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Abstract 

Natural methane hydrate soil sediments attract worldwide interest, as there is huge 

commercial potential in the immense global deposits of methane hydrate that lies under 

deep seabeds and permafrost regions. Methane hydrate develops and exists in the pores 

of soil sediments under the conditions of high pressure and low temperature. The 

methane hydrate-bearing sediment can be exploited to extract methane gas, as methane 

gas is the predominant element of natural gas. However, the sediment’s geomechanical 

behaviour is poorly understood, but it has impacts on geotechnical issues, such as the 

instability of the seabed sediment layers and wellbore collapse, and it may also cause 

various negative environmental effects, particularly in regards to the exploration and 

exploitation process. Hence, further scientific research is needed. 

        Due to the limitations of in-situ and laboratory studies, in this PhD research, a 

numerical method Discrete Element Method (DEM) was employed to provide a unique 

particle-scale insight into the granular geomechanical behaviours of hydrate-bearing 

sediment. A comprehensive DEM research was performed in order to simulate two 

commonly used geomechanical investigation methods employed in hydrate-related 

studies: the triaxial compression test and seismic wave propagation. 

        Accordingly, the six major contributions of this DEM research are: (1) two typical 

types of microscopic hydrate distribution patterns within soil pores were investigated 

via a consistent basic soil model: the pore-filling hydrate pattern and the cementation 

hydrate pattern; (2) The large-strain deformation and the critical state behaviours were 

explored; (3) a wave propagation study was performed using the DEM hydrate-bearing 

sediment samples; (4) the bonding strength effect in the cementation model was 

systematically discussed; (5) the effect of elongated soil particles on the 

geomechanical behaviours of sediments was studied; and most importantly (6) a 

comprehensive particle-scale microscopic analysis was conducted to assist the 

interpretation of the macro responses in the in-situ, laboratory and numerical studies. 
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Chapter 1 

Introduction 

 

1.1 Background and motivation 

1.1.1 Introduction of methane hydrate 

Methane hydrate (CH4•5.75H2O) is a solid matter formed from water (H2O) and 

methane (CH4) gas compounding under the high-pressure and low-temperature 

condition, and is an ice-like clathrate crystalline compound. It looks very much like 

ice and snow or solid alcohol in appearance, and is combustible upon ignition. Hence, 

as shown in Figure 1.1, it is also called “Burning Ice” or “Fiery Ice”. 

 

Figure 1.1: The burning methane hydrate; the inset: molecule structure of methane hydrate 

(United States Geological Survey, 2013). 

        It is positively believed that the history of human’s fuel use will be prolonged for 

a few centuries in the case of the successful large-scale commercial exploitation of 

methane hydrate. Methane hydrate contains a huge quantity of heat, in that 164 m3 

methane gas can be released from 1 m3 methane hydrate. It is also known that methane 

gas is the main constituent of natural gas. The worldwide estimated deposit of methane 

http://en.wikipedia.org/wiki/United_States_Geological_Survey
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hydrate is an astonishingly large figure, which is between tens of thousand trillion and 

hundreds of thousand trillion cubic meters. Due to the insufficient work actually done 

on geological exploration, the exact volume of the reserves of methane hydrate has not 

yet been determined. It is reckoned that the total organic carbon of methane hydrate 

amounts to more than twice that of the whole world’s known reserves of oil, coal and 

conventional natural gas (Kvenvolden, 1998). The other advantage of methane hydrate 

is that methane hydrate only produces a small quantity of carbon dioxide and water 

upon combustion, compared to oil, coal and other fossil fuels that produce additionally 

miscellaneous oxide pollution. Together this makes methane hydrate a cleaner energy 

resource with huge deposit.  

        Since the 1960s, the research and exploration of methane hydrate has drawn more 

and more attention globally. On 12th March 2013, Japan Oil, Gas and Metals National 

Corporation (JOGMEC) launched a large-scale industrial exploration and successfully 

extracted methane from a deep-sea methane hydrate sediment layer near the Aichi 

Prefecture of Japan by means of a depressurization technology, thus making Japan the 

first country to master the technology of seabed natural gas hydrate excavation. In the 

depressurization process, the well pressure is decreased in order to allow flow into the 

well and cause the methane hydrate dissociation by the pressure reduction in the 

surrounding soil sediment. By pumping the water out of the methane hydrate so as to 

depressurize it, the methane is separated from the water and finally extracted. Japan is 

expecting to realize commercial exploitation on an industry scale by 2018. This was 

the first time that methane gas was successfully extracted from a deep seabed. It is 

good news for Japan, a country where natural resources are scarce, and also a big 

breakthrough in the new energy development for the world.  

1.1.2 Methane hydrate sediments 

Methane hydrate can be found in the deep seabed sediment or terrestrial permafrost 

regions, because only under high pressure and low temperature conditions can it 

maintain stability. So that methane gas and water forms such an ice-like crystalline 

material (Brugada et al., 2010). Figure 1.2 shows the known and inferred locations of 

methane hydrate-bearing sediments in the ocean and the permafrost regions worldwide 
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(Collett et al., 2009). Moreover, the amount of methane hydrate in the sea is 

considerably greater than that found in the permafrost areas. One of the reasons for 

this may be that the deep seabed provides sufficient methane gas for the hydrate 

formation, due to the production of bacteria methane and the upwelling of methane 

gas caused by the oceanic plate movement. 

 

Figure 1.2: Known and inferred locations of methane hydrate occurrences worldwide (Collett 

et al., 2009) 

        Methane hydrate-bearing sediment is the soil sediment layer in which methane 

hydrate exits within the pore space of the sediment under the low-temperature and 

high-pressure deep seabeds or the terrestrial permafrost regions, as illustrated in Figure 

1.3. Generally, methane hydrate develops and exists in the pores of highly compacted 

soil sediments in various distribution patterns, as shown schematically in Figure 1.4 

(Soga et al., 2006). The gradual formation of methane hydrate within the pore space 

of the soil sediment was allowed by the conditions of high pressure and low 

temperature (for example 100 kPa at -80 oC and 2.5 MPa at 0 oC), until water or 

methane gas is 100% used in the formation. As shown in Figure 1.5, the pressure and 

temperature conditions control the stability of hydrates. The hydrate-gas phase 

equilibrium line separates hydrates (above the line) from the free gas phase (below the 

line). This is the reason that methane hydrate sediments are usually found under the 

deep seabed and the permafrost regions. 
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Figure 1.3: Sketch diagram of methane hydrate sediment layer zone under deep seabeds and 

permafrost regions 

 

Figure 1.4: 2 Dimensions sketch diagram of natural methane hydrate soil (Soga et al., 2006) 

 

Figure 1.5: Methane hydrate phase equilibrium relationship (modified from Soga et al., 2006) 
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1.1.3 Difficulties in the exploitation of hydrate-bearing sediments 

Currently, the large-scale commercial exploitation of methane hydrate from the 

hydrate-bearing sediments generally confronts three main problems: (1) the technical 

difficulties; (2) the very high cost; and (3) the environmental disruption. As the 

exploitation of methane hydrate requires complex and integrated systematic 

engineering, there is no mature and economical technical solutions for exploitation as 

of yet, although Japan has experimentally extract methane gas from the methane 

hydrate sediment in industrial scale. The most acceptable exploitation methods include 

heat injection, depressurization and chemical injection, which are all costly at present 

and cannot ensure a stable and safe production process. 

        From the perspective of the particular geological structure of hydrate-bearing 

sediments, since methane hydrate typically exists as a filling material with various 

distribution patterns in the sediments, its formation and dissociation effects on the 

sediment’s strength may induce serious geological disasters and cause geomechanical 

issues, which do harm to existing underground or under-seabed constructions such as 

submarine transmission or communication cables. There is also a wellbore stability 

issue and problems with offshore oil and gas drilling platforms. One example is the 

BP Gulf explosion in which 3 million gallons of crude oil was poured into the Gulf of 

Mexico in 2010. The oil drilling process caused the instability of the hydrate-bearing 

sediment layer near the wellbore, hence inducing the explosion of the platform due to 

a series of unpredictable issues. 

        Due to the complexity of its soil sediment’s geomechanical properties and the 

induced instability of its chemical property due to geomechanical isssues, the 

exploitation of gas hydrate may cause various negative environmental effects such as 

greenhouse effect and damage to ocean ecology balance. It is deemed that methane 

contributes to global warming 10~20 times more than carbon dioxide does. Even 

minimal damage to methane hydrate deposits is enough to cause a large quantity of 

methane gas to release. In addition, if there is a blowout accident in the exploitation 

process, it may cause serious disasters such as tsunamis, submarine landslides or sea-

water poisoning.  
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        Therefore, methane hydrate, as an energy of the future, possesses an impressive 

prospect, but its development and utilization is a “double-edged sword”, and requires 

careful approach. In these cases, an in-depth understanding of the geomechanical 

behaviours of the hydrate-bearing sediments is necessary to be able to improve the 

characterization and to address both the scientific and industrial needs from one of the 

essential aspects of methane hydrate research – the mechanism of sediment instability 

in the drilling process and near the wellbore. 

1.2 Objectives, research methods and main contributions 

1.2.1 Current research gap of geomechanical investigations into hydrate-

bearing sediment 

Currently, a combination of various research methods are being conducted to 

investigate the geomechanical behaviours of hydrate-bearing sediments, including 

field work, experimental tests and numerical modelling, as briefly summarized in 

Table 1.1. The seismic technology is mainly used as a geophysics tool for mapping the 

occurrences of hydrate-bearing sediments, as well as for estimating the saturation of 

hydrate in the sediment. Besides this, the study of the hydrate-bearing sediments’ 

strength and how the sediments deform under a loading situation is essential to the 

industrial analysis of the sediment’s failure near the borehole; and this is also 

significant to the evaluation of the seafloor stability (Waite et al., 2009) 

        The in-situ field and laboratory studies provide real data for further studies even 

though there are still plenty of limitations. One of these limitations is the challenge to 

proper interpret data without exact knowledge of the hydrate formation, distribution 

and saturation. On the other hand, most of the existing in-situ, laboratory studies and 

the numerical modelling methods study only the macro-scale geomechanical 

behaviours of the methane hydrate soil sediment, missing the links into micro-scale 

methane hydrate formation and distribution in the pore space of the sediment. It is also 

important to relate the micro-mechanical behaviours to the geomechanical behaviours 

observed in the on-site and laboratory studies. 
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Table 1.1: Methods of geomechanical investigation into methane hydrate sediments 

Geomechanical 

Investigation 

Approach 

Field 

Work 

Laboratory 

Test 

Numerical 

Modelling 

 

 

Main Method 

 Mapping 

technologies: 

seismic / 

other remote 

sensing tests 

 On-site 

sample 

drilling 

 Synthetic 

sample 

formation 

 Triaxial 

compression 

test 

 Seismic 

wave test 

 Finite 

Element 

Modelling 

 Constitutive 

Modelling 

 Discrete 

Element 

Modelling 

 

        As a complex granular material, the hydrate-bearing sediment, in nature, is not a 

continuum mass but reflects discrete nature. Within the soil voids, there is hydrate, 

making the hydrate-bearing sediment a complex aggregate of discrete particles of 

various sizes and shapes interacting with one another at their contact points. Therefore, 

the essential and crucial particle-scale investigation is still a research gap which should 

be systematically conducted.  

1.2.2 Objectives, research methods and main contributions 

In this PhD research, the numerical method Discrete Element Method (DEM) was 

employed for more insights into the granular geomechanical behaviours of the 

methane hydrate soil sediment. DEM is a useful numerical simulation tool that models 

granular materials by specifically considering their actual particulate nature. It also 

becomes much easier and more convenient to properly control the methane hydrate 

formation, distribution and saturation. And it is a cheap and safe way to simulate the 

experiments. Furthermore, the DEM research results can be compared with lab studies 

in order to improve and develop our understanding of its physical properties. For the 

simplification, in this research, the temperature is always assumed to be below 0 oC 

and the pressure at the low temperature should be set above the hydrate-gas phase 
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equilibrium line as shown in Figure 1.5, in order to avoid the equilibrium phase 

transition and keep the sample at the hydrate phase all the time. 

        In this research, a comprehensive DEM simulation study was performed to 

investigate the material micro-mechanical behaviour in two typical geomechanical 

methods: the triaxial compression test and seismic wave propagation. Accordingly, 

this DEM research mainly contributes six major advances to the study of the 

geomechanics of methane hydrate-bearing soil sediments from the particle scale. 

        (1) Two typical types of microscopic hydrate distribution patterns within soil 

pores were studied via a consistent basic soil model: the pore-filling distribution 

pattern and the cementation distribution pattern.   

        In most of the previous DEM studies (Brugada et al. 2010, Jung et al. 2012, Jiang 

et al. 2013), DEM was employed to simulate only one hydrate distribution pattern – 

pore-filling or cementation. There was no consistent DEM model for the 

comprehensive comparisons among different hydrate distribution patterns. Hence, it is 

important to build such a consistent hydrate-bearing sediment model for various 

hydrate distribution patterns, in order to conduct the comparison studies. 

        (2) The large-strain deformation and the critical state behaviours were explored. 

        In the experimental research, there are the limitations for conducting the large-

strain deformation study and obtain the critical state behaviours of hydrate-bearing 

sediments. And in the previous DEM studies, the critical state behaviours were not 

discussed systematically. A good understanding of critical state behaviour is crucial 

for developing a comprehensive modelling of the methane hydrate behaviour. Thus, 

our interest in the sediments’ behaviours extended to the large strain deformation and 

critical state behaviours in the triaxial tests. 

        (3) Wave propagation was simulated within the DEM hydrate-bearing sediment 

samples.  

        Various seismic technologies and remote sensing data are used for identifying the 

occurrence and concentration of hydrate in the sediment, because the existence of 
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hydrate causes a sensitive increase in the propagated wave velocity due to the increase 

in the stiffness (Soga et al., 2006; Dai et al., 2008; Hutchinson et al., 2008; Jones et al., 

2008; Waite et al., 2009). Hence, the study of small-strain stiffness is crucial to the 

geomechanical investigation of hydrate-bearing sediments as some investigations 

compared the actual hydrate formation with the wave responses. But, to this day, none 

of the methane hydrate research on the wave propagation used the method of DEM 

which reflects the particle-scale behaviours of the sediment. This is a big research gap 

for the microscopic study of the geomechanical behaviours of hydrate-bearing 

sediments. 

        (4) The bonding strength effect in the cementation model was systematically 

discussed.  

        In the research on the cementation pattern, the effect of hydrate bonding strength 

in the DEM simulations has never been discussed systematically in terms of various 

aspects. However, it is essential to better understand how the given bonding strength 

influences mechanical behaviours. 

        (5) The effect of elongated soil particles on the geomechanical behaviours of the 

sediments was studied. 

        Within the hydrate-bearing sediment, there are a complex aggregate of discrete 

particles of various sizes and shapes interacting with one another at contact points. But 

all the previous DEM studies were performed assuming that all the soil and hydrate 

particles were spheres, but in fact actual shape of natural soil particles could dominate 

the sediment’s mechanical behaviour. 

       (6) And most importantly, a comprehensive particle-scale microscopic 

discussions and analysis were conducted accordingly. 

        DEM is regarded as a competent tool in the particle-scale microscopic study, but 

the published DEM studies focused mainly on the macroscopic behaviours of the 

sediments compared to the experimental data, while they did not provide the particle-

scale analysis for the obtained mechanical behaviours. 



1. Introduction 

 

44 
 

1.3 Outline of the thesis 

This PhD thesis is organized into eight main chapters, as well as three appendices for 

some further discussions and information. The content of each chapter and appendix 

is described as follows: 

Chapter 1: 

        Chapter 1 introduces the background of methane hydrate and the hydrate-bearing 

sediment. It also describes the motivation of an in-depth understanding of the 

geomechanical behaviours of hydrate-bearing sediments. Moreover, the objective and 

research method are proposed, and the main contributions of this PhD research are 

presented. 

Chapter 2: 

        The hydrate distribution patterns in the hydrate-bearing sediments are presented 

in this chapter, as well as the granular material behaviour of the sediment. Past research 

regarding the geomechanical behaviour of the sediment by field work and laboratory 

studies are reviewed. And the previous DEM studies of hydrate-bearing sediments are 

also presented. 

Chapter 3: 

        A review of the numerical tool in this research, Discrete Element Modelling by 

Particle Flow Code 3 Dimensions (PFC3D) is presented. Afterwards, this chapter 

describes the sample preparation of the DEM hydrate-bearing soil samples with pore-

filling and cementation hydrate distribution patterns. The sample preparation 

procedures are introduced in the aspects of their important principles. The preparation 

of the pore-filling and cementation models are stated in detail, and the prepared models 

will be used in the simulations described in Chapter 4 and 5. Furthermore, the two 

hydrate growth patterns in the cementation model with various bonding strength are 

exhibited and prepared separately so as to make the comparisons in Chapter 6. In order 
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to investigate the shape effect of the elongated soil particles (Chapter 7), the sample 

preparation of hydrate-bearing sediments with elongated soil particles is also presented. 

Chapter 4: 

        A series of drained triaxial compression tests are systematically performed to 

study the geomechanical effects of hydrate saturation (Sh) and hydrate growth patterns 

on hydrate-bearing samples. Comparisons of various aspects between the pore-filling 

and cementation models are made. We explore the effects of hydrate saturation and 

growth patterns on the sediments’ stiffness, strength and volume change. Besides this, 

our interest in the sediments’ behaviours extends to the large strain deformation and 

the critical state behaviours in the triaxial tests, as these cannot be obtained easily in 

the laboratory studies due to the limitations. A particle-scale micro-investigation into 

the DEM hydrate-bearing sediments is also performed, including the bond breakage 

between particles throughout the tests, the particles’ contact information, as well as the 

particle-particle contact force contribution to the total deviatoric stress. All the 

particle-level analysis assists interpretation of the macro responses discussed in this 

chapter. 

Chapter 5: 

        The relationship between wave velocity (shear wave and compression wave) and 

hydrate saturation is established by the DEM simulations. This chapter also shows the 

DEM simulations for wave propagation within the hydrate-bearing sediment helps 

relate the obtained wave velocity to the hydrate saturation, and also relate the small-

strain stiffness with the saturation, as well as characterize hydrate-bearing sediments 

with seismic data. In addition, it may be concluded that the initial state behaviours may 

have an influence on the large strain behaviour of hydrate-bearing sediments. 

Chapter 6: 

        In this chapter, drained triaxial compressional tests are systematically conducted 

to study the effects of hydrate growth patterns and hydrate bonding strength in the 

cementation model. The comparisons between the coating and contact-gathering 
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models are made through the stress-strain and volumetric responses. We also explore 

the effects of bonding strength on the sediments’ stiffness, strength and large strain 

deformation behaviour in the triaxial tests. Furthermore, we monitor the bond breakage 

between particles throughout the tests, as well as the particles’ contact information -- 

the particles’ contact force contribution to the total measured deviatoric stress. A 

discussion is also raised regarding the effect of the hydrate/soil contact stiffness ratio 

on the strength of the samples. In addition, the comparisons of measuring the stresses 

and strains are made using three measurement techniques: measurement spheres (local 

measurement), average particles’ contact forces (global measurement) and wall-based 

logic (boundary measurement). 

Chapter 7: 

        The soil particles are modelled separately using spherical particles and elongated 

clumps with two different aspect ratios, in order to discuss the influence of the soil 

particle shape effect on the geomechanical behaviour of hydrate-bearing sediments. 

The drained triaxial compression tests are conducted to make a comparison between 

how pore-filling and cementation models interacted with both spherical and elongated 

soil particles. There is also a discussion on how the elongated shape of soil particles 

influences the anisotropy in the contact orientation. 

Chapter 8: 

        Chapter 8 reaches a series of conclusions on the work presented in this thesis. The 

contributions made by this thesis towards the macro- and micro- investigations of the 

hydrate-bearing sediments are highlighted. Furthermore, recommendations for future 

research work are given here. 

Appendix A: 

        In order to calculate the hydrate saturation more accurately in various situations 

in the future DEM studies, in this appendix, three methods are proposed for the 

calculation of hydrate saturation when all the particles are spherical: accurate 

calculation, close packing and wasted space volume at particle contacts. 
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Appendix B: 

        Based on the simulations in Chapter 4, various stress paths are obtained for the 

pore-filling and cementation models, by which the yield surfaces are plotted in order 

to investigate the effect of the presence of hydrates. 

Appendix C: 

        In this appendix, the pure soil samples (with spherical soil particles or elongated 

soil particles) and the according hydrate-bearing sediment samples as described in 

Chapter 4 and Chapter 7 are programmed for a microstructure evolution study. 

Appendix D: 

        A brief report of the methane hydrate industry is made in this appendix, including 

the current needs and outlook of natural gas industry, the exploitation methods, the 

technology difficulties and the contributions conducted by countries, as well as the 

commercial potential of methane hydrate exploitation.  
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Chapter 2 

Literature review 

 

2.1 Geomechanical investigations of hydrate-bearing sediments 

2.1.1 Granular material behaviour of hydrate-bearing sediment 

As an inherently discontinuous medium, soils are considered as granular material. Its 

granular characteristics such as structure and fabric governs the distinct and complex 

response of soil to imposed loads and deformations. Due to the small size and the 

opaqueness of soil grains, however, it is not easy to monitor the relationship between 

the soil mechanical behaviours and its granular characteristics. Recent development of 

the experimental microscopic technologies and the numerical methods have improved 

the study of the mechanical behaviour of soils systematically. 

The hydrate-bearing soil is a more complex granular material than the pure 

granular soil, because it contains methane hydrate within its pores hence showing 

different mechanical behaviours from normal soils. Therefore, there is a need to 

investigate the mechanical behaviours and its relationship to the micro-mechanisms of 

hydrate-bearing granulate soil.  

Figure 2.1 shows the methane hydrate resource pyramid (U. S. Department of 

Energy, 2011) which illustrates hydrate resources on the basis of reservoir type, gas 

recoverability, and estimated total potential natural gas quantity. Hydrate resources 

that are the most easily recoverable are seated at the top of the pyramid, while those 

that are the most technically challenging to extract lie at the bottom of the pyramid. 

Estimates of the total volume of natural gas resource contained in each reservoir type 

are also indicated (less at the top and more at the bottom). Tackling the challenges of 

safe and economic development of this energy resource requires continuing research 
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to decide which exploring and producing technologies will be suitable for the specific 

hydrate-bearing sediment deposit.  

 

Figure 2.1: The methane hydrate resource pyramid (Courtesy of Science Magazine: U. S. 

Department of Energy, 2011) 

For the purpose of making comprehensive comparisons between the numerical 

study of the hydrate-bearing sediments in this PhD research and the current 

experimental work conducted by other research teams, the sand was considered as the 

focus of the soil in the sediment, as the past and current exploration of methane hydrate 

focuses on the sand rather than the other fine-grained soil. This can minimize the 

difficulties and challenges of the technical production (Boswell and Collect, 2006; JIP 

Leg II Science Team, 2009), which can also benefit the commercial purpose of 

conducting the methane hydrate sediment research.  The study of the methane hydrate 

fine-grained soil deposits has not been conducted systematically, because there is less 

interest in them from the perspective of resource potential, and there are difficulties in 

hydrate formation in mechanical testing (Waite et al., 2009). Furthermore, the 

numerical simulation method Discrete Element Modelling (DEM) used in this PhD 

research is a good tool for the research of sands, but not for clay. Hence, this literature 

review is concerned with the hydrate-bearing sandy sediments. 
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2.1.2 Hydrate distribution patterns in hydrate-bearing sediments 

Methane hydrate-bearing sediment is the soil sediment layer in which methane hydrate 

exits within the pore space of the sediment. These sediments are found under deep 

seabeds and the permafrost regions. Generally, under the conditions of low 

temperature and high pressure, methane hydrate develops and exists in the pores of 

highly compacted soil sediments with various distribution patterns.  

        The hydrate growth and distribution patterns are different within the pores of the 

sediments, which include pore-filling, cementation, load-bearing, supporting-matrix, 

patchy pattern, etc.. The comprehensive geophysical research reviews (Soga et al., 

2006; Waite et al., 2009) have shown that the pore-scale growth patterns of hydrates 

strongly control the macro-scale geophysical behavours of methane hydrate soil 

sediments. 

        Among all the known hydrate distribution patterns, the most typical patterns are 

the pore-filling pattern and the cementation pattern, which are discussed in Section 2.2, 

as shown in Figure 2.2. In the pore-filling pattern, hydrates freely grow in the pores 

without connecting two or more soil particles together (Helgerud et al., 1999; Soga, et 

al., 2006). However, in the cementation pattern, hydrates grow at the inter-granular 

contacts and along the soil surface, and the compacted soil skeleton is bonded by the 

hydrates, while the soil-soil contacts are not bonded (Dvorkin et al., 1999; Soga et al., 

2006). In both patterns, the soil skeleton, which has been formed by consolidation 

under high pressure, is not broken by the growth of hydrates inside the pores.  

 

Figure 2.2: 2-Dimension sketch of the hydrate distribution patterns inside the hydrate-bearing 

sediments: (a) pore-filling, (b) cementation (yellow: soils; blue: hydrates). 
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        However, in some other patterns, the soil skeleton may be broken by the hydrate 

growth. In addition to the pore-filling and cementation patterns, other commonly 

observed methane hydrate distribution patterns are as follows: 

 Load-bearing: hydrates contribute to the mechanical stability of the sediment 

skeleton by bridging the neighbouring grains and evolving in the load-bearing 

matrix. And in the pore-filling hydrate pattern, as the hydrate saturation is 

above Sh=25%-30%, the hydrates function as the load-bearing hydrates (Berge 

et al., 1999; Yun et al., 2005; Waite et al., 2009). 

 Supporting-matrix: hydrates are part of the skeleton matrix of the sediment 

(Soga et al., 2006). 

 Patchy: hydrates coat the soil particles, and then the clusters of the mineral 

grains form the sediment’s skeleton matrix (Soga et al., 2006; Jung et al., 2012). 

 Fracture-filling: hydrates grow in the pores of the sediment and break the 

original sediment skeleton structure by filling the gaps among soil particles 

(Al-Bulushi, 2012). 

2.1.3 Geomechanical investigation methods 

The geomechanical properties of hydrate-bearing sediments play an essential role in 

the sites’ resource potential evaluation, the production efficiency and safety, and the 

reservoir management (Waite et al., 2009). Therefore, the geomechanical research of 

hydrate-bearing sediments is an important task for both the industry and scientific 

research.  

        At present, the combination of various researching methods are being conducted 

to investigate the geomechanical behaviours of hydrate-bearing sediments, mainly 

field work and experimental tests which provide real data for further studies. 

2.1.3.1 Field work 

Currently, various seismic technologies and other remote sensing data are being used 

to identify the geophysical properties (e.g.: small-strain stiffness, porosity, hydrate 

saturation, etc.) of the hydrate-bearing sediment (Hutchinson et al., 2008; Jones et al., 
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2008). The seismic in-situ survey is commonly employed in geomechanical 

observations, and the hydrate causes a sensitive increase in wave velocity within 

bearing sediment (Dai et al., 2008). 

        The typical log measurement data of seismic survey obtained from two different 

sites with different sediment properties are shown in Figure 2.3 and Figure 2.4 

(modified from Chand et al., 2004). In the case of the hydrate occupancy in the 

hydrate-bearing sediments, the term ‘hydrate saturation’ ( ) is introduced by 

referring to the percentage of hydrate volume occupancy in the void space of the pure 

soil sample, which is detailed in Chapter 3 and Appendix A. ‘Porosity’ refers to the 

percentage of the void space volume in the total sediment volume.  

 

Figure 2.3: Mallik 2L-38 wellbore data, Mackenzie Delta, Canada (Collett et al., 1999; Walia 

et al., 1999; Chand et al., 2004): (a) hydrate saturation estimated from resistivity data, (b) 

porosity, (c) compression wave velocity Vp and shear wave velocity Vs data from acoustic log 

measurements and VSP (vertical seismic profile) data. 

        As shown in both Figure 2.3 and Figure 2.4, the wave propagated under the deep 

seabed. As the depth increased, the measured geophysical data exhibited various 

values in terms of hydrate saturation, porosity and the wave velocity (compressional 

wave and shear wave). By comparisons among the measured saturation, porosity and 

wave velocity at the same depth, generally, it indicates that the increase in the elastic 

hS
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wave velocity increased with a higher hydrate saturation and decrease in porosity. But 

the information obtained from the field work is limited. 

 

Figure 2.4: ODP Site 997 wellbore data, Blake Ridge, Leg 164 (Collett and Ladd, 2000; Lee, 

2000; Guerin et al., 1999; Wood and Ruppel, 2000; Chand et al., 2004): (a) hydrate saturation 

estimated from resistivity data, (b) porosity, (c) compression wave velocity Vp and shear wave 

velocity Vs data from acoustic log measurements and VSP (vertical seismic profile) data. 

        On the other hand, hydrate-bearing sediment properties may determine the related 

drilling processes (Waite et al., 2009). The wellbore is drilled through the hydrate-

bearing soil layer, which alters the stresses, and also cause shear and volumetric 

deformation (Rutqvist et al., 2008; Kwon et al., 2008) that may potentially result in 

the collapse of the production borehole and instability within the hydrate-bearing 

layers surrounding the drilling wellbore (Briaud and Chaouch, 1997; Hadley et al., 

2008).  

        One example is the BP Gulf explosion in which 3 million gallons of crude oil was 

poured into the Gulf of Mexico in 2010. The drilling process caused the instability of 

the hydrate-bearing sediment layer near the wellbore, hence inducing the explosion of 

the platform due to a series of unpredictable issues. Unfortunately, there is not enough 

existing data that investigated the influence of the hydrate-bearing sediments’ 

geomechanical behaviours on the production process, because the industrial 



2. Literature review 

 

54 
 

exploitation has not started, and the first experimental exploitation was just done in 

2013 in Japan. More research is needed. 

2.1.3.2 Laboratory tests  

As a major approach for carrying out the geomechanical investigations of hydrate-

bearing sediments, laboratory studies provide scientific support for the field work, and 

make connections between the mechanical behaviours to indicate the responses of the 

methane hydrate sediment to the alterations in the wellbore surroundings (Waite et al., 

2009). 

        Since the methane hydrate sediment is a mixture of soils and hydrates, 

experimental methods of soil mechanics could be employed in the geomechanical 

investigations of hydrate-bearing sediments. Yet, due to the hydrate formation and 

existing conditions of high pressure and low temperature, triaxial tests with specific 

designs has been widely chosen for the seismic wave studies and other geomechanical 

researches (Soga et al., 2006; Waite et al., 2009; Hyodo et al., 2011). 

        A conventional triaxial test sample is a cylinder with a height usually about twice 

the diameter of the sample. The rigid platens at the top and bottom are designed to be 

smooth and to keep horizontal during a test, in order that the top and bottom sides of 

the sample are principal planes. Normally, drained and undrained tests are conducted 

for different objectives and situations. In a triaxial test, the applied vertical stress can 

be different from the controlled horizontal stress. The triaxial compression test is 

designed to measure the limit of how much shear stress the sampled granular material 

can withstand. The steadily increased stress on the platens causes the material in the 

cylinder to fail and form the sliding regions (shear bands). The geometry of the 

shearing in a triaxial test typically make the sample become shorter vertically while 

expand horizontally. In the process of the test, a granular material will contract or 

expand in volume. Generally, triaxial compression tests are applied together with other 

tests to make engineering predictions. 

        Figure 2.5 shows a typical apparatus for methane hydrate soil experiment. The 

temperature-controlled high pressure triaxial testing apparatus was designed such that 

the back pressure and confining pressure could operate under varying temperatures 

http://en.wikipedia.org/wiki/Stress_(physics)
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and high pressure conditions for the purpose of the examination of the mechanical 

behaviour of hydrate-bearing sand specimens under deep seabed stress and low 

temperature conditions (Hyodo et al., 2011). Figure 2.6 shows the schematic diagram 

of the triaxial apparatus in Figure 2.5 in detail. These triaxial compressional tests are 

commonly employed to acquire the geomechanical behaviours of the methane hydrate 

soil samples.  

 

Figure 2.5: Methane hydrate soil experiment apparatus (Hyodo et al., 2011) 

 

Figure 2.6: Cell appurtenances and piping system (Hyodo et al., 2011) 
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        In the experimental studies, it is extremely expensive and difficult to acquire the 

natural methane hydrate sediments. It is also very hard to obtain the natural samples 

with the same soil size distribution and sediment skeleton but different hydrate 

saturations. At present, obtaining a comprehensive geomechanical investigation of 

natural hydrate-bearing sediments is still a challenging task compared to the synthetic 

hydrate-bearing samples. Moreover, the laboratory test results have already proved 

that the synthetic samples can adequately interpret the geomechanical behaviours of 

hydrate-bearing soil samples (Masui et al., 2005; Priest et al., 2005; Soga et al., 2006; 

Waite et al., 2009; Hyodo et al., 2011), which is shown in Section 2.2.  

        Figure 2.7 shows the observation test of the formation process of hydrate in a 

sand sample prepared in Yamaguchi University (Hyodo et al., 2011). A sample of the 

mixture of sand particles, water and methane gas was first prepared in the sealed 

container. And then methane gas was injected into the sample till the formation process 

finished. The methane gas dissolved in the water and became hydrate under the 

controlled high pressure and low temperature. By controlling the specific low 

temperature and high pressure, the mixture of methane gas and water gradually formed 

methane hydrate until finally 100% of the water was used during the formation process.  

        In fact, in the laboratory synthetic sample preparation process, the crystalline 

solid methane gas hydrate alters the hydrate-bearing soil sample’s mechanical 

behaviour (Waite, et al., 2011). Waite et al. (2011) succeeded preparing the load-

bearing hydrate in their synthetic samples, and the formed hydrate was part of the load-

bearing systems of the sediment sample, which changed the initial stiffness of the 

sediment. In addition, due to the low solubility of methane in water and the flow 

process for methane to dissolve in water, researchers have been trying to accelerate 

this process. Priest et al. (2009) managed to form the methane hydrate by the supply 

of methane bubbles. However, this method could only form the hydrate at no more 

than the saturation of 40%. 

        Masui et al. (2005) prepared two different synthetic hydrate-bearing and samples: 

the strong bond sample (cementation pattern) and the weak bond sample (normally 

considered as the pore-filling pattern). The sediment sand is Toyoura sand. However, 

the initial consolidated soil skeleton was broken by the growth of hydrate which will 
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be further discussed in Section 2.2.2. The bonding strength was controlled by the flow 

of water through the porous sand during the formation process, although the strength 

could not be controlled properly in values. 

 

Figure 2.7: Observation of Methane hydrate generation (Hyodo et al., 2011) 

        As previously discussed, seismic tests are applicable to evaluate the distribution 

and saturation of hydrate-bearing sediment on site by measuring the wave velocity 

(compression and shear wave). Besides, the interpretation of seismic data needs to be 

connected to the measured geomechanical behaviours of methane hydrate soil 

sediments from the laboratory tests. Hence, the hydrate resonant column apparatus 

illustrated in Figure 2.8 was designed (modified from Priest et al., 2005). The wave is 

excited and received within the cylindrical hydrate-bearing sample, and the vibration 

frequency at resonance of the column determine the wave velocity (Richart et al., 1970; 

Drnevich et al., 1978) under the conditions of the hydrate formation inside soil 

specimens. The synthetic samples were tested in the laboratory, as well the obtained 

natural sediment samples. Many researches have been conducted on the wave 

propagation of in-situ and laboratory samples, such as Berge et al. (1999), Priest et al. 

(2005), Yun et al. (2005), Clayton et al. (2010), to name but a few. The obtained results 

from the laboratory tests and the comparisons with the field work are presented in 

Section 2.2.1. 
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Figure 2.8: Cross section through seismic test apparatus (the pressure cell is omitted in the 

figure). (Modified from Strokoe et al., 1999 and Priest et al., 2005) 

2.2 Geomechanical characteristics of hydrate-bearing sediments 

2.2.1 Small-strain stiffness 

The small-strain shear modulus Gmax is usually measured through seismic wave 

propagation as fundamental stiffness of soils and hydrate-bearing sediments. The value 

of Gmax can be measured through laboratory and/or on-site field tests. Some of the 

crucial factors affecting the small-strain stiffness of Gmax include mean effective stress, 

void ratio, stress history, rate of loading, soil plasticity for silts and clays, and stress 

anisotropy for sands creep (Hardin et al, 1972; Lo Presti et al., 1996).  

The most decisive and reliable method to determine Gmax is by employing seismic 

studies at the shear wave velocity Vs that has a direct relation to the maximum shear 

modulus Gmax (Elhakim, 2005): 

2

max t sG V            (2.1) 

where t is the total soil mass density. 
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Generally, the stiffness of methane hydrate is a little harder than that of ice. Table 

2.1 shows the stiffness and wave velocities for various typical sediments (modified 

from Mavkov et al., 1998; Soga et al., 2006): 

Table 2.1: Stiffness and wave velocities for various typical sediments (modified from 

Mavkov et al., 1998; Soga et al., 2006) 

Region Density 

(g/cm3) 

K 

(GPa) 

G 

(GPa) 

Vp 

(km/s) 

Vs 

(km/s) 

Quartz 2.65 36.6 45.00 6.0 4.1 

Clay 2.58 20.9 6.85 3.4 1.6 

Pure methane hydrate 0.90 7.9 3.30 3.7 1.9 

Water 1.03 2.4-2.6 0 1.6 0.0 

Ice 0.92 6.7 2.60 3.3 1.7 

 

        The small-strain shear modulus Gmax may provide indicator for hydrate saturation 

and distribution pattern at a specific confining stress. The wave velocities and the 

stiffness of methane hydrate sediments are determined by both the hydrate saturation 

and the hydrate distribution pattern in the pore spaces (Soga et al., 2006). In addition, 

as mentioned in Section 2.1, the seismic wave propagation of compression P wave and 

shear S wave is widely used for locating hydrate-bearing sediment occurrences and 

estimating the concentration of hydrate in the field, as the hydrate stiffens the sediment 

and increases the wave velocities (Waite et al., 2009).  

The propagation of the compression P wave induces longitudinal strains within 

the particles’ motion along the wave propagation direction. The shear S wave causes 

shear strains with the particles’ motion perpendicular to the wave propagation 

direction (Waite et al., 2009). Supposing that the hydrate-bearing sediment is an 

isotropic elastic material, the propagation speeds of compression and shear wave are 

shown in Equation 2.2 and Equation 2.3 respectively: 

Compression wave velocity:    Vp = 
4 / 3K G




      (2.2) 
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Shear wave velocity:               Vs = 
G


                    (2.3) 

where   is density of the sediment, G is the shear modulus, and K is bulk modulus.  

Figure 2.9 shows that the wave velocities increased with hydrate saturation for 

most of the hydrate growth patterns. The modelling results are represented by solid 

and dashed curves. The modelling results are from Kleinberg and Dai (2005), in which 

Equation 2.2 and Equation 2.3 were used where the modulus were calculated according 

to the hydrate morphology – cementation, coating, load-bearing and pore-filling. The 

dashed curves show wave velocities for the cementation pattern and coating pattern. 

The cementation pattern increased most significantly with the wave velocity, 

particularly for low hydrate saturations (dotted-dashed curve). And the coating pattern 

(dashed curve) exhibited lower wave velocity than the cementation case but there was 

a similar trend of increase with the saturation. The solid curves represent the matrix-

supporting hydrate which increased the wave velocity in the sediment especially the 

saturation was higher. And the pore-filling distribution did not show any evident effect 

on the wave velocity at the low saturation (Waite et al., 2009).  

The on-site (open symbols) and laboratory (solid symbols) results are also shown 

in Figure 2.9. The results were obtained under different conditions (e.g.: confining 

pressure, gas, water, porosity, etc.), but the trends are similar to the modelling ones, 

especially the cementation case (Priest et al., 2005) and the pore-filling case (Yun et 

al., 2005), even though the values differ from the modelling results. And the on-site 

results from the Mallik 5L-38 (Lee and Collett, 2005) compared well with the matrix-

supporting model (solid curve). However, other obtained results (Berge et al., 1999; 

Chand et al., 2004; Westbrook et al., 2005) only showed the limited data at the low 

saturation or few data at various saturations, which cannot be compared systematically 

with the predicted model. It appears easier to predict hydrate saturations through wave 

velocities. However, the in-situ measurements of wave velocities still may be 

unreliable because the geological conditions are too complex (Dai et al., 2008; Lee 

and Waite, 2008). Hence, a series of new technologies should be carried out to control 

the wave propagation adequately. 
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Figure 2.9: Wave velocities (compression P wave and shear S wave) in the methane hydrate 

sediments where open symbols represent the field, solid symbols represent the laboratory 

results, and solid and dashed curves represent the modelling results: (A) compression wave; 

(B) shear wave (Waite et al., 2009) 

As shown in Figure 2.10, Dai et al. (2012) also summarised the trends of the 

compression P-wave with hydrate saturation for different growth patterns based on 

their literature research. The plots concluded the P-wave data of cementation, coating, 

patchy, load-bearing and pore-filling patterns. The cementation and coating pattern 

showed similar trends as described in Figure 2.9. And the patchy and load-bearing 

patterns in Figure 2.10 behaved similarly to the matrix-supporting model (solid curve) 

in Figure 2.9. Nevertheless, by the S-wave velocity plots for cementation pattern 

(Priest et al., 2005) in Figure 2.9 and the P-wave velocity plots for cementation and 

pore-filling patterns in Figure 2.10, it is shown that the wave velocities for pore-filling 

and cementation cases at high hydrate saturation were not verified with enough data. 

Dai et al. (2012) also claimed that the existing data was not sufficient to plot the wave 

velocity trends of the cementation case to high saturation. It could only be assumed on 

the basis of the hydrate morphology. 
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Figure 2.10: Conclusions of the trends of compression P-wave velocity with hydrate 

saturation for various growth patterns (Dai et al., 2012) 

        Moreover, the pore-filling pattern and the cementation pattern have shown the 

two most typical geophysical behaviours of hydrate-bearing sediments – lowest and 

highest wave propagation velocities respectively in the sediment. And the wave 

velocity data of all the other reported hydrate distribution patterns were all between 

the velocity values of the pore-filling and cementation cases. And the mainly discussed 

patterns are also pore-filling and cementation patterns in most of the published 

research which were comprehensively reviewed by Soga et al. (2006) and Waite et al. 

(2009).  

        With regards to the hydrate saturation effect on the small-strain shear stiffness of 

hydrate-bearing sediments, several studies have been carried out by means of 

measuring the S-wave velocity. The studies demonstrated that the shear stiffness 

increase is dependent on hydrate morphology (e.g. Clayton et al., 2005, 2010; Priest, 

2005; Priest et al., 2009; Santamarina & Ruppel, 2008; Yun et al., 2011). Figure 2.11 

shows the hydrate saturation effect on small-strain shear stiffness for various hydrate 

morphologies by expected data of Clayton et al. (2010). The increase rate of the shear 

stiffness for the cementation samples with the low saturation of hydrate was greater 

than that of the pore-filling samples. And as the saturation increased, the increase rate 

in the shear stiffness of the cementation case began to decrease; while the shear 

stiffness of the pore-filling pattern began to increase when the saturation was above 

20%.  
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Figure 2.11: The effect of hydrate distribution patterns on small strain stiffness by Clayton et 

al. (2010) 

2.2.2 Stiffness, strength and dilatancy 

2.2.2.1 Drained tests 

Masui et al. (2006) conducted a typical example of the drained triaxial compressional 

tests on the obtained natural hydrate-bearing sandy specimens collected from Nankai 

Trough, which were isotropically consolidated. Figure 2.12 shows the stress-strain and 

volumetric behaviours of the samples with various methane hydrate saturations 

measured from the tests. The hydrate saturations ranged between 7.7% and 37.6%. The 

initial consolidation pressure was 1 MPa. And Figure 2.12 demonstrates that the 

dilatancy rate can be acquired by the changes of volumetric strain and axial strain, or 

dilation angle . It can be seen that the higher hydrate saturation increased the strength 

and dilation of the hydrate-bearing samples. Moreover, most experimental studies 

reported by Soga et al. (2006) and Waite et al. (2009) have concluded that at a given 

confining stress, the strength of methane hydrate soil sediment increased with the 

hydrate saturation and the hydrates increased the stiffness, the dilation, and the strength 

of the sediment. 


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Figure 2.12: The stress-strain behaviour and volumetric response of natural hydrate-bearing 

sandy specimens obtained from Nankai Trough (Masui et al., 2006) 

        The strong bond sample (cementation pattern) and the weak bond sample 

(normally considered as the pore-filling pattern) were prepared by Masui et al. (2005) 

in their synthetic methane hydrate specimens. The sediment sand is Toyoura sand. The 

triaxial compression test results under the initial isotropic effective confining stress of 

1 MPa for the strong bond samples (cementation) and the weak bond samples (pore-

filling) are shown in Figure 2.13. The constant shearing rate was 0.1%/min under 

drained conditions. 

        Generally, the strength increased with the hydrate saturation. In Figure 2.13 (a) 

for the strong bond model, the strength increase began even at a low hydrate saturation; 

while in Figure 2.13 (b) for the weak bond model (considered as pore-filling model), 

the obvious increase in strength started from Sh=26.4%. And at the same saturation, 

the stiffness and strength of the strong bond case showed a higher value than those of 

the weak bond case. In addition, at the large strain, the higher saturation samples of 

the weak bond case exhibited a lower strength than the relatively lower saturation 

sample; while the strong bond model did not show this phenomenon obviously. Hence, 

it is suggested that the stiffness and strength are influenced by both the hydrate 

saturation and the growth pattern in the pore space of the sediment. 
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        As a set of widely cited data, however, it is obviously found in Figure 2.13 that 

the strength of the strong bond sample at Sh=0% (hydrate-free) was larger than that of 

the weak bond sample at Sh=26.4%. Due to the fact that the increase in hydrate 

saturation strengthens the consolidated sediment, there must be some limitations in the 

synthetic hydrate-bearing sample preparation process of the weak bond samples. One 

obvious reason may be that the formed methane hydrate in the pores had already 

broken the existing sand skeleton before the triaxial test, and the relatively softer 

hydrate in stiffness had played a role in the skeleton at the initial state of the test. In 

the laboratory tests, such a limitation is not be easily avoided. 

 

Figure 2.13: Deviatoric stress against axial strain at various hydrate saturation: (a) strong bond 

samples (b) weak bond samples (Masui et al., 2005) 

        Both Ebinuma et al. (2005) and Masui et al. (2005) conducted triaxial tests on the 

artificial hydrate samples suggesting that, as plotted in Figure 2.14(a), the increase in 

the peak strength (maximum deviatoric stress) increased with a higher hydrate 

saturation, but the hydrate growth pattern determined the increasing rate. From the 

results by Ebinuma et al. (2005), it is concluded that the peak strength of the pore-

filling case increased only when the hydrate saturation was above approximately 25%, 

and then increased obviously; while the cementation case’s peak strength began to 

increase even from the low saturation. And from the data by Masui et al. (2005), it is 

also suggested that the strength of the pore-filling case increased just when the 
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saturation was above around 25%, while the cementation sample began to show an 

increase in the peak strength from a low saturation. Moreover, in the both studies, at 

the same saturation, the cementation case showed a higher peak strength than the pore-

filling case. The deviation between the two studies is because of the difference of the 

confining pressure: Ebinuma et al. (2005) applied the confining pressure of 3 MPa, 

while Masui et al. (2005) used 1 MPa.  

        In addition, as shown in Figure 2.14(b), the higher hydrate saturation increased 

the mid-strain stiffness E50 (Masui et al., 2005). Cementation hydrate samples indicate 

great effect of hydrate at low hydrate saturation. While the pore-filling hydrate has no 

significant effect on peak strength or mid-strain Young’s modulus E50 until Sh was 

above 25%.  

 

Figure 2.14: (a) Peak strength; (b) mid-strain stiffness E50 at various hydrate saturation 

(Ebinuma et al., 2005; Masui et al., 2005; Waite et al., 2009) 
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        Figure 2.15 (Waite et al., 2009) shows the increasing hydrate saturation and its 

influence on the magnitude changes of friction angle, cohesion and dilation. As shown 

in Figure 2.15, an obvious increase occurred in the friction angle and dilation angle 

even at a low hydrate saturation in the cementation pattern, while it occurred after the 

hydrate saturation was above approximately 30% in the pore-filling pattern. The data 

were collected from tests at the confining pressure of 1 MPa; at higher confining 

pressures, the dilation should be expected to be lower. And the higher hydrate 

saturation increased the cohesion obviously, as shown in Figure 2.15 (a). It is clearly 

suggested that although the higher hydrate saturation increased cohesion and the 

dilation angle, the higher hydrate saturation did not surely determine the changes of 

the friction angle. 

 

Figure 2.15: Cohesions, friction angles and dilation angles at the various hydrate saturations 

of the natural hydrate-bearing specimens (Masui et al., 2006; Soga et al., 2006) and the 

laboratory synthetic cementation specimens (Masui et al., 2005).  
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2.2.2.2 Confining pressure 

Confining pressure has effects on the geomechanical behaviour of hydrate-bearing 

sediment. As shown in Figure 2.16, the stress-strain responses were plotted for the 

synthetic hydrate-bearing specimens at the hydrate saturation of 34.0% and 38.5% 

(Ebinuma et al., 2003; Masui et al., 2005) when isotropically consolidated at three 

different confining stresses. When the confining stress was reduced, the sediment 

typically showed a greater strain softening behaviour than the medium dense sands. 

 

Figure 2.16: Toyoura cementation hydrate-bearing sediments with 34% (solid line: Masui et 

al, 2005) and 38.5% (dashed line: Ebinuma et al., 2003) synthetic methane hydrate under 

different confining pressures 

2.2.2.3 Stiffness degradation 

To this day, some studies have been performed on the structure degradation of hydrate-

bearing soils during soil shearing. It would be ideal to monitor the degradation of wave 

velocity during the process of shearing hydrate-bearing soils. Nevertheless, the secant 

Young’s stiffness can be obtained from the results of drained triaxial compression tests 

on hydrate-bearing sand specimens. Figure 2.17 shows the change in the secant 

stiffness of hydrate-bearing sediment (cementation) acquired by Masui et al. (2005). 



2. Literature review 

 

69 
 

It is quite clear that the stiffness degrades as the soil is sheared, and the higher the 

hydrate saturation is, the greater degradation is. 

 

Figure 2.17: Degradation of the secant stiffness of cementation synthetic hydrate-bearing 

sediment during drained triaxial compression test by Masui et al. (2005) 

2.2.2.4 Undrained tests 

In fact, there is currently a lack of data on the undrained tests in the experimental 

studies. Winters et al. (2002) and Yun et al. (2007) proved that undrained stiffness and 

strength in sediments with high hydrate saturation depend on the hydrate phase rather 

than the confining pressure (Waite et al., 2009). Undrained tests are usually used for 

the clay sediments, while the drained tests are employed for the sandy sediments. 

Hence, for the purpose of making comprehensive comparisons with current 

experimental results and making further analysis with enough supporting data from 

the experiments, this PhD study focussed only on the drained triaxial compression tests. 

2.2.3 Mechanism analysis of hydrate saturation and bonding strength 

As discussed above, the existence of methane hydrate increases the stiffness, strength 

and dilation of the hydrate-bearing sediment. A few studies have hypothesized the 

micro-mechanisms for shear strength at various hydrate concentration (Yun et al., 
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2005; Soga et al., 2006; Yun et al., 2007; Waite et al., 2009). Figure 2.18 shows the 

mechanisms of the shear resistance and dilation at various hydrate saturation inside the 

pores (modified from Yun et al., 2007; Waite et al., 2009).  

        In Figure 2.18, white circles represent sediment grains, black represents hydrate, 

and blue represents water. When there is no hydrate, Sh = 0%, shear induces rotation 

and the rearrangement of particles; dilation or slippage overcomes rotational 

frustration. Regarding the shear strength, hydrate saturation Sh < 30% is considered a 

low saturation, and Sh > 40% considered a high one. Above Sh = 80%, conditions are 

considered rare, and there is occluded water in the void space within the sediments. 

 

Figure 2.18: Mechanisms of the particle movement controlling the shear strength of methane 

hydrate sediments (Yun et al., 2007; Waite et al., 2009) 

        It is clearly shown in Figure 2.18 that at low hydrate saturation, hydrate crystals 

may shear, detach or interfere with rotation, and induce a slight increase in sediment 

strength; the extent of this effect is determined by the hydrate-particle bonding strength, 

hydrate strength and hydrate concentration. At high hydrate saturation, the cementing 

strength offered by hydrate mass and the particle-hydrate bonding govern deformation 

and strength response.  
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        The micro-mechanism analysis in past studies illustrated only the possible 

particle-level mechanisms that may describe the role of hydrates on sediment strength. 

However, in the experimental studies and most of the numerical research, there is 

difficulty in carrying out an adequate particle-scale mechanism analysis of the 

presence of hydrates, not to mention the effect of various bonding strengths on the 

shear resistance and dilation mechanisms.  

2.3 Numerical modelling: Discrete Element Method 

In fact, it is very expensive to obtain the natural sediments, and it is challenging to 

control the temperature and pressure of the natural samples during the drilling and 

shipping process. In addition, it is also difficult to obtain the natural samples with the 

same soil properties and the various desired hydrate saturations for a comprehensive 

research. Because of this, synthetic samples are employed in the laboratory tests, as 

discussed above in Section 2.2. However, it is also challenging to obtain well-

controlled and consistent synthetic hydrate-bearing samples, as it is difficult to control 

hydrate formation, the distribution pattern and saturation during the synthetic sample 

preparation process.  

        Hence, the numerical method of Discrete Element Modelling is employed as a 

useful tool to replicate the particle behaviour usually experienced during laboratory 

sample preparation and testing, and to perform the particle-scale micro-mechanism 

interpretation of the macroscopic geomechanical behaviours discussed in Section 2.1 

and 2.2. The most recent studies on the geomechanical characteristics of methane 

hydrate sediments with DEM were those done by Brugada et al. (2010), Jung et al. 

(2012), Jiang et al. (2013), etc.. More details about Discrete Element Method (DEM) 

are introduced in Chapter 3. 

2.3.1 Pore-filling model 

Brugada et al. (2010) carried out the 3-Dimension DEM simulations on the pore-filling 

hydrate pattern. The simulated triaxial tests aimed to discuss how hydrate saturation 
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influenced the stress-strain and volumetric responses, as well as to acquire some other 

macroscopic geomechanical behaviours. 

        Figure 2.19 shows the stress-strain responses and volumetric behaviours during 

the DEM triaxial tests under the 1 MPa confining pressure. The hydrate-soil contact 

Young’s modulus ratio Echyd/Ecsoil was set as 0.1. And the sample preparation method 

‘Soil -> Hydrates’ referred that the hydrate particles were generated in the pores of the 

consolidated soil sample. The simulated results show the similar behaviours as 

discussed in Section 2.2. The hydrate increase caused an increase in the strength and 

dilation.  

 

                   (a) stress-strain responses                                 (b) volumetric responses 

Figure 2.19: Triaxial compressional test results (Brugada et al., 2010): (a) stress-strain 

responses; (b) volumetric responses 

        Figure 2.20 (a) shows the secant stiffness at different axial strain. Firstly, it is 

suggested that as the axial strain increased, the stiffness decreased, which corresponds 

to the results in Figure 2.17. Secondly, as the hydrate saturation increased in the pore-

filling model, the obvious increase in stiffness only happened when the saturation was 

above 20%, which is similar to the results shown in Figure 2.14. In addition, in Figure 

2.20 (b), the peak friction angle increased with hydrate saturation, while the large-

strain (14%) friction angle remained at a constant value when the saturation increased. 

Moreover, in the pore-filling model, the cohesion was zero. 
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                                   (a) Esec                                      (b) Friction angle and Cohesion 

Figure 2.20: Derived data from simulation results by Brugada et al. (2010): (a) secant stiffness 

Esec; (b) friction angle and cohesion 

        As shown in Figure 2.21, Brugada et al. (2010) also explored the effect of 

confining pressure in this research. It can be seen in Figure 2.21 (a) that as the 

confining pressure increased, the stiffness and strength of the pore-filling sample at 

Sh=20% increased evidently. And the magnitude of the increase in the strength was 

about 2 MPa, although the strength of the sample at 1 MPa confining pressure was 

only slightly above 1 MPa. However, as shown in Figure 2.21 (b), the contraction was 

enhanced by the increased confining pressure, while the dilation as weakened. 

 

                   (a) stress-strain responses                                     (b) volumetric responses 

Figure 2.21: Triaxial compressional test results under various confining pressure (Brugada et 

al., 2010): (a) stress-strain responses; (b) volumetric responses 
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        Brugada et al. (2010) also explored the hydrate-soil contact stiffness ratio which 

ranged from 0.001 to 0.1 at Sh=20% of the pore-filling model. It can be seen in Figure 

2.22 that hydrates only contributed to the strength and dilation when the ratio was at 

the value of 0.1. Regarding other ratios, the behaviours were quite similar to the pure 

soil sample’s responses.  

 

                   (a) stress-strain responses                                     (b) volumetric responses 

Figure 2.22: Triaxial compressional test results under various hydrate-soil contact stiffness 

ratios (Brugada et al., 2010): (a) stress-strain responses; (b) volumetric responses 

2.3.2 Cementation model 

Similar 3-Dimension simulations were also performed by Jung et al. (2012) on the 

macroscopic behaviour of the cementation model. Concerning the cementation pattern, 

Jiang et al. (2013) expounded the application of their defined contact bond model to 

the study of stress-strain and volumetric responses in their 2-Dimension DEM 

cementation case.  

        Figure 2.23 (Jung et al., 2012) showed the stress-strain and void ratio responses 

of the prepared cementation model at two different initial porosities of the pure soil 

sample during the triaxial tests under the confining pressure of 1 MPa. Firstly, it needs 

to be noted that this cementation model cannot be directly compared with the pore-

filling model prepared by Brugada et al. (2010), because they were not based on the 

same soil model, and the input parameters were different as well.  
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        When the soil sample initial porosity was 0.361 in Figure 2.23, the stiffness at the 

elastic phase did not increase obviously with the hydrate saturation. But the strength 

increased steadily. However, when the initial porosity was 0.393, the stiffness 

increased evidently with the hydrate saturation.  The strength at low saturation (5% 

and 20%) of the n=0.393 sample was lower than that of the n=0.361 sample. When 

Sh=50%, the strength of the n=0.393 sample was higher than that of the n=0.361 

sample, which might be because that more hydrate particles were generated inside the 

loose sample and contributed more to the strength of the sample at high hydrate 

saturation.  

        At the bottom of Figure 2.23, the void ratio responses during the triaxial tests 

were plotted. When the soil initial porosity was 0.361, the dilation was enhanced by 

higher hydrate saturation steadily. But the dilation in the n=0.393 sample only 

happened obviously when Sh=50%. It needs to be mentioned that the void ratio in the 

study of Jung et al. (2012) refers to the granular void ratio which considers the hydrate 

volume as part of the pore volume. This will be introduced further in Chapter 4. 

 

Figure 2.23: Triaxial compressional test results under two different initial porosities (Jung et 

al., 2012): (top) stress-strain relationship; (bottom) void ratio against axial strain 
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        Figure 2.24 shows the critical state line projection on the p’-q plane and p’-e (void 

ratio) plane for the cementation model (Jung et al., 2012). It is shown that as the 

hydrate saturation increased, at various confining pressure, the critical state strength 

decreased. But the critical state granular void ratio increased with the hydrate 

saturation, although the dilation was weakened by the increased confining pressure. 

  

Figure 2.24: Critical state line for the cementation model (Jung et al., 2012): (a) critical state 

line projection on p’-q plane; (b) critical state line projection on void ratio p’-e plane 

        Furthermore, Jiang et al. (2013) applied their defined contact bond model to the 

study of stress-strain and volumetric responses in their 2-Dimension DEM 

cementation case. As shown in Figure 2.25, Jiang et al. (2013) conducted a series of 

biaxial tests on the 2D hydrate-bearing soil sample with a set saturation under the 

confining pressure of 50 kPa with three different bonding strength Rtb: 0 kN 

(considered as 0 kN although hydrate particles were set at a contact with soil particles), 

1.0 kN and 2.0 kN. 

        It is suggested in Figure 2.25 (a) that a bonding strength can increase the stiffness. 

However, the increase in the bonding strength did not further increase the stiffness, 

while it increased the peak strength and critical state strength. Moreover, from the 

planar void ratio responses, it can be seen that, in this case, the dilation only happened 

when there was a bonding strength of the hydrate particles. And the dilation was 

enhanced by the increased in the bonding strength. 
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                     (a) stress-strain responses                                     (b) volumetric responses 

Figure 2.25: Biaxial test results under various bonding strength (Jiang et al., 2013): (a) stress-

strain responses; (b) volumetric responses. Rtb refers to the bonding strength applied to the 

hydrate particles. 

        However, in both DEM cementation models discussed above, the bonding 

strength was set at different values. It can also be seen that the choice of the bonding 

strength may be still under discussion according to the specified DEM parameter 

inputs in each study. 

2.4 Summary 

In this Chapter, the granular material characteristics of the hydrate-bearing sand 

sediment is explored comprehensively through the reviews of the published studies by 

field work, experiments and DEM numerical modelling. 

        Field work is the most direct method for the exploration of the hydrate-bearing 

sediment, but there are currently many limitations for the in-situ studies due to the 

location of the sediment and the accuracy of the obtained data. In addition to the field 

work, laboratory studies are required to study the hydrate-bearing sediments and 

connect hydrate saturation with measured geomechanical properties in order to 

interpret the field data. And other scientific research methods are also required to carry 

out comprehensive studies on the geomechanical properties of hydrate-bearing 

sediments, and to provide support for exploration, production and reservoir process 

and management. Yet, there is still a lack of data on the analysis from the particle scale, 
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but the hydrate-bearing sediment possess the particulate characteristics. Hence, in 

addition to the field work and experimental research, Discrete Element Modelling are 

also employed for the investigation of the macro- and micro- mechanical behaviours 

of the hydrate-bearing sediments. The summary of the reviews are listed as follows: 

        (1) From the field work by remote seismic technology, generally, it indicates that 

the elastic wave velocity increases with a higher hydrate saturation and decreases in 

porosity. And through the experimental studies, it is found that wave velocities and the 

small-strain stiffness of methane hydrate sediments depend on both the hydrate 

saturation and the hydrate growth pattern within the pore space. 

        Moreover, the pore-filling pattern and the cementation pattern have shown the 

two most typical geophysical behaviours of hydrate-bearing sediments – lowest and 

highest wave propagation velocities respectively in the sediment. And the wave 

velocity data of all the other reported hydrate distribution patterns were all between 

the velocity values of the pore-filling and cementation cases. And the mainly discussed 

patterns are also pore-filling and cementation patterns in most of the published 

research which were also comprehensively reviewed by Soga et al. (2006) and Waite 

et al. (2009). Hence, in this PhD research, the pore-filling pattern and the cementation 

pattern were chosen as the main hydrate distribution patterns for study. 

        (2)  From the drained triaxial compressional tests by experiments and DEM 

simulations, it has been confirmed that hydrates increase stiffness, strength and 

dilation of the sediment. However, the hydrate saturation and hydrate distribution 

patterns determine the sediment’s mechanical behaviours. Generally, as the hydrate 

saturation increased, the stiffness and strength increases, and the dilation is also 

enhanced. It is also found that, regarding the hydrate contribution to the strength of the 

sediments, the pore-filling hydrate is of a frictional nature, whilst the cementation 

hydrate is of a frictional and cohesive nature. The effect of the cohesion in the 

cementation pattern enhances the hydrate contribution to the mechanical behaviours 

of the sediment, compared to the pore-filling pattern. 

        (3) Nevertheless, in most of the previous DEM studies (Brugada et al. 2010, Jung 

et al. 2012, Jiang et al. 2013), DEM was employed to simulate one hydrate distribution 
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pattern – pore-filling or cementation. There was no consistent DEM model for the 

comprehensive comparisons among different hydrate distribution patterns. Secondly, 

the critical state behaviours of the sediment were not studies systematically. In the 

third place, the study on small-strain stiffness is crucial to the geomechanical 

investigation of hydrate-bearing sediments, whereas none of the past DEM research 

has simulated the wave propagation. In the fourth place, all the DEM studies were 

performed assuming that all the soil and hydrate particles were spheres, but the actual 

shape of natural soil particles could dominate the sediment’s mechanical behaviour. 

Moreover, in the cementation pattern research, the effect of the hydrate bonding 

strength in the DEM simulations has never been discussed systematically. Most 

importantly, DEM is regarded as a competent tool in the particle-scale microscopic 

study, but the published DEM studies focused mainly on the macroscopic behaviours 

of the sediments compared to the experimental data. 

        Accordingly, in this PhD research, a comprehensive DEM research was 

performed, and all the above-mentioned research gaps are covered: 

 Two typical types of microscopic hydrate distribution patterns within soil pores 

were investigated via a consistent basic model: the pore-filling model and the 

cementation model.  

 The large-strain deformation and the critical state behaviours were explored. 

 Wave propagation was simulated within the DEM hydrate-bearing sediment 

samples. 

 The effect of elongated soil particles on the geomechanical behaviours of 

sediments was studied. 

 The bonding strength effect in the cementation model was systematically 

discussed. And  

 The comprehensive particle-scale microscopic discussions and analysis were 

conducted. 

 



3. Sample preparation with Discrete Element Method 

 

80 
 

Chapter 3  

Sample preparation with Discrete Element Method 

 

3.1 Introduction 

As previously noted, in general, natural methane hydrate develops in the pores of 

highly compacted soil sediments under deep seabeds or permafrost regions under the 

high-pressure and low-temperature conditions. Methane hydrate grows in different 

patterns and distributions in the void space of the sediments because of the various 

formation conditions. In the laboratory tests, the synthetic hydrate-bearing soil 

samples are prepared according to the hydrate growth process in the natural hydrate-

bearing sediment. Both natural hydrate-bearing sediment samples and synthetic 

hydrate-bearing soil samples are used within the laboratory studies (Soga et al., 2006).  

        In fact, it is very expensive to obtain the natural sediments, and it is challenging 

to control the temperature and pressure of the natural samples during the drilling and 

shipping process. In addition, it is also difficult to obtain the natural samples with the 

same soil properties and the various desired hydrate saturations for a comprehensive 

research. Because of this, synthetic samples are employed in the laboratory tests. 

However, it is also challenging to obtain well-controlled and consistent synthetic 

hydrate-bearing samples, as it is difficult to control hydrate formation, the distribution 

pattern and saturation during the synthetic sample preparation process.  

        Hence, the numerical method of Discrete Element Modelling (DEM) were 

employed as a useful tool in this research to replicate the particle behaviour usually 

experienced during laboratory sample preparation and testing, and to perform the 

particle-scale micro-mechanism interpretation in this study. The obtained DEM results 

in the next chapters will be compared with those from the laboratory and DEM studies 

discussed in Chapter 2.  
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        In most of the previous DEM studies (Brugada, et al., 2010; Jung, et al., 2012; 

Yu, et al., 2012; Jiang, et al., 2013), DEM was applied to simulate only one hydrate 

distribution pattern. There was not a consistent DEM model for comprehensive 

comparisons amongst the various hydrate distribution patterns. Therefore, in this study, 

two typical types of microscopic hydrate distribution patterns inside soil pores were 

studied: the pore-filling model and the cementation model. As shown in Figure 3.1, in 

the pore-filling pattern, hydrate particles freely grow in the pores without connecting 

two or more soil particles together (Helgerud et al., 1999; Soga, et al., 2006). However, 

in the cementation pattern, hydrate particles grow at the soil-soil contacts and along 

the soil surface, and the compacted soil skeleton is bonded by the hydrates, while the 

soil-soil contacts are not bonded (Dvorkin et al., 1999; Soga et al., 2006; Jung et al., 

2012). In both patterns, the soil skeleton, which has been formed by consolidation 

under high pressure, is not broken by the growth of hydrates inside the pores. 

 

Figure 3.1:  Hydrate distribution patterns of methane hydrate soil sample in DEM model: (a) 

pore-filling, (b) cementation 

        In this chapter, the numerical tool Discrete Element Method (DEM) and the DEM 

code Particle Flow Code 3 Dimensions (PFC3D) used in this study are introduced. And 

the DEM sample preparation procedures of the methane hydrate soil samples are 

discussed in the aspects of their important principles. The preparation of the pore-

filling and cementation models have been stated in detail. Furthermore, the two hydrate 
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growth patterns in the cementation model are exhibited in this chapter. And the 

hydrate-bearing sediments with elongated soil particles were prepared in this research. 

3.2 Numerical tool: Discrete Element Modelling  

3.2.1 Discrete Element Method  

3.2.1.1 Overview of Particulate DEM 

As previously mentioned, for decades there has been many researches on the 

geomechanical behaviour of methane hydrate sediments. Nevertheless, the essential 

and crucial particle-scale investigation still appears as a research gap, which needs to 

be systematically conducted. It is also important to achieve the micro-mechanical 

insight into the geomechanical behaviours observed in the on-site and laboratory 

studies. Thus, because of the limitations of field work and experiments, numerical 

simulation modelling is a useful tool for particle-scale research. 

        Geomechanical behaviours of granular materials are generally studied at two 

scales: macro-scale and micro-scale. The macro-scale study focuses on the boundary 

value problems, which are to be solved using global constitutive equations, based upon 

continuum mechanics. On the other hand, the micro-scale study deals with the 

microstructure which determines material behaviour (Cheng, 2004; Kwok, 2008).   

        Geomechanical analysis is typically conducted by means of the continuum-based 

Finite Element Method (FEM). In a continuum model, granular material is assumed to 

act as a continuous material, and the relative movements and rotations of the particles 

within the material are not considered. Nevertheless, hydrate-bearing sediment, in 

nature, is not a continuum and its behaviour is accordingly non-linear. As noted in 

Section 2.1.1, within the soil voids, there is hydrate together with soils. There are also 

a complex aggregate of discrete particles of various sizes and shapes interacting with 

one another at contact points. During the deformation process, the soil particles may 

slide, rotate, deform or crush, which causes change in the soil skeleton (Kwok, 2008). 
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With hydrate inside the soil pores, the skeleton of hydrate-bearing soil changes in ways 

that are even more complicated. 

As a numerical method, Discrete Element Method (DEM) models granular 

materials by specifically considering their actual particulate nature. For geotechnical 

engineers, this method is applicable to the study of micro-mechanisms underlying the 

complex response of soil. DEM is regarded, by Cundall and Strack (1979), as a 

particular discrete element method which employs deformable particle contacts and a 

specific time-domain solution of the original equations of motion (Cheng, 2004). 

Many researchers have used this method to study the interactions of individual 

particles within an assembly. It is this method’s unique feature that allows it to 

consider the actions of individual particles with a granular material. 

In DEM, the displacements and stresses of granular material can both be 

calculated and measured. Numerical modelling is more flexibly performable than 

analytical modelling, and has the advantage over physical modelling. The important 

data (average stresses and deformations, contact forces, particle positions, velocities, 

etc.) can be obtained at any stage of the test. The flexibility of numerical modelling 

also lies in the parameters and physical properties of the particles, as well as the 

loading configurations (Kwok, 2008). As developed by Cundall & Strack (1979), 

DEM considers the finite displacement of elements and their rotation and separation, 

and recognizes new particle contacts in the simulation. A DEM simulation accounts 

for equilibrium by considering the dynamic equilibrium of each particle at each time 

increment during the analysis. An overview of the sequence of calculations involved 

in a DEM simulation is given in Figure 3.2 (modified from O’Sullivan, 2011). 

3.2.1.2 Advantages and limitations of using DEM  

DEM can be employed as a fundamental research tool, with a view to the 

micromechanics of granular material, providing insight gained to advance constitutive 

models for continuum modelling. It also has the advantage of providing information 

on mechanisms at the particle scale which cannot be easily observed in the laboratory 

(O’Sullivan, 2011).   
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DEM is useful for meso- and micro- scale problems, since current computing 

power is still incapable of modelling millions of particles in a boundary value problem. 

In contrast, the Finite Element Method (FEM) applies more suitably to macro 

boundary problems. The future of soil mechanics lies no doubt in producing precise 

constitutive models with solid micro-mechanical bases (Kwok, 2008). 

 

Figure 3.2: Schematic diagram of calculations in a DEM simulation (modified from 

O’Sullivan, 2011) 

        The computational time cost of DEM calculation is the major problem, restricting 

DEM research with the field- or industrial-scale numbers of particles and boundary 
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value problems, as well as the realistic particle geometries. Solving this problem is a 

crucial and ongoing challenge for DEM analysts (O’Sullivan, 2011). Looking forward, 

DEM will certainly not supplant continuum modelling to predict granular material 

deformations, nor will it supplant physical laboratory tests to improve the fundamental 

interpretation of granular material response. It has however definitely established itself 

as one of the important tools that can be used for the research of granular materials.  

3.2.2 Particle Flow Code 3 Dimensions 

Particle Flow Code in 3 Dimensions (PFC3D) is employed to model the interaction of 

simulated particles as well as their movement with DEM following the descriptions of 

Cundall and Strack (1979). Devised by Itasca Consulting Group Inc., PFC3D is an 

effective tool to model the complex problems of solid mechanics and granular flow. 

In this study, PFC3D version 4.0 (Itasca, 2008) was used for the study of the 

geomechanical behaviour of modelled methane hydrate soil samples, as well as the 

involved micro-mechanisms.  

In this programme, the particle interactions are monitored contact by contact, and 

the particle motions are modelled particle by particle. Contact forces and 

displacements are accounted for by equilibrium conditions, assuming that increments 

of contact forces are dependent on incremental displacements of particle centres. The 

observed macroscopic behaviour completely results from the interactions between 

individual particles. 

Forces are imposed on each ball via their contacts with other balls or walls. At 

equilibrium, the algebraic sum and vectorial sum of these forces is approximately zero 

(i.e. the forces acting on each ball are almost in balance). The continuous movement 

of particles is indicated to be proceeding within the model when the unbalanced forces 

draw near a non-zero value. Both the maximum unbalanced force and the mean 

unbalanced force are automatically calculated for the entire assembly of balls during 

time-stepping in a PFC3D
 run, so as to diagnose the state of the model. Figure 3.3 shows 

the PFC3D graphical user interface with the plot window. 
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(a) A plot window 

 

(b) Contact forces due to footing load 

Figure 3.3: PFC3D graphical user interface with plot window (Itasca Consulting Group, Inc., 

2008). (a) a plot window; (b) contact forces due to footing load (black and red lines represent 

the compression and tension forces separately, and the thickness of the lines illustrates the 

value of forces) 

PFC3D
 provides the assumptions of a particle flow model (Itasca, 2008): 

(1) All the particles are regarded as rigid solids. 
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(2) The contacts are taken into account even on a vanishingly small area (i.e. a 

point). 

(3) The behaviour at the contact points applies a scheme of soft contacts, where 

at points the overlapping between particles is allowed. 

(4) The overlapping magnitude is correlated with the contact force by the force 

displacement law. There is little relation between the overlaps and the sizes 

of the particles. 

(5) Bonds can exist at the granular contacts. 

(6) Particles are spheres. Yet, the generation of arbitrary shape is supported by 

the clump logic. Each clump is constitutive of a group of particles overlapping 

one another, acting as a rigid solid which cannot be broken while possesses 

the deformable boundary. 

3.2.2.1 Notation 

An overview of the common parameters in PFC3D is listed below, and shown in Figure 

3.4 (Itasca Consulting Group, Inc., 2008): 

 

Figure 3.4: Notations used to describe a ball-ball contact (Itasca, 2008) 
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At a contact between two balls: 

Un denotes overlap 

Kn and Ks are the normal and shear stiffness at the contact 

Fn and Fs are the normal and shear force vectors at the contact 

Vn and Vs are the normal and shear velocity vectors at the contact 

For an individual ball: 

R(A) and R(B)are the radii of ball A and ball B 

x(A) and x(B) are the position vectors of the centres of ball A and ball B 

Kn(A) and Kn(B) are the normal stiffness of ball A and ball B 

Ks(A) and Ks(B) are the shear stiffness of ball A and ball B 

Sign Conventions: 

(1) The vector of contact force (F) stands as both the action and direction of ball 

A on ball B for contact between balls and represents the action of the ball on 

the wall for contact between balls. 

(2) Positive normal contact forces indicate compression, while negative normal 

contact forces indicate tension. 

3.2.2.2 Contact Model 

In this study, in the light of the manual of PFC3D Version 4.0 (Itasca, 2008), the 

constitutive relationship at contact points includes (1) the stiffness model; (2) the slip 

model; and (3) the contact bond model 

(1) Stiffness model 
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        The stiffness of contact connects the contact forces with the corresponding 

displacements in the directions of the normal and shear forces. The normal stiffness 

Kn relates the total normal force Fn to the total normal displacement Un. Thus it is 

secant stiffness, as given by Equation 3.1:  

Fn = KnUn      (3.1) 

The shear stiffness Ks relates the increment of shear force Fs to the increment of 

shear displacement Us. Hence it is tangent stiffness, as given by Equation 3.2: 

Fs = -KsUs      (3.2) 

In this study, the linear contact model is used, supposing that the the two 

contacting entities stiffness take effect in succession. The contact normal secant 

stiffness is given by Equation 3.3 and the contact shear tangent stiffness is calculated 

by Equation 3.4: 

( ) ( )

( ) ( )

n n
n

n n

K A K B
K

K A K B





          (3.3) 

( ) ( )

( ) ( )

s s
s

s s

K A K B
K

K A K B





          (3.4) 

        Actually, there are two main reasons for using the linear contact model in this 

PhD research. The first reason is for the simplification. A simple contact model at the 

initial stage of the DEM research on methane hydrate sediment is necessary. The 

second reason is that the popular Hertz contact model cannot apply to the cementation 

model when doing the seismic wave propagation simulation. Hence, the linear contact 

model was chosen at this stage. In the future work, a more complicated model should 

be applied to the DEM research. 

(2) Slip model 

Slip behaviour is provided through enforcing a connection between the shear and 

normal force, so that the two interacting contact entities are capable of slipping relative 
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to one another. The relation does not provide normal strength in tension, but allows 

slippage to happen by means of limiting the shear force. The slip behaviour is always 

active, unless a contact bond is present - in which case the contact bond behaviour 

supplants the slip behaviour. The linear model describes the force-displacement 

behaviour, as shown in Figure 3.5. The slip behaviour is defined by: 

Fs
max = μ︱Fn︱     (3.5) 

where Fs
max is the maximum allowable shear contact force, μ is the coefficient of 

friction, and Fn is the normal contact force at the contact. When the limiting Coulomb’s 

shear force has been reached, slippage is allowed to happen.  

(3) Bonding model 

In PFC3D, particles are allowed to be bonded together at contact points. Bonded 

granular material is employed in order to represent breakable grains in the simulations. 

A contact bond can be considered as a point of glue or a pair of elastic springs with 

the constant normal and shear stiffness occurring at the contact point, and in which the 

two springs specify the tensile normal strength and the shear strength. The contact 

bond glues the spheres at a vanishingly small size, acting only at the contact. The 

contact bond transmits a force, but not a moment. The presence of a contact bond 

deactivates the slip model. When a bond is formed at a particle-particle contact point, 

the contact will continue to exist until bond breakage happens. 

Both the normal contact bond strength Fn
c and the shear contact bond strength Fs

c 

define a contact bond. When the tensile normal contact force is above or equal to the 

normal contact bond strength, the bond will break as a result, and contact forces will 

become zero. When the shear contact force is above or equal to the shear contact bond 

strength, the bond will break too as a result, but the contact forces will not be changed 

if the shear force is not above the friction limit and the normal force is still compressive. 

Figure 3.5 shows the force-displacement behaviour of contact occurring at a point. 

Both the contact bond model and the slip model are active at any given time. 
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Figure 3.5: Force-displacement behaviour of contact occurring at a point (Itasca, 2008) 

        In PFC, there is another bond model – parallel bond. It is described in the PFC3D 

manual (Itasca, 2008) that a parallel bond approximates the physical behaviour of a 

cement-like substance lying between, and joining, the two bonded particles. Parallel 

bonds establish an elastic interaction between particles that acts in parallel with any 

other contact model at the contact. Parallel bonds can transmit both force and moment 

between particles, while contact bonds can only transmit force acting at the contact 

point. Hence, the definition of the parallel bond requires more parameters than the 

contact bond. 
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According to the discussion of the laboratory formation of hydrate-bearing 

samples in Chapter 2, the parallel bond seems to be a better solution for building the 

cementation model of the DEM hydrate-bearing samples. However, for simplification 

in this research, instead the contact bond model was used in the cementation model. 

There were several reasons for this choice. One reason is that the stiffness of hydrate 

was much smaller than that of soils, which means the soil particles were the 

dominating particles in the mixture while the soil particles were not bonded to each 

other. Another reason is that the cementation sample with the contact bond model 

could be more easily and directly compared with the pore-filling model, rather than 

with the parallel model which is more complex. But in the next step of this research, a 

parallel bond should also be considered. 

3.2.2.3 Clump 

In PFC3D, there is a clump logic (Itasca Consulting Group, Inc., 2008) serving to study 

the granular materials with different shapes of particles. The clump function provides 

a technique to generate groups of clump particles, as indicated in Figure 3.6. A clump 

models one rigid body, and the particles that constitute the clump remain at a fixed 

distance from one another and do not rotate from one another. Contacts inside the 

clump are ignored during the calculation, which also helps to save computational time. 

Particles of a clump can overlap to any extent, whilst there are no contact forces 

between these particles. Hence, clumps behave as rigid bodies which will never break 

apart, despite of the forces acting on them. By this logic, a clump is different from a 

cluster, which refers to a group of particles that are bonded to one another. 

 

Figure 3.6: 2D Sketch of clump and sphere in PFC 
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3.3 Choice of the sample preparation procedures 

There are various methods for the DEM sample preparation published in literature. 

One typical way is known as the ‘multi-layer with under compaction method’ (Jiang 

et al., 2003), in which particles are placed in different compacted layers, and 

generating a homogenous specimen. Another typical method is to simulate the 

sedimentation process by applying the gravity to particles (Marketos, 2007). However, 

both methods are not quite similar enough to the formation process of hydrate-bearing 

sediments. As mentioned previously, natural methane hydrate develops in the pores of 

highly compacted soil sediments, which means the highly compacted soils exist first 

before the formation of hydrates. In addition, the formation process of hydrate is that 

a large amount of methane, which is trapped within a crystal structure of water, forms 

solid methane hydrate which can be enlarged by the on-going hydrate growth. 

       Hence, in this research, the ‘radius expansion method’ provided in PFC3D (Itasca, 

2008) was employed so as to model the growth process of hydrate in the pores of 

consolidated soil particles. Using this method, particles are first generated at half the 

value of the target sizes, and then enlarged to their final sizes. This method can also 

help reduce overlapping between particles in the particle generation process and reach 

equilibrium in a shorter computational time.  

        Two synthetic sample preparation methods are usually used in the laboratory tests 

and the numerical simulations: ‘Hydrate + Soil’ and ‘Hydrate → Soil’ (Brugada et al., 

2010). The ‘Hydrate + Soil’ method is used by mixing soil particles with hydrates. The 

hydrates are randomly placed into a sample together with the soil particles at low 

confinement and low temperature, and then the sample is isotropically consolidated to 

a desired effective stress. Alternatively, the ‘Hydrate → Soil’ method challenges the 

laboratory studies, because the loose soil sample should be initially isotropically 

consolidated to form the soil skeleton under the desired effective stress, where 

following on from this, hydrates are generated in the void space of the sample to reach 

different hydrate saturations by injecting methane gas into the void space which is full 

of water. And then methane hydrate formed with the decreasing low temperature in 

the pores of the consolidated soil samples. 
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        Between the above two sample preparation methods, the ‘Hydrate → Soil’ sample 

preparation method is closer to the natural hydrate formation process in sediments 

under deep seabeds and permafrost regions, where there is high pressure and low 

temperature, and the soil skeleton is formed first before the growth of methane hydrate. 

Hence, in this DEM study, the ‘Hydrate → Soil’ sample preparation procedure was 

adopted. Figure 3.7 shows a 2-Dimension sketch diagram of the sample preparation 

procedure. 

        The basic DEM sample preparation procedure of the hydrate-bearing sediments 

generally included: (1) to design the input property parameters of the soil and hydrate 

particles; (2) to set the boundary (walls) conditions for the particle generation and the 

upcoming tests; (3) to generate the consolidated soil sample at a desired confining 

pressure; (4) to generate the pore-filling or cementation hydrate particles inside the 

pores of the prepared soil sample to reach a desired hydrate saturation under the given 

confining pressure.  

        However, regarding the accuracy which the DEM simulation can achieve, it is 

actually challenging to properly compare the prepared DEM methane hydrate 

sediment sample with the actual microstructure of the real methane hydrate sediment. 

Firstly, for the simplification there is no water included in this DEM model, so that the 

comparison cannot be made easily. Secondly, the DEM hydrates are sphere particles 

rather than the hydrate mass.  

        In this DEM model, although the DEM microstructures are not equivalent to the 

actual microstructure of the natural hydrate-bearing sediment, the spherical hydrate 

particles were generated exactly according to the definition of the hydrate growth 

patterns: in the pore-filling pattern, hydrate particles freely grow in the pores without 

connecting two or more soil particles together (Helgerud et al., 1999; Soga, et al., 

2006); in the cementation pattern, hydrate particles grow at the soil-soil contacts and 

along the soil surface, and the compacted soil skeleton is bonded by the hydrates, while 

the soil-soil contacts are not bonded (Dvorkin et al., 1999; Soga et al., 2006; Jung et 

al., 2012). Because the methane hydrate research is a relatively new area, and methane 

hydrate are buried under the deep seabed, it is not really possible to find the 

observations of the microstructure on site. Hence, according to the limited data of 
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hydrate microstructure, this DEM research is among the first attempts in this research 

direction, although the DEM model cannot be assumed to be the actual sediment. 

 

Figure 3.7: 2-Dimension sketch diagram of the DEM sample preparation procedure of the 

hydrate-bearing soil 

3.4 Sample preparation of pore-filling and cementation models 

3.4.1 Input parameters of soil and hydrate particles 

Generally, the input property parameters of the DEM samples originated from the data 

measured through the experiments and assumptions. However, samples also required 

some appropriate numerical changes. The main property parameters which are 

necessary to be considered includes friction (inter-particle & wall-particle), number of 

particles, density, initial void ratio, grain shape, grain size and size distribution pattern, 

aspect ratio (sample & particles), stiffness (particles & walls), etc.. The input 

parameters for the DEM sample preparation are shown on Table 3.1.  

        The spherical particle diameters (0.1 mm – 0.25 mm) of the soils followed 

Gaussian distribution, as shown in Figure 3.8. Actually, in this research, there are six 

groups of soil particles with different sizes within the range of 0.1 mm – 0.25 mm. The 

diameters of the six groups of soil particles are 0.1125 mm, 0.1375 mm, 0.1625 mm, 

0.1875 mm, 0.2125 mm and 0.2375 mm respectively. By doing this, it is more 

convenient for the study on the effect of elongated soil particles when replacing the 

spherical particles with elongated clumps in PFC3D. 
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Table 3.1:  Input parameters for soil and hydrate particles used in the DEM model 

Property Soil Methane hydrate 

Particle size D (mm) 

(Gaussian distribution) 

0.1 ~ 0.25 0.04 

Density  (kg/m3) 2600 900 

Elastic Modulus Ec (MPa) 286 28.6 

Normal contact stiffness kn (N/m) 2DEc 

= 0.572×105 ~ 1.430×105 

2DEc 

= 2.288×103 

Shear contact stiffness ks  (N/m) 0.7kn 

= 0.4004×105 ~ 1.001×105 

0.7kn 

= 1.6016×103 

Inter-particle friction  0.75 0.75 

 

 

Figure 3.8: Gaussian distribution of soil particles’ sizes 

The spherical hydrate particle size needed to be set smaller than the soil particles 

in order to properly simulate the hydrates’ formation at the soil-soil contacts, as well 

as along the soil surface and in the pore spaces. This way, the hydrate influence on the 

sediment’s skeleton would be obvious during the simulation process. However, the 







3. Sample preparation with Discrete Element Method 

 

97 
 

computational time during the DEM simulation depends on the particle number. Thus, 

the hydrate particles could not be made as small as possible. A hydrate particle 

diameter of 0.04 mm was chosen. The results in Chapter 4 show that the chosen particle 

size of hydrates had already properly simulate the geomechanical behaviour of 

hydrate-bearing samples according to the published laboratory studies, in both the 

pore-filling and cementation models. Hence, a smaller size did not have to be chosen 

due to the limited computational time. In addition, gravity was not applied to the 

particles. 

According to the published research (Kezdi, 1974; Prat et al, 1995), the elastic 

Young’s modulus of the dense well-graded sand is between 160 MPa and 320 MPa. 

And actually, the real dense sand’s elastic modulus can be as high as 1000 MPa. Since 

this research originally followed the research of Brugada et al. (2010), the elastic 

modulus of 286 MPa was chosen for the soil particles, in order to be properly compared 

with the published studies. However, there is a lack of data in the literature and the 

experimental results about the contact elastic modulus cE  of hydrates. The stiffness 

of methane hydrate is described as being only a bit higher than that of ice (Soga et al., 

2006). Therefore, in this research, the hydrate/soil elastic modulus ratio /hyd soil

c cE E  was 

assumed to be 0.1 according to the published DEM research of Brugada et al. (2010). 

For the DEM simulations, the normal contact stiffness nk  is proportional to the 

particle elastic modulus cE  and the particle diameter D , by Equation 3.6. The 

hydrate/soil contact stiffness ratio 50/ ( )hyd soil

n nk k D  was 0.023, where 50D  was the 

mean value of the particle diameters 0.175 mm. A higher hydrate/soil contact stiffness 

ratio hydrate/soil elastic modulus ratio /hyd soil

c cE E  of 1.0 was also used in the discussion 

in Chapter 6.  

Normal contact stiffness:    2n ck DE           (3.6) 

        It is now generally recognized by the research community that the main objective 

of DEM-based investigation is not to provide quantitatively reproduction of material 

behaviour, but to understand qualitatively the particle-scale mechanism affecting the 

continuum-scale responses. Hence, the input parameters for the particles were 
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principally designed for the numerical simulation purpose. And the obtained results in 

the next chapters have proved that the input parameters were reasonable for the 

qualitative interpretation in the DEM modelling. 

3.4.2 Walls 

The prepared DEM sample was a cylinder of 3.5 mm (height) × 1.75 mm (diameter) 

and a height/diameter ratio of 2:1, which was confined by the lateral cylindrical wall 

and the planar walls at the top and bottom. The three smooth walls were used to confine 

and load the sample, and were made longer to meet the needs for large straining during 

the tests (Itasca, 2008), as illustrated in Figure 3.9.  

        It is important to note that in PFC3D the walls intersect with one another but do 

not interact, the walls only interact with particles. In DEM research, a rigid boundary 

is the most widely used (O’Sullivan, 2011). Cheng et al. (2003) exhibited that the 

servo-controlled rigid boundaries in DEM analysis was effective. Hence, in this 

research the normal stiffness of the walls was set to be approximately 100 times that 

of the biggest soil particles’ normal stiffness (
wall

nk = 1.5×107 N/m, 
wall

sk = 1.5×107 N/m, 

wall = 0), which would be an effective confinement when the particles were moved 

and rotated by large contact forces inside the walls. 
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Figure 3.9: 2-Dimension simplified schematic diagram of the walls at the initial state and the 

large strain state 

3.4.3 Hydrate saturation 

Regarding the hydrate occupancy in the hydrate-bearing sediments, the term ‘hydrate 

saturation’ ( hS ) was introduced by referring to the percentage of hydrate volume 

occupancy in the void space in the pure soil sample (Equation 3.7). The total number 

of soil particles was 2000. As for the hydrate particle number, as an example, the total 

number of hydrate particles varied from 10114 to 40459 at the hydrate saturation of 

10% and 40%, respectively. The numbers of the soil and hydrate particles at various 

saturation are shown in Table 3.2. 

Hydrate saturation:    
( )

( )

hydrates

h

pores

Volume
S

Volume
       (3.7) 

Table 3.2: Number of soil and hydrate particles at various hydrate saturation in DEM 

simulations 

Hydrate 

Saturation 

Particle 

Number 

Soil Hydrate 

0% 2000 0 

10% 2000 10114 

20% 2000 20229 

30% 2000 30344 

40% 2000 40459 

 

It should be noted that the hydrate saturation computed here may not be the same 

as the hydrate saturation measured in the laboratory. The simulated hydrate saturation 

(Sh) should correspond to a higher hydrate saturation than the natural hydrate-bearing 

soil sediments for several reasons, such as the size and shape of the assumed soil and 
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hydrate particles, the void space limitations, and the existence of other materials in the 

pores of the natural sediment. Because of the spherical shape of the soil and hydrate 

particles in the DEM model, after adding Sh= 40% of hydrate particles, there would be 

no single void space for placing a single hydrate particle inside, although the total 

remaining (wasted) void space volume would still be large, as illustrated in Figure 3.10.  

However, the overlapping of hydrate particles would cause higher mean contact force 

than the confining pressure, which would cause the sample to expand. The volume and 

void ratio would also be changed. In other words, in this research, after the 40% 

saturation of hydrate particles were generated in the consolidated soil sample, no more 

hydrate particles could be added when the particles’ overlapping and the sample 

volume were properly controlled. It is likely that hydrate saturation was 

underestimated. However, the actual 40% saturation could not simply be assumed as 

100% saturation, as there were still void spaces in the sample. Hence, the behaviour 

observed in this study should be examined qualitatively rather than quantitatively. 

 

Figure 3.10: The remaining void space inside the DEM hydrate-bearing soil sediment (2D 

sketch) 

In the natural sediments, hydrates grow in the pores of the existing soil sediments. 

But cases are different. In some sediments, methane hydrate forms in the unsaturated 

condition; while in other sediments, hydrate forms in the saturated condition. In fact, 

the laboratory hydrate sample preparation mostly follows the second case that methane 

gas was injected into the saturated soil sample to obtain the different hydrate 

saturations. However, due to the low temperature in the sample, it is challenging to 
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control the extra ice which forms without dissolving the methane gas. In order to solve 

this problem, in the laboratory sample preparation, there is another method to prepare 

the hydrate-bearing sediment – mixing the soils and the prepared hydrates. However, 

this method not only breaks the original soil skeleton, but also cannot control the 

hydrate growth patterns.  

In this DEM research, as discussed earlier, it is obvious to see that the hydrate 

particle size is still a big issue for the accuracy of the hydrate saturation in the sample 

preparation process. The particle size affects how the particles are packed in the void 

space, and also affects the wasted volume size. A smaller size of the hydrate particles 

can definitely increase the volume occupancy of the hydrate in the void space. But the 

much larger number of hydrate particles challenges the computational time during the 

simulation process. Hence, the sample preparation is still a difficult and challenging 

job at this stage. A further study on the assumption of the hydrate saturation in this 

DEM study is discussed in details in Appendix A of this thesis. The principles of 

comparing the DEM saturation with the laboratory saturation could depend on the 

assumptions to some extent. 

3.4.4 Pore-filling model 

In the pore-filling model prepared in this study, as shown in Figure 3.11, hydrate 

particles were generated in the void space of the consolidated soil sample to reach 

different hydrate saturations (Sh). The soil particles were first generated at half the 

value of the target sizes, and they were then enlarged to the final sizes in order to 

reduce the overlapping between particles in the particle generation process and to reach 

equilibrium in a shorter computational time. After that, the soil sample (with initial 

porosity n=0.43) was consolidated to the isotropic effective stress of 1 MPa, 2 MPa or 

3 MPa, as natural methane hydrate develops and exists under the high pressure in 

sediments under deep seabeds and permafrost regions. Following on from this, 

hydrates are generated randomly in the void space of the sample at half the value of 

the target sizes, and then enlarged to the final sizes so as to reach a chosen hydrate 

saturation.  
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Figure 3.11: DEM hydrate-bearing soil samples 

        In the pore-filling model, there was no bonding strength between particles. At the 

low hydrate saturation, the hydrate particles were inside the pores without contacting 

with the soil particles, as gravity was not applied. Yet, as the hydrate saturation 

increased, the number of contacts between hydrate particles and other particles (soil or 

hydrate) would increase. The simulation data and analysis on the pore-filling model 

are discussed in Chapter 4, Chapter 5 and Chapter 7. 

3.4.5 Cementation model 

The cementation model was generated using a consistent soil model which was used 

in the pore-filling model. However, compared to the pore-filling model, the difference 

in the cementation model was that the generated hydrate particles were bonded to soil, 

or other hydrate particles with the normal bonding strength nB  of 5×103 N/m2 (0.005 

MPa) and shear bonding strength sB  of 5×103 N/m2 (0.005 MPa) imposed by the 

contact bond model in PFC3D, while soil particles were not bonded together. The 

cementation is evenly distributed in the sample, as shown in Figure 3.12.  
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Figure 3.12: Contact bonds with directions when particles are set transparent in cementation 

model of Sh=10% 

        In this DEM modelling, the cementation hydrate was made in the compacted soil 

sample in the following steps: (1) to apply very high bonding strength to the existing 

soil-soil contacts of the skeleton, in order to make sure the soil-soil contacts will not 

be broken by the movement of hydrate particles; (2) to divide the target number of 

added hydrate particles into six groups; (3) to generate one group of hydrate particles 

in the void space, and then apply gravity of the negative direction of Z axis to the 

hydrate particles; (4) hydrate particles drop along the gravity direction until they 

stopped at the contacts with soil particles, and then the hydrate with the gravity 

accumulate at the soil-soil contacts; (5) as more hydrate particles at the soil-soil 

contacts accumulate, some hydrate particles just begin to stop and accumulate along 

the soil surface; (6) to apply bonding strength to the hydrate particles’ contacts with 

other particles (soil and hydrate) in order to fix these contacts; (7) to generate the 

second group of hydrate particles in the void space, and apply gravity of the positive 

direction of Z axis to the hydrate particles, and follow the steps of (4) ~ (6); (8) to 

repeat the steps of (3) ~ (6) by applying the gravity of the positive or negative direction 

of X axis or Y axis, hence the six groups of hydrate particles are all bonded to the 

induced contacts in order to form the cementation hydrate model; (9) to set the bonding 

strength at soil-soil contacts to zero, and set the target bonding strength of hydrate 

particles. It should be noted that, during the whole process, a special PFC3D function 
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was applied to set all the induced contact overlap to zero for each time step in order to 

avoid the induced contact force which may influence the existing soil skeleton. 

        This hydrate formation and growth process followed the laboratory observation 

(Priest et al., 2005) that hydrates formed first at the grain contacts (soil-soil contacts), 

and then they grew into the pores and along the soil surface from the grain contacts. 

In the whole sample preparation process, the soil skeleton and soil-soil contacts were 

not broken or changed. The comparisons of the simulated data and analysis between 

pore-filling and cementation models are discussed in Chapter 4, Chapter 5 and Chapter 

7. 

        In the cementation model, the hydrate growth patterns could govern the 

sediment’s mechanical behaviour. The cementation hydrate particles either gathered 

at the soil-soil contacts or bonded to the soil surface. The location of these two different 

types of cementation hydrate particles may influence the mechanical behaviour 

differently. A comparison should be conducted in order to study the effect of hydrate 

growth patterns in the cementation hydrate-bearing soil model. 

        Hence, these two typical hydrate growth patterns of the cementation model were 

considered: soil surface coating (hydrates accumulating at grain surface) and soil-soil 

contact gathering (hydrates aggregating near the grain contacts). As shown in Figure 

3.13, the DEM simulations in Chapter 6 were performed using samples of the two 

different growth patterns: (i) hydrates placed around grain surfaces (“Coating” in 

Figure 3.13(a)) and (ii) hydrates placed near grain contacts (“Contact gathering” in 

Figure 3.13(b)). The sample preparation of these two patterns was according to the 

hydrate particle’s contact types: among all the contacts of one hydrate particle, if there 

is only one contact with soil particles, it is the coating hydrate; if there are no less than 

two contacts with soil particles, it is considered as the contact-gathering hydrate. By 

controlling the hydrate particle’s contacts, these two different models were made 

accordingly. 

        The bonding strength of hydrate-hydrate and hydrate-soil was varied, as shown 

in Figure 3.13 (a)-(a’) and (b)-(b’). The DEM simulations in Chapter 6 were conducted 

on the two cementation hydrate growth patterns at various bonding strengths from 0 
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MPa (no bond) to 0.500 MPa, In order to study the bonding strength effect of the 

hydrate particles. 

 

Figure 3.13: Hydrate growth patterns of the cementation model: (a) soil surface coating (b) 

soil-soil contact gathering 

3.4.6 Models with elongated soil particles 

DEM samples with elongated soil particles were prepared, in order to study the effect 

on shape of soil particles in the DEM simulations of hydrate-bearing sediments 

(Chapter 7). To make the DEM samples using the elongated soil particles, soil samples 

with spherical particles were first generated and consolidated under the given 

confining pressure. Elongated soil particles were prepared by replacing spherical soil 

particles by elongated clump particles of the same volume as the replaced spherical 

particles, in the consolidated DEM spherical soil samples under the controlled 

confining pressure. This will ensure the total solid volume was not changed. The 

particle replacement process could not be finished simultaneously, because that will 

totally change the original fabric. Hence, it was performed by replacing one after 
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another with a time interval for each replace in order that the induced particles’ overlap 

was reduced. This is a trial and error process. 

        As shown in Figure 3.14, two aspect ratios were chosen for the elongated particles: 

1.5 (2-ball clump) and 2.0 (3-ball clump). The spherical particle’s aspect ratio was 1.0. 

And the diameter of the spherical particles in the clump was accordingly smaller than 

that of the replaced original spherical particle, in order to ensure that the clump volume 

was the same as the replaced original sphere by careful calculation.  

 

Figure 3.14: Replacement of spherical soil particles by elongated clumps. 

        Initially, all the elongated particles were generated horizontally, as the soils 

distribute horizontally in the natural hydrate-bearing sediments. In addition, the 

volume of the elongated particle was the same as that of the replaced spherical particle, 

so that the initial void ratios of the three soil samples were the same before the triaxial 

test. They had the same inter-particle friction. The pore-filling model and the 

cementation model were then prepared in the 2-ball clump and 3-ball clump soil 

samples using the same hydrate-bearing soil sample preparation process as mentioned 

above. 



3. Sample preparation with Discrete Element Method 

 

107 
 

3.5 Summary 

It should be noted that the initial state before the testing plays an essential role, and the 

initial state totally depends on the sample preparation. And the DEM sample 

preparation procedures of the methane hydrate soil samples are discussed in the aspects 

of their important principles. The preparation of the pore-filling and cementation 

models have been stated in detail. Furthermore, the two hydrate growth patterns in the 

cementation model are exhibited in this chapter, and were prepared separately in order 

to make the comparisons in Chapter 6. The hydrate-bearing sediments with elongated 

soil particles were prepared in this research, so as to study the shape effect of the soil 

particles (Chapter 7). 

        In order to make a comprehensive study of hydrate-bearing sediment and a proper 

comparison between various hydrate distribution patterns, a consistent DEM soil 

model should be considered carefully. The input parameters for the particles and 

boundary conditions are also essential to the accuracy of the DEM modelling. 
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Chapter 4 

Large deformation behaviour of pore-filling and 

cementation hydrate-bearing sediments 

 

4.1 Introduction 

In this chapter, numerical simulation using Discrete Element Method (DEM) was 

employed to provide unique insights into the macro and micro mechanical behaviour 

of hydrate-bearing sediments with two typical hydrate distribution patterns: pore-

filling and cementation.  

        The simulated drained triaxial compressional tests were systematically conducted 

to investigate the effects of hydrate saturation (Sh) and hydrate growth patterns on 

hydrate-bearing samples. Comparisons of various aspects between the pore-filling and 

cementation models were made. 

        Firstly, comprehensive analyses were discussed in regards to the aspects of stress-

strain responses and volumetric responses. We explored the effects of hydrate 

saturation and growth patterns on the sediments’ stiffness, strength and volume change. 

Besides this, our interest in the sediments’ behaviours extended to the large strain 

deformation and critical state behaviours in the triaxial tests, as these could not be 

obtained easily in the laboratory studies. In addition, the confining pressure effect was 

also explored. 

        A particle-scale micro-investigation into the DEM hydrate-bearing sediments 

was performed. We monitored the bond breakage between particles throughout the 

tests, as well as the particles’ contact information. We also explored the particle-

particle contact force contribution to the total contact force. All the particle-level 

analysis assisted interpretation of the macro responses discussed in this chapter.  
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4.2 Triaxial tests setting using DEM 

After the sample preparation, the simulated drained triaxial compressional tests were 

systematically performed at different hydrate saturations using both models. The 

principle of triaxial compression test has been introduced in Chapter 2. Before the 

drained triaxial compression tests, the sample was subject to the effective stress: an 

isotropic consolidating stress 'c = 1 MPa, 2 MPa or 3 MPa. The test was then started 

by increasing the axial load 'a  (by moving the top wall and the bottom wall at a 

constant speed of 1×10-10 m/s) while the servo-controlled lateral pressure was held at 

the constant confining stress 'c , as illustrated in Figure 4.1.  

 

Figure 4.1: Sketch diagram of triaxial compression test 

        The axial (vertical) compressive stress was increased by 'd , which was termed 

to deviatoric stress. Thus, the final stress was: 

Final axial stress,     ' ' 'a c d            (4.1) 

Final radial stress,   ' 'r c                    (4.2) 

        The history of loading a sample was recorded by the plots of the deviatoric stress 

as a function of axial strain, defined as: 
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Deviatoric stress,    ' ' 'd a r           (4.3) 

Axial strain,            
0

a

dH

H
                         (4.4) 

where 0H is the initial sample height before shearing, and dH  is the axial 

displacement of the sample during the triaxial compression test. 

4.3 DEM simulation results 

4.3.1 Stress-strain responses and comparisons to experimental data 

Under the conditions of the confining pressure 'c of 1 MPa and a hydrate/soil 

contact stiffness ratio kn-hyd/kn-soil(D50) of 0.023, the stress-strain relationships of 

hydrate-bearing samples are plotted in Figure 4.2 for the pore-filling model and the 

cementation model with the hydrate saturations (Sh) of  0%, 10%, 20%, 30%, 40%. 

Generally, in the triaxial test of the dense hydrate-bearing sample, the stress-strain 

curve arrived at a peak point, and after that, fell to some constant critical state values.  

 

                  (a) Pore-filling model (DEM)                          (b) Cementation model (DEM) 

Figure 4.2: Deviatoric stress as a function of axial strain: (a) pore-filling; (b) cementation 

(DEM study) 
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        Firstly, in both pore-filling and cementation models, the increase in the stiffness 

and the peak strength (maximum deviatoric stress) increased with a higher hydrate 

saturation. In the pore-filling samples, the maximum deviatoric stress increased from 

1.37 MPa (Sh=0%) to 2.75 MPa (Sh=40%). In the cementation samples, the maximum 

deviatoric stress increased from 1.37 MPa (Sh=0%) to 5.50 MPa (Sh=40%). Hence, the 

hardening effect of hydrates was shown in both cases.  

        Secondly, however, the rate of peak stress increase with hydrate saturation was 

influenced by the distribution pattern of hydrate within the pores of the soil sample. It 

can be seen in Figure 4.2 that in the pore-filling model, the strength increased more 

obviously when the hydrate saturation was more than 20%. However, in the 

cementation model, the strength increased just after there were some hydrates growing 

in the sediments. At the same hydrate saturation, the elastic stiffness and the peak 

strength of the pore-filling sample were smaller than those of the cementation sample, 

and such an example is shown in Figure 4.3. At low hydrate saturations, hydrates in 

the pore-filling case did not contribute to the strength of the sediments at the beginning 

of the triaxial test, as hydrates were formed inside the pore space rather than at the soil 

particles’ contacts. The hydrates in the cementation case grew at the soil particle 

contacts and along the surfaces of the soil particles, hence hydrate particles contributed 

to the strength of the soil skeleton during deformation. At a high hydrate saturation, 

the contribution of hydrate particles in the pore-filling case became more evident. 

        Furthermore, compared to previous experimental and numerical studies (Masui 

et al., 2005; Soga, et al., 2006; Brugada, et al., 2010; Jung, et al., 2012; Jiang, et al., 

2013), our interest in this research extended to large strain deformation and critical 

state behaviour. At large axial strain levels, softening behaviour was observed, and the 

deviatoric stress at the critical state reduced to some constant values. At higher hydrate 

saturation of the pore-filling case, compared to the Sh=0% sample’s critical state shear 

strength, there was a reduction in the critical state strength as shown in Figure 4.2(a) 

and Figure 4.3. And Figure 4.3 shows that the reduction was very evident at the highest 

hydrate saturation of 40%. In the cementation case, on the contrary, the critical state 

shear strength at Sh=40% was greater than that at Sh=0%, as shown in Figure 4.2(b) 

and Figure 4.3. 
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Figure 4.3: Comparisons of deviatoric stress as a function of axial strain between pore-filling 

and cementation cases at Sh=40% (DEM study)      

        The DEM study on the stress-strain responses in Figure 4.2 showed a similar trend 

to the experimental study of the drained triaxial compressional tests conducted by 

Masui et al. (2005), as shown in Figure 4.4 and Figure 4.5. The synthetic weak bond 

hydrate-bearing sediments in Figure 4.4 shows that the increase in stiffness and 

strength only occurred when the hydrate saturation exceeded 26.4%, where the weak 

bond specimens were usually considered as the pore-filling pattern in the laboratory.  

     

Figure 4.4: Deviatoric stress as a function of axial strain of the synthetic weak bond hydate-

bearing sample which was considered as pore-filling case in the laboratory (Experiment study 

on synthetic hydrate-bearing sediments, Masui et al., 2005) 
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        However, Figure 4.5 reveals that the synthetic strong bond case (considered as 

the cementation pattern) presented a strengthened mechanical behaviour even at a low 

hydrate saturation. Similar to the DEM simulation data, the cementation samples also 

showed a greater strength than the pore-filling case at the same hydrate saturation. Yet, 

because of the particle shape effect, the DEM study with spherical particles showed a 

lower strength value than the experimental research, which is discussed in detail in 

Chapter 7. 

 

Figure 4.5: Deviatoric stress as a function of axial strain of the synthetic strong bond hydate-

bearing sample which was considered as cementation case in the laboratory (Experiment 

study on synthetic hydrate-bearing sediments, Masui et al., 2005) 

4.3.2 Stiffness 

The secant Young’s modulus Esec refers to the stress/strain ratio at a point of the stress-

strain curve. In Equation 4.5, both the deviatoric stress (0)'d  and axial strain (0)a  are 

zero at the origin. The mid-strain stiffness 50E  is the secant Young’s modulus at half 

the peak deviatoric stress (50)'d  with the corresponding axial strain (50)a , as defined 

by Equation 4.6. 
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Secant Young’s modelus,      
(0)

sec

(0)

' ' 'd d d

a a a

E
  

  


 


             (4.5) 

Mid-strain stiffness,              
(max) (50)

50

(50) (50)

' 0.5 'd d

a a

E
 

 


           (4.6) 

        The initial stiffness increased with hydrate saturation. It is clearly shown in Figure 

4.6: (1) higher saturations had more influence on stiffness; and (2) bonded hydrates 

exhibited a greater effect on stiffness. The stiffness degradation curves were obtained 

from the triaxial tests under the 3 MPa confining pressure. The detail observations 

from the secant stiffness degradation curves are as following: 

        (1) In the pore-filling case in Figure 4.6(a), at the low hydrate saturations (≤ 20%) 

the sediments exhibited the initial stiffness at similar values because the initial stiffness 

depended on the soil skeleton’s stiffness. However, when the hydrate saturation 

increased to 30% and 40%, the initial stiffness was increased by the larger amount of 

hydrates in contact with soil particles, where hydrates played the load-bearing role.  

        (2) However, in the cementation model, the initial stiffness exhibited an evident 

increase even when the saturation was low, as shown in Figure 4.6(b).  

        (3) At the same hydrate saturation, the initial stiffness of the cementation 

sediment was higher than that of the pore-filling case.  

        (4) The sudden drop in stiffness was observed at an axial strain between 2% and 

3%. The stiffness degradation curves converged at a similar value when at large strains. 

        Figure 4.6 (c) shows the experimental results on the secant Young’s modulus Esec 

degradation of the cementation case by Masui et al. (2005). It is quite clear that the 

stiffness degrades as the soil is sheared, and the higher the hydrate saturation is, the 

greater degradation is. The DEM simulation results are compared well to the published 

experimental data. But the values in the experimental data were higher than the 

simulated data in this study. Due to the limitations of the DEM modelling of spherical 

particles, this study is qualitative rather than quantitative. The study on the effect of 
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elongated soil particle shape in Chapter 7 discusses more about this issue. In addition, 

the stiffness of the soil and hydrate particles was another reason. In this DEM research, 

the elastic modulus of the particles were chosen at relatively small values, which 

caused the DEM results smaller than the laboratory ones. As discussed in Chapter 3, 

it is now generally recognized by the research community that the main objective of 

DEM-based investigation is not to provide quantitatively reproduction of material 

behaviour, but to understand qualitatively the particle-scale mechanism affecting the 

continuum-scale responses. 

 

                  (a) Pore-filling model (DEM)                        (b) Cementation model (DEM) 

 

(c) Cementation case (Experiment, Masui et al., 2005) 

Figure 4.6: Stiffness Esec degradation curve against axial strain: (a) pore-filling model (DEM); 

(b) cementation model (DEM); (c) experiment cementation case (Masui et al., 2005) 
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        It also should be noted that, in Figure 4.6, the choice of 0.1% as the starting point 

of recording the axial strain was mainly due to the size of the DEM sample. Because 

of the limitations of computational time and the number of hydrate particles, the 

sample height was set to 3.5 mm. The axial strain of 0.1% then corresponded to 3.5   

10-3 mm, which was a reasonable value to begin recording the initial stiffness, due to 

the minimum diameter of soil particle being 0.1 mm. 

        Regarding the mid-strain stiffness 50E , there are also some detail observations can 

be seen in Figure 4.7 (a). (1) As hydrate saturation increased, 50E  generally increased. 

The increase in the mid-strain stiffness of the pore-filling cases became a bit more 

obvious when hydrate saturation was higher than 20%, while the increase in the 

stiffness of the cementation cases started to apparently increase with hydrate saturation. 

(2) It is also clear in Figure 4.7 (a) that at the same hydrate saturation, 50E  of the 

cementation model was higher than that of the pore-filling model. In addition, the rate 

of stiffness increase was higher when the saturation was higher.  

        The above two observations are compared well to the experimental data in the 

qualitative aspect (Masui et al., 2005) shown in Figure 4.7 (b). The experiment was 

conducted under 1 MPa confining pressure. The increased saturation increased the 

stiffness obviously from low saturation in the cementation case but from 25% 

saturation for the pore-filling case. It can also been in Figure 4.7 (b) that the 

cementation hydrate samples indicate great effect of hydrate at low hydrate saturation, 

while the pore-filling hydrate has no significant effect on peak strength or mid-strain 

Young’s modulus E50 until Sh was above 25%. 

        Furthermore, at the same hydrate saturation, the confining stress influenced the 

sample’s geomechanical behaviour, since the increasing confining pressure increased 

coordination number and density, hence the shear strength and skeleton stiffness. The 

variations of mid-strain stiffness 
50E  at the 1 MPa and 3 MPa confining pressures are 

exhibited in Figure 4.7 (a). Regarding the soil sample (Sh=0%), 50E  increased with the 

effective confining pressure. However, 50E  was relatively independent of confining 

pressure when the saturation was as high as 40% in the cementation model. This was 

because the soil stiffness was mainly controlled by the large number of bonding 
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contacts of the hydrate particles, but not by the soil-soil interaction (Soga et al., 2006; 

Yun et al., 2007).  

 

(a) DEM study 

 

(b) Experiment (Masui et al., 2005) 

Figure 4.7: Mid-strain stiffness E50: Pore-filling and Cementation models: (a) DEM study; (b) 

experiment (Masui et al., 2005) 
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4.3.3 Strength 

We recorded the history of the loading of a sample by plotting its stress path with axes 

'q  and 'p , where 'q  is the deviatoric stress and 'p  is the mean effective stress: 

Mean effective stress,   
' ' ' ' 2 '

'
3 3

a r r a rp
      

          (4.7) 

Deviatoric stress,           ' ' ' 'd a rq                           (4.8) 

        In the case of a shear slip failure or continuous yielding, the Mohr circle 

containing the normal stress '  and shear stress '  on the slip plane is clearly a 

limiting circle. Limiting circles at different values of normal stress will all touch a 

common tangent, known as a failure envelope (Figure 4.8).  

 

Figure 4.8: Mohr circle and failure envelope 

        The equation of this failure envelope is usually referred to as Coulomb’s equation: 

Coulomb’s equation (failure envelope),      ' ' ' tan 'c          (4.9) 

where '  is the friction angle, and 'c  is the apparent cohesion. 

        Figure 4.9 shows that the peak strength (max)'q  (maximum deviatoric stress) 

steadily increased with the higher hydrate saturation. Figure 4.9(a) is the result of the 
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DEM study in this research, and Figure 4.9(b) is the experimental result (Masui et al., 

2005).  

     

(a) DEM study 

 

(b) Experimental study (Masui et al., 2005) 

Figure 4.9: Maximum deviatoric stress (max)'q  at different hydrate saturations: (a) DEM study; 

(b) experimental study (Masui et al., 2005) 

        The difference of the increase rate depended on the hydrate growth pattern. In the 

cementation model, hydrates formed at the soil-soil particles’ contacts with bonding 
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strength, and contributed to the increase in strength even when the hydrate saturation 

was low. However, the hydrate particles in the pore space of pore-filling sediments did 

not make much of a contribution, as hydrate distributed within the pore spaces rather 

than at the soil-soil particles’ contact locations. The pore-filling hydrates were floating 

in the pores but did not increase the sediment’s strength at a low saturation, and the 

shear resistance was mainly due to the soil-soil interactions. However, when the 

hydrate saturation was higher (≥20%), the increase in strength was obviously shown, 

as more hydrate particles were in contact with soil particles and they began to 

contribute to the stiffness and strength increase, which is usually known as the load-

bearing hydrate growth pattern. The peak strength of the cementation cases, however, 

measured much higher than that of the pore-filling cases due to the bonding strength 

of the cementation hydrate particles at the soil-soil contacts.         

        Figure 4.10 with the failure envelopes on ' 'p q  plane indicates the stress states 

at failure for the pore-filling cases and the cementation cases. The shear strength 

increased with the mean effective stress, which are compared well to the confining 

pressure studies (Figure 2.16) by Masui et al. (2005) and Ebinuma et al. (2003) that 

the increased confining pressure caused a greater strain hardening behaviour. The 

slope H  in Figure 4.10 relates to the peak strength state friction angle 'p , which is 

discussed in detail in Section 4.3.5. 

 

       (a) Pore-filling model                                       (b) Cementation model 

Figure 4.10: Peak Failure Envelopes on ' 'p q  plane 
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        In the pore-filling model, the increase in the peak strength became obvious when 

the saturation was above 20%. While in the cementation model, the rate of increase in 

the shear strength exhibited higher results even at a low hydrate saturation. 

4.3.4 Volumetric responses 

The volumetric strain v  refers to the unit change in volume due to a deformation, as 

defined in Equation 4.10: 

Volumetric strain,     
0

v

dV

V
                       (4.10) 

where 0V is the initial sample volume, and dV  is the volume change of the sample 

during the triaxial compression test. 

        Figure 4.11 shows the volumetric strain as a function of axial strain during the 

triaxial tests of the hydrate-bearing samples with various hydrate saturations. The 

sediments initially showed contractive behaviour, which was followed by a dilative 

tendency. In addition, the dilatancy was enhanced by an increased hydrate saturation. 

The peak contractive values in the pore-filling model were similar at different hydrate 

saturations, whereas those in the cementation model increased with hydrate saturation. 

Peak contractive values in the cementation model, particularly at Sh=40%, saw a large 

number of bonding contacts and a higher occasion of interlocking particles. At the 

beginning, this made the soil particles immobile relative to one another, and due to the 

elastic deformation of the particles, caused the sample to compress more. When 

particles started to move relative to one another, dilation happened, where the rate of 

dilation of the cementation model (see Figure 4.11(b)) was greater than that of the pore 

filling model (see Figure 4.11(a)) ), meaning cementation affected enhanced dilation.   

        Regarding the dilation during the deformation process, there is a point on the 

v a   curve where there is a maximum value in the dilation angle, defined as: 
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Angle of dilation,     
/

arcsin
2 /

v a

v a

d d

d d

 


 

 
  

 
    (4.11) 

    

                    (a) Pore-filling model                                         (b) Cementation model 

Figure 4.11: Relationship of volumetric strain - axial strain 

        The increased hydrate saturation enhanced the characteristics of dilation of the 

hydrate-bearing sediments. It is shown in Figure 4.12 that the maximum dilation angle 

increased with a higher hydrate saturation, and this increase was more obvious the 

higher saturation was. The cementation effect increased the dilation angle at the same 

saturation, which was observed in the comparisons between the pore-filling and 

cementation models. At the critical state, the volume of the hydrate-bearing sample 

became constant, as expected, while shearing continued: the soil was then in the 

critical state and the volume was critical, as shown in Figure 4.11.  

 

Figure 4.12: Maximum dilation angles at various hydrate saturations 
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4.3.5 Critical state 

The contribution of hydrates to the sediments’ skeletal strength could be shown clearly 

at large strains. As shown in Figure 4.13, the critical state lines (CSL) plotted on the 

' 'p q  plane show that the shear strength increased with the mean effective stress.  

 

                      (a) Pore-filling model                                      (b) Cementation model 

Figure 4.13: Critical State Line (CSL) projection on the ' 'p q  plane 

        The CSL plots of the pore-filling model revealed skeleton softening behaviour 

when the hydrate saturation increased. As the saturation increased, the critical state 

strength of the pore-filling model decreased, which was enhanced by the increased 

mean effective stress. This may be due to the inclusion of hydrate particles in the soil 

matrix at the critical state. However, the cementation model CSL plots showed a 

different result. And this result was not similar to the DEM results shown in Figure 

2.27 (a) by Jung et al. (2012). In Figure 4.13 (b), when the hydrate saturation was low, 

the critical state strength of cementation hydrate-bearing sediments exhibited lower 

strength than that of hydrate-free soil sediments, because some inter-particles bonds 

were broken and the soft hydrate particles moved into the sediment’s skeleton. 

However, the higher saturation and much larger number of bonding contacts 

strengthened the critical state of the cementation hydrate-bearing sediments. Therefore, 

the critical state strength for 30% and 40% hydrate saturations was higher than the 

pure soil sample. 
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        From the peak failure envelopes and critical state lines mentioned above, the 

slope H  and M  in Figure 4.10 and Figure 4.13 relates to the peak strength state 

friction angle 'p  and the critical state friction angle 'c . The following equivalence 

expressions can be used to obtain the friction angles: 

6sin '

3 sin '

p

p

H






        (4.12) 

6sin '

3 sin '

c

c

M






        (4.13) 

Friction angle of peak strength state,     
3

' arcsin
6

p

H

H


 
  

 
        (4.14) 

Friction angle of critical state,               ' ' 0.8p c            (4.15) 

        The values of the derived friction angles are shown at various hydrate saturations 

as plotted in Figure 4.14.  

 

Figure 4.14: Angles of friction at different hydrate saturations 

        Regarding the peak strength state, the friction angles increased as the hydrate 

saturation got higher. The peak strength state friction angle of the cementation model 
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was larger than that of the pore-filling model. However, the friction angles in critical 

state showed a decrease for the pore-filling model as the hydrate saturation got higher. 

However, the friction angle of the cementation model in the critical state decreased 

slightly at 10% hydrate saturation, and then levelled off at saturations of 20% and 30%. 

When the hydrate saturation was 40%, the friction angle increased slightly to the value 

of the soil sample’s friction angle. 

        Bolton (1986) proposed a developed expression for sand: ' ' 0.8p c    . In 

this model of sand, the peak state friction angle of sand can be calculated by the critical 

state friction angle and the dilation angle. However, after adding the softer and smaller 

hydrate particles into the pores of the existing consolidated sand sample, the 

expression for sand proposed by Bolton (1986) did not work, especially at a high 

saturation, as shown in Table 4.1. In the pore-filling model, when the hydrate 

saturation was low, the value of the obtained peak state friction angle were very close 

to the calculated value. But as the saturation increased, the deviation was enlarged to 

some extent, and the calculated value was smaller than the obtained one. In the 

cementation model, however, the cementation effect caused a different situation. The 

deviation was much larger than that in the pore-filling model, and the calculated value 

was much larger than the obtained value at a high saturation. 

Table 4.1: Comparisons between the obtained peak state friction angle in this DEM research 

and the calculated peak state friction angle by the sand model  

 Pore-filling Model Cementation Model 

Sh 'p  ' 0.8c   'p  ' 0.8c   

0% 25.9 25.7 25.9 25.7 

10% 26.8 26.6 28 27.9 

20% 28.3 28.1 29.5 30.7 

30% 29.6 27.1 30.8 34.9 

40% 33.2 31.4 34.9 46.2 
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        The values of cohesion are shown at various hydrate saturations as plotted in 

Figure 4.15. The comparisons between the pore-filling model and the cementation 

model indicates that the only contribution to the increase in the cohesion was the bonds 

between hydrates and other particles (hydrates or soils), while there was no cohesion 

existing in the pore-filling hydrate samples. Due to the bond breakage in the 

deformation process, the cohesion at the peak strength state was higher than that at the 

critical state in the cementation model, especially at high saturation. Further discussion 

about the bond breakage will be analysed below.  

 

Figure 4.15: Cohesion at different hydrate saturations   

        Furthermore, the critical state granular void ratio ln 'e p  projections were 

plotted in Figure 4.16. The simulations showed that the resulting critical state granular 

void ratios e may not be unique, indicating the possible effect of fine hydrate particles 

on the critical state behaviour. Note that granular void ratio e was obtained by the 

following equation: 

Granular void ratio,     
v h

s

V V
e

V


      (4.16) 

where vV  is the void volume, hV  is the hydrate volume and sV  is the soil volume. 
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                         (a) Pore-filling model                                   (b) Cementation model 

Figure 4.16: Critical State Line projection on Granular Void Ratio e-lnp’ plane: (a) pore-

filling model; (b) cementation model 

        The hydrate effects on strength and dilation produced higher critical state void 

ratios as the saturation increased. It should be noted that the rate of dilatancy changed 

with confining pressure. In addition, the hydrate-induced dilatancy was less evident at 

a high confining pressure. As the confining pressure increased, the dilation 

characteristic tended to diminish in the pore-filling model, as shown in Figure 4.16 (a). 

The dilation behaviour was also weakened by the confining pressure in the 

cementation model (Figure 4.16 (b)), although due to the remaining bonds it could not 

be similar to the pore-filling case.  

4.4 Particle-scale analysis 

4.4.1 Particle-scale mechanism analysis 

The particle-scale mechanisms of the DEM pore-filling and cementation models are 

illustrated in Figure 4.17. At Sh=0%, the hydrate-free soil sample showed the 

movements of soil particles in the deformation process – rotation, slippage and 

rearrangement.  

        However, when the pore-filling particles formed in the pores at the beginning of 

the deformation process, the contact forces made a few hydrate particles move to the 
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soil-soil contact, which to some extent started to support the soil skeleton. However, 

in the large strain, due to the movements of soil and hydrate particles, some of these 

small-size hydrate particles became involved in the soil matrix and also transmitted 

the main contact forces in the skeleton. Consequently, the much softer and smaller-

sized hydrate particles in the skeleton weakened the overall strength of the samples. 

This may explain why the critical state strength of the pore-filling sediments was 

smaller than that of the pure soil sample.  

 

Figure 4.17: Sketch diagram of the particle-scale mechanisms of particle movements in the 

deformation process 

        In contrast, the cementation hydrates supported the soil skeleton at the initial state 

with the given bonding strength. Because they located at the soil-soil contacts or along 

the soil surface, it strengthened soil skeleton. During the triaxial shearing process, 

some of the bonds between particles were broken by the deformation; these hydrate 
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particles without bonds then moved to the pore space. At a large axial strain, out of the 

movement of particles, the cementation hydrate particles and the hydrate particles 

without bonds became involved in the matrix and still weakened the sample skeleton. 

However, there were also a large number of remaining bonded particles formed a 

bigger irregularly shaped clusters that induced a larger critical state strength in the 

cementation samples when compared to the pure sand.  

4.4.2 Bond breakage between particles in cementation model 

Figure 4.18 exhibits the bond breakage between particles throughout the triaxial test 

at Sh=10% and Sh=30% in the cementation model. Although the number of the contact 

bond breakage was very small in the initial state, it is shown that the evident bond 

breakage began to happen just after the elastic phase, and the percentage of bond 

breakage in total bonds increased steadily. This means there began to be a number of 

pore-filling pattern hydrate particles in the pores, at the soil-soil contacts or in the soil 

skeleton after the bond breakage, so that at Sh=10% and Sh=20% the critical state 

strength of the cementation models was smaller than that of the pure soil sample. But 

it is also found that in this figure, at a large strain of 33%, the percentage of bond 

breakage in total bonds only reached 44% at Sh=10% and 38% at Sh=30%. Hence, there 

are still a large number of bonding contacts in the sample at the critical state – 56% 

(Sh=10%) and 62% (Sh=30%) of initial total bonds.  

        Yet, at a high saturation, there were many more remaining bonded contacts. 

Firstly, it is because that the total number of bonded contacts at the initial state of the 

high saturation sample was much larger than that of the low saturation sample. 

Secondly, it can be seen in Figure 4.18 that at the large axial strain, the percentage of 

bond breakage of the total bonded contacts within the high saturation sample was 

lower than that within the low saturation sample. This may also explain why, at high 

saturations of 30% and 40%, in the cementation model, the critical strength was higher 

than that of the pure soil sample, as shown in Figure 4.2(b), Figure 4.3 and Figure 

4.13(b). The large number of bonding contacts plays an essential role in the strength 

of hydrate-bearing sediments. 
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 (a) Cementation Sh=10%                                     

 

(b) Cementation Sh=30% 

Figure 4.18: Bond breakage in the triaxial test of cementation model 

        The bonding contacts between particles included two types: hydrate-soil (h-s) 

contact and hydrate-hydrate (h-h) contact. As shown in Figure 4.19, the hydrate-soil 

bonding contacts accounted for 75% (Sh=10%) and 74% (Sh=30%) of the total bonds, 

while the hydrate-hydrate bonding contacts took up 25% (Sh=10%) and 26% (Sh=30%).  

        This is because in the cementation model, hydrates first formed at the soil-soil 

contacts before bonding, and then formed along the soil surface layer by layer. So 

when the main skeleton was deformed in the triaxial test, the main bond breakage must 

have been the hydrate-soil contact bond breakage. The rate of bond breakage of the 
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hydrate-soil contacts was greater than that of the hydrate-hydrate contacts. At the axial 

strain of 33%, the percentage of bond breakage between hydrates and soils in the Sh=10% 

model reached 54%, while bond breakage between hydrates and hydrates was 20%. 

However, at Sh=30%, the hydrate-soil bond breakage only reached 43%, while the 

hydrate-hydrate bond breakage was 23% at the large strain of 33%. After the bond 

breakage with the soils, there might be some clusters of bonded hydrates floating in 

the pores at the large strain, and there might also be some clusters of soil particles 

which are bonded by hydrates. Compared to the pore-filling case, the clusters of 

bonded particles (soil-hydrate and hydrate-hydrate) at the large strain might cause a 

larger dilation. 

         

           (a) Cementation Sh=10%                                    (b) Cementation Sh=30% 

Figure 4.19: Particles bond breakage in the triaxial test of cementation model 

4.4.3 Particle-particle contact number in total contacts 

Figure 4.20 shows the percentage of the particle-particle contact number in the total 

contacts, including soil-soil, soil-hydrate and hydrate-hydrate contact types, at the 
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peak strength state and the critical state respectively.  

        In the pore-filling model, at the peak strength state shown in Figure 4.20(a), as 

the hydrate saturation increased (more hydrate particles were generated), the number 

of hydrate-hydrate (h-h) contacts and hydrate-soil (h-s) contacts increased dramatically. 

At Sh=10%, the main contacts were soil-soil (s-s) contacts. However, at Sh=40%, the 

percentage of the h-h contacts increased to almost the same percentage of h-s contacts. 

But the percentage of the h-s contacts dropped slightly when the saturation increased 

from 30% to 40%. However, the percentage of the s-s contacts in total contacts dropped 

dramatically.  

        At the critical state of the pore-filling model in Figure 4.20(b), the h-s contacts 

were the main contact type after Sh ≥20%. In the same case, in Figure 4.16(a), the 

increase of granular void ratio became obvious when the hydrate saturation was above 

20%. The critical state h-h contact number percentage at each saturation was lower 

than the peak state h-h contact number percentage. But compared to the peak strength 

state, more hydrate particles have contacts with soil particles in the critical state. This 

can explain why there was the reduced critical state strength in the pore-filling model. 

        In Figure 4.20(c) and Figure 4.20(d), it is obvious that because hydrate particles 

in the cementation model were bonded to soils or other hydrate particles, the main 

contact types were h-s and h-h contacts. In Figure 4.8, the peak strength of the 

cementation model began to increase from low saturation, and the increase became 

more evident after Sh ≥30%. At Sh=30%, the contact number for h-h and h-s were 

similar because the h-h contacts were increasing as the saturation was getting higher. 

At Sh=40%, the h-h contacts became the main contact both at peak strength state and 

critical state. The granular void ratio of the cementation in Figure 4.16(b) increased 

with hydrate saturation, even when the saturation was low. In the cementation model, 

the difference in the contact number percentage between at the peak and critical state 

was not obvious. On the other hand, the difference between the two states was obvious 

in the pore-filling model.  
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(a) Pore-filling peak strength state                         (b) Pore-filling  critical state 

 

 

               (c) Cementation peak strength state                       (d) Cementation critical state 

 

Figure 4.20: Percentage of particles’ contact number in total contacts 

4.4.4 Particle-particle contact force contribution to total deviatoric stress 

According to the published research of Minh et al. (2014), the average stress tensor ij  

can be expressed at the summation of the stress tensors of the three contact types: soil-

soil contact stress tensor
s s

ij 
, hydrate-soil contact stress tensor 

h s

ij 
 and hydrate-

hydrate contact stress tensor 
h h

ij 
, as shown in Equation (4.17). 

s s h s h h

ij ij ij ij               (4.17) 
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        Both Figure 4.21 and Figure 4.22 show the process of the particles’ contact force 

contribution changes during the triaxial tests. As shown in Figure 4.21, the deviatoric 

stress – axial strain curves are plotted by s-s contact contribution, h-s contact 

contribution and h-h contact contribution, separately. It is illustrated that the 

cementation hydrate particles showed greater contribution than the pore-filling 

hydrates. This is not only because of the effect of h-s and h-s contacts, but also due to 

the hydrate bonding effect at the soil-soil contacts, which strengthened the soil 

skeleton. It is still obvious that at the higher hydrate saturation of 40%, the hydrate 

particles’ contribution played a more important role throughout the tests, especially at 

the peak strength state.  

 

                     (a) Pore-filling Sh =10%                                    (b) Cementation Sh =10% 

 

        (c) Pore-filling Sh =40%                                     (d) Cementation Sh =40% 

 

Figure 4.21: Particles’ contacts contribution to the deviatoric stress in the triaxial compression 

test 
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        In Figure 4.21, from the comparison between Sh=10% and Sh=40%, it can be 

clearly seen that the hydrate-hydrate contact force contribution increased obviously at 

Sh=40% due to the accumulated contact stiffness although the hydrate stiffness was 

low. And from the comparison between the pore-filling and cementation model, the 

cementation effect can be seen to contribute to the hydrate-hydrate contact force 

accumulation. 

        According to the research of Minh & Cheng (2013), the crossover points in Figure 

4.20 shows the dominant role of the soil particles was taken over by the hydrate 

particles. However, as shown in Figure 4.21, all the samples showed only the dominant 

behavior of soil particles, although there was still a great influence of hydrate particles 

throughout the tests, especially after the crossover points in Figure 4.20.  Hence, it is 

also important to note that the stiffness of soil particles was much large than that of 

hydrate particles. The stiffness effect is also essential according to the published 

research of Brugada, et al. (2010) as discussed in Section 2.3.1 of Chapter 2. This is 

the reason that hydrate particles could not play the dominant role in the particle matrix. 

        In Figure 4.22, at the hydrate saturation of 10%, the h-s and h-h contacts in the 

pore-filling case (Figure 4.22(a)) initially did not contribute to the initial skeleton 

contact force, but the cementation model in Figure 4.22(b) showed a small percentage 

of h-s contact contribution because hydrates formed at the s-s contacts and increased 

the initial stiffness of the skeleton. However, because of the very large number of 

hydrate particles in contact with soil particles at Sh=40% in Figure 4.22(c) and Figure 

4.22(d), the initial skeleton strength was affected by all the particles’ contacts, 

although the s-s contacts were still the most dominant contacts. The s-s contact 

contribution dropped obviously due to the apparent increase in the h-s contact 

contribution. In the cementation model, the h-h contact contribution was obviously 

exhibited in Figure 4.22(d). 

        It can be seen in Figure 4.22 that in the triaixal test, the s-s contact contribution 

dropped until the sample reached the critical state, while the h-s contact contribution 

increased at the beginning and then levelled off at the critical state. But in the pore-

filling model at Sh=40%, at the large axial strain of 17% and 24%, the h-s contact 

contribution showed a slight increase, although s-s contact seemed to contribute less 
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contact forces. This may be because during the deformation process more hydrate 

particles moved into the skeletal matrix. It is still necessary to mention that due to the 

hydrate/soil contact stiffness ratio, the relatively softer hydrate particles could not 

change the sample’s strength dominant role or show obvious contribution. 

 

                       (a) Pore-filling Sh=10%                                     (b) Cementation Sh=10% 

 

         (c) Pore-filling Sh =40%                                  (d) Cementation Sh =40% 

 

Figure 4.22: Pencentage of particles’ contacts stress contribution to total deviatoric stress 

        The percentage of particles’ contact force contribution to the deviatoric stress at 

the peak strength state and the critical state was plotted in Figure 4.23.  

        Generally, in both hydrate growth patterns, the soil-soil contact force contribution 

decreased as the hydrate saturation increased, but still played the dominant role. It is 

however obvious that the soil-soil contribution in the critical state exhibited lower 

values than that seen at the peak strength state. However, as the hydrate saturation 

increased, the contribution of hydrate particles was shown obviously in the plots, 
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especially the hydrate-soil contact force contribution. In addition, in the critical state, 

the h-s contact force contribution was greater than that seen at the peak strength state. 

Furthermore, at higher hydrate saturations, the hydrate-hydrate contact force 

contribution in the cementation model was higher than in the pore-filling model, which 

may be interpreted by the jamming role of cementation hydrates in the critical state. 

There may also be a large number of hydrate clusters lost during the bond with the soil 

or other hydrate particles, which existed in the pores without easily bridging the main 

matrix due to the cluster sizes. This may explain why in the critical state, at Sh=40% 

the hydrate contact force contribution in the pore-filling model was greater than in the 

cementation model. 

 

             (a) Pore-filling peak strength state                         (b) Pore-filling critical state 

 

 

            (c) Cementation peak strength state                                 (d) Cementation critical state 

 

Figure 4.23: Percentage of particles’ contacts force contribution at the peak strength state and 

critical state in the triaxial compression test 
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4.5 Summary 

In this chapter, a series of DEM triaxial compression tests were conducted to make 

comparisons between pore-filling and cementation models. Comprehensive analyses 

of stress-strain responses and volumetric responses were discussed. We explored the 

effects of hydrate saturation and growth patterns on the sediments’ stiffness, strength 

and pore habit. Besides, our interest in the sediments’ behaviours extended to the large 

strain and critical state behaviours in the triaxial tests. In addition, a particle-scale 

micro-investigation into the DEM hydrate-bearing sediments was also performed. The 

particle-scale micro-investigation into the DEM hydrate-bearing sediments was also 

implemented. The contribution of hydrates to the mechanical behaviour of the 

sediments was of a frictional nature for the pore-filling hydrate distribution pattern, 

whilst of a frictional and cohesive nature for the cementation case. 

        Through this research, the following conclusions were made: 

        (1) Comprehensive analyses were discussed in the aspects of stress-strain 

responses and volumetric responses. It is revealed that the mechanical behaviours of 

methane hydrate soil sediments were controlled by both the hydrate saturation and 

hydrate distribution patterns. The hardening effect of the increase in hydrate saturation 

was shown obviously in both hydrate growth pattern cases. The presence of hydrates 

caused the increase in stiffness, strength and dilative tendency, especially when Sh ≥ 

20% for the pore-filling hydrate distribution pattern, and Sh > 0% for the cementation 

model, which was also enhanced by the bonding strength effect and hydrate growth 

locations at the soil-soil contacts or along the soil surface. In addition, at the same 

hydrate saturation, the cementation model showed higher values than the pore-filling 

model in terms of initial stiffness, mid-strain stiffness, peak shear strength, friction 

angle, cohesion, dilation and granular void ratio.  

        (2) The interest in this research extended to the samples’ large strain and critical 

state behaviours. For the pore-filling model, hydrate effects on strength produced 

lower critical state strength as the saturation increased, while in the cementation model 

the critical state behaviours were shown to be different. In both of the hydrate growth 

patterns, due to the movements of soil and hydrate particles, the softer hydrates became 
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part of the soil matrix and transmitted the main contact forces in the skeleton. The 

hydrates in the skeleton weakened the strength of the critical state. However, the 

remaining bonding contacts in the cementation samples appeared to produce a 

resistance to the critical state, weakening behaviour of the soil-hydrate matrix.  

        (3) Meanwhile, the confining pressure effect was also explored. The stiffness and 

strength of the samples was enhanced with the greater effective confining pressure, 

while the dilation appeared to diminish. Yet, the bonding effect at very high saturation 

in the cementation model caused the sediments’ stiffness to become relatively 

independent of the confining pressure, and produced the dilation, though less evident 

than that seen at the lower confining pressure. 

        (4) From the particle-scale investigations of the bond breakage between particles 

throughout the tests in the cementation model, we found that the hydrate-soil bonding 

contacts were the main bonding contacts, and also played the main role in the bond 

breakage process, although hydrate-hydrate bond breakage also happened during the 

deformation process. The obvious bond breakage started just after the elastic phase, 

and the number increased steadily. This means there began to be a number of pore-

filling pattern hydrate particles in the pores, at the soil-soil contacts or in the soil 

skeleton after the bond breakage, because at Sh=10% and Sh=20% the critical state 

strength of the cementation models was smaller than that of the pure soil sample. There 

was however still more than half of the bonding contacts remaining in the sample at 

the large strain. This may explain why, at high saturations of 30% and 40% in the 

cementation model, the critical strength was greater than that of the pure soil sample. 

        (5) We also monitored the particles’ contact information. The contact number 

domination of soil-soil contacts changed into hydrate-contact domination with the 

changing saturation. However, from the research of particle-particle contact force 

contribution, although the soil-soil contact contribution decreased and the hydrate-

contact contribution increased as the hydrate saturation increased, all the samples still 

showed the soil-particle-dominated behaviour. Hence, it is also important to note that 

the stiffness of soil particles was much larger than that of hydrate particles. This is the 

reason that hydrate particles could not play the dominant role in the particle matrix. 

Further investigations should be conducted on the hydrate/soil contact stiffness ratio. 
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However, the bonding effect of hydrates at the soil-soil contacts and along the soil 

surface still played an important role in strengthening the skeleton in the cementation 

model. 

        (6) The large deformation was studied till as high as 33% axial strain. From some 

macroscopic data, such as deviatoric stress, the curves of the DEM results stabilized 

for the axial strain range from 15% to 33%. But the larger deformation from 15% to 

33% allowed the volumetric changes stabilized at different axial strains because of the 

various hydrate saturations; it also allowed the stiffness degradation to continue. 

Moreover, as the deformation got larger, the number of bond breakage still steadily 

increased, and the microstructure evolution still continued. DEM proved to be a useful 

tool to conduct a macro- and micro- study on a larger deformation behaviour of the 

hydrate-bearing sediments. This is why our interest in the sediments’ behaviours 

extended to the large strain behaviours in the triaxial tests. 
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Chapter 5 

Small-strain stiffness 

 

5.1 Introduction 

As discussed in Section 2.2.1 of Chapter 2, the small-strain shear modulus Gmax is 

usually measured through seismic wave propagation as a fundamental stiffness. The 

value of Gmax can be measured through laboratory and/or on-site field tests. In wave 

propagation, the propagation of the compression P wave induces longitudinal strains 

within the particles’ motion along the wave propagation direction. The shear S wave 

causes shear strains with the particles’ motion perpendicular to the wave propagation 

direction (Waite et al., 2009). From the wave velocities data summarized in Section 

2.2.1 (2006), it was found that shear and compression wave velocity is a good indicator 

of the hydrate existence and its growth patterns.  

        As discussed in Chapter 2, various seismic testing techniques have been 

extensively applied to detect the presence of hydrates and estimate the hydrate 

saturation on site, as the hydrates increase the stiffness of hydrate-bearing sediments 

and increase the wave velocity through the sediments (Waite et al., 2009). With the 

recognition of limitations in laboratory and field tests, wave propagation modelling 

using Discrete Element Method (DEM) was conducted in this chapter in order to 

provide the insights on the hydrate-bearing sandy sediments models with pore-filling 

and cementation hydrate distributions. The relationship between wave velocity and 

hydrate saturation was established by the DEM simulations. In this research the DEM 

simulations helped relate wave velocity to the properties of stiffness at various hydrate 

saturations, and characterize hydrate-bearing sediments with the seismic data. 

        Furthermore, studies were conducted to relate the small-strain stiffness with the 

mid-strain and large-strain geomechanical behaviours, in order to help predict the mid-

strain and large-strain responses in the wellbore through the wave propagation. 
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5.2 Seismic wave propagation procedures in the DEM sample 

There are three steps for modelling compression P wave and shear S wave propagation 

in the hydrate-bearing DEM soil samples, which followed the published research by 

Xu et al. (2012):  

(1) Noise elimination: to make particles reach equilibrium by cycling a number of time 

steps after the consolidated sample was prepared;  

(2) Transmitter and receiver installation: as shown in Figure 5.1, 2 groups of particles 

in a short cylindrical shape region were chosen at the top and bottom inside the sample 

- one was the transmitter and the other was the receiver;  

(3) Transmitting and monitoring: then the excitation was started by exciting a single 

sine velocity pulse to the transmitter in a certain direction (P wave or S wave). The 

averaged velocity of the receiver in the same direction is then monitored for detecting 

the arrival of the disturbance.  

        All the input parameters are shown in Table 3.1 in Section 3.4. In this study, the 

frequency and amplitude of the applied velocity pulse was chosen to be 10 kHz and 

1×10-5 m/s respectively. Thus, the maximum displacement for the transmitter would 

only be 1.59×10-10 m (i.e. 9.09×10-8 for strain), which is still within the elastic range. 

        The prepared DEM sample was a cylinder of 3.5 mm (height) × 1.75 mm 

(diameter) and a height/diameter ratio of 2:1, which was confined by the lateral 

cylindrical wall and the planar walls at the top and bottom. The three smooth walls 

were used to confine the sample. The numbers of the soil and hydrate particles at 

various saturation are shown in Table 3.2.  

        As illustrated in Figure 5.1 (b), regarding the transmitter and the receiver, 2 

groups of particles in a short cylindrical shape region were chosen at the top and 

bottom inside the sample. In order to avoid the influence of the boundaries, in this 

research, truncated signal method was employed: when the complete receipt of the 

wave signal had be taken by the receiver, the signal would be truncated. Meanwhile, 
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it was important to set the receiver relatively far from the boundary for minimizing the 

influence caused by the bottom reflection. To specify, the diameter of both the 

transmitter and the receiver was 0.875 mm, and their height was 0.25 mm. Hence, 

about 1/55 of the number of particles was chosen to be set as the transmitter or the 

receiver. 

                     

               (a) Sketch diagram of the model                               (b) DEM model 

Figure 5.1: The model for wave propagation 

5.3 Simulation results and discussions 

5.3.1 Small-strain stiffness at 1MPa confining pressure 

Under the confining pressure of 1MPa, comparisons of shear S wave velocities through 

the DEM hydrate-bearing sediment samples are shown in Figure 5.2 at different 

hydrate saturations. Generally, the wave velocities increased when the hydrate 

saturation was growing. It is shown that, in the pore-filling model, S wave velocities 
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Vs kept at a relatively constant value at low hydrate saturation, and then began to 

increase when the saturation became higher. However, in the cementation model, Vs 

increased obviously from lower hydrate saturations, and then increased steadily when 

the volume of hydrates was growing. At the same hydrate saturation, Vs in the 

cementation model was larger than that in the pore-filling model. It is suggested in 

Figure 5.2 that the shear wave velocity is controlled by both hydrate saturation and 

hydrate growth pattern.  

 

Figure 5.2: Comparison of shear S wave velocities between pore-filling and cementation 

models at different hydrate saturations (at 1MPa confining pressure) 

As previously mentioned in Chapter 2, the shear wave velocity Vs has a direct 

relation to the small strain shear modulus Gmax : 

2

max sG V            (5.1) 

where  is the total density of the sediment. 

According to the wave velocities through the DEM hydrate-bearing sediment samples 

of pore-filling and cementation models, small-strain shear modulus Gmax can be 

obtained by Equation 5.1, as shown in Figure 5.3. It is shown that the increasing 

hydrate saturation resulted in the increase of small strain shear stiffness in the 

cementation model, while the shear modulus remained constant in pore-filling hydrate 
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samples at low hydrate saturations whilst increasing with higher saturations. It is found 

that the cementation hydrates increased the small strain stiffness of the sediment much 

more obviously than pore-filling hydrates when at the same hydrate saturation. By 

Equation 5.1, it can also be found that the increased density by adding more hydrate 

particles contributed to the increase of Gmax as the saturation increased. 

 

Figure 5.3: Comparison of small-strain shear modulus Gmax at different hydrate saturations 

between pore-filling and cementation models (at 1MPa confining pressure) 

Methane hydrate has a slightly larger stiffness than ice (Soga et al., 2006), but it 

has a much smaller stiffness compared to soil. From the results of wave propagations 

through the pore-filling model and cementation model, it is found that the wave 

velocities and the shear stiffness of methane hydrate sediments are governed by two 

main aspects: (1) pore space hydrate saturation, and (2) the growth and formation 

pattern of hydrate in the sediments’ pore space. 

In Figure 5.4(a), hydrate particles in the pore-filling model do not affect the shear 

stiffness as the hydrate particles are suspended in the pore space, and especially when 

the hydrate saturation is low. However, in Figure 5.4(b) of the cementation pattern, 

hydrates form first at the grain contacts, and then they grow in the pores from the grain 

contacts.  
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Figure 5.4: Growth and formation pattern of hydrate particles in (a) pore-filling and (b) 

cementation models (red lines represent contact bonds) 

        The wave propagation in the samples was simulated by exciting the particle 

movements. In three dimensions (3D) DEM simulations, there are six degrees of 

freedom for each particle: three translational degrees and three rotational degrees. In 

the pore-filling model, when the wave went through the grain skeleton, the particles of 

the grain skeleton would move with the wave. The six degrees of freedom of the 

particles in the pore-filling model caused large energy loss and caused the wave 

propagation time to become longer. However, in the cementation model, as hydrates 

were in contact with grain sediment and the existing soil skeleton structure was 

cemented, the rotational movements of particles were restricted by the bonding 

strength between particles. Hence, the energy loss in the cementation model was less 

than that in the pore-filling model. Additionally, compared to the pore-filling model, 

the wave propagation time costs were shortened, so that the shear wave velocities Vs 

increased from lower hydrate saturations in the cementation model. In a similar way, 

Vs in the pore-filling model increased at higher hydrate saturation because pore-filling 

hydrate particles began to bridge the grain skeleton and showed load-bearing 

behaviour after 25% hydrate saturation. 

5.3.2 Wave propagation at the confining pressure of 3MPa 

It was previously discussed in Chapter 2 that the wave velocity and small-strain 

stiffness generally increase with confining pressure. Hence, a series of wave 
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propagation simulations were conducted within the hydrate-bearing samples 

consolidated under the isotropic confining pressure of 3MPa. Figure 5.5 (a) shows the 

comparisons of shear S wave velocities between pore-filling and cementation models 

at various hydrate saturations. While Figure 5.6 (a) shows the comparisons of 

compression P wave velocities. 

 

(a) DEM study 

 

(b) Modelling, field and experimental data (concluded by Waite et al., 2009) 

Figure 5.5: Comparison of shear S wave velocities between pore-filling and cementation 

models at different hydrate saturations (at 3MPa confining pressure): (a) DEM study; (b) 

modelling, field and experimental data (reviewed by Waite et al., 2009) 
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(a) DEM study 

 

(b) Modelling, field and experimental data (concluded by Waite et al., 2009) 

Figure 5.6: Comparison of compression P wave velocities between pore-filling and 

cementation models at different hydrate saturations (at 3MPa confining pressure): (a) DEM 

study; (b) modelling, field and experimental data (reviewed by Waite et al., 2009) 

        In these simulations under the confining pressure of 3MPa, a larger variation of 

hydrate saturations were chosen to form clearer curves of wave velocities. Similarly, 

as discussed above, in the pore-filling model, S and P wave velocities Vs and Vp were 

kept at the relatively constant values at low hydrate saturation, and then began to 

increase with the higher saturation. Whereas, in the cementation model, Vs and Vp 

increased obviously from lower hydrate saturations, and then increased steadily when 
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the saturation of hydrate was growing. At the same hydrate saturation, Vs and Vp in the 

cementation model were larger than those in the pore-filling model.  

        As discussed in Section 2.2.1 of Chapter 2, Figure 5.5 (b) and Figure 5.6 (b) show 

the S and P wave velocities Vs and Vp respectively from the field exploration (hollow 

symbol), laboratory tests (solid symbol), and modelling data (solid and dashed curve). 

The details of the data have been discussed in Chapter 2. It is clearly seen that the 

trends of the wave velocities against various hydrate saturation in this DEM study in 

Figure 5.5 (a) and Figure 5.6 (a) are compared well to the trends in Figure 5.5 (b) and 

Figure 5.6 (b). But the fact is that the wave velocity values in the DEM study may be 

lower than some of the field and laboratory studies, or higher sometimes. This is 

because of the DEM input parameters, confining pressure, porosity, etc.. But the 

obtained wave velocities for both pore-filling and cementation models seemed to be 

reasonable. 

        The derived small-strain shear modulus Gmax from the wave velocities is shown 

in Figure 5.7 at various hydrate saturations under the confining pressure of 3MPa. It is 

illustrated that the increasing hydrate saturation led to the increase of small strain shear 

stiffness in the cementation model, while the shear modulus remained constant in the 

pore-filling hydrate samples at low hydrate saturations, increasing with higher 

saturations. As for the cementation model, the increasing rate of the shear stiffness 

with small hydrate saturation is greater than that of the pore-filling case. It is also found 

that the cementation hydrates increased the small strain stiffness of the sediment much 

more obviously than the pore-filling hydrates at the same hydrate saturation.  

        A similar conclusion can also be found regarding the Young’s modulus E, as 

shown in Figure 5.8. The stiffness of methane hydrate soil sediments increased with 

the higher hydrate saturation, and the increase rate depended on the formation pattern 

of hydrate in the sediments’ pore space, which has been discussed in Chapter 4 as well. 

        It is also necessary to note that, as discussed in Chapter 3, the hydrate saturation 

computed here may not be the same as the hydrate saturation measured in the 

laboratory. The simulated hydrate saturation (Sh) should correspond to a higher hydrate 

saturation than the natural hydrate-bearing soil sediments for several reasons, such as 
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the size and shape of the assumed soil and hydrate particles, the void space limitations, 

and the existence of other materials in the pores of the natural sediment.  

 

Figure 5.7: Comparison of small-strain shear modulus Gmax at different hydrate saturations 

between pore-filling and cementation models (at 3MPa confining pressure) 

 

Figure 5.8: Comparison of Young’s modulus E at different hydrate saturations between pore-

filling and cementation models (at 3MPa confining pressure) 

        And from comparisons between the DEM study and the field & experimental 

work on the obtain wave velocity and small-strain shear modulus trends against the 

hydrate saturation, it can be confirmed that the hydrate saturation (Sh) in this DEM 

study should correspond to a higher hydrate saturation. Further discussions are 

presented in Appendix A. 
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5.3.3 Relations between small-strain stiffness and mid-strain and large-

strain behaviours 

In addition to the basic studies on the small-strain stiffness and wave velocities within 

the hydrate-bearing samples, our interest in the sediments’ behaviours extended to the 

large strain deformation and critical state behaviours in the triaxial tests, but these 

could not be obtained easily in the laboratory studies due to the limitations. Hence, the 

relationship between small-strain stiffness and the large strain geomechanical 

behaviours are also explored in this chapter. It is believed that the initial state 

behaviours may have an influence on the large strain behaviour of granular materials. 

Hence, studies were conducted to relate the small-strain stiffness with the mid-strain 

and large-strain geomechanical behaviours discussed in Chapter 4, in order to help 

predict the mid-strain and large-strain responses in the wellbore through the wave 

propagation. 

        Figure 5.9 shows the relations between small-strain shear modulus Gmax and mid-

strain stiffness E50. Under the confining pressure of 3MPa, the mid-strain stiffness E50 

values were plotted against the corresponding small-strain shear modulus Gmax at 

various hydrate saturations. It is clearly illustrated that as the small-strain shear 

modulus Gmax increased, the corresponding mid-strain stiffness E50 evidently increased. 

At the same hydrate saturation, the mid-strain stiffness E50 of the cementation model 

was larger than that of the pore-filling model. The variation of the mid-strain stiffness 

E50 values at the same hydrate saturation between the pore-filling and cementation 

cases increased with the saturation.  

        During the deformation process in the triaxial test at a 3MPa confining pressure, 

the maximum deviatoric stress qmax was plotted in Figure 5.10 against the small-strain 

shear modulus Gmax of the pore-filling and cementation models at various hydrate 

saturations. Firstly, it can be seen that the maximum deviatoric stress qmax increased 

with the small-strain shear modulus Gmax for both hydrate-bearing models. Secondly, 

at the same hydrate saturation, qmax in the cementation model was larger than that of 

the pore-filling model. The variation of qmax values at the same hydrate saturation 

between the pore-filling and cementation cases increased with the saturation. 
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Figure 5.9: Relation between small-strain shear modulus Gmax and mid-strain stiffness E50 at 

various hydrate saturation for pore-filling and cementation patterns (at 3MPa confining 

pressure) 

 

Figure 5.10: Relation between small-strain shear modulus Gmax and maximum deviatoric 

stress qmax of the pore-filling and cementation models at various hydrate saturation (at 3MPa 

confining pressure) 

        As shown in Figure 5.11, however, the critical state strength showed a decrease 

for the pore-filling model as the hydrate saturation got higher. It can be suggested that 

the critical state strength could be predicted through the wave propagation in the pore-

filling hydrate sediment, because the critical state strength qcs of the pore-filling 
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decreased with the increase in the small-strain shear modulus Gmax. However, the 

critical state strength qcs of the cementation model decreased from 0% to 20% hydrate 

saturation, and then increased from 20% to 40% saturation. Hence, it could not be 

predictable for the critical state strength of the cementation model through the wave 

propagation as there is no regular pattern between the increase in the small-strain shear 

modulus Gmax and the changes of the critical state strength of the cementation model. 

According to this DEM data, it is suggested that the small-strain stiffness or initial 

state wave velocity should be not related to the critical state of the hydrate-bearing 

sediment. 

 

Figure 5.11: Relation between small-strain shear modulus Gmax and critical stength of the pore-

filling and cementation models at various hydrate saturation (at 3MPa confining pressure) 

5.4 Summary 

In summary, the wave velocity measurement and the particle-scale analysis show that 

the small-strain mechanical properties of hydrate-bearing sandy sediments are 

governed by not only the pore space hydrate saturation, but also the hydrate formation 

and distribution patterns. The influence of the cementation hydrate pattern on the 

small-strain behaviour becomes obvious from low hydrate saturation, because 

hydrates grow first at the grain contacts and the existing soil skeleton structure was 

cemented. This restriction cuts down the energy loss and shortens the wave 
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propagation time.  However, pore-filling hydrate does not have an impact on the small-

strain behaviour of the sediment’s grain skeleton at low hydrate saturation. But, as the 

volume of hydrate increased to a higher saturation, the small strain stiffness increased 

both in cementation and pore-filling cases. It was also found that the wave velocity 

and small-strain stiffness generally increased with confining pressure. 

        And from comparisons between the DEM study and the field & experimental 

work on the obtain wave velocity and small-strain shear modulus trends against the 

hydrate saturation, it can be confirmed that the hydrate saturation (Sh) in this DEM 

study should correspond to a higher hydrate saturation. 

        It may be concluded that the initial state behaviours may have an influence on the 

large strain behaviour of hydrate-bearing sediments. As the hydrate saturation 

increased, the small-strain stiffness increased. Accordingly, the corresponding mid-

strain stiffness and the peak strength increased with the saturation and the small-strain 

stiffness. This could be a regular pattern for predicting the large-strain behaviours 

through the wave propagation. However, the critical state strength did not follow the 

trend of the observations mentioned above. According to this DEM data, it is suggested 

that the small-strain stiffness or initial state wave velocity should be not related to the 

critical state of the hydrate-bearing sediment. 

        Seismic exploration of the underground resources is still a very challenging job 

at this stage. Even when the resource is detected at one site, it cannot be guaranteed 

that in this site the exploitation can be successful or the deposit is worth an exploitation. 

As a qualitative study and an early stage numerical work, this DEM research cannot 

be applied to the field work due to the field challenges. And in this DEM research, the 

saturation could only reach 40% which cannot represent the real saturation, as 

discussed in Chapter 3 and this chapter. Secondly, two different hydrate growth 

patterns show the different trends of small-strain stiffness against the hydrate 

saturation. Hence, the relation between hydrate saturation and small-strain stiffness 

may be a proper implication for the engineering applications, although this is not 

enough and it is the first step towards that direction. A series of further steps should 

be taken to bring the DEM model closer to the real field characteristics, such as the 

contact model modification, parametric studies, inclusion of fluid and gas, etc.. Most 
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importantly, in the future study a proper relationship should be proposed between the 

hydrate saturation and the sediment’s shear modulus value, in order to be useful for 

the engineering application. One difficulty which should be solved in the future is that 

this relationship should include the hydrate growth pattern issue. 
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Chapter 6 

Effects of hydrate growth patterns and bonding 

strength in the cementation model 

 

6.1 Introduction 

Laboratory observations by Priest et al. (2005) indicated that, in the cementation 

specimen, hydrates formed first at the grain contacts, and then grew in the pores and 

along the soil surface from the grain contacts. From the discussions in Chapter 4 and 

Chapter 5, it was found that the hydrate growth patterns and distribution could govern 

the sediment’s mechanical behaviour.  

        The cementation hydrate particles either gathered at the soil-soil contacts or 

bonded to the soil surface. The location of these two different types of cementation 

hydrate particles may influence the mechanical behaviour differently. Soga et al. (2006) 

concluded that in the nature there is a ‘coating’ hydrate growth pattern in which the 

hydrates are bonded to the soil surface rather than at the soil-soil contact points. Hence, 

for both hydrate-bearing sediment study and the DEM extension research, a 

comparison should be conducted in order to study the effect of hydrate growth patterns 

in the cementation hydrate-bearing soil model. Hence, in this study, the hydrate growth 

process of cementation hydrate sediments was separated into two hydrate growth 

patterns so as to study the effect that the hydrate growth patterns had on the 

geomechanical behaviour of the methane hydrate soil sediments. 

        Therefore, the two hydrate growth patterns of the cementation model were 

considered: soil surface coating (hydrates accumulating at grain surface) and soil-soil 

contact gathering (hydrates aggregating near the grain contacts). As shown in Figure 

6.1, the DEM simulations in Chapter 6 were performed with samples from the two 

different growth patterns: (i) hydrates placed around grain surfaces (“Coating” in 
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Figure 6.1(a)) and (ii) hydrates placed near grain contacts (“Contact gathering” in 

Figure 6.1(b)).  

        The effects of the bonding strength between particles of the cementation model 

were also considered as a further discussion for the numerical simulations of hydrate-

bearing sediments and other particle-level research, which currently cannot be 

obtained easily in the laboratory studies. The bonding strength of hydrate-hydrate and 

hydrate-soil was varied, as shown in Figure 6.1 (a)-(a’) and (b)-(b’).  

 

Figure 6.1: Hydrate growth patterns of the cementation model: (a) soil surface coating (b) 

soil-soil contact gathering 

        In order to study the bonding strength effect of the hydrate particles, the DEM 

simulations in Chapter 6 were conducted on the two cementation hydrate growth 

patterns at various bonding strengths – 0 MPa (no bond), 0.005 MPa, 0.010 MPa, 0.025 

MPa, 0.050 MPa and 0.500 MPa using the contact bond model in PFC3D. The soil 

particles were not bonded together. The bonding strength of 0.005 MPa has been 

proved to be a good value for the cementation model in Chapter 4 and 5 for the 

qualitative study. In fact, it is also interesting to know if the hydrate particles are in 

contact with the soil particles without a bonding strength, which means the bonding 
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strength is 0 MPa, what kind of behaviour the samples have. Regarding the pure DEM 

studies, it is also interesting to know the difference of the sample’s behaviour if the 

smaller and softer particles (hydrates) have a higher bonding strength. Hence, a series 

of trial simulations were made with different higher bonding strength values - 0.010 

MPa (twice of the 0.005 MPa), 0.025 MPa (five times), 0.050 MPa (ten times) and 

0.500 MPa (one hundred times). 

        In this chapter, the drained triaxial compressional tests were systematically 

conducted to study the effects of hydrate growth patterns and hydrate bonding strength 

in the cementation model. The comparisons between the coating and contact-gathering 

models were made using a few aspects. The stress-strain responses and volumetric 

responses were compared and discussed. We also explored the effects of hydrate 

growth patterns and bonding strength on the sediments’ stiffness, strength and large 

strain deformation behaviour in the triaxial tests. Furthermore, particle-scale micro-

investigation into DEM hydrate-bearing sediments was also performed. We monitored 

the bond breakage between particles throughout the tests, as well as the particles’ 

contact information -- the particles’ contact force contribution to the total measured 

deviatoric stress. A discussion was also raised regarding the effect of the hydrate/soil 

stiffness ratio of the particle-particle contact force contribution to the strength of the 

samples. In addition, the comparisons of measuring the stresses and strains were made 

among three measurement techniques: measurement spheres (local measurement), 

average particles’ contact forces (global measurement) and wall-based logic (boundary 

measurement). 

6.2 DEM simulation results 

In the Stress and Strain Measurement Schemes of PFC3D, stresses and strains can be 

measured using three methods as mentioned above in Section 6.1: (1) average forces 

on walls by the ball-wall contact and ball-ball contact transmission (boundary 

measurement); (2) average values from three measurement spheres inside the sample 

(local measurement); (3) the average contact force of particle-particle and particle-wall 

(global measurement). The wall-based measurements are used by comparison with the 

physical laboratory measurements, used in most of the research in this PhD thesis, such 
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as in Chapter 4 and 7. However, in this chapter, the measurement spheres logic was 

chosen, because if the bonding strength between particles was too large, the large strain 

deformation might cause a loss of ball-wall contacts due to the brittle failure along the 

shear band. 

        Three measurement spheres were set in the middle of the sample, as shown in 

Figure 6.2, and will be inside the sample throughout the triaxial test. The average 

stresses and strains were measured using the three measurement spheres, and the 

volumetric responses were obtained from the changes of porosity inside the 

measurement spheres. 

 

Figure 6.2: Measurement spheres inside the sample 

6.2.1 Stress-strain responses 

The stress-strain relationships obtained from the drained triaxial compression tests are 

plotted in Figure 6.3, which shows deviatoric stress against axial strain, for samples 

with a coating hydrate pattern (Figure 6.3(a) (c) (e) (g)) and contact-gathering hydrate 

pattern (Figure 6.3(b) (d) (f) (h)) at Sh=10% ~ 40%, with an increase in the bonding 

strength of the hydrate particles from 0 MPa to 0.5 MPa. 

        Firstly, at the bonding strength increased, the strength of the hydrate-bearing soil 

samples was enhanced at each given hydrate saturation. For each model at a given 

saturation, it can be observed that from the initial state the stiffness of all the various 

bonding strength samples was the same, but as a larger axial strain was reached, the 

strength of the higher bonding strength sample kept increasing while the strength of 
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the lower bonding strength sample began to reach a failure. As the bonding strength 

increased, a larger axial strain was needed to reach the peak strength, and the failure 

was delayed. 

        Secondly, however, when the bonding strength was as high as 0.500 MPa, as 

shown in Figure 6.3(b) (c) (d) (e) (f) (g) (h), a large axial strain of 33% was not enough 

to lead the sample to a failure. The only exception can be seen in Figure 6.3(a) when 

the hydrate saturation was 10% in the coating model. Except 0.500 MPa bonding 

strength samples, all the other samples with a relatively lower bonding strength 

reached a failure and dropped to the constant critical state strengths at the large axial 

strain. Hence, it is suggested in the data that the bonding strength of 0.500 MPa was 

not a reasonable value. And it can be seen that the bonding strength value 0.005 MPa 

and 0.010 MPa made the samples have the very close and reasonable axial strain for 

reaching the peak strength state, although the higher bonding strength caused a larger 

peak strength; and the critical state strength of both models was very close. It seems 

that the two bonding strength value 0.005 MPa and 0.010 MPa are reasonable for the 

DEM hydrate-bearing soil model in this research.  

        Thirdly, at the same hydrate saturation, the critical state strength exhibited a 

higher value in the higher bonding strength sample, especially when the bonding 

strength was 0.025 MPa and 0.050 MPa. The similar observations to the first and third 

points have been discussed in Chapter 2. As shown in Figure 6.4 (a) and Figure 6.4 (b) 

(Masui et al., 2005) of the experimental data and Figure 6.4 (c) (Jiang et al., 2013) of 

the 2-Dimension DEM data, as the bonding strength increased from weak bond to 

strong bond, at the same hydrate saturation, the strength increased accordingly. In 

addition, in Figure 6.4 (c) the increase in the bonding strength did not further increase 

the elastic phase stiffness, while it increased the peak strength and critical state strength.  

        Furthermore, in the same bonding strength and hydrate saturation conditions, the 

strength of the soil-soil contact gathering model was larger than that of the soil surface 

coating model, which can be observed when comparing Figure 6.3(a) (c) (e) (g) and 

Figure 6.3(b) (d) (f) (h). The contact-gathering hydrate particles strengthened the soil 

skeleton more than the coating hydrate particles by bonding the inter-granular contacts. 
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                      (a) Coating Sh=10%                                    (b) Contact-gathering Sh=10% 

 

                       (c) Coating Sh=20%                                  (d) Contact-gathering Sh=20% 

 

                      (e) Coating Sh=30%                                   (f) Contact-gathering Sh=30% 

 

                       (g) Coating Sh=40%                                    (h) Contact-gathering Sh=40% 

Figure 6.3: Deviatoric stress as a function of axial strain of the Coating and Contact-gathering 

models 
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               (a) Experiment (strong bond)                             (b) Experiment (weak bond) 

 

(c) 2-Dimension DEM data 

Figure 6.4: Deviatoric stress against axial strain at various hydrate saturation: (a) experiment 

strong bond samples (Masui et al., 2005); (b) experiment weak bond samples (Masui et al., 

2005); (c) 2-Dimension DEM data (Jiang et al., 2013), where Rtb refers to the bonding strength 

applied to the hydrate particles. 

        In addition, by increasing or decreasing the bonding strength in the DEM model, 

it is shown that the simulated results could be closer to the experimental data. This 

could also be an effective method to optimize the Discrete Element Modelling in order 

to obtain a proper quantitative comparison with the obtained in-situ and laboratory 

studies rather than the only qualitative comparison. However, this optimization should 

be implemented with other optimization methods, because it was also observed in 

Figure 6.3 that although the increase in the strength by the increased bonding strength 

was obvious, the bonding strength increase did not increase the initial stiffness which 

is also an essential issue of the limitation of this DEM study. 
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6.2.2 Strength 

As for both coating and contact-gathering models, it can be seen clearly in Figure 6.5 

(a) that the peak strength (max)'q  (maximum deviatoric stress) steadily increased with 

the higher hydrate saturation at a given bonding strength. The difference in the rate of 

increase depended on both the hydrate growth pattern and the bonding strength.  

        Firstly, at the same hydrate saturation, the magnitude of the increase in (max)'q  of 

the contact-gathering model was always larger than that of the coating model. It is 

found in the following three points:  

        (1) At the low hydrate saturation (from Sh=0% to 10%), the rate of the increase in 

(max)'q  of the contact-gathering model was higher than that of the coating model.  

        (2) But at the low bonding strength of 0.005 MPa ~ 0.025 MPa, the rates of both 

models were relatively similar when the saturation increased from 10% to 40%.  

        (3) Moreover, at the higher bonding strength of 0.050 ~ 0.500 MPa, the rate of 

the coating model was obviously larger than that of the contact-gathering model when 

the saturation increased from 10% to 30%, and then became smaller instead when the 

saturation increased from 30% to 40%. 

        In the contact-gathering model, hydrates formed at the soil-soil particles’ contacts 

with a set bonding strength, and contributed to the increase in strength. However, the 

hydrate particles along the soil surface of coating model did not make as much 

contribution as the contact-gathering model, because the bonded hydrate particles at 

the soil-soil contact strengthened the skeleton of the sample. This is why at the same 

hydrate saturation, the strength of the contact-gathering model was higher than that of 

the coating model. 

        It is also necessary to note that, when the bonding strength was set 0.500 MPa, 

the samples had not reached a failure at the large axial strain, as shown in Figure 6.3. 

Hence, in Figure 6.5, at the bonding strength of 0.500 MPa, the peak strength was 
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marked “?” because the value was chosen at the axial strain of 30%, which was not the 

failure strength. 

 

(a) Peak strength against hydrate saturation 

 

   (b) Peak strength against bonding strength ①   (c) Peak strength against bonding strength ② 

Figure 6.5: Peak deviatoric strength of the Coating and Contact-gathering models at various 

bonding strength at Sh=10% ~ 40% 
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        In addition, it is also shown in Figure 6.5 (b) that, at the same hydrate saturation, 

the increased bonding strength enhanced the maximum deviatoric stress in both 

models. At the same saturation, the increase rate of the peak strength became much 

more obvious when the bonding strength was larger. For example, at Sh=40%, the 

increase of the peak strength in both models reached around 10 times that of the 

original value when the bonding strength increased from 0.005 MPa to 0.500 MPa. 

Contributing to this was both the bonding strength and the large number of bonding 

contacts at a high hydrate saturation.  

        Despite the results at the bonding strength of 0.500 MPa, which were not the real 

failure strength, the increased curves of all the models in Figure 6.5 (b) showed a linear 

relationship on the log(qmax) – log(bonding strength) space. The relationship may be 

defined as 10 max 10log ( ) log ( )nq K B , where K is the linear coefficient, and Bn refers to 

the bonding strength. Hence, the Figure 6.5 (c) is plotted accordingly. 

6.2.3 Stiffness 

Figure 6.6 shows the stiffness Esec degradation curves against axial strain of the coating 

and contact-gathering models at Sh=30% with various bonding strengths. Firstly, as 

discussed in Chapter 4, the stiffness increased with hydrate saturation. In Figure 6.6, 

it can be seen that the stiffness of the hydrate-bearing soil sample (Sh=30%) was larger 

than that of the pure soil sample (Sh=0%). Secondly, the bonded hydrates exhibited 

greater effect on stiffness than the pore-filling case, as shown in Figure 6.6(a) and 

Figure 6.6(b). At the same hydrate saturation of 30%, the initial stiffness of both the 

coating and contact-gathering models was larger than that of the pore-filling model. 

        Thirdly, the initial stiffness of the contact-gathering model was larger than that of 

the coating model. This is due to the large number of bonded hydrate particles 

gathering at the soil-soil contacts strengthening the skeleton more effectively than the 

coating hydrate particles on the soil surface.  

        However, the increase in bonding strength from 0.005 MPa to 0.500 MPa did not 

increase the initial stiffness of the sample. This was because the initial skeleton played 
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the essential role at the beginning of the triaxial tests. The assemblies with different 

bonding strength are exactly the same in terms of hydrate distribution and the locations 

of the bonding. And so they are exactly the same before bond breakage regardless of 

bonding strength.  

 

(a) Coating Sh=30% 

 

(b) Contact-gathering Sh=30% 

Figure 6.6: Stiffness Esec degradation curves against axial strain (Coating and Contact-

gathering models at Sh=30%) 

        But as the shearing continued, the increased bonding strength stated to work on 

the strength of the sample. The values of the stiffness with different bonding strength 



6. Effects of hydrate growth patterns and bonding strength in the cementation model 

 

167 
 

started to deviate; and the higher the bonding strength is, the later the evident stiffness 

degradation began.  

6.2.4 Volumetric responses 

Regarding the volumetric responses of the coating and contact-gathering patterns, the 

volumetric strain against axial strain was plotted in Figure 6.7. In Figure 6.7(a) and 

Figure 6.7(b), at the hydrate saturation of 10%, a high bonding strength caused a larger 

dilation at large axial strains. The dilation of the coating pattern was smaller than that 

of the contact-gathering pattern.  

        The above observations in this 3-Dimension DEM study were similar to and at 

the same time different from the 2-Dimension DEM study by Jiang et al. (2013), as 

shown in Figure 6.8. From the planar void ratio responses, it can be seen that, in this 

case, the dilation only happened when there was a bonding strength of the hydrate 

particles, while in this PhD research, the dilation also happened when there was no 

bonding strength. However, the similarity between these two DEM studies was that 

the dilation was enhanced by the increased in the bonding strength. 

        As shown in Figure 6.7(c) (d) (e) (f) (g) (h), as hydrate saturation increased, the 

dilation was enhanced in both hydrate growth patterns. And at a low bonding strength, 

the increased bonding strength enhanced the dilation. However, at a high bonding 

strength, 0.500 MPa, 0.050 MPa and even 0.025 MPa, the samples exhibited a lower 

dilation than the samples with a low bonding strength, and the rate of the dilatancy 

was also lower. 

        But in the contact-gathering samples at Sh=30% and 40% in Figure 6.7(f) and (h), 

the rate of the dilatancy at a higher bonding strength exhibited larger although the 

dilation started later than a lower bonding strength sample. This also means the 

increased bonding strength had a clear delayed effect on the dilation, in which the 

delay was caused by the delay of bond breakage which is discussed in Section 6.3 in 

this Chapter. 
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                      (a) Coating Sh=10%                                   (b) Contact-gathering Sh=10% 

 
                         (c) Coating Sh=20%                                  (d) Contact-gathering Sh=20% 

 
                      (e) Coating Sh=30%                                      (f) Contact-gathering Sh=30% 

 
                      (g) Coating Sh=40%                                     (h) Contact-gathering Sh=40% 

Figure 6.7: Volumetric strain as a function of axial strain of the Coating and Contact-gathering 

models (Sh=10% ~ 40%) 
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Figure 6.8: Volumetric responses from the biaxial test under various bonding strength (Jiang 

et al., 2013), where Rtb refers to the bonding strength applied to the hydrate particles. 

        When the bonding strength is very large, grains could not move and the 

deformation was controlled by the elastic deformation of the particles themselves. 

However, when the grains do start to move relative to each other, and as the bonds 

were broken, dilation started to occur and big clusters of bonded particles caused larger 

dilation, especially using the contact-gathering pattern. It appears that hydrate particles 

gathered at the grain contacts tend to form big hydrate clusters, which in turn gives 

more dilation. 

6.3 Bond breakage between particles during the tests 

6.3.1 Bond breakage 

Figure 6.9 plotted the percentage of bond breakage of all bonded particles against the 

axial strain during the triaxial tests of Sh=30% for both the coating (Figure 6.9(a)(c)(e)) 

and the contact-gathering (Figure 6.9(b)(d)(f)) models at various bonding strength. 

With the same number of hydrate particles, the number of the bonding contacts in the 

contact-gathering model was slightly larger than that of the coating model at Sh=30%: 

73956 bonding contacts in the contact-gathering model and 66968 bonding contacts in 

the coating model. This also contributed to the higher strength of the contact-gathering 

model. 
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                         (a) Coating                                                   (b) Contact-gathering 

              Bonding strength 0.005MPa                              Bonding strength 0.005MPa 

 

                          (c) Coating                                                 (d) Contact-gathering 

              Bonding strength 0.025MPa                              Bonding strength 0.025MPa 

 

                          (e) Coating                                                 (f) Contact-gathering 

               Bonding strength 0.500MPa                            Bonding strength 0.500MPa 

Figure 6.9: Bond breakage between particles during the triaxial tests of Sh=30% Coating and 

Contact-gathering models at various bonding strength 
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        When the bonding strength was set to 0.005 MPa, as shown in Figure 6.9(a) and 

Figure 6.9(b), the evident bond breakage began to happen just after the elastic phase 

and before the peak strength at around 4% axial strain, and the percentage of bond 

breakage in total bonds increased faster at the beginning and slowed down at the 

critical state. The higher rate corresponded to the significant decrease in the secant 

stiffness Esec (Figure 6.6), whereas the slower rate was seen when the critical state was 

reached. As discussed in the Section 4.4 of Chapter 4, this means there began to be a 

number of unbound hydrate particles in the pores, at the soil-soil contacts or in the soil 

skeleton due to the movement of these hydrate particles after the bond breakage.  At 

the large strain of 33%, the percentage of bond breakage in total bonds of both models 

reached about 40%. 

        However, in Figure 6.9(c) and Figure 6.9(d), when the bonding strength increased 

to 0.025 MPa, the evident bond breakage was delayed to 10% axial strain, so as the 

peak failure. At the large strain of 33%, the percentage of bond breakage in total bonds 

of both models only reached about 10% which was significantly lower than 40% for 

0.005 MPa bonding strength. In addition, when the bonding strength was set to 0.500 

MPa, as shown in Figure 6.9(e) and Figure 6.9(f), a large axial strain of 33% was not 

enough to break any bond, so there was no observed failure. This implied that the 

beginning of evident bond breakage is closely related to the beginning of the failure of 

these hydrates bonded samples. Peak strength failure only occurred if bond strength 

was weak enough to start breaking. If breakage was delayed, failure also delayed to 

higher axial strain. 

        In order to investigate this further, Figure 6.10 plotted the axial strain at the 

beginning of the evident bond breakage (0.5% of the total bonding contacts) against 

bonding strength. It is that as the bonding strength increased, a larger axial strain was 

needed to make an evident bond breakage happen inside the sample. In addition, at the 

same hydrate saturation and bonding strength, the axial strain at the beginning of the 

evident bond breakage of the contact-gathering model was slightly larger than that of 

the coating model. 

        In Figure 6.9, it can already be seen that there was no obvious bond breakage 

happening even at the large axial strain at the bonding strength of 0.500 MPa. 
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Therefore, at the bonding strength of 0.500 MPa in Figure 6.10, the axial strain at the 

beginning of obvious bond breakage was only marked “?”. Hence, it can be suggested 

that, in the numerical simulations of hydrate-bearing sediments or other materials with 

bonding contacts, the choice of bonding strength should be considered very carefully, 

as it is related closely to the macroscopic behaviours, such as strength and stiffness. 

 

                             (a) Coating                                               (b) Contact-gathering 

Figure 6.10: Axial strain at the beginning of obvious bond breakage (0.5% of total bonding 

contacts) at various bonding strength 

6.3.2 Particle-scale mechanism analysis 

A brief particle-scale mechanism analysis was made to interpret the obtained data on 

the strength, stiffness, volumetric responses, as well as the bond breakage discussed in 

this chapter, as shown in Figure 6.11.  

        In the pore-filling model, when shearing started, the main skeleton of the sample 

was still the soil-soil matrix, and the hydrate particles were inside the pore space, as 

shown in Figure 6.11(a), which has already been discussed in Chapter 4. 
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Figure 6.11: Sketch diagram of the particle-scale mechanisms of particle movements in the 

deformation process of the coating, contact-gathering and pore-filling models 
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        However, in the coating model, hydrate particles grew along the soil surface to 

form a hydrate-coating model based on the consolidated soil skeleton. As illustrated 

in Figure 6.11(b), when the shearing began, the hydrate particles with the bonding 

strength of 0.005 MPa, which were close to the soil-soil contacts, started to support 

the skeleton. And at the large strain, more hydrate particles on the soil surface would 

be involved in the matrix of the skeleton and move to the pore space during the 

deformation process. However, in Figure 6.11(c), when the bonding strength increased 

to 0.500 MPa, no evident bond breakage occurred in the deformation process, whereas 

the strong bonding strength restrained the particles’ movement. And in the large axial 

strain of the deformation process, the big clusters bonded by soil and hydrate particles 

with the strong bonding strength began to rotate, hence causing the dilation. 

        In the contact-gathering model, because of the accumulated force chains by the 

hydrate-hydrate contacts at the soil-soil contacts during the deformation process 

illustrated in Figure 6.11 (d) and (e), the large number of hydrate particles at the soil-

soil contacts in the contact-gathering model made it stiffer than the coating model. In 

Figure 6.11 (d), at the bonding strength of 0.005 MPa, the hydrate particles gathered 

at the soil-soil contacts. The deformation process induced the bond breakage, in which 

some clusters of bonded hydrate particles moved to the pore space or even started to 

support the sample’s skeleton. But in Figure 6.11 (e), when the bonding strength 

increased to 0.500 MPa, no evident bond breakage occurred, and the strong bonding 

strength restrained the particles’ movement. And in the large, the big clusters began to 

rotate, hence causing the dilation. 

6.4 Particle-particle contact force contribution and effect of 

hydrate/soil contact stiffness ratio 

6.4.1 Particle-particle contact force contribution to the total deviatoric 

stress 

Figure 6.12 shows the different components of the deviatoric stress in the triaxial tests 

of both the coating and contact-gathering models at Sh=30%, at various bonding 

strengths. Figure 6.12 (a) (c) (e) show the coating model at the bonding strength 0.005 



6. Effects of hydrate growth patterns and bonding strength in the cementation model 

 

175 
 

MPa, 0.025 MPa and 0.500 MPa respectively, and Figure 6.12 (b) (d) (f) show the 

contact-gathering model at the bonding strength 0.005 MPa, 0.025 MPa and 0.500 

MPa respectively.   

 
                             (a) Coating                                                   (b) Contact-gathering 

                 Bonding strength 0.005MPa                                Bonding strength 0.005MPa 

 
                              (c) Coating                                               (d) Contact-gathering 

                    Bonding strength 0.025MPa                          Bonding strength 0.025MPa 

 
                               (e) Coating                                              (f) Contact-gathering 

                    Bonding strength 0.500MPa                          Bonding strength 0.500MPa 

Figure 6.12: Particles’ contacts contribution to the deviatoric stress in the triaxial tests with 

various bonding strength (Coating and Contact-gathering model at Sh=30%) 
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        Firstly, it can be seen that as the bonding strength increased, the increase in the 

deviatoric stress was mainly affected by the soil particles’ contact forces. The particles’ 

contact force contribution increased with the bonding strength for all the particles’ 

contact types: soil-soil, soil-hydrate and hydrate-hydrate. As discussed in Chapter 4, 

the main skeleton of the hydrate-bearing sample was built by the soil-soil contacts. 

And as all the particles’ contacts were bonded, a larger stress was needed to break the 

bonded contacts and to deform the sample during the triaxial tests. When the bonding 

strength increased, all the contacts between particles were strengthened. Due to this, 

all the particles’ contact forces increased and contributed a larger value to the total 

deviatoric stress. 

6.4.2 Effect of hydrate/soil contact stiffness ratio 

It can also be noted that the main contact force contribution was from the soil-soil 

contacts, and the second was from the soil-hydrate contacts, while the hydrate-hydrate 

contacts contributed the least to the total strength. The essential reason for this is that 

the stiffness of the hydrate particles was much lower than that of the soil particles. As 

mentioned in Chapter 3, the hydrate/soil stiffness ratio 50/ ( )hyd soil

n nk k D  was only 0.023 

due to the hydrate/soil particle size ratio and the hydrate/soil elastic modulus ratio 

/hyd soil

c cE E , according to 2n ck DE (Equation 3.1 in Chapter 3).  

        If the stiffness of hydrate particles increased, there might be an increase of the 

contact force contribution of hydrate particles’ contacts. Hence, there was a series of 

trial simulations conducted on the effect of hydrate/soil stiffness ratio. 

        Figure 6.13 shows the particles’ contact contribution to the deviatoric stress in 

the triaxial tests of both the coating and contact-gathering models at Sh=30% and with 

the high hydrate/soil stiffness ratio of 0.23 at the bonding strength of 0.500 MPa. The 

hydrate/soil stiffness ratio 50/ ( )hyd soil

n nk k D  value 0.23 was 10 times of the chosen ratio 

normally presented throughout this PhD research, which is when the hydrate/soil 

elastic modulus ratio /hyd soil

c cE E  was set to 1.0. Compared to Figure 6.12 (e) and (f), it 

is clearly shown in Figure 6.13 that the increase in the stiffness of hydrate increased 
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both the total strength and the deviatoric stress contribution of hydrate-soil contacts 

and hydrate-hydrate contacts. Also, the hydrate-soil contact stress contribution to the 

total deviatoric stress was very close to the soil-soil contact contribution. 

  

(a) Coating                                                     

 

(b) Contact-gathering 

Figure 6.13: Particles’ contacts contribution to the deviatoric stress in the triaxial tests with 

the hydrate/soil stiffness ratio of 0.23 at the bonding strength of 0.500 MPa (Coating and 

Contact-gathering model at Sh=30%) 

        From the simulation results in Figure 6.13, it can be explained why in our 

previous simulations the hydrate-soil and hydrate-hydrate contacts could not become 
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the main contact contribution to the total force, even though the number of hydrate-

soil and hydrate-hydrate contacts was much larger than that of the soil-soil contacts.  

        As mentioned Section 2.3 of Chapter 2, Brugada et al. (2010) also explored the 

hydrate-soil contact stiffness /hyd soil

c cE E  ratio from 0.001 to 0.1 at Sh=20% of the pore-

filling model. As shown in Figure 6.14, it can be seen that hydrates only contributed 

to the strength when the ratio was at the value of 0.1. Regarding other ratios, the 

behaviours were quite similar to the pure soil sample’s responses. 

 

Figure 6.14: Triaxial compressional test result of the stress-strain responses under various 

hydrate-soil contact stiffness ratios (Brugada et al., 2010) 

        However, Soga et al. (2006) stated that the hydrate stiffness is only slightly larger 

than the ice stiffness, which is itself much smaller than the soil stiffness. Hence, the 

simulation results in this PhD research with the hydrate/soil stiffness ratio 

50/ ( )hyd soil

n nk k D  value 0.023 was reasonable.  

        Further research on the stiffness of the hydrates is necessary for both the 

experimental and the numerical studies. And the stiffness issue may greatly influence 

the quantitative DEM study compared with the in-situ and laboratory studies. 
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6.5 Local and global measurement 

As mentioned in Section 6.2, in this chapter the measurement method of measurement 

spheres was used to measure the stresses and strains, which is called local 

measurement. However, there were another two measurement methods used in this 

PhD research: (1) the average contact force of particle-particle and particle-wall, which 

is called global measurement; (2) the wall-based logic that measured the forces on 

walls, which is called boundary measurement. 

        In order to compare the three measurement techniques mentioned above, 

comparisons were made on the stress-strain responses measured by the measurement 

spheres (local measurement), the average particles’ contact forces (global 

measurement) and the wall-based logic (boundary measurement) at Sh=30% with 

0.005 MPa and 0.500 MPa bonding strength, as shown in Figure 6.15 and Figure 6.16. 

        At the bonding strength of 0.005 MPa in Figure 6.15, the stresses measured by 

the three measurement methods were quite close. But the measured stresses by the 

measurement spheres in both coating and contact-gathering models were smaller than 

those by the average particles’ contact forces and the boundary measurement.  

        However, when the bonding strength was increased to 0.500 MPa in Figure 6.16, 

the measured stresses by the measurement spheres in both coating and contact-

gathering models were larger at the large axial strain than those by the average particles’ 

contact forces and the boundary measurement.  

        If the bonding strength between particles was too large, the large strain 

deformation might cause the lack of the ball-wall contacts, so that the average force 

on the walls might be smaller, as shown in Figure 6.17. Figure 6.17 can also explain 

why at the bonding strength of 0.500 MPa, the large axial strain of 30% was not enough 

to lead to failure. 

        In addition, it is also proved that the loading rate on the top and bottom walls in 

the triaxial test was chosen reasonably because the simulation results obtained by the 

boundary measurement and the average particles’ contact force were very close. 
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(a) Coating Sh=30% with 0.005 MPa bonding strength 

 

(b) Contact-gathering Sh=30% with 0.005 MPa bonding strength 

Figure 6.15: Stress-strain responses measured by measurement spheres (localization), average 

particles’ contact forces (homogenization) and the wall-based logic (boundary measurement) 

at Sh=30% with 0.005 MPa bonding strength 
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(a) Coating Sh=30% with 0.500 MPa bonding strength 

 

(b) Contact-gathering Sh=30% with 0.500 MPa bonding strength 

Figure 6.16: Stress-strain responses measured by measurement spheres (localization), average 

particles’ contact forces (homogenization) and the wall-based logic (boundary measurement) 

at Sh=30% with 0.500 MPa bonding strength 
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          0%               5%                   30% (Axial Strain) 0%               5%                   30%   

(a) Coating Bond 0.005 MPa                             (b) Coating Bond 0.500 MPa 

    

            0%               5%                  30%  (Axial Strain) 0%             5%                    30%   

(c) Contact-gathering Bond 0.005 MPa                   (d) Contact-gathering Bond 0.500 MPa 

Figure 6.17: Coating and contact-gathering samples at the axial strains of 0%, 5% and 30% at 

Sh=30% with 0.005 MPa and 0.500 MPa bonding strength 

6.5 Summary 

In the cementation model, the hydrate growth patterns governed the sediment’s 

mechanical behaviour. The cementation hydrate particles either gathered at the soil-

soil contacts or bonded to the soil surface. The location of these two different types of 

cementation hydrate particles influenced the mechanical behaviour differently. A 

comparison was conducted in order to study the effect of hydrate growth patterns in 

the cementation hydrate-bearing soil model. 
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        It is found that the hydrate growth patterns in the cementation model greatly 

influenced the mechanical behaviour of the hydrate-bearing sediments, especially 

when the bonding strength and hydrate saturation were increased. For a given bonding 

strength and hydrate saturation, the stiffness and the strength of a sample with hydrates 

gathering near grain contacts was greater than that of a sample with hydrates coating 

around the grain surface. This is because of the larger number of contacts which are 

bonded in the contact-gathering case. The increased bonding strength did not increase 

the initial stiffness, but delayed the change of stiffness and the peak failure, which 

required a larger strain.  

        When a high bond strength was assigned, the deformation at small strains was 

controlled by the deformation of the particles themselves, and the dilation was 

therefore delayed. When grains started to move relative to each other by starting to 

show evident bond breakage, samples exhibited dilation. There was a greater dilation 

observed in the grain coating case compared with the contact gathering case. When the 

bonding strength was increased, the evident bond breakage was delayed as the failure 

was delayed, and the percentage of bond breakage in total bonds at the large strain 

decreased obviously. In addition, when the bonding strength was set to a very large 

value, there was no obvious bond breakage happening throughout the tests, with a 

larger axial strain perhaps being needed to reach a failure. Hence, the big bonded 

particle clusters at the inter-granular contacts induced a larger dilation than the surface 

coating hydrate particles. 

          The particles’ contact force contribution to the total stress increased with the 

bonding strength for all the particles’ contact types: soil-soil, soil-hydrate and hydrate-

hydrate. But the main contact force contribution was always from the soil-soil contacts 

for the essential reason that the stiffness of the soil particles was much larger than that 

of the hydrate particles. When the hydrate/soil stiffness ratio was increased to 10 times 

the value, which means the hydrate particles became stiffer, the force contribution of 

hydrate particles increased dramatically. However, further research on the stiffness of 

the hydrates is necessary for both the experimental and numerical studies. 

        Comparisons were made on the stress-strain responses measured by the 

measurement spheres (local measurement), the average particles’ contact forces 
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(global measurement) and the wall-based logic (boundary measurement) with both low 

and high bonding strength. It is also proved that the loading rate on the top and bottom 

walls in the triaxial test was chosen reasonably because the simulation results obtained 

by the boundary measurement and the average particles’ contact force were very close. 

However, the measured stress-strain responses by the measurement spheres showed a 

different value at the large strain. 
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Chapter 7 

Effects of elongated soil particle shape 

 

7.1 Introduction 

As noted in Chapter 2, in most of the previous DEM studies on methane hydrate soil 

sediments (i.e. Brugada et al. 2010; Jung et al. 2012; Jiang et al. 2013), DEM was only 

applied with the assumption that all the soil and hydrate particles were spherical. 

However, the actual shapes of the natural soil particles are much more complex and 

could govern the sediment’s geomechanical behaviour. Thus, this study will 

investigate the shape effect of elongated soil particles on the stress-strain and 

volumetric responses. The soil particles were generated separately using three models: 

spherical particles and elongated clumps with two different aspect ratios, as shown in 

Figure 7.1.  

 

Figure 7.1: Replacement of spherical soil particles by elongated clumps. 

        The sample preparation method has been discussed in Chapter 3. To make the 

DEM samples using the elongated soil particles, soil samples with spherical particles 
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were first generated and consolidated under the given confining pressure. Elongated 

soil particles were prepared by replacing spherical soil particles by elongated clump 

particles of the same volume as the replaced spherical particles, in the consolidated 

DEM spherical soil samples under the controlled confining pressure. This will ensure 

the total solid volume was not changed. The particle replacement process could not be 

finished simultaneously, because that will totally change the original fabric. Hence, it 

was performed by replacing one after another with a time interval for each replace in 

order that the induced particles’ overlap was reduced. This is a trial and error process. 

        As shown in Figure 7.1, two aspect ratios were chosen for the elongated particles: 

1.5 (2-ball clump) and 2.0 (3-ball clump). These were used in order to investigate the 

influence of soil particle shape on the geomechanical behaviour of hydrate-bearing 

sediments. Three soil models of different aspect ratios were generated by the same 

grain size distribution and inter-particle friction. A series of DEM drained triaxial 

compression tests were conducted to make a comparison between how pore-filling and 

cementation models interacted with both spherical and elongated soil particles.  

7.2 Simulation results and analysis 

7.2.1 Stress-strain responses 

Under a confining pressure of 1 MPa, the stress-strain relationships of the three 

different soil particle shape samples are illustrated in Figure 7.2, when there was no 

hydrate. Three different samples are shown at Sh = 0%: sphere soil particles (aspect 

ratio = 1.0), 2-ball clump soil particles (aspect ratio = 1.5) and 3-ball clump soil 

particles (aspect ratio = 2.0).  

        It can be seen in Figure 7.2 that the elastic stiffness and the peak stress increased 

with the aspect ratio, and the magnitude of the increase was influenced by the aspect 

ratio. Peak strength increased by about 100% from the sphere soil sample to the 3-ball 

clump soil sample. Critical state strength increased with the increase in aspect ratio as 

well. 
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Figure 7.2: Comparisons of deviatoric stress as a function of axial strain of three soil models 

(Sh=0%). 

        As expected, in the hydrate-bearing samples, the aspect ratio of soil particles also 

played an important role in the strength. In both the pore-filling models and the 

cementation models, the elastic stiffness and the peak strength of the hydrate-bearing 

soil sample at Sh = 20% and 40% increased with the increase in aspect ratio as shown 

in Figure 7.3. The magnitude of increase was not as evident as the no-hydrate case 

because hydrate particles in the pores greatly influenced the shear resistance, 

especially when the saturation was as high as 40%. 

        At the high hydrate saturation of 40%, as shown in Figure 7.3(c), the critical state 

strengths of the pore-filling models with elongated soil particles were similar to that 

of spherical soil particles. This suggests that soft hydrate particles were contributing 

largely to the shear resistance. In the cementation model (Figure 7.3(d)), on the other 

hand, the critical state strength increased with the increase in aspect ratio of the soil 

particles. This indicates that soil particles were still contributing to the shear resistance 

even when there were a large number of hydrate particles in the sample. 
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                  (a) Pore-filling Sh=20% (DEM)                    (b) Cementation Sh=20% (DEM) 

 

               (c) Pore-filling Sh=40% (DEM)                      (d) Cementation Sh=40% (DEM) 

               

                 (e) Weak bond (experiment)                               (f) Strong bond (experiment) 

Figure 7.3: Comparisons of deviatoric stress as a function of axial strain: (a)-(d) of three 

different soil particle shapes models at Sh= 20% and 40% with DEM; (e) experiment weak 

bond samples (Masui et al., 2005); (f) experiment strong bond samples (Masui et al., 2005) 
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        Figure 7.3 (e) and (f) show the experimental data of the weak bond samples and 

strong bond samples at various hydrate saturation by Masui et al. (2005).  Compared 

to the experimental data, it is suggested that as the aspect ratio of the soil particles 

increased, the strength value obtained from the DEM study got close to the 

experimental data with the natural sands, especially when comparing the DEM 

cementation model with the experiment strong bond model in Figure 7.3 (f). However, 

the DEM pore-filling samples’ data were still not close to the data in Figure 7.3 (e) 

because the experimental sample was only assumed to be pore-filling sample but 

actually there was still weak bond of the hydrates. Hence, as discussed in Chapter 6, 

bonding strength effect should be considered carefully in the research of hydrate-

bearing sediments. 

7.2.2 Stiffness 

Figure 7.4 illustrates the degradation of the secant Young’s modulus Esec of the three 

different soil particle shape samples when there was no hydrate. The stiffness 

increased with the increase in aspect ratio. The initial stiffness increased dramatically 

from about 88 MPa in the sphere soil sample to about 200 MPa in the 3-ball clump 

soil sample, which is getting closer to that of the natural soil sediments under the 

confinement of 1 MPa.  

        The degradation curves of secant Young’s modulus as a function of axial strain 

of the three soil models (Sh = 20% and 40%) are plotted in Figure 7.5 (a) (b) (c) (d). It 

is clearly suggested that: (1) stiffness increased with hydrate saturation; and (2) bonded 

hydrates exhibited a greater effect on stiffness.  

        In comparisons with Figure 7.5 (e), the elongated soil samples exhibited a closer 

stiffness value to that of the synthetic samples in the experimental study (Masui et al., 

2005), although the DEM results were still lower than that of the experimental study 

for many reasons (i.e. particle stiffness, density, initial void ratio, sample size, etc.). 

The limitation of conducting the DEM study should be considered carefully, and how 

to decrease the magnitude of the value difference needs further investigation. 
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Figure 7.4: Degradation of secant Young’s modulus as a function of axial strain of three soil 

models (Sh=0%). 

        However, after adding hydrate particles in the elongated soil particle samples, the 

extra increase in the stiffness due to the hydrate particles was not as evident as the 

increase because of the shape changes of soil particles. Thus, the shape of soil particles 

had more influence on stiffness than the hydrate saturation. The choice of 0.1% as the 

starting point of recording the axial strain has been mentioned in Chapter 4. 

        As can be seen in Figure 7.6, the mid-strain stiffness 50E  was plotted at the 

various hydrate saturations of the three soil particle model. Generally, Figure 7.6 

suggests that: (1) the higher aspect ratio of soil particles increased the mid-strain 

stiffness 50E , especially when it was 2.0; (2) 50E increased with hydrate saturation; (3) 

the increase in 50E  of the pore-filling cases became a bit more obvious when hydrate 

saturation was higher than 20%, while the increase in the stiffness of the cementation 

cases started to apparently increase with hydrate saturation, but the high soil particle 

aspect ratio of 2.0 increased the 50E of the pore-filling model evidently even when the 

saturation was low ; (4) at the same hydrate saturation, 50E  of the cementation model 

was higher than that of the pore-filling model; (5) the rate of stiffness increase was 

higher when the saturation was higher. 
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                       (a) Pore-filling Sh=20%                                   (b) Cementation Sh=20% 

 

                      (c) Pore-filling Sh=40%                                  (d) Cementation Sh=40% 

 

    (e) Experimental study (cementation samples) 

Figure 7.5: (a)~(d) degradation of secant Young’s modulus as a function of axial strain of the 

three soil models (Sh = 20% and 40%); (e) change in the secant stiffness of cementing type 

synthetic hydrate-bearing soils during drained triaxial compression test by Masui et al. (2005) 
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Figure 7.6: Mid-strain stiffness E50 at various hydrate saturations of three soil particle model 

7.2.3 Strength 

The computed peak strength q’(max) (maximum deviatoric stress) is plotted in Figure 

7.7 (a) at different hydrate saturations. It is clearly shown that the peak strength 

increased with the aspect ratio in both hydrate-bearing models. At the same hydrate 

saturation, the peak strength of the cementation case was larger than that of the pore-

filling case for each soil particle model. As the saturation increased, hydrate particles 

in the pores played an essential role in shear resistance. The increased aspect ratio of 

soil particles did not weaken the influence of the hydrate particles at all, but absolutely 

strengthened the main skeleton of the hydrate-bearing soil samples. In comparisons 

with the experimental study (Masui et al., 2005) shown in Figure 7.7 (b), the increased 

aspect ratio definitely brought the strength of the DEM models closer to that of the 

experimental samples. 

        However, as shown in Figure 7.8, the computed critical state strength q’(cs) 

showed a different result. In the pore-filling model, the critical state strength decreased 

with the increasing hydrate saturation. This may be due to the inclusion of the softer 

hydrate particles in the soil matrix in the critical state. In the cementation model, when 

the hydrate saturation was at 10%, the critical state strength exhibited a slightly lower 
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value than that of hydrate-free soil sediments, because some inter-particle bonds were 

broken and the hydrate moved into the sediment’s skeleton. However, the higher 

saturation and more frequent bonding contacts increased the critical state strength. This 

increase was more obvious in the spherical soil model with cementation hydrates. In 

addition, it is also clearly shown that the critical state strength increased with the aspect 

ratio in both hydrate-bearing models.   

     

(a) DEM study 

 

(b) Experimental study 

Figure 7.7: Peak strength (1) of three soil models in DEM study and (2) in experimental study 

(Masui et al., 2005) 
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Figure 7.8: Critical state strength of three soil models 

        Figure 7.9 with the failure envelopes on ' 'p q  plane indicates the stress states 

at failure for the pore-filling model and the cementation model at the three different 

aspect ratios of the soil particles. It can be clearly seen that: (1) the shear strength 

increased with the aspect ratio; (2) the shear strength also increased with the mean 

effective stress. In the pore-filling model, the increase in the peak strength became 

obvious when the saturation was above 20%. While in the cementation model, the rate 

of increase in the shear strength exhibited higher results even at low hydrate saturation. 

        As shown in Figure 7.10, the critical state lines (CSL) plotted on the ' 'p q  

plane show that the shear strength increased with the mean effective stress in the three 

soil models. The CSL plots of the pore-filling model revealed skeleton softening 

behaviour with an increase in hydrate saturation. This may be due to the inclusion of 

hydrate particles in the soil matrix at the critical state. When the saturation increased, 

the magnitudes of the decrease in the strength became larger at a higher aspect ratio. 

        However, the cementation model CSL plots showed a different result. At the 

aspect ratio of 1.0, the critical state strength of the cementation hydrate-bearing 

sediments at Sh=10% and 20% exhibited lower strength than that of the hydrate-free 

soil sediments, while the critical state strength for hydrate saturations of 30% and 40% 

were higher than the pure soil sample. When the aspect ratio of soil particles increased, 
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the critical state strength of hydrate-bearing sediments became lower than that of the 

pure soil sample. 

 

              (a) Pore-filling Aspect Ratio 1.0                     (b) Cementation Aspect Ratio 1.0 

 

              (c) Pore-filling Aspect Ratio 1.5                     (d) Cementation Aspect Ratio 1.5 

 

              (e) Pore-filling Aspect Ratio 2.0                    (f) Cementation Aspect Ratio 2.0 

Figure 7.9: Peak Failure Envelopes on ' 'p q  plane 
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              (a) Pore-filling Aspect Ratio 1.0                   (b) Cementation Aspect Ratio 1.0 

 

              (c) Pore-filling Aspect Ratio 1.5                   (d) Cementation Aspect Ratio 1.5 

 

             (e) Pore-filling Aspect Ratio 2.0                     (f) Cementation Aspect Ratio 2.0 

Figure 7.10: Critical State Line projection on ' 'p q  plane 



7. Effects of elongated soil particle shape 

 

197 
 

7.2.4 Friction and cohesion 

The derived friction angle values were plotted against the hydrate saturation as shown 

in Figure 7.11 at three different aspect ratios of soil particles. The calculation method 

has been discussed in Chapter 4. It is suggested that the peak friction angle of Sh=0% 

sample evidently increased with the aspect ratio.  

        However, as the aspect ratio increased, the increase in the friction angles with 

hydrate saturation became less obvious. When the aspect ratio was 1.0, the peak 

strength state friction angle of the cementation model was larger than that of the pore-

filling model. However, when the aspect ratio was 1.5, the friction angle of the 

cementation model was similar to that of the pore-filling model. As mentioned in 

Chapter 2, friction angle is largely independent of hydrate saturation (Waite et al., 

2009), as shown in Figure 7.11 (d). Hence, the samples with elongated soil particles 

showed a closer behaviour to the natural sediments. In addition, when the aspect ratio 

was 2.0, the friction angle of the cementation model was smaller than that of the pore-

filling model.  However, generally the friction angles in the critical state showed a 

decrease for both the hydrate models as the hydrate saturation got higher at different 

aspect ratios. 

        To correspond to the plotted increased cohesion with saturation in the 

experimental data in Figure 7.11 (d), the cohesion values were plotted against the 

hydrate saturation of the three soil models in Figure 7.12.  

        It is firstly found that the comparisons between the pore-filling model and the 

cementation model indicates that the only contribution to the increase in the cohesion 

was the bonds between hydrates and other particles (hydrates and soils). Thus, the 

cohesion values were zero in the pore-filling model. Secondly, out of the bond 

breakage during the triaxial tests, the cohesion at the peak strength state was higher 

than that at the critical state in the cementation model, especially at high saturation. 

Thirdly, at the same saturation, the peak strength state cohesion increased with the 

aspect ratio, especially at higher saturation. Lastly, it is also suggested that the 

increased aspect ratio did not change the critical state cohesion. 
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(a) Aspect Ratio 1.0                                           

 

(b) Aspect Ratio 1.5                                         (c) Aspect Ratio 2.0 

 

(d) Experiment study on the friction angle and cohesion 

Figure 7.11: Angles of friction of three soil models: (a) – (c) DEM study with different aspect 

ratios of soil particles; (d) Experiment study on the friction angle and cohesion (Masui et al., 

2005) 
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(a) Aspect Ratio 1.0 

 

(b) Aspect Ratio 1.5 

 

(c) Aspect Ratio 2.0 

Figure 7.12: Cohesions of three soil models 
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7.2.5 Volumetric responses 

Under the confining pressure of 1 MPa, the volumetric strain – axial strain 

relationships of hydrate-bearing samples in the three soil models are illustrated in 

Figure 7.13 and Figure 7.14. Figure 7.13 shows the comparisons of the volumetric 

responses among the three kinds of soil shapes in the hydrate-free (pure soil) sediments. 

The elongated soil samples showed a slightly larger contractive behaviour. In addition, 

the elongated soil sample’s rate of dilatancy was more obvious, while the dilation of 

the 2-ball clump soil sample was delayed. In the critical state, both soil samples with 

the elongated soil particles reached a larger critical state volume than that of the 

spherical soil sample. The critical state volume also increased with aspect ratio. 

 

Figure 7.13: Comparisons of volumetric strain as a function of axial strain of three kinds of 

soil models (Sh=0%) 

        As shown in Figure 7.14, in the hydrate-bearing soil samples, the aspect ratio did 

not influence the samples’ contractive behaviour in both the pore-filling model and the 

cementation model. However, the elongated soil particles induced a larger critical state 

volume which increased with aspect ratio. The critical state volume of the cementation 

model was also larger than that of the pore-filling model at the same saturation and 

aspect ratio of soil particles. In addition, the critical state volume increased with 

hydrate saturation. However, as the hydrate saturation increased, the two elongated 

soil models exhibited the closer critical state volumes, especially for the cementation 
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model. It is suggested that the dilation was influenced and dominated by several factors: 

(1) the soil particle shape, (2) the hydrate saturation, and (3) the bonds between 

particles. 

 

                    (a) Pore-filling Sh=20%                                  (b) Cementation Sh=20% 

 

                      (c) Pore-filling Sh=40%                                  (d) Cementation Sh=40% 

Figure 7.14: Comparisons of volumetric strain as a function of axial strain of three kinds of 

soil models at Sh = 20% and 40% 

        Figure 7.15 shows that the increase in the hydrate saturation enhanced the dilative 

characteristics of the hydrate-bearing sediments, and the increase was more obvious 

the higher the saturation was. However, the rate of dilatancy of the hydrate-bearing 

samples with elongated soil particles was slightly smaller than that of the samples with 
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spherical soil particles, especially when the hydrate saturation was higher. In addition, 

the angles of dilation for both elongated soil models were close. 

 

(a) Aspect Ratio 1.0 

 

(b) Aspect Ratio 1.5 

 

(c) Aspect Ratio 2.0 

Figure 7.15: Dilation angle as a function of hydrate saturation at different aspect ratios 



7. Effects of elongated soil particle shape 

 

203 
 

        The critical state granular void ratio ln 'e p  projections were plotted in Figure 

7.16.  

 

             (a) Pore-filling Aspect Ratio 1.0                    (b) Cementation Aspect Ratio 1.0 

 

                (c) Pore-filling Aspect Ratio 1.5                    (d) Cementation Aspect Ratio 1.5 

 

                (e) Pore-filling Aspect Ratio 2.0                    (f) Cementation Aspect Ratio 2.0 

Figure 7.16: Critical State Line projection on Granular Void Ratio e-lnp’ plane 

        It can be seen clearly that in both pore-filling and cementation models, the critical 

state void ratios of the elongated soil models were larger than those seen in the 
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spherical soil model. It is found that in all the three soil models, the hydrate effects on 

dilation produced higher critical state void ratios as the saturation increased. It is also 

suggested that the hydrate-induced dilatancy was less evident at a high confining 

pressure. As the confining pressure increased, the dilation characteristic tended to 

diminish in the pore-filling model. The dilation behaviour was also weakened by the 

confining pressure in the cementation model, although due to the remaining bonds it 

could not be similar to the pore-filling case. 

7.3 Rose diagram 

As discussed in Chapter 4, using the DEM simulation results, the particle-scale 

interactions during the triaxial compression tests can be analysed. The evolution of the 

fabric (contact normal) can be obtained and analysed for the three different soil models. 

A quantitative assessment of the distribution of the contact normal was made using 

rose diagrams as shown in Figure 7.17 to Figure 7.22. All normal contact forces which 

were non-zero were considered in the development of these plots. Because the samples 

were axisymmetric, only the horizontal plane (X-Y plane) and one vertical plane (X-

Z plane or Y-Z plane) needed to be considered. Each 10o bin in the diagram were 

considered as one group of contact normal distribution. The magnitude of each bin 

represented the percentage of the contact normal number in this orientation group of 

the total number of all the contact normal.  

        Figure 7.17 to Figure 7.22 show the rose diagrams which represent the 

distribution of contact normal at the initial state, peak strength state and critical state 

on the X-Y plane (horizontally) and X-Z plane (vertically). These figures also include 

the three soil models with the aspect ratios of 1.0, 1.5 and 2.0, respectively, for both 

the pure soil samples (Sh=0%) and the pore-filling and cementation hydrate-bearing 

samples at Sh=40%. 

       Due to the axisymmetric system of the sample, the distribution of the contact 

normal in the horizontal plane (X-Y plane) was approximately uniform at the initial, 

peak strength and critical state, as shown from Figure 7.17 to Figure 7.22. In addition, 
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as the samples were isotropically consolidated before the triaxial tests, the distribution 

on all the planes was also approximately uniform at the initial state. 

 

(a) X-Y planes (aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(b) X-Z planes (aspect ratio = 1.0, 1.5 and 2.0 respectively) 

Figure 7.17: Rose diagram of contact normal distribution at initial state (Sh=0%) 

        However, at the peak strength state and the critical state, the anisotropy in contact 

normal was observed in the simulations on the vertical planes. As shown in Figure 

7.18 and Figure 7.19, as the loading of the triaxial tests was set vertically, there were 

more contact normal orientated vertically than horizontally. This anisotropy in the 

contact normal was more pronounced in the samples with elongated soil particles. 

        The evolution of the overall anisotropy for the duration of the simulations in the 

hydrate-bearing samples (Sh=40%) with the three different soil models is illustrated in 

Figure 7.20 to Figure 7.22 at the initial state, the peak strength state and the critical 

state, respectively. 
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(a) X-Y planes (aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(b) X-Z planes (aspect ratio = 1.0, 1.5 and 2.0 respectively) 

Figure 7.18: Rose diagram of contact normal distribution at peak state (Sh=0%) 

 

(a) X-Y planes (aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(b) X-Z planes (aspect ratio = 1.0, 1.5 and 2.0 respectively) 

Figure 7.19: Rose diagram of contact normal distribution at critical state (Sh=0%) 
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(a) X-Y planes (Pore-filling: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(b) X-Y planes (Cementation: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(c) X-Z planes (Pore-filling: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(d) X-Z planes (Cementation: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

Figure 7.20: Rose diagram of contact normal distribution at initial state (Sh=40%) 
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(a) X-Y planes (Pore-filling: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(b) X-Y planes (Cementation: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(c) X-Z planes (Pore-filling: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(d) X-Z planes (Cementation: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

Figure 7.21: Rose diagram of contact normal distribution at peak state (Sh=40%) 
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(a) X-Y planes (Pore-filling: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(b) X-Y planes (Cementation: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(c) X-Z planes (Pore-filling: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

 

(d) X-Z planes (Cementation: aspect ratio = 1.0, 1.5 and 2.0 respectively) 

Figure 7.22: Rose diagram of contact normal distribution at critical state (Sh=40%) 
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        Firstly, after the adding of hydrate particles, the distribution of the contact normal 

in the horizontal plane (X-Y plane) was more uniform at the initial, peak strength and 

critical state than that of the pure soil samples, as shown from Figure 7.20 to Figure 

7.22. Secondly, the effect of the increase in aspect ratio of soil particles on the 

anisotropy diminished because of the existing large number of hydrate particles on the 

vertical planes at both the peak and critical state. 

        As noted above, as the samples were isotropically consolidated before the tests, 

the distribution on all the planes was also more uniform at the initial state, as shown 

in Figure 7.20. At the peak strength state shown in Figure 7.21, the anisotropy was 

more obvious in the cementation model than in the pore-filling model. However, in 

the critical state (Figure 7.22) the anisotropy was similar in both hydrate-bearing 

models. 

7.4 Summary 

In this chapter, the soil particles were modelled separately using spherical particles or 

elongated clumps with two different aspect ratios for investigate the influence of the 

shape effect of soil particles on the geomechanical behaviours of hydrate-bearing 

sediments. The results of the DEM samples shearing at the same initial void ratio were 

compared. It was found that the behaviour of methane hydrate soil sediments with 

elongated shape soil particles seemed to be similar to that of the natural methane 

hydrate sandy samples retrieved from the Nankai Trough.  

        The stiffness and strength were both evidently enhanced with an increase in 

aspect ratio of soil particles. The values of stiffness and strength obtained from the 

DEM modelling became closer to the experimental results (Masui et al. 2005) as the 

aspect ratio of soil particles increased. In addition, the hydrate saturation also played 

an essential role in the mechanical behaviour of the sediments. The hydrates not only 

strengthened the sediments’ skeleton in the initial and peak states, but also induced the 

softening behaviour in the critical state as the softer hydrates moved into the soil matrix. 

Furthermore, it was found that the hydrate growth patterns greatly influenced the 
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hydrate-bearing soil sediments. For the given particle shape, the cementation case gave 

larger stiffness and strength than the pore-filling case.  

        However, as the aspect ratio increased, the increase in the friction angles with 

hydrate saturation became less obvious. But the cohesion at the peak strength state was 

enhanced with the increase in aspect ratio of soil particles. In addition, the increased 

aspect ratio of soil particles also induced a larger dilation. It is suggested that the 

dilation was influenced and dominated by several factors: (1) the soil particle shape, 

(2) the hydrate saturation, and (3) the bonds between particles. 

        It is also found that the anisotropy in contact normal was more pronounced in the 

pure soil samples with elongated soil particles. In the hydrate-bearing sediments, due 

to the adding of hydrate particles, the distribution of the contact normal in the 

horizontal plane was more uniform at the initial, peak strength and critical state than 

that of the pure soil samples. However, the effect of the increase in aspect ratio of soil 

particles on the anisotropy tended to diminish because of the existing large number of 

hydrate particles on the vertical planes at both the peak and critical state. In addition, 

the anisotropy was more obvious in the cementation model than in the pore-filling 

model at the peak strength state, while in the critical state the anisotropy was similar 

in both hydrate-bearing models. 

        It is suggested that in the future work, one sample should contain the soil particles 

with various aspect ratios, because the real soils consist of different aspect ratios. 

Further considerations should also be made on the DEM sample preparation method 

of the elongated soil particles with a better particle size distribution definition and 

better solutions of keeping the same volume and void ratio of the sample. 

  



8. Conclusions and recommendations for future work 

 

212 
 

Chapter 8 

Conclusions and recommendations for future work 

 

8.1 Conclusions 

In this PhD research, a numerical method Discrete Element Method (DEM) was 

employed to provide the unique particle-scale insight into the granular geomechanical 

behaviours of hydrate-bearing sediments. A comprehensive DEM research was 

performed using two typical hydrate-related geomechanical investigation methods: the 

triaxial compression test and seismic wave propagation. Accordingly, this DEM 

research mainly contributes six major advances which are summarized below.  

8.1.1 Sample preparation of DEM hydrate-bearing sediment 

Contribution 1: two typical types of microscopic hydrate distribution patterns within 

soil pores were investigated via a consistent basic soil model: the pore-filling model 

and the cementation model. 

        It should be noted that the initial state before the testing plays an essential role, 

and the initial state totally depends on the sample preparation. In order to make a 

comprehensive study of hydrate-bearing sediment and a proper comparison between 

various hydrate distribution patterns, a consistent DEM soil model should be 

considered carefully. The input parameters for the particles and boundary conditions 

are also essential to the accuracy of the DEM modelling. 

8.1.2 Large deformation behaviour of pore-filling and cementation models 

Contribution 2: the large-strain deformation and the critical state behaviours were 

explored. 
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Contribution 3: comprehensive particle-scale microscopic discussions and analysis 

were conducted to assist the interpretation of the macro responses in the in-situ, 

laboratory and numerical studies. 

        Firstly, compared to the published experimental and numerical data, this DEM 

triaxial compression tests also proved that the hydrate contribution to the mechanical 

behaviour of the sediments was of a frictional nature for the pore-filling hydrate 

distribution pattern, whilst of both a frictional and cohesive nature for the cementation 

case. It is revealed that the mechanical behaviours of hydrate-bearing soil sediments 

were governed by both the hydrate saturation and hydrate distribution patterns. The 

hardening effect of the increase in hydrate saturation were shown obviously in both 

hydrate growth pattern cases. The presence of hydrates caused the increase in stiffness, 

strength and dilative tendency, especially when Sh ≥ 20% for the pore-filling hydrate 

distribution pattern, and Sh > 0% for the cementation model, which was also enhanced 

by the bonding strength effect and hydrate growth locations at the soil-soil contacts or 

along the soil surface. In addition, at the same hydrate saturation, the cementation 

model showed higher values than the pore-filling model in terms of initial stiffness, 

mid-strain stiffness, peak shear strength, friction angle, cohesion, dilation and granular 

void ratio. It was also found that the stiffness and strength of the samples was enhanced 

with the greater effective confining pressure, while the dilation appeared to diminish. 

Yet, the bonding effect at very high saturation in the cementation model caused the 

sediments’ stiffness to become relatively independent of the confining pressure, and 

produced the dilation, though less evident than that seen at the lower confining 

pressure. 

        This research extended to the samples’ large strain and critical state behaviours. 

For the pore-filling model, hydrate effects on strength produced lower critical state 

strength as the saturation increased, while in the cementation model the critical state 

behaviours were shown to be different. In both of the hydrate growth patterns, due to 

the movements of soil and hydrate particles, the softer hydrates became involved in 

the soil matrix and transmitted the main contact forces in the skeleton. The hydrates in 

the skeleton weakened the strength of the critical state. However, the remaining 

bonding contacts in the cementation samples appeared to produce a resistance to the 

critical state, weakening behaviour of the soil-hydrate matrix.  
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        In addition, from the particle-scale investigations of the bond breakage between 

particles throughout the cementation model tests, it is found that the hydrate-soil 

bonding contacts were the main bonding contacts, and also played the main role in the 

bond breakage process, although hydrate-hydrate bond breakage also happened during 

the deformation process. The obvious bond breakage started just after the elastic phase, 

and this number increased steadily. This means there began to be a number of unbound 

hydrate particles in the pores, at the soil-soil contacts or in the soil skeleton after the 

bond breakage, because at Sh=10% and Sh=20% the critical state strength of the 

cementation models was smaller than that of the pure soil sample. There was however 

still more than half of the bonding contacts remaining in the sample at the large strain. 

This may explain why, at high saturations of 30% and 40% in the cementation model, 

the critical strength was greater than that of the pure soil sample. 

        The particles’ contact information was also monitored. The contact number 

domination of soil-soil contacts changed into hydrate-contact domination with the 

changing saturation. However, from the research of particle-particle contact force 

contribution, although the soil-soil contact contribution decreased and the hydrate-

contact contribution increased as the hydrate saturation increased, all the samples still 

showed the soil-particle-dominated behaviour. Hence, it is also important to note that 

the stiffness of hydrate particles was much smaller than that of the soil particles. This 

is the reason that hydrate particles could not play the dominant role in the particle 

matrix. However, the bonding effect of hydrates at the soil-soil contacts and along the 

soil surface still played an important role in strengthening the skeleton in the 

cementation model. 

        The large deformation was studied till as high as 33% axial strain. From some 

macroscopic data, such as deviatoric stress, the curves of the DEM results stabilized 

for the axial strain range from 15% to 33%. But the larger deformation from 15% to 

33% allowed the volumetric changes stabilized at different axial strains because of the 

various hydrate saturations; it also allowed the stiffness degradation to continue. 

Moreover, as the deformation got larger, the number of bond breakage still steadily 

increased, and the microstructure evolution still continued. DEM proved to be a useful 

tool to conduct a macro- and micro- study on a larger deformation behaviour of the 
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hydrate-bearing sediments. This is why our interest in the sediments’ behaviours 

extended to the large strain behaviours in the triaxial tests. 

8.1.3 Small-strain stiffness 

Contribution 4: wave propagation was simulated within the DEM hydrate-bearing 

sediment samples. 

        The wave velocity measurement and the particle-scale analysis show that the 

small-strain mechanical properties of hydrate-bearing sandy sediments are governed 

by not only the pore space hydrate saturation, but also the hydrate formation and 

distribution patterns. The influence of the cementation hydrate pattern on small-strain 

behaviour becomes obvious from low hydrate saturation, because hydrates grow first 

at the grain contacts and the existing soil skeleton structure was cemented. This 

restriction cuts down the energy loss and shortens the wave propagation time.  

However, pore-filling hydrate does not have impact on the small-strain behaviour of 

the sediment’s grain skeleton at low hydrate saturation. As the volume of hydrate 

increases to higher saturation however, the small strain stiffness increases for both the 

cementation and pore-filling cases. It was also found that the wave velocity and the 

small-strain stiffness generally increased with confining pressure. 

        It may be concluded that the initial state behaviours have an influence on the large 

strain behaviour of hydrate-bearing sediments. As the hydrate saturation increased, the 

small-strain stiffness increased. Accordingly, the corresponding mid-strain stiffness 

and the peak strength increased with the saturation and the small-strain stiffness. This 

could be a regular pattern for predicting the large-strain behaviours through the wave 

propagation. However, the critical state strength did not follow the trend of the 

observations mentioned above. According to this DEM data, it is suggested that the 

small-strain stiffness or initial state wave velocity should be not related to the critical 

state of the hydrate-bearing sediment. 
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8.1.4 Bonding strength effect and hydrate growth patterns in the 

cementation model 

Contribution 5: the bonding strength effect in the cementation model was 

systematically discussed. 

        It is found that the hydrate growth patterns in the cementation model greatly 

influenced the mechanical behaviour of the hydrate-bearing sediments, especially 

when the bonding strength and hydrate saturation were increased. For a given bonding 

strength and hydrate saturation, the stiffness and the strength of a sample with hydrates 

gathering near grain contacts was greater than that of a sample with hydrates coating 

around the grain surface. This is because of the larger number of contacts which are 

bonded in the contact-gathering case. The increased bonding strength did not increase 

the initial stiffness, but delayed the change of stiffness and the peak failure, which 

required a larger strain.  

        When a high bond strength was assigned, the deformation at small strains was 

controlled by the deformation of the particles themselves, and dilation was therefore 

delayed. When grains started to move relative to each other by starting to show evident 

bond breakage, samples exhibited dilation. There was greater dilation observed in the 

grain coating case compared with the contact gathering case.  

        When the bonding strength was increased, the evident bond breakage was delayed 

as the failure was delayed, and the percentage of bond breakage in total bonds at the 

large strain obviously decreased. In addition, when the bonding strength was set to a 

very large value, there was no obvious bond breakage happening throughout the tests, 

with a larger axial strain perhaps being needed to reach failure. Hence, the big bonded 

particle clusters at the inter-granular contacts induced a larger dilation than the surface 

coating hydrate particles. 

          The particles’ contact force contribution to the total deviatoric stress increased 

with the bonding strength for all the particles’ contact types: soil-soil, soil-hydrate and 

hydrate-hydrate. However, the main contact force contribution was always from the 

soil-soil contacts for the essential reason that the stiffness of the hydrate particles was 
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much lower than that of the soil particles. When the hydrate particles were set stiffer 

in the simulation, the force contribution of hydrate particles increased dramatically. 

However, further research on the stiffness of the hydrates is necessary for both the 

experimental and numerical studies. 

        Comparisons were made on the stress-strain responses measured by the 

measurement spheres (local measurement), the average particles’ contact forces 

(global measurement) and the wall-based logic (boundary measurement) with both low 

and high bonding strength. It is also proved that the loading rate on the top and bottom 

walls in the triaxial test was chosen reasonably because the simulation results obtained 

by the boundary measurement and the average particles’ contact force were very close. 

However, the measured stress-strain responses by the measurement spheres showed a 

different value at the large strain. 

8.1.5 Effects of elongated soil particle shape 

Contribution 6: the effect of elongated soil particles on the geomechanical behaviours 

of sediments was studied.  

        It was found that the behaviour of methane hydrate soil sediments with elongated 

shape soil particles seemed to be similar to that of the natural hydrate-bearing sandy 

sediments retrieved from the Nankai Trough.  

        The stiffness and strength were both evidently enhanced with an increase in 

aspect ratio of soil particles. The values of stiffness and strength obtained from the 

DEM modelling became closer to the experimental results (Masui et al. 2005) as the 

aspect ratio of soil particles increased. In addition, the hydrate saturation also played 

an essential role in the mechanical behaviour of the sediments. The hydrates not only 

strengthened the sediments’ skeleton in the initial and peak states, but also induced the 

softening behaviour in the critical state as the softer hydrates moved into the soil matrix. 

Furthermore, it was found that the hydrate growth patterns greatly influenced the 

hydrate-bearing soil sediments. For the given particle shape, the cementation case gave 

larger stiffness and strength than the pore-filling case.  



8. Conclusions and recommendations for future work 

 

218 
 

        However, as the aspect ratio increased, the increase in the friction angles with 

hydrate saturation became less obvious. However, the cohesion at the peak strength 

state was enhanced with the increase in aspect ratio of soil particles. In addition, the 

increased aspect ratio of soil particles also induced a larger dilation. It is suggested that 

the dilation was influenced and dominated by several factors: (1) the soil particle shape, 

(2) the hydrate saturation, and (3) the bonds between particles. 

        It was also found that the anisotropy in the contact orientation was more 

pronounced in the pure soil samples with elongated soil particles. In the hydrate-

bearing sediments, due to the adding of hydrate particles, the contact normal in the 

horizontal plane was more uniform at the initial, peak strength and critical state than 

that of the pure soil samples. However, the effect of the increase in aspect ratio of soil 

particles on the anisotropy tended to diminish because of the existing large number of 

hydrate particles on the vertical planes at both the peak and critical state. In addition, 

the anisotropy was more obvious in the cementation model than in the pore-filling 

model at the peak strength state, while in the critical state the anisotropy was similar 

in both hydrate-bearing models. 

        It is suggested that in the future work, one sample should contain the soil particles 

with various aspect ratios, because the real soils consist of different aspect ratios. 

Further considerations should also be made on the DEM sample preparation method 

of the elongated soil particles with a better particle size distribution definition and 

better solutions of keeping the same volume and void ratio of the sample. 

8.2 Recommendations for future DEM work 

Although the DEM simulation results in this study are compared well to the published 

experimental data, the values in the experimental data were different than the 

simulated data in this study. This presents the limitations of this DEM work. Firstly, 

regarding the sample preparation, there is no fluid or gas included in this DEM model, 

so that the comparison cannot be made properly. Secondly, the DEM hydrates are 

sphere particles rather than the hydrate mass. Due to the limitations of the DEM 

modelling of spherical particles, this study is qualitative rather than quantitative. The 
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study on the effect of elongated soil particle shape in Chapter 7 discusses more about 

this issue although there are still difference between the DEM results and the 

laboratory results. In addition, the input parameters of the soil and hydrate particles 

was also the reason. For example, in this DEM research, the elastic modulus of the 

particles were chosen at relatively small values, which caused the DEM results smaller 

than the laboratory ones. And the chosen simple contact model may be another reason 

of the limitations. As discussed in Chapter 3, it is now generally recognized by the 

research community that the main objective of DEM-based investigation is not to 

provide quantitatively reproduction of material behaviour, but to understand 

qualitatively the particle-scale mechanism affecting the continuum-scale responses. 

        Looking forwards, DEM will certainly not replace the continuum modelling as a 

means to predict hydrate-bearing sediment deformations, nor will it replace the in-situ 

and laboratory studies as a means to advance the fundamental understanding of the 

sediment responses. However, it is definitely a useful tool to provide a unique insight 

into the geomechanical investigations of hydrate-bearing sediments. Based on this 

PhD research, some recommendations for the future DEM work are proposed as 

follows. 

8.2.1 Further parametric studies 

From the DEM simulation results and analysis, it can be found that care should be 

taken in the choice of the input parameters used to accurately model the hydrate-

bearing sediment, such as the particle size, friction, initial void ratio, bonding strength, 

stiffness, etc., because they play an essential role in the accuracy of the simulated 

results. By the comparisons with data of the in-situ and laboratory studies, how to 

decrease the magnitude of the value difference between the DEM study and the 

experimental study is crucial and needs further and careful investigations.  

        For example, regarding the bonding strength, after the discussions in Chapter 6, 

it is found that the setting of the bonding strength governs the behaviour of the DEM 

samples. Although Chapter 6 compared a series of bonding strength values, a more 

detailed research should be considered carefully to relate the observed experimental 
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data to the DEM simulation for a more accurate bonding strength value with the 

numerical changes in a specific modelling. 

        In addition, further work on the hydrate/soil contact stiffness ratio is needed to 

evaluate the mechanical properties of hydrates. It can also been found in this research 

that the change in the stiffness of hydrate in the DEM simulation has an impact on the 

domination of the particles’ contact behaviour. 

8.2.2 Hydrate distribution patterns 

Although pore-filling and cementation hydrate distribution patterns are the most 

typical among all the patterns, a comprehensive study on other patterns needs to be 

carried out, such as load-bearing, supporting-matrix, patchy, and fracture-filling 

patterns. 

 However, the control of a consistent soil model with various hydrate patterns 

should be considered very carefully, as some of the patterns develop and break the 

original compacted soil skeleton. Hence, it is challenging for comparisons and 

analysis,but the study is still necessary and beneficial because they do exit in nature. 

8.2.3 Particle shape 

In nature, the particle shapes of soil are complex. It cannot be simply assumed to be 

spherical or elongated. It has been found in Chapter 7 that the shapes of soil particles 

govern the mechanical behaviour of hydrate-bearing sediment. In addition, hydrates in 

the pore space cannot be supposed to be spherical if further work considers the shape 

effect of modelled particles. Hence, the simulated particle shapes and its distribution 

should be considered carefully in further studies. 

8.2.4 Sizes of soils 

It has been discussed in Chapter 2 that the current exploration of hydrate mainly 

focuses on the sandy sediments, hence in this research only sand was considered. 
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However, as the numerical simulations can assist in overcoming the difficulties and 

limitations of in-situ and laboratory studies, different sizes of soils should be studied 

in order to provide scientific support and to meet future scientific and industrial needs. 

8.2.5 Fluid and gas 

In the static drained triaxial compression tests of this research with PFC3D, the effective 

stress could be obtained without considering the pore pressure and the influence of 

fluid and gas. However, an in-depth DEM numerical multi-phase simulation should 

take fluid and gas into account. Further DEM work coupled with fluid and gas needs 

to be carried out.  

8.2.6 Temperature 

In this research, the temperature issue was not considered, with the assumption that 

the temperature was low enough for any deformation of the sediment. However, 

considering the gas in the pore space, during the deformation process and the 

volumetric change, the temperature should change accordingly, and there should be an 

energy loss. In addition to this, the change of temperature may also cause the 

dissociation of hydrate in the sediment. Hence, temperature should also be considered 

in future work, as it is one of the two most important conditions for the existence and 

development of methane hydrate. 

8.2.7 Dissociation of hydrate 

This research only considered the effects of the hydrate formation in the sediment, as 

well as the geomechanical behaviours during the deformation process. However, a 

very important research topic should definitely be carried out: the structure 

degradation of the hydrate-bearing sediment due to hydrate dissociation, which plays 

a significant role in the exploitation of methane hydrate and the safety production of 

the drilling well. 
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8.2.8 Contact models 

In this research, only the linear contact model, slip model and contact bond model were 

used. However, considering the influence of the contact models on the particles’ 

contacts, more realistic contact models should be built. 

8.2.9 Up-scale research 

Due to current computational power, the time and computation cost of the DEM 

simulation in a research project needs to be taken into account. Therefore, in this 

research, the size of the sample was set relatively small, hence the limited number of 

particles. In fact, this constraint imposes a limitation not only on DEM particle-scale 

research but also field- and industrial-scale simulations.  

        Obviously, there exist two issues for future DEM research work: one is to increase 

the sample size and particle number for obtaining a more accurate simulation result; 

the other is to relate particle-scale micro-investigations with macro-scale and even 

industrial-scale investigation. These issues should be considered further in future work. 
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Appendix A 

Calculation of hydrate saturation in DEM study 

 

As previously noted in Chapter 3, the hydrate saturation computed in this DEM 

research may not be the same as the hydrate saturation measured in the laboratory. 

Because of the spherical shape of the soil and hydrate particles in the DEM model, 

after adding hS = 40% of hydrate particles within the pores of the soil sample, there 

would be no single void space for placing a single hydrate particle inside, although the 

total remaining void space volume would still be large. If adding more hydrate 

particles inside the sample, the sample would expand because the overlapping of 

hydrate particles would cause higher mean contact force than the confining pressure. 

Following this, the volume and void ratio would also be changed.  

        Thus, the simulated hydrate saturation (Sh) in DEM should correspond to a higher 

hydrate saturation than the natural hydrate-bearing soil sediments.  However, as 

already mentioned in Chapter 3, the actual 40% saturation could not simply be 

assumed as 100% saturation, as there were still void spaces in the sample. Hence, the 

behaviour observed in this study was examined qualitatively rather than quantitatively. 

        In order to obtain a more accurate hydrate saturation in future DEM studies, in 

this Appendix, three methods are proposed for the calculation of hydrate saturation 

when all the particles are spherical: accurate calculation, close packing and wasted 

void space volume at particle contacts.  

1. Accurate calculation 

The accurate calculation has been mentioned in Chapter 3 and used in this DEM study, 

as shown in Equation A-1: 
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Hydrate saturation:    
( )

( )

hydrates

h

pores

Volume
S

Volume
       (A-1) 

        However, as discussed above, the results from the accurate calculation may be 

underestimated. An assumption should be made regarding the appropriate saturation 

value. Thus, the next two calculation methods may provide some new thoughts over 

the spherical hydrate saturation assumption. 

2. Close packing 

Close packing refers to an empirical method for obtaining the maximum volume 

occupied by the solid objects which are packed closely in a regular space. The 

maximum occupied volume depends on not only the object shape, but also the packing 

method. In the current DEM research of hydrate-bearing sediments, spheres are 

particle shape mainly discussed. Regarding the packing methods, there are a few for 

packing sphere particles listed by Dullien (1992) with different maximum occupied 

volumes: thinnest regular packing, loose random packing, poured random packing, 

close random packing, thickest regular packing, etc..  

        To obtain the assumption value of the largest hydrate saturation in the DEM study, 

the maximum occupied volume may be related to it. Compared to the hydrate 

generation procedure in this study, random close packing seems similar. In the process 

of random close packing, when the particles are filled in the box, to shake the box can 

reduce the volume occupied by the particles, and can also spare space for adding more 

particles.  

        Song et al. (2008) concluded analytically that the maximum occupied volume of 

spherical particles takes up to 63.4% of the total volume of the space. There is also a 

theoretical packing method with the maximum theoretical occupied volume of 74.05% 

(Dullien, 1992) – hexagonal close packing, as shown in Figure A-1. The hexagonal 

close packing is a dense, regular and infinite arrangement of sphere particles.  
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Figure A-1: Hexagonal close packing of spherical particles 

        Hence, an assumption value of hydrate saturation may be made in the DEM study 

with spherical hydrate particles according to the maximum occupied volume of the 

close packing methods, as calculated by Equation A-2. Table A-1 lists the assumption 

values of the hydrate saturation in the DEM study according to the close packing 

theory. 

( ) ( )

(max ) (max )

h accurate DEM h assumption

h DEM h packing

S S

S S



 

            (A-2) 

        However, the void spaces within the sample are not in a regular shape. The 

boundaries of those void spaces are the surfaces of the soil particles, which means the 

boundary conditions for the close packing are more complex. Furthermore, the volume 

of the void space is limited, and the number of the hydrate particles which can be filled 

inside the space is also limited. So it is impossible to reach the theoretical maximum 

value of the close packing. Thus, the close packing method seems too idealistic for this 
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research, but it also leads to a new step for the assumption of hydrate saturation in the 

DEM study. 

Table A-1: Assumption value of hydrate saturation in DEM study according to close packing 

theory 

Accurate 

Calculation 

 

(DEM) 

Assumption Value 

According to  

Random close packing 

According to  

Hexagonal close packing 

Sh = 10% 15.85% 18.51% 

Sh = 20% 31.70% 37.02% 

Sh = 30% 47.55% 55.53% 

Sh = 40% 

(maximum value) 

63.40% 

(maximum value) 

74.05% 

(maximum value) 

 

3. Wasted void space volume at particle contacts 

Regarding the wasted space volume in particle contacts, it refers to the volume of space 

at the particle contacts which cannot fill a hydrate sphere particle, as illustrated in 

Figure A-2. In the theory of this saturation calculation method, the wasted void space 

actually has been occupied by the existing contact, hence the volume of this space 

should also be taken into account in the saturation calculation by Equation A-1. 

 

Figure A-2: 2-Dimension sketch of wasted space at particle contacts 
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        Within the hydrate-bearing sediment, there are five contact types, as shown in 

Figure A-3: (a) hydrate-wall contact; (b) soil-wall contact; (c) hydrate-hydrate contact; 

(d) soil-soil contact; and (5) soil-hydrate contact. For each contact, there is wasted void 

space when adding a new hydrate particle to the closest location to the contact point, 

as can be seen clearly in Figure A-3. Thus, a volume calculation of the wasted void 

space can be added to the assumption of the hydrate saturation value. 

 

Figure A-3: Five contact types within the DEM hydrate-bearing sediment and the wasted void 

space 
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        In a 3-Dimension volume calculation of the wasted void space, the volume of the 

rotation shape of the wasted void space in 2 Dimensions should be calculated. The 

rotation axis for each contact type can be found in Figure A-3. Evidently, the volume 

of the wasted void space depends on the contact type and the particle size.  

        This method seems to be a good means of obtaining an improved hydrate 

saturation value in the DEM hydrate-bearing sediments. However, there are still 

several essential disadvantages: 

        (1) If 1000 hydrate particles are generated in the soil sample and form as a pore-

filling or cementation model, the contact number of the cementation model must be 

larger than that of the pore-filling model, because the cementation hydrate particles 

form at the soil-soil contact and along the soil surface while the pore-filling hydrate 

particles are floating in the pore space. Through the wasted void space volume 

calculation, these two hydrate-bearing sediments should have different hydrate 

saturations, but there are the same number of hydrate particles inside the sample. If 

this is the case, the calculation appears to be incorrect. 

        (2) Secondly, when adding more hydrate particles to the sample, there is an 

uncertainty in the pore-filling sample that the added hydrate particles contact with the 

existing hydrate particles and then cause a movement of both, hence the existing 

conditions of contact types will be changed accordingly. However, in the cementation 

model, the newly added hydrate particles are only coated to the existing soil & hydrate 

skeleton with a given bonding strength. Once again, this calculation does not seem to 

be correct. 

        (3) Thirdly, from the calculation of the soil-soil contact type, it can be seen that 

there is already wasted void space in the existing soil skeleton even though there are 

no hydrate particles added. This means when there is no hydrate particle inside the soil 

sample, through this calculation method, there is already an assumed hydrate 

saturation. This does not seem reasonable. 
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4. Discussions 

The three proposed calculation methods provide an insight into the assumption of the 

hydrate saturation in the DEM models. To some extent, the assumptions can be 

necessarily used in the DEM research. However, this assumption method seems to be 

too idealistic.  

        When the saturation was at a low value, it may not simply be assumed to be a 

higher value through the calculations and assumptions. The existing hydrate particles 

may not be able to perform the characteristics for the corresponding assumed higher 

value saturation. The geomechanical behaviours of the DEM hydrate-bearing 

sediments at a low hydrate saturation were similar to the behaviours of the 

experimental results at almost the same saturation value. For example, in the DEM 

pore-filling model in Chapter 4 and Chapter 7, the strength increased evidently only 

when the hydrate saturation was above 20%, which was similar to the experimental 

results that the strength increased obviously when the pore-filling hydrate saturation 

was over 20% ~ 25% (Waite et al., 2009).  

        However, when the accurate saturation of the DEM samples increased to 30% ~ 

40%, the behaviours seemed to correspond to the experimental results with a higher 

saturation. The first example is that the magnitude of the increase in strength was much 

more evident, as discussed in Chapter 4 ~ 7. Secondly, from the small-strain stiffness 

study in Chapter 5, it can be seen that the trend of the increase in the small-strain shear 

modulus Gmax at Sh=30% ~ 40% was similar to the trend in the experimental study at a 

very high saturation about 70% ~ 100% (Soga et al., 2006; Waite et al., 2009). 

        Hence, from the discussions above, it may be suggested that the hydrate saturation 

calculation in the DEM study should be considered more carefully, and one calculation 

method may not be able to apply to all situations. Further studies are needed for more 

accurate hydrate saturation values for interpreting the behaviours of the DEM hydrate-

bearing samples. 
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Appendix B 

Yield surface 

 

As discussed above, the geomechanical behaviour of granular hydrate-bearing soil is 

similar to that of structured soils. Hence, it is natural to suggest that a constitutive 

model of methane hydrate sediment should also cover all the geomechanical 

behaviours (i.e. increased stiffness and strength, dilatancy, and structure degradation) 

as previously mentioned. Hydrate-bearing soil is unique in its mechanical behaviour. 

A better understanding and modelling of the geomechanical behaviour of hydrate-

bearing soil is very important. Thus, there is a demand for developing soil constitutive 

models that incorporate the effects of hydrate in order to predict the behaviour of 

hydrate soil. To this day, because of the material limitations of mechanical 

experimental data, the precise constitutive characteristics of the hydrate-bearing soil 

structure is yet unknown. As mentioned above in Section 2.2.2, the experimental data 

currently obtained has not shown very large strain and critical state behaviours of the 

sediment. 

        On the basis of critical state soil mechanics and the most recent constitutive 

models for hydrate-bearing sediments (Roscoe et al., 1968; Freiji-Ayoub et al., 2007; 

Rutquist et al., 2007; Kimoto et al., 2010; Klar et al., 2010;), Uchida et al. (2012) 

developed a new constitutive model ‘Methane Hydrate Critical State  model’ (MHCS) 

which captured the behaviour of hydrate-bearing soil. This new proposed constitutive 

model, MHCS, incorporated most of the essential elements including stiffness, 

strength, dilation, softening, volumetric yielding and bond degradation. In the MHCS 

model, the yield function is: 

2 2( ' ' )[ ' ( ' ' ' )]cc cs cd ccf q M p p p p p p            (B-1) 

where q is the deviatoric stress, 'p  is the effective mean stress, 'csp  is the yield locus 

of soil and M is the property of the material which is related to the frictional behaviour 

f
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of the sediment. 'ccp  is the hardening parameter for cohesion, and 'cdp  is the 

hardening parameter for dilation, where both hardening parameters are connected with 

hydrate saturation: 

' ( )b

cd hp a S       (B-2) 

' ( )d

cc hp c S        (B-3) 

where a, b, c and d are the material constants.  

Figure B-1 and Figure B-2 illustrate the mechanisms of dilation enhancement and 

cohesion enhancement to the yield surface expansion. The added  causes the yield 

surface to expand to the right side in the space. While the added  enlarges the 

yield surface concordantly with both the left and right sides, which offers an increase 

in cohesion but does not affect the dilation upon yielding. This enhanced yield surface 

is illustrated in Figure B-3. 

        The fact is that there is no clear separation between the elastic and plastic state in 

real soils. Hence, for the purpose of smooth transition from the elastic behaviour to the 

plastic phase, Hashiguchi’s (1989) sub-loading surface ratio 'R  is employed: 

2 2( ' ' )[ ' '( ' ' ' )]cc cs cd ccf q M p p p R p p p            (B-4) 

' '
' (1 ) ln ' | |

'

pcd cc

cs

p p
dR u R d

p



         (B-5) 

where is the material constant that dominates the plastic deformation within the yield 

surface. 'dR  > 0 refers to the plastic phase while 'dR  < 0 represents elastic phase of 

the soil. 

'cdp

' :p q 'ccp

u
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Figure B-1: Dilation enhanced by hydrates (Uchida et al., 2012) 

 

Figure B-2: Cohesion enhanced by hydrates (Uchida et al., 2012) 

 

Figure B-3: Yield surface of MHCS model (Uchida et al., 2012) 
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        On the whole, the MHCS model performed by Uchida et al. (2012) was devised 

so as to produce more realistic hydrate-bearing soil behaviour. It provides the reference 

model for the geomechanical investigations of sediments in order to verify the acquired 

results. Nevertheless, to perform further and more precise studies, not only the well-

controlled on-site and laboratory tests, but also appropriately designed numerical 

simulations are required. 

        According to the MHCS model (Uchida et al, 2012), compared to the pure soil 

sediment, the shear strength of methane hydrate-bearing soil sediment exhibits the 

geomechanical behaviour which are enhanced by both dilation effect and cohesion 

effect. This is because of the existence of hydrates which occupy the pore space (pore-

filling and cementation) contributing to the dilation effect, as well as the bonded 

contacts (cementation) contributing to the cohesion effect. From the simulation results 

presented in Chapter 4 ~ 7, it was also shown that the presence of pore-filling hydrates 

increased the strength, whereas the presence of cementation hydrates with bonding 

strength increased the strength of the sediments even more. Hence, the DEM 

simulations reflected the same behaviours as what the MHCS model does. 

        In this appendix, the hydrate-bearing sediment samples under 1 MPa confining 

pressure as described in Chapter 4 were programmed for a general stress-path test, as 

shown in Figure B-4 and Figure B-5 by yellow lines. The yield surfaces in the p’- q’ 

space were formed by connecting the yield points of different stress path for various 

hydrate saturations. The yield points are defined by the peak failure of a particular 

shear test. The numerical results from simulations of these stress paths were then 

compared with those of the traditional triaxial tests conducted under the confining 

pressure of 1 MPa, 2 MPa and 3MPa, of which the yield points generally corresponded 

to the same location of derived yield surfaces. 

        Figure B-4 illustrates the yield surface expansion in the p’- q’ space, due to the 

presence of the pore-filling hydrate particles in the pore-filling model. There is an 

expansion of the yield surface with an increase in hydrate saturation. The yield surfaces 

were also extended to a higher stress range by adding the data of traditional triaxial 

tests under 3 MPa confining pressure. 
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Figure B-4: Stress paths of DEM simulations and yield surfaces obtained from the yield points 

at various hydrate saturations: pore-filling model  

 

Figure B-5: Stress paths of DEM simulations and yield surfaces obtained from the yield points 

at various hydrate saturations: cementation model       
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        Figure B-5 evidently shows a more significant expansion of the yield surfaces in 

the p’- q’ space, compared to the pore-filling model in Figure B-4, regardless of only 

a small increase in dilation angle. This is because of the mechanism of cohesion 

enhancement which contributed to enlarging the yield surfaces. 

        The expansion of the yield surfaces of the DEM hydrate-bearing samples in the 

p’- q’ space exhibits the contribution of the presence of hydrates to the pore-filling and 

cementation sediments’ strength. It can also be found that the cohesion enhancement 

contributed to a further increase in strength, as shown in Figure B-6. 

 

Figure B-6: Comparisons of yield surfaces of the pure soil samples (Sh=0%), pore-filling 

samples (Sh=40%) and cementation samples (Sh=40%) 
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Appendix C 

Microstructure evolution 

 

During the shearing process of the triaxial test, there was a complex and continuous 

evolution of the particle-particle contacts. In this microstructure evolution, the 

shearing caused the anisotropy of the distribution of the contact normal and contact 

force, so that the loading force was mainly transmitted through the principle stress 

directions. In this process, the existing particle-particle contacts disappeared and the 

new contacts appeared. This rearrangement of the contacts made the fabric anisotropy 

evolve, especially for the hydrate-bearing soil samples of a mixture of hydrate and soil 

particles with different stiffness and sizes. Hence, in this appendix, the microstructure 

anisotropy evolution during the shearing process is depicted in three aspects: contact 

normal ( r

da ), normal contact force ( n

da ) and tangential contact force ( t

da ) accordingly. 

        There are a few internal parameters which interpret the state of the particle-scale 

sample – the contact number, the density of contact (or coordination number), contact 

vectors and contact normal, normal contact forces and tangential contact forces, 

contact force directional distributions. Sitharam et al. (2009) summarized that a 

second-order fabric tensor can describe the contact normal distribution. The symmetric 

fabric tensor is interpreted by the distribution function ( )E   (Rothenburg and 

Bathurst, 1989; Sitharam et al., 2002): 

1
( ) (1 )

4

r c c

ij i jE a n n


             (C-1) 

Where 
cn  is contact normal orientation, the coefficient term 

r

ija  is related to the fabric 

tensor obtained from the measured discrete information.  

        Sitharam et al. (2009) described that, for an isotropic assembly, the coefficients 

in Equation (C-1) are zero and the ( )E   is 
1

4
. If 

r

ija  > 0, the implication is that the 
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contact density is greater than that of the isotropic assembly; and if 
r

ija  < 0, the 

implication is that the contact density is smaller than that of the isotropic assembly. 

Additionally, the deviatoric anisotropy coefficients can be expressed as:  

3

2

r r r

d ij ija a a     (C-2) 

3

2

n n n

d ij ija a a     (C-3) 

3

2

t t t

d ij ija a a     (C-4) 

where 
r

ija , 
n

ija , and 
t

ija  are the symmetric second-order deviatoric tensor describing the 

coefficient of contact normal (fabric anisotropy), normal contact force anisotropy and 

tangential contact force anisotropy. 

        In this appendix, the pure soil samples (with spherical soil particles or elongated 

soil particles) and the according hydrate-bearing sediment samples under 1 MPa 

confining pressure as described in Chapter 4 and Chapter 7 were programmed for a 

microstructure evolution study. The initial data are presented in Figure C-1 ~ C-4.  

        Figure C-1 shows the fabric anisotropy evolution during the triaxial tests of the 

hydrate-free soil sample (Sh = 0%), pore-filling sample (Sh = 20%) and cementation 

sample (Sh = 20%) when the soil particles were spherical. Throughout the whole 

shearing process, the three samples’s anisotropy evolutions were obviously different.  

        Figure C-1 (a) shows the contact normal anisotropy r

da  evolution against the axial 

strain. As the axial strain increased, the contact normal anisotropy increased first and 

then decreased. The peak and large strain r

da  was different for the three samples: the 

Sh = 0% sample’s r

da  was the largest, while the hydrate-bearing samples’ r

da  was 

smaller than the soil sample, and the cementation model’s r

da  was the smallest. Figure 

C-1 (b) shows the normal contact force anisotropy n

da . It is shown that the hydrate-
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bearing samples’ n

da   was larger than that of the hydrate-bearing soil sample. And the 

cementation model shows a larger n

da  than the pore-filling model. In addition, Figure 

C-1 (c) presents the tangential contact force anisotropy t

da . It increased to the different 

peak values and then decreased to a similar value range. Regarding the different peak 

values, the hydrate-bearing samples’ t

da   was larger than that of the hydrate-bearing 

soil sample. And the cementation model shows a larger t

da  than the pore-filling model. 

        It can be summarized that, during the shearing process of the assembly, the 

contact normal anisotropy, normal contact force anisotropy and tangential contact 

force anisotropy experienced a dramatic evolution process. Due to the involvement of 

the hydrate particles, the contact normal is closely related to the particle material 

deformation. While the normal contact force anisotropy and tangential contact force 

anisotropy are more related to the sample’s strength. In addition, the hydrate growth 

pattern influences the anisotropy evolution. 

        In order to study the shape effect of the soil particles on the microstructure 

evolution, a series of comparisons were made among the spherical soil particles (aspect 

ratio = 1.0), 2-particle clump soil particles (aspect ratio = 1.5) and 3-particle clump 

soil particles (aspect ratio = 2.0).  

        Figure C-2 shows the comparisons of the hydrate-free soil samples; Figure C-3 

shows the comparisons of the pore-filling hydrate-bearing samples; and Figure C-4 

shows the comparisons of the cementation samples. In each figure, the comparisons 

were made separately in contact normal anisotropy, normal contact force anisotropy 

and tangential contact force anisotropy accordingly.  

        Generally, it can be seen that as the aspect ratio increased, the contact normal 

anisotropy, normal contact force anisotropy and tangential contact force anisotropy all 

increased obviously. And in these cases, the hydrate particles’ influence was not very 

evident. 
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(a) Contact normal anisotropy 

 

(b) Normal contact force anisotropy 

 

(c) Tangential contact force anisotropy 

Figure C-1: Anisotropy evolution during the triaxial tests (spherical soil particles) 
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(a) Contact normal anisotropy 

 

(b) Normal contact force anisotropy 

 

(c) Tangential contact force anisotropy 

Figure C-2: Anisotropy evolution during the triaxial tests (Sh=0% with various soil shapes) 
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(a) Contact normal anisotropy 

 

(b) Normal contact force anisotropy 

 

(c) Tangential contact force anisotropy 

Figure C-3: Anisotropy evolution during the triaxial tests (Sh=20% pore-filling samples with 

various soil shapes) 
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(a) Contact normal anisotropy 

 

(b) Normal contact force anisotropy 

 

(c) Tangential contact force anisotropy 

Figure C-4: Anisotropy evolution during the triaxial tests (Sh=20% cementation models with 

various soil shapes) 



Appendix D. Commercial potential and exploitation of methane hydrate 

 

243 
 

Appendix D 

Commercial potential and exploitation of methane 

hydrate 

 

Acknowledgement: This Appendix D is finished under the requirement of UCL 

Advances Enterprise Scholarship. 

        As introduced in Chapter 1, methane hydrate, which is also called “Burning Ice” 

or “Fiery Ice”, attracts worldwide interest because of the huge amounts of methane gas 

that can be extracted from hydrate-bearing sediment through large-scale commercial 

exploitation. Methane gas is the predominant element of natural gas. It is well known 

that there is huge commercial potential in the immense global deposits of methane 

hydrate under deep seabeds and permafrost regions.  

       Increasing global attention was attracted after Japan announced on 12th March 

2013, that Japan Oil, Gas and Metals National Corporation (JOGMEC) had launched 

an industrial-scale experimental exploration and successfully extracted methane from 

deep-sea methane hydrate sediment layers near the Aichi Prefecture of Japan through 

the means of depressurization technology. This made Japan the first country to master 

the technique of excavating natural gas hydrate from the seabed. This was the first 

time in the world that someone had successfully extracted methane gas from deep 

seabeds. It is big news for Japan, a country where natural resources are scarce. It was 

also a big breakthrough in new energy development for the world. 

        In this appendix, the commercial potential of methane hydrate is presented, and 

the commercial exploitation methods and current technology difficulties of the 

methane hydrate industry are discussed. 
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1. The increasing global needs of natural gas 

The BP Outlook 2035 (BP plc., 2014) presented figures for past global energy 

consumption, reaching back as far as 1990 and stretching into the future until 2035, as 

illustrated in Figure D-1. Regarding energy resources in the BP Outlook 2035 (BP plc., 

2014), they are classified into two categories: conventional energy resources and 

unconventional energy resources. The conventional energy includes the fossil fuels – 

coal, oil and natural gas. And the unconventional energy includes nuclear, 

hydroelectricity and renewables (i.e. wind power, solar electricity). 

        It is clearly suggested in Figure D-1 that the total energy consumption increased 

steadily in the past, and the increase will keep relatively constant in the future until 

2035. Conventional energy played the most important role in the past, and it also keeps 

this significant role in the future with a steady consumption increase, although 

unconventional energy consumption will also increase.  

 

Figure D-1: Global total energy consumption by fuel (BP plc., 2014) 

        From Figure D-1, it can be seen that coal, oil and natural gas have equal 

importance. However, from the perspective of resource deposits, coal and oil resources 
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are much rarer than natural gas under the earth. Secondly, from the view of 

environmental protection, natural gas is a relatively clean burning energy compared to 

coal and oil. Although natural gas cannot replace the important role of coal and oil in 

their industrial and commercial use, the exploitation of natural gas seems to be more 

profitable as an energy resource from a long-term perspective. In addition to this, 

methane is the predominant natural gas, so that its exploitation is essential to the 

natural gas industry.  

2. Commercial potential of methane hydrate 

Just like the already massively developed shale gas, methane hydrate is also expected 

to be one of the main energies of the future. The International Energy Agency (IEA) 

optimistically estimates that the development and utilization of methane hydrate will 

bring about an “energy revolution”. As the main resource of methane gas, methane 

hydrate attracts worldwide interest, because methane hydrate is not only widespread, 

but also possesses a huge deposit under the earth. An estimate from the data released 

by the United States Geological Survey (2013) says that the total organic carbon 

contained in methane hydrate amounted to twice as much as the carbon content of the 

world’s known fossil fuels.  

        Every 1 m3 methane hydrate can release 164 m3 methane gas. It is estimated that 

methane hydrate is typically distributed within a 1000 meters range beneath seabeds 

and permafrost regions. The seabed deposit is much larger than the permafrost region 

deposit. It is estimated that the distribution areas of seabed methane hydrate covers 

about 10% of the total area of the oceans’, with this distribution area reaching up to 40 

million m2. It is generally believed that the world’s conventional gas reserves are 300 

trillion m3 and shale gas reserves nearly 200 trillion m3. According to these estimations, 

methane reservesunder the seabed are over 1000 trillion m3, which is double the sum 

of the world’s shale gas and conventional gas reserves, and sufficient for human being 

to use for a very long time.  

        Methane hydrate has been labelled “one of the best alternative energy in the future” 

due to its inherent advantages such as wide distribution, huge deposit and high density 
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of energy. There is also, within the industry, a well-known feeling that “whoever 

masters the technology to exploit natural gas hydrate shall dominate the world energy 

development of the 21st century”.  

      At present, most energy importing countries, which are open to the sea, possess 

rich natural gas reserves of methane hydrate. Four countries, U.S., Japan, India and 

China, import per year about a quarter of the international total trade volume of natural 

gas. If any of the energy departments of these countries could make a breakthrough in 

the commercialized exploitation of methane hydrate natural gas, it would immediately 

influence today’s world energy structure.  

        Today, revolutionary changes in the balance of energy sources has already 

occurred in the world’s natural gas market, and it is believed that the development of 

methane hydrate natural gas may be the next factor that can shake the world’s energy 

system. Even if methane hydrate’s development has not seen any benefit and not been 

proved effective so far, this kind of fuel may lead a revolution in the world’s energy 

market along with the birth of new technologies. Thus, the technology of methane 

hydrate exploitation has a cheerful prospect, and the cost of methane hydrate natural 

gas exploitation could be as competitive as that of shale gas and other unconventional 

gas exploitation.  

3. Conditions of methane hydrate formation 

Generally, methane hydrate develops and exists in the pores of highly compacted soil 

sediments in various distribution patterns. The formation of methane hydrate requires 

three basic conditions: temperature, pressure and the methane gas source.  

        Firstly, the temperature cannot be too high. It is capable for methane hydrate to 

form above zero, in which 0℃~10℃ is desirable, and 20℃ is the upper limit. Methane 

hydrate will be dissociated at higher temperatures. Secondly, the pressure needs to be 

sufficient, although not be too high, to be capable of forming at 100 kPa and −80 oC, 

or at 2.5 MPa and 0 oC (Brugada et al., 2010). These are the reasons that methane 

hydrate is usually found in deep seabed sediment or terrestrial permafrost regions, 
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because only under both high pressure and low temperature conditions, can it maintain 

stability.  

       Thirdly, there should be methane gas source. Generally, there are two views 

regarding the cause of formation of methane hydrates. One considers that methane 

originates in the bacteria beneath the sea. The remains of a great many organisms in 

the sea, when corruptingdecaying?, produce bacteria which releases methane; the 

methane gas produced by the bacteria is locked into hydrate provided a high-pressure 

and low-temperature condition. Another theory considers that methane results from 

oceanic plate movement. When oceanic plate is subsiding, the older oceanic crust goes 

under the earth’s interior, and the oil and gas in the seabed upwells to surface along 

the plate boundary. Once exposed to cold seawater, under the deep-sea pressure, 

methane gas and sea water form into hydrate via chemical action.  

4. Exploitation methods of methane hydrate 

        In fact, the promising energy resource methane hydrate is a prickly rose that can 

both cheer the world up and bring the world down. Up until now, the way of safely, 

environmentally-friendly and economically exploiting methane hydrate remains a 

problem for the whole world. Although nations are egear for methane hydrate, there is 

a mutual bottom line for everyone: before an ideal exploitation method is proposed, 

methane hydrate must not be massively exploited as conventional mineral resources 

are. It is believed that whether methane hydrate will become one of the main energy 

resources in the 21st century depends on whether a breakthrough will be made 

regarding the exploitation technology. The seabed deposit is much larger than the 

permafrost region deposit, yet the technology issues prove more difficult fordeep see 

exploitation. 

        Due to the complex conditions of the development and existence of methane 

hydrate in the hydrate-bearing sediment under the deep seabeds and permafrost regions, 

currently there are three main methods proposed for the commercial exploitation of 

methane hydrate:  
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        The first method is “thermal injection”, in which hot water is injected into the 

well so as to cause an increase in temperature. Methane hydrate dissociates when being 

heated. The first problem of this method is the difficulty of collecting methane gas. 

The porous medium under the sea does not behave as a “mass”, nor is it a block of 

rock, but is dispersed evenly. The problem to be solved lies in the way of laying 

pipelines and collecting efficiently. The second problem is the very high cost in both 

capital and energy in pouring the hot water. It could beconsidered as exchanging 

energies. 

        The second method is “chemical replacement by carbon dioxide (CO2)”. If CO2 

is injected into the seabed methane hydrate reservoir, as CO2 forms hydrate more easily 

than methane does, it can “squeeze out” methane molecules in the hydrate, and replace 

methane to form carbon dioxide hydrate. This method is also a good way of depositing 

greenhouse gas CO2 and protecting the environment. However, one of the problems of 

this method is the carbon dioxide hydrate near the well may block the flow of methane 

into the well.  

        The third one is “depressurization”. The well pressure is decreased in order to 

allow flow into the well and cause the methane hydrate dissociation by the pressure 

reduction in the surrounding soil sediment. On March 2013, Japan launched the 

industrial-scale experimental exploration and successfully extracted methane from a 

deep-sea methane hydrate sediment layer near Aichi Prefecture of Japan by means of 

this depressurization technology. By pumping the water out of the methane hydrate so 

as to depressurize it, the methane is separated from the water and finally extracted. 

This is the world’s first success of dissociating methane hydrate under the sea. 

5. Difficulties of large-scale commercial exploitation of methane 

hydrate 

Currently, including all of the exploitation technology development issues, the large-

scale exploitation of methane hydrate from hydrate-bearing sediments still confronts 

several main problems: 



Appendix D. Commercial potential and exploitation of methane hydrate 

 

249 
 

        (1) Global warming: 

        It is believed that methane contributes to global warming 20 times as much as 

carbon dioxide does. If methane hydrate is induced to automatically dissociate or 

overflow during the exploitation, there will be a much more serious greenhouse effects 

which will challenge the atmosphere and eco-environment. In consideration of the 

environmental hazards that may be induced by improper exploitation, all countries in 

the world are cautious before taking actions.  

        (2) Geological disasters:  

        Since methane hydrate typically exists as a cement of the sediment, its formation 

and dissociation effects on the sediment’s strength, which may induce submarine 

landslide and other geological disasters. The changes in temperature and pressure 

caused by natural or human factors can dissociate hydrates, leading to submarine 

landslide, species extinction, climate warming and other environmental hazards. 

Studies released by the United States Geological Survey indicate that methane hydrate 

may induce continental slope landslides which are an enormous threat to the various 

undersea facilities. Therefore, methane hydrate as the energy of the future is also a 

dangerous energy.  

        (3) Expensive cost:  

        Due to the current technology limitations, the high cost of exploitation is 

inevitable. The United States previously estimated the exploitation cost of seabed 

methane hydrate. They managed to collect methane hydrate by submarine, and to 

dissociate it on land. It was found that the cost was 200 dollars per cubic meter. If 1 

m3 methane hydrate amounted to 164 m3 gas, the gas production cost would be 1.2 

dollars / m3, while the U.S. gas importing price in 2012 was only 0.087 dollar / m3. 

        (4) No feasible and systematic exploitation technology: 

        It is of great urgency to conduct researches regarding methane hydrate’s indoor 

and outdoor dissociation, synthesis and drilling-production methods. As mentioned 

above, the currently proposed exploitation methods are still immature technologies, in 

respect of cost, long-term exploitation, etc.. 

        (5) Difficulties in transportation and reservoir management:  
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        Because methane hydrate cannot stably exist under normal pressure and 

dissociates when the temperature is above 20℃, the solution of transportation and 

reservoir management is one of the key issues to the large-scale exploitation of 

methane hydrate. Currently, samples collected from exploration are typically stored in 

sealing containers which are full of helium gas under low temperature. As for large-

scale means of storage and transportation, researches on relevant technologies and 

facilities are being conducted intensely all over the world.  

        The above challenges have become enormous obstacles in the way of the large-

scale exploitation of methane hydrate. Nevertheless, these problems will undoubtedly 

be solved, as technology improves and science develops. 

6. Industry of methane hydrate 

Since the 1960s, the research of exploration of methane hydrate has drawn more and 

more attention globally. In the early 1960s, the former Soviet Union discovers the first 

methane hydrate reservoir in Siberia. The U.S. government commenced the 

investigation of methane hydrate in 1969, and listed methane hydrate as strategic 

energy for national development in the national long-term plan in 1998.  

       So far, many countries, including the US, Canada, Russia, China, India, South 

Korea and others, have established long-term research projects regarding methane 

hydrate. However, the high cost of exploitation has become the biggest obstacle in 

methane hydrate exploitation. Due to the crisis of energy shortage, many countries are 

still enthusiastic for this new type of clean energy, and for this reason, have all 

contributed to the large-scale exploration as well as exploitation technology research.  

        China also announced a plan in the research of methane hydrate within the next 

twenty years. A national research and development project in Japan is aiming for 

commercial large-scale exploitation by 2018. Another reserve with rich economic 

potential is in the Gulf of Mexico where the huge deposit of methane resource may be 

deposited. Regarding the exploitation plan, for example, China launched its special 

study on methane hydrate in 2011. The established development schedule indicates 

that the exploration survey and technical preparation will be fulfilled between 2008 
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and 2020, the commercialized pilot production will be carried out between 2021 and 

2035, and the offshore large-scale commercial exploitation will be conducted between 

2036 and 2050. 

        Another successful example is the National Methane Hydrate Development 

Program of Japan which is carried out in 3 stages. In the first stage, two successful 

experiments were performed in 2002 and 2008 respectively, when methane gas was 

extracted from land deposits. In the second stage, which is from 2009 to 2015, two 

production trials should be performed in the Japanese surrounding seas. In this stage, 

economic efficiency and environmental impact of extracting methane gas from seabed 

geosphere should also be verified. The third stage of this Methane Hydrate 

Development Program will be from 2016 to 2018, in which the commercial production 

value, exploitation effectiveness and environmental impact of methane hydrate will be 

ultimately overall assessed on the basis of the research and test results of the two 

former stages.  

        On the 12th March, 2013, the success of the experiment to disassociate and extract 

methane gas from methane hydrate in the seabed strata near Aichi Prefecture was 

announced by the Agency for Natural Resources and Energy of Japan's Ministry of 

Economy, Trade and Industry. This is the world’s first time to successfully extract 

methane gas from the seabed. It is good news for Japan, a country where natural 

resources are scarce. It is also reported that methane hydrate reserves around Japan is 

equivalent to 100 years of Japanese gas consumption. Methane hydrate might 

contribute to Japan’s energy demand in the future. Japan expects to decrease or even 

cast off its dependency on foreign countries and to realize energy self-sufficiency 

through the commercialized production of methane hydrate.  

7. Summary 

Methane hydrate draws global attention as a promising natural gas resource with a 

huge worldwide deposit due to the increasing needs of natural gas. Its wide distribution, 

huge deposit and high density of natural gas will definitely influence the world energy 

structure of the future. Its commercial potential may be underestimated due to the 
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limitations of the current exploration technologies, and there will be more reserve sites 

being found in the near future. 

        Due to the complex formation process of methane hydrate, the instability of its 

chemical property and the complexity of its soil deposit’s geological properties, severe 

problems may occur in the large-scale commercial exploitation. Hence, technological 

progress is crucial to the solution of the challenges. The technology issues are the main 

obstacles facing commercial exploitation, although many countries have been 

contributing to this significant technology development for many years. However, the 

success of the large-scale experimental exploitation of methane hydrate in Japan 

means this promising energy resource could be a reality. This may also lead the world 

to take further steps forward for the future of the large-scale commercial exploitation 

of methane hydrate. 
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