds as 

before, in order to determine any effect on the cell curving phenotype. Strains 

were also treated with DMSO as a control. At least 300 cells were counted for 

each compound in three independent experiments. All three compounds were 

able to significantly rescue the curved morphology of cells, decreasing the 

number of curved cells to similar or lower values than wild-type: 9.82% for 

alloxazine, 8.55% for E-64 and 9.99% for prochlorperazine dimaleate, when 

compared to 11.47% for the wild-type strain and 22.4% for the btn1Δ strain 

(Figure 5.2.3). Furthermore, and since the 1kbΔ also showed a significantly 

higher number of curved cells strain similar to btn1Δ strain (19.84%) (Results 

1.3.3), this strain was also treated with the same compounds. All three 

compounds were able to rescue the phenotype in this strain, in a significant 

manner, to values lower than the wild-type strain: 8.98%, 8.88% and 9.21% for 

alloxazine, E-64 and prochlorperazine dimaleate, respectively (Figure 5.2.3). 

None of the compounds significantly affected the number of curved cells in the 

wild-type strain (data not shown). 
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Figure 5.2.3. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the cell curving of btn1Δ and 1kbΔ strains 

Alloxazine, E-64 and prochlorperazine dimaleate are able to significantly rescue the elevated 
cell curving percentage of btn1Δ and 1kbΔ strains. Graphs show the mean (±SEM) of cell 
curving percentage in the btn1Δ (upper graph) and 1kbΔ (lower graph) strains treated with 
DMSO (controls) and different compounds (10μM): alloxazine, E-64 and prochlorperazine 
dimaleate (proc). The average  cell curving of the wild-type strain is represented by a grid line in 
both graphs (wt). Cell curving is the percentage of curved cells in total number of cells. Data 
was collected in three independent experiments. Statistical significances between each 
treatment were determined using a one-way ANOVA with a Tukey’s multiple comparison post-
test. Statistical significances between btn1Δ and 1kbΔ treated with DMSO and with the three 
compounds are represented in the graph above the compounds’ bars (****p= <0.0001). DMSO 
– btn1Δ strain with DMSO and no compound; 1kbD – 1kbΔ strain with DMSO and no compound. 

 

 



Chapter 5 Results 3 

 

 128 

5.2.4 Growth at high temperature 

The last phenotype that was analysed was the sensitivity of btn1Δ strain to 

growth at a high temperature of 37°C. Wild-type and btn1Δ strains were grown 

in the presence of alloxazine, E-64 and prochlorperazine dimaleate for 48 hours 

at 37°C and their viability was measured after 24 and 48 hours. Strains were 

also treated with DMSO as a control. At least 300 cells were counted for each 

compound in three independent experiments. None of the compounds 

significantly affected the viability of wild-type cells. Regarding the btn1Δ strain, 

the effect varied. Only alloxazine was able to significantly rescue the sensitivity 

of btn1Δ strain to high temperature after 24 and 48 hours (91.48% after 24 

hours and 58.51% after 48 hours, compared to 54.47% and 22.09% in btn1Δ 

strain). E-64 and prochlorperazine were not able to rescue this phenotype 

(27.78% and 34.34% after 48 hours, for E-64 and prochlorperazine, 

respectively) (Figure 5.2.4). 



Chapter 5 Results 3 

 

 129 

Figure 5.2.4. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the growth of btn1Δ strain at 37°C 

Alloxazine is able to significantly rescue the sensitivity of btn1Δ strain to growth at 37°C. Cell 
viability of btn1Δ strain upon growth in YES medium at a high temperature of 37°C over two 
periods of 24 and 48 hours (after the temperature shift), and treated with DMSO (control) and 
three different compounds (10μm): alloxazine, E-64 and prochlorperazine dimaleate (proc). 
Data from wild-type (wt) strain treated with DMSO is also included in the graph. Graph shows 
the survival curve of different strains at three time points, after cultures were shifted from 30 to 
37°C: 0, 24 and 48 hours. Data shown is a mean (±SEM) of 3 independent experiments. 
Viability is the percentage (%) of live cells in total number of cells. Statistical significances 
between each strain were determined using a one-way ANOVA with a Tukey’s multiple 
comparison post-test. Statistical significances between btn1Δ treated with DMSO and alloxazine, 
and wild-type are represented in the graph (***p=<0.001****p= <0.0001). Treatment with the 
other two compounds was not statistically significant.   
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5.2.5 Spot assays 

In order to reinforce the previous results that showed the ability of three 

compounds (alloxazine, E-64 and prochlorperazine dimaleate) to rescue the 

sensitivity to a temperature of growth of 37°C and the presence of cyclosporine 

A, wild-type and btn1Δ strains were spotted onto YES plates with and without 

cyclosporine A, and with the respective compound, and incubated at 37°C. The 

assay was repeated in three independent experiments with three replicas of 

each plate with the different compounds. Alloxazine was also able to rescue the 

growth of btn1Δ strain in both conditions, but more significantly in plates without 

CsA. On the other hand, E-64 and prochlorperazine dimaleate were able to 

completely rescue the growth of btn1Δ strain in the presence of CsA (0.1mg/ml), 

but not in plates without CsA (Figure 5.2.5). Cells were also spotted onto YES 

plates with DMSO (with or without CsA) without any added compound as a 

control. 
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Figure 5.2.5. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the growth of wild-type and btn1Δ strains in 
YES plates with cyclosporine A at 37°C 

Alloxazine is able to recover growth of btn1Δ cells at 37°C in YES plates with and without 
cyclosporine A (CsA), whereas E-64 and prochlorperazine dimaleate are only able to recover 
growth in plates with CsA. Wild-type and btn1Δ cells were serially diluted from a log-phase 
culture (1x10

6
 cells/ml) and spotted onto YES plates containing or lacking 0.1mg/ml of 

cyclosporine A (right and left panel, respectively), and containing 10μM of alloxazine, E-64 and 
prochlorperazine dimaleate (upper, middle and lower panel respectively). Plates were then 
incubated at 37°C for 3-4 days to determine growth at high temperature in the presence (or 
absence) of CsA and three compounds.  
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5.3 Testing compounds in other disease models 

The three compounds (alloxazine, E-64 and prochlorperazine dimaleate) 

selected from the drug screen and proved to be able to rescue other 

phenotypes associated with the loss of btn1 in fission yeast, were tested in 

other mammalian models of juvenile CLN3 disease. The ability of these 

compounds to rescue other phenotypes in patient fibroblasts and in a vertebrate 

disease model (zebrafish) was tested. In fibroblasts, compactness of the Golgi 

apparatus was assessed, since this organelle was shown to be less compact in 

patient cells when compared with healthy control cells (Davide Marotta, 

unpublished data). In the zebrafish model, relative activity and survival of the 

fish were assessed. This work was done in collaboration with Davide Marotta 

(fibroblasts) and with Dr Claire Russell from the Royal Veterinary College 

(zebrafish). 

 

5.3.1 Compactness of Golgi apparatus in patient fibroblasts 

Healthy control and patient fibroblasts (homozygous for the 1-kb deletion in 

CLN3) were incubated with different concentrations of alloxazine, E-64 and 

prochlorperazine dimaleate (5, 10 and 20µM) for 24 hours. Afterwards, cells 

were prepared for immunofluorescence and imaged. Compactness of the Golgi 

apparatus (numerical quantity that shows the degree to which the Golgi is 

compact when compared to a perfect circle, which has a value of 1.0) was 

measured for all fibroblasts, with and without compound. These measurements 

were performed in three independent experiments. Previous work done by 

Davide Marotta showed that in patient fibroblasts the Golgi apparatus is less 

compact than in healthy fibroblasts, suggesting that it may be less organised 

(unpublished data). This difference in Golgi compactness between patient and 

healthy control untreated fibroblasts was observed again in this study: 0.08 in 

control and 0.02 in patient cells (figure 5.3.1). After incubation with the three 

compounds at three different concentrations (5, 10 and 20µM), all except 
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alloxazine significantly rescue the low compactness of the Golgi apparatus in 

fibroblasts from patients with the 1-kb deletion. E-64 restores the compactness 

value to 0.08 at 5 and 10µM and to 0.1 at the higher concentration of 20µM. 

Prochlorperazine dimaleate also restores the value to 0.09 and 0.08 at 5 and 

10µM respectively. At a higher concentration (20µM), it appears to be lethal to 

the cells, since no fibroblasts were seen in any of the three experiments (Figure 

5.3.1). With the exception of prochlorperazine dimaleate at 20µM, none of the 

compounds affected the Golgi compactness of healthy control fibroblasts, at 

any concentration. 
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Figure 5.3.1. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the compactness of the Golgi apparatus in 
the juvenile CLN3 disease patient fibroblasts 

E-64 and prochlorperazine dimaleate are able to significantly rescue compactness of the Golgi 
apparatus seen in fibroblasts from juvenile NCL patients. Images showing healthy control 
fibroblasts (left panel) and patient fibroblasts untreated (middle panel) and treated with E-64 (20 
μM) (right panel). Nuclei were stained with Hoechst (blue) and the green fluorescence 
corresponds to GM130 Golgi marker protein. More compact Golgi can be seen in the left and 
right panels when compared to the middle panel, which shows more distended Golgi staining. 
Graphs show the mean (±SEM) of Golgi apparatus’ compactness in control healthy fibroblasts 
and juvenile NCL patient fibroblasts: untreated (0μM) or treated with 5, 10 or 20μM of alloxazine, 
E-64 and prochlorperazine dimaleate. There is no value correspondent to the treatment with 
20μM of prochlorperazine dimaleate because at this concentration this compound is lethal to 
the fibroblasts. Compactness is a numerical quantity that shows the degree to which the Golgi is 
compact when compared to a perfect circle, which has a value of 1.0. Data was collected in 3 
independent experiments. Statistical significances between each treatment were determined 
using a one-way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances 
between control fibroblasts and patient fibroblasts treated with compounds at different 
concentrations in relation to untreated patient fibroblasts are represented in the graphs above 
the bars (****p= <0.0001).  
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5.3.2 Zebrafish model 

Dr Claire Russell at the Royal Veterinary College of London investigated the 

ability of the three compounds (alloxazine, E-64 and prochlorperazine 

dimaleate) to rescue two phenotypes in a zebrafish model of the juvenile CLN3 

disease. Compounds were added to fish 12 hours post fertilization. Both 

phenotypes were analysed in three independent experiments. 

The first phenotype to be analysed was the relative activity of the fish recorded 

for 3 minutes. This activity consists of a tail flicking movement, which was 

previously shown to be more frequently seen in fish with Cln3 morpholino (Cln3 

MO) (Claire Russell and Kim Wager, personal communication). Relative activity 

was measured in number of pixels that change in time during the recorded time 

(3 minutes). All three compounds are able to significantly rescue this phenotype, 

decreasing the relative activity of the Cln3 MO fish to values close to wild-type 

fish treated only with DMSO: 75.27 for E-64, 110 for alloxazine and 200.56 for 

prochlorperazine dimaleate, compared to 116.13 for wild-type fish and 1281.74 

for Cln3 morpholino fish, both treated with DMSO (Figure 5.3.2). However, 

prochlorperazine dimaleate also affects the tail flicking of the wild-type zebrafish, 

increasing the value to 466.47 (data not shown). None of the other compounds 

have any effect on wild-type fish (data not shown). 

The other phenotype that was analysed was the fish survival, which is reduced 

in the zebrafish model of the juvenile CLN3 disease: Cln3 morpholino treated 

with only DMSO normally die after 3 days. E-64 gives a partial rescue of this 

phenotype, increasing the survival rate to approximately 50% at 125 hpf, 

compared to almost 0% survival in the Cln3 morpholino fish treated with only 

DMSO at this time point. None of the other compounds was able to significantly 

affect the survival ratio of the morpholino fish. 
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Figure 5.3.2. Effects of alloxazine, E-64 and prochlorperazine 
dimaleate on the relative activity and survival of a zebrafish 
model of the juvenile CLN3 disease 

Alloxazine, E-64 and prochlorperazine dimaleate are able to rescue relative activity of a 
zebrafish model of juvenile CLN3 disease. E-64 is also able to rescue fish survival in this model 
The upper graph shows the mean (±SEM) of relative activity in zebrafish: control, Cln3 
morpholino fish treated with DMSO (DMSO) and treated with alloxazine, E-64 and 
prochlorperazine dimaleate (proc). The relative activity was measured in number of pixels that 
change in time during three minutes. The lower graph shows fish survival in zebrafish: control 
(wild-type treated with DMSO), Cln3 morpholino fish treated with DMSO (DMSO) and treated 
with alloxazine, E-64 and prochlorperazine dimaleate (proc). Data was collected by Dr. Claire 
Russell in three independent experiments. Statistical significances between each treatment 
were determined using a one-way ANOVA with a Tukey’s multiple comparison post-test. 
Statistical significances between morpholino fish and control fish and treatment with compounds 
are represented in the graphs (*p= <0.1). hpf - hours post fertilization. 
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5.4 Summary 

After obtaining the results from the drug screen described in the Results 

Chapter 2 (Chapter 4.2.2), six stronger hits were validated by manually 

repeating the same assay of the automated screen. Three of the compounds, 

alloxazine, E-64 and prochlorperazine dimaleate showed again a significant 

rescue of the cyclosporine A sensitivity, more specifically E-64, which increased 

the viability of the btn1Δ strain to approximately 74%. These compounds were 

chosen for further validation studies, where they were tested for their ability to 

rescue four other phenotypes in btn1Δ cells. 

The first phenotype that was tested was vacuole size, which is larger in the 

btn1Δ strain (Chapter 3.3.1). All compounds (alloxazine, E-64 and 

prochlorperazine dimaleate) were able to significantly rescue this phenotype to 

values similar to those seen in wild-type strain, although alloxazine was the 

drug that led to a better rescue. A similar rescue pattern was seen in other 

phenotype that was analysed, higher septation index, with all compounds 

showing ability to rescue the number of septated cells, especially alloxazine, 

which decreased this number to a value even lower than that seen in the wild-

type strain. All three compounds were also able to rescue the cell curving 

phenotype seen after 4 hours at 37°C, but in this case the compound 

responsible for the strongest rescue was E-64. All compounds were able to 

decrease the number of curved cells in the btn1Δ strain and in the strain 

containing the 1-kb deletion, to values lower than those seen in the wild-type 

strain. On the other hand, sensitivity of btn1Δ strain to growth at high 

temperature, 37°C, after 24 and 48 hours (and in spot assays) was only 

rescued by alloxazine. Treatments with E-64 and prochlorperazine dimaleate 

were not sufficient to give a significant rescue of the btn1Δ low viability in these 

conditions. Additionally, all compounds were able to rescue colony growth in 

spot assays at 37°C in the presence of cyclosporine A. 

Finally, compounds were tested in two different mammalian models: patient 

fibroblasts containing the 1-kb deletion, and a zebrafish model of juvenile CLN3 
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disease. In the first model, the investigated phenotype was compactness of the 

Golgi apparatus, which is reduced in patient fibroblasts when compared to 

healthy control cells. E-64 and prochlorperazine dimaleate were both able to 

rescue this phenotype at different concentrations, but not alloxazine. At a high 

concentration of 20µM, prochlorperazine dimaleate induces cell death, which 

suggests that at higher concentrations this compound is toxic. Work done in the 

zebrafish model showed that all compounds are able to significantly rescue the 

fish relative activity, which is normally increased in this model. Furthermore, E-

64 was shown to rescue another phenotype, fish survival, which is normally 

compromised in the CLN3 disease model.  

Altogether these preliminary results are very encouraging, with respect to the 

development of a potential therapy for juvenile CLN3 disease using any of the 

three compounds that were studied; however, future work is needed to further 

clarify their mechanism of action in yeast.  
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6 Results 4. Characterisation of other lysosomal 

storage disorder yeast strains 

 

The aims of the last part of the project were: 

- to characterise phenotypes that were previously associated with btn1Δ in 

three different fission yeast strains that model other lysosomal storage 

disorders (LSDs): Chédiak Higashi Syndrome (lvs1Δ), Niemann-Pick disease 

type C2 (npc2Δ) and CLN10 disease (sxa1Δ); 

- to test the three hit compounds that were shown to efficiently rescue 

phenotypes in the btn1Δ strain for their ability to rescue the newly described 

phenotypes in the three LSD yeast models. 
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6.1 Characterising phenotypes of other lysosomal storage 

disorders yeast strains 

It was shown in the previous chapters (Results Chapters 2 and 3) that the 

fission yeast model of juvenile CLN3 disease exhibits different phenotypes that 

can be rescued by three compounds, which were identified in a drug screen. 

Bearing in mind that the juvenile CLN3 disease is a lysosomal storage disorder, 

other disorders with the same classification that can be modelled in yeast were 

chosen for further investigation. All of these diseases have fission yeast models 

where the orthologue of the responsible human gene is deleted:  lvs1Δ strain 

(Chédiak Higashi Syndrome), npc2Δ strain (Niemann-Pick disease type C2) 

and sxa1Δ (CLN10 disease). These mutant strains were characterised in terms 

of phenotypes that are associated with the btn1Δ strain. The five chosen 

phenotypes were: size of the vacuoles, cytokinesis defects (illustrated by the 

septation index), number of curved cells after 4 hours of growth at 37ºC, viability 

at 37ºC and sensitivity to cyclosporine A.  

 

6.1.1 Vacuole size 

The first phenotype to be analysed was the diameter of vacuoles in the cells. 

Therefore, lvs1Δ, npc2Δ and sxa1Δ strains were labelled with FM4-64 and 

vacuoles were measured, in the same manner as for the btn1 mutant strains 

(Chapter 3.3.1). All three strains show significantly larger vacuoles when 

compared to the wild-type strain, specially the lvs1Δ strain, whose average 

vacuole diameter is 1.62 μm. The other two strains, npc2Δ and sxa1Δ, show a 

smaller but still large size when compared to wild-type: 1.06 and 1.08 μm, 

respectively. These values are all significantly higher than the wild-type strain, 

which shows average size of 0.86 μm (Figure 6.1.1). 
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Figure 6.1.1. Vacuole size of different lysosomal storage 
disorders yeast strains 

Yeast models of lysosomal storage disorders lvs1Δ, npc2Δ and sxa1Δ show large vacuoles. 
Images show vacuoles labeled with FM4-64 of wild-type, lvs1Δ, npc2Δ and sxa1Δ strains. Scale 
bars - 10µm (wild-type and lvs1Δ) and 5µm (npc2Δ and sxa1Δ). Graph shows the mean (±SEM) 
of the vacuoles diameter (in μm) in different strains from three independent experiments. 
Statistical significance between each strain was determined using a one-way ANOVA with a 
Tukey’s multiple comparison post-test. Statistical significances between wild-type and lvs1Δ, 
npc2Δ and sxa1Δ strains are represented in the graph above the bars (*p= <0.1; ****p= 
<0.0001). wt – wild-type; lvs1D – Chédiak-Higashi syndrome yeast model: lvs1Δ strain; npc2D – 
Niemann-Pick type C2 yeast model: npc2Δ strain; sxa1D – congenital CLN10 disease yeast 
model: sxa1Δ strain. 
 

 



Chapter 6 Results 4 

 

 142 

6.1.2 Septation index 

Wild-type, lvs1Δ, npc2Δ and sxa1Δ strains were grown in normal conditions and 

then imaged to calculate the respective septation index. At least 300 cells were 

counted in three independent experiments. The three LSDs strains (lvs1Δ, 

npc2Δ and sxa1Δ) show significantly more septated cells than the wild-type 

strain, similar to what was observed in the btn1Δ strain (Chapter 3.3.2): 20.11% 

for lvs1Δ, 24.11% for npc2Δ and 18.76% for sxa1Δ, when compared to 12.68% 

for the wild-type strain (Figure 6.1.2). 
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Figure 6.1.2. Septation index of different lysosomal storage 
disorders yeast strains 

Yeast models of lysosomal storage disorders lvs1Δ, npc2Δ and sxa1Δ have a high septation 
index. Images show yeast cells stained with calcofluor delineating cell walls and septa: wild-type, 
lvs1Δ, npc2Δ and sxa1Δ strains. Scale bars - 10µm. Graph shows the mean (±SEM) septation 
index (percentage of septated cells in total number of cells) of different strains from three 
independent experiments. Statistical significances between each strain were determined using 
a one-way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances 
between wild-type and lvs1Δ, npc2Δ and sxa1Δ strains are represented in the graph above the 
bars (*p= <0.1; **p= <0.01 ***p= <0.001). wt – wild-type; lvs1D – Chédiak-Higashi syndrome 
yeast model: lvs1Δ strain; npc2D – Niemann-Pick type C2 yeast model: npc2Δ strain; sxa1D – 
congenital CLN10 disease yeast model: sxa1Δ strain. 
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6.1.3 Cell curving 

Yeast strains were analysed after growth at a high temperature of 37°C for 4 

hours. The high temperature was shown to affect the morphology of the btn1Δ 

strain, represented by an increased number of curved cells when compared to 

the wild-type strain (Chapter 3.3.3). This phenotype was analysed for the LSD 

strains lvs1Δ, npc2Δ and sxa1Δ. At least 300 cells were counted in three 

independent experiments. In contrast to the previously described phenotypes, 

there is no significant difference between the wild-type and the LSD strains, 

where the percentage of curved cells with no lvs1, npc2 and sxa1 genes is not 

significantly different from wild-type cells (11.47%): 15.48%, 14.44% and 

14.26% respectively (Figure 6.1.3). This suggests that this phenotype might be 

specific for the btn1Δ strain. 
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Figure 6.1.3. Cell curving of different lysosomal storage 
disorders yeast strains 

Images show yeast cells stained with calcofluor (delineating cell walls and septa), after growth 
at 37°C for 4 hours: wild-type, lvs1Δ, npc2Δ and sxa1Δ strains. Scale bars – 10µm. Graph 
shows the mean (±SEM) cell curving percentage (percentage of curved cells in total number of 
cells) of different strains from three independent experiments. Statistical significances between 
each strain were determined using a one-way ANOVA with a Tukey’s multiple comparison post-
test. None of the strains (lvs1Δ, npc2Δ and sxa1Δ) showed a percentage of curved cells 
significantly different from the wild-type strain. wt – wild-type; lvs1D – Chédiak-Higashi 
syndrome yeast model: lvs1Δ strain; npc2D – Niemann-Pick type C2 yeast model: npc2Δ strain; 
sxa1D – congenital CLN10 disease yeast model: sxa1Δ strain. 
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6.1.4 Growth at high temperature 

The viability of the three LSD strains after growth at 37°C was calculated 

(percentage of live cells in the total number of cells), and the mean of three 

independent experiments was considered. lvs1Δ, npc2Δ and sxa1Δ show 

similar viability values to the wild-type strain. After 24 hours the viability values 

were the following: 88.3% for the wild-type strain, 76.74%, 79.11% and 85.43% 

for lvs1Δ, npc2Δ and sxa1Δ strains respectively. After 48 hours, the values 

were: 49.74% for the wild-type strain, 53.47% for lvs1Δ, 59.94% for npc2Δ and 

43.04%, for sxa1Δ (Figure 6.1.4). None of the LSD strains show sensitivity to 

growth at high temperature, in contrast to what was seen in the btn1 strain 

(Chapter 4.1.2). 

Additionally, a spot assay experiment in YES plates incubated at 37°C was 

performed for the same LSD strains. As expected, and according to the liquid 

culture viability assay, all colonies were able to grow in the plates, corroborating 

the fact that these strains are not sensitive to growth at 37°C (Figure 6.1.4). 
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Figure 6.1.4. Growth at 37°C of different lysosomal storage 
disorders yeast strains 

Spot assays of different strains grown at 37°C in YES plates. Cells were serially diluted from a 
log-phase culture (1x10

6
 cells/ml) and spotted onto YES plates. Plates were then incubated at 

37°C for 3-4 days to determine growth at high temperature. The graph represents cell viability of 
wt, lvs1Δ, npc2Δ and sxa1Δ strains upon growth in YES medium at a high temperature of 37°C 
over 24 hours. The graph shows the survival curve of different strains at three time points, after 
cultures were shifted from 30 to 37°C: 0, 24 and 48 hours. Data shown is a mean (±SEM) of 
three independent experiments. Viability is the percentage (%) of live cells in total number of 
cells. Statistical significances between each strain were determined using a one-way ANOVA 
with a Tukey’s multiple comparison post-test. None of the strains (lvs1Δ, npc2Δ and sxa1Δ) 
show sensitivity to growth at 37°C. wt – wild-type; lvs1D – Chédiak-Higashi syndrome yeast 
model: lvs1Δ strain; npc2D – Niemann-Pick type C2 yeast model: npc2Δ strain; sxa1D – 
congenital CLN10 disease yeast model: sxa1Δ strain. 
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6.1.5 Sensitivity to cyclosporine A 

The last phenotype to be analysed was the sensitivity to cyclosporine A (CsA) 

at 37°C, which was observed in btn1Δ cells (Chapter 4.1.4). Wild-type and LSD 

strains (lvs1Δ, npc2Δ and sxa1Δ) were grown in liquid medium with 0.1mg/ml of 

cyclosporine A and at 37°C for 24 hours prior to the analysis. At least 300 cells 

were counted in three independent experiments. After measuring the number of 

live and total cells in all strains, it was shown that all three LSDs strains are 

slightly but not significantly sensitive to the presence of CsA. The viability 

percentages for these strains is slightly less (but not significantly) than wild-type 

strain, in the presence of the compound: 63.88% for lvs1Δ, 69.07% for npc2Δ 

and 74.28% for sxa1Δ, when compared to 95.25% for the wild-type (Figure 

6.1.5). Concluding, none of the LSD strains show a significant sensitivity to CsA.  

A similar result was seen when the LSD strains were spotted onto YES plates 

with 0.1mg/ml of cyclosporine A: all colonies were able to grow.  
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Figure 6.1.5. Growth of different lysosomal storage disorders 
yeast strains in the presence of cyclosporine A 

lvs1Δ, npc2Δ and sxa1Δ strains are not sensitive to CsA. Spot assays of different strains in YES 
plates containing 0.1mg/ml of cyclosporine A (CsA) are shown in the upper panel. Cells were 
serially diluted from a log-phase culture (1x10

6
 cells/ml) and spotted onto YES plates containing 

0.1 mM of cyclosporine A (CsA). Plates were then incubated at 37°C for 3-4 days to determine 
growth at high temperature in the presence of CsA. The graph shows the cell viability of wt, 
lvs1Δ, npc2Δ and sxa1Δ strains upon growth in YES medium with CsA (0.1mg/ml) at a high 
temperature of 37°C over 24 hours (after the temperature shift), more specifically the survival 
curve of these different strains at two time points, after cultures were shifted from 30 to 37°C: 0 
and 24 hours. Data shown is a mean (±SEM) of three independent experiments. Viability is the 
percentage of live cells (%) in total number of cells. Statistical significances between each strain 
were determined using a one-way ANOVA with a Tukey’s multiple comparison post-test. None 
of the strains (lvs1Δ, npc2Δ and sxa1Δ) showed sensitivity to CsA. wt – wild-type; lvs1D – 
Chédiak-Higashi syndrome yeast model: lvs1Δ strain; npc2D – Niemann-Pick type C2 yeast 
model: npc2Δ strain; sxa1D – congenital CLN10 disease yeast model: sxa1Δ strain. 
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6.2 Testing compounds in other lysosomal storage disorders 

yeast strains 

In the drug screen performed with the btn1Δ strain, three compounds were 

positively selected and subsequently validated in their ability to rescue several 

phenotypes in btn1Δ cells: alloxazine, E-64 and prochlorperazine dimaleate 

(Results Chapters 2 and 3). Since the yeast strains modelling the lysosomal 

storage disorders (Chédiak Higashi Syndrome, Niemann-Pick disease type C2 

and congenital CLN10 disease) share at least two common phenotypes with the 

strain modelling juvenile CLN3 disease, the same compounds were tested for 

their ability to rescue the two phenotypes in these other strains: enlarged 

vacuoles and high septation index. The three compounds are, in fact, able to 

rescue the enlarged vacuoles phenotype in all strains. Their effect in the other 

phenotype was varied. 

 

6.2.1 Vacuole size 

The mean vacuole size of all the LSD strains (lvs1Δ, npc2Δ and sxa1Δ) after 

treatment with three compounds (alloxazine, E-64 and prochlorperazine 

dimaleate) was measured and compared to the same untreated strains and 

wild-type treated cells. All strains were also treated with DMSO (the carrier of 

the compounds) as a control. At least 500 vacuoles were measured for each 

compound in three independent experiments. 

Cells deleted for lvs1 have the largest vacuoles from all the strains that were 

analysed; the presence of all the three compounds reduced the vacuole size to 

a significantly smaller size, but still larger than in the wild-type strain (0.86 μm). 

After being treated with each compound, the mean vacuole size of the lvs1Δ 

strain, which models the Chédiak Higashi Syndrome, is significantly reduced: 

approximately 1.2 m compared to 1.62 m for lvs1 untreated cells. After 

measuring the vacuoles diameter in the npc2Δ cells, it was shown that all three 
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compounds are able to significantly rescue this phenotype. The vacuoles 

diameter in this strain is significantly reduced in the presence of the 

compounds: 1.03 μm for alloxazine, 0.97 μm for E-64 and prochlorperazine 

dimaleate, when compared to 1.06 μm for the npc2Δ strain. Finally, the 

vacuoles size of sxa1Δ cells was measured after treatment with all three 

compounds. Treated cells show significantly smaller vacuoles than the 

untreated strain (1.08 μm): 1 μm for alloxazine, 0.98 μm for E-64 and 

prochlorperazine dimaleate (Figure 6.2.1).  
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Figure 6.2.1. Effect of different compounds on the vacuole size 
of different lysosomal storage disorders yeast strains 

Alloxazine, E-64 and prochlorperazine dimaleate are able to rescue the enlarged vacuoles in 
yeast models of three lysosomal storage disorders lvs1Δ, npc2Δ and sxa1Δ. Graphs show the 
mean (±SEM) of the vacuoles diameter (in μm) of the lvs1Δ, npc2Δ and sxa1Δ strains treated 
with DMSO (control) and different compounds (10μM): alloxazine, E-64 and prochlorperazine 
dimaleate (proc). The average vacuole diameter of the wild-type strain treated with DMSO is 
represented by a grid line in all graphs (wt). Data was collected in three independent 
experiments. Statistical significances between each treatment were determined using a one-
way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances between 
lvs1Δ, npc2Δ and sxa1Δ treated with DMSO and with the three compounds are represented in 
the graph above the compounds bars (****p= <0.0001). lvs1D – Chédiak-Higashi syndrome 
yeast model: lvs1Δ strain; npc2D – Niemann-Pick type C2 yeast model: npc2Δ strain; sxa1D – 
congenital CLN10 disease yeast model: sxa1Δ strain. All the strains were treated with DMSO. 
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6.2.2 Septation index 

It was previously shown that cells deleted for lvs1, npc2 and sxa1 have a 

significantly higher septation index than wild-type cells, similar to btn1Δ cells  

(section 6.1.2). Therefore, these strains were treated with the compounds 

alloxazine, E-64 and prochlorperazine dimaleate and the number of septated 

cells were counted for each treatment. At least 300 cells were counted for each 

compound in three independent experiments. All the compounds are able to 

rescue the high septation index in the lvs1Δ strain: 11.07%, 8.42% and 5.3% 

with alloxazine, E-64 and prochlorperazine dimaleate respectively, compared to 

20.12% in untreated cells. For the two remaining strains, only alloxazine and 

prochlorperazine dimaleate are able to significantly rescue the index in the 

npc2Δ (16.83% and 11.77% respectively, in comparison with 24.11% in 

untreated cells), and none of the compounds has any effect on the sxa1Δ strain 

(Figure 6.2.2). All strains were also treated with DMSO (the carrier of the 

compounds) as a control. Some of the compounds were able to rescue this 

phenotype to values even lower than the wild-type strain (12.68%).  
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Figure 6.2.2. Effect of different compounds on the septation 
index of other lysosomal storage disorders yeast strains 

Alloxazine, E-64 and prochlorperazine dimaleate are able to rescue the high septation index in 
the lvs1Δ strain. Alloxazine and prochlorperazine dimaleate are able to rescue the high 
septation index in the npc2Δ strain. Graphs shows the mean (±SEM) of septation index in the 
lvs1Δ, npc2Δ and sxa1Δ strains treated with DMSO (control) and different compounds (10μM): 
alloxazine, E-64 and prochlorperazine dimaleate (proc). The average septation index of the 
wild-type strain treated with DMSO is represented by a grid line in all graphs (wt). Septation 
index is the percentage of septated cells in total number of cells. Data was collected in three 
independent experiments. Statistical significances between each treatment were determined 
using a one-way ANOVA with a Tukey’s multiple comparison post-test. Statistical significances 
between lvs1Δ, npc2Δ and sxa1Δ treated with DMSO and with the three compounds are 
represented in the graph above the compounds’ bars (*p= <0.1;***p= <0.001; ****p= <0.0001). 
lvs1D – Chédiak-Higashi syndrome yeast model: lvs1Δ strain; npc2D – Niemann-Pick type C2 
yeast model: npc2Δ strain; sxa1D – congenital CLN10 disease yeast model: sxa1Δ strain. All 
the strains were treated with DMSO. 
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6.3 Summary 

The last part of the project consisted in the study and characterisation of fission 

yeast strains modelling three Lysosomal Storage Disorders: Chédiak Higashi 

Syndrome, Niemann-Pick disease type C2 and congenital CLN10 disease. The 

first step was to characterise the strains in terms of the phenotypes that had 

previously been observed in the yeast model of juvenile CLN3 disease, the 

btn1Δ strain. All three strains presented two of the five phenotypes that were 

explored. These strains have larger vacuoles and more septated cells than the 

wild-type strain. The phenotype of increased vacuole size was particularly 

evidenced in the lvs1Δ strain (model of the Chédiak Higashi Syndrome), whose 

name, given in previous work, reflects this phenotype (unpublished data): large 

vacuoles strain. On the other hand, the septation index phenotype was more 

apparent in the npc2Δ strain (model of the Niemann-Pick disease type C2).  

The drug screen that was carried out with the btn1Δ strain led to the 

identification of three compounds that are able to rescue several phenotypes 

associated with the loss of btn1 in fission yeast, including the enlarged vacuoles 

and the high septation index phenotypes. Therefore, the same compounds, 

alloxazine, E-64 and prochlorperazine dimaleate, were tested in the LSD strains 

(lvs1Δ, npc2Δ and sxa1Δ) to test whether they were also able to rescue the two 

phenotypes observed in these strains. All compounds showed significant 

rescue of the increased vacuoles size in all strains. As for the other phenotype, 

high septation index, all the compounds were able to rescue the phenotype in 

the lvs1Δ strain. In the npc2Δ strain, only alloxazine and prochlorperazine 

dimaleate were able to rescue the large number of septated cells. Finally, none 

of the compounds were able to rescue this phenotype in the sxa1Δ strain. 

Taken together these results show that, although some differences in terms of 

phenotypes were observed between the four LSD strains (btn1Δ, lvs1Δ, npc2Δ 

and sxa1Δ), they might be involved in common pathways, since similar effects 

were seen in the absence of these proteins. 
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7 Discussion 

 

The initial findings from this study show that distinct integrated mutations in the 

btn1 gene affect Btn1p function differently and, as a consequence, have varying 

effects on cell phenotypes. Varying levels of Btn1p expression can be related to 

the different phenotypes, since overexpression of btn1 leads to an over-

compensation of the tested phenotypes, when compared to wild-type cells. 

Furthermore, mutations in Btn1p seem to affect its expression levels (Chapter 

3.2.2). The endogenously expressed btn1 containing a deletion comparable to 

that of the common 1-kb intragenic deletion, present in the majority of juvenile 

NCL patients (Consortium 1995), was shown to retain partial function and 

prevent the appearance of some btn1Δ phenotypes almost as effectively as the 

full-length protein (Results Chapters 1 and 2). This observation corroborates 

previous studies where the ectopically expressed mutant Btn1p presented as a 

partially functional protein (Kitzmuller et al. 2008; Haines et al. 2009). The 

endogenous mutant protein expressing the p.E240K mutation prevented the 

appearance of all phenotypes that were tested in the first part of the project and 

didn’t seem to significantly change the Btn1p expression levels (Results 

Chapter 1), revealing that it does not affect Btn1p function to the same extent 

as the 1-kb deletion. These results are consistent with the fact that this mutation 

underlies the mildest form of juvenile NCL (Aberg et al. 2009). Finally, 

endogenous expression of the mutant protein containing the p.G136A mutation 

resembled complete deletion of btn1, with more phenotypes observed than the 

1-kb deletion mutant, and a decrease in the protein expression levels (Results 

Chapters 1 and 2). This supports the idea that p.G136A is a null mutation as 

previously suggested (Haines et al. 2009).  

Current therapeutic strategies for the types of neuronal ceroid lipofuscinosis 

caused by enzyme defects are not applicable to juvenile CLN3 disease. New 

tools or therapeutic strategies are urgently required for treatment of this 

disease. In this project the fission yeast Schizosaccharomyces pombe was 

used in an attempt to identify novel lead compounds suitable for the 
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development of potential therapeutic strategies for juvenile CLN3 disease. 

Many genes and cellular pathways are conserved between fission yeast and 

humans, and therefore compounds that revert JNCL-associated phenotypes in 

the yeast model may be relevant for patients. At present, readily detectable 

phenotypes suitable for high-throughput screening approaches have not been 

identified in mammalian cells. On the other hand, different marker phenotypes 

have been characterised in fission yeast. S. pombe is a genetically tractable 

model organism, already well established in juvenile NCL research that has less 

than a fifth of the number of human genes, and is therefore an ideal organism 

for performing a screen for potential therapeutic drugs for juvenile CLN3 

disease, even though some mammalian cellular pathways may not be present 

in this simpler organism. Moreover, an advantage of phenotypic screening is 

that the exact function of the protein (in this case CLN3 or Btn1p), or the 

molecular basis of the phenotype selected for the screen, does not need to be 

known in order to perform it. In this case, the drug will lead to a cellular effect, 

which cannot be guaranteed in a target-based screen. Results obtained in this 

study are complementary but potentially more far-reaching than currently 

available candidate approaches in mammalian cells or other model systems. 

Additionally, the compounds identified in the yeast drug screen were also tested 

in patient fibroblasts and a zebrafish model, and gave good results. This shows 

that it is possible to translate results obtained in S. pombe to human cells, 

relevant to juvenile CLN3 disease. This strategy could be adopted more widely 

in research to find new treatments for inherited diseases. 

The first step towards the development of the drug screen was to identify a 

robust and striking phenotype that was easily identified when rescued and 

significantly different between strains with and without btn1. btn1Δ cells show a 

growth sensitivity at 37°C in the presence of cyclosporine A, a calcineurin 

inhibitor (Results Chapter 2). Therefore, the viability of btn1Δ cells (compared to 

wild-type cells), after growing in these conditions, was selected as the marker 

phenotype, basis for the screen. This is an ideal phenotype for this purpose 

since it assesses something as basic as survival/death of the strains, where 

cells with no btn1 cannot survive as well as wild-type cells. This phenotype was 
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not suitable for mutation-specific screening, since strains with btn1 expressing 

two mutations (1-kb deletion and p.E240K missense mutation) were not 

sensitive to cyclosporine A. However, compounds that rescue phenotypes 

associated with the complete deletion of the gene are likely to be able to correct 

phenotypes in strains with more mild mutations, as seen with the cell curving 

phenotype. Nevertheless, it would be desirable to find other mutation-specific 

phenotypes suitable for a drug screen so that further compounds could be 

identified.  

The developed high-throughput screen was performed using the LoPac 

collection of 1280 FDA-approved compounds, and the six strongest hits were 

selected for further validation experiments. These compounds were manually 

retested in the same conditions as the automated drug screen in at least three 

independent experiments (Results Chapter 3). Three compounds that were able 

to consistently rescue the sensitivity of btn1Δ cells to cyclosporine A, without 

significantly affecting the viability of wild-type cells, were selected for further 

validation experiments: alloxazine, E-64 and prochlorperazine dimaleate. 

The final three compounds were then tested for their ability to rescue four other 

btn1Δ specific phenotypes: enlarged vacuoles, increased septation index, 

elevated number of curved cells and sensitivity to growth at high temperature 

(Results Chapter 3). All compounds were able to rescue the majority of the 

tested phenotypes. Finally, they were also tested in juvenile NCL patient 

fibroblasts and in a zebrafish disease model to verify their ability to rescue other 

phenotypes associated with mutated CLN3. All compounds were able to rescue 

at least one phenotype in zebrafish, and E-64 and prochlorperazine dimaleate 

showed a complete rescue of Golgi compactness in fibroblasts. Altogether 

these preliminary results are very encouraging, with respect to a potential 

juvenile CLN3 disease therapy. However, much future work is needed. First, to 

further clarify the mechanism of action of the compounds in fission yeast. 

Compounds can then be tested in higher organisms (such as mice) in order to 

determine their efficacy for therapeutic use. Toxicity should not be an issue for 
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future potential use in patients since all the compounds identified in this study 

are FDA-approved, and therefore known to be safe. 

The last part of this project was the study of three different fission yeast strains 

that model other lysosomal storage disorders (LSDs): Chédiak Higashi 

Syndrome, Niemann-Pick disease type C2 and congenital CLN10 disease. 

These strains were characterised particularly in terms of several phenotypes 

that are associated with the btn1Δ strain (Results Chapter 4). All three strains 

presented two of the five phenotypes that were explored: enlarged vacuoles 

and increased septation index, supporting a previously reported impairment of 

the lysosomal/vacuolar function in these strains (Faigle et al. 1998; Wang et al. 

2010; Kohan et al. 2011). After the characterisation, compounds that were 

efficacious in the btn1Δ strain were tested for their ability to rescue the newly 

described phenotypes associated with the three LSD strains. Notably, all three 

compounds showed significant rescue of the increased vacuole size in all 

strains. On the other hand, the effect of the compounds on the septation index 

phenotype was different among the strains. To summarise, the three tested 

compounds affected the function of Btn1p, Lvs1p, Npc2p and Sxa1p proteins 

differently. However, there were some overlapping phenotypes between the 

four strains, suggesting that some pathological mechanisms are common 

between them, and this should be further explored in the future in regards to a 

common therapeutic strategy for these and probably other LSDs. 
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7.1 CLN3 mutations affect the protein function in different 

manners 

It has been shown in this study and previous work in the S. pombe model of 

juvenile CLN3 disease (Haines et al. 2009) that some mutations in the btn1 

gene have different effects on the protein function. Whilst all the previous work 

done in S. pombe was based on the ectopic expression of mutated and non-

mutated Btn1p, this study investigated strains with endogenously expressed 

mutant protein, where the mutated versions of btn1 were integrated in the yeast 

genome under the control of the btn1 promoter. Three different strains 

expressing three different btn1 mutations were created: the 1-kb deletion 

equivalent to the one present in the majority of juvenile NCL patients 

(Consortium 1995); the p.E240K missense mutation equivalent to the one that 

underlies the mildest form of the juvenile CLN3 disease (Aberg et al. 2009) and 

the p.G136A mutation, reported to produce a nonfunctional protein which 

resembles the complete deletion of Btn1p in terms of phenotypes (Haines et al. 

2009). The 1-kb deletion and the p.E240K mutation are not complete null 

mutations, since strains with endogenous expression of these mutant proteins 

show less severe phenotypes compared to the btn1Δ strain, where btn1 is 

absent, and are more similar to the wild-type strain, even in terms of protein 

expression levels. On the other hand, cells expressing btn1 with the p.G136A 

mutation display all the phenotypes that are also observed in the btn1Δ cells 

and is sufficient to affect the levels of expression of Btn1p, suggesting that this 

is truly a null mutation. These observations also suggest that there are regions 

in the Btn1p protein that are more important for its function when compared to 

other regions.  
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7.1.1 Level of expression of Btn1p is relevant to its function 

The results obtained in this study showed that the levels of expression of btn1 

influence the protein function the overall cell biology. When overexpressed, 

under the control of a full strength nmt1 p3 promoter, some phenotypes 

associated with the loss of btn1 are slightly different from the wild-type strain. 

For instance, the average diameter of vacuoles is smaller, and there is a slight 

reduction in the number of curved cells at 37°C when compared to the wild-type 

strain. Furthermore, there is, in fact, a significant difference between the wild-

type strain and the one under the control of the nmt1 p3 promoter in regards to 

the number of septated cells (Results Chapter 1). Furthermore, when 

expressed under the control of nmt1 p41 promoter (weaker than the p3 

promoter), the vacuole size and the number of septated and curved cells at 

37°C are similar to the wild-type strain. Similar effects were seen in previous 

studies, where both the overexpression and absence of Btn1p affected the 

Golgi compartments and trafficking (Codlin & Mole 2009) and increasing levels 

of Btn1p correlated with decreasing vacuolar size (Gachet et al. 2005). The 

expression of Btn1p appears to be slightly affected when tagged at its N-

terminal with GFP, under the control of its native promoter. GFP is a large tag 

and it is not unexpected for it to slightly affect the function of any tagged protein. 

The yeast strain with GFP-tagged Btn1p expressed from the btn1 native 

promoter showed slight but not significant differences in the phenotypes when 

compared to the wild-type strain: larger vacuoles, higher septation index but 

less curved cells. Thus, it is important to be aware of this, and to use both 

tagged and untagged forms when studying this protein. 

The integrated mutant strains explored in this study also seem to affect the 

Btn1p expression levels. The strain with the p.G136A mutation is the one that 

has the largest effect, decreasing these levels, whereas the p.E240K mutation 

shows similar levels to wild-type Btn1p (Chapter 3.2.1). This is expected since 

in human patients, the p.Glu295Lys mutation in CLN3 underlies the mildest 

form of the disease, and the yeast mutant strain has less phenotypes than the 

complete deletion of btn1. Moreover, the p.G136A mutation shows all the same 
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phenotypes than btn1Δ, and is predicted to be a null mutation. In summary, 

different mutations cause differences in the levels of GFP-tagged protein 

expression. This conclusion was based on a qualitative observation of the GFP 

signal produced by these mutant strains. Therefore, to confirm and quantify the 

differences in expression levels, a Western Blot assay must be performed. 

Together, these results support the hypothesis that the level of Btn1p 

expression is important for protein function, and that it is tightly regulated. This 

is in accordance with previous results that showed that the wild-type 

endogenous levels of expression of Btn1p are low (Codlin & Mole 2009).  
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7.1.2 Mapping functional domains of Btn1p 

In order to map functional domains of Btn1p, the position of different mutations 

in the predicted topology of the protein and the effect of these mutations were 

analysed.  

Two different mutations that share loss of a common amino acid (E240), 1kbΔ 

(102fsX5) and p.E240K, were both found to rescue the vacuole size, the 

septation index, the growth at high temperature, and growth in the presence of 

cyclosporine A defects. Furthermore, the 1kbΔ mutant Btn1p was also shown to 

be able to marginally improve the vacuole pH, and the p.E240K mutation 

significantly reduced the cell curving percentage after growth at 37°C. 

Altogether, these results demonstrate that the first 102 amino acids of Btn1p 

(equivalent to the first 153 amino acids in human CLN3) are sufficient to be 

functional in several pathways (maintenance of lysosomal size and pH, control 

of the cytokinetic process, resistance to cyclosporine A and to high 

temperature). This region of the protein includes the cytoplasmic N-terminal and 

two or three predicted transmembrane domains, depending on the topology that 

is considered (Nugent et al. 2008; Ratajczak et al. 2014). This N-terminal region 

is not conserved, contrary to the transmembrane regions, which suggests that 

the function of Btn1p (and CLN3) is exerted from within the membrane, or from 

the lumenal loops of the protein. The importance of the lumenal regions in the 

protein function has previously been reported (Haines et al. 2009). Similarly, the 

G to A point mutation of Btn1p affecting amino acid 136 (equivalent to 187 in 

CLN3), is also located either in the lumen or in the fourth transmembrane 

domain (according to the Nugent or Ratajczak topology, respectively), has great 

effect on the protein function, acting as a loss-of-function mutation. This finding 

supports the idea that this lumenal and/or transmembrane region of Btn1p (and 

CLN3) is crucial for its function in the cell. By extrapolation, the C-terminal 

region of CLN3 is not required at least for the functions mentioned above: 

lysosomal homeostasis, cytokinesis, resistance to high temperature and to 

cyclosporine A.  
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In the case of the curving defect, the region of the protein after the first 102 

amino acids (absent in the 1-kb-deleted protein), except when the amino acid 

E240 in the fifth transmembrane domain is altered, is sufficient to rescue this 

defect (Figure 1.1.1). This suggests that the region of the protein corresponding 

to the last four transmembrane domains and the amphipathic helix is important 

to regulate the function of Btn1p related to cytoskeleton and cell wall 

morphology. 

The 1-kb-deleted protein has been localised to the ER, both in yeast and 

human fibroblasts (Kitzmuller et al. 2008; Haines et al. 2009), which suggests 

that the truncated protein exerts some function from the ER or other early 

compartment, and not only from the lysosomes/vacuoles. However, any 

Btn1p/CLN3 functions associated with the cell cytoskeleton and cell wall 

composition may be exerted from a later compartment, being impaired when 

the protein is retained in the ER. The effect of mutated Btn1p/CLN3 on the 

lysosomes, exerted from its location in the ER, is similar to that observed for 

other NCL proteins, CLN6 and CLN8, which are both located in the ER and 

affect lysosomes (Mole et al. 2004; Vantaggiato et al. 2009). 

Whilst many functions arise from complete loss of btn1 function, not all the 

resultant phenotypes are affected by mutations in btn1 equivalent to those 

associated with juvenile CLN3 disease. Thus, therapy need to target only those 

pathways disrupted by the 1-kb deletion, present in the majority of patients, not 

all those affected by complete loss of CLN3 function. For instance, and since 

the 1-kb-deleted Btn1 protein seems to rescue all but the cell curving phenotype, 

therapeutic approaches that would target any pathway associated with the cell 

wall morphology or cytoskeleton in yeast, would be ideal. These pathways 

could then be extrapolated to mammalian cell biology. However, it is worth 

bearing in mind that 1-kb mutant mammalian cells have lysosomal defects 

(Sleat et al. 1998; Holopainen et al. 2001; Kitzmuller et al. 2008) and other 

defects that are less apparent in the yeast model but would need to be rescued 

in therapy. Focusing on one phenotype is important for the initial steps and 
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identification of potential therapeutic compounds, but it is crucial to further 

validate therapeutic strategies in a range of mutant backgrounds. 
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7.1.3 New insights into CLN3 function 

CLN3 has been reported to be localised in different regions in mammalian cells. 

Btn1p has been localised to the vacuoles and the Golgi complex (Gachet et al. 

2005; Codlin & Mole 2009). In this study, a similar observation was made: 

endogenously expressed GFP-Btn1p co-localises with the vacuole marker FM4-

64, but there is also some GFP signal elsewhere, which is likely to correspond 

with the Golgi (Chapter 3.1.2). This was the first study where the localisation of 

endogenously expressed Btn1p was analysed, since all previous results were 

performed with ectopically and overexpressed Btn1p.  

Furthermore, btn1 mutations affect the localisation of the protein. As previously 

reported, the 1-kb deletion changes the localisation of Btn1p to the ER (Haines 

et al. 2009), and mice studies have shown that mutant CLN3 cannot exit the ER 

due to misfolding or missing localisation signals (Järvelä et al. 1999). There are 

lysosomal targeting signals located at the C-terminal of the protein (Haines et al. 

2009) that are missing in the truncated Btn1p, which may also contribute to 

preventing exit of this mutant protein from the ER. A similar observation was 

made in cells with the mutant Btn1p containing the p.G136A mutation (Gachet 

et al. 2005). The amino acid Gly136 is thought to be localised either in a 

lumenal or transmembrane region of protein, and is thought to be essential for 

its function. Therefore when mutated, this amino acid might alter the correct 

conformation of Btn1p and lead to its retention in the ER, and possibly 

degradation. Finally, cells expressing Btn1p with the p.E240K mutation were 

reported to be localised in the vacuoles, but also present in pre-vacuolar 

compartments (Haines et al. 2009). Possibly, the region of the protein affected 

by this mutation (amino acid 240 in the fifth transmembrane domain) may affect 

the trafficking of the protein by affecting its conformational state, but not to the 

same extent as the two other mutations. 

It is known that CLN3 and Btn1p have an important role in lysosomal 

homeostasis. The lysosomal/vacuolar pH is less acidic in patient fibroblasts and 

btn1Δ cells (Holopainen et al. 2001; Gachet et al. 2005) (Chapter 4.1.3) and 
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these organelles are larger in CLN3-depleted HeLa cells and in btn1Δ cells 

(Gachet et al. 2005; Kitzmuller et al. 2008). A functional role of CLN3/Btn1p in 

lysosome/vacuole homeostasis was proposed to be exerted from a prevacuolar 

compartment in yeast cells, since the vacuole size in the btn1Δ/ypt7Δ double 

mutant was even bigger than in ypt7Δ mutant alone, where Btn1p is unable to 

traffic to the vacuoles (Gachet et al. 2005). This is in accordance with the 

observation that CLN3/Btn1p is located in the Golgi and other prevacuolar 

compartments. Alterations in vacuole pH, and consequently in the activity of the 

v-ATPase, have been shown to affect the composition of the cell wall in fission 

yeast, similar to that observed in btn1Δ cells (Codlin et al. 2008a). This 

observation, together with the vast array of other phenotypes observed in cells 

with defective CLN3/Btn1p, suggest that a defective activity of the v-ATPase 

may have an effect on the trafficking of many other proteins in the endocytic 

pathway, and possibly other pathways. Furthermore, the v-ATPase plays an 

important role in the transport of neurotransmitters into vesicles in the brain 

(Cousin & Nicholls 1997), and therefore when v-ATPAse function is affected 

there could be a great impact on neuronal transmission potentially leading to 

neurodegeneration, the hallmark of juvenile CLN3 disease.  

Similar to the observations made in this study, as well as in previous works, 

where btn1Δ cells have an abnormally curved morphology suggesting defects in 

microtubules or their related molecules (Haines et al. 2009) (Chapter 3.3.3), the 

CLN3 protein function has been associated with the organisation and regulation 

of cytoskeleton (Uusi-Rauva et al. 2008). This cytoskeletal disorganisation may 

affect intracellular transport, once again causing a panoply of cellular defects. 

For example, it is possible that trafficking of different transporters (like the v-

ATPase) through actin is impaired when CLN3 is defective. In yeast, the correct 

polarization of actin is dependent on the endocytic process (Smythe & 

Ayscough 2006), suggesting that the actin depolarisation of btn1Δ cells (Codlin 

et al. 2008b) is intimately linked with defects in membrane trafficking. It is also 

known that the activity of v-ATPase is linked to the actin cytoskeleton (Vitavska 

et al. 2003), which can explain the presence of phenotypes affecting both 

pathways in CLN3/Btn1p-deficient cells. Furthermore, the dynactin complex, 
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activator of microtubule motor protein dynein, has been reported to be 

downregulated in a Cln3 knockout mouse (Luiro et al. 2006) validating the 

hypothesis of a link between CLN3 and microtubule transport.  

The defect in cytokinesis of btn1Δ cells is independent of the defect in v-

ATPase activity, since it is not rescued by the growth of cells in acidic media 

(Codlin et al. 2008a). This defect may be due to a defective exocyst pathway, 

which is known to regulate the cell separation at the septum during the division 

process (Wang et al. 2002). However, the exact cause of this phenotype 

remains to be defined. More interestingly, it is known that correct localisation of 

exocyst proteins in the medial area of dividing cells is actin-dependent. This 

establishes a link between cytokinesis and the cytoskeleton phenotypes both 

observed in btn1Δ cells. Moreover, the fact that both mutant proteins containing 

either the 1-kb deletion or the p.E240K mutation are able to rescue the vacuole 

size defect, the high septation index and the growth at high temperature 

suggests a possible link between these three phenotypes. In a previous study, 

all mutants that were able to rescue the enlarged vacuoles in btn1Δ cells 

equally rescued the number of septated cells, reinforcing the idea that these 

two pathways are linked in some way (Haines et al. 2009). 

As discussed in the Introduction Chapter, Btn1p (and by inference, CLN3) is 

thought to be exerting its function in the Golgi apparatus compartments, 

affecting multiple downstream pathways. Therefore, when this function is 

disturbed, it eventually leads to defects at the vacuole level, as well as in the 

processes of cell growth, division, morphology and stress response. It is likely 

that Btn1p/CLN3 is required for the regulation of membrane trafficking to the 

lysosomes, the sorting and activity of different transporters and channels and 

the endocytic process. In fact, the involvement of CLN3/Btn1p in post-Golgi 

sorting and trafficking of proteins and in endocytosis has previously been 

reported and is detailed in the Introduction Chapter (Luiro et al. 2004; Metcalf et 

al. 2008; Codlin & Mole 2009). 
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7.1.3.1  CLN3: a potential channel? 

The fact that CLN3 is highly conserved across several species suggests that it 

plays a pivotal cellular role. It is likely that its complete loss of function may 

underlie a more severe disease than juvenile CLN3 disease, where partial 

function of the protein remains (see above in this chapter). The yeast 

orthologue of CLN3, btn1, is essential for correct cellular growth and division, 

especially at high temperature, proposing an essential role in this organism. 

As mentioned above, Btn1p is important for vacuole acidification. Although it is 

possible that this effect is indirect via the correct sorting of v-ATPase, it is also 

possible that Btn1p is acidifying the vacuoles directly. Btn1p may be a channel 

or ion transporter, and there are several lines of evidence that support this 

hypothesis.  First, CLN3 and Btn1p are known to be involved in the transport of 

arginine into the vacuole and in cerebellar cells (Kim et al. 2003; Ramirez-

Montealegre & Pearce 2005; Chan et al. 2009). Second, phenotypes observed 

in a knockout mouse model of juvenile NCL resemble those seen in a chloride 

channel CLC-3-deficient mouse (Mitchison et al. 1999). Third, the sequence of 

CLN3 is distant but significantly similar to the equilibrative nucleoside 

transporter hENT1 (Baldwin et al. 2004), and according to Pfam (a Wellcome 

Trust Sanger Institute database of protein families, http://pfam.xfam.org/) CLN3 

is a member of the major facilitator superfamily (MFS), a membrane transporter 

superfamily (Pao et al. 1998). Finally, it is also known that CLN3 regulates the 

intracellular levels of cytosolic free calcium (Ca2+) in SH-SY5Y cells (Chang et 

al. 2007) and a calcium channel antagonist, amlodipine, was reported as being 

able to reverse the elevated intracellular calcium levels seen in rat cortical 

neurons treated with CLN3 siRNA (Warnock et al. 2013). CLN3 may be a 

lysosomal calcium channel. These type of channels are responsible for 

maintaining the lysosomal calcium content at a specific concentration (Lemons 

& Thoene 1991) and therefore, when defective, lead to alterations of calcium 

levels in these organelles and consequently in the cytosol. Furthermore, 

dysregulated calcium levels in lysosomes greatly affects the endocytic transport 

http://pfam.xfam.org/
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(Kiselyov et al. 2010), which could explain the fact that several cellular proteins 

are affected in the absence of CLN3/Btn1p.  

Changes in intracellular levels of calcium and dysfunction of lysosomal calcium 

channels have a great effect on crucial processes in nerve cells, and calcium  

overload eventually leads to cell death, neurodegeneration (Siesjo et al. 1986; 

Heizmann & Braun 1992; Kiselyov et al. 2010), a common feature of lysosomal 

storage disorders (Jeyakumar et al. 2005; Kiselyov et al. 2010; Lloyd-Evans & 

Platt 2011). Calcium homeostasis is also linked to mitochondrial function 

(Duchen et al. 2008) and mitochondrial defects have been reported in CLN3 

disease (Fossale et al. 2004; Luiro et al. 2006; Lojewski et al. 2014), suggesting 

that these defects may be leading to dysregulation of calcium levels in these 

diseases.  

Yeast vacuoles are the major site of intracellular calcium storage (Denis & Cyert 

2002). The regulation of intracellular calcium levels in yeast is crucial for several 

cellular functions to be carried out appropriately: cytokinesis, cytoskeletal 

organization and cell wall integrity. All of these pathways are regulated by 

calcium signalling pathways, which in turn are mediated by calcium channels, 

pumps and transporters (Cortes et al. 2004). These channels and transporters 

are responsible for the uptake and release of calcium into or out of the 

cell/organelles via the respective membranes. Btn1p may be acting as a 

vacuolar channel in yeast regulating calcium levels in these organelles and 

cells. 

 

7.1.3.2  Btn1p and TOR signalling pathway 

Btn1p is also linked to the target of rapamycin (TOR) signalling pathway and 

other connected pathways in yeast. In response to glucose limitation, fission 

yeast appropriately represses TORC1, and activates TORC2 to maintain 

viability until glucose becomes available (Ikai et al. 2011). The TORC2 pathway 

is also involved in a correct response to exogenous stress, whereas TORC1 
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represses this stress response (Ikeda et al. 2008). Work performed by Dr 

Michael Bond (unpublished data) showed that btn1Δ cells are unable to 

correctly respond to limited nutrient conditions and high temperature (due to a 

reduced signalling in the TORC2 pathway) which could be rescued by reducing 

TORC1 or increasing TORC2 function. This inability to respond to stress is 

consistent with the phenotypes seen at 37°C, such as reduced viability, cell 

curving and sensitivity to cyclosporine A. Furthermore, a role for the mammalian 

TOR (mTOR) pathway in regulating microtubule-dependent protein transport 

was identified in rat fibroblasts (Jiang & Yeung 2006) suggesting that there is a 

link between this signalling pathway, the cytoskeleton organization (known to be 

disrupted in CLN3- and btn1-depleted cells) and the defective transport of 

certain proteins.  

There are a lot of similarities between the processes regulated by Btn1p and a 

small GTPase Ypt3p, the yeast orthologue of the mammalian Rab11, proposing 

that they might share a similar function. Ypt3p is localised in the Golgi and 

endosomes, similarly to Btn1p (He et al. 2006); and cells with mutated ypt3 

show similar phenotypes to btn1Δ: defects in the cell wall composition, 

cytokinesis and vacuolar fusion processes, and aberrant Golgi compartments 

(Cheng et al. 2002). Furthermore, Gad8p, a kinase lying downstream of TORC2 

in the TORC2 signalling cascade, is affected in both Ypt3p and Btn1p mutant 

cells (Tatebe et al. 2010) (Mike Bond, unpublished data). Ypt3p has been 

reported to interact with calcineurin, a Ca2+-dependent phosphatase that 

negatively regulates and is regulated by TORC2 (Cheng et al. 2002). Ypt3p 

mutants require calcineurin activity for vegetative growth and double mutants 

(Ypt3p and calcineurin) are synthetically lethal, suggesting that these proteins 

have overlapping functions. Since btn1Δ cells are sensitive to growth in the 

presence of cyclosporine A, an inhibitor of calcineurin, it is likely that Btn1p 

function is linked to the calcineurin pathway. For instance, Btn1p may have an 

overlapping function with calcineurin, similarly to Ypt3p. Furthermore, Ypt3p 

was reported to be involved in the transport of proteins from the Golgi 

compartments and in the exocytic pathway, and calcineurin was proposed to 

regulate these events (Cheng et al. 2002). If this is the case, the role in protein 
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transport may be the overlapping function between Btn1p and calcineurin. 

Future work has to be done in order to further elucidate the interplay between 

Btn1p and calcineurin, and also to better understand the reported similarities 

between Btn1p and Ypt3p. 
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7.2 Using a drug screen approach in a yeast model to develop 

therapy for juvenile CLN3 disease 

The choice of using a S. pombe model of juvenile CLN3 disease to perform a 

drug screen is due to the fact that fission yeast is easy to genetically manipulate, 

grows rapidly, and has a high degree of conservation of genes and molecular 

pathways with mammalian cells. S. pombe is a good model for the study of 

lysosomal storage disorders since it contains numerous vacuoles, the yeast 

equivalent to lysosomes (Bone et al. 1998). Furthermore, yeast has been 

established as a good model for the study of neurodegeneration (Khurana & 

Lindquist 2010), and for drug discovery (Howitz et al. 2003; Hoon et al. 2008; 

Su et al. 2010). These drugs act on targets that are highly conserved and are 

able to rescue disease pathology not only in yeast but also in neurons (Su et al. 

2010), demonstrating that drugs identified in yeast can act on highly conserved 

biological processes and be translated into higher organisms. In fact, there are 

reports that show a translation from concept to drugs in the clinic in less than 3 

years (Howitz et al. 2003). There are disadvantages in using S. pombe as a 

model for high-throughput drug screening that could be used for human disease 

therapies: the possibility of a drug not being permeable to the yeast cell wall or 

not being soluble in the yeast growing medium giving rise to false negative 

results, and the obvious fact that several cellular pathways existent in human 

are not conserved in fission yeast, and therefore drugs acting in these pathways 

cannot be detected in this organism. However, S. pombe has been previously 

used in high-throughput screening in a successful manner (Yashiroda et al. 

2010; Demirbas et al. 2013). Fission yeast can, in fact, be powerful tools for fast 

drug discovery in neurodegenerative diseases, such as juvenile CLN3 disease. 

The efficacy of screen hit compounds can be quickly verified in other model 

organisms, such as zebrafish or mammalian cells (as it was done in this study), 

a crucial step before the preclinical trials are carried out in mouse models, for 

example.  

Currently, there are no readily detectable phenotypes suitable for high-

throughput screening for NCL diseases in mammalian cells. On the other hand, 
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multiple marker phenotypes have been characterised in fission yeast, which 

also indicates that Btn1p (just like CLN3) has a complex function that affects 

different pathways in the cell. It is important to gain more information about the 

pathways where Btn1p/CLN3 is involved, to further understand the molecular 

mechanisms of juvenile CLN3 disease. This type of information can be inferred 

from the results obtained in the drug screen, if one considers the typical targets 

of the compounds that were identified. 

The phenotype chosen as the basis for the drug screen was the growth at 37°C 

in the presence of cyclosporine A, since there is a very significant difference in 

the viabilities of wild-type and btn1Δ cells when grown in these conditions. The 

viability can be easily measured by the presence of propidium iodide inside the 

dead cells. 1280 FDA-approved compounds were tested for their ability to 

rescue the percentage of dead btn1Δ cells to levels similar to wild-type cells. 

Three compounds that strongly rescued the viability of the btn1Δ strain were 

first validated and then selected for further experiments to assess their ability of 

rescuing other phenotypes associated with the loss of btn1 or CLN3. All three 

compounds were able to rescue other phenotypes in btn1Δ cells, and some of 

them in juvenile NCL patient fibroblasts and in a zebrafish disease model. Each 

compound will be discussed in the sections below, as well as the possible role 

of calcineurin and the TOR pathway in juvenile CLN3 disease.  
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7.2.1 Calcineurin and TOR signalling pathway 

Calcineurin is a serine/threonine phosphatase that is regulated by the 

Ca2+/calmodulin-dependent signalling pathway (Klee et al. 1979). In yeast, 

calcineurin stimulates cell survival upon exogenous stress (Cyert 2003). In 

response to stress, calcineurin dephosphorylates transcription factors (such as 

Crz1p) that then activates target genes involved in pathways such as vesicular 

transport, ion homeostasis and cell wall maintenance. Calcineurin is also 

responsible for the actin cytoskeleton depolarization and delay in the cell cycle 

upon stress (Mizunuma et al. 1998; Shitamukai et al. 2004). Calcineurin-null 

yeast cells show a delay in cytokinesis (Yoshida et al. 1994). 

In S. cerevisiae, calcineurin negatively regulates TORC2 signalling and TORC2 

negatively regulates calcineurin via the Slm proteins (Mulet et al. 2006). There 

are some differences in S. pombe: the growth of cells lacking tor1, the Tor 

kinase in TORC2 is strongly inhibited by cyclosporine A, the inhibitor of 

calcineurin (Kawai et al. 2001). Furthermore, in budding yeast calcineurin-null 

cells are resistant to the presence of calcium and grow better in these 

conditions, whereas fission yeast cells null for calcineurin are highly sensitive to 

calcium (Hirayama et al. 2003). Therefore, the function of calcineurin is likely to 

be different in the two types of yeast, and probably the function in fission yeast 

is more equivalent to mammalian cells. Evidence from this study supports this 

idea, since btn1Δ calcineurin-null cells are not able to survive, and as 

mentioned above, it is known that in btn1Δ cells TORC2 activity is affected and 

that CLN3-deficient cells have increased levels of intracellular calcium. 

According to results presented in this work and elsewhere, it is proposed that 

Btn1p/CLN3 and calcineurin have an overlapping function. Several lines of 

evidence support this hypothesis: 1) as mentioned above (1.1.3.2) vegetative 

growth of Ypt3p mutant cells is calcineurin-dependent, Ypt3p was proposed as 

having overlapping function with calcineurin and Ypt3p mutant cells show 

several common phenotypes to btn1Δ cells; 2) both calcineurin and CLN3 have 

been reported to regulate intracellular calcium levels (Klee et al. 1979; Chang et 

al. 2007) and calcineurin-null cells are sensitive to high calcium levels 



Discussion 

 

 176 

(Hirayama et al. 2003), which are known to be present in SH-SY5Y cells treated 

with CLN3 siRNA (An Haack et al. 2011); 3) Cni1p, a calcineurin-binding 

protein, promotes growth of fission yeast cells at high pH (Cyert 2003), and 

defects in btn1Δ cells are known to be rescued by growth in acidic media, 

suggesting that when both Btn1p and calcineurin are defective, yeast cells are 

unable to survive; 4) a yeast orthologue of a mammalian subunit of the clathrin-

associated adaptor protein complex, Apm1p, and calcineurin double mutant 

cells are synthetically lethal, and apm1Δ cells show similar phenotypes to btn1Δ 

cells: temperature sensitivity, tacrolimus (a calcineurin inhibitor) sensitivity, 

cytokinesis and vacuole fusion defects and larger Golgi stacks, all of these 

accentuated by a temperature up-shift (Kita et al. 2004). Apm1p is also 

localised to the Golgi and endosomes, and its role was proposed to be 

associated with a function in these organelles that will affect several cellular 

processes, analogously to what is suggested for Btn1p; 5) calcineurin may be 

associated with the release and action of neurotransmitters due to the fact that 

it regulates the levels of calcium in the nervous system and this are known to 

play a crucial role in neuronal transmitters at the synaptic terminals (Klee et al. 

1979). Similarly, v-ATPase, known to be defective in CLN3-deficient cells, was 

reported to play a role in neurotransmitters transport in the brain (Cousin & 

Nicholls 1997). Therefore, when btn1 and calcineurin are defective, this could 

affect neuronal transmission and potentially lead to neurodegeneration.  

After the realization that Btn1p function was related to the TORC2 pathway, and 

in order to identify a robust phenotype for the screen, btn1∆ cells were tested 

for their ability to withstand a pharmacological treatment that other TORC2 

mutants have been shown to be sensitive to: the presence of cyclosporine A. 

The CsA sensitivity of btn1∆ cells was only present when cells were grown at 

the non-permissive temperature of 37°C which may suggest CsA acts by 

exacerbating the underlying temperature sensitivity of these strains (or vice 

versa). 
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 7.2.2 Alloxazine 

Alloxazines are degradation products of flavocoenzymes, proteins containing 

riboflavin, a crucial constituent of all living cells and organisms (Ferreira et al. 

2014). Alloxazine is an antagonist of the adenosine A2b receptor (Brackett & 

Daly 1994) and was also reported as being able to inhibit the splicing process 

(Kim & Park 2000). 

The adenosine A2b receptor has been implicated in several biological functions, 

from regulation of neuroglia function to calcium homeostasis (Fiebich et al. 

1996; Pilitsis & Kimelberg 1998). Although the biological roles of adenosine and 

adenosine A2b receptor, target of alloxazine, are well known, the target of 

alloxazine in yeast is still unclear, since these receptors are not present in this 

organism. It is not possible to effectively speculate on what alloxazine action is 

in yeast based on the evidence from this study. However, there are examples of 

drugs with a known target in humans that were shown to have a different target 

in yeast. For example, Guanabenz, an antihypertensive drug and an agonist of 

α2-adrenergic receptors, has an antiprion activity in yeast cells (Tribouillard-

Tanvier et al. 2008).  

Despite encouraging results obtained in fission yeast, the use of alloxazine as a 

template for a therapeutic drug for juvenile CLN3 disease might be unrealistic. 

First, because the results obtained with alloxazine treatment in patient 

fibroblasts were not encouraging: the compound was not able to rescue the 

Golgi phenotype (Chapter 5.3.1). Moreover, work done by Yamagata et al 

(2007) reported that adenosine when bound to the adenosine A2b receptor 

induce the expression of glial cell line-derived neurotrophic factor (GDNF) and 

this is repressed by alloxazine (Yamagata et al. 2007). The fact that GDNF 

promotes the survival of neurons, and neurodegeneration is a hallmark of 

juvenile NCL, discredits the possibility of using alloxazine towards a therapeutic 

goal. 
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7.2.3 E-64 

L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane, commonly known as E-

64, is an irreversible and potent inhibitor of several cysteine peptidases, such 

as papain, actinidin, cathepsins B, H and L, among others  (Hashida et al. 1980; 

Barrett et al. 1982; Varughese et al. 1989; Matsumoto et al. 1999). E-64 is also 

able to strongly inhibit trypsin-catalysed hydrolysis, and trypsin is the only 

serine protease that E-64 has an effect on (Sreedharan et al. 1996). E-64 is 

widely used in vivo and as a potential template for drugs used in disease 

treatment mainly due to its specificity, cell permeability, ease of synthesis, 

stability and low toxicity (Katunuma & Kominami 1995).  

Since it is able to inhibit several cysteine peptidases involved in different 

biochemical processes in the cell, E-64 action directly influences multiple 

cellular pathways. It has been shown to inhibit neutrophil chemotaxis (Barna & 

Kew 1995) and invasion of human bladder carcinoma cells through basement 

membranes via cathepsin B inhibition (Redwood et al. 1992); it has antiparasitic 

properties (Carvalho et al. 2014; Wadhawan et al. 2014); and it has been 

reported to delay muscular dystrophy progression in mice (Komatsu et al. 

1986). Furthermore, E-64 also inhibits the chicken calcium-activated neutral 

protease (Sugita et al. 1980), establishing an indirect link with calcium 

homeostasis. The inhibition of the calcium-dependent cysteine protease calpain 

by E-64 has varying effects on several cellular pathways. For example, the 

development of Th17 cells is impaired (Iguchi-Hashimoto et al. 2011), together 

with apoptosis triggered by the T-cell receptor complex (Sarin et al. 1993), and 

the IL-6 and IL-1β cytokines production is inhibited, which leads to an 

amelioration of rheumatoid arthritis (Yoshifuji et al. 2005). Calpain is also 

involved in the processing of amyloid precursor protein (APP) (Tanabe et al. 

2013). APP when cleaved by β- or γ-secretases originates amyloid-β, the 

protein that accumulates in Alzheimer’s disease. On the other hand, when 

cleaved by α-secretases, APP produces a soluble form (sAPPα) that has 

neuroprotective properties. When there is an increased production of amyloid-β, 

there is no secretion of sAPPα, a phenotype observed in Alzheimer’s patients. 
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Calpain inhibition by E-64 is able to revert the reduced secretion of sAPPα, 

suggesting a neuroprotective role for E-64 and a potential for treatment of 

Alzheimer’s disease based on this compound. As Alzheimer’s is a 

neurodegenerative disease like juvenile CLN3 disease, and that amyloid-β 

processing is also altered in juvenile NCL (Kitaguchi et al. 1990), the same 

treatment may work for both. 

The fact that E-64 is able to reduce apoptosis in a mouse hybridoma (Sarin et 

al. 1993) makes this compound a good candidate for the development of 

therapy for juvenile CLN3 disease. The analgesic flupirtine, which has been 

reported to slow disease progression and clinically benefit juvenile NCL 

patients, is also able to reduce apoptosis in patient lymphoblasts and neurons 

(Dhar et al. 2002). Apoptosis has been reported as one of the mechanisms of 

neurodegeneration in juvenile NCL (Lane et al. 1996), and CLN3 also exerts an 

anti-apoptotic role (Puranam et al. 1999; Narayan et al. 2006a).  

E-64 has at least one identified target in S. cerevisiae, Ycp1p, a cysteine 

protease (Pei et al. 1995), suggesting that it may have at least one target in S. 

pombe. In fact, there are several cysteine peptidases in fission yeast, and 

although none of these were identified as E-64 targets to date, it is possible that 

E-64 exerts its action through one or all of them. Potential targets of E-64 in 

fission yeast, all of them cysteine proteases are listed below: 

1) Pca1p, a caspase-like protein involved in lipid-induced apoptosis (Low & 

Yang 2008). As discussed above, apoptosis is the main cause of 

neurodegeneration in juvenile CLN3 disease. 

2) Cut1p, a separase that is involved in several cellular roles. For example, 

it is involved in the cytokinetic process, more specifically in the 

separation of sister chromatids (Funabiki et al. 1996). Cytokinesis is 

known to be affected in btn1Δ cells (as previously discussed throughout 

this work), suggesting a link between Btn1p function and Cut1p, and 

possibly E-64 inhibitory action on the latter. Cut1p also represses the 

TORC2 pathway (Yuasa et al. 2004). Since the signalling in this pathway 
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is already affected in btn1Δ cells, E-64 may be targeting Cut1p and 

releasing TORC2 pathway from inhibition. In fact, it was reported that 

unbalanced high levels of Cut1p seem to be harmful for TORC2, when 

its activity is diminished (Ikai et al. 2011). This is also consistent with the 

sensitivity that btn1Δ cells show to CsA, an inhibitor of calcineurin, a 

component of the TORC2 pathway.  

3) Some deubiquitinating enzymes (like Ubp9p) involved in signalling 

pathways that regulate cell polarity and endocytosis (Kouranti et al. 

2010). These mechanisms are known to be deregulated in juvenile CLN3 

disease (Chapter 1.1.2). 
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7.2.4 Prochlorperazine dimaleate 

Prochlorperazine dimaleate or 2-Chloro-10-[3[(4-methyl-1-piperazinyl)propyl]-

10H-phenothiazine dimaleate is a salt composed of prochlorperazine and two 

molecules of maleate. Prochlorperazine is a phenothiazine (Lummis & Baker 

1997) and a D2 dopamine receptor antagonist (Creese et al. 1976) that also 

interacts directly with 5-hydroxytryptamine3 (5-HT3) receptors (Lummis & Baker 

1997), which are responsible for several roles mainly in the central nervous 

system (Kilpatrick et al. 1990). Prochlorperazine is also able to promote the 

release of the neurotransmitter acetylcholine  (ACh) in the cerebral cortex 

(Ghelardini et al. 2004).  

Prochlorperazine has antipsychotic, antiemetic and antinociceptive activity in 

vivo. The first to be discovered was the antiemetic ability of prochlorperazine 

(Moertel et al. 1963); this drug is able to stop nausea and vomiting. 

Prochlorperazine was also reported to increase the pain threshold in mice, 

exerting an antinociceptive effect, mediated by release of ACh (Ghelardini et al. 

2004). Furthermore, prochlorperazine is effective in the treatment of acute 

migraines, namely by alleviating pain and nausea (Tanen et al. 2003).  

Action of prochlorperazine affects several proteins in different manners. It was 

reported to increase the activity of integral membrane enzymes uridine 5'-

diphospho-glucuronosyltransferase and glucose-6-phosphatase in microsomes, 

via disruption of organized lipid-protein interactions (Dannenberg & Zakim 

1988). Prochlorperazine was also proposed to affect clathrin distribution, which 

led to an antiviral effect against the dengue virus (Simanjuntak et al. 2014). 

Furthermore, prochlorperazine modulates the human P2X7 receptor, an ATP 

cation channel involved in immune cell activation and neurological disorders 

such as Alzheimer’s disease and schizophrenia (Skaper et al. 2009). In this 

case, prochlorperazine acts as an open pore blocker and inhibits calcium entry 

into the cell (Hempel et al. 2013). This establishes a link between this 

compound’s action, neurodegeneration and calcium homeostasis. Other 

example of its link to calcium is the fact that prochlorperazine is able to inhibit 

growth of Acanthamoeba castellanii, the causative agent of blinding keratitis, by 
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an inhibitory action on amoeba calcium-regulatory proteins or by disruption of 

the amoeba plasma membrane (Baig et al. 2013). Moreover, prochlorperazine 

inhibits release of pro-inflammatory mediators from human mast cells, probably 

by decreasing the levels of intracellular calcium (Clemons et al. 2011). From all 

these roles and processes, only some are relevant to yeast and could be the 

underlying mechanism of drug action in this organism: disruption of lipid-protein 

interactions or pore blocking activity. Although the other processes are not 

relevant to yeast work, it is important to bear them in mind in order to avoid 

potential side effects or potential synergistic effects when translated to other 

organisms. 

Although prochlorperazine (dimaleate) and its action have not been associated 

with fission yeast, and there is no identified targeted yeast protein, it is possible 

that this compound has a target in these cells that is different from its original 

one. It is possible that this compound is in some way involved in a calcium 

homeostasis pathway in yeast, since it has been associated with it in several 

studies conducted in human cells, as mentioned above, and that this pathway is 

known to be disrupted in juvenile CLN3 disease and supposedly in btn1Δ cells. 

Further work needs to be done in order to identify and clarify the action of 

prochlorperazine in S. pombe.  
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7.2.5 Summary of all compounds 

The three compounds that were identified in the drug screen and that were 

subsequently validated (alloxazine, E-64 and prochlorperazine dimaleate) do 

not have any reported targets in fission yeast. For instance, adenosine and 

dopamine receptors, the principal human targets of alloxazine and 

prochlorperazine respectively, do not exist in this unicellular organism. This 

suggests that these two compounds are probably acting in a different manner, 

targeting another yeast pathway(s). Regarding the other compound, E-64, its 

targets are cysteine protease and there are several in S. pombe. Therefore, it is 

plausible that E-64 is exerting its inhibitory effect on one or more of them.  

Alloxazine is the only one among the three compounds able to rescue the 

temperature sensitivity phenotype of btn1Δ cells, both in liquid media and in 

spot assays (Chapter 5.2.4). This temperature sensitivity is related to the 

inability that btn1Δ cells have of adequately responding to different types of 

stress, which in turn, is linked to disruption in the TORC2 pathway (see above, 

section 7.2.1). This suggests that alloxazine may be involved in stress response 

pathways. On the other hand, alloxazine does not rescue the Golgi 

compactness phenotype in juvenile NCL patient fibroblasts, which may mean 

that it cannot be used with a therapeutic purpose for juvenile CLN3 disease.  

As mentioned above (section 7.2.3), E-64 may be inhibiting any cysteine 

protease activities in S. pombe. Different cysteine peptidases have been 

described in these cells, involved in different cellular processes, some of which 

that have been associated with Btn1p: autophagy, cytokinesis, endocytosis, cell 

polarity, vacuolar function (Funabiki et al. 1996; Low & Yang 2008; Kouranti et 

al. 2010; Mikawa et al. 2010; Sun et al. 2013) and most importantly the TORC2 

pathway (Yuasa et al. 2004). Consistent with its Cut1p protease inhibitory 

action, and its involvement in the TORC2 pathway, is the observation that E-64 

was the compound that most efficiently rescued the CsA sensitivity phenotype 

in btn1Δ cells out of the three compounds (Chapter 5.1). It was also the one 

that elicited the strongest rescue of the btn1Δ cell curving phenotype, the 

juvenile NCL fibroblasts’ less compact Golgi, and the activity and survival of the 
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Cln3 MO zebrafish. E-64 was also able to rescue all the other tested 

phenotypes in btn1Δ cells, except the defective growth at 37°C (Results 

Chapter 3). All of these results indicate that E-64 may be very useful for the 

development of new therapeutic tools towards juvenile CLN3 disease. 

Furthermore, E-64 has previously been reported as having a neuroprotective 

role in Alzheimer’s disease (Tanabe et al. 2013), and decreasing apoptosis 

(Sarin et al. 1993), one of the mechanisms of neurodegeneration in juvenile 

NCL (Lane et al. 1996).  

Prochlorperazine (dimaleate) action has not been previously associated with 

fission yeast; its known targets are not present in these cells (D2 dopamine 

receptor, 5-HT3 receptors and ACh); and its well-known use as an 

antipsychotic, antiemetic and antinociceptive drug is not relevant for yeast work. 

However, juvenile NCL patients do suffer from severe psychotic episodes as 

the disease advances (Mole et al. 2011), so a drug that addresses the 

underlying cause may be a very helpful component of juvenile NCL therapy. It is 

possible that this drug is acting in a different manner in yeast, maybe in a 

calcium-related pathway, due to its reported link to calcium, more specifically by 

potentially decreasing its intracellular levels (Clemons et al. 2011). 

Prochlorperazine dimaleate rescues all tested phenotypes in btn1Δ cells, 

except defective growth at 37°C, similarly to E-64 (Results Chapter 3). It is also 

able to rescue the tested phenotypes in juvenile NCL patient fibroblasts and in 

Cln3 MO zebrafish (tail flicking activity), which strongly supports its ability to 

revert or complement the lack of Btn1p in fission yeast cells, and probably 

dysfunctional CLN3 in human cells and fish. 

To conclude, all three compounds seem to be acting differently in the btn1Δ 

strain. However, two of them share some common features, for example their 

link to calcium: prochlorperazine decrease intracellular calcium levels (Pilitsis & 

Kimelberg 1998; Clemons et al. 2011) and E-64 inhibits calcium-dependent 

proteins (Sugita et al. 1980; Iguchi-Hashimoto et al. 2011). This could be a 

plausible explanation for their ability to rescue disease-related phenotypes, 

since CLN3 is known to regulate the intracellular levels of free calcium in SH-
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SY5Y cells (Chang et al. 2007). Furthermore, a study reported the ability of 

amlodipine, a calcium channel antagonist, to decrease the calcium levels in 

CLN3 siRNA–treated neurons (Warnock et al. 2013). As mentioned above 

(section 7.1.3.1), CLN3 may be working as a calcium channel, maintaining 

intracellular calcium levels, an important condition for several proteins to carry 

out their functions correctly. It is important to elucidate the role of Btn1p as a 

potential calcium channel. 

E-64 appears to be the most promising compound for the development of 

therapeutic tools for juvenile CLN3 disease, since it was able to rescue all the 

tested phenotypes (except one) in different models, and its action spectrum is 

broad. However, future work must be conducted regarding all three compounds 

in order to further clarify their mechanisms of action in fission yeast, and 

consequently in human cells.  
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7.3 Insights into therapy of other lysosomal storage disorders 

Fission yeast models of three lysosomal storage disorders, Chédiak Higashi 

syndrome, Niemann-Pick disease type C2 and congenital CLN10 disease, were 

characterised and further explored in the last part of this work. Considerations 

about their mechanism of action and potential therapy will be discussed below.  

The S. pombe strain modelling CHS is the lvs1Δ strain. This strain is 

characterised by the presence of exceptionally large vacuoles, and according to 

this work, a higher septation index when compared to a wild-type strain 

(Chapter 6.1.2). Alloxazine, E-64 and prochlorperazine dimaleate were able to 

rescue both these phenotypes in these cells, suggesting that these compounds 

should be considered for further studies concerning therapeutic alternatives for 

CHS. Similar to juvenile CLN3 disease, calcium homeostasis is also disrupted 

in CHS, where the levels of lysosomal calcium are elevated in neutrophils, due 

to an hyperactivation of the calcium uptake process (Styrt et al. 1988). This 

observation establishes a possible link between this disorder, calcium 

homeostasis and action of E-64 and prochlorperazine dimaleate compounds 

(see the section above). 

E-64 has been shown to rescue several phenotypes in the mouse model of 

CHS, the beige mouse, and in patient cell lines: decreased activity of natural 

killer cells, increased concanavalin A-induced cap formation, formation of giant 

granules, reduced cathepsin G and lysosomal elastase activities, susceptibility 

to bacterial infection; all due to its effect on reversing the decline of protein 

kinase C activity, by preventing its calpain-mediated proteolysis (Ito et al. 1989; 

Sato et al. 1990; Tanabe et al. 2000; Cui et al. 2001; Morimoto et al. 2007; 

Tanabe et al. 2009). These observations suggest that E-64 is a good candidate 

for the development of a CHS therapeutic drug.  

Niemann-Pick type C2 protein is conserved in fission yeast. The npc2Δ strain 

was characterised in this work (Results Chapter 4). This strain contains large 

vacuoles and an increased number of septated cells. The first phenotype was 

rescued by alloxazine, E-64 and prochlorperazine dimaleate, whereas the 
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septation index was only decreased after treatment with alloxazine and 

prochlorperazine. However, and in contrast with these results, E-64 seems to 

be the most promising compound regarding therapy of NPC. Levels and activity 

of cathepsin B are increased in the brains of NPC mutant mice (Liao et al. 

2007). Cathepsin B is a target of E-64, and therefore this compound may be 

able to revert some phenotypes associated with the increased levels of this 

lysosomal enzyme in NPC. In fact, this increase has been associated with 

neurodegeneration in NPC (Amritraj et al. 2009), and therefore the action of E-

64 may be relevant for therapy attenuating NPC pathology. Further supporting 

this hypothesis is the observation that cathepsins B and L are involved in 

secretion of NPC2, and treatment with E-64 (inhibitor of these cathepsins) 

increases the intracellular levels of NPC2, by blocking its secretion (Hannaford 

et al. 2013). Similarly to juvenile CLN3 disease, mitochondrial defects have 

been reported in NPC (Vilaca et al. 2014), and mitochondrial function is linked 

to calcium homeostasis (Duchen et al. 2008), suggesting that there is a link 

between dysregulation of calcium levels in these diseases and the mechanisms 

of action of E-64 and prochlorperazine dimaleate. 

The sxa1Δ S. pombe strain models congenital CLN10 disease. This strain, 

similar to the other two LSD strains, is characterised by enlarged vacuoles and 

a high septation index. Treatment with alloxazine, E-64 and prochlorperazine 

dimaleate rescued the vacuoles size but not the number of septated cells in this 

strain. Total activity of cathepsin D (deficient in CLN10) is increased in E-64-

treated fibroblasts (Samarel et al. 1989); however, this compound is known to 

affect the proteolytic maturation of procathepsin D (Ishidoh et al. 1999), leading 

to accumulation of the processing intermediates (Laurent-Matha et al. 2006). 

This effect of E-64 on cathepsin D is not relevant to treatment as cathepsin D is 

essentially null in congenital CLN10 disease. As long as E-64 is known to have 

a positive effect on parallel pathways (as the vacuoles size rescue data 

mentioned above suggests, Results Chapter 4), it could still be useful for the 

development of CLN10 disease therapeutic tools. 
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Results obtained in this work with the LSD yeast strains are preliminary, since 

these strains were characterised in terms of the phenotypes that were 

previously associated with the loss of btn1 in the yeast strain modelling juvenile 

CLN3 disease. Work to confirm a direct link between the phenotypes and the 

deleted LSD gene (for example, expression of the respective genes in the 

deletion strains in order to verify if they were able to rescue the phenotypes) still 

needs to be done. Furthermore, the compounds tested in these strains were the 

ones identified in the drug screen performed with btn1Δ cells, and not specific 

to the other three LSD strains. Therefore, the results obtained here must be 

regarded as preliminary; additional work must be done in order to further 

elucidate the disease pathways involved in these S. pombe disease strains as 

well as the action of compounds in these pathways. Nevertheless, it may be 

that these diseases share common downstream disease phenotypes, such as 

vacuole homeostasis, in which case a compound addressing these could be 

efficacious for more than one disease. 
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7.4 Conclusions and Future Work 

The principal aims of this project were to study the impact of different mutations 

on the function of fission yeast Btn1p and to identify novel lead compounds that 

can be developed to treat juvenile CLN3 disease as a first stage to new 

therapeutic development. In the first part of this work, it was confirmed that 

different mutations in the btn1 gene have different effects on the protein 

function, affecting its expression and cell phenotypes. According to the results 

obtained with strain expressing different mutant Btn1p, it is proposed that its 

lumenal and/or transmembrane regions are particularly important for its function. 

Furthermore, the levels of btn1 expression influence its function, suggesting 

that this is important and tightly regulated. New insights regarding the function 

of Btn1p (and CLN3) were gained. These orthologue proteins are known to 

affect the function of several proteins involved in different cellular pathways. 

Their effect may be exerted from the Golgi compartments, by affecting the 

sorting and activity of several proteins and downstream pathways. On the other 

hand, it is also possible that Btn1p (and CLN3) is acting as a channel or ion 

transporter, and that its dysfunction affects the endocytic transport, which would 

affect many cellular proteins. Furthermore, Btn1p function is related to the 

TORC2 signalling pathway, most likely via its link to calcineurin. It is possible 

that Btn1 has an overlapping function with calcineurin. Conclusions obtained 

regarding the potential therapeutic compounds identified in this study, are 

discussed in detail below (section 7.4.2). Beforehand, suggestions on future 

work that need to be done are presented. 
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7.4.1 Future work  

Further work is needed to conclude the work started of this study. Below is a list 

of some experiments that will be useful to fully comprehend and complement 

the findings made in this study.  

1) Further clarify the action mechanism of calcineurin in wild-type and btn1Δ 

cells – for example, the creation of a calcineurin and Btn1p double mutant to 

verify its viability or synthetic lethality (if these proteins have, in fact, an 

overlapping function);  

2) Determine if btn1Δ cells are sensitive to growth in the presence of another 

calcineurin inhibitor, FK506, to ensure that the sensitivity of these cells is 

related to the absence of calcineurin;  

3) Investigate the relationship between Btn1p and Ypt3p, to verify if they have 

common functions, as suggested by the results from several studies;  

4) Further clarify the role of calcium homeostasis in disease pathology and in 

the fission yeast model, by measuring calcium cytosolic and vacuolar levels in 

wild-type and btn1Δ cells; and testing whether any calcium channel antagonists 

are able to reverse phenotypes in btn1Δ (and mammalian cells). 

5) Perform a drug screen with the same library using one or more btn1-mutated 

S. pombe strains, after identification of a mutation-specific phenotype in these 

cells; 

6) Test the ability of alloxazine, E-64 and prochlorperazine dimaleate to rescue 

more phenotypes of CLN3-depleted/deficient mammalian cells; 

7) Perform a dose response assay for alloxazine, E-64 and prochlorperazine 

dimaleate;  

8) Test other positive hits from the drug screen already performed, that showed 

a less significant rescue than the six that were followed up; 
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9) Test the three initial hit compounds (atenolol, etoposide and daphnetin) that 

were excluded from the yeast work due to their toxicity in wild-type yeast cells, 

in mammalian cells/models where their action could be beneficial;  

9) Test the effect of other compounds structurally similar to the ones studied 

here in btn1Δ cells;  

10) A great amount of work for the CHS, NPC and CLN10 yeast strains: 

characterising them in terms of phenotypes, performing a drug screen with the 

same library (or a different one) using each strain, further analysing the effect 

that alloxazine, E-64 and prochlorperazine dimaleate (and potential newly 

identified compounds) have in their phenotypes; 
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7.4.2 Potential therapeutic compounds for juvenile CLN3 disease 

Three compounds were identified in a drug screen with btn1Δ cells: alloxazine, 

E-64 and prochlorperazine dimaleate. All three compounds seem to be acting 

differently in the btn1Δ strain, and none of their targets have been identified in 

fission yeast. The exact mechanism of action of alloxazine in yeast cannot be 

inferred from the results that were obtained. The same statement is valid for 

prochlorperazine dimaleate, although this compound may be affecting calcium-

related pathways, along with regulating calcium intracellular levels. In fact, this 

compound shares a common link with CLN3/Btn1p and E-64 to calcium-related 

pathways and proteins. 

Many yeast pathways are conserved in human and other eukaryotic organisms, 

therefore pathways targeted by these compounds in yeast are probably present 

in human cells, even though it is already known that these compounds work on 

different targets in humans. Actions of the three compounds are unlikely to be 

yeast-specific as they were able to successfully rescue phenotypes in a 

zebrafish disease model. 

E-64 seems to be the compound with the most potential for development of 

therapeutic tools for juvenile CLN3 disease, since it was able to rescue all 

(except one) phenotypes in fission yeast, zebrafish disease models and patient 

fibroblasts. Furthermore, this compound has been previously reported to rescue 

several phenotypes in the CHS mouse model and in CHS patient cell lines, 

suggesting that it could be used as a template for a CHS therapeutic drug. A 

similar conclusion can be drawn regarding NPC, since E-64 is able to decrease 

high levels of cathepsin B in brains of NPC mice models. These observations 

may be linked to the fact that E-64 is the compound with the largest pattern of 

action from the three that were tested. This makes it a good candidate as a 

template for the development of drugs that will target specific proteins in 

different diseases. However, it is very important to achieve an acceptable safety 

profile, in order to avoid side effects. 
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