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T
he making and breaking of bonds
involving hydrogen atoms at the sur-
faces of materials plays amajor role in

nature. It is also relevant to heterogeneous
catalysis, sensing, energy storage, and che-
mical reactions in the interstellarmedium.1�6

Therefore, understanding the adsorption
and reaction dynamics of hydrogen on solid
surfaces is of widespread importance and
central to process improvement and materi-
als engineering. The light mass of hydrogen
makes it subject to quantumbehavior, which
can strongly affect its reactivity.7 It has been
demonstrated both experimentally and
theoretically that quantum tunneling plays
a role in a variety of reactions, including
conformational inversions, eliminations, and
enzymatic reactions involving hydrogen.7�10

While it is known that quantum effects can

have a significant effect on the rate of reac-
tions involving hydrogen, our understanding
of the regimes in which these quantum
effects are important is currently not well
developed.
Heterogeneously catalyzed hydrogenation

reactions often employ metals and alloys
based on platinum, ruthenium, palladium,
or nickel. These metals allow for the facile
dissociation of molecular hydrogen due to
a relatively low reaction barrier. In contrast,
coinage metals such as Cu and Au exhibit
a higher barrier for the dissociation of molec-
ular hydrogen and are less reactive toward
hydrogen.11,12 Many surface science studies
have examined the quantum behavior of
hydrogen.13�30 Experimental work has fo-
cused on the quantum tunneling-enabled
diffusion of single hydrogen atoms on a
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ABSTRACT Dissociation of molecular hydrogen is an important step in a wide

variety of chemical, biological, and physical processes. Due to the light mass of

hydrogen, it is recognized that quantum effects are often important to its

reactivity. However, understanding how quantum effects impact the reactivity of

hydrogen is still in its infancy. Here, we examine this issue using a well-defined

Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules

to be examined at individual Pd atom surface sites over a wide range of

temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two

species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered.

Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent

for H2 up to∼190 K and for D2 up to∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen

uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the

complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar

range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at

surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

KEYWORDS: quantum tunneling . hydrogen . activation . single-atom alloy . path integral density functional theory .
kinetic Monte Carlo simulation

A
RTIC

LE
Terms of Use CC-BY

http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


KYRIAKOU ET AL . VOL. 8 ’ NO. 5 ’ 4827–4835 ’ 2014

www.acsnano.org

4828

variety of surfaces using field emission microscopy,15

helium spin�echo spectroscopy,16 optical diffraction,17�19

and scanning tunneling microscopy (STM).20�22 Re-
cently, quantum tunneling was found to allow 2D
self-assembly of hydrogen atoms at low temperature
(5 K) on Cu(111).23 The key observable difference
between classical and tunneling reaction pathways is
the temperature dependence of the reaction rate, and
divergence from classical behavior is often detected
through careful examinationof kinetic isotope effects in
chemical reactions.7,17,27,28,31

We recently reported that addition of just 1% of a
monolayer of Pd to the surface of Cu can promote the
dissociation of hydrogen.32�34 These single-atom Pd
sites lower the energy barrier to hydrogen uptake,
allowing it to dissociate and then spill over onto the
bare Cu terraces.32�34 Despite careful use of density
functional theory (DFT) calculations, a number of re-
cent studies could not explain these results.35�38 Here
we use a well-defined model system and an array of
sophisticated theoretical approaches that allow us to
understand and quantify the precise role of quantum
effects in hydrogen dissociation. We studied the up-
take of hydrogen and deuterium using temperature-
programmed desorption (TPD), DFT, path-integral-
based DFT approaches to account for quantumnuclear
effects, and kinetic Monte Carlo (KMC) simulations. The
dissociative adsorption of molecular hydrogen and
deuterium reveals vastly different rates and tempera-
ture dependence for the two species. The rate of
hydrogen activation is higher at lower sample tem-
perature, whereas deuterium activation slows down as
the temperature is lowered. The dramatically different
behavior observed in these experiments originates
from the different extent of quantum tunneling for
H2 and D2. In both cases our calculations indicate that
tunneling is relevant. KMC simulations indicate that in
the case of H2 the contribution from tunneling is so
significant that the effective barrier is reduced to the
point that H2 uptake becomes dominated by thermo-
dynamic effects. On the contrary, tunneling through
the D2 barrier is not as significant, and the D2 uptake
rate is dictated kinetically by the effective height of
the barrier.

RESULTS AND DISCUSSION

The uptakes of hydrogen and deuterium on single-
atom alloy Pd/Cu surfaces as a function of temperature
were obtained using TPD experiments, as shown in
Figure 1a and b. The measurements were performed
on the 0.01 monolayer (ML) Pd/Cu(111) alloy surface,
which consists of 1% Pd in the form of individual,
isolated Pd atoms substituted into the Cu(111)
lattice.32�34 The surface was exposed to either hydro-
gen or deuterium at a selected sample temperature in
the range of 75�193 K. The sample was subsequently
warmed or cooled to 83 K, followed by the thermal

desorption measurement. The 75�193 K temperature
range reflects (i) the minimum temperature to which
our sample could be cooled and (ii) the maximum
temperature we could heat the sample to without
desorption of gaseous hydrogen or deuterium. It is
immediately clear that the uptakes of the two isotopes
on the 0.01 ML Pd/Cu(111) surface are very different.
Critically, the uptake of hydrogen decreases when
the temperature is raised, while deuterium's uptake
increases at higher sample temperature. Isotope effects
that lead to different rates of H versus D reactions are
common; however, the completely opposite behavior
observed here as a function of temperature is excep-
tional. Figure 1c shows a natural log plot of the two
uptake curves shown in Figure 1a and b as a function of
inverse temperature. These plots were used to extract
the apparent activation energy for the dissociative
adsorption process. In the case of deuterium, the
apparent activation energy was found to be 0.045 (
0.005 eV, and for hydrogen it was �0.023 ( 0.005 eV.
The small negative apparent activation barrier of
hydrogen on 0.01 ML Pd/Cu(111) suggests that the
dissociation process involves more than a single step.
Typically, negative apparent activation barriers in
Arrhenius plots are indicative of the presence of a
precursor state;26,39,40 however, we will show later in
our analysis that it also relates to the thermodynamics
of H uptake.
To elucidate the underlying mechanism and differ-

ences of the H2/D2 dissociation process on Pd/Cu(111),
we performed DFT calculations for the process. The
specific exchange�correlation functional usedwas the
optB88-vdW functional,41 which accounts for van der
Waals (vdW) dispersion forces within the nonlocal
vdW-DF scheme.42 Full details of the computational
setup are given in the Materials and Methods section.
The classical DFT potential energy barrier for H2 dis-
sociation was calculated on a Cu(111)-(3�3) surface
with a single Pd atom substitution (Figure 2a). Along
the minimum energy pathway of H2 dissociation, a
weak physisorption well was identified, with H2 found
1.9 Å above Pd. Starting from this physisorbed state
(with a binding energy of about�0.1 eV relative to a H2

molecule in the gas phase), the H�H bond dissociation
occurs above the Pd atom with an energy barrier of
0.46 eV. The barrier obtained here with the optB88-
vdW functional is slightly higher than that obtained in
previous DFT calculations using a standard generalized
gradient approximation functional, and both barriers
are much too high to account for the experimental
observations.35

Bearing inmind that the computed DFT barrier is too
high to account for the facile activation of H2 below
100 K, as observed in experiments, we now consider
how quantum nuclear effects may alter our physical
picture of the dissociation process. The simplest and
traditional first step is to consider how zero-point

A
RTIC

LE



KYRIAKOU ET AL . VOL. 8 ’ NO. 5 ’ 4827–4835 ’ 2014

www.acsnano.org

4829

Figure 2. (a) Potential energy surface for H2 dissociation from the physisorbed precursor state on the Pd/Cu(111) substrate.
The total energy of the clean surface and the H2 in the gas phase is used as the energy zero. Insets are top and side views of
initial physisorbed precursor state (H2*), transition state (TS), and final state (2H*).White, brown, and cyan spheres indicate H,
Cu, and Pd atoms, respectively. (b) Temperature dependence of the effective quantum energy barrier (relative to the gas
phase) obtained from harmonic quantum transition state theory calculations that take into account tunneling through the
chemisorption barrier and zero-point energies. It can be seen that below the quantum crossover temperature (260 K for H2,
190 K for D2) the effective energy barrier decreases as the temperature is lowered. The orange/pink regions of the graph
correspond to two different mechanisms for chemisorption below 80 K for H2 or 50 K for D2. These two routes to
chemisorption are the precursor-mediated process (c) or below 80 K for H2 (50 K for D2) a direct chemisorption for H2

incident on a Pd site (d).

Figure 1. Uptake of hydrogen and deuterium on 0.01ML Pd/Cu(111). (a) Uptake of hydrogen atoms on the alloy surface after
an exposure of 5 L of molecular hydrogen at different temperatures. (b) Uptake of deuterium atoms on the alloy surface after
an exposure of 200 L of molecular deuterium at different sample temperatures. The exposures of H2/D2 (5 L/200 L) were
chosen to yield comparable surface coveragesover the temperature rangeexamined. (c) Arrhenius plots for thedata shown in
(a) and (b). Circles represent hydrogen data points, and triangles are deuterium data points. (d) STM image of the 0.01 ML
Pd/Cu(111) alloy showing that at this coverage Pd exists as single atoms that appear as protrusions in the Cu(111) surface.
Scanning conditions: I = 0.04 nA, V = 0.08 V, scale bar = 1 nm.
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energy (ZPE) will alter the energetics of the process.
When we consider the effect of ZPE corrections, we do
indeed find that they lower the energy barrier to
dissociation. However, the reduction is small and the
barriers remain too high at 0.37 eV for H2 and 0.39 eV
for D2, as compared to the experimentally observed
apparent barriers (�0.023 and 0.045 eV for H2 and D2,
respectively). This indicates that the experimental re-
sults cannot be explained through a simple considera-
tion of the ZPE effect and that instead quantum
mechanical tunneling is likely to play an important role
in this process.
To account for quantum tunneling effects in this

system, we have used two path-integral-based ap-
proaches. Specifically, most calculations reported were
obtained with harmonic quantum transition state the-
ory (HQTST) (otherwise known as instanton theory),43

although themore sophisticated ab initio path integral
molecular dynamics (AIPIMD)44,45 approach was also
used. The HQTST method is an efficient path-integral-
based approach that includes quantum tunneling
by considering the spread of a “necklace” of beads
over the top of the dissociation barrier. The beads are
connected by mass- and temperature-dependent
springs, such that the classical limit (with all beads
contracted to a single point) is recovered at high
temperature and/or high mass. As the temperature is
lowered, these springs weaken and the beads sample
lower energy states on either side of the classical
saddle point, resulting in a lowering of the quantum
energy barrier due to tunneling through the classical
potential. The HQTST calculations were performed on
an analytical one-dimensional potential constructed to
resemble our DFT energy profile for dissociative ad-
sorption (Figure 2a). Figure 2b shows some of the key
results of the HQTST calculations wherein the effective
dissociation barriers for both H2 and D2 are plotted as
a function of temperature. It can be seen that below
the quantum-classical crossover temperature (which is
the temperature below which classical and quantum
mechanics diverge; in this system260K for H2, 190 K for

D2) the effective quantum energy barrier decreases as
the temperature is lowered. A lower barrier will result in
more facile chemisorption of H2 from the physisorbed
state following the precursor mechanism shown in
Figure 2c. At 80 K (50 K) the effective quantum barrier
for H2 (D2) to dissociatively chemisorb reaches zero
(relative to H2 or D2 in the gas phase). This indicates
that below these temperatures an incidentmolecule at
a Pd site could undergo barrierless dissociation if, prior
to doing so, it does not get trapped in the physisorbed
state, as illustrated schematically in Figure 2d.
The HQTST calculations reveal that it is mainly

tunneling that leads to the substantial reductions in
the effective quantum dissociation barriers. To test
this conclusion, we performed a separate set of AIPIMD
simulations inwhich the quantumdelocalization of the
breaking H2 bond was examined at various points
along the classical dissociation pathway. In AIPIMD
the forces on the atoms are computed “on the fly”,
and it does not rely on a predetermined potential
energy surface. A snapshot from an 85 K AIPIMD
simulation with the center of mass of the H2 fixed at
the classical saddle point is shown in Figure 3. Clearly
there is a large spread of the path integral beads
associated with the two hydrogen atoms. Delocaliza-
tion of the beads along the dissociation reaction
coordinate is a signature for quantum tunneling
through the potential barrier. The extent of the delo-
calization observed in the AIPIMD simulations is similar
to the spreading observed in the HQTST calculations at
the same temperature (Figure S1).
The path-integral-based DFT calculations reveal sig-

nificant tunneling through the dissociation barrier at
experimentally relevant temperatures, with a greater
extent of tunneling for H2 versus D2 dissociation. To
gain further insight into the experimentally observed
differences in the H2/D2 uptake, we performed a
series of KMC simulations, making use of the data
and insight gained from the various DFT calculations.
With no adjustments to the DFT-derived parameters
(energetics and reaction prefactors), these simulations

Figure 3. Top and side view snapshots taken from an 85 K ab initio path integralmolecular dynamics simulation of a single H2

at the classical saddle point for dissociative chemisorption on the Pd/Cu(111) surface. In this simulation each H atom is
represented by 16 path integral replicas (“beads”). The large spread of the beads along the dissociation reaction coordinate
indicates that at this temperature the H2 molecule can tunnel through the dissociation barrier.
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predict no quantifiable uptake of H (D) adatoms for the
two cases that employ (a) a DFT-derived (classical)
activation energy barrier and (b) a temperature-
dependent quantum tunneling barrier obtained via

the HQTST simulations. Therefore, to capture the ex-
perimentally observed trends, systematic adjustments
to the model parameters were performed until a
reasonable agreement between the experimentally
measured and model-predicted surface coverages
was reached. These adjustments were small (0.20 eV
or less) and were within the typical error bars asso-
ciated with DFT calculations of processes at surfaces.46

A more detailed account of these adjustments can
be found in the Supporting Information (Figure S4,
Table S1). In particular we found that the coverages
predicted by our KMC simulations are very sensitive to
the binding energy of H2 (D2) on the Pd sites. Perturba-
tions as small as 0.005 eV (stabilization) of H2 (D2) can
cause the surface coverages to increase by as much
as 20% from their original values, thereby indicating
that the binding strength of the precursor state plays
a critical role in the overall reaction. Accordingly, the
correct treatment of theweak interaction of H2/D2 with
the metal surface47,48 is highly desirable for the de-
tailed understanding of the phenomena studied here.
Figure 4 shows the results from the KMC simulations

for H2/D2 uptake, plotted against the experimental
observations. The surface coverage of H (D) adatoms
is found to decrease (increase) monotonically with an
increase in temperature, consistentwith the experimen-
tal trends. Our KMC results suggest that these opposite
trends for the surface coverages of H/D adatoms with
increasing temperature are due to the fact that H2

dissociation is thermodynamically controlled, while D2

dissociation is kinetically controlled over the entire tem-
perature regime.
In the case of H2, our KMC simulations indicate that

the decreasing trend of H adatom surface coverage
with temperature is dictated by the thermodynamics,
and not by the kinetics, of H2 dissociation at surface

Pd sites. In other words, the temperature-dependent
activation energy barrier for this step is too small under
all experimental conditions for it to be of great kinetic
relevance, and the H surface coverage is governed
by the thermodynamic driving force, i.e., the reaction
free energy of this step. Since this is an exothermic
step, an increase in temperature is expected to disfavor
H2 dissociation. In particular, the reaction free energy
of this elementary step increases with an increase in
temperature, which results in amonotonically decreas-
ing equilibrium constant. The decreasing H surface
coverage, and hence the negative apparent activa-
tion energy barrier, is a direct consequence of this
phenomenon.
Contrary to the H2 case just described, the mono-

tonically increasing trend in D adatom surface cover-
age is due to the fact that D2 dissociation is kinetically
controlled. The temperature-dependent activation
energy barrier for D2 dissociation at surface Pd sites
(Table S1, step 3) is large enough to ensure that it is the
kinetically relevant rate-controlling step over the entire

Figure 4. KMC simulation results for (a) H2 uptake and (b) D2 uptake, and their comparisonwith the experimentallymeasured
values. For parameter values used to obtain these results, see Table S1.

Figure 5. Determination of apparent activation energy
barrier for KMC simulations of D2 uptake. The logarithm of
total number of D2 dissociation events (Enet) is plotted
against the inverse temperature. The apparent activation
energy barrier, as calculated from the slope of the best-fit
line, is 0.032 eV, consistent with the experimentally deter-
mined value of 0.045 ( 0.005 eV.
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temperature regime. Consequently, the D surface cov-
erage is governed by the kinetics of this elementary
step, thereby resulting in a monotonically increasing
surface coveragewith increasing temperature. In order
to quantify this, we obtained the overall rate of D2

dissociation from our model (total number of D2 dis-
sociation events, as obtained from our KMC model:
“Enet”). Plotting the natural log of Enet against 1/T
(where T = temperature (K)) yields the apparent activa-
tion energy barrier of the overall reaction, as shown in
Figure 5. This apparent activation energy barrier, as
obtained from this analysis, is 0.032 eV, consistent with
its experimental value (0.045 ( 0.005 eV).
The results of our KMC simulations suggest that

both H2 and D2 dissociation proceed through the same
reaction pathway. The dissociation of H2 (D2) to give
surface H(D) adatoms occurs exclusively over Pd sites;
for the temperature range employed in our experi-
ments, no dissociation is observed over Cu sites be-
cause of the prohibitively high activation energy
barrier. The KMC simulations suggest that H2 (D2) must
land directly on or adjacent to surface Pd atoms, as the
precursor states in the vicinity of Cu atoms are extre-
mely short-lived and prefer to desorb at all tempera-
tures rather than diffuse across the surface to a Pd site.
This was verified by reducing the rate constants for H2

(D2) diffusion steps by several orders of magnitude
from the calculated values and observing that the final
results were essentially independent of the diffusion
rates.
Finally, we note that our calculations indicate that

dissociation can occur through two distinct processes,
each due to the combination of van der Waals inter-
actions and quantum tunneling. The first process
involves the trapping of H2 in the physisorbed state,
which acts as a precursor to the dissociative chemi-
sorption process (Figure 2a and sketched in Figure 2c).
The second mechanism may become possible at very
low temperatures when quantum effects are so pro-
nounced that the effective chemisorption barrier drops
below the gas phase H2 energy zero (sketched in
Figure 2d). Our HQTST calculations predict that this
can happen at less than ∼80 K for H2 and less than
∼50 K for D2. This direct dissociation process occurs at
lower temperatures than we have been able to probe

in the current TPD experiments, but it is an intriguing
implication of the calculations that we hope to exam-
ine in future studies. More generally, the results of this
study suggest a novel approach for inducing selective
reactions or isotope separations that utilize the vastly
different rates of bond cleavage involving hydrogen
and deuterium. For example, many important surface-
catalyzed reactions involve C�H or O�H bond
cleavage.49�52 If the C or O atom remains at
the same surface site before and after the bond
breaks and most of the motion is of the light H atom,
similar temperature-dependent activation barriers
may occur and novel ways to control bond breaking
can be developed.

CONCLUSIONS

We have shown experimentally that the dissociation
of H2 and D2 molecules at single Pd atom surface sites
in a Pd/Cu alloy occurs at vastly different rates andwith
opposite trends as a function of sample temperature.
Traditional DFT-based methods for modeling dissocia-
tion barriers are inadequate for explaining these results.
Our experimental observations motivated us to take a
theoretical approach using path-integral-based DFT si-
mulations that account for the role of quantum nuclear
effects in H2/D2 dissociation, coupledwith KMC tomodel
the dissociation rates over the relevant range of tem-
peratures. Our theoretical data reveal that the dissocia-
tion barriers are strongly temperature dependent and
that H2/D2 dissociation is dictated by totally different
thermodynamic/kinetic parameters. Within our theoreti-
cal framework, we see a positive slope in Arrhenius plots
for H2 uptake, which originates from temperature-
dependent quantum tunneling aided by a precursor
state, andanegative slope forD2,which canbeexplained
by a scheme in which thermally assisted barrier crossing
dominates tunneling and the effect of the precursor
state. The breaking of chemical bonds involving H atoms
is ubiquitous in nature, and our results provide a unique
insight into the highly temperature-dependent quantum
effects that dictate these rates.We also hope to apply this
refined theoretical approach to other light-atom systems
in order to search for regimeswhere important chemistry
may become more controllable once quantum effects
are fully understood and quantified.

MATERIALS AND METHODS

Experimental Procedures. Measurements were carried out
in two UHV chambers, both of which have been described in
detail elsewhere.23,33,34 The first UHV chamber was operated at
a base pressure of <1 � 10�10 mbar and was equipped with
a quadrupole mass spectrometer, used for temperature-
programmed desorption measurements as well as LEED and
AES capabilities. The Cu(111) crystal could be resistively heated
to 775 K and cooled to 73 K. Normally the crystal could only be
cooled to 83 K with liquid nitrogen, but lower temperatures
were reached by bubbling helium gas through the cryogenic

dewar. The sample was cleaned by cycles of Ar sputtering
(1.5 kV, 11 μA) followed by annealing at 725 K. The second
chamber, an Omicron Nanotechnology LT-UHV STM, was oper-
ated at a base pressure of <5 � 10�11 mbar. The instrument
incorporated a preparation chamber in which sample cleaning,
annealing, and Pd deposition were performed. Pd deposition
was performed in both UHV systems using flux-monitored
Omicron Nanotechnology Focus EFM 3 electron beam evapora-
tors with the Cu(111) samples held at 380 K during deposition.
Pd coverages were calibrated using both AES and TPD of CO.
Hydrogen (99.999%, AirGas) and deuterium (99.999%, AirGas)

A
RTIC

LE



KYRIAKOU ET AL . VOL. 8 ’ NO. 5 ’ 4827–4835 ’ 2014

www.acsnano.org

4833

were used in our study. Hydrogen coverage calculations were
based on a saturation coverage of unity when hydrogen was
adsorbed on a 5 ML Pd film, assuming that the film terminates
as Pd(111).

Theoretical Calculations. Calculations of the classical barrier
and pathway for H2/D2 dissociation were performed using
the VASP code53 with projector augmented wave (PAW)
potentials.54 van der Waals dispersion forces were accounted
for through the optB88-vdW functional,41 which accounts for
dispersion forces within the nonlocal vdW-DF scheme42 and has
been implemented in VASP by Klimes et al.55 The electronic
states were expanded using plane waves with an energy cutoff
of 600 eV. The Pd/Cu(111) surface was modeled by a five-layer
slabwith a (3�3) surface unit cell with a Cu atom at the top layer
substituted by a Pd atom. A vacuum layer equivalent to six
atomic layers was used. The Brillouin zone was sampled using
a (8�8�1) k-point mesh based on the Monkhorst�Pack
scheme.56 The two bottom-most Cu(111) layers were fixed
during relaxation. All structures were fully relaxed until the
Hellmann�Feynman forces acting on the atoms were smaller
than 0.01 eV/Å. The climbing image nudged elastic band
(CI-NEB) method57 was used to calculate the classical H2/D2

activation energy barrier. ZPE corrections to the classical barrier
were obtained simply by taking the difference between the sum
of real-valued harmonic vibrational frequencies at the transition
state and at the physisorbed (initial) state.

Quantum tunneling effects were accounted for using two
path-integral-based approaches. Most results reported have
been obtained from the harmonic quantum transition state
theory method (also known as instanton) on an analytic poten-
tial specifically fitted to a DFT potential energy surface in which
the atoms in the substrate were fixed at the positions they
adopt prior to H2 dissociation. Fixing the surface in this manner
is an approximation, but it also gives a sensible reaction
coordinate, as quantum effects frequently result in corner-
cutting of the classical minimum energy path during reactions.
Here the fixed surface results in a chemisorption barrier of
468meV, only 6meV higher than the barrier obtained when the
surface is allowed to fully relax during the dissociation process.
We used 200 beads in our instanton calculations, which were
converged by comparing to 100 and 500 bead test calculations.
AIPIMD simulations were also performed using 16 imaginary
time-slices (knownas beads) propagatedby Langevindynamics at
85 K and forces computed on-the-fly using DFT. For efficiency
reasons we used a slightly less expensive computational setup
than the barrier height calculations above. In particular, a three-
layer slab was used with the bottom layer fixed, and the Brillouin
zone was sampled with a (4�4�1) k-point mesh. These reduced
settings result in a classical chemisorption barrier of 465 meV,
which is a very good representation of the fully converged system.

The kmos58 framework was used for the implementation of
kinetic Monte Carlo simulations. From a given state of the
system, the KMC algorithm determines the probability of all
possible transitions to other states according to the user-defined
rates of all available elementary reaction steps. A reaction step is
then chosen in accordancewith this probability distribution, and
the system assumes the new state determined by that reaction
step. The simulation has no memory; that is, the probability of
undergoing a particular transition is determined only by the
current state of the system and not by any prior configuration.
The simulation time step after each transition is selected ran-
domly from a Poisson distribution with a mean that equals the
sumof the rates of all available transitions from the original state.
Simulations are allowed to proceed until the desired simulation
time is reached (50 s forH2, 200 s forD2, same as the dosing times
in the experiments).

The code input comprises the lattice structure, binding
energies and minimum energy configurations of all the species
involved in the reaction mechanism, activation energy barriers
and pre-exponential factors for all elementary steps, simulation
time, and the reaction temperature and pressure. All simula-
tions were performed on a Pd/Cu catalytic surface represented
as a lattice in which all types of atop (Pd, Cu) and 3-fold hollow
(Pd/Cu, Cu) siteswere explicitly taken into account (see Figure S2).
In particular, the lattice structure was represented by a 20�20

Cu(111) grid with periodic boundary conditions. One percent of
the surface Cu atoms were randomly substituted by Pd atoms
with the restriction that they could not be nearest neighbors.
This is in agreement with studies that have shown that Pd atoms
disperse in the surface layer of Cu(111)59 and that themost stable
configurations for alloys with low Pd content (and coverages
below XPd = 0.4) are those where the surface Pd atoms are
surrounded by Cu atoms.32 This is also consistent with STM
observations reported in past experimental studies.60,61 H2 (D2)
molecular precursors were only allowed to adsorb atop surface
atoms,whileH (D) adatomsoccupiedonly hollow sites, consistent
with ourDFT calculations indicating that adsorptionofH adatoms
is ∼0.4 eV more stable on the hollow sites than the atop sites.
Our DFT calculations show that adsorption of H (D) adatoms is
thermodynamically favorable in up to three hollow sites around a
single metal surface atom. Adsorption of a fourth, fifth, or sixth
H (D) adatom around a metal surface atom is energetically
unfavorable, with substantially weaker binding compared to that
on other surface sites. The KMC simulations therefore allowed
adsorption in up to three hollow sites around each metal surface
atom. Simulations were performed at similar conditions as ex-
periments: the surface coverage of H (D) was recorded after
dosing with 10�10 atm H2 for 50 s (10�9 atm D2 for 200 s) at
fixed temperatures in the range 75�195 K. Each KMC simulation
was performed a total of 25 times to obtain an average value
of final surface coverage for each experimental condition being
simulated.

All the model parameters, with the exception of sticking
coefficients for H2 (D2), were rigorously derived from our DFT
calculations. The sticking coefficients for the H2 (D2) adsorption
steps were assumed to be 1. The enthalpy estimates for the
surface species and transition states were obtained by correct-
ing the electronic energies, as obtained from our DFT calcula-
tions, for ZPE contributions and temperature variations. The
temperature-dependent activation energy barriers for the
H2/D2 dissociation steps on Pd (Table S1, step 3) were obtained
from the HQTST calculations. For our modeling purposes, these
quantum tunneling barriers were approximated to be linear
functions of temperature until they reach their classical values,
as shown in Figure S3. The classical activation energy barrier
for the H2 (D2) dissociation step on Cu (Table S1, step 4) was
obtained using the CI-NEB method;57 the barriers for all the
surface diffusion steps (Table S1, steps 5�9) were found to be
insensitive parameters for the KMC simulations and were fixed
at 0.12 eV, in agreement with our earlier studies.62 The entropy
values were directly calculated from the vibrational frequencies
of the respective states, and the pre-exponential factors were
calculated from entropy differences between the initial and
transition states of the respective elementary steps. The rate
constants for reactions involving bond formation or bond
scission were calculated using transition state theory; collision
theory was employed to calculate the rate constants for the
adsorption�desorption steps.63,64
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