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Preface

The issue of uncertainty in science and policy has intrigued me for already
more than a decade. After I had completed my ma-thesis on consensus in
climate science in the summer of 1995, I quickly discovered that the Dutch
climate scientists with whom I did my atmospheric research were very open
about the uncertainties in their science and were genuinely interested in my
philosophical analyses. This stimulated me to ask my former thesis super-
visor, Hans Radder, about the possibilities for postdoctoral research in phil-
osophy of science. Hans was succesful in obtaining university funding for a
three-year project on the role of computer simulation in science and politics.
Thus, after I had finished my dissertation in atmospheric science at Utrecht
University, I returned to my alma mater, the Vrije Universiteit in Amsterdam,
as a postdoctoral research associate in April 1999. It was decided that the
result of the project should be a second dissertation and that I should also
enroll in the Netherlands Graduate School of Science, Technology and Mod-
ern Culture (wtmc). To some it may seem odd that a postdoctoral researcher
returns to graduate school, but I found this period to be intellectually one of
the most stimulating and fruitful periods of my career and I still retain many
fond memories of the people I met at the workshops, the summer schools and
the winter school that I attended. I enjoyed being part of the Faculty of Phil-
osophy and I would like to thank both my dissertation supervisors, Hans
Radder and Peter Kirschenmann, for guiding me through this project, for
their incisively critical comments that always led to significant improvements
in my thinking and the text, and for their confidence that I would – some-
time – complete this project. Simply put, without them this book would not
exist. Several other people provided helpful material and comments that stim-
ulated my work. I would like to mention in particular: Marcel Boumans, Silvio
Funtowicz, Stephan Hartmann, Peter Janssen, Chunglin Kwa, Harro Maas,
Mary Morgan, Jerome Ravetz, James Risbey, Sergio Sismondo, Marjolein van
Asselt, and Jeroen van der Sluijs.

When I was about halfway through the project, I obtained a position as
senior scientist in uncertainty assessment and communication at the Nether-
lands Environmental Assessment Agency (mnp), and I left the Vrije Universi-



teit on 1 January 2002. The new job turned out to be beneficial for the project.
Although it took nearly another five years to finish this study, I feel that the
ideas that are now laid out in it are much more mature than what I could have
offered after three years of research as an outsider. The two directors of mnp,
Klaas van Egmond and Fred Langeweg, have given strong support to the dif-
ferent research activities that I have undertaken within the mnp. There are
many other mnp colleagues whom I should mention here. However, I will
limit myself to thanking four colleagues who contributed most to this study:
Arthur Beusen, Peter Janssen, Johan Melse, Anton van der Giessen.

In this study, aside from analysing the role of simulation in natural science
and public policy in general, I focus on climate science and policy in particu-
lar. This choice is obviously related to my own disciplinary background, but
also to the high societal and political importance of appropriately assessing
and communicating uncertainties in climate simulation. My ma-thesis al-
ready addressed the Intergovernmental Panel on Climate Change (ipcc) and
the controversial nature of its Summaries for Policymakers. How can one for-
mulate a ‘consensus’ about what we know about climate change, if climate sci-
entists in their daily scientific practice seem to disagree on so many points,
particularly with respect to what constitutes a ‘good’ climate model? For my
studies of climate science and policy, I am particularly indebted to the follow-
ing people, who were interviewees and/or advisers: Fons Baede, Henk Dijk-
stra, David Griggs, John Mitchell, James Risbey, Cor Schuurmans, Rob Swart,
Paul van der Linden, Aad van Ulden, Koos Verbeek, and Hans von Storch.

Aside from my dissertation supervisors, many people gave comments on
different portions of the manuscript in its various stages. I would like to
thank in particular: Ben Bakker, Henk de Regt, Maarten Kleinhans, Martin
Krayer von Kraus, Chunglin Kwa, Andrea Scharnhorst, Frits Schipper, Paul
Wouters, and again Sergio Sismondo and Marjolein van Asselt.

Finally, I would like to acknowledge copyrighted material and additional
financial support. Parts of Chapters 1 and 4 are currently in press as a book
chapter titled ‘Simulation uncertainty and the challenge of postnormal sci-
ence’, in Lenhard et al. (eds.), Simulation: Pragmatic Constructions of Reality –
Sociology of the Sciences, vol. 25, pp. 173-185 (© 2006 Springer). In addition to
support from the Vrije Universiteit and the mnp, the Vereniging voor chris-
telijk wetenschappelijk onderwijs, the American Geophysical Union, and the
Dutch National Research Programme on Global Air Pollution and Climate
Change made it possible to attend several conferences and ipcc meetings.
And the Netherlands Graduate School of Science, Technology and Modern
Culture (wtmc) financially contributed to the publication of this study.
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Chapter 1

Introduction

On January 20, 1999, Dr. Hans de Kwaadsteniet, a senior statistician at
the Netherlands National Institute for Public Health and the Environment
(Rijksinstituut voor Volksgezondheid en Milieu, rivm), made news in the
Netherlands. After years of trying to convince his superiors that the environ-
mental assessment branch (Netherlands Environmental Assessment Agency,
Milieu- en Natuurplanbureau, mnp)1 of the institute leaned too much toward
computer simulation at the expense of measurements, he went public with
this criticism by publishing an article on the op-ed page of the national news-
paper Trouw (de Kwaadsteniet 1999). His article was supplemented with an
interview that resulted in the headline ‘Environmental Institute Lies and
Deceives’ on the newspaper’s front page. His specific claim was that the insti-
tute suggested too high an accuracy of the environmental figures published
yearly in its State of the Environment report. According to him, too many
model results that had not been rigorously compared with observational data
were included – mostly because of the lack of sufficiently detailed data with
which to do the necessary comparisons. He pointed out that living in an
‘imaginary world’ was dangerous. He thought that if the institute spent more
time and energy on testing and developing computer-simulation models in a
way that made greater use of existing and newly performed observations, it
would become more careful in the way it presented its results to policy mak-
ers. De Kwaadsteniet identified the deceptive speed, clarity, and internal con-
sistency of the computer-simulation approach as the main causes of the
claimed bias toward computer simulation at the rivm/mnp.

The institute responded immediately to the publication by suspending de
Kwaadsteniet from his job and stating in an official reaction that a significant
fraction of its environmental research budget was spent on observations, that
the main policy-relevant conclusions in the institute’s reports were robust in
the light of uncertainties, and that the uncertainties were not deliberately left
out of the State of the Environment reports. The institute promised to publish
material concerning the uncertainties in future editions. In a later reaction,
the rivm’s Director of Environment, Professor Klaas van Egmond,2 argued



that simulation models had to be be viewed as ‘condensed knowledge’ and
that they were indispensable in environmental assessment, since without
them it would be impossible to determine cause–effect relationships be-
tween sources and effects of pollution (van Egmond 1999). Thus, models
gave meaning to measurement results, he added. And they were needed in
environmental policy making. Furthermore, he observed that policy makers
were often confronted with incomplete knowledge and that the institute re-
garded it as its task to report on the current state of affairs in the environ-
ment, including the uncertainties involved. As an example, he stated that it
would take many years before climate research reached the ‘ultimate truth’
about what was happening to the climate. However, on the basis of currently
available knowledge and its uncertainties, politicians have to decide on
whether to take measures now. Finally, the director added that the most im-
portant conclusions contained in the summaries for policy makers of the
State of the Environment reports were carefully crafted, taking all relevant un-
certainties into account.

Soon after the publication of de Kwaadsteniet, an intense and long-lasting
media debate ensued in the Netherlands.3 The affair reached the floor of the
Dutch Parliament within a matter of days. Facing the Parliament, the Minis-
ter of the Environment, Jan Pronk, defended the integrity of the institute. In
return for an agreement that the institute would organise more regular exter-
nal reviews of its environmental assessment activities and improve its com-
munication of uncertainty, the Minister granted the institute additional fund-
ing for its monitoring activities.

—

On June 7, 1999, I publicly defended my doctoral dissertation Convection and
Chemistry in the Atmospheric Boundary Layer (Petersen 1999). In this disserta-
tion, the main body of which consisted of three journal articles based on com-
puter simulation (Petersen et al. 1999; Petersen and Holtslag 1999; Petersen
2000c), I argued that one of the uncertainties in regional and global computer
models of air quality was significantly smaller than was previously thought.
Formerly, it was not known whether the influence of turbulence on chemical
reactions in the atmospheric boundary layer could be neglected. I, together
with my colleagues from the Institute for Marine and Atmospheric Research
Utrecht (imau), using a hierarchy of computer models, had shown that this
neglect was allowable. One of the opponents, Professor Frans Nieuwstadt of
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Delft University of Technology, sternly questioned me about the reliability of
my research results until he was satisfied with my final answer that I was con-
fident about my research results only within a factor of two.4 His main prob-
lem with the work was that only simulation models of different complexity
had been compared with each other and no comparison had been made with
experimental or observational data. My contention was that the most complex
simulations that I had done using the national supercomputer of the Nether-
lands were more reliable for answering my research questions than were any
of the sparse experimental or observational results reported in the literature.
This was judged by Professor Nieuwstadt to be a ‘medieval position’. I dis-
agreed, since the Large Eddy Simulation (les) model that I had used had been
rigorously compared with experimental and observational data.5 The only
thing I had done, I claimed, was to apply this model to a somewhat different
problem, which was extremely difficult to approach experimentally or obser-
vationally. After this minor public controversy, the episode ended well, since
the doctorate was awarded by the committee without any objections.6

1.1 Framing of the problem

The two episodes are by no means isolated examples of controversies con-
cerning uncertainties in computer simulation. De Kwaadsteniet questioned
the reliability of scientific simulation results for use in politics. Nieuwstadt
was concerned with their use for purely scientific purposes. All around the
world, both within and without science, controversies like the two described
here have regularly surfaced. Since the introduction of computer simulation
in science in the 1940s, for instance, scientists have held ‘debates that con-
tinued decades later over the legitimacy of according doctorates to students
who had “only” simulated experiments’ (Galison 1996: 155). The use of com-
puter-simulation results in policy making is also regularly questioned in pol-
itical circles. For instance, in 1995, u.s. politicians – to be precise, the Repub-
lican majority of the House of Representatives – even proposed legislation
(that did not get through Congress in the end) to base environmental regula-
tion on observations only, and to officially sideline any model result in the
policy-making process.

The practice of scientific simulation and the role of simulation in science
and policy give rise to a wide range of philosophical questions. Scientific
computer simulation is portrayed by some philosophers of science as a new
method of doing science, besides theorising and experimentation (e.g.,
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Rohrlich 1991; Humphreys 1994; Keller 2003). Science studies generally
seems to support this conclusion from an historical or sociological perspec-
tive (e.g., Galison 1996; Dowling 1999). Two major reasons are typically
given for why simulation should be considered qualitatively different. First, it
is claimed that simulations make it possibile to ‘experiment’ with theories in
a new way. For instance, Deborah Dowling, on the basis of interviews with
scientists who practice simulation – let us call them ‘simulationists’ – de-
scribes the practice of simulation as follows:

By combining an analytical grasp of a mathematical model with the ability
to temporarily ‘black-box’ the digital manipulation of that model, the tech-
nique of simulation allows creative and experimental ‘playing around’ with
an otherwise impenetrable set of equations, to notice its quirks or unex-
pected outcomes. The results of a large and complex set of computations
are thus presented in a way that brings the skills of an observant experi-
menter to the development of mathematical theory. ... In their everyday
interactions with the computer, and in their choice of language in varied
narrative contexts, scientists strategically manage simulation’s flexible
position with respect to ‘theory’ and ‘experiment’ (Dowling 1999: 271).

Second, simulation enables us to extend our limited mathematical abilities so
that we can now perform calculations that were hitherto unfeasible. Thus, we
can both construct new theories using computer simulation and calculate the
consequences of old theories.7 An example of the former category is the appli-
cation of cellular automata in biology (Rohrlich 1991; Keller 2003). And the
latter category is exemplified by the forecasting of the weather on the basis of
the well-established nonlinear equations of fluid dynamics, the Navier–Stokes
equations. Although there is no fundamental difference between the com-
putability of problems before and after computers became available (an argu-
ment against putting simulation in a philosophically distinct category), through
the introduction of the computer an actual barrier in scientific practice to the
large-scale use of numerical mathematics – that is, the limited speed with
which humans, even if aided by mechanical machines, can do calculations –
was removed. I agree with Paul Humphreys:

While much of philosophy of science is concerned with what can be done
in principle, for the issue of scientific progress what is important is what
can be done in practice at any given stage of scientific development
(Humphreys 1991: 499).

4 Simulating nature



I will make my own philosophical commitments more explicit in section 1.3.
Philosophical analysis can contribute to a deeper understanding of the

controversies concerning uncertainty in simulation. In Part i of this study, I
will address the following three general questions:

1 What specific types of uncertainty are associated with scientific simula-
tion?

2 What are the differences and similarities between simulation uncertainty
and experimental uncertainty?

3 What are appropriate ways to assess and communicate scientific simula-
tion uncertainties in science-for-policy?

In order to answer these questions, empirical results from science studies
and political science will be used to inform the philosophical analysis.

The scope of Part i includes all fields of science in which nature (both
physical and biological) is simulated, while the main examples are drawn
from the earth sciences. Computer simulation as a scientific approach is not
limited to the natural sciences, however: simulation is gaining ever more
prominence, for example, in psychology, sociology, political science, and eco-
nomics.8 The simulation of human behaviour (individual or collective) gives
rise to additional questions related to the capacity of humans to reflect. This
reflexive capacity adds a qualitatively different source of uncertainty and un-
predictability to computer simulation as compared with simulations of na-
ture. However, questions that focus on the specific uncertainties in simulat-
ing human behaviour fall outside the scope of the present study. Still, since
the main examples in this book are instances of complex systems, part of the
analysis presented also applies to many social science simulations.

With respect to areas of policy making in which simulation results are
used, the scope of Part i is quite broad. It includes topics as diverse as nuclear
weapons policies (using, e.g., physics simulations), environmental pollution
policies (using, e.g., toxicology simulations), biodiversity policies (using, e.g.,
ecological simulations), drug policies (using, e.g., biomedical simulations),
etc.

In Part ii, one policy arena in which these questions figure most promin-
ently is highlighted, that of anthropogenic climate change. Are humans cur-
rently changing the climate? Ask policy makers and they will probably reply
that climate scientists, in the context of the Intergovernmental Panel on Cli-
mate Change (ipcc), have indeed drawn a positive conclusion. How do scien-
tists reach such conclusions, and why do policy makers trust them? An ad-
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equate answer to the latter questions requires both sociological and philo-
sophical research of the role of models in science, and of the translation of
model results into a political context (see also Petersen 2000b).

The dominance of one specific way to frame the climate-change problem,
that of using global climate models to project future climate change for differ-
ent input scenarios (e.g., of greenhouse-gas emissions) and different model
assumptions, as done by the ipcc, has been criticised in the social-scientific
literature (Jasanoff and Wynne 1998). Especially in the early years of the
ipcc, the often publicly voiced criticism of climate models by ‘greenhouse
sceptics’ was said not to have been adequately dealt with, nor clearly reflected
in the summaries for policy makers. For the ipcc, this was a reason to try to
improve the review procedures. An evaluation of whether the ipcc has suc-
ceeded is of crucial importance for the legitimacy of climate policies. The
method adopted in this study for evaluating the ipcc is to apply the philo-
sophical insights concerning simulation uncertainty gained in Part i to cli-
mate simulation. Thus, the aim is not a full evaluation of the ipcc. The fol-
lowing specific questions will be addressed in Part ii:

4 What specific types of uncertainty are associated with the simulation-
based attribution of climate change to human influences?

5 Have these uncertainties been appropriately assessed and communicated
in the Working Group i contribution to the Third Assessment Report of
the ipcc (2001)?

As will become clear, the issue of climate-simulation uncertainty played a
prominent role in the production of the latest ipcc assessment report of
2001.

1.2 Defining computer simulation and positioning it in science

Before I turn to explaining the philosophical approach of this study, I will in-
troduce a definition of ‘computer simulation’ and briefly discuss historical,
sociological and philosophical work on the question of the role of computer
simulation in science.

The term ‘ computer simulation’ does not seem to have a sharply defined
meaning in scientific practice. Furthermore, analysts of scientific practice do
not stick to one definition. ‘Computer simulation’ is often used interchange-
ably with ‘numerical experiment’ (e.g., Naylor 1966; Galison 1996; Dowling
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1999; Winsberg 2003). Sometimes, however, the word ‘experiment’ is omit-
ted and broader definitions are given, such as: ‘any computer-implemented
method for exploring the properties of mathematical models where analytic
methods are unavailable’ (e.g., Humphreys 1991: 501). Also, narrower defin-
itions have been introduced, which do not simply equate simulations with
numerical experiments, but restrict the term to a subclass of numerical ex-
periments, usually those that also satisfy the following characterisation:

a simulation imitates one process by another process (Hartmann 1996:
83).9

I will follow this definition with two caveats.
First, one of the common parlance associations with the verb ‘imitate’,

namely that imitation is not something virtuous, is not implied. By being
linked to ‘imitation’, the term ‘simulation’ can indeed easily share the nega-
tive connotations of ‘imitation’. For example, Nancy Cartwright, on the basis
of an entry in the Oxford English Dictionary, defines a ‘simulacrum’ (an old-
fashioned word for ‘simulating thing’) as

something having merely the form or appearance of a certain thing, with-
out possessing its substance or proper qualities (Cartwright 1983: 152-153;
emphasis added).

Of course, in scientific simulation one has to be aware of the fact that the imi-
tation may be ‘fooling’ the researcher. Many are aware of this fact, as can be
witnessed from the controversies about the reliability of computer simula-
tion. Still, it must be kept in mind that the word ‘simulation’ also became
used as a positive term in science after World War ii (Keller 2003: 198-199).

Second, it is not implied that both processes are isomorphic. The imita-
tion relation only entails that the outcomes of a simulation process mimic
relevant features of a real-world process.10 A simulation is a representation of a
real-world process (Morgan 2003: 229).11

The computer simulations considered in this study all involve a mathe-
matical model that is implemented on a computer and imitates a process in
nature. It is assumed that phenomena in the real world are under study and
that the simulation consists of a numerical process that aims at imitating
these realised or potential (e.g., counterfactual or future) phenomena.12 The
mathematical model together with its conceptual interpretation constitute a
theoretical model.13 A computer-simulation model can thus be regarded as a
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theoretical model materialised in a computer. The theoretical model con-
sists of numerical mathematical equations and logical operations, on the
one hand, and the conceptual interpretation of the mathematics, on the
other.

Now that we have clarified some definitions, let us take a look at the his-
tory of computer simulation. This history is obviously directly tied to the his-
tory of the computer, and both are strongly coupled to military history. For in-
stance, the successful test of the first hydrogen bomb in 1952 – which would
have been impossible to construct without the use of computer simulation
(see Galison 1996) – did give much credibility to the new scientific practice of
computer simulation within the physics community. Moreover, the develop-
ment of Numerical Weather Prediction serves as a unique example of a mili-
tary-funded co-ordinated effort leading to a significant scientific advance,
with direct civilian benefits (Harper 2003).

Since World War ii, simulation approaches in science have emerged and
expanded – not in isolation, but often in strong contact with experimental and
observational fields in the natural sciences, and aided by developments in
mathematics and computer science. Scientists use tools to gain knowledge of
the world. The computer is one of these tools. Indeed, the introduction of the
computer has had a significant influence on the development of science in
the 20th century.14 Actually, in scientific practice, computers are deployed for
many different functions. For instance, they are used to control experiments,
to store and visualise data, to write and typeset scientific texts, to communi-
cate with other scientists through e-mail and the world-wide web, as well as to
perform ‘simulations’.

In the short history of scientific simulation the list of problems that have
been addressed using simulation has undergone significant expansion. Eve-
lyn Fox Keller has suggested three stages in this history (Keller 2003: 202):

1 the use of the computer to extract solutions from prescribed but math-
ematically intractable sets of equations by means of either conven-
tional or novel methods of numerical analysis;

2 the use of the computer to follow the dynamics of systems of idealized
particles ... in order to identify the salient features required for physic-
ally realistic approximations (or models);

3 the construction of models ... of phenomena for which no general the-
ory exists and for which only rudimentary indications of the under-
lying dynamics of interaction are available.
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Keller also offers her historical hypothesis as a typology of simulation. The
three types of simulation practice can indeed all be discerned in present-day
science.

Some examples may serve to illustrate the different types of simulation.
Galison (1996) and Keller (2003: 203-204) describe the development of the
technique of ‘Monte Carlo Simulation’ in the early days of simulation – coin-
ciding with the advent of the first electronic computers in the 1940s. This
mathematical technique was originally developed for numerically integrat-
ing nonlinear equations describing nuclear detonations. It belongs to the
first type of scientific simulation.15 Later on, in the 1950s, the time evolution
of dynamical systems became the subject of scientific simulation. Keller
gives molecular dynamics as an example of this second type of scientific sim-
ulation. Another example is numerical weather prediction. In the 1950s, sim-
ulations were developed to predict the weather a few days in advance. The
‘idealised particles’ in the early numerical weather prediction models were a
few hundred fluid particles – each hundreds of kilometers in horizontal size
– together making up the piece of atmosphere that was modelled (see, e.g.,
Nebeker 1995). Finally, the third type of simulation is closely tied by Keller to
cellular automata and artificial life. She observes that ‘[d]espite initial hopes
in the value of ca [cellular automata] modelling in promoting better theory
– in particular, a better understanding of biological principles – Artificial Life
studies have made little impression on practicing biologists’ (Keller 2003:
213). One must add here that Keller’s third type of simulation should not be
limited to the technique of cellular automata. In most scientific fields, rang-
ing from high-energy physics to ecology and biomedicine, simulations are
performed which are not rigorously built on theory (see, e.g., Dowling 1999).16

1.3 Philosophical approach

This study presents the philosophical results of my practical and intellectual
journey through several disciplines and institutions.17 Although the primary
intention is a contribution to the philosophy of science, the interdisciplinary
nature of the endeavour and of the present text will become apparent to the
reader.

My aim is to offer a philosophical account of scientific computer simula-
tion that is theoretical, normative and reflexive (Radder 1996: 169-187). Let
me first discuss the theoretical dimension of my approach. This is what makes
a philosophical study theoretical, in the words of Hans Radder (1996: 170):
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Theoretical philosophy of science and technology, as I see it, endeavors to
expose and examine structural features that explain or make sense of
nonlocal patterns in the practices, processes and products of science and
technology.

Thus, the conceptualisation of scientific simulation practice that I will pres-
ent in Chapter 2 is not meant to be a ‘straightforward description of empirical
patterns’ (Radder 1996: 170), but rather a characterisation of some structural
features of simulation that facilitate the derivation of epistemologically dis-
tinct types of uncertainty. I make use of my own experience in scientific sim-
ulation, as well as of social studies of scientific simulation practice, to inform
the philosophical debate. I do not take a strong stand in several philosophical
debates (e.g., realism versus instrumentalism; models versus theories). For
the purpose of what I set out to do, it suffices to identify those general de-
bates. I consider these debates as partly embodied in scientific practice. Sci-
entists hold philosophical positions and these influence their epistemic val-
ues. Thus, I do provide entries into these debates, for they are relevant to how
the uncertainties of simulation results are assessed in practice.

The structural features of scientific simulation practice that are pivotal for
my study are the methodological rules that scientists aim at or claim to follow
in developing and evaluating simulations, on the one hand, and the epistemic
value commitments of these scientists, on the other hand. Following Laudan
(1984), I assume that there is a fundamental plurality of factual claims, meth-
odologies and epistemic values in scientific practice. Thus dissensus in scien-
tific practice may reside at three levels:

• factual level (factual claims);
• methodological level (methods of development and evaluation);
• axiological level (aims and goals of scientific practice).

The elements of scientific practice corresponding to these three levels – that
is, facts, methods and aims – form a ‘triadic network of justification’ (Laudan
1984: 63). This means that changes in one of the three levels can be justified
by making reference to any of the other two levels. For establishing the reli-
ability of a theory, reference can be made, for instance, to the methodological
level (claims are then submitted to methodological ‘tests’). If there is no con-
sensus on which tests should be applied, this methodological disagreement
may subsequently be related to different opinions about the aims and goals of
simulation practice.18 For the study of any given process by means of simula-
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tion, a multitude of simulation models can legitimately be used, even though
the extent to which plurality is realised will vary depending on the context. It
may be perfectly rational for simulationists to use different models, provided
that they are willing to submit their models to each others’ critical scrutiny.
The model of rationality assumed here is that of Harold Brown (1988:
183-196) which he contrasts with a ‘classical model of rationality’ based on a
notion of universally applicable rules.19 In discussions where scientists criti-
cally assess each others’ claims and models, they may – but need not – arrive
at explicit consensus. For scientists to be able to rationally disagree, however,
they need to share a common practice, which features elements of explicit
and implicit consensus (Brown 1988: 209-210; Petersen 1995).

The notion of ‘judgement’ is central to Brown’s model of rationality, and
this entails ‘that our ability to act as rational agents is limited by our expertise’
(Brown 1988: 185). The capacity of making ‘good’ judgements is formed by
scientific training. The writings of Michael Polanyi provide support for
Brown’s focus on judgement. Science is an art ‘which cannot be specified in
detail [and] cannot be transmitted by prescription, since no prescription for it
exists; [i]t can be passed on only by example from master to apprentice’
(Polanyi 1962: 53). Thus the rationality of scientists is bound to the different
communities of scientists,20 and depends on their skills.21 As Polanyi (1962:
60) put it:

It is by his assimilation of the framework of science that the scientist
makes sense of experience. This making sense of experience is a skilful
act which impresses the personal participation of the scientist on the
resultant knowledge.

Belonging to a scientific practice is a ‘form of life’. Consequently, no con-
scious rational decisions need to be made by a scientist to deal with many of
the elements of his or her scientific practice. And in rational discussions
about scientific claims, a large part of the body of knowledge on which these
claims are built remain hidden from view.

Having briefly introduced some of my philosophical commitments with
regard to the epistemological dimension of scientific practice, I will now turn
to the social and political dimensions. Of course, besides epistemic values and
aims, scientific practice also features non-epistemic values and aims. The lat-
ter may interact with the epistemic values. For instance, if a scientist is asked
to produce a model that is to be used in a civil engineering project, s/he may
be mainly interested in a model that ‘works’ and produces accurate results but
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need not contain a realistic description of the underlying processes. The same
scientist may prefer to use a more realistic model for more fundamental scien-
tific research. For this study into the role of simulation in science and policy, it
can thus be expected that the context for which a model is made influences the
epistemic values and hence the methodologies employed by the scientists
who develop and evaluate scientific simulations. However, in the study of sci-
entific practice it is not easy to distinguish between epistemic and non-
epistemic aspects. As Joseph Rouse writes,

we cannot readily separate the epistemological and political dimensions of
the sciences: the very practices that account for the growth of scientific
knowledge must also be understood in political terms as power relations
that traverse the sciences themselves and that have a powerful impact on
our other practices and institutions and ultimately upon our understand-
ing of ourselves (Rouse 1987: xi).

It is important to reflect on the political dimensions of scientific simulation
practice, especially when we look at simulation results that are used in policy
making.

This leads us naturally into a discussion of the normative dimension of
this study. The task of philosophical studies of science is generally taken to be

to formulate criteria that make it possible to analyze, assess, and possibly
criticize scientific methods and scientific knowledge from a point of view
that is either outside science or at least more comprehensive than science
(Radder 1996: 175).

Such criteria should make it possible to determine what is ‘good’ or ‘justified’
science. In the history of the philosophy of science, the proposed criteria – as
well as their purpose – have frequently changed. In Chapter 3, I will develop
an argument for a methodological and social interpretation of the notion of
‘reliability’ of simulation, which should enable scientists and others to assess
the reliability of claims derived from simulation. My normative concerns
have a wider scope than science alone, as can be seen in the treatment of my
main research questions 3 and 5 (see section 1.1). Answering these questions
demands the formulation of criteria for ‘appropriately’ assessing and com-
municating uncertainties in science-for-policy.

Finally, the reflexive dimension of my philosophical approach relates to
‘the fact that the philosophical accounts of the practice of technoscience are
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themselves part of that very practice’ (Radder 1996: 185). Since the second
part of this book highlights uncertainties about whether humans cause cli-
mate change, my study can be used by climate ‘sceptics’ as backing for their
argument that we should not continue to implement climate policies, since,
so they claim, the science is ‘too uncertain’. However, at the same time, it can
be used to argue that since there is some simulation-based evidence of hu-
man-caused climate change, we should be precautious and make sure that
we avoid ‘too much climate change’, even though uncertainty remains. With-
out disclosing my own political preference, I hope that this book may contrib-
ute to a more sophisticated public discussion of simulation uncertainties sur-
rounding climate change. Currently, we have climate sceptics magnifying
uncertainties and climate activists downplaying these.

To conclude this brief exposition of my philosophical approach, let me
also be self-reflexive: I have been doing scientific simulation within a special-
ised field for four years; I have participated as a Dutch government delegate
in meetings of the Intergovernmental Panel on Climate Change;22 I have
been closely involved in the development of a ‘guidance’ for assessing and
communicating uncertainty in science-for-policy; and I am still responsible
for the implementation of that guidance within my agency, mnp. I am thus
situated in the midst of the practices that I seek to analyse. This situatedness
has advantages and disadvantages. The main advantage is an intimate know-
ledge of these different practices. The main disadvantage is that my own per-
spective may remain too close to these practices at the risk of having missed
important issues with respect to the role of simulation in science and policy.

1.4 Brief outline of this study

Part i addresses the scientific practice of simulation, the uncertainties in-
volved in simulation and the role of simulation and its uncertainties in policy
advice. Chapter 2 analyses the practice of scientific simulation as a ‘labora-
tory’ and examines the four main elements of this practice along with some
philosophical issues that touch upon these elements. Furthermore, the plu-
rality of methodologies and values in simulation practice is discussed.
Finally, the practice of simulation is compared with the practice of experi-
mentation. Chapter 3 presents a typology of uncertainty in simulation and
discusses the various dimensions of this typology. Subsequently, the uncer-
tainties in simulation practice are compared with uncertainties in experi-
mentation practice. Chapter 4 addresses the use of scientific simulation in
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policy making. After treating general issues related to the science–policy in-
terface and the role of simulation, including the present condition of ‘post-
normal science’, a new methodology for assessing and communicating un-
certainty in science-for-policy, which was developed at mnp and Utrecht
University with the author’s close involvement, is outlined.

Climate change constitutes the main example of a public policy issue in
which the use of computer simulation is hotly contested. Part ii delves more
deeply into this case. Chapter 5 describes the practice of climate simulation,
while Chapter 6 discusses the uncertainties in climate simulation. Chapter 7
deals with the assessment of climate-simulation uncertainty for policy ad-
vice, with particular attention paid to the Intergovernmental Panel on Cli-
mate Change (ipcc), a scientific assessment body of the United Nations that
provides advice to policy makers on climate-change issues.

Chapter 8 presents the conclusions of this study by answering the
research questions posed in this introduction.
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part i





Chapter 2

The practice of scientific simulation

2.1 Introduction

Simulationists, in their daily practice, draw upon a vast array of heteroge-
neous resources, such as mathematical models and computers (hardware
and software); input data needed for running the models; results of experi-
ments or observations (for preparing the input data and for comparison with
the output); general theories (for basing models on and for comparison with
the output); skills and methodologies for developing and evaluating simula-
tions; social relations within all kinds of institutions, be it simulation labora-
tories,1 universities, government and business research institutes, scientific
disciplines, professional societies, peer review systems, etc. or society at
large. The list of elements of scientific simulation practice can be drawn up,
extended and refined in an unlimited number of ways.2

For the purpose of analysing epistemological and methodological aspects
of simulation, I will argue that the activities of simulationists can be concep-
tually subdivided into four main types: (1) formulating the mathematical
model, (2) preparing the model inputs, (3) implementing and running the
model, and (4) processing the data and interpreting them.3 These four types
of activities refer to four epistemologically distinct elements in simulation
practice: (1) the conceptual and mathematical model; (2) model inputs; (3) the
technical model implementation; and (4) processed output data and their in-
terpretation. Clearly, not all resources and activities in scientific simulation
practice are captured by these categorisations. In as far as other resources and
activities impinge on the four main types of activities, they will be taken into
account in our description of simulation practice.

In the present chapter, first, the practice of scientific simulation will be
described as a ‘laboratory’ and the four main types of activity in this practice
will be introduced (2.2). Second, the corresponding elements will be studied
more closely, and several philosophical issues will be addressed, such as the
relation between general theory and models; the proximity of simulation and
material experiments; the reproducibility of simulation; and the role of visu-



alisation in scientific understanding (2.3). Subsequently, the plurality of
methodologies for developing and evaluating simulations (2.4) and the plu-
rality of values (2.5) in scientific simulation practice will be examined.
Finally, the similarities and differences between simulation and experimen-
tation practice will be addressed (2.6).

2.2 The simulation laboratory

For the purpose of describing the structure of simulation practice, it is help-
ful to consider simulation science to be a ‘laboratory’ science and use some of
the relevant insights from philosophical and social studies of laboratory
work. Following Ian Hacking (1992: 33-34), scientific ‘laboratories’ are here
defined as sites, typically within universities and government or business
institutions, where scientific knowledge is produced and which satisfy the
following two conditions:

L1 the claims made by the scientists working in the laboratory refer pri-
marily to phenomena ‘created’ there (as opposed to observational prac-
tice);

L2 the laboratory practice has become stabilised and institutionalised (as
opposed to scientific practices that have not yet ‘come of age’).

The notion of ‘laboratory’ includes the objects, the ideas, the procedures, the
people, the buildings, the institutions, etc. involved in doing scientific work. I
propose to generalise this notion of the ‘laboratory’ from experimental prac-
tice (for which Hacking reserved the term) to simulation practice. I will argue
that phenomena are ‘created’, albeit digitally, within the simulation labora-
tory (satisfying L1) and that the levels of stabilisation and institutionalisation
of simulation practices are sufficiently high for satisfying L2 in many in-
stances of scientific simulation.4

With respect to Hacking’s condition L1, there is obviously a fundamental
difference between experimental and simulation practice: in simulation prac-
tice we do not physically bring nature into the laboratory and thus we do not
have to control nature through material intervention and create a ‘closed’ sys-
tem (see Radder 1988: 63-69) that is insensitive to influences external to the
phenomenon of interest. Instead, in scientific simulation we bring a mathe-
matical representation of nature into the laboratory and control of external in-
fluences is not really an important issue; such control – that is, creating a
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closed system – is obtained by stipulation. Still, there is an important similar-
ity between experimental and simulation practice. Both practices involve ex-
trapolations to the outside world. Simulationists aim to first bring the outside
world into the laboratory by way of mathematical representation and subse-
quently extrapolate the results to the world outside.5 In the experimental
laboratory, extrapolation to the outside world takes place as well when ex-
perimentalist use apparatus as models of systems in the world. The difference
between the experimental laboratory and the simulation laboratory is that in
experiments the processes studied inside the laboratory are supposed to be of
the same material kind as the processes occurring outside (see, e.g., Harré
2003: 26-32, who distinguishes between two classes of experimental models:
‘domesticated models’ of natural systems and ‘Bohrian apparatus-world com-
plexes’).6 It is this similarity of having a model, either material or theoretical,
of the outside world, as primary target of study and therewith ‘creating’ phe-
nomena inside the scientific site that leads to the proposition that simulation
practice satisfies condition L1 for being a laboratory practice.

Hacking’s condition L2 refers to the stabilisation and institutionalisation
of a laboratory practice. The stabilisation of simulation-laboratory practice
primarily depends on whether coherence can be created and maintained
among the vast array of heterogeneous resources (mathematical models,
computers, input data, results of experiments and observations, general the-
ories, skills, methodologies, social relations, etc.). An important sign of both
stabilisation and institutionalisation is that many simulations are done re-
motely, that is, on a computer that is not on the simulationist’s desktop. In
those cases, simulationists often do not even know what the remote com-
puter (e.g., a supercomputer) looks like, let alone how the hardware works;
simulationists can use the remote computer if they can adequately act within
the software environment of the remote computer. The software must be
highly standardised for many simulationist to be able to use it. If we consider
such a remote computer as part of the simulation laboratory, a picture arises
of globally connected networks of simulation laboratories, collaborating in an
institutionalised setting. For example, different simulation laboratories may
use the same computer: one supercomputer may be used simultaneously for
running simulations related to atmospheric flows, molecular dynamics, par-
ticle physics, pharmaceutics, ecology, etc. without the simulation practices
showing more overlap than a sharing of the same hardware and system soft-
ware (including programming languages) and several simulation techniques
that have become highly credible as ‘reliable techniques or reasonable as-
sumptions’ across fields (Winsberg 2003: 122). The simulation practices dif-
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fer in mathematical models, input data, results of experiments or observa-
tions, general theories, social relations, etc. Still, even though their practices
are different, the present study argues that an important set of skills and
methodologies to develop and evaluate simulations plays some role in all sci-
entific simulation practices.7

That simulation practices have become institutionalised, separately – but
usually not cut off – from theoretical, experimental or observational practices,
can also be concluded from the presence of highly rated journals with ‘compu-
tational’ in their titles8 and the fact that some research groups use the phrase
‘simulation laboratory’ in their names.9 Most simulationists, however, con-
sider themselves in the first place physicists, chemists, biologists, atmo-
spheric scientists, geologists, earth system scientists, etc. And they see their
simulation practices, with identifiable cultures that are distinct from the cul-
tures of theoretical, experimental and observational practices, as inextricably
linked with these other practices. Thus, one can say that there are divisions of
labour within science between different types of scientific practices that are
bound together by subject matter (Galison 1996; Galison 1997: ch. 8).

Divisions of labour can also be observed within simulation practices, es-
pecially in ‘big science’ practices (e.g., climate modelling). Within large simu-
lation research groups, there are people who have specialised in hardware
and system software, others who write scientific programs according to given
specifications, and again others who are involved in defining and distributing
‘frozen’ versions of the programs. Furthermore, we have scientists who spe-
cify what the programs should do and who use the programs to learn from
them. Finally, there are numerical mathematicians who have specialised in
crafting numerical algorithms which may be used as standardised software
packages linked to the programs. This division of labour will not be found in
smaller laboratories; there the roles usually overlap in individuals. Thus, at
one extreme, there exist scientists who themselves build special-purpose
computers, write their own system software, master all the necessary numer-
ical mathematics, write the scientific programs, learn from these programs
and publish articles on the scientific subject studied. Such scientists are rare,
however. At the other extreme, all these tasks are performed by different
groups of persons. This is also a rare situation. The most common situation
is that some of the roles overlap in individuals, with individuals having differ-
ent levels of expertise with respect to these roles. Some simulationists know a
great deal about computer technology and system software and others are
more focused on the scientific context (they may even not want to call them-
selves ‘simulationist’). Within the latter group, variation in the scientists’
skills in numerical mathematics and scientific programming exists.



Table 2.1 The four activities and elements of simulation and their correspondence
to Hacking’s categories.

Activities Elements Categories

formulating the
mathematical model

conceptual and
mathematical model
(structure and parameters)

‘ideas’

preparing the
model inputs

model inputs (input data,
input scenarios)

input ‘marks’

implementing and
running the model

technical model
implementation (software
and hardware)

‘things’

processing the data
and interpreting them

processed output data
and their interpretation

output ‘marks’

It is thus possible to generalise Hacking’s notion of the laboratory to scien-
tific simulation in the sense that conditions L1 and L2 are fulfilled in simula-
tion practice. We can now take the analogy with experimental laboratory prac-
tice one step further and investigate whether there are analogons in simula-
tion-laboratory practice of the elements that Hacking distinguishes in
experimental laboratory practices. Hacking (1992) identifies three main cat-
egories of elements of laboratory practice: ‘ideas’, ‘things’, and ‘marks’. I pro-
pose that in simulation, the main ‘ideas’ simulationists work with are con-
ceptual and mathematical models; the main ‘things’ are the implementation
of these models on computers (the ‘technical model implementations’); and
the main ‘marks’ are input data (often derived from other practices, either
from experiments, observations or simulation) for and output data from the
technical model.10 To these four elements correspond four main types of ac-
tivities: (1) formulating the mathematical model, (2) preparing the model in-
puts, (3) implementing and running the model, and (4) processing the data
and interpreting them. Evaluative and reconstructive activities concerning
the mathematical model, the model inputs, the model implementation, and
processing and interpretation of the data are all taken to belong to one of the
four main types of activities; they may lead to revisions.11 The activities in sim-
ulation, the corresponding elements and Hacking’s categories are shown in
table 2.1. In the next section, I will discuss consecutively each of the four
elements of scientific simulation practice.
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2.3 Elements of simulation-laboratory practice

2.3.1 Conceptual and mathematical model: general theory, models and
parameterisations

The central ‘idea’ element of a simulation is the mathematical model. The
conceptual model associated with the mathematical model offers its inter-
pretation and determines what is considered inside and outside the boundar-
ies of the system under study. Other ‘idea’ elements distinguished by Hack-
ing that play a role in simulation practice are the questions that drive the
development, evaluation and application of simulation models; the hypoth-
eses that simulationists are testing; and general theory. But how do these dif-
ferent idea elements relate to each other? Here I will focus on the relation
between general theories and models.

Models can be based on general theories, but models are seldom derived
from such theories alone. Besides general theory, the model construction
process involves the combination of a heterogenous set of elements such as
fundamental principles, idealisations, approximations, mathematical con-
cepts and techniques, metaphors, analogies, stylised facts, and empirical data
(Humphreys 1995: 502; Boumans 1999: 94). Individual simulationists have
to make many choices in model construction, and often have considerable
lee-way in making these choices. In the mathematical formulation of the
model, a distinction can be made between the ‘model structure’ (the mathe-
matical form of the equations) and the ‘model parameters’ (the constants in
the mathematical equations). According to Paul Humphreys (1995: 509),
theories can typically legitimate model structure, but not model parameters.
The latter then need to be determined from empirical data. This often hap-
pens by trial and error and comparison of model outputs with real-world
data.12

Using Keller’s typology of simulation (see Chapter 1), we can distinguish
three ways in which the conceptual and mathematical models can relate to
general theory: (i) the model only contains mathematical approximations to
general theory; (ii) the model also contains conceptual approximations to gen-
eral theory; and (iii) the model does not relate to any general theory. An exam-
ple of simulation that belongs in the first category is the technique of Direct
Numerical Simulation of turbulence that is widely used in fluid dynamics.
Fluid dynamics is an archetypical domain of science where analytical mathe-
matical methods fall short. The fundamental mathematical laws (general the-
ory) that are used to describe the dynamics of fluid flows, the Navier–Stokes
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equations, are intractable for turbulent flows. Given enough computational
resources and a not-too-high intensity of the turbulent flow, all relevant de-
tails of turbulent laboratory flows can nowadays be modelled by Direct Nu-
merical Simulation. Only approximations of a mathematical nature are made
in this kind of simulation. The second type of simulation is the most common
type in the physical sciences. In fluid dynamics, for instance, the Navier–
Stokes equations are also applied in other types of fluid-dynamical simula-
tion models, for instance, atmospheric models. In those models, conceptual
approximations to the Navier–Stokes equations also need to be made due to
the high turbulence intensity. As was argued by Adam Morton, in order to re-
tain a satisfactory theoretical quality, simulationists are typically required

to give a heuristic physical argument that the simplification or idealiza-
tion should not affect some category of consequences for the states of the
system too drastically (Morton 1993: 661-662).

To give an example, a typical approximation is the neglect of processes
occurring at scales smaller than a certain limit: this is argued for on physical
grounds.13 An example of the third category is the use of cellular automata in
biological research described by Keller (2003).

Let us here elaborate briefly on the epistemological difference between
general theories and models. Weinert (1999: 307) argues that ‘the constraint
structure imposed on models is not the same as the constraint structure
which applies to theories’. The distinction roughly boils down to the types of
constraints that have to be satisfied by general theories as compared with
models. General theories have justificatory functions. For instance, they are
means for deriving empirical laws. For models, empirical adequacy is more
important. Models do not necessarily depend on the existence of an underly-
ing general theory. Furthermore, the principles used in models may be ad
hoc (that is, having no independent theoretical or empirical basis); and mod-
els may be embedded in false general theories while retaining a relative inde-
pendence of the fate of these theories (Weinert 1999: 320-321). Models may
evolve and acquire the status of general theory, or they may give rise to and be
replaced by general theory.14

However, the boundary between models and general theories is not as
sharp as Weinert suggests. The distinction must be considered to be a rela-
tive one. This can once again be illustrated by means of the Navier–Stokes
equations of fluid dynamics. These equations, considered as a general theory
in fluid dynamics, can themselves also be considered as a model from the

The practice of scientific simulation 23



viewpoint of one of our most fundamental physical theories, statistical
mechanics (see Cartwright 1983: 63). The Navier–Stokes equations can only
describe fluid flow approximately and at very small scales or under extreme
conditions. Real fluids made out of mixtures of discrete molecules and other
material, such as suspended particles and dissolved gases, will produce dif-
ferent results from the continuous and homogeneous fluids modelled by the
Navier–Stokes equations. In some of those conditions, statistical mechanics
may be a more appropriate approach. Still, the Navier–Stokes equations have a
wide range of applicability and can be derived from theoretical constraints
such as conservation of mass, momentum, and energy, while making only a
small number of assumptions. In geophysical fluid dynamics the Navier–
Stokes equations are themselves considered a general theory that has to be
approximated by models in order to perform calculations. A theory can thus
be considered to be a general theory in one context and to be a model in
another, from the perspective of more fundamental theories and depending
on the domain of application.15 Although in each of those contexts, a distinc-
tion between general theories and models can be maintained, the interpret-
ation of the separate constraints for theories and models identified by
Weinert will differ from one context to another.

I will now turn to the issue of ‘parameterisation’ in modelling as an illus-
tration of the fact that the mathematical models used in simulation are most
often not fully derived from general theory. The examples here come from
atmospheric modelling. Due to the sheer size and complexity of the atmos-
phere, the direct application of general theory such as the Navier–Stokes
equations of fluid dynamics to practical atmospheric problems is unfeasible,
even if we use the fastest computers that exist. Forecast models16 of the at-
mosphere therefore contain a number of ‘parameterisations’ of processes
that cannot be directly simulated. A parameterisation is a mathematical
model that calculates the net effects of these ‘unresolved’ processes on the
processes that are directly calculated in the forecast model (the ‘resolved’ pro-
cesses). There are several ways to arrive at parameterisations. From case
study measurements of the unresolved processes, one can determine the
statistics that describe the net effect of these processes on the variables in the
forecast model. The statistical relationships obtained can be included in the
forecast model. Alternatively, deterministic models (also considered to be
‘parameterisations’ then) can be developed that simulate the statistics direct-
ly. These models can again be included in the forecast model.

I will give an illustration of how I derived a parameterisation – in the form
of a model that directly calculates statistics – for the influence of convective
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atmospheric boundary layer17 turbulence on the chemical reaction rates cal-
culated in regional or global chemistry–transport models, that is, large-scale
air pollution models. The horizontal grid size of these large-scale models is
typically a few hundred kilometers, while the scale of the turbulence pro-
cesses is a few hundreds meters at most. Thus the turbulence processes can-
not be resolved in the large-scale air pollution models. My solution was to
propose an ‘updraught–downdraught model’, or ‘mass-flux model’ (Petersen
et al. 1999), as a parameterisation that could be included – in the simplified
form of Petersen and Holtslag (2000) – in the large-scale models. The con-
ceptual model is shown in the diagram of figure 2.1. All the air that moves up
through turbulent processes within a grid cell of a large-scale model is con-
ceptually lumped together in one ‘updraught’ and vice versa the air that
moves down is lumped together in one ‘downdraught’. I will not enter into
the details of the processes and of the mathematical model. The only thing
that I want to point out here is that the model contains a parameter � that con-
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Figure 2.1 Two conceptions of turbulent mixing in the convective atmospheric

boundary layer shown together for a given volume of about 1 km in the vertical dimen-

sion and several kms in the horizontal dimension: (i) schematic view based on the

updraught–downdraught decomposition (the two plumes are separated by solid lines,

with all air that rises conceptually lumped together in one plume – shown in the mid-

dle here – and all other air sinking in the other plume – shown to the left and right of

the middle plume here; the full arrows in the plumes indicate the average flow) and

(ii) the presence of eddies at all scales (designated by some larger and smaller eddies

with open arrows). Also shown are the boundary conditions for a simple chemistry

case. Chemical species A is introduced at the surface and chemical species B is in-

jected at the top of the boundary layer. Source: Petersen (1999a: 10).



nects the effect of turbulence at smaller scales than the updraught and down-
draught to the effect that is explicitly modelled by the updraught–down-
draught separation.

Here we arrive at the source of the controversy about the soundness of
simulation mentioned in Chapter 1. In order to determine �, instead of using
observations (which are nearly impossible to perform), I used a three-dimen-
sional Large-Eddy Simulation (les) model that simulates the turbulence pro-
cesses in the convective atmospheric boundary layer.18 From simulations I
concluded that �=0.25, and I claimed that assuming this value would result
in an estimate of the net effect of sub-grid chemical reactions that was accu-
rate within a factor of two when averaged over the whole boundary layer in a
grid cell of a large-scale model.

The practice of parameterisation is widespread in scientific simulation
and typically involves model calibration (e.g. Janssen and Heuberger 1995).
For the types of simulation that are of central interest to this study, determin-
istic models in the geophysical sciences, the ideal of many practicing simu-
lationists is realism – that is, providing a realistic representation with their
parameterisations. This type of simulation corresponds with Keller’s second
type of simulation. In my case, the updraught and downdraught decomposi-
tion refers to processes that can be measured if enough effort is expended.
However, I used les as a substitute for measurements in order to be able to
study idealised cases under widely varying but controlled conditions that al-
lowed me to efficiently determine the scope of the parameterisation. The de-
velopment of simple models by comparing them with complex models that
give a detailed description of reality has been observed by Hans von Storch
(2001) to be a ubiquitous feature of environmental science.19

Parameterisations also occur in simulations belonging to Keller’s third
type of simulation. In this type of simulation, phenoma are simulated ‘for
which no general theory exists and for which only rudimentary indications of
the underlying dynamics of interaction are available’ (Keller 2003: 202). Fritz
Rohlich (1991: 512-514) gives the example of a model called ‘stochastic self-
propagating star formation’ that simulates the evolution of a spiral galaxy.20

This model contains various parameters that can be determined from obser-
vation, such as the rotational speed and the radius of the galaxy. But it also
has adjustable parameters such as the probability of star formation within a
given time period. As Rohrlich (1991: 514) puts it, the question is ‘whether
trial and error will yield a final appearance of the simulated galaxy that is close
enough to what is observed’. Visualisation techniques make it possible to
visually compare the model results with real data (see section 2.3.4).
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Thus, a varied picture arises of the role of general theory in simulation prac-
tice. At the one extreme, simulation models rely heavily on general theory. At
the other extreme, simulation models involve no general theory. Many simu-
lation models lie between these extremes. Parameterisations (which are
mathematical models within simulation models that represent the net effect
of unresolved processes on resolved processes) often contain adjustable
parameters whose setting is not based on theory.

2.3.2 Model inputs: proximity of simulation and material experimentation

Simulation models require input data that specify initial and boundary condi-
tions needed for the numerical integration of mathematical models. These
input data may come from other simulation models, from experiments and
observations, from ‘educated guesses’, or they may be idealisations.21

For many simulation models, experimental or observational work is in-
volved in the preparation of the input data. Numerical Weather Prediction
models, for example, require an extensive amount of input data from weather
stations, balloons and satellites in order to be able to accurately predict the
weather a few days ahead. The accuracy of the predictions is dependent on
the accuracy and completeness of the input data.22 Another example is the
production of historic global data sets of atmopheric flows, temperature,
cloud cover, etc. that are used to compare with climate model output. These
data sets are the result of an incorporation of surface, weather balloon and
satellite data into a 4-d data assimilation system23 that uses a numerical
weather prediction model to produce global uniformly gridded data (Edwards
1999: 451). Simulation practices can thus be intrinsically connected with ob-
servational practices. By feeding real-world data into simulation models,
these models can be used for measurement – and they can even be consid-
ered as part of the measurement apparatus (see, e.g., Norton and Suppe
2001; Morgan 2003). For instance, models are involved in satellite measure-
ments of particular quantities in the atmosphere, such as the vertical temper-
ature or ozone concentration profile (Norton and Suppe 2001). The satellites
can only measure radiation; atmospheric radiative transfer models are
needed to infer temperature and ozone concentrations.

Similar connections can be found in experimental practice. For example,
the u.s. Oak Ridge National Laboratory has proposed starting a Virtual
Human Project, which can use digitised anatomical images from the u.s. Na-
tional Library of Medicine’s Visible Human Project and can perform model
experiments on humans, e.g. testing the physiological and biochemical
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effects of particular drugs.24 Such a project would have a scale larger than
the Human Genome Project. A second, smaller-scale example is from bio-
mechanics: three-dimensional simulations have been developed that can be
used to measure the strength of specific bones based on input produced by ex-
perimental work in the laboratory (the bones are sliced and the slices are sub-
sequently scanned into the computer). A model based on a ‘conventionally ac-
cepted (tried and tested in the applied domain) mathematical version of the
laws of mechanics’ (Morgan 2003: 222) is used to simulate the breaking of the
bones. Morgan (2003: 224), who analysed this example of computer-aided
measurement, calls it ‘virtually an experiment’, because of the proximity of
the input data to the real material world. She considers the input data to be
‘semimaterial’ (Morgan 2003: 221-224) and distinguishes the simulation of
the breaking of a semimaterial bone from simulations in which a computer-
generated stylised bone is used (which she calls ‘virtual experiments’).25

Morgan argues that the simulated breaking of a semimaterial bone is
‘more like an experiment on a material object’ and the simulated breaking of
a stylised bone is ‘more like an experiment on a mathematical model’ (Mor-
gan 2003: 224). This formulation may give rise to a misunderstanding, pre-
sumably not intended by Morgan. Obviously, what Morgan calls ‘semi-
material objects’ also need to be mathematically represented as input data to
the model, just as is the case for the stylised bone. The difference that Morgan
wants to stress is that the verisimilitude of one set of input data is higher than
that of another set. Thus the only sense in which we can call ‘virtually experi-
ments’ closer to material experiments is that the mathematical input of the
simulation resembles more closely the material input of the material experi-
ment. It depends on the reliability of the model used to simulate the interven-
tion whether the results of simulations remain close to those of material ex-
periments.

The preparation of input data for simulation constitutes one important lo-
cus of interaction between the different practices of simulation and experi-
mentation. To what extent the use of such input data brings simulation closer
to a material experiment depends also on the mathematical model that is
used. Section 3.6.2. elaborates this question. Still, we can conclude that the
accuracy of a simulation depends partly on the accuracy of the input data.

2.3.3 Technical model implementation: the reproducibility of simulation

The main ‘thing’ element in simulation-laboratory practice is the ‘technical
model implementation’, which consists of all hardware and software in-
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volved in implementing and running the mathematical model. The ‘thing’
elements distinguished by Hacking – targets, sources of modification (of the
targets), detectors, tools, and data generators – are all identifiable within the
technical model implementation. Simulationists craft these elements as
their tools for studying the behaviour of the mathematical model, and since
they assume a representational relationship to the systems of interest in the
outside world, the technical model implementation is used as a tool to study
those systems.

The ‘targets’ in the simulation laboratory are the digital representations
of the systems of interest as computer programs. These computer programs
represent both the state of the simulated systems (through ‘main program
variables’ stored in the computer’s memory) and the dynamical behavior of
the systems (through ‘endogenous’ changes – that is, changes related to the
internal dynamics of the system – in the main program variables calculated
by program routines). For Numerical Weather Prediction models, for exam-
ple, the main program variables represent the state of the atmosphere (e.g.,
temperature, humidity, winds, etc.) and some of the program routines repre-
sent the fluid-dynamical changes in these variables. ‘Sources of modifica-
tion’, which are also implemented as program routines, allow for a direct
external influence on the main program variables. With respect to air pollu-
tion models, for example, one can think of the emission of pollutant gases,
which is implemented in the program as increases in pollutant-gas concen-
trations. Furthermore, the state of the system can be ‘measured’ by ‘detec-
tors’, which are program routines that have access to the main program vari-
ables – not in order to change these variables, but in order to store them or
perform calculations on them (such as calculating averages). Several other
tools can also be identified in simulation-laboratory practice. These range
from software components other than the simulation model implementation
(such as text editors, program compilers, or program debuggers) to techno-
logical aspects of computing (such as keyboards, mice, computer screens, or
printers). Finally, ‘data generators’ are routines that produce output (data)
which can be used for further processing (such as making plots of main pro-
gram variables).

The skills needed for dealing with the ‘thing’ elements in simulation have
changed over time. In the early days, more manual labour was involved in
writing programs and operating the computer than is necessary nowadays
for solving comparable mathematical problems. The differences are related
to changes in hardware and in software. For instance, the first computers
continually broke down and scientists co-operated with technicians in per-
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forming repairs. Furthermore, the ease of use of today’s user interfaces was
lacking: the earliest computers did not have a keyboard, screen, or mouse. As
a consequence, the interactivity of scientific computing – the ease and speed
with which one can make changes in programs or input data – was quite low
in the early days. The changes in software are mainly related to the develop-
ment of programming languages. Originally, programmers had to write their
programs directly in ‘machine code’, a list of instructions which could be dir-
ectly executed by the hardware (e.g., ‘store the value X in register Y’, or ‘add
register Y and register Z and put the outcome in register Y’). In the course of
time, higher-level programming languages evolved (such as fortran or c),
which allowed the programmer to specify the operations in much less detail,
at a higher level of abstraction.26 It became possible, for instance, to define
‘procedures’ (or ‘subroutines’) within computer programs, a part of the code
which could be reused very efficiently. There is still a continuing evolution
of programming languages, whereby even higher levels of abstraction are
reached, typically facilitating Keller’s third type of simulation.27 Present-day
programming languages allow programs to be written that are too difficult to
be written directly in machine code – not because this is theoretically impos-
sible (ultimately, all software is run as machine code), but because the capaci-
ties of humans to oversee and comprehend programs at the machine-code
level are limited (that is, the level of detail is too high). As far as the handling
of the computer equipment is concerned, simulationists have to know how to
handle input and output files and system software. They must be able to han-
dle ‘compilers’ (software which translates high-level programming language
into machine code executable by the computer) and debuggers (software that
helps the programmer in tracing ‘mistakes’ made in writing or typing the
computer program. Such mistakes in the computer code are called ‘bugs’).28

There are also special skills involved in dealing with the mathematical level of
the simulation model. The equations of the model, which can often be writ-
ten down on paper in an analytic form, have to be implemented in a numeri-
cal form. This involves discretisation and approximation.

In ‘big science’ simulations – for instance, in ecological or climate sci-
ence – the computer simulation programs can become very large, containing
thousands of programming lines. Many of the large scientific computer pro-
grams in use nowadays have been built by groups of scientists. Scientists who
are new to these programs have to put much effort in understanding what is
happening where in the program and why the program was in a particular
way. This is why it is a sign of good modelling practice if a comprehensive
explanatory commentary is included in the text of the computer program
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(this inclusion is facilitated by high-level programming languages). If such
large programs also use large amounts of input data, it can become a tedious
task to keep track of what the input to the model consists of. This is also a case
where documentation is essential. However, in practice, not all scientific
simulations are well-documented. Master–apprentice relationships are in-
dispensable for transferring the skills needed to run or further develop many
scientific simulations. Furthermore, scientists keep making changes in the
programs and their input – so they have to keep track of these changes too, as
well as of the impacts of these changes on the model output.

Part of the stability of scientific simulation practice depends on the
reproducibility of simulation at the level of the technical model implementa-
tion.29 Peter Galison (1996: 140-141) concludes from the history of scientific
simulation that its reproducibility was problematic in the early days of scien-
tific simulation. Simulations were hardly ‘transportable’ to other simu-
lationists, which was considered a ‘bottleneck’ to ‘delocalize simulations and
computer-analysis programs’ (Galison 1996: 140). Galison records that three
solutions to this situation were proposed: (1) to openly publish computer pro-
grams, (2) to make programs ‘portable’ from simulationist to simulationist
by using universal programming languages and physically distributing data
tapes, and (3) to consider ‘modular’ programming and the use of standard-
ised subroutines, an important goal for scientific programmers. All three
solutions have been partially realised in the second half of the 20th century
(Galison 1996: 141), giving current simulation practice a definite ‘non-
locality’, though not universality.

The reproducibility of simulation is greatly facilitated by standardisation
in both hardware and software. The level of standardisation in computer
hardware is very high nowadays. Computer technologies can usually be eas-
ily replaced when broken down or can be set up elsewhere – provided that lo-
cally a minimal level of skills and the necessary hardware and system soft-
ware are available (e.g., spare parts or access to a centralised file system
through a network). Even though some computing technology, for instance,
the technology used in supercomputers, may require carefully maintained
ambient conditions, this is typically not the business of simulationists. They
use the computer as it is and are not much interested in the construction of
new, experimental computers.30 Also a part of the software used in simula-
tion is highly standardised. Work has been done to increase the level of stand-
ardisation, e.g., the syntaxes of programming languages have been defined
through international standard-setting agreements. We currently have a
small number of standard operating systems (e.g., Windows, Mac os, Linux,
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unix), programming languages (e.g., fortran, c), general simulation-
cum-visualisation software packages (e.g., matlab, idl).

However, the computer programs themselves that are written by the
simulationists differ widely in their level of standardisation (e.g., modular
programming style, use of standard numerical mathematical routines).31 Pro-
gramming language compilers may be used which offer additional features
that deviate from the standard. ‘Good’ simulationists are aware of the advan-
tages of sticking to the standard and will not make use of such features: this
means that it may be expected – although it cannot be guaranteed – that a cer-
tain program which works on one type of computer will also run on another
type, provided that a similar compiler is also available for the other type of
computer. However, in practice such portability is not realised for most sim-
ulation programs, since many simulationists do not stick to the standard.
Furthermore, virtually all simulation programs contain local elements, often
understandable (logically, mathematically and conceptually) only to the
simulationists who wrote the programs and to their apprentices. All this
poses limits to the reproducibility of simulation and introduces require-
ments for simulationists to develop specific skills in order to work within a
particular scientific simulation practice, in addition to being able to work
with computers in general.

Let us look at the issue of the reproducibility of simulation in somewhat
more detail. Hans Radder distinghuishes three types of reproducibility of
experiment. Here, I generalise his notion of reproducibility to the reprodu-
cibility of simulation. The types can be specified based on the different roles
played by, on the one hand, the technical model implementation (part of the
‘material realisation’, in Radder’s terms, which relates to the manipulation of
‘things’) and, on the other hand, the conceptual and mathematical model and
the results from the simulation (together called ‘theoretical interpretation’ by
Radder).32 The three types of reproducibility of simulation that I distinguish
are: (a) reproducibility of model runs with the same technical model imple-
mentation; (b) reproducibility of the simulation under the same theoretical
interpretation (conceptual and mathematical model and result), possibly
with another technical model implementation; and (c) reproducibility of the
result with a different simulation (different conceptual, mathematical and
technical models) or with an experiment, also called ‘replicability’. In this sec-
tion, the first two types of reproducibility are discussed. The norm of
replicability is addressed in sections 2.4 and 3.6.3.

The material realisation of a simulation refers to everything that happens
at the level of ‘things’, that is, the model implementation on the computer,
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and the way simulationists handle these things.33 The processes within digital
computers are supposed to proceed in an orderly rule-based manner, and the
‘natural variability’ within them can therefore be said to be negligible by de-
sign. Thus when programmers work with computers, they normally do not
have to deal with ‘noise’ in a computer’s memory or its processors. Of course,
designers sometimes make errors: hardware and software designs may be
flawed and things can therefore go wrong during the runtime of a simula-
tion. A famous example of a hardware design error is provided by Intel’s
Pentium chip (Markoff 1994). In June 1994, Intel received information from
scientists using the Pentium chip for scientific calculations that for certain
calculations the chip was exact to only 5 digits, not 16, as it was supposed
– and specified – to be. Intel found out that the error occurred because of an
omission in the translation of a formula into computer hardware. It was cor-
rected later that year by adding several dozen transistors to the chip. Aside
from the possibility of being flawed in design, hardware may also occasion-
ally break down. Although there is no absolute guarantee that a program will
always run without failure, one may typically assume that repeating a run of
the same program on the same computer with the same software environ-
ment gives exactly the same results.34 Once a model ‘works’, it will keep work-
ing. Still, we should not conclude that the norm of the reproducibility of the
material realisation of a simulation (being able to perform the same runs
with the same model) is always upheld in practice. The reason is that the
‘same computer’ and the ‘same software environment’ may not be available
at a later date.

The main function of the second type of reproducibility, reproducibility of
the simulation under the same theoretical interpretation (conceptual and
mathematical model and result) with a possibly different technical model
implementation, is to be able to distribute the models to different comput-
ers.35 In this case, changes often have to be made within the simulation pro-
gram so that it can be run in different software environments (using different
compilers, for instance). This notion of reproducibility demands that after
making such small changes to the existing technical model implementation,
or, alternatively (which sometimes happens), after entirely rebuilding the
technical model implementation, the results are compared. This provides a
check on the effects of numerical approximations and mistakes in technical
model implementations.

Examples of the effect of numerical approximations (including those in
the hardware) are easily found in the area of modelling of nonlinear systems
that show a sensitive dependence on initial conditions. Very small differ-

The practice of scientific simulation 33



ences in the hardware or software design can have large consequences for
such systems. One can think here of the use of different floating point
precisions (that is, the number of significant digits used by computer chips)
or very small changes in the order of arithmetical operations (which would
only produce no differences in outcome if the precision were infinite).

Mistakes, or ‘bugs’, in the computer program can remain undetected for
a long time, possibly even forever. These bugs cause the computer not to do
exactly what it is supposed to do (that is, numerically solve the intended
mathematical equations), which may undermine the theoretical interpret-
ation of a simulation. Given that the material realisation of a simulation is
reproducible, the effects of bugs are also reproducible: each time the model is
run, the bug has the same effect. Simulationists should always be aware of
this possibility and therefore regularly review their programs. A better strat-
egy is to involve other simulationists in such reviews.

From this discussion on the reproducibility of simulation, we can con-
clude that with the stability of computer systems, reproducing simulations
on the same computer system is typically unproblematic. Transferring com-
puter models to other computer systems, or building new model implemen-
tations, can provide checks on the effects of numerical approximations and
mistakes in the original computer programs.

2.3.4 Processed output data and their interpretation: visualisation and
understanding

Hacking distinguishes ‘marks’ as a third category of elements in laboratory
practice besides ‘ideas’ and ‘things’. The category of ‘marks’ is broadly con-
strued to include data and manipulations of data (data assessment, data
reduction and data analysis), as well as interpretations of data. This category
of ‘marks’ is distinguished from the categories of things and ideas because of
the distinct role that is played by data in scientific practice. This is also true for
simulation practice. Simulations produce a lot of data, which need to be pro-
cessed. The processing of data produced in simulation practice is very similar
to that in experimental practice. Often exactly the same software is used, for
instance, for doing statistical analyses on data. At a basic level the drawing of
inferences from the data works quite similarly.

An important element in the practice of processing simulation output in
computer simulation is the visualisation of data by means of processing and
visualisation software. For example, a visualisation result from my own sim-
ulation practice is shown in figure 2.2. By using advanced visualisation tech-
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niques, including animation, simulationists can become familiar with their
objects of study in unprecedented ways: they can reach a better understand-
ing of the processes they are studying. In figure 2.2, for instance one can see
the updraughts and downdraughts and their horizontal shapes in the middle
of the boundary layer. Pictures of their vertical shapes and 3-d animations
also facilitate an intuitive understanding of the behaviour of these plumes.
Karim Benammar (1993: 80) writes about the role of visualisation in simula-
tion practices:

Images are vital for understanding spatial relations between numbers and
for discerning patterns that involve more than two numbers. In a graph,
only one relationship between numbers is plotted; the advantage of
three-dimensional, color graphics is that they make it possible to discern
several patterns. The fact that the human brain can process three-dimen-
sional color animations with some facility is a result of both the structure
of our image-processing apparatus and our cultural understanding of
the representational properties of an image. Our capacity to endow con-
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Figure 2.2 Horizontal cross-section (xy-plot) of the instantaneous vertical velocity

field w at the middle of the convective atmospheric boundary layer as simulated by

les. A linear scale of gray shades is used with a discontinuity at w=0. Light shades cor-

respond to upward velocities. The spatial resolution of the les is 130 × 130 × 66 grid

cells on a 6 km × 6 km × 1.5 km spatial domain. Source: Petersen (1999a: 7).



structed pictures with meaning involves our ability to perceive and pro-
cess pictures, to focus on specific aspects or generalize from a global per-
spective, and to see beyond this particular picture.

In the case of the updraught–downdraught model that I developed, diagram-
matically pictured in figure 2.1, I could use the visualisation to check my
understanding of the theory that describes the vertical flow within plumes
and the exchange of air between plumes (the equations for can be found in
Petersen et al. 1999).

But what do we mean by ‘understanding’ here? As Henk de Regt and
Dennis Dieks argue, a phenomenon can be understood if there is a theory of
the phenomenon that is intelligible for scientists, meaning that ‘they can rec-
ognise qualitatively characteristic consequences of [the theory] without per-
forming exact calculations’ (de Regt and Dieks 2005: 151). I claim that the
equations of fluid dynamics provide such a theory for understanding the phe-
nomenon of turbulent convection in the atmospheric boundary layer. By pro-
cessing the output data of simulations based on these theories and visualis-
ing these data, it is possible to test whether one qualitatively recognises the
consequences of the underlying equations.

Indeed, 3-d pictures and animations are ubiquitous in simulation science
(see, for instance, the attractive pictures in Kaufmann and Smarr 1993).
There is also a danger in their attractiveness: the choices that are made in the
pocessing of the output data, e.g. the projection methods chosen to produce
the pictures, are to a large extent arbitrary, leading to the risk of incorrect con-
clusions (one can see, for instance, side-effects of the projection methods in-
stead of real processes). One strategy simulationists use to deal with this is to
interactively change the properties of the projection method: if the structure
withstands these manipulations it is most likely not an artefact of the projec-
tion method.36

2.4 Plurality of methodologies for model development and evaluation

A wide variety of methodological approaches exists for performing each of
the activities in simulation. I will focus here on the activity of (re-)formulating
conceptual and mathematical models. Simulationists indeed do not follow
one dominant methodology when they develop and evaluate their simulation
models. The concept of ‘methodology’ is here taken to encompass modelling
philosophy, heuristics, and norms for doing ‘good’ science. The concept of
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‘heuristics’ is defined as a set of non-algorithmic rule-like procedures (‘rules
of thumb’) that can help to achieve certain goals.

Many methodologies can be discerned in simulation practice. I will relate
some of these methodologies to three general scientific methodologies which
have been described in the philosophy of science literature: Karl Popper’s
philosophy of falsification, Imre Lakatos’ ‘methodology of scientific research
programs’ and Leszek Nowak’s ‘method of idealization and concretization’.37

My claim is that through the lens of these philosophies some important
methodological disagreements in simulation practice can be highlighted. Al-
though most of these philosophies do not provide specific guidance to scien-
tists in terms of how they should develop and evaluate their models, they do
lend support to specific heuristical strategies observable in practice.

Many practicing simulationists claim to follow Karl Popper’s (1959) phil-
osophy of falsification.38 Other scientists claim that model development is
an ‘art’ and that there is ‘no methodological crank to turn’ (Harvey et al.
1997: 7). Popper’s basic idea was that scientific progress comes about
through testing and falsification. Theories or theoretical systems – and sim-
ulation models, for that matter – cannot be verified according to Popper,
since it can never be known whether they adequately cover all possible cases.
The spirit of Popper’s philosophy of falsification is aptly summarized by him
as follows:

[The] aim [of the empirical method] is not to save the lives of untenable
systems but, on the contrary, to select the one which is by comparison the
fittest, by exposing them all to the fiercest struggle for survival (Popper
1959: 42).

Popper’s philosophy does not offer much guidance on what to do after a par-
ticular simulation model has been ‘falsified’.39 What can be distilled from his
philosophy with respect to model testing is the methodological advice not to
focus on verification of simulation models but instead on falsification of
these models. Thus, Oreskes et al. (1994: 641) conclude that ‘verification and
validation of numerical models of natural systems is impossible’ and they
argue that ‘if a model fails to reproduce observed data, then we know the
model is faulty in some way’ (Oreskes et al. 1994: 643).40

However, in the practice of simulation, the activities of ‘validation’ and
‘verification’ are deemed crucial by most simulationists. Generally, ‘valida-
tion’ is concerned with the establishment of legitimacy (has the right model
been built, given the objectives for the model?) and verification is concerned
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with establishing truth (is the model right)? In operations research, ‘valida-
tion’ and ‘verification’ have received somewhat deflated meanings that are
not susceptible to Oreskes et al’s critique of validation (see, e.g., Balci 1994).
Model validation then becomes substantiating that the model, within its
domain of applicability, gives accurate results (with the desired accuracy
given by the study objectives). And model verification is then limited to sub-
stantiating that the technical model implementation is an accurate trans-
formation of the conceptual and mathematical model into a computer pro-
gram. The way around the logical problem identified by Popper in his phil-
osophy of falsification is not to claim universal validity, but to limit the model
to a particular domain and to accept a particular level of inaccuracy. And veri-
fication can be brought into connection with the second type of reprodu-
cibility, the reproducibility of a simulation under the same theoretical inter-
pretation (conceptual and mathematical model and result) with a different
technical model implementation. The question is – have any approximations,
assumptions or mistakes been made in the transformation of the conceptual
and mathematical model to the technical model that jeopardise the accuracy
of the technical model?

Popper’s philosophy also entails the following methodological norm:
when trying to come up with an improved theory, do not add ad hoc correc-
tions to the old theory, that is, corrections without separate theoretical justifi-
cation (cf. Popper 1959: 42). But models often do contain ad hoc corrections.
The methodological norm should therefore be weakened to reflect the as-
sumption held by many simulationists that the more ad hoc corrections a
model contains the worse it is (see, e.g., Randall and Wielicki 1997). If it is
really found necessary to introduce artificial correction factors, or ‘properties
of convenience’, simulationists should strive to provide an independent justi-
fication for these corrections (preferably by deriving them from theory
through approximation). This would ensure that the model is based as much
as possible on theory instead of letting the model become nagged by auxiliary
hypotheses that are not independently justifiable (cf. McMullin 1985: 261).
An example from a reflection by David Randall and Bruce Wielicki (1997) on
the practice of ‘tuning’ in simulation may illustrate this point. ‘Tuning’ con-
sists of adjusting parameters in a model to improve the agreement between
the model results and existing measurements. Randall and Wielicki (1997:
404) call tuning ‘bad empiricism’ and they add that

although empiricism will always be a necessary part of parameterization,
tuning is not necessary, at least in principle. Genuinely empirical param-
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eters, that is, those that can be measured and are universally applicable, can
be set once and for all before a model is run (Randall and Wielicki 1997).

However, in scientific simulation practice, simulationists hold divergent
views on the norm of not adding ad hoc corrections to models. This can be ex-
pected from the existence of the third type of simulation identified by Keller
(involving models of phenomena for which no general theory exists). To give
an example, many complicated simulation models of complex systems such
as the environment do contain a large number of ad hoc corrections – often
using parameters that are set by tuning – and many simulationists do not find
this fact deeply problematic. However, other simulationists judge the models
to be relatively unreliable because of the presence of ad hoc corrections, and
aim at improving the models by removing ad hoc corrections, either by provid-
ing theoretical justification for existing corrections (thus removing their ‘ad
hoc’ character) or by replacing ad hoc corrections by changes in models that
are considered theoretically justified. For most of these practitioners, ‘theory’
includes empirically established regularities, or phenomenological laws.
Some scientists have expressed their hope that ultimately all ad hoc correc-
tions currently present in their models can be removed, and that only approxi-
mations to empirical laws will remain (e.g., Randall and Wielicki 1997).

The ad hoc corrections that scientists do introduce in their simulation
models – against Popper’s advice – are usually located in particular parts of
the model, parts in which the simulationists are willing to make changes.
Mathematical structures and parameters in the models that are already based
on well-established empirical laws are typically left unchanged. Examples in
the case of three-dimensional climate models are the conservation laws of
momentum and heat (cf. Küppers and Lenhard 2006). This does not entail
however, that the ad hoc corrections are innocent. In the same case of climate
models, for instance, changes to the cloud parameterisations that are not yet
based on well-established empirical laws may have a huge impact on the
results (see Chapter 6).

The philosopher of science Imre Lakatos built his whole methodology of
science (his ‘methodology of scientific research programs’) around the idea
that some parts of models are adjusted to reduce the discrepancies between
models and data and some parts (the ‘hard core’) are not. According to
Lakatos, a research program

consists of methodological rules: some tell us what paths of research to
avoid (negative heuristic), and others what paths to pursue (positive heuris-

The practice of scientific simulation 39



tic). ... The negative heuristic forbids us to direct the modus tollens at [the]
‘hard core’. Instead, we must use our ingenuity to articulate or even invent
‘auxiliary hypotheses’, which form a protective belt around this core, and we
must redirect the modus tollens to these. ... The positive heuristic sets out a
programme which lists a chain of ever more complicated models simulat-
ing reality: the scientist’s attention is riveted on building his models fol-
lowing instructions which are laid down in the positive part of his pro-
gramme (Lakatos 1970: 132, 135).

If we translate Lakatos’ view into methodological advice for developing
simulation models, it runs like this: be aware of what constitutes the hard
core of your models and refrain from making ad hoc corrections to that hard
core.

Indeed, in several scientific simulation practices, Lakatos’ distinction be-
tween ‘hard core’ and ‘protective belt’ seems to hold, which enables one to
identify ‘families’ of models in these practices that share the same hard core,
but differ in their ad hoc corrections. Also ‘lineages’ of models can be identi-
fied where old hard cores have been retained within new hard cores (when
new scientific research programs branched off from their parent research
programs). A case in point is the development of climate models from zero-
dimensional (globally averaged) models to one-dimensional (horizontal di-
mension from pole to pole), two-dimensional (either two horizontal dimen-
sions or one horizontal and one vertical dimension), and three-dimensional
models. The ‘method of idealisation and concretisation’, which was proposed
by Leszek Nowak (see, e.g., Nowak 1985: 195-200), identifies stepwise ‘con-
cretisations’ of ‘idealisations’ – such as the lineages of models discussed here
– as the hallmark of science. Even though Lakatos’ and Nowak’s philosophies
cannot be considered fully adequate descriptions of all scientific practice,41

several heuristics found in scientific practice are supported by these philoso-
phies.

The simple – but very influential – methodological advice for developing
simulation models that can be inferred from Nowak’s methodology is the fol-
lowing: try to make your model ever more realistic. Models typically do not
represent all the details of phenomena (they can be said to contain ‘unrealis-
tic idealisations’). In simulation practice, depending on the purpose of a
model, this is not necessarily seen as a problem. Increased realism does not
necessarily entail increased accuracy and decreased realism does not have to
result in decreased accuracy. An example of the latter situation is a zero-
dimensional climate model which aggregates all surface temperatures into a
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single zero-dimensional variable of globally averaged surface temperature.
Such a mode can give an accurate description of globally averaged quantities,
even though it is ‘unrealistic’ in the sense that the quantities are not homoge-
neously distributed in reality.

The methodology of concretising a model in a sequence of steps and com-
paring the results of successive models with the data can be connected with
the notion of replicability introduced in 2.3.3. In scientific simulation practice
many comparisons are made between the results of models at different levels
of concreteness. As soon as the result of a model at a particular level of con-
creteness is replicated by models at higher levels of concreteness, it can be
concluded that the additional details do not make the results more accurate
and are not needed for obtaining the results. This can be illustrated by the
example of turbulent fluids. The ‘concreteness’ of a model is here defined as
the level of aggregation, both in terms of the number of degrees of freedom
(or variables) in the model and the number of processes modelled. From
comparing the results of more and less concretised three-dimensional simu-
lation models of turbulent fluids, it has been found that the behaviour of the
fluids at the largest scales in the models is insensitive to the details at the
smallest scales. Thus the results pertaining to phenomena at the largest
scales can be replicated by using a much less concretised model. In this case,
we can formulate a convenient ‘minimal model’ which is still sufficiently
concrete for adequately simulating some turbulence phenomena (see
Goldenfeld and Kadanoff 1999: 87).

Computer simulation is extensively used by scientists studying turbulent
fluids. More generally, computer simulation is pervasive in the study of com-
plex nonlinear systems. In developing models, choices must be made with
respect to how concrete, or complex, the models should be. The following two
competing overarching methodologies can be identified for modelling com-
plex systems:

M1 to capture as many as possible of the degrees of freedom of the sys-
tem in a model;

M2 to keep a model as simple as possible, for instance, by demonstrating
that the results of interest can already be replicated by the relatively
simple model.42

The example of the ‘minimal model’ of turbulence displays the latter strategy,
M2. In geophysical fluid dynamics, there is a tendency to regard M1, the
methodology of building models of maximal complexity, as the ideal:
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to the extent that we have good mathematical models of fluid systems,
such models usually correspond to essentially nonaggregated representa-
tions of the system (Stevens and Lenschow 2001: 285).

Here, ‘nonaggregated’ models are models at a maximum level of concrete-
ness, that is, with a maximal number of degrees of freedom: such models ex-
plicitly resolve large ranges of spatial and temporal scales in modelling the
flows (versus ‘aggregated models’, which feature a smaller number of de-
grees of freedom). However, against the general tendency to strive for ever
more complex models, simple models still have their roles to play in geophys-
ical fluid dynamics. The reasons for this continued role are twofold: (i) with
simple models it is easier to grasp what is going on in the model, thus facili-
tating understanding of a phenomenon by way of the model; and (ii) for very
large-scale modelling problems, such as those involving the entire earth sys-
tem over geological timescales, we cannot do without simple models since
the computational resources to run the most complex models for those prob-
lems are lacking (Petersen 2004a).

2.5 Plurality of values in simulation practice

The choice of methodology by simulationists (e.g., prefering either complex
or simple models) depends on the goals of the scientific study involved, the
research questions, the required accuracy of the results, the practical limita-
tions encountered when trying to build a maximally detailed model, etc. For
instance, the practical issue of limitations in computing power is a central
one in many areas of scientific computer simulation, and it puts upper limits
on the level of concreteness in the models. But ‘metaphysical’ ideas of scien-
tists – their intuitions about the nature of the complexity of the problem –
may also influence this choice (cf. de Regt 1996). As Chunglin Kwa (2002)
has argued, basically two views of ‘complexity’ coexist in science: a ‘romantic’
view and a ‘baroque’ view. The romantic view of complexity relies heavily on
the notion of ‘holism’ where the higher levels in the ‘hierarchy of nature’ are
seen as uniting the heterogeneous items of a lower level into a functional
whole. Conversely, the baroque view of complexity pays more attention to the
lower-order individuality of the many items making up complexity at the
higher level. Such deep philosophical differences partly underlie the choice
for either simple or complex models.
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There is a plurality of aims and values in simulation practice. In general,
there are two modes of dealing with simulation models: treating them as ‘ob-
jects of study’ (noninstrumental mode) or using them as ‘instruments’, or
‘technological artefacts’ (e.g., Morrison and Morgan 1999).43 The plurality of
instrumental values in scientific simulation practice is exemplified by the
plurality of functions of simulation. Stephan Hartmann (1996: 84-85) distin-
guishes five major functions of simulation:

1 Simulation as a technique, for investigating the detailed dynamics of a
system;

2 Simulation as a heuristic tool, for developing hypotheses, models and
theories;

3 Simulation as a substitute for an experiment, for performing ‘numerical
experiments’;

4 Simulation as a tool for experimenters, for supporting experiments;
5 Simulation as a pedagogical tool, for providing understanding of a pro-

cess.

We have already encountered examples of the first four functions in the pres-
ent chapter. The differentiation of functions varies between scientific fields.
Furthermore, the functions may overlap. I will give some examples to illus-
trate this. In turbulence studies, for instance, physicists who want to closely
examine particular aspects of turbulence dynamics often use computer simu-
lation as a technique to do this (Goldenfeld and Kadanoff 1999), not only
because simulation is typically less costly than experimentation but also be-
cause, for many studies, an experimental approach is hardly or not possible.
And in high-energy particle physics, the simulations that are used as tools by
experimenters for the design of particle detectors are also used by theorists to
study the consequences of their theories (Galison 1996; Merz 1999). Fur-
thermore, many simple simulation models that were developed for any of the
first four functions can be used as pedagogical tools, provided that they are
made transparent and user-friendly enough. Finally, many simulations are
used heuristically, while they also perform one or more of the other func-
tions. In fact, Oreskes et al. (1994: 644) claim that all simulations should be
used heuristically, since ‘models are representations, useful for guiding fur-
ther study but not susceptible to proof’, even though that is not what happens
in practice. The many functions of simulation in scientific practice led Sergio
Sismondo to conclude that ‘simulation’ is a ‘messy category’, and that ‘we
should resist the urge to do much epistemological neatening’ of it (Sismondo
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1999: 258). Still, in this study, the task of doing some ‘epistemological
neatening’ is taken up, in the awareness, however, that complete tidiness is
impossible.

With respect to the role of value diversity in science, Helen Longino
(1990: 5) argues for science in general

not only that scientific practices and content on the one hand and social
needs and values on the other are in dynamic interaction but that the
logical and cognitive structures of scientific inquiry require such inter-
action.

She distinguishes between ‘constitutive values’ (epistemic values) – which
‘are the source of the rules determining what constitutes acceptable scientific
practice or scientific method’ (Longino 1990: 4) – and ‘contextual values’
(non-epistemic values) – which ‘belong to the social and cultural environ-
ment in which science is done’ (Longino 1990: 4). I agree with Longino that
both epistemic and non-epistemic values have a legitimate role to play in sci-
ence.44

Since simulationists may hold different epistemic and non-epistemic val-
ues, the choices they make in developing and evaluating simulations – as far
as these choices are influenced by their values – may be different. The
epistemic values of simulationists vary from one to another and from one
context to another. For instance, according to some scientists, simulation
models serve to generate reliable predictions, while others consider models
merely as heuristic tools for theory development. Some scientists aim for
models that have a wide range of applicability, while others are satisfied with
a more narrowly confined domain covered by the model. And some scientists
aim at increasing the ‘reality-content’ of the models while others adopt more
instrumentalist views of what constitutes a good model (focusing more on its
usability). Following Kloprogge et al. (2005), who introduced a distinction
between the general epistemic values held by individuals (such as the ones
just mentioned) and more specific epistemic values that are shared by mem-
bers of scientific disciplines, I will distinguish between ‘general epistemic
values’ and ‘discipline-bound epistemic values’. To give an example of the lat-
ter, it makes a difference whether you ask a physical scientist or a biologist to
develop a model of the climate system: they hold different perspectives on
what the important processes and methods are and may each want to deal
with those processes in the model and apply those methods that they are
most familiar with.
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With respect to non-epistemic values, a distinction can be made between
‘socio-political values’ and ‘practical values’ (Kloprogge et al. 2005). In Chap-
ter 5, we will discuss the example of ad hoc ‘flux adjustment’ in coupled cli-
mate–ocean models, an assumption that not every climate modelling group
was willing to make. By introducing this adjustment, however, it became pos-
sible for several climate models to be included in scientific studies of hu-
man-induced climate change. The social value of wanting to do policy-rele-
vant science, in addition to personal interests and political conviction, led
some modellers to make this unphysical ad hoc correction to their models.
Practical values have more to do with practical issues, such as delivering
results on time (putting time pressure on the simulation process and forcing
simulationists to make simplifying assumptions, for instance), remaining
within a given budget, etc.

2.6 The practices of simulation and experimentation compared

The interactions between experimental and simulation practices in science
are myriad and complex.45 On the one hand, simulations can be used to
design experiments; and simulations can be used together with experiments
to produce ‘data’. On the other hand, experiments that help to determine the
mathematical structure and parameters in simulation models can be per-
formed. Experiments may be used to produce input data and experiments
can also be used to determine the accuracy of simulations in a certain do-
main. The analysis of simulation is largely an analysis of hybrid simulation–
experimentation practices.

A comparison between the analysis in the present chapter of simulation
as a laboratory practice and existing accounts of experimental practice makes
it possible to draw some conclusions about similarities and differences
between simulation and experimental practice. A first similarity is that both
practices involve skills. Hence, both practices are described using expres-
sions such as ‘experimenting’, ‘playing around’, ‘tracking error’, ‘dealing
with locality, replicability, and stability’, and ‘tinkering’.46 Some of the early
simulation practitioners referred to their simulations as ‘experiments’ be-
cause of their ‘experimental’ way of working, taken to mean a ‘concern with
error tracking, locality, replicability, and stability’ (Galison 1996: 142). While
the concept of ‘tinkering’ certainly captures an important aspect of simula-
tion practice, this similarity between experimental and simulation practice is
somewhat superficial and does not distinguish the two practices from other,
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non-scientific practices. A second similarity between simulation and experi-
mental practices is that both involve models of the outside world, and the
results obtained in the laboratory are extrapolated to this outside world.47 And
a third similarity is that at the practical level we find ‘thing’ elements within
simulation practice that have a function similar to the ‘thing’ elements in
experimental practice.

The first – and main – difference between simulation and experimenta-
tion is that the ‘things’ manipulated in simulation practice are mathematical
models materialised in computer programs and not material models, as in
experimental practice. The representational relationship between a mathe-
matical model and reality is different in kind from the representational rela-
tionship between a material model and reality. A second difference is that in
simulation, no background theory or modelling of the apparatus are needed,
since the computer hardware may in practically all cases be expected to run
the software in the way it is engineered to run it. And a third difference is that
the norm of the reproducibility of the material realisation is generally more
difficult to meet in experimental practice than in simulation practice.

Contrary to my use of the term ‘experiment’ here, Mary Morgan (2003)
does not reserve the term ‘experiment’ for material experiments only. She
also discusses ‘mathematical model experiments’, in which, by way of deduc-
tion, the consequences of various interventions in the model are calculated.
And she identifies simulations as belonging to an in-between category of ‘hy-
brid experiments’. On the one hand, in simulations the computer is config-
ured ‘to produce results for the particular case used, not to deduce or derive
general solutions’ (Morgan 2003: 222). From this Morgan concludes that the
process of demonstration resembles material experiments more closely than
mathematical experiments. On the other hand, simulations rely on mathe-
matics. Subsequently, she argues that some simulations look more like mate-
rial experiments than others (based on the verisimilitude of the input data to
reality). As I discussed in 2.3.2, this proximity should only be interpreted as
closeness of the mathematical input of the simulation to the material input of
the material experiment. I conclude that the two types of simulation dis-
tinghuised by Morgan, namely ‘virtually experiments’ and ‘virtual experi-
ments’, are much closer to each other in kind than their labels suggest. They
are both fully mathematical. In order to stress the difference between mathe-
matical and material manipulations, I will refrain from associating the term
‘experiment’ with simulation.
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2.7 Conclusion

I have proposed that the activities of simulationists can be grouped conceptu-
ally into four main types and that four epistemologically distinct elements
can be identified in simulation practice: (1) the conceptual and mathematical
model; (2) model inputs; (3) the technical model implementation; and (4)
processed output data and their interpretation. These elements can be con-
nected to the taxonomy of things, ideas and marks that Hacking developed
for the experimental laboratory sciences. I have argued that simulation sci-
ence can itself be regarded as a laboratory science. My claim is that simula-
tion practice can be fruitfully analysed from the perspective of the laboratory
sciences. However, even though many analogies exist with experimental
practice, there is a fundamental difference between mathematical and mate-
rial manipulations. Therefore a conceptual distinction between simulation
and experimental practice should be maintained.

In the discussion of the four main elements of simulation practice, four
philosophical questions were addressed. First, I argued that the distinction
between general theory and models should be considered to be a relative one.
Second, on the proximity of simulation and material experiments, I con-
cluded that by using real-world input, a simulation can be used as part of a
measurement apparatus in experiment or observation, but that the extent to
which the outcomes are reliable depends not only on the input data, but also
on the reliability of the conceptual and mathematical model. Third, I argued
that (i) reproducing simulations on the same computer system is typically
unproblematic and (ii) transferring computer models to other computer sys-
tems, or building new model implementations, is more difficult but can pro-
vide checks on the effects of numerical approximations and mistakes in the
original computer programs. And fourth, I showed that by using advanced
visualisation techniques, including animation, simulationists can gain a
better understanding of the processes they are studying.

By relating three general scientific methodologies (those of Popper, Laka-
tos and Nowak) to the practice of simulation, it was found that these may be
used to generate heuristics which can actually be identified in examples of
simulation practice. However, there is no consensus on the application of
these heuristics. This situation reflects the plurality of aims and values in
simulation practice.
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Chapter 3

A typology of uncertainty in scientific
simulation

3.1 Introduction

Like the term ‘error’, ‘uncertainty’ is imbued with many meanings (Kirschen-
mann 2001). The term may refer to a variety of different things: for instance,
people refer to nature, propositions, models, practices, or the future, as being
‘uncertain’. In many of these cases, the term is used in a loose manner. In
some formal definitions of the term ‘uncertainty’ as ‘absence of certainty’ or
‘lack of knowledge’, ‘uncertainty’ is taken to refer to our state of knowledge
(that is, propositions or models about nature, practices, and their future).1 A
typical example of a definition of ‘uncertainty’ is the following:

Uncertainty can be defined as a lack of precise knowledge as to what the
truth is, whether qualitative or quantitative (National Research Council
1996a: 161).

According to this definition, uncertainty is more or less the same as inaccu-
racy. Funtowicz and Ravetz (1990) provide a broader characterisation of un-
certainty. They distinguish between two main dimensions of uncertainty.
Their first main dimension is the source dimension, which I will call ‘loca-
tion’ dimension below. Their second main dimension is the sort dimension:

Classification by sources is normally done by experts in a field when they
try to comprehend the uncertainties affecting their particular practice. But
for a general study of uncertainty, we have to examine its sorts (Funtowicz
and Ravetz 1990: 22-23).

Along the sort dimension, Funtowicz and Ravetz list three types of uncer-
tainty: ‘inexactness’ (imprecision, usually expressed by a spread), ‘unreli-
ability’ (inaccuracy, usually expressed by a statistical confidence level) and
‘border with ignorance’ (not expressed statistically). Furthermore, they elab-
orated the concept of ‘pedigree’. The pedigree of a particular piece of infor-
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mation conveys an evaluative account of the production process of that infor-
mation.

I think that Funtowicz and Ravetz’s (1990) characterisation of uncertainty
is not yet refined enough since there are more sorts that should be distin-
guished, and that these sorts should be considered as separate dimensions
that can be used in parallel to characterise a particular source of uncertainty.
Therefore, I propose the following six-dimensional typology of uncertainty:

1 Location of uncertainty
2 Nature of uncertainty
3 Range of uncertainty
4 Recognised ignorance
5 Methodological unreliability
6 Value diversity.

This typology is presented graphically in table 3.1.2 The pedigree of infor-
mation is represented in this typology by the dimensions of ‘methodological
unreliability’ and ‘value diversity’. Funtowicz and Ravetz’s notions of ‘in-
exactness’ and ‘unreliability’ are captured by the dimension of ‘range of
uncertainty’.

In the sections 3.2-3.7, each of these dimensions will be introduced con-
secutively. It must be stressed at the outset that no typology of ‘uncertainty’
exists which includes all of its meanings in a way that is clear, simple, and
adequate for each potential use of such a typology. My claim with respect to
the typology given in table 3.1 is that it offers a philosophically meaningful
insight into the different types of uncertainty that play a role in simulation
practice. As such it can also be of use to simulationists who want to assess
the uncertainties in their simulations.3 Note that although the typology is
graphically represented by a two-dimensional matrix, the typology is really
six-dimensional and each column plays a role in characterising a particular
source of uncertainty (see, for instance, table 6.2, which will be discussed in
Chapter 6). In section 3.8, I will discuss the differences and similarities
between uncertainties in simulation and experimentation.

3.2 Locations of simulation uncertainty

The daily practice of simulationists is full of uncertainties of many types: they
are faced with uncertainties in their models and input data; they may not

A typology of uncertainty in scientific simulation 51



have sufficient skills to perform a simulation; their organizational politics
may be precarious, etc. Following the argument of Chapter 2, all uncertain-
ties in simulation are ultimately reflected in, or located in, the four main
elements of simulation practice: the conceptual and mathematical model; the
model inputs; the technical model implementation; or the processed output
data and their interpretation. The location of simulation uncertainty indicates
where the uncertainty manifests itself among the main elements of simula-
tion practice.

3.3 The nature of simulation uncertainty

The ‘nature’ of uncertainty’ expresses whether uncertainty is primarily a con-
sequence of the incompleteness and fallibility of knowledge (epistemic uncer-
tainty) or whether it is primarily due to the intrinsic indeterminate and/or
variable character of the system under study (ontic uncertainty). Given the def-
inition of uncertainty as ‘lack of knowledge’, ‘ontic uncertainty’ implies a lack
of knowledge arising from the specific ontic character of the object of know-
ledge. The basic distinction between two natures of uncertainty underlies
many binary uncertainty typologies, such as ‘aleatory uncertainty’ (due to
chance) versus ‘epistemic uncertainty’ (National Research Council 1996b:
107), or ‘variability’ versus ‘lack of knowledge’4 (e.g., van Asselt 2000: 85). Al-
though the distinction is analytically sound, in scientific practice mixtures of
ontic and epistemic uncertainty are often encountered (cf. Kirschenmann
2001: 4). For example, on the one hand, the fact that the weather is unpredict-
able stems from a fundamental property of chaotic systems (their ‘sensitive
dependence on initial conditions’). On the other hand, this unpredictability
results from our limited knowledge of the initial state, the unreliability of nu-
merical weather prediction models, and other scientific limitations. There is
still some room for extending the prediction horizon, the maximum time
span over which one can reliably predict ahead. The reason why the distinc-
tion between ontic and epistemic uncertainty is useful is that both categories
entail different conclusions with respect to the reducibility of uncertainty.
Many ontic uncertainties are irreducible, while many epistemic uncertainties
are reducible, although the match between the two distinctions (ontic–
epistemic and irreducible–reducible) is not perfect.

The meaning of ‘ontic uncertainty’ in simulation-laboratory practice de-
serves some further explanation. If the location of ontic uncertainty is the
conceptual and mathematical model, then the indeterminate or chaotic char-
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acter of the system is embedded in the model. In the ideal case where we
judge the model to be perfectly reliable, there is no epistemic uncertainty
about the model. However, in practice, models are never perfectly reliable
and we are always faced with ontic uncertainty and epistemic uncertainty,
including epistemic uncertainty about ontic uncertainty. Take, for instance,
models of the climate system. Within definite bounds, the globally averaged
surface temperature on earth fluctuates in an unpredictable manner due to
the natural variability of the climate system. This natural variability consists
of two components: an ‘internal variability’ of the climate system (mani-
fested, e.g., in the El Niño phenomenon) and an ‘external natural variability’
(related to volcanic eruptions, for instance). In order to determine whether,
statistically speaking, the warming observed over the last 50 years is due to
this ‘internal variability’ of the climate system or to some other causes, such
as ‘external natural variability’ (volcano eruptions, for instance) or human
influences, we need to establish the magnitude of the internal variability of
the climate system. Determining the ontic uncertainty that reflects this in-
ternal variability requires the use of complex climate models: we cannot
determine it directly from observations. The models are not perfectly reliable,
however, and thus there is epistemic uncertainty with respect to the esti-
mated range of the ontic uncertainty.

3.4 The range of simulation uncertainty

A scientific claim based on results from computer simulation may express a
range of uncertainty. This range may in turn derive from uncertainty sources
at the different locations distinguished in table 3.1. In science, uncertainty
ranges come in two types: statistical uncertainty and scenario uncertainty
ranges. A ‘statistical uncertainty’ range can be given for the uncertainties
which can be adequately expressed in statistical terms, e.g., as a range with
associated probability (for example, uncertainties in model-parameter esti-
mates). In the natural sciences, scientists generally refer to this category of
uncertainty, thereby often implicitly assuming that the model relations in-
volved offer adequate descriptions of the real system under study, and that
the (calibration-)data employed are representative of the situation under
study. Two different statistical paradigms are available for characterising
probabilities: the frequentist and the Bayesian paradigm. In frequentist stat-
istics, probabilities are considered to be ‘objective’ and are based on the em-
pirically determined frequency of occurence of events. In Bayesian statistics,
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probabilities are ‘subjective’, based on expert judgement and reflecting all in-
formation that is available on a particular event (not necessarily the frequency
of occurence). For instance, in its Third Assessement Report (ipcc 2001a),
Working Group i of the Intergovernmental Panel on Climate Change (ipcc)
used a Bayesian definition of probability when it claimed that it was ‘likely’
(defined as a ‘judgmental estimate’ of a 66-90% chance) that most of the ob-
served warming over the last 50 years is attributable to the anthropogenic
emissions of greenhouse gases.5

However, ‘deeper’ forms of uncertainty are often at play. These cannot be
expressed statistically but can sometimes be expressed by a range. Such a
range is then called a ‘scenario uncertainty’ range. Scenario uncertainties
cannot be adequately depicted in terms of chances or probabilities, but can
only be specified in terms of (a range of) equally plausible events. For such
uncertainties to specify a degree of probability or belief is meaningless, since
the mechanisms which lead to the events are not sufficiently known. Sce-
nario uncertainties are often construed in terms of ‘what-if’ statements. In
principle, it is possible that uncertainties which are first expressed as sce-
nario uncertainties later switch to the category of statistical uncertainty if
more becomes known about the system processes.6 This is what has hap-
pened with simulation-based estimates of the sensitivity of climate to green-
house-gas increases, the ‘climate sensitivity’.7 The range of climate sensitiv-
ities used in the ipcc (2001a) report is 1.7 to 4.2°C (ipcc 2001a: 13). No statis-
tical characterisation is given of this range. The range is based on the selec-
tion of a set of models with different climate sensitivities (the reasoning be-
ing: What is the climate sensitivity if model 1 is true?, etc.). This range is still
close to the commonly accepted range of 1.5 to 4.5°C, which has also been
characterised statistically in the past.8 In recent years, more and more articles
have appeared in the literature that include statistical characterisations,
through probability density functions, of the climate sensitivity. For the next
assessment report the ipcc will actually have to decide whether or not the cli-
mate sensitivity should move into the statistical uncertainty category.

The measure of the spread of both types of uncertainty range is either
inexactness,9 also called ‘imprecision’, which gradually moves from exact
(small range) to inexact (large range), or unreliability1 (defined below), also
called ‘inaccuracy’, which gradually moves from accurate (small range) to
inaccurate (large range). While Funtowicz and Ravetz considered a ‘spread’
to derive typically from ‘random error’ (e.g., Funtowicz and Ravetz 1990: 23,
70), the interpretation of ‘range’ in the typology proposed here is much
broader and encompasses all types of statistical and scenario-uncertainty
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ranges. Ranges of uncertainty can derive from any source of uncertainty in
scientific practice, including model structure. Thus, in principle, ‘systematic
error’ can be represented in the typology as statistical uncertainty arising
from the model structure.

The statistical uncertainty range can be qualified by information about
the statistical reliability (reliability1). The term ‘(un)reliability’ was frequently
used in the preceding text, without explicit mention of what precisely was
meant. What is reliable for what purpose? In this study, I will use two notions
of ‘reliability’, denoted by reliability1 and reliability2. For scientific simulation
laboratory practice, I define ‘reliability1’ as follows: the ‘reliability1’ of a simu-
lation is the extent to which the simulation yields accurate results in a given
domain. It is important here to distinguish between ‘accuracy’ and ‘preci-
sion’ (see Hon 1989: 474). Accuracy refers to the closeness of the simulation
result to the ‘true’ value of the sought physical quantity, whereas precision
indicates the closeness with which the simulation results agree with one
another, independently of their relations to the ‘true’ value. ‘Accuracy thus
implies precision but the converse is not necessarily true’ (Hon 1989: 474).
Traditionally, the distinction between ‘systematic’ and ‘random’ error is
taken to correspond with the distinction between ‘accuracy’ and ‘precision’
(Hon 1989: 474). Since systematic and random error are solely statistical no-
tions, I propose to dissociate these two dichotomies from each other, so that
all sources of error may be assessed in terms of their impact on the accuracy
and the precision of the results.10

The definition of reliability1 introduced above refers to a whole simulation
that delivers results, and not to the elements of scientific practice such as the
mathematical model. The term ‘reliability’ is also applied to such elements of
scientific practice. Given the definition of the reliability1 of a whole simula-
tion, it seems most natural to define the ‘reliability1’ of the elements of scien-
tific practice in terms of their effects on the accuracy of the final results. Since
errors may cancel each other out, we can never infer the reliability1 of the
elements of the simulation from the reliability1 of the simulation as a whole
(‘from the top down’), given that we were able to establish the latter.11 The
question of whether a particular element is reliable1 thus depends on the cir-
cumstances under which the element is used and needs to be established
‘from the bottom up’. There is a whole specialised field of sensitivity analysis
and a suite of methods that can be employed in

the study of how the variation in the output of a model (numerical or oth-
erwise) can be apportioned, qualitatively or quantitatively, to different
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sources of variation, and of how the given model depends upon the infor-
mation fed into it (Saltelli 2000: 3).

If one also determines what the uncertainties in the model input, model
structure and model parameters are, the reliability1 of the whole simulation
can be estimated through mathematical techniques of uncertainty analysis.
In practice, however, not all information needed to determine the reliability1

of the different elements is availabe, and one therefore will often have
recourse to qualitative methods of determining reliability (see 3.6)

Thus statistical uncertainty ranges can be determined either from com-
paring the simulation results with measurements – provided that accurate
and sufficient measurements are available – or from uncertainty analysis –
provided that the accuracy of the different elements in simulation is known.
Scenario-uncertainty ranges (based on ‘what-if’ questions) are generally eas-
ier to construct by varying simulation elements.

3.5 Recognised ignorance in simulation

Recognised ignorance about a phenomenon we are interested in concerns
those uncertainties which we realise – in one way or another –are present, but
for which we cannot establish any useful estimate, e.g., due to limits of pre-
dictability and knowability (‘chaos’) or due to unknown processes. Unrecog-
nised ignorance does not count as ‘uncertainty’, since it concerns ‘pure igno-
rance’ about which we cannot say anything knowledgeable. Experts making a
claim may acknowledge that they are ignorant about particular locations of
uncertainty. For instance, in the case of a complex system, it can be acknow-
ledged that the system may show surprises about which one only has qualita-
tive knowledge and which are not reflected in the model structure used. Anot-
her example relates to the adequacy of the software implementation. Good si-
mulation practitioners are aware of the fact that bugs can easily slip into their
code and that – until they find them – they are ignorant of their precise loca-
tion in the program.

A measure of recognised ignorance is the openness of a claim: the pres-
ence of an explicit reflection within the claim of the fact that one is aware of
one’s ignorance about particular locations of uncertainty. Closed claims,
which do not offer such reflection, convey an appearance of certainty about
the uncertainties reflected in the claim. The openness of a claim can be
expressed in a general manner, such as in ‘surprises are not excluded’, or
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with reference to particular uncertainties (without giving uncertainty ranges,
since these are acknowledged to be unknown). Scientists can also give their
subjective probability for a claim, representing their estimated chance that
the claim is true. They are then explicitly allowing for the possibility that the
claim may be false.

As will become evident in Part ii of this study, the practice of climate sim-
ulation is full of recognised ignorance. To give a recent example, on 26 May
2006 the journal Geophysical Research Letters published two articles which
both claim that the positive feedback between higher temperatures and
higher co2 concentration is not adequately represented in most climate mod-
els (Scheffer et al. 2006; Torn and Harte 2006). From an analysis of historic-
al (proxy) data for several hundred thousand years, they claim that the effect
is much stronger than has previously been estimated. Scheffer et al. acknow-
ledge their ignorance about what processes actually cause the positive feed-
back. They write:

The main merit of our approach as we see it, is that it allows for an esti-
mate of the potential boost in global warming by century-scale feedbacks
which is quite independent from that provided by coupled co2-climate
models that explicitly simulate a suite of mechanisms. Like our approach
these models have considerable uncertainty. Not only are the quantitative
representations of the mechanisms in the models uncertain, there is also
always an uncertainty related to the fact that we are not sure whether all
important mechanisms have been accounted for in the models (Scheffer
et al. 2006: 4).

Thus while Scheffer et al. claim that their results are independent of the most
relevant underlying mechanisms, they clearly recognise the ignorance with
respect to these mechanisms, which may not yet have been included in pres-
ent climate-simulation models.

3.6 The methodological unreliability of simulation

As was observed in section 3.4, a major limitation of the statistical definition
of reliability is that it is often not possible to establish the accuracy of the
results of a simulation or to quantitatively assess the impacts of different
sources of uncertainty. In those cases, one may have recourse to qualitative
judgments of the relevant procedures instead. Scientists can, for instance,
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judge the methodological rigour of the scientific procedure followed – the
methodological rigour may then be regarded as an alternative for accuracy.
Let me therefore also give a methodological definition of reliability, denoted
by reliability2: the reliability2 of a simulation is the extent to which the simula-
tion has methodological quality. The methodological quality of a simulation
derives from the methodological quality of the different elements in simula-
tion practice. The methodological quality of a simulation, for example,
depends not only on how adequately the theoretical understanding of the
phenomena of interest is reflected in the model structure, but also, for
instance, on the quality of the initial and boundary conditions used as input
data to the model; the numerical algorithms; the procedures used for imple-
menting the model in software; the statistical analysis of the output data; etc.

While the range of uncertainty is a quantitative dimension of uncertainty,
the other five dimensions (including location) are qualitative. Since methodo-
logical quality is a qualitative dimension and the (variable) judgment and best
practice of the scientific community provides a reference, determining the
methodological quality of a claim is not usually a straightforward affair either.
It depends, for instance, on how broadly one construes the relevant scientific
community. The broader the community, the more likely it is that the differ-
ent epistemic values held by different groups of experts could influence the
assessment of methodological quality. Criteria such as (1) theoretical basis,
(2) empirical basis, (3) comparison with other simulations and (4) accept-
ance/support within and outside the direct peer community can be used for
assessing and expressing the level of reliability2. Each of these four criteria
will now be dealt with in turn.

3.6.1 The theoretical basis of simulations

As was discussed in section 2.3.1, the conceptual and mathematical models
used in simulation vary in the extent to which they are derived from general
theory by way of approximation, that is, vary in their theoretical quality. My
claim is that if the only relevant methodological difference between two mod-
els is their level of theoretical quality, then the model with a higher theoretical
quality should be considered more plausible.

But can we also expect a higher reliability1 for simulations with a stronger
theoretical basis, if all other things are equal? Nancy Cartwright (1983) has
argued that fundamental laws themselves do not generate accurate predic-
tions, but that they need to be translated into models which can do the job for
them:

58 Simulating nature



fundamental equations are meant to explain, and paradoxically enough
the cost of explanatory power is descriptive adequacy (Cartwright 1983: 3).

This is a consequence of multicausality. Each cause by itself cannot contrib-
ute to descriptive adequacy, but appropriately taken together with other
causes, in a model, the model can be descriptively adequate. She proposes a
‘simulacrum account of explanation’:

The route from theory to reality is from theory to model and then from
model to phenomenological law. The phenomenological laws are indeed
true of the objects in reality – or might be; but the fundamental laws are
true only of the objects in the model (Cartwright 1983: 4).

Cartwright’s (1983) view pertains to Keller’s second type of simulation – sim-
ulation involving conceptual approximations to general theory. I agree with
Cartwright’s argument that the accuracy of the model improves if there are
underlying fundamental laws that are true of the objects in the model.12

This can be illustrated thus. Let us assume that we have two models that
accurately describe the phenomena in a particular domain. One model is
derived by way of approximation from a fundamental law. This theory has a
scope that is larger than the model domain.13 The other model is not derived
from theory. The question that then arises is whether the fact that the first
model is derived from theory positively contributes to the reliability1 of a sim-
ulation outside of the original domain to which the model was applied (but
within the scope of the fundamental law). As long as we cannot strictly estab-
lish the reliability1 of the model, we are left with establishing the reliability2,
which in this case indicates a relatively high ‘theoretical quality’ for the first
model as compared with the second model. We may subsequently hypothes-
ise that the reliability1 of the first model outside of the original domain is
higher than that of the second model.

From this argument I conclude that it is important both to determine the
extent to which simulation models are derived from general theory and, fur-
thermore, to determine the scope of the general theory.

3.6.2 The empirical basis of simulations

The methodological criterion for the empirical basis of a simulation should
distinguish between simulations that are based on and/or have been tested
against sparse observations or unreliable experiments, on the one hand (low
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quality), and simulations that have been thoroughly built on empirical input
(high quality), on the other. But the qualitative assessment of the fit between
the simulation and the system of study also belongs to the assessment of the
empirical basis.14 Mary Morgan (2003: 233) emphasises that ‘we need to look
carefully at where and how much materiality is involved [in simulation], and
where it is located, before we can say much more about its validity’. Thus, the
stronger the empirical basis of a model, the more reliable2 it is. Morgan, how-
ever, only considers the model inputs, and thus she neglects the assesment of
the empirical basis of the simulation model itself.

There are several ways to compare the simulation model with experi-
ments and observation. Experiments may be specifically designed or observa-
tions may be specifically planned for the purpose of evaluating models (see,
e.g., Siekmann 1998). Simulation models which have been evaluated in this
way have a stronger empirical basis.

By cleverly choosing the measurements, a group of atmospheric scien-
tists have developed a methodology for assessing their models, adherence to
which would lead to a stronger empirical basis of models. Specifically, they
proposed to do experiments and to make observations to evaluate Large-
Eddy Simulation (les) models (Stevens and Lenschow 2001). In the past,
les models have been tested against existing atmospheric observations. Fur-
thermore, they have been compared with ‘mimicking experiments’ (mate-
rial scale models of the atmosphere) involving water tanks. The latter com-
parison suffers from a reliability2 problem related to the water tanks.
However, the water tanks need not adequately represent the atmosphere,
since the ‘turbulence intensity’ (a measure of how turbulent a flow is) in the
tank is much smaller than the turbulence intensity in the atmosphere. Since
the group of atmospheric scientists was not satisfied with the way experi-
ments and observations had been used in the past to evaluate les models,
they proposed three guidelines for evaluating models based on experiments
or observations.

Since these guidelines have a broader applicability, not restricted to les

models alone, they will be given a more general formulation here. The first
guideline is the following: design field observations or laboratory experi-
ments specifically to test details of your model. The fact that often only exist-
ing data is used limits the strength and precision of statements that can
be made about the reliability1 of parts of a model and about the areas where
improvement is needed. The second guideline is: be clear on what constitutes
a significant difference between model and observations and take the accu-
racy of the measurements into account (also valid in the case of existing data
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being used). This must prevent scientists from either erroneously accepting
or rejecting the model as accurate for the quantities of interest. Finally, the
third guideline is: base a test of your model particularly on quantities that
constitute relevant outcomes of your model. For if, for example, les models
were evaluated on the basis of quantities that are also generated by much sim-
pler models, the potential ‘added value’ of the les models – the possibility of
providing detailed information about turbulent flows, which constitutes the
main reason why the models are used – would not be assessed.

3.6.3 Agreement of simulations among each other

If the result of a simulation is replicated by another simulation, then the ori-
ginal simulation can be considered to have become more reliable2, depend-
ing on how the other simulation was done and how reliable2 the other simu-
lation is. One strategy simulationists may follow to increase the methodo-
logical strength of their simulations is to relate the results of their simula-
tions to the results of other simulations of similar processes. The third type
of reproducibility (discussed in section 2.3.3), the reproducibility of the re-
sult of a simulation, or replicability, is a very important type of reprodu-
cibility in simulation practice.15

3.6.4 Peer consensus on the results of simulations

The consensus about the results of a simulation can be determined via peer
review, which is a mechanism for quality control in science. The role of peer
review in determining the reliability2 of one’s conclusions is well-established.
Popper, for instance, emphasised the importance of peer review. His philoso-
phy of falsification, introduced in Chapter 2, features a sensitivity to the fact
that falsification is not a matter of simply applying an algorithm. Popper ad-
mitted that in scientific practice, while the idea of falsification is based on a
simple logical scheme, it needs judgment by experts.16 For simulation mod-
els this means that a conclusive disproof of a simulation model is impossible,
since either the experimental results with which it is compared may be
judged to be unreliable1 or the discrepancies may be considered unimpor-
tant. In the latter case, the discrepancies may be assumed to disappear with
new versions of the simulation model, for instance. Popper was aware of the
fact that it is our decisions which settle the fate of theories – or models, for
that matter – and that ‘this choice is in part determined by considerations of
utility’ (Popper 1959: 108). ‘From a rational point of view’, we should never
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definitively embrace any theory, but we should ‘prefer as basis for action’ the
best-tested theory (Popper 1979: 22). The best-tested theory is the one which,
‘in the light of our critical discussion, appears to be the best so far’ (Popper
1979: 22). Critical discussion, not only with respect to science, but more gen-
erally, thus represents the core of Popper’s philosophy of critical rationalism.
The methodological advice that can be derived from his critical rationalist
position is the following: Make active use of peer review and critical discus-
sion of your model.

3.7 Value diversity in simulation practice

In Chapter 2, I introduced two types of epistemic values (general epistemic
values and discipline-bound epistemic values) and two types of non-
epistemic values (socio-political values and practical values) that play a role
in simulation practice. The sixth dimension of uncertainty is the value diver-
sity reflected in the different assumptions made in simulations. Simu-
lationists often have considerable freedom in making choices with respect to
the conceptual and mathematical model; the model inputs; the technical
model and the processing of output data and their interpretation. These
choices are made either implicitly or explicitly. They have a subjective com-
ponent and may be influenced by epistemic and non-epistemic values held
by the simulationist. The choices thus have a potential to be value-laden. If
the value-ladenness is indeed high for specific elements of the assessment
and the results are significantly influenced by the value-laden choices made,
then the simulation results are also value-laden. This is for instance the case
for climate models that employ the unphysical ‘flux adjustment’, which has
a significant influence on the results (see Chapter 5). The presence of
value-laden assumptions is then also reflected in the other dimensions of
uncertainty (e.g., scenario uncertainty and unreliability2 with respect to the
assumed model structure in models that include flux adjustment).

In some cases, the scope and robustness of the conclusions of the study
may be limited, that is, ‘biased’,17 by this value-ladenness. Although smaller
groups of experts may make value-laden assumptions more easily without
questioning them, whole disciplines may also have particular biases.
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3.8 The uncertainties of simulation and experimentation compared

In Chapter 2 it was observed that both simulation and experimental practices
involve models of the outside world (mathematical models in simulation
practice and material models with theoretical interpretations of the phenom-
ena in experimental practice). Thus both practices are confronted with the
various types of uncertainties in models. More generally, many of the sources
of uncertainty located in Hacking’s category of ‘ideas’ are similar for experi-
ments and simulations. In both cases, the theoretical concepts and models
used may be more or less reliable1, and errors may be made in the interpret-
ation of the outcomes (see my discussion of ‘marks’ in section 2.3.4), leading
to erroneous theoretical conclusions (cf. Hon 1989). This similarity is often
not acknowledged in controversies on the reliability of experiments versus
the reliability of simulation, such as the ones exemplified in Chapter 1.18 Often
these models remain hidden from view, which can then obscure the fact that
the results of measurements are sensitive to modelling assumptions.

The main difference between simulation and experimentation is that
there is no physical nature present that is under study in simulation labora-
tories, while there is in experimental ones. We can conclude that this gives
rise to an additional uncertainty in experimentation: due to disturbing pro-
cesses the target may behave differently from the way expected. While in sim-
ulations the consequences of our mathematical models may be unexpected
and ‘surprise’ us, we may be ‘confounded’ (Morgan 2003: 221) by the behav-
iour of the natural processes that differs from what we expected. According to
Morgan, ‘this suggests that material experiments have a potentially greater
epistemological power than nonmaterial ones’ (Morgan 2003: 221). In simu-
lation we may erroneously decide not to include particular processes in a
model and not be immediately confronted with the consequences of this
omission. In experimentation, however, such processes can directly interfere
with the experiment. Still, I maintain that the uncertainties in experimenta-
tion are not necessarily smaller than the uncertainties in simulation and that
in particular cases simulations are more reliable than available experiments.

3.9 Conclusion

By extending Funtowicz and Ravetz’s (1990) typology of uncertainty and
combining it with the elements of simulation practice identified in Chapter 2,
I have arrived at a more complete account of the types of uncertainty that play
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a role in simulation practice. The notion of ‘uncertainty’ developed here is
broader than statistics. While statistical uncertainty – which is the main focus
of theorists of error statistics of experimentation such as Mayo – constitutes
an important type of uncertainty, there are many more dimensions of uncer-
tainty that are relevant in scientific practice. Of all typologies of uncertainty
presented in the literature, the typology of uncertainty presented by Janssen
et al. (2003) comes closest to my typology.19 While some authors use the con-
cept of ‘uncertainty’ in a more narrowly defined sense, and distinghuish it
from the concept of ‘risk’20 (statistical uncertainty in my typology: we know
the odds of events) and ‘indeterminacy’ (ontic uncertainty in my typology:
variability), I have subsumed these concepts under a wider concept of ‘uncer-
tainty’.21 The dimensions of methodological unreliability and value diversity
are also included in the typology. However, the notion is not so broad as to en-
compass ‘pure ignorance’ (we don’t know what we don’t know).21

I claim that this typology is applicable to all instances of scientific simula-
tion. In Part ii of this study, I will illustrate how this typology can be used to
characterise the uncertainties involved in simulating climate.
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Chapter 4

Assessment of simulation uncertainty for
policy advice

4.1 Introduction

The results of the previous two chapters, which apply to the use of simulation
in science, are also relevant for the provision of policy advice based on scien-
tific simulations. Although most scientific simulations of nature are not used
in policy making, and policy advice is often given without using simulation,
there are many important examples of policy making that do rely on simula-
tion outcomes. One of the prime examples is that of climate change, dis-
cussed in Part ii of this study. Other examples are: biodiversity loss; pollution
of soil, water and air; the design and management of nuclear weapons; the
changes and spread of animal viruses (e.g., ‘bird flu’); automobile passenger
safety; etc.

Society as a whole and policy makers in particular are often confronted
with policy problems that involve significant uncertainties that are typically
not diminished by the use of simulations. In fact, some of the questions
which are asked of science in such cases ‘cannot be answered by science’
(Weinberg 1972) – that is, even though the questions can be scientifically for-
mulated, the uncertainties are too large to answer those questions unequivo-
cally. Typically, many different answers can be produced by applying differ-
ent simulation models to the policy issue. It thus becomes crucially im-
portant to know what can be expected from scientific advice, and how the plu-
rality of plausible models should be dealt with.

In this chapter, I will study the process of ‘assessment’ of simulation un-
certainty for the purpose of providing information to policy makers and other
societal actors involved in policy problems. I will use the following definition
of ‘assessment’:

‘Assessment’ is the analysis and review of information derived from re-
search in order to help someone in a position of responsibility to evaluate
possible actions, or to think about a problem. It does not usually entail
doing new research (van der Sluijs et al. 1998: 291).



I will argue that by thoroughly assessing computer-simulation uncertainty
and including reflection on the uncertainties in policy advice, simulation can
play a meaningful role in policy making. A similar argument was developed
by Silvio Funtowicz and Jerry Ravetz (e.g., 1990; 1991; 1993). The aim of
their work is to improve the decision-making process by introducing into the
policy-advisory process appropriate information about the uncertainty and
quality of the underlying science (‘science providing advice to policy’ can be
called ‘science-for-policy’ in short).1 In the Prologue to their book, this aim is
set in the following context:

There is a long tradition in public affairs which assumes that solutions to
policy issues should, and can, be determined by ‘the facts’ expressed in
quantitative form. But such quantitative information, either as particular
inputs to decision-making or as general purpose statistics, is itself becom-
ing increasingly problematic and afflicted by severe uncertainty. Previ-
ously it was assumed that Science provided ‘hard facts’ in numerical form,
in contrast to the ‘soft’, interest-driven, value-laden determinants of poli-
tics. Now, policy makers increasingly need to make ‘hard’ decisions,
choosing between conflicting options, using scientific information that is
irremediably ‘soft’ (Funtowicz and Ravetz 1990: 1).

In Funtowicz and Ravetz’s analysis, the ‘softness’ of the scientific informa-
tion about many pressing policy problems is a consequence of the fact that we
cannot draw on knowledge gained from experiments but instead must use
uncertain knowledge from simulation:

Science cannot always provide well-founded theories based on experi-
ments for explanation and prediction, but can frequently only achieve at
best mathematical models and computer simulations, which are essen-
tially untestable. On the basis of such uncertain inputs, decisions must be
made, under somewhat urgent conditions (Funtowicz and Ravetz 1991:
139; cf. Funtowicz and Ravetz 1990: 7).

In Chapter 3 of this study it was concluded that it cannot generally be stated
that simulation is less certain than experimentation. Hence, Funtowicz and
Ravetz’s suggestion that experiments always lead to certain knowledge
(‘well-founded theories’) is wrong. Still, for the particular cases discussed by
Funtowicz and Ravetz – e.g., very complex environmental issues – experi-
mentation is impossible and the question of the uncertainty of simulation is
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pressing indeed. Since policy makers are usually not themselves able to judge
the uncertainty of scientific simulation-model outcomes, scientific policy ad-
visers must carefully weigh how to present their conclusions.2

Simulation models of ecological systems, for example, although they may
give an impression of how such systems behave and as such can suggest rea-
sons for taking policy measures, cannot reliably predict the future states of
these open and unpredictable systems. In order for policy makers and others
involved in the policy making process to be able to evaluate the simulation re-
sults, it is thus important that modelling assumptions are made transparent.
In this chapter it will be argued that for reasons of acceptability to decision
makers and of representativeness to different perspectives, it would be best if
in concrete problem contexts, the relevant policy communities were involved
in the framing of the models (what questions to address, where to put the sys-
tem boundaries, etc.), in the choice of the models, and in the evaluation of the
models. Simulation can then assist in the organisation of knowledge, stimu-
late mutual learning processes and contribute to the integration of different
perspectives on the problem (Haag and Kaupenjohann 2001: 57). Currently,
this situation must still be regarded as an ideal, however. Simulation uncer-
tainties do not often get the airing in policy advice that they deserve. One ex-
planation is that scientific advisers are usually not asked by policy makers,
politicians and other actors to dwell on the uncertainties and treat them expli-
citly. For this reason, van Asselt and Petersen (2003) urged policy makers to
be less ‘afraid of uncertainty’ and to stimulate policy advisers to communi-
cate with them about uncertainties.

This chapter deals with the questions of why and how simulation uncer-
tainty should be assessed and communicated in science advice to policy. Of
course, not all areas of policy making that involve advice derived from scien-
tific simulation face the same level of uncertainty. After introducing the
‘sound science’ debate and the concept of ‘post-normal science’, therefore a
distinction between four types of policy problems will therefore be made.
Simulation plays different roles in these different types of policy problems;
and different demands are made on uncertainty assessment and communi-
cation. Subsequently, a general methodology for assessing and communicat-
ing simulation uncertainties in science-for-policy will be outlined.
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4.2 The ‘sound science’ debate

One area for which it is crucial that policy advisers carefully weigh their con-
clusions with respect to uncertainties is that of environmental policy making.
This can be demonstrated by looking at the American ‘sound science’ debate,
which has some parallels to the Dutch episode on the purported overreliance
on simulation reported in Chapter 1.3 In 1995, u.s. politicians – to be precise,
the Republican majority of the House of Representatives – launched a stun-
ning attack on the integrity of environmental scientists. In Hearings before
the Committee on Science the politicians had given ‘sceptics’ on environ-
mental issues, such as the ozone hole and human-induced global warming, a
prominent role to deliver testimonies to the effect that the consensus state-
ments by the majority of scientists on these issues were not based on ‘sound
science’. The sceptics said that the incriminated environmental scientists
had only been able to deliver model results that merely provided illusions
about environmental problems. No real hard evidence had been given in the
form of observations, according to the sceptics’ judgements. Confirmed by
these sceptics in their already-formed resolution to block the process of envi-
ronmental policy making, the House majority was able to pass legislation
that demanded a basis in ‘sound science’ (understood as based on observa-
tions alone) for any new environmental legislation.

Although the legislation did not make it through the Senate, the ranking
minority member of the Committee on Science, the late Representative
George E. Brown, Jr. was deeply worried about this attack on the reliability of
environmental science:

This inordinate reliance on a single source of scientific understanding
[i.e., observational data] is part of a broader view that the ‘sound science’
needed before regulation can be justified is science which somehow
proves a proposition to be ‘true’. This is a totally unrealistic view both of
science’s present capabilities and of the relationship between data and
theory in the scientific method. Not coincidentally ... this approach to sci-
ence can lead to near paralysis in policy making (Brown 1996).

Here Brown’s worries concerned not only the political views of the Repub-
licans (which he considered legitimate as views that could be aired in the
political arena), but even more their ‘misunderstanding’, as Brown called it,
of science. Brown said he wanted to defend science against the kind of politi-
cisation practised by the Republicans. According to Brown, politicians should
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trust the consensus that is presented by the majority of the scientists. He
thought this trust could be granted to science, since it arrives at this consen-
sus through an ‘objective’ process of peer review mechanisms:

Skepticism is an inherent part of the scientific perspective; scientific
knowledge grows only through a process of continual questioning. The
central accepted core of our scientific knowledge is the cumulative result
of centuries of resolving scientific questions through observation, testing,
and open and rigorous scientific peer review. The consensus that has
emerged from this process deserves respect as our best effort to under-
stand and explain the physical world. Like Winston Churchill’s democracy
[which is the least bad form of government, acp], peer-review is not a per-
fect process, but it is the best that we have (Brown 1996).

The Republicans who were attacked by Brown showed ‘a systematic aversion
to the use of theory, models, and other sources of scientific knowledge to pro-
vide a full understanding of observed data’, at odds with their role in scientific
practice, as confirmed through the mechanism of peer review, according to
Brown. From the analysis presented in this study, we must conclude that
Brown relied too much in his statement on the possibility of arriving at con-
sensus on the simulation of complex environmental systems. However, he
was right about the fact that modelling is pervasive in science.

Some philosophers of science have taken a clear stance in the sound sci-
ence debate and supported the Democrats’ criticism of the Republicans. One
line of argument is to claim that there are no philosophically relevant differ-
ences between simulation and experimentation, and hence that the presenta-
tion by the Republicans of experiment and simulation as opposites is mis-
guided. Here is, for example, the central claim of a publication by Stephen
Norton and Frederick Suppe:

Simulation modeling is just another form of experimentation, and simu-
lation results are nothing other than models of data. Thus, the epistemo-
logical challenges facing simulation models are, at bottom, identical with
those of any other experimental situation involving instrumentation
(Norton and Suppe 2001: 92).

I disagree with this claim, however. Norton and Suppe overemphasize the
similarities between simulation and experimental practice, which can partly
be attributed to the case study they analysed (involving a simulation model as

Assessment of simulation uncertainty for policy advice 69



part of a measurement apparatus). Yet the sources of uncertainty in the two
practices are not the same, as was demonstrated in Chapter 3. If philosophers
want to provide a useful contribution to the sound science debate, they will
need to use other arguments. My strategy will be to show that although the
uncertainties associated with simulating complex environmental problems
are too large to answer many policy questions unequivocally, by conscien-
tiously assessing and communicating these uncertainties (and comparing
them with the large uncertainties associated with observational data) a sensi-
ble use of simulation results in policy making is possible.

4.3 The challenge of post-normal science

Different views exist on the role of science in policy. Yaron Ezrahi (1980)
identified two main views: the ‘utopian rationalist’ and the ‘pragmatic ratio-
nalist’ view. The ‘utopian rationalist’, or ‘technocratic’ ideal of science advice
entails that the policy-making process should assimilate scientific informa-
tion to a maximum extent. This ideal reflects the notion of science speaking
‘value-free’ truth to political power that gained institutional currency in the
nineteenth century. The notion of value-free science itself was based on the
expectation that the impartiality and objectivity of scientists could help to
overcome political conflict (Proctor 1991). In the twentieth century, however,
it became clear both that science cannot be value-free and that politics deals
increasingly often with issues that are clouded with uncertainty, including
value diversity. The presence of conflict among scientists, both epistemic and
social, makes it hard to provide politicians with neutral advice. As was argued
in Chapter 3, there is often considerable room for scientists and policy ana-
lysts to make choices in the assumptions of the analysis, e.g., where simula-
tions are used, simulationists make choices in the conceptual and mathemat-
ical model, the model inputs, the technical model implemenation and the
processing of the output data and their interpretation.

Apart from the ‘utopian rationalist’ model, Ezrahi identified a ‘pragmatic
rationalist’, or ‘democratic’ ideal of science advice which accepts, within
limits, the inevitability of political ingredients in science advice. Pragmatic
rationalism considers technocratic policies to be fallible. Science can then
contribute to political debate by representing different legitimate perspec-
tives on policy problems. According to Ezrahi, the two models of science ad-
vising are not mutually exclusive, but each model is most fruitfully applied in
different types of policy problems.4 From the perspective of those favouring
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technocratic politics, the requirement that policy problems should become
democratised may seem to be a hindrance for policy making. But from the
perspective of those who favour participatory politics and a more reflective
way of defining policy problems, the political condition in which we find our-
selves when science cannot be ‘speaking truth to power’ (Price 1965) may be
considered an opportunity for the democratisation of both the scientific ad-
visory process and politics in general. This democratisation could start from a
renewed awareness that it is inevitable that political decisions will be made
under conditions of uncertainty:

To be political is to have to choose – and, what is worse, to have to choose
under the worst possible circumstances, when the grounds of choice are
not given a priori or by fiat or by pure knowledge (episteme). To be political
is thus to be free with a vengeance – to be free in the unwelcome sense of
being without guiding standards or determining norms, yet under an
ineluctable pressure to act, and to act with deliberation and responsibility
as well (Barber 1984: 121).

Scientists – or philosophers, for that matter – cannot deduce the norms that
should govern political decision making from empirical research or pure
thought. The key concepts of democratic politics are ‘deliberation’ and ‘re-
sponsibility’. Scientists and philosophers can, of course, take part in these de-
liberations, but they have a responsibility to consider the perspectives of
other citizens.

Sheila Jasanoff, in her study on the role of several American advisory
committees on risks (Jasanoff 1990), rejects both the ‘technocratic’ model
and its typical ‘democratic’ critique. The ‘technocrats’ argue for deference to
the scientific community when technical matters have to be decided upon (or
alternatively, they claim that technical material used in policy making must
undergo rigorous peer review by the scientific community). The main prob-
lem with their conception of scientific advice is that technical issues typically
cannot be depoliticised without causing controversy, since many of the issue
are value-laden. The ‘democrats’, on the other hand, argue for a better incorp-
oration of different societal values in science-based decision making. They
demand that memberhip of scientific advisory committees should be opened
up to include different – not necessarily technical – viewpoints. Jasanoff con-
cludes from her study of scientific advisory committees connected to u.s. ad-
ministrative agencies that ‘it is crucial for claims certified by agency advisers
to be persuasively labeled “science”’ (Jasanoff 1990: 244). The ideal scientific
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adviser is an esteemed scientist, who ‘not only transcends disciplinary
boundaries and synthesizes knowledge from several fields but also under-
stands the limits of regulatory science and the policy issues confronting the
agency’ (Jasanoff 1990: 243). From a democratic point of view, the precondi-
tion of the legitimacy of scientific policy advice then is that the advisers, who
necessarily excercise political judgment when they give scientific advice,
must act as citizens who are free to make their own choices (cf. Barber 1984:
127). The advisers must thus be responsive to the fact that different societal
and political actors may have different perspectives on the underlying uncer-
tainties, and it is important that they integrate these perspectives within the
advisory process. As a corollary, interest groups should not be directly repre-
sented in scientific advisory committees.5 According to Jasanoff, instead of
speaking truth to power, scientific advisers may still hope to deliver what she
calls ‘serviceable truth’, which she defines as advice that is, on the one hand,
scientifically acceptable and able to support reasoned decision making, and,
on the other hand, reflecting the scientific uncertainties.

How scientists and policy makers interact at the interface between sci-
ence and policy has been studied empirically in terms of the ‘boundary work’,
through which the boundary between science and policy is maintained (e.g.,
Gieryn 1999; Jasanoff 1990). The main conclusion of these studies is that it
is impossible to find stable criteria that absolutely distinguish science from
non-science, e.g., politics. Many social scientists who have studied the rela-
tionship between the practices of science and decision making have indeed
concluded that these two categories of activities cannot be neatly separated
(e.g., Jasanoff and Wynne 1998).

An example may serve to illustrate this point. The ongoing scientific as-
sessment process of the climate change issue that is conducted by the Inter-
governmental Panel on Climate Change (ipcc) receives questions from
and feeds back into the United Nations Framework Convention on Climate
Change (unfccc). Due to widely publicised warnings from scientists in the
1980s, the public in Western democracies became interested in the risks in-
volved in an enhanced greenhouse effect induced by anthropogenic emis-
sions of co2, leading to a human-induced global warming and its associated
effects, such as sea-level rise. The attribution of climate change to human in-
fluences and the projections of climate change into the future have made
heavy use of climate simulations. Since the societal changes implied by the
different solutions proposed for solving the global warming problem are
quite drastic, one of the first steps politicians took to address the problem was
to ask scientists to regularly assess the state of climate science, as well as the
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possibilities for societal adaptation to climate change and mitigation of the
problem by reducing anthropogenic greenhouse-gas (mostly co2) emissions.
This led to the establishment of the ipcc in 1988.6 The advisory process in-
volving the ipcc is regarded by many social scientists as being a ‘co-produc-
tion’ of, on the one hand, our knowledge about the climate system and, on the
other hand, the international political order. This is reflected by the institu-
tional ties between the ipcc and the unfccc and by the kind of knowledge
that is produced by the ipcc:

The ipcc’s efforts to provide usable knowledge resonated with the belief
of sponsoring policy organizations that climate change is a manageable
problem within the framework of existing institutions and cultures
(Jasanoff and Wynne 1998: 37).

The processes which lead to ‘usable knowledge’ being delivered by the ipcc

and which involve boundary work will be closely scrutinised in Chapter 7.
The mutual reinforcement of scientific assessment and political decision

making seems to be a common feature of environmental assessment. A sec-
ond example of this phenomenon comes from an analysis by Peter Haas,
who has studied the development of the Mediterranean Action Plan, or ‘Med
Plan’. The Med Plan was agreed upon in 1975 and was implemented in the
succeeding decades. It is a regional environmental cooperation for dealing
with the issue of marine pollution in the Mediterranean. The information
underlying the Med Plan suffers from uncertainties in ecotoxicological sim-
ulations, among other uncertainties. The main scientists and policy makers
involved in the Med Plan, however, ‘shared an abiding belief in ecological
principles and were committed to preserving the physical environment,
which they thought was threatened by pollution’ (Haas 1990: 74-75). These
ecological principles were partly derived from theoretical ecological com-
puter simulations that are used to study the behaviour of complex ecological
systems. The significant uncertainties associated with these simulations are
hardly aired in the convention and protocols of the Med Plan.7 They were
dealt with by the actors involved at an unreflective level. Haas shows that an
‘ecological epistemic community’ of professionals had been involved in both
the scientific assessments and the formation of the plan.8 An ‘epistemic
community’ consists of professionals who believe in the same cause-and-
effect relationships and share common values (Haas 1990: 55). In the 1970s,
system-dynamical metaphors about ecology had gained currency in the pol-
itical domain (cf. Kwa 1987). The shared beliefs in ecological principles were
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thus spread outside science, facilitating the mutual reinforcement of scien-
tific assessments and policy making in the example of the Med Plan. This is
illustrated by the fact that during the early negotiations at the beginning of
the 1970s, the membership of the ‘epistemic community’ included, aside
from the leadership of the United Nations Environment Programme
(unep):

members of the Greek government, French modelers and systems scien-
tists, unesco [United Nations Educational, Scientific and Cultural Or-
ganization] bureaucrats, fao [Food and Agriculture Organization] law-
yers, and individuals in the Israeli, Spanish, and Egyptian governments
(Haas 1990: 75).

The professionals who shared their beliefs in ecological principles were thus
located within and outside of science. The authority of the scientists within
this epistemic community was not questioned by actors outside the ‘epi-
stemic community’, even though the uncertainties were large. According to
Haas, ‘epistemic communities’ are particularly effective in influencing policy
making in issue areas where uncertainty is high:

As these types of issues with a high degree of uncertainty gain in salience
for leaders – as is indeed the case – there is a greater range of influence for
epistemic communities that possess authoritative claims to understand-
ing the problems; analyzing them is also more useful (Haas 1990: 246).

According to Haas, there were no industry challenges to the decisions made
by the experts, mainly because at the time the Med Plan was agreed the coun-
tries of the European Economic Community (eec) already had an eec direc-
tive in place. Furthermore, the public was not very interested in marine is-
sues (Haas 1990: 163). In sum, in the case of the Med Plan there was no per-
ceived need to explicitly address simulation uncertainties in the policy
process.

In international environmental policy making, the explicit acknowledge-
ment of uncertainty in the science that is used to underpin policy has become
more frequent over the past two decades. The rise to prominence of the ‘pre-
cautionary principle’ marks a reflective transition of governments’ attitudes
toward scientific uncertainty. The World Commission on the Ethics of Scien-
tific Knowledge and Technology (comest) of unesco offers the following
‘working definition’ of this principle:
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When human activities may lead to morally unacceptable harm that is sci-
entifically plausible but uncertain, actions shall be taken to avoid or
diminish that harm (unesco 2005).

The principle urges politicians to take measures even when uncertainty
about a problem still exists, provided that scientific analysis has taken place
and uncertainties have been thoroughly assessed.9 From the end of the
1980s, the significant scientific uncertainties surrounding large-scale and
high-impact environmental problems, such as biodiversity loss and climate
change, started to become explicitly referred to in policy documents, in com-
bination with references to the precautionary principle.

The special challenges facing experts under conditions of high societal
stakes and high scientific uncertainty, such as have become evident in the
area of climate change, were also identified in the area of risk assessment in
the mid-1980s.10 Recognising that the interactions between science and pol-
icy making on risks were often unproductive in cases where the decision
stakes and system uncertainty are very high (in the case of nuclear energy, for
example), Funtowicz and Ravetz proposed distinguishing a new type of risk
assessment called ‘total-environmental assessment’ (Funtowicz and Ravetz
1985: 228). This is a form of risk assessment in which the ‘total environment’
– that is, the complete context – of a risk issue is taken into account as much
as possible. This kind of risk assessment is appropriate for cases with high
decision stakes and system uncertainty.11 Funtowicz and Ravetz (1985:
228-229) describe the ‘methodology’ of ‘total-environmental assessment’ as
follows:

[It] is permeated by qualitative judgments and value commitments. Its
result is a contribution to an essentially political debate on larger issues,
though no less rational in its own way for that. The inquiry, even into tech-
nical questions, takes the form largely of a dialogue, which may be in an
advocacy or even in an adversary mode.

In very polarised settings, the least one can hope for, according to Funtowicz
and Ravetz (1985: 229) is a ‘consensus over salient areas of debate’.

According to Funtowicz and Ravetz, structural changes in the direction of
enhanced participation are needed in order to democratise scientific advisory
proceedings. For this reason, they have generalised their original normative
view on risk assessment into a sweeping normative statement on the future
of science-for-policy:
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Now global environmental issues present new tasks for science; instead of
discovery and application of facts, the new fundamental achievements for
science must be in meeting these challenges. ... In this essay, we make the
first articulation of a new scientific method, which does not pretend to be
either value-free or ethically neutral. The product of such a method, ap-
plied to this new enterprise, is what we call ‘post-normal science’ (Fun-
towicz and Ravetz 1991: 138).

While Funtowicz and Ravetz first wrote about ‘risk assessment’, they thus
subsequently applied their analysis to ‘problem-solving strategies’ more gen-
erally. The problem-solving strategy that they call ‘post-normal science’ (or
‘second order science’) corresponds to the ‘total-environmental’ method of
risk assessment applied to global environmental issues, among other prob-
lems (Funtowicz and Ravetz 1991: 137, 144-145).12

Which institutions could facilitate the application of the strategy of
post-normal science to complex policy problems? In the literature, the ipcc

has been identified as comprising elements of post-normal science (Bray and
von Storch 1999; Saloranta 2001). The ipcc has also been considered as a
‘boundary organisation’ (Guston 2001; Miller 2001). David Guston provides,
as a definition of ‘boundary organisations’, that they meet the following three
criteria:

first, they provide the opportunity and sometimes the incentives for the
creation and use of boundary objects and standardized packages; second,
they involve the participation of actors from both sides of the boundary as
well as professionals who serve a mediating role; third, they exist at the
frontier of the two relatively different social worlds of politics and science,
but they have distinct lines of accountability to each (Guston 2001:
400-401).

‘Boundary objects’ are conceptual or material objects sitting between two
different social worlds, such as science and policy, and they can be used by
individuals within each for specific purposes without losing their own iden-
tity (Star and Griesemer 1989). An example is ‘climate sensitivity’ (the sensi-
tivity of climate to perturbation by greenhouse gases – defined as the tem-
perature change resulting from a doubling of the co2 concentration – that
can be determined using climate data and climate simulation). Climate
modellers use the concept of ‘climate sensitivity’ as a benchmark for com-
paring their models. Climate modellers who use simple models often use
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the ‘climate sensitivity’ simulated by more complex models as a model
parameter. And for policy makers and advisers, ‘climate sensitivity’ provides
a ‘window’ into the world of climate modelling (van der Sluijs et al. 1998:
310). Surprisingly, given the large uncertainties associated with determining
‘climate sensitivity’, the uncertainty range has remained constant at 1.5 to
4.5°C since the first assessment of climate sensitivity, by the u.s. National
Academy of Sciences in 1979. As van der Sluijs et al. (1998) show, many dif-
ferent interpretations have been given to this range, both statistical and
non-statistical (scenario: ‘what-if’) interpretations, which prompted them to
call this boundary object an ‘anchoring device’ and study the social causes of
retaining the consensus range of 1.5 to 4.5°C. ‘Standardised packages’ are
more broadly defined than ‘boundary objects’. They ‘consist of scientific the-
ories and a standardised set of technologies or procedures and as a concept
handle both collective work across divergent social worlds and ‘fact stabilisa-
tion’ (Fujimura 1992). To take again the example of climate change: stand-
ardised packages can be found in the conceptualisation of climate change
and the establishment of a thriving line of climate research in coordination
with climate-policy making.

An alternative definition of ‘boundary organisations’ is provided by Clark
Miller, who pleads that, especially in the study of the boundary between sci-
ence and politics at the international level, we should not focus on structure
but on process and dynamics. According to Miller, boundary organisations
are organisations that take part in ‘hybrid management’, with ‘hybrids’ being

social constructs that contain both scientific and political elements, often
sufficiently intertwined to render separation a practical impossibility.
They can include conceptual or material artifacts (e.g., the climate system
or a nuclear power plant), techniques or practices (e.g., methods for attrib-
uting greenhouse gas emissions to particular countries), or organizations
(e.g., the sbsta [scientific and technological body of the climate conven-
tion, acp] or the Intergovernmental Panel on Climate Change) (Miller
2001: 480).

Hybrid management activities are not necessarily limited to work carried out
in boundary organisations.

In this chapter I will show that the Netherlands Environmental Assess-
ment Agency (mnp) can be considered an example of an organisation that is
both structured as a boundary organisation (Guston) and features processes
of hybrid management (Miller). The latter becomes evident from the adop-
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tion of specific procedures to take up the challenge of post-normal science
(Funtowicz and Ravetz), that is, of providing responsible scientific policy
advice under conditions of high stakes and high uncertainty, as will be de-
scribed below. In part ii, the ipcc will also be shown to have the structure of
a boundary organisation and the features of hybrid management. My gen-
eral claim is that boundary organisations between science and policy can be
effective institutions to take up the challenge of post-normal science, but
that it depends on the specific procedures adopted whether the assessment
and communication of simulation uncertainty are done adequately and
responsibly.

4.4 The role of simulation uncertainty in policy advice

From studies in political science, one can conclude that not all instances of
science-for-policy are as dramatic as the ‘post-normal science’ cases of the
complex environmental problems addressed by Funtowicz and Ravetz. The
way simulation uncertainties should be dealt with differs according to the
policy-problem types, and therefore it is important for both scientific advis-
ers and policy makers to reflect on the type of policy problem that they are
facing. The kind of boundary work and the level of interaction between sci-
ence and policy differs according to (i) the level of scientific uncertainty and
(ii) the level of societal and political debate. The political scientist Yaron
Ezrahi (1980) distinguished between four types of policy problems, varying
in the level of agreement on the political objectives and on the scientific
knowledge relevant to the problem. In a particular policy domain there could
be a situation of:

1 agreement on political objectives with scientific consensus;
2 agreement on political objectives without scientific consensus;
3 scientific consensus and disagreement about political objectives; and
4 disagreement about political objectives coupled with scientific dis-

sensus.

Figure 4.1 shows a diagram featuring Ezrahi’s four types of policy problems,
with some additional characterisations proposed by Hisschemöller and Hoppe
(1996) and Hisschemöller et al. (2001). For each type of policy problem one
example is given in the diagram of a policy area in which simulations of
nature play a significant role.
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When agreement is assumed on the societal norms and values and on the re-
quired kind of knowledge in addressing the policy problem, the problem can
be called ‘structured’. Scientific advisers are then taken to be able to provide
unequivocal information to policy makers, which can unproblematically be
used in the policy process (the utopian rationalist model). An example of a
structured policy problem that involves scientific simulations is automobile-
safety regulation. In the case of automobile safety, simulations are used in
the execution of safety policy. For example, until the mid-1980s, regulators
only allowed automobile manufacturers to meet legal safety requirements by
performing laboratory crashes on instrumented production cars, at a cost of
hundreds of thousands of euros per test. Since the advent of reliable com-
puter simulations of car crashes, most of world’s automobile manufacturers
have supplemented their laboratory crash tests with supercomputer simula-
tions (Kaufmann and Smarr 1993: 157-159).
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At the other extreme, when there is acknowledgement of a clash of values
related to the problem and disagreement on what scientific knowledge
should be used to solve the problem, the problem is called ‘unstructured’ and
scientists may only serve as ‘problem recognisers’ (the pragmatic rationalist
model). In this situation, scientific advisers must base their authority on their
ability to assess and communicate uncertainty and analyse the different val-
ues and perspectives on the problem. Again, this is pictured here as an ideal:
it is not to say that scientific advisers can easily do this, nor that they need to
do it alone without involving policy makers, politicians, stakeholders and citi-
zens. The issue of climate change, to be discussed in Part ii of this study, con-
stitutes a prime example of this type of policy problem in which policy mak-
ers extensively rely on computer simulations of the climate system.

The typology of policy problems shown in figure 4.1 also allows for ‘in-be-
tween’ problems, which are called ‘moderately structured’ problems (either
knowledge or values are considered to be ‘structured’ for such problems).
Policies related to, for instance, ambient particulate matter (‘fine dust’),
which involve simulations of the spread and health risks resulting from the
emission of polluting substances, constitute an example of policies assuming
consent on the values and norms (‘ends’). On the one hand, the end goal of
the protection of human health is relatively undisputed, but, on the other
hand, policy makers have to deal with large uncertainties about emissions,
human exposure and the attribution of causal effects to individual species of
particles or other pollutants (Maas 2006).

An example of a moderately structured policy problem for which there is
consent on the possible solutions (‘means’) but widespread disagreement on
the political goals is the u.s. policy for maintaining the safety of nuclear
weapons in the stockpile. Although the u.s. has ceased nuclear testing, nu-
clear deterrence remains an integral part of u.s. defence policy and the u.s.
plans to maintain an arsenal of several thousand nuclear weapons for the
foreseeable future. America’s weapons laboratories – Los Alamos, Lawrence
Livermore, and Sandia – must now certify the reliability of old weapons and
train new weapons scientists without nuclear testing. Toward that end, the
Clinton Administration initiated a multi-faceted programme of ‘Science
Based Stockpile Stewardship’. Despite initial concerns about the reliability of
using computer simulations to determine the safety of the bombs in storage
(see Petersen 1999b), the Advanced Simulation and Computing program,
established in 1995, provided partially validated simulation models in 2004
to support the annual certification of the stockpile and to assess manufactur-
ing options; several warheads have now actually been recertified on that
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basis.13 These simulation models are judged reliable enough for the certifica-
tion of existing weapons. By proposing and subsequently developing a ‘vir-
tual’ testing capacity, scientists took on the role of ‘mediator’ between policy
actors who advocated the importance of maintaining nuclear arsenals and
policy actors who advocated a comprehensive nuclear test ban (and who were
not necessarily in favour of maintaining nuclear weapons).

To give a further example of the mediating role for scientific advisers: in a
recent report, the Netherlands Environmental Assessment Agency provided
a ‘mediating’ advice to the Dutch government in the area of risk manage-
ment. The government had encountered several risks which it had found dif-
ficult to decide upon in a structured policy-problem mode. Examples were
risks arising from (i) storage, use and transport of harmful substances, such
as liquid natural gas, (ii) airplane accidents, (iii) exposure to Legionella. Re-
sults from simulations are often used in the respective risk assessments,
which therefore have some simulation uncertainty associated with them.14

However, in these risk assessments the scientific uncertainties are not con-
sidered very policy relevant by the risk assessors. It is rather the societal val-
ues that are considered to be at stake. For instance, policy makers were re-
minded in the report that in cases where the cost of guaranteeing every Dutch
resident a particular protection level (determined by policy choices) is very
high, the political decision can be taken to either search for less expensive
forms of risk reduction or to accept a greater risk for specific risks (rivm/
mnp 2003: 6). The rationale a government can give for accepting higher risks
in a particular case is that the qualitative, socio-psychological characteristics
of risk are intrinsic components of the ‘risk’ concept, besides the likelihood of
harm or loss.15 Thus scientific advisers who take on a mediating role can,
through their risk assessments, contribute to a mediation between the differ-
ent social values pertaining to the risks. In principle, the actual mediation in
decision making is not carried out by the scientists, but by the legitimate deci-
sion makers. It is important for risk assessors to be aware of the fact that feel-
ings of citizens, and politicians, play a legitimate role in public decision mak-
ing on risk management (Slovic et al. 2004).16 In risk assessment, there are
thus roles for both scientists and societal stakeholders:

criteria for evaluating risks should be developed from the social discourse
about concerns, while the ‘objective’ measurement should be performed
by the most professional experts at hand (Klinke and Renn 2002: 1077).

Where the ‘facts’ are also uncertain, we face an ‘unstructured’ problem type.
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How to evaluate and manage risks should depend on the relative degrees
of complexity, uncertainty, and ambiguity of the risks (Klinke and Renn
2002).17 According to the sociologists Andreas Klinke and Ortwin Renn,
three strategies for dealing with risks are at our disposal: the classical risk-
based strategy in which we are able to work with numbers that characterise
the risk (Ezrahi problem type 1), the precaution-based strategy in which we
prudently deal with uncertainty and vulnerability (Ezrahi problem types 2
and 4) and the (participatory) discourse-based strategy which is needed in
cases where values are in dispute (Ezrahi problem types 3 and 4). Obviously,
discourse, both cognitive and reflective, also plays a role in combination with
the first two strategies. Stakeholders must be involved in making decisions
on how to classify a risk:

Obviously, one needs a screening exercise to position the risk in accor-
dance with our decision tree18 and to characterize the degree of complex-
ity, uncertainty and ambiguity associated with the risk under investiga-
tion. We would recommend a ‘risk characterization panel’ consisting of
experts (natural and social scientists), some major representatives of
stakeholders, and regulators who will perform this initial screening
(Klinke and Renn 2002: 1091).

This requires from regulators that they guard themselves against assuming
too quickly that a particular problem belongs to the ‘structured’ type (Ezrahi
problem type 1), since other actors may strongly disagree with that categorisa-
tion.

The typology of policy problems presented in figure 4.1 serves to identify
ideal types of policy problems and their implications for appropriately assess-
ing and communicating uncertainties. One must be aware that in practice, in
the course of dynamic policy processes, the policy makers’ and others’ views
of problems may shift into another problem type. This means that the typol-
ogy of policy problems shown in figure 4.1 should not be regarded as implying
a rigid categorisation of policy problems. Also at any given moment in time,
the categorisation is not necessarily unequivocal. Although one of the prob-
lem types may dominate the practice of policy making, different actors often
hold different views on the categorisation of a problem. Thus, typically, all
strategies associated with the different problem types can be observed. Due to
the dynamics of policy problems, dominant strategies and roles may shift.

Consider the nuclear weapons safety policy as an example of a change of
policy-problem type over time. Since the virtual testing capacity can also be
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used for developing new nuclear weapons, the question arises whether new
weapons will also be certified without real tests. Thus, scientific uncertainties
around nuclear weapons policies increase and the policy problem moves to
the unstructured category. Indeed, the current u.s. wish to achieve an
18-month underground nuclear test readiness19 can be interpreted as a judge-
ment on the limited reliability of simulating new nuclear weapons designs.
Of course, the political goal of developing new nuclear weapons is even more
controversial than the goal of maintaining existing stockpiles.

Collingridge and Reeve (1986) have given examples of policy problems in
which the assessment by the policy makers and scientists of the policy type
differed. Sometimes the expectations of scientists about their influence on
the policy process are set too high. From the technocratic viewpoint, science
often seems to have only a negligible influence on policy making. Colling-
ridge and Reeve have considered two modes for the relation between science
and policy. Firstly, a political consensus already exists, and supportive scien-
tific evidence is selectively used to legitimate policy, applying strategies re-
lated to Ezrahi’s type 2 problem and using scientists as advocates, while the
scientists aspire to be problem solvers (type 1 problem). Secondly, political
opponents keep arguing about technical details, continually deconstructing
each other’s scientific claims and not allowing external expertise to independ-
ently establish the plausibility of the different claims. The policy issue is then
framed as an unstructured problem (type 4), while the advisers may again as-
sume that they are dealing with a structured problem (type 1).

Now that we have identified the different roles simulation is able to play
in policy making, we can determine which types of uncertainty could be ex-
pected to play a significant role in the policy process. Advisers should give pri-
ority to assessing and communicating particularly those uncertainties. The
following types of uncertainty are important in the settings of the different
policy-problem types (Janssen et al. 2003: 11; van der Sluijs et al. 2003: 11-12):

1 if the problem is structured, statistical analyses and reporting of uncer-
tainty ranges are typically suitable strategies;

2 if the problem is moderately structured (ends), weaknesses in the
knowledge base and recognised ignorance become very relevant;

3 if the problem is moderately structured (means), the value-ladenness
of assumptions and scenario uncertainty particularly need to be
addressed;

4 if the problem is unstructured, recognised ignorance, weaknesses in
the knowledge base, and value-ladenness of assumptions all come to
the fore.



Particularly in the last type of policy problem (type 4, the unstructured prob-
lem), it is difficult for scientists to systematically assess and communicate
uncertainties; they are generally not trained to deliver advice under such cir-
cumstances. Funtowicz and Ravetz observed that when the stakes and uncer-
tainties are high (and hence the uncertainties are amenable to politicisation),
‘there are at present no mechanisms towards a consensus on such politicized
uncertainties’ (Funtowicz and Ravetz 1990: 15). With respect to the possible
solution that could follow from an improved management of uncertainty
within science-for-policy, they modestly conclude:

Any genuine attempt to improve the quality of scientific information as it
is used in the policy process must be undertaken with such political reali-
ties in mind (Funtowicz and Ravetz 1990: 16).

In the following section, a methodology to assess and communicate the ap-
propriate uncertainties is offered.

4.5 The RIVM/MNP guidance on uncertainty assessment
and communication

Governmental and intergovernmental agencies that provide scientific advice
to policy makers increasingly recognise that uncertainty needs to be dealt
with in a transparent and effective manner. The Netherlands Environmental
Assessment Agency (Milieu- en Natuurplanbureau, mnp) is an example of
an institution that interfaces science and policy by performing independent
scientific assessments and policy evaluations. The mnp is organised as a
boundary organisation, which becomes evident from
i the use of a standardised set of models that aim to integrate state-of-the-

art scientific knowledge and to be applicable to the evaluation of policy
proposals;

ii the participation of scientists and policy makers in the production of as-
sessment reports, the position of the agency within the government bu-
reaucracy (formally, the agency is a part of the Ministry for the Environ-
ment), the presence of the mnp director at those cabinet meetings for
which mnp reports are considered to give crucial input; and

iii regular scientific reviews of the quality of mnp work and consultation
with the government on the policy relevance of the annual work plan, thus
providing different lines of accountability to science and policy.
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The mnp is engaged in hybrid management: its assessments contain
both scientific and political elements. One area in which this becomes visible
is delineated by the procedures that the mnp has adopted for uncertainty as-
sessment and communication.

The Dutch Environmental Protection Act (Wet milieubeheer) has since
1994 contained a clause that demands that the mnp assesses and communi-
cates uncertainties in its environmental outlook reports.20 In response to the
media affair described in Chapter 1, the mnp has recently implemented a
comprehensive, multi-disciplinary approach to uncertainty assessment and
communication that applies to all types of assessments produced by the
mnp. This approach takes into account the societal context of knowledge pro-
duction and constitutes a major conceptual and institutional innovation.

Since the scientific assessments produced by agencies such as mnp have
to integrate information covering the entire spectrum from well-established
scientific knowledge to educated guesses, preliminary models, and tentative
assumptions, uncertainty cannot generally be remedied through additional
research or comparative evaluations of evidence by expert panels searching
for a consensus interpretation of the risks. The social studies of scientific ad-
vice mentioned in the previous sections show that for many complex prob-
lems, the processes within the scientific community, as well as between this
community and the ‘external’ world (policy makers, stakeholders and civil
society), determine the acceptability of a scientific assessment as a shared
basis for action. These processes concern, among other things, the framing
of the problem, the choice of methods, the strategy for gathering the data,
the review and interpretation of results, the distribution of roles in know-
ledge production and assessment, and the function of the results in the pol-
icy arena. Although assumptions underlying the design of these processes
are still rarely discussed openly within or outside mnp, they are important
for the knowledge produced by the agency becoming either ‘contested’ or
‘robust’.

The mnp acknowledges that it is not enough to analyse uncertainty as a
‘technical’ problem or merely seek consensus interpretations of inconclusive
evidence. In addition, the production of knowledge and the assessment of
uncertainty have to address deeper uncertainties that reside in problem fram-
ings, expert judgments, assumed model structures, et cetera. Particularly in
studies of the future, for which computer simulation is often used, we must
recognise our ignorance about the complex systems under study. Verifica-
tion and validation of these computer models is impossible, and confirm-
ation is inherently partial.
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Foci Key issues

Problem framing Other problem views; interwovenness with other problems;
system boundaries; role of expected results in policy process;
relation to previous assessments

Involvement of
stakeholders

Identifying stakeholders; their views and roles; controversies;
mode of involvement

Selection of
indicators

Adequate backing for selection; alternative indicators; support
for selection in science, society, and politics

Appraisal of
knowledge base

Quality required; bottlenecks in available knowledge and
methods; impact of bottlenecks on quality of results

Mapping and
assessing relevant
uncertainties

Identification and prioritisation of key uncertainties; choice of
methods to assess these; assessing robustness of conclusions

Reporting
uncertainty
information

Context of reporting; robustness and clarity of main messages;
policy implications of uncertainty; balanced and consistent
representation in progressive disclosure of uncertainty infor-
mation; traceability and adequate backing

Figure 4.2 Foci and key issues in the Guidance.

The challenge to scientific advisers is to be as transparent and clear as pos-
sible in their treatment of uncertainties and to be aware of the type of policy
problem they are dealing with. Recognising this challenge, mnp commis-
sioned Utrecht University to develop, together with mnp, the RIVM/MNP

Guidance for Uncertainty Assessment and Communication (Petersen et al.
2003; Janssen et al. 2003; van der Sluijs et al. 2003; van der Sluijs et al.
2004). The author of the present study was closely involved in the develop-
ment of this Guidance, first as a researcher, subsequently as project manager
and finally as programme director responsible also for the implementation of
the Guidance within the agency. A core team was formed that worked in close
consultation with other international uncertainty experts. The Guidance aims
to facilitate the process of dealing with uncertainties throughout the whole
scientific assessment process (see figure 4.2).21 It makes use of the typology of
policy problems outlined in the previous section. It explicitly addresses insti-
tutional aspects of knowledge development and openly deals with indetermi-
nacy, ignorance, assumptions and value loadings. It thereby facilitates pro-
found societal debate and negotiated management of risks. The Guidance is
not set up as a protocol. Instead, it provides a heuristic that encourages self-
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evaluative systematisation and reflexivity on pitfalls in knowledge production
and use. It also provides diagnostic help as to where uncertainty may occur
and why. This can contribute to more conscious, explicit, argued, and well-
documented choices.

Following a checklist approach, the Guidance consists of a layered set of
instruments (Mini-Checklist, Quickscan, and Detailed Guidance) with increas-
ing levels of detail and sophistication (see figure 4.3). It can be used by practi-
tioners as a (self-)elicitation instrument or by project managers as a guiding
instrument in problem framing and project design. Using the Mini-Checklist
(Petersen et al. 2003) and Quickscan Questionnaire (Petersen et al. 2003), the
analyst can flag key issues that need further consideration. Depending on
what is flagged as salient, the analyst is referred to specific sections in a separ-
ate Hints & Actions document (Janssen et al. 2003) and in the Detailed Guid-
ance (van der Sluijs et al. 2003). Since the number of cross-references be-
tween the documents comprising the Guidance is quite large, a publicly avail-
able interactive web application has been implemented (see www.mnp.nl/
guidance). This web application also offers the functionality of a prioritised
to-do list of uncertainty-assessment actions and generates reports of sessions
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(facilitating traceability and documentation, and enabling internal and exter-
nal review).

In the Guidance, six parts of environmental assessments are identified
which have an impact on the way uncertainties are dealt with (see figure 4.2).
These parts are:

1 problem framing;
2 involvement of stakeholders (all those involved in or affected by a pol-

icy problem);
3 selection of indicators representing the policy problem;
4 appraisal of the knowledge base;
5 mapping and assessment of relevant uncertainties;
6 reporting of the uncertainty information.

A focused effort to analyse and communicate uncertainty is usually made in
parts 5 and 6. However, the choices and judgements which are made in the
other four parts are also of high importance for dealing with uncertainty. All
six parts will briefly be reviewed here.

Problem framing — The ‘problem framing’ part relates to the inclusion
and exclusion of different viewpoints on the policy problem and the connec-
tions the policy analysis should make to other policy problems. Decisions in
this part of environmental assessment influence, for instance, the choice of
models (what domains should they cover, which processes should be in-
cluded, et cetera).

Involvement of stakeholders — The ‘involvement of stakeholders’ part of en-
vironmental assessment concerns the identification of the relevant stake-
holders (e.g., government; parliament; governmental advisory councils; other
governmental actors at local, national or international levels; research insti-
tutes; scientists; sector-specific stakeholders; employers organisations; labour
unions; environmental and consumer organisations; unorganised stake-
holders; citizens; media; et cetera) and their views on the problem, including
disagreements among them. There are several ways in which stakeholders
can be involved in the assessment. They can either be involved directly or, al-
ternatively, analysts can try to incorporate their perspectives. The Guidance
does not spell out how stakeholders can best be involved in environmental as-
sessments. The present tendency within mnp is not to appoint people who
represent interest groups directly in advisory panels, the ‘democratic’ model
of science-for-policy rejected by Jasanoff. Instead, another route is typically
followed to enhance participation: that is to extend the system of peer review

88 Simulating nature



to include more diverse perspectives via experts affiliated with different gov-
ernmental and societal groups. The idea is that under conditions of post-nor-
mal science, or when we are confronted with unstructured problems,

experts whose roots and affiliations lie outside that of those involved in
creating or officially regulating the issue must be brought in. These new
participants, enriching the traditional peer communities and creating ‘ex-
tended peer communities’ are necessary for the transmission of skills and
for quality assurance of results (Funtowicz and Ravetz 1991: 149).

The definition of ‘expert’ is as extensive as possible. Ultimately, it is the
agency responsible for the assessment that decides who count as experts and
who do not. Funtowicz and Ravetz emphasise that not only is legitimacy at
stake, but it is really the quality (defined as ‘fitness for purpose’) of scientific
advice which stands to gain from extended peer review, especially if the sys-
tem uncertainty is high:

When problems do not have neat solutions, when the phenomena them-
selves are ambiguous, when all mathematical techniques are open to
methodological criticism, then the debates on quality are not enhanced by
the exclusion of all but the academic or official experts (Funtowicz and
Ravetz 1991: 149).

In decision making ways must be found for modellers to engage different so-
cietal perspectives on problems. The question of what is the best way to en-
gage these perspectives and whether also non-experts can participate in the
production of mnp assessments is still a contentious issue within mnp.22

Thus, current practices within mnp do not yet live up to the Guidance’s ideal
of real ‘involvement of stakeholders’.

Selection of indicators — In the ‘selection of indicators’ part, important
choices are made with respect to output processing and interpretation: deci-
sions are taken on what indicators are calculated and included in the study.
One should realise that alternative choices can always be made and that
sometimes alternatives are brought forward and advocated by participants in
the debate. The uncertainties associated with indicators may differ depend-
ing on the indicators chosen, and indicators may be more or less representa-
tive of a problem.

Appraisal of knowledge base — The ‘appraisal of knowledge base’ part in-
volves establishing what quality of information is needed for answering the
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questions posed, which depends on the required quality of the answers. Bot-
tlenecks in the knowledge and methods which are needed for the assessment
may be identified and decisions to pursue further research may be taken in
the case of deficiencies.

Mapping and assessment of relevant uncertainties — In the ‘mapping and as-
sessment of relevant uncertainties’ part, the uncertainties in simulation
models are characterised and plans may be made for assessing these uncer-
tainties more thoroughly by using standardised uncertainty-assessment
tools, e.g., taken from the Tool Catalogue (van der Sluijs et al. 2004). All these
activities take place with an eye on enabling one to state the consequences of
these uncertainties for the most policy-relevant conclusions of the study.

Reporting of uncertainty information — In the ‘reporting of uncertainty in-
formation’ part, the assessors ensure that the uncertainties are adequately
communicated, mainly through formulating messages that are robust with
respect to these uncertainties – that is, the strength of the policy-relevant
statements made is tailored to the reliability of the underlying simulation
models. Some advice is given on how to communicate the different dimen-
sions of uncertainty. From the typology of uncertainty developed in Chapter 3
(table 3.1), it follows that there are five ways to express uncertainty:

• by characterising the nature of the uncertainty;
• by presenting a range of uncertainty;23

• by acknowledging ignorance about the system studied;
• by characterising the methodological quality of the research; and
• by acknowledging the value-ladenness of choices.

In order to facilitate communication about the different types of uncertainty
that arise in scientific assessments, an uncertainty typology quite similar to
the typology developed in Chapter 3 of this study is part of the Guidance.

In the Guidance, the uncertainty matrix is also used as an instrument for gen-
erating an overview of where one expects the most important (policy-rele-
vant) uncertainties to be located (the first dimension), and how these can be
further characterised in terms of the other uncertainty dimensions men-
tioned. The matrix can be used as a scanning tool to identify areas where a
more elaborate uncertainty assessment is required. The different cells in the
matrix are linked to available uncertainty-assessment tools suitable for tack-
ling that particular uncertainty type. These tools are described in a Tool Cata-
logue that aims to assist the analyst in choosing appropriate methods.
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The Tool Catalogue provides practical (‘how to’) information on state-of-
the-art quantitative and qualitative uncertainty assessment techniques, in-
cluding sensitivity analysis, techniques for assessing unreliability2 (Funto-
wicz and Ravetz 1990; van der Sluijs et al. 2005), expert elicitation, scenario
analysis, model quality assistance (Risbey et al. 2005), and analysis of the
value-ladenness of assumptions (Kloprogge et al. 2005). A brief description
of each tool is given along with its goals, strengths and limitations, required
resources, as well as guidelines for its use and warnings for typical pitfalls. It
is supplemented by references to handbooks, software, example case studies,
web resources, and experts. The tool catalogue is a ‘living document’, avail-
able on the web, to which new tools can be added.

The institutional challenges of implementing this new approach should
not be underestimated. It entails much more than disseminating the docu-
ments through an organisation. For example, mnp’s top management has
ordered and subsequently endorsed the Guidance; mnp’s methodology
group led the development of the Mini-Checklist and Quickscan; the use of the
Guidance is now mandatory as part of the agency’s quality-assurance proced-
ures; and the staff is actively trained to acquire the necessary skills. In add-
ition, a methodological support unit is available in the agency to assist and ad-
vise in assessment projects. The required process of cultural change within
the institute was consciously managed over the period 2003-2005. Although
the guidance is not yet fully used within all projects, it is increasingly em-
ployed, and the attitude towards it has changed as participants in projects be-
come more aware of its potential benefits. I contend that the communication
on uncertainty in mnp reports has improved over this period as a result.

4.6 Conclusion

In this chapter, it was argued that by thoroughly assessing computer-simula-
tion uncertainty and including reflection on the uncertainties in policy ad-
vice, simulation can play a meaningful role in policy making. Thus the
‘sound science’ debate, in which critics of environmental regulation showed
an aversion to the use of simulation, is misguided. There are indeed signifi-
cant uncertainties associated with simulations used to provide advice on
complex societal problems, but these uncertainties do not automatically
delegitimate all policies in which information from simulations of such pol-
icy problems has been used. Still, since policy makers are usually not them-
selves able to identify and assess the uncertainty of scientific simulation-
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model outcomes, scientific policy advisers must carefully weigh how to pres-
ent their conclusions and how to communicate the uncertainties. Policy
problems with high societal stakes and high scientific uncertainty attached to
them pose a special challenge to scientific advisers (which I called the ‘chal-
lenge of post-normal science’). There is a need for institutions at the bound-
ary between science and policy, ‘boundary organisations’ such as the mnp

and the ipcc, which can internalise procedures for dealing with the condi-
tions of post-normal science.

I argued that the way uncertainties in simulation should be dealt with by
scientific advisers depends on the type of policy problem they are confronted
with. The mnp made use of a typology of policy problems based on the di-
mensions of agreement on political objectives and consensus about relevant
knowledge in its Guidance on Uncertainty Assessment and Communication. By
improving its environmental assessment processes with respect to the fram-
ing of the problem, the involvement of stakeholders, the choice of indicators,
the appraisal of the knowledge base, the assessment of uncertainties, and the
reporting of uncertainties, the mnp has become better able to take on the
challenge of post-normal science. In this way, more appropriate decisions
can be taken on what information on uncertainties, which in environmental
assessment are largely associated with simulations, needs to be included in
the reports published by mnp.
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part ii





Chapter 5

The practice of climate simulation

5.1 Introduction

Climate simulations play an important role in climate science. These simula-
tions involve mathematical models that are implemented on computers and
imitate processes in the climate system. Like the history of numerical
weather prediction, the history of climate science is strongly related to the
history of the computer. There are two main reasons why simulation is so im-
portant in climate science. First, computers removed a barrier in meteorolo-
gical practice: the speed with which calculations could be done has been en-
hanced tremendously. We cannot practically do the calculations in climate
simulations without the use of computers. And second, simulation is an im-
portant ingredient of climate science because real experiments with the cli-
mate as a whole are impossible. If we want to ‘experimentally’ manipulate
climate, we need to perform such manipulations on a representation of the
climate system.

It should be mentioned at the outset of this chapter that climate science is
an observational science, in which the scientific activities encompass much
more than performing computer simulations. In fact, climate observations
are pivotally important for a whole range of activities, including climate-sim-
ulation practice. From climate observations, the world’s climate scientists
have deduced that it is very likely that the earth’s climate has changed over the
last 100 years (see figure 5.1a).1 In 2001, the Third Assessment Report of the
Intergovernmental Panel on Climate Change (ipcc) concluded that the
global average surface temperature has increased by 0.6 ± 0.2°C (95% confi-
dence range) over this period (ipcc 2001a, spm: 2).2 The uncertainty is here
expressed as a range of temperature change (from 0.4 to 0.8°C) together with
the probability that the real value lies within this range (that is, 95%). For the
Northern Hemisphere, it is considered likely (between 66 and 90% chance)
that current temperatures are higher than all historic temperatures over the
last millennium (ipcc 2001a, spm: 2). Both statements are illustrated in fig-
ures 5.1a and 5.1b, respectively.3



Figure 5.1 Variations of the earth’s surface temperature compared with the 30-year

average from 1961 to 1990. (a) The grey bars show the earth’s surface temperature

year by year and the black line shows the course of this temperature (running average

with a filter time of about a decade). The thin black whisker bars represent the 95%

confidence ranges. (b) The grey curve shows the Northern Hemisphere surface tem-

perature year by year and the black curve shows the 50 year average of this tempera-

ture. The 95% confidence range in the annual data is represented by the light grey

region. Source: ipcc 2001a, spm: 3.
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Besides temperature precipitation is also a component of climate. Generally
speaking, warmer air can hold more moisture, but changes in precipitation
also depend on changes in atmopheric flow. It is considered very likely that
during the 20th century precipitation has increased by 5 to 10% at most mid-
and high latitudes of the Northern Hemisphere continents (ipcc 2001a,
spm: 4). Furthermore, at the mid- and high latitudes of the Northern Hemi-
sphere over the latter half of the 20th century, it is likely, according to the cli-
mate experts, that there has been a 2 to 4% increase in the frequency of heavy
precipitation events (ipcc 2001a, spm: 4). Such extreme events are also typi-
cally included in the description of climate.

These statements about observed climate change have been arrived at by
climate scientists without the use of climate simulations.4 This means that
the sources of uncertainty are of a different kind than those encountered in
simulation practice. For example, for global average surface temperature, the
sources of uncertainty at the 100-year time-scale (figure 5.1a) are located in
data and (statistical) model assumptions made in data processing: ‘data gaps,
random instrumental errors and uncertainties, uncertainties in bias correc-
tions in the ocean surface temperature data and also in adjustments for ur-
banisation over the land’ (ipcc 2001a, spm: 3). For the Northern Hemisphere
temperature, at the 1,000-year time-scale, the sparseness of ‘proxy’ data5 is
the main source of uncertainty (ipcc 2001a, spm: 3), besides the unreliability
of proxies for determining local temperatures in the past.

It is not possible, however, to deduce directly from the observations what
the causes of the observed changes in climate are. When climate scientists
want to attribute climate changes to causes or make projections into the fu-
ture, they need to make use of climate simulations. One of the most import-
ant conclusions of the ipcc (2001a) is that ‘most of the observed warming
over the last 50 years is likely [between 66 and 90% chance, acp] to have been
due to the increase in greenhouse gas concentrations’ (ipcc 2001a, spm: 10).
In order to arrive at this conclusion, climate simulations have been per-
formed as a substitute for experiments. This function of simulation is crucial
in climate science, since there is only one historical realisation of the system
under study. Real (in the sense of controlled and reproducible) experiments
at the scale of the whole climate system are impossible.

The climate system can be simulated in many different ways, using more
or less detailed models of the different components of the climate system.
Figure 5.2 gives a hint of the complexity of the climate system. The diagram
shows the major components of the climate system (in bold), the processes
and interactions that take place between them (thin arrows) and some aspects
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that might change (bold arrows). The climate system is best described as a
‘complex system’, featuring many feedbacks, both positive and negative, and
non-linearity.6 In this complex global system the processes show variations at
many spatial and temporal scales. At the time-scale of days, or sometimes
hours, we know that the weather can vary significantly. In the context of the
human-induced global-warming problem we are more interested in changes
over a time-scale of decades to centuries. When one focuses on such large
spatial and temporal scales, the natural temperature variations are typically
very small (about 0.5°C) as compared to the variations at smaller spatial and
time-scales. However, the impacts of these natural climatic variations on eco-
logical systems and human populations are significant and the consequences
of a likely human-caused increase that lies between 1.4 and 5.8°C in 2100 (see
Chapter 6) can be considered to be quite large.

‘Climate science’ – which provides the context for our discussion of cli-
mate simulation – can be regarded as a collection of diverse scientific disci-
plines (physics, chemistry, geology, biology) dealing with different aspects of
climate. For each component of the climate system whole interdisciplinary
scientific fields have developed (e.g., meteorology for the atmosphere, ocean-
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ography for the ocean, and glaceology for sea ice, ice sheets and glaciers – and
these fields, like the system, are all interconnected). For the climate system as
it is considered in this study, human activities are treated as input data (of
emissions and changes in land-cover, leading to ‘radiative forcing’)7 in cli-
mate-simulation models. For determining the impacts of climate change on
human well-being, the output data of climate-simulation models are used. An
alternative framing of the climate system is to include human society as a
dynamic component of the integrated natural–societal system and simulate
human behaviour explicitly in an ‘integrated assessment model’ (an example
of which will be given in Chapter 7). Since the focus in this study is on simu-
lating nature, the ipcc (2001a) conceptualisation of the climate system, with
humans outside its boundaries, is followed. Within the ipcc, the results of
social scientific and economic studies of alternative futures for human soci-
ety are specified for use in the natural scientific climate models as ‘emission
scenarios’ (different future emission paths for greenhouse gases and aerosol8

precursors, which depend on population, economic growth, consumption
patterns and technological developments). In 2000, for instance, the ipcc

published a Special Report on Emission Scenarios (sres), which was subse-
quently used in the Third Assessment Report of 2001.

In this chapter, the practice of simulating the natural climate system is
investigated. First, the different functions of climate simulation are investi-
gated. Second, a comparison is made between comprehensive and simple
climate models in the light of a plurality of methodological approaches to cli-
mate simulation. And third, the social context of climate simulation is ad-
dressed.

5.2 Functions of climate simulation

Climate simulation advanced quickly after the creation of the first three-di-
mensional (3-d) Atmospheric General Circulation Models (agcms) in the
1950s. Since then agcms have increased in spatial and temporal resolution
and have become increasingly complex. During this development oceanic
processes and their interactions with the atmosphere have become included
in coupled Atmosphere–Ocean General Circulation Models (aogcms). Now-
adays, climate simulations are performed in a few hundred climate-simula-
tion laboratories worldwide.9 The most comprehensive climate models, the
coupled aogcms, are developed and run in several tens of climate-simulation
laboratories.10
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Our description of climate-simulation laboratory practice starts with an
outline of the functions of climate simulation. These comprehensive climate
models perform four of the five functions of simulation distinghuished in
section 2.5: they can be used as a technique to investigate the detailed dynam-
ics of the climate system; as a substitute for experiments; as a heuristic tool
for developing hypotheses, models and theories about the climate system;
and as tools for observers to support climate observations. The fifth function,
the educational function, cannot be fulfilled by these models due to their
heavy computational demands; for that function simplified models are used.

(1) The most comprehensive models are the preferred choice for the inves-
tigation of the detailed dynamics of the climate system. In the succinct intro-
duction to climate models given in the Technical Summary of ipcc (2001a),
the structure of these comprehensive climate models is described as follows:

Comprehensive climate models are based on physical laws represented by
mathematical equations that are solved using a three-dimensional grid
over the globe. For climate simulation, the major components of the cli-
mate system must be represented in sub-models (atmosphere, ocean, land
surface, cryosphere and biosphere), along with the processes that go on
within and between them. ... Global climate models in which the atmos-
phere and ocean components have been coupled together are also known
as Atmosphere–Ocean General Circulation Models (aogcms). In the at-
mospheric module, for example, equations are solved that describe the
large-scale evolution of momentum [of atmospheric ‘particles’, acp], heat
and moisture. Similar equations are solved for the ocean. Currently, the
resolution of the atmospheric part of a typical model is about 250 km in the
horizontal and about 1 km in the vertical above the boundary layer. The
resolution of a typical ocean model is about 200 to 400 m in the vertical,
with a horizontal resolution of about 125 to 250 km. Equations are typically
solved for every half hour of a model integration [the time-step in the model
is half an hour, acp]. Many physical processes, such as those related to
clouds or ocean convection, take place on much smaller spatial scales than
the model grid and therefore cannot be modelled and resolved explicitly.
Their average effects are approximately included in a simple way by taking
advantage of physically based relationships with the larger-scale variables.
This technique is known as parametrization (ipcc 2001a, ts: 48).

A ‘comprehensive’ climate model is thus a model that has a relatively ‘high
resolution’ in three-dimensional space and in time and that incorporates
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‘many processes’ in ‘much’ detail. The most comprehensive climate models
used today do not model many relevant biological processes, however. Com-
prehensive climate models are continuously under development: more de-
tailed elaborations of processes in the models and new processes are both
regularly added to the models.

(2) Comprehensive climate models are used as substitutes for experiments,
since experimentation on the climate system is impossible. In cases, for ex-
ample, where one is interested in the response of the climate system to hypo-
thetical interventions (resulting in different possible futures or counter-
factual histories) this function becomes particularly prominent. The extrapo-
lation of responses to greenhouse-gas emissions leads to projections of the
future response of the climate system to changes in greenhouse-gas concen-
trations.

(3) For some applications, such as informing policy makers of the wide
range of plausible future projections of climate change associated with differ-
ent emission scenarios, much simpler models than the comprehensive cli-
mate models are needed. With simple models it becomes computationally
feasible to perform many different simulations by varying model assump-
tions and input emission scenarios. The computational resources that would
be required to perform a large number of runs with the most comprehensive
models are not currently available, nor will they become available in the next
few decades. However, use is made of comprehensive models as heuristic tools
in order to construct the simple models. For instance, the parameters (e.g.,
‘climate sensitivity’ – the equilibrium global surface temperature increase for
a doubling of the equivalent co2 concentration) of the simple models can be
determined from comprehensive models. In addition, the relationships used
in simple models can be heuristically determined from comprehensive mod-
els, that is, they are not formally derived from the comprehensive models but
are based on some observed patterns in the behaviour of these models.

(4) The comprehensive climate models are also used as tools for observers,
for instance, in combination with satellites, to measure temperatures, cloud
cover or ozone concentrations in the atmosphere. Using climate models that
include representations of processes such as clouds, atmospheric chemistry
and electromagnetic radiation one can calculate the ‘spectra of electromag-
netic irradiance’ that will be measured by the satellite instrument under dif-
ferent conditions. This ‘irradiance’ is dependent on many factors. First of all
it depends on the input from the sun (which emits mainly ultraviolet radia-
tion). The radiation that leaves the earth lies mostly in the (long-wavelength)
infrared range (while a significant amount of radiation at shorter wave-
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lengths is reflected back into space). The outward-going infrared radiation is
determined by the temperature of the earth’s surface, the vertical tempera-
ture profile of the atmosphere and the presence of clouds and greenhouse
gases. The upward-going short-wavelength radiation is determined by the re-
flection at the earth’s surface and the reflection and absorption in the atmos-
phere, due to cloud droplets or gases that absorb long-wave radiation (such as
ozone). Aside from models that describe all these radiative processes occur-
ring in the atmosphere, simulation models of the satellite instruments them-
selves describe the physical transformation of the ‘irradiance’ input signals
into the output signals of the instrument. Such models of the instrument can
be used to determine which design is optimal for the measurement of the
phenomena one is interested in.

(5) The fifth function of simulation, where simulation functions as a peda-
gogical tool, is not performed by aogcms. These comprehensive climate mod-
els are too complicated for this purpose. Instead, simple climate models are
designed to function as interactive pedagogical tools for students or cli-
mate-policy makers. The users can play with such models in order to get an
intuitive grasp of the behaviour of the climate system by looking at the
model’s reponse to different perturbations imposed by the user. Whether
such models are succesful in stimulating learning depends on the quality of
the graphical interface and on the ease with which the model can be run and
the parameter settings and input data can be changed.

Actually, simple climate models can perform all five different functions of
simulation. They can be used as a technique to investigate the detailed dy-
namics of a system (typically focusing on a part of the climate system); as a
heuristic to develop hypotheses, models and theories (even a simple climate
model can show quite complex behaviour); as a substitute for an experiment
(e.g., for future projections, as already mentioned); as a tool for experiment-
ers or observers to design experiments or measurement instruments (for a
local measurement, simple models may suffice); and as a pedagogical tool to
gain understanding of a process.

5.3 Varying climate-model concreteness

A major methodological issue with respect to climate-simulation practice is
the relationship between the simple and the comprehensive climate models.
Different climate models vary in their level of concreteness. In high-reso-
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lution, comprehensive climate models such as aogcms the strategy is to
resolve processes occurring within the climate system as much as possible to
the smallest spatial and temporal scales of relevance. Ideally, all model rela-
tions are based on physical theory and all empirical parameters are independ-
ently measurable. However, processes that cannot be resolved always re-
main, and these must be parameterised (measured against something else,
i.e., against the resolved quantities). Low-resolution, simple climate models,
typically one-dimensional (1-d) models, contain parameterisations at a higher
level of aggregation compared to high-resolution climate models. Within the
climate-science community there is difference of opinion about the status of
simple and comprehensive climate models. This methodological issue will
be further discussed here.

Climate models constitute one family of models in geophysical fluid dy-
namics. Three-dimensional climate-system models (csms) are the most com-
prehensive models in terms of the processes that are included and relate to
the largest length and time-scales (the whole globe and hundreds of years). A
major reason why they are different from models in geophysical fluid dynam-
ics for the simulation of different scales and processes is that computing
power is currently a bottle-neck for the amount of detail these models can in-
clude. This will remain so for years to come, since computing power would
have to increase by several orders of magnitude to make incorporation of sig-
nificantly more details possible.11 The following five families of three-dimen-
sional models in geophysical fluid dynamics can be distinghuished (depicted
in the diagram of figure 5.3):
1 general circulation model (gcm)/climate system model (csm);
2 mesoscale model (mm), used for simulating regional weather;
3 cloud-resolving model (crm), used for simulating storms;
4 large eddy simulation (les), used for simulating atmospheric/oceanic

boundary layers;
5 direct numerical simulation (dns), used for simulating small-scale turbu-

lence.

As is visible in figure 5.3, each of these families of models spans at the most
three orders of magnitude in length scales: the models are all constrained by
the availability of computational resources. At the end of the previous cen-
tury, there was no computational power to resolve more than about 109 (one
billion) grid cells. This is why the largest-scale models, the gcm/csms, can-
not resolve horizontal scales smaller than 100 km. This is also why the small-
est-scale model, the dns, has as its own domain of application experimental

The practice of climate simulation 103



104 Simulating nature

Figure 5.3 Families of three-dimensional models in geophysical fluid dynamics (top)

and relevant physical processes (bottom). In the top part, two measures of model con-

creteness are used to determine the position of five families of geophysical models:

the complexity of the parameterised physics (on the vertical axis) and the range of spa-

tial scales represented by the models (roughly indicated by the length of the horizontal

lines). The position along the horizontal axis signifies the physical length scales that

are included in the model – a logarithmic scale is used for this horizontal axis; the axis

ranges from 10-6 m (one micrometer) to more than 107 m (10,000 km). In the case of

dns, no arrow is shown on the left-hand side, since there is a lower bound: this lower

bound is given by the smallest spatial scale at which turbulent motions occur in the at-

mosphere (at even smaller scales, molecular diffusion processes are dominant). Simi-

larly, there is a largest fluid scale of relevance: the size of the earth, the upper bound

for the gcm/csm family of models. The arrows in the upper part of the figure signify

that the precise domain can depend on the computational power available. In the bot-

tom part, the different atmospheric phenomena are depicted with their ranges of rele-

vant scales. The molecular diffusion processes dominate scales smaller than about

one millimeter (‘viscous scales’). In the range between about one millimeter and 10

meters (the ‘energy inertial range’), the energy of turbulent motions is transferred

from larger to smaller scales in a way that can be calculated from turbulence theory.

The ‘microphysical scales’ are of importance in cloud-droplet processes. Since many

additional degrees of freedom play a role in microphysical processes (e.g., distribution

of drop sizes, chemical composition of aerosols, etc.), an arrow is drawn at the lower



laboratory flows and atmospheric flows at scales smaller than 1 m, that is,
very small scales that may be of relevance in the atmosphere only for a limited
range of phenomena. The grid size, or resolution, of a model determines the
lower limit of the scales that can be resolved by the model.

The complete set of families of climate models (encompassing besides the
three-dimensional models depicted in figure 5.3 also much simpler zero-, one-
and two-dimensional models) is often presented as a ‘climate model hierar-
chy’. A consensus is presumed to exist within the climate-science community
about the relative merits of the different climate model families. This ‘consen-
sus view’ can be found in numerous publications. The presentation here is
based on Harvey et al. (1997).12 For each component of the climate system (at-
mosphere, oceans, terrestrial biosphere, glaciers and ice sheets, and land sur-
face) a hierarchy of models can be identified. The main differences are in the
number of spatial dimensions in the model (three, two, or one), the spatial and
temporal resolution, the extent to which physical processes are explicitly repre-
sented (processes that are not explicitly represented have to be parameterised),
the level of aggregation in the modelled system at which empirical parameter-
isations are involved, and the computational cost of running the model.13

According to the ‘consensus view’ both comprehensive and simple mod-
els have important roles to play in enhancing our understanding of the range
of possible future climatic changes, their impacts, and interactive effects
among the components of the climate system. Both pragmatic consider-
ations involving computer resources and the level of detail appropriate to the
coupling of the various components dictate the respective roles of compre-
hensive and simple climate models. The difference between comprehensive
and simple climate models is presented by Harvey et al. (1997) in terms of
the hierarchy of models introduced above. Typically, the behaviour of simple,
1-d climate models is easier to analyse, and sensitivity studies are easier to
perform with simple models as compared with comprehensive models.

Both comprehensive and simple climate models contain empirical ‘par-
ameterisations’, which are descriptions of processes not explicitly resolved in
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Figure 5.3, continued bound of the range of scales. The lower bound of the range of

planetary boundary layer (pbl) scales is dependent on the presence of clouds: if clouds

are present, microphysics plays a role. ‘Deep convection’ is the process whereby very

‘active’ clouds produce heavy precipitation and thunderstorms. These clouds can

sometimes even penetrate into the stratosphere (in the tropics, deep convection can

reach heights of about 15 km or even higher). Finally, the ‘general circulation’ refers to

global atmospheric circulation processes. Source: Stevens and Lenschow 2001.



the models (e.g., convective cloud processes: these happen below the grid
size) that make use of parameters that are available at the grid scale (e.g., tem-
perature and humidity). All geophysical fluid dynamics models make as-
sumptions about the influence of processes smaller than the ones resolved in
the models (to the left of the length-scale ranges for models presented in fig-
ure 5.3). One can either choose to neglect these processes, assuming they
have no significant effect on the model results, or include the net effect of
these processes through parameterisations. The difference between models
at varying levels of comprehensiveness is that parameterisations are intro-
duced at different levels of aggregation. For example, in a complex, 3-d cli-
mate model the smallest scale that can be resolved for the vertical transport of
heat is a few hundred kilometers (smaller-scale transport needs to be par-
ameterised), while in a simple, 1-d climate model all vertical transport of heat
by atmospheric motion is parameterised. As an aside, it is noted by Harvey et
al. (1997) that very high-resolution models of clouds (large eddy simulation
models) have been developed with a grid spacing of tens of meters and cover-
ing several tens of square kilometers (even such models include param-
eterisations, e.g., parameterisations of cloud processes occurring at the
micrometer scale). The ideal for some climate modellers is to extend these
models to the whole globe. This is presently not possible, however, due to
computing constraints, as was previously mentioned.

A consequence of the fact that simple and comprehensive climate models
have widely different resolutions is that in particular simple climate models
(for instance, ‘upwelling–diffusion climate models’) the climate sensitivity
and other subsystem properties must be prescribed on the basis of results
from comprehensive models or observations (if available). However, in com-
prehensive models, such properties are explicitly calculated from a combin-
ation of resolved processes and subgrid-scale parameterisation in the mod-
els.14 A final, qualitative difference between simple and comprehensive mod-
els is related to predictability: One-dimensional simple climate models can-
not simulate specific climatic ‘surprises’ like sudden major changes in the
ocean circulation, while aogcms can, although the timing and the nature of
such changes cannot currently be reliably ascertained (amounting to recog-
nised ignorance).15

Harvey et al. claim that the consensus of the climate modelling commu-
nity is ‘that detailed three-dimensional ... models of atmosphere and ocean
dynamics, and correspondingly highly resolved models of the Earth’s terres-
trial and marine biota, are the long-term goals of Earth system science’
(Harvey et al. 1997). This statement reflects the climate-science community’s
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choice to continue the approach of adding more complexity and spatial reso-
lution to climate models. However, the consensus in the climate-science
community is not as universal as is suggested by Harvey et al. (1997).
Shackley et al. (1998) have identified within the scientific community two
strong arguments against putting all the emphasis on this approach (both ar-
guments are related to the fact that realisation of a satisfactory comprehen-
sive model seems distant):

1 Key parameterisations, for example, for clouds, are not fully theoretic-
ally based, and are hence often scale dependent and to some degree ar-
bitrary. These parameterisations are crucial for climate model behaviour.

2 Models should be related to the scale of the processes involved. It has
not been validated that large-scale behaviour of climate can be repre-
sented by the combined effects of smaller-scale processes that are
partly resolved and partly parameterised by complex climate models.

Although Shackley et al. (1998) do not aim to discredit the comprehensive cli-
mate-modelling approach, they do raise important questions concerning the
methodology to be followed by climate scientists.

Shackley et al.’s first argument makes clear that currently no climate
model is of a theoretical high quality: ad hoc assumptions are systematically
involved in deriving parameterisations. Simple and comprehensive climate
models differ only with respect to the specific level of aggregation at which
smaller-scale processes are parameterised. Thus both types of climate simu-
lations suffer from the methodological problem of the arbitrariness of par-
ameterisations, that is, their ad hoc character. An example of a major ad hoc,
non-physical correction to comprehensive climate models is ‘flux adjust-
ment’ – an ad hoc model fix that is introduced in coupling ocean and atmos-
phere general circulation models (resulting in coupled aogcms) and that
prevents long computer runs simulating current climate from ‘drifting
away’. The ipcc (2001a) report acknowledges that from a scientific perspec-
tive, flux adjustment is undesirable. One of the reasons why in the year 2001
(as compared to the year 1996) the ipcc could state that ‘[c]onfidence in the
ability of models to project future climate has increased’ (ipcc 2001a, spm:
19), is related to the decreased dependence on flux adjustment:16

Some recent models produce satisfactory simulations of current climate
without the need for non-physical adjustments of heat and water fluxes at
the ocean-atmosphere interface used in earlier models (ipcc 2001a, spm: 19).
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The ‘increased confidence’ in the models does not undo the fact that most
climate simulations that have been used in ipcc reports so far have made use
of flux adjustment.

As we saw in Chapter 2, some scientists hold the ideal that ad hoc correc-
tions should ultimately be removed. According to Randall and Wielicki
(1997), parameterisations are often not strictly derived from and compared
with observations, and they are typically not tested for many different condi-
tions. Furthermore, the practice of tuning, that is, adjusting the model to
observations without really knowing what is going on in the model, is con-
sidered problematic by them. They claim that parameterisation should be
left unchanged when the model that includes the parameterisation is tested
as a whole. Accordingly, one should refrain from tuning the parameter-
isations interactively in order to have the outcomes of the model match all
available observations, since this ‘bad’ practice cannot give one confidence
in the predictive power of the model. Tuning the empirical components is
allowable only if a process is very important and poorly understood. One
must subsequently strive, through continuing research, to arrive at a good
understanding of how to parameterise the process. If one has succeeded in
that, the tuning of the model can subsequently be removed. The quality of
a parameterisation depends both on its comparison with observations and
on its theoretical quality. According to purist modellers, in particular, a
parameterisation can be considered more reliable if its theoretical quality is
high.

There are two methodological problems related to Randall and Wielicki’s
outright rejection of tuning. First, their methodological proposal makes the
assumption that in principle, that is, ultimately, all tuning should be elimi-
nated. This is not at all obvious, however. Of course, the elimination of some
of the adjustable parameters from the current models can lead to an improve-
ment of these models, but nothing guarantees that climate models will ever
acquire good predictive capacities by progressively eliminating all ad hoc cor-
rections (even if that were possible). The Dutch meteorologist Henk Tenne-
kes doubts whether the whole project is even possible. He observes: ‘In prac-
tice a computer model always contains all sort of tricks and empirical rules,
no matter how many refinements are added. The empiricism [empirical con-
tent, acp] contained in a computer model cannot be adjusted in advance; it is
tuned by repeatedly checking the performance of the model against observa-
tions, until the model finally functions in a reliable way. [Since] the climate is
a one-time experiment ..., the predictions of climatic models are always over-
taken by the facts, regardless of how reliable the models are’ (Tennekes 1994:
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78-79). In other words, the climate of the future is fundamentally unpredict-
able, according to Tennekes.

Second, testing models is not a straightforward affair. We have seen that
verification of a model is logically impossible (Popper) and even if we use the
growing observational record to test climate models, the question of their re-
liability still has to be dealt with when climate models are used to predict fu-
ture climate change. Still, the approach the scientific community has taken is
to link the projective capability of climate models to the performance of cli-
mate models in reproducing the historical record (both the geological record
and the past period of about 150 years of which we have a global record of
real-time temperature observations). If we apply Popper’s (1959) philosophy
about theories to models, we can claim that if the models do not fail in this re-
gard, they should be considered to be ‘corroborated’ (corroboration is a mat-
ter of degree and depends on the severity of the tests to which the models
have been put). The impossibility of establishing the absolute truth of a the-
ory has led Popper to insist on falsifiability as the hallmark of the scientific
method (see section 2.4). Following the same line of reasoning, Randall and
Wielicki (1997) – who take a model to be an embodiment of a theory, provid-
ing a basis for modelling predictions – claim that model predictions can be
proven wrong or falsified by comparison with measurements that the model
was supposed to predict, and that one should strive for such falsification.

Randall and Wielicki (1997) consider falsification of the whole model (in-
cluding both the ‘principal hypothesis’ and ‘auxiliary hypothesis’) possible.
In Popperian fashion, this methodology takes climate models to be corrobo-
rated by each unsuccesful trial to falsify the model. The method proposed by
Randall and Wielicki (1997) is more difficult to apply for complex than for
simple models. One of the reasons is that current complex models involve
tuning in many parameterisations within the model. If the model agrees with
the observations against which it is tested, this could be the result of ‘com-
pensating errors’ (namely, the model has been tuned as a whole), and if the
model does not agree with the observations, one does not know which adjust-
able parameters (or even complete parameterisations) are wrong. The testing
of models therefore has to be carefully framed. This is the defensible mes-
sage behind the discussion by Randall and Wielicki (1997) on falsification.

Shackley et al.’s second argument against focusing too much on compre-
hensive climate models raises questions related to the complexity of climate
(see also Rind 1999). It may be the case that the processes that occur across
the wide range of scales modelled by comprehensive climate models can, in
fact, be addressed separately for different subranges of scales. This ultimately
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depends on the importance of the smallest-scale nonlinearities for the large
spatial and temporal scales that are considered in climate change studies. In
view of the policy context of climate simulation a crucial question is, what are
the spatial and temporal scales needed to accurately simulate global climate
change at a 100-year time-scale? The current answer is that we must recog-
nise our ignorance about this issue. We do not know the degree to which
feedbacks [see note 6] within the climate system are influenced by the climate
system’s non-linearities and the future patterns of variability (Rind 1999). In
other words, we do not know whether or not a model of the climate system
can be constructed across a broad range of temporal scales as a hierarchy of
dynamically uncoupled models, ordered by characteristic time-scales (cf.
Werner 1999).

The ipcc technical paper (Harvey et al. 1997) was an attempt by the cli-
mate-science community to deal with methodological questions of complex-
ity in an assessment forum (although this was not the first aim of that paper).
The fact that the ipcc technical paper got no further than pointing out that
pragmatic use is made of both comprehensive and simple climate models in
the scientific climate-assessment practice, may lead to the conclusion that no
universal agreed-upon methodology for climate modelling exists in climate-
simulation laboratory practice (cf. Shackley et al. 1998). The methodological
analysis by Harvey et al. (1997) claims merely that climate modelling is an
‘art’ and that there is ‘no methodological crank to turn’, a position that I dis-
agree with, since even though a plurality of methodologies exists, it is pos-
sible and desirable to discuss and compare these methodologies.17 A nice ex-
ample of such a methodological discussion within the climate modelling lit-
erature is a recent paper by Isaac Held (2005) in the Bulletin of American Me-
teorological Society. After noting that the importance of a climate modelling
hierarchy has often been emphasised, he continues:

But, despite notable exceptions in a few subfields, climate theory has not,
in my opinion, been very successful at hierarchy construction (Held 2005:
1609).

Held questions whether the complex climate models really lead to under-
standing (cf. section 2.3.4). We need simple models that capture the essential
dynamics of the phenomenon we are interested in in order to check whether
we really understand what is happening in the complex models. According
to Held, ‘the health of climate theory/modeling in the coming decades is
threatened by a growing gap between high-end simulations and idealized
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theoretical work. In order to fill this gap, research with a hierarchy of models
is needed’ (Held 2005: 1614).

From this discussion on the relative merits of complex and simple cli-
mate models, we can conjecture that the plurality at the methodological level
is correlated with a plurality at the axiological level: different climate scien-
tists may entertain different goals of simulation in their climate-simulation
practice. Can we discern such a correlation between methods and aims with-
in climate-simulation laboratories? The following discussion on the social
context of climate-simulation practice aims to answer that question.

5.4 The social context of climate-simulation practice

The social context in which climate simulations are developed, evaluated and
applied has a significant influence on climate-simulation practice, as has
been shown in the sociological work of Simon Shackley and co-workers
(Shackley et al. 1999; Shackley 2001). Different styles of doing climate simu-
lation can be identified in parts of the research community, the different
styles embodying different standards by which to evaluate simulation models
and their results.

Shackley et al. (1999) make a distinction between two styles, a ‘pragma-
tist’ one and a ‘purist’ one. Taking the example of ‘flux adjustment’, the
authors show that while pragmatists consider flux adjustment to be suffi-
ciently innocent to do the coupling and arrive at meaningful results, purists
‘apply seemingly more rigorous, yet still private and informal standards of
model adequacy’ (Shackley et al. 1999: 428). The authors are wary of flux ad-
justments as ‘potentially covering-up model errors, influencing the model’s
variability, and leading to complacency in model improvements’ (Shackley et
al. 1999: 445). By using flux adjustment the modellers were able both to pres-
ent results to policy makers and to point out the need for further model devel-
opment. Pragmatic and purist modellers do not usually make their tacit cri-
teria explicit in their publications and no mention is made in ipcc reports of
the differences of opinion on the policy-usefulness of climate simulation.
Why pragmatists find the application of flux adjustment acceptable for the
production of policy-relevant climate runs remains hidden from view, since
‘perceptions of policy needs are built seamlessly into scientific interactions’
(Shackley et al. 1999: 435).

A range of factors play a role in determining both the existence of the two
cultures and their membership. Shackley et al. (1999) observe that
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pragmatist and purist cultures emerge from the interplay of a hetero-
geneous range of factors including: organisational mission, individual
and collective research trajectories (including past work experience and
identification of future priorities and ambitions), funding patterns,
involvement in providing climate-impacts scientists with scenarios, the
role of hierarchical management and/or charisma of leaders of research
groups, and different epistemic styles (Shackley et al. 1999: 445).

These heterogeneous factors together constitute the social context of climate
simulation. The distinction made between the two cultures sheds light on the
fundamental assumptions of different modelling approaches. Many of the
pragmatists do believe it is correct to assume the impact of flux adjustment to
be small with respect to the claims they want to establish with their models.
However, they have not been able to convince the purists, who believe the as-
sumption might be incorrect and inappropriate for use. Here we encounter
an uncertainty of the recognised ignorance sort: we must remain open as
to the question of which of the schools will be judged to have been right in
the future. Not only epistemic considerations but also social considerations
play a role in the choices that individual modellers make. The choice to em-
ploy flux adjustment in climate simulations intended for policy advice is
value-laden.

In an investigation of the use of comprehensive models in climate-
change simulations, Shackley (2001) compared two American climate-mod-
elling groups: the Geophysical Fluid Dynamics Laboratory (gfdl, Princeton)
and the National Center for Atmospheric Research (ncar, Boulder, co), both
with each other and with the uk climate-modelling group, the Hadley Centre
for Climate Predication and Research (Bracknell, England).18 In that publica-
tion, Shackley identified the following three ‘epistemic lifestyles’ in the com-
prehensive climate-modelling community as a whole, the first two of which
correspond to the pragmatist and purist styles discussed earlier:

1 Climate seers. ‘Those conducting model-based experiments to under-
stand and explore the climate system, with particular emphasis on its
sensitivity to changing variables and processes, especially increasing
greenhouse gas concentrations’ (Shackley 2001: 115). This style is
similar to the pragmatist style identified in Shackley et al. (1999) and
is dominant within gfdl. The specific function of climate simulation
within this style – aside from being a substitute for experiments – is
that of a heuristic tool to develop hypotheses about climate change.
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2 Climate-model constructors. ‘Those developing models that aim to cap-
ture the full complexity of the climate system, and that can then be
used for various applications’ (Shackley 2001: 115). This style com-
pares with the purist style and is dominant within ncar. Within this
style – again aside from being a substitute for experiments – simula-
tion functions as a technique to investigate the detailed dynamics of
the climate system.

3 Hybrid climate-modelling/policy style. ‘The policy-influenced objectives
and priorities of the research organization, as defined by its leader-
ship, take precedence over other individual or organizational motiva-
tions and styles’ (Shackley 2001: 128). The Hadley Centre is an exam-
ple. One of the objectives of the Centre is to perform climate simula-
tions that can be used as input to the assessment processes by the
ipcc.19 Both climate seers and climate-model constructors are in-
volved in the Centre, but none of these styles dominates due to the
hierarchical style of management which enables the Centre to be both
policy-driven and of a high scientific quality.

Shackley (2001: 129) observes that a range of factors influence which episte-
mic lifestyle is adopted in a climate-modelling centre: disciplinary/research
experience background; organisational location, objectives, main funders,
main user and customers; the role of academic collaborators and users of
models; the role of policy makers in negotiations over research priorities and
directions; the role of organisational culture; the opportunities to treat the cli-
mate model as a ‘boundary object’ (e.g., between climate and numerical
weather prediction research); and the role of different national cultures of
research.

One of the influences on the choice of epistemic lifestyle is constituted by
the political views of the climate scientists themselves on the climate-change
problem. Bray and von Storch (1999) found systematic differences in cli-
mate scientists’ political views on national scales: from an international sur-
vey among climate scientists they concluded that North American climate
scientists perceived the need for societal and political responses to be less ur-
gent than their German counterparts. These differences also correlate with
different assessments of the quality of climate simulations. Bray and von
Storch (1999) report that even though almost all climate scientists agree
that the quality of climate-simulation models is limited, the u.s. scientists
were less convinced of the quality of the models than their German counter-
parts.
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Since the climate seers prefer relatively simple models and the climate-
model constructors prefer relatively complex models, the plurality of episte-
mic lifestyles within and among climate-simulation laboratories thus leads to
different assessments of the relationship between simple and comprehen-
sive climate models. We can conclude that indeed there is no universal
agreed-upon methodology for climate simulation and that different groups of
climate scientists entertain different goals of climate simulation. When we
assess the uncertainties in climate simulation, we should therefore pay atten-
tion to the potential value-ladenness (including socio-political values) of the
choices made by individual modellers or modelling groups.

5.5 Evaluating the plurality of climate-simulation models

As was discussed in Chapter 2, a wide variety of methodological approaches
exists for building and evaluating simulation models. In this chapter, evi-
dence is cited for pluralism in climate modelling. Wendy Parker (2006) also
observes that although climate models incorporate mutually incompatible
assumptions about the climate system, they are used together as comple-
mentary resources for investigating future climate change. Indeed, climate
modellers are well aware of the limitations of their models and therefore
within the context of the ipcc ‘ensembles’ of models are used to assess what
is happening to the climate system (ipcc 2001a).

How is this to be understood philosophically? Parker observes both an
‘ontic competitive pluralism’ and a ‘pragmatic integrative pluralism’ in cli-
mate-simulation practice. Ontic competitive pluralism exists when two mod-
els make conflicting claims about the same part of the world that they are in-
tended to model. Typically, these models are then viewed as ‘competitors’, in
contrast to ‘ontic compatible pluralism’, which exists when there are two or
more representations that can be true of the world at the same time. From the
analysis of the present chapter, I agree that the different climate models
make mutually conflicting claims about what the climate system is like. Cli-
mate scientists such as Randall and Wielicki would like to select from among
the complex climate models the one which does actually incorporate the most
realistic assumptions about the physical processes that influence climate.
Parker (2006: 22) points out, however, that ‘for a variety of reasons, scientists
simply have been unable to identify such a model’.

But how can climate models be combined in ‘multi-model ensembles’ if
they are incompatible? According to Parker, the pluralism in climate model-
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ling is also ‘integrative’, in the sense that different climate models are used
together to investigate the scientific uncertainty about the climate system. In
terms of the uncertainty typology introduced in chapter 3, a scenario range
of uncertainty can be determined by using several incompatible models to-
gether. Parker concludes that climate models are thus compatible not at the
level of ontology but at the level of practice. Hence her term ‘pragmatic inte-
grative pluralism’, which reflects the awareness of the climate scientists that
probably none of their models is true. Thus, two types of pluralism co-exist in
climate-simulation practice.

However, some climate scientists and policy makers regard the plurality
of epistemic lifestyles in climate simulation as a problem. A typical example
can be found in the report ‘The Capacity of u.s. Climate Modelling to Sup-
port Climate Change Assessment Activities’ by the Climate Research Com-
mittee of the u.s. National Research Council (1998). The Committee argues
that the hybrid climate-modelling/policy style of European climate modelling
centres should be copied in the United States, since ‘the United States lags
behind other countries in its ability to model long-term climate change’ (nrc

1998: 5). While ‘[t]he u.s. climate modeling research community is a world
leader in intermediate and smaller climate modeling efforts’ (nrc 1998: 1),
comparatively little money has been invested in developing and running
high-end comprehensive climate models.

However, from a methodological point of view, the diversity in climate
modelling efforts, partly due to differences in the social organisation of re-
search, must be valued positively, given the large uncertainties about the be-
haviour of the climate system.20 Through the use of different models, one can
obtain an initial assessment of uncertainty. Actually, there are only a few
centres where the most comprehensive climate models are developed and no
‘fully satisfactory systematic bottom-up approach’ (Held 2005: 1611) for de-
veloping these complex models is available. In fact,

model builders put forward various ideas based on their wisdom and ex-
perience, as well as their idiosyncratic interests and prejudices. Model im-
provements are often the result of serendipity rather than systematic analy-
sis. Generated by these informed random walks, and being evaluated with
different criteria, the comprehensive climate models developed by various
groups around the world evolve along distinct paths (Held 2005: 1611).

By building models of ‘intermediate complexity’ (Claussen et al. 2002) that
are sufficiently complex to allow for the simulation of processes of interest
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but are easier to understand than the most complex models, it is possible to
gain a better understanding of which parameterisations determine the main
uncertainties of the comprehensive models. This makes more informed
choices in model development possible.

To conclude, I agree with Shackley’s plea for an acknowledgement by the
climate-modelling community of the ‘vital and necessary role of diversity in
the practice of climate science’ (Shackley 2001: 131).

5.6 Conclusion

I have shown that the roles of climate simulation in climate science are mani-
fold. Climate models can be found to perform all the functions of simulation
that were identified in Chapter 2. I have also illustrated that climate models of
varying levels of concreteness exist and are valued differently by different
groups of climate scientists. On the one hand, we find relatively simple cli-
mate models which do not require huge computational resources but can be
used for genuine climate-scientific research. On the other hand, we encoun-
ter very comprehensive climate models that demand top-of-the-range super-
computers to work with them. For this latter category of climate models,
computing power is currently a bottleneck. This situation will remain so for
at least several years. The ipcc reports have taken a pragmatic stance in this
matter and acknowledge that both comprehensive and simple models have
important roles to play in climate science, for future projection and under-
standing. However, in practice there still seems to be a bias towards favour-
ing the most complex climate models, at the expense of the development of
simple climate models or models of ‘intermediate complexity’ that can better
facilitate understanding of the climate system. This should be evaluated neg-
atively, since for climate scientists to determine which direction the further
development of the most complex models should take, understanding which
parameterisations contribute most to the uncertainties of these models can
make the development choices more informed.
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Chapter 6

Uncertainties in climate simulation

6.1 Introduction

What are the uncertainties involved in climate simulation? First of all we must
be aware that it is impossible to establish the accuracy (or reliability1) of a cli-
mate model for future prediction, simply because we cannot establish this ac-
curacy on the basis of repeated trials. For simulations of the past the situation
is different: there is one historical realisation of the earth’s climate, changing
over time, with which climate-simulation outcomes can be compared. How-
ever, from determining the accuracy of a climate model for the past, we cannot
derive its accuracy for the future. An example of simulations of the climate in
the recent past is given in figure 6.1, where results are shown for different cli-
mate-model inputs (external ‘radiative forcings’ [see Chapter 5, note 7] on the
climate system, either of natural or anthropogenic origin). In figure 6.1a, the
grey band denotes an ensemble of historical simulations with one climate
model in which no anthropogenic emissions are included (clearly counter-
factual).1 The result is a significant mismatch between the model and the ob-
servations for the most recent decades. In figure 6.1b, the model includes no
natural external forcings from volcanoes and the sun (also clearly counter-
factual). Now, the result is a significant mismatch around the middle of the
century. Figure 6.1c shows the result in which both natural and anthropo-
genic forcings are included. The model comes close to the observations, but
how reliable1 is the model that produces this result? We have no way of deter-
mining this; we certainly cannot conclude from figure 6.1c that the model is
reliable1 for attributing the causes of climate change. The parameterisations in
the model may be tuned to give a good fit in figure 6.1c and maybe some pro-
cesses that are important in reality are not included in the model. The most we
can do quantitatively is to apply sensitivity and uncertainty analysis to estimate
– but not determine – the reliability1 of the model.

In the ipcc (2001) report, a crude sensitivity analysis was presented by
way of comparing different models (more than 30 coupled climate models
were compared with each other and with observations). From this model



comparison we get a first estimate of the range of uncertainty in climate sim-
ulation. This range does not necessarily represent the full range of uncert-
ainty about model outcomes. An assessment of the uncertainties in evalua-
ting coupled climate models resulted in the following conclusions in the
ipcc (2001a) report:

Our attempts to evaluate coupled models have been limited by the lack of a
more comprehensive and systematic approach to the collection and analy-

118 Simulating nature

Figure 6.1 Comparison of model results with observations of the global mean sur-

face temperature relative to the 1880 to 1920 mean from the instrumental record. The

processes included as natural external ‘forcings’ [see Chapter 5, note 6] on the climate

system are volcanic eruptions and changes in the solar input. The anthropogenic pro-

cesses are the emissions of greenhouse gases and aerosol precursors. Source: ipcc

2001a, spm: 11.



sis of model output from well co-ordinated and well designed experi-
ments. Important gaps still remain in our ability to evaluate the natural
variability of models over the last several centuries. There are gaps in the
specification of the radiative forcing (especially the vertical profile) as well
as gaps in proxy paleo-data necessary for the production of long time
series of important variables such as surface air temperature and precipi-
tation (ipcc 2001a [McAvaney et al. 2001], Ch. 8: 511).

These uncertainties affect attribution studies of the causes of climate change
and will be discussed in more detail in section 6.2.

In the evaluation of climate simulations, use is made of qualitative judge-
ments of the reliability2 (the methodological rigour of the scientific proced-
ure followed) of the simulations as well as quantitative estimates of the
reliability1 (the extent to which the simulation yields accurate results in a
given domain). As was proposed in Chapter 3, such judgements may be
based on (1) an assessment of the theoretical quality of climate models; (2) an
assessment of the empirical basis of climate models; (3) comparison with
other simulations; and (4) the outcome of peer review mechanisms. In the
ipcc (2001a) report a whole chapter (Chapter 8, ‘Model Evaluation’, by Mc-
Avaney et al.) is devoted to providing information for judgements on climate-
model reliability2, especially qualitative judgements on relative changes in re-
liability2 as compared with the situation in 1995, when the Second Assess-
ment Report (sar) of the ipcc was completed.

From an assessment of the theoretical quality of climate models it is appreci-
ated in the ipcc (2001a) report that models without ad hoc flux corrections
have shown an improved performance over the last few years:

Confidence in model projections is increased by the improved perform-
ance of several models that do not use flux adjustment. These models now
maintain stable, multi-century simulations of surface climate that are con-
sidered to be of sufficient quality to allow their use for climate change pro-
jections (ipcc 2001a [McAvaney et al. 2001], Ch. 8: 473).

In the previous ipcc report (sar), the lower theoretical quality of those com-
prehensive models that did use flux adjustment was seen as a problem for
those models, even though they agreed better with the observations than the
models without flux adjustment. Now that models without flux adjustment
show results that have come closer to the observations, the climate scientists’
overall confidence in model projections has increased.
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From an assessment of the empirical basis, including a partial comparison
with observations, it is concluded in the report that

[c]oupled models can provide credible simulations of both the present
annual mean climate and the climatological seasonal cycle over broad con-
tinental scales for most variables of interest for climate change. Clouds
and humidity remain sources of significant uncertainty but there have
been incremental improvements in simulations of these quantities (ipcc

2001a [McAvaney et al. 2001], Ch. 8: 473).

Thus significant differences between model simulations and observations can
be discerned with respect to clouds and water vapour. Of course, it depends on
the purpose for which a climate simulation is done how close one judges the
simulation should be to the observations in order to call it ‘credible.’

The replicability of model results was addressed by comparing many models.
The uncertainties in individual models were partly averaged out by using
multi-model ensembles in ipcc (2001).

The ipcc bases its assessment on published material, preferably on mate-
rial published in peer-reviewed journals. The models included in the model
evaluation chapter have all been subjected to peer review. However, peer re-
view is not necessarily of high quality; nor is it necessarily objective. As has
been noted recently by a u.s. meteorologist, evaluation processes within me-
teorological research are ‘currently functioning so poorly that the integrity of
the science and its timely progress are being jeopardized’ (Errico 2000: 1333).
He claims that, compared to 20 years ago, there are more papers, presenta-
tions and propopals; a smaller percentage of published comments; and hard-
ly any public discussion at conferences and workshops. It is therefore good to
note that, in addition to the peer-review mechanisms in primary publication,
the ipcc assessment process acts as a second peer review mechanism (the
details of which are described in Chapter 6).

The final assessment of the ipcc (2001a) model-evalation chapter reads
as follows:

Coupled models have evolved and improved significantly since the sar. In
general, they provide credible simulations of climate, at least down to
sub-continental scales and over temporal scales from seasonal to decadal.
The varying sets of strengths and weaknesses that models display lead us
to conclude that no single model can be considered ‘best’ and it is import-
ant to utilise results from a range of coupled models. We consider coupled
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models, as a class, to be suitable tools to provide useful projections of
future climates (ipcc 2001a [McAvaney et al. 2001], Ch. 8: 473).

The bottom-line message given by the ipcc about climate simulation is thus
that climate scientists feel confident to use these models for climate-change
studies. From the detailed evaluation of climate models it is possible to deter-
mine what questions can and cannot be answered and with what degree of
certainty. However, no typology of uncertainty was used in the ipcc (2001a)
report to categorise the uncertainties involved in climate simulation. In the
remaining part of this chapter, the ipcc (2001a) report will be analysed with
respect to climate-simulation uncertainties, making use of the typology of
simulation uncertainty proposed in Chapter 3. The focus here is on compre-
hensive climate models. After a general discussion of uncertainty in climate
simulation, the uncertainty in the causal attribution of climate change to hu-
man influences will be treated in somewhat more detail.

6.2 A general overview of uncertainty in climate simulation

In Chapter 3 (table 3.1) a typology of uncertainty was proposed, consisting of
six independent dimensions of uncertainty: location; nature of uncertainty;
range of uncertainty; recognised ignorance; methodological quality; and
value diversity. The six dimensions are each briefly illustrated here.

Location of climate-simulation uncertainties — In climate simulation, uncer-
tainties occur at all locations distinguished in table 3.1: in the conceptual
model; mathematical model (model structure, model parameters); model in-
puts; technical model implementation; processed output data and their inter-
pretation. Some common sources of uncertainty in the conceptual model and
the mathematical model structure are the following:

• Resolved-process error — The details of processes that are resolved on the
model grid (that is, processes that involve length and time scales that are
larger than the smallest length and time scales in the numerical model)
may be erroneously modelled for different reasons. For instance, one can
introduce absorption of short-wavelength radiation in resolved, that is,
large-scale, clouds on the basis of controversial measurements and with-
out theoretical basis. Some climate models have already included a sig-
nificant amount of such absorption in clouds. This may be right or wrong;
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additional and more reliable measurements will shed new light on this
problem.

• Unresolved-process error — Climate models are very sensitive to parameter-
isations of cloud processes that take place at scales that are smaller than
the model grid. The quality of all current cloud parameterisations can be
considered low. Therefore clouds constitute the most important source of
uncertainty in climate models.

• Model incompleteness — For each application one must ask the question
whether all relevant processes have been taken into account. For instance,
one cannot model the co2 cycle in a climate model without including an
explicit representation of the biota.

Nature of climate-simulation uncertainties — We are confronted with both
epistemic and ontic uncertainties in climate simulation. Climate is inherently
variable – hence the importance of ontic uncertainty. Since climate-simulation
models are used to determine the ‘internal climate variability’, we here en-
counter an example of epistemic uncertainty about ontic uncertainty (as dis-
cussed in Chapter 3). Within certain bounds, the surface temperature on earth
fluctuates in an unpredictable manner due to the natural variability of the cli-
mate system. This natural variability consists of two components: an ‘internal
variability’ of the climate system (manifested in, e.g., the El Niño phenom-
enon) and an ‘external natural variability’ (related to volcanic eruptions, for
instance). In order to determine whether, statistically speaking, the warming
observed over the last 50 years is due to this ‘internal variability’ of the climate
system or due to some other causes, such as ‘external natural variability’ (vol-
cano eruptions, for instance) or human influences, we need to establish the
magnitude of the internal variability of the climate system. Determining this
ontic uncertainty requires the use of comprehensive climate models: we can-
not determine it reliably from observations (since these observations are both
sparse and ‘contaminated’ by external natural forcings). The problem now is
that different models give different estimates of the ontic uncertainty – and
even the range of variability as predicted by models need not include the real
variability. Thus we are left with epistemic uncertainty about ontic uncertainty.

Range of climate-simulation uncertainties — The projections of future cli-
mate change that were published in the ipcc (2001a) report (reproduced in
figure 6.2) show a range of plausible temperature increases by 1.4 to 5.8°C
over the period 1990 to 2100 (figure 6.2d). Part of this range is due to uncer-
tainties in emissions (regarded as model inputs here) and part is due to cli-
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mate-simulation uncertainty. The range of climate-simulation uncertainty is
represented by the range of climate sensitivity simulated by different compre-
hensive climate models (see section 4.3). The ipcc (2001a) report treats this
range as a scenario range: no probability is attached to the range of climate
sensitivity of 1.5 to 4.5°C. Only recently, modelling groups have started sys-
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Figure 6.2 Uncertainty ranges for 21st-century projections. The lines in (a)-(c) show

the developments of co2 emissions, co2 concentrations and so2 emissions for the six

‘illustrative’ ipcc (2000) Special Report on Emissions Scenarios (sres). In (d) and (e)

the resulting global average surface temperature change and sea level rise are shown,

as calculated with a simple climate model (which includes a small number of model

parameters that are varied according to the behaviour of several comprehensive cli-

mate models). The dark grey bands show the area spanned by the full set of 35 sres

scenarios (for each scenario the runs with varying model-parameter settings have

been averaged). This gives an impression of the influence of the model-input uncer-

tainty on the outcomes of interest. The light grey bands show the enhancement of the

dark grey area if the models are not averaged. This gives an impression of the influ-

ence of model-parameter uncertainty. Source: ipcc 2001a, spm: 14.



tematic quantification of uncertainty ranges associated with comprehensive
climate models. One example is a study in which 53 versions of the Hadley
Centre gcm were constructed by varying model parameters (Murphy et al.
2004). Their result is a climate sensitivity range of 2.4 to 5.4°C, interpreted as
a 5-95% probability range. A major limitation of this estimate, however, is that
only model parameters and not model structure has been varied. This is a
more general problem in climate simulation and the assessment of its uncer-
tainties. As van der Sluijs (1997: 173-224) has shown, the best covered, but still
much neglected, areas of uncertainty analysis in both complex and simple cli-
mate models concern the inexactness in input data and model parameters.
The other areas, which will be discussed below, receive even less attention.

Recognised ignorance in climate simulation — We must allow for the possi-
bility of unpredictable behaviour of the climate system, which after all is a
highly non-linear system. The lack of knowledge resulting from this ontic
character of the system can be classified as recognised ignorance. It is not
clear at present how severe this problem is. It may be that this uncertainty
will be reduced in the future, when we know more about the unpredictability
of the climate system (which is a scientific subject that is being extensively
studied). Still, there is some reason to believe that the climate system is rela-
tively predictable on the time-scale of one hundred years. When the current
comprehensive computer models of the climate system are used to calculate
the non-linear response of the climate system to perturbations, it turns out
that they give approximately a linear response to increasing greenhouse-gas
forcing (that is, they do not show non-linear behaviour for the perturbations
used). There are more reasons to expect that climate-model uncertainties will
not be so large as to render climate prediction effectively impossible. In the
introductory chapter of the ipcc (2001a) report, the lead authors write:

There is evidence to suggest that climate variations on a global scale
resulting from variations in external forcing are partly predictable. Exam-
ples are the mean annual cycle and short-term climate variations from in-
dividual volcanic eruptions, which models simulate well. Regularities in
past climates, in particular the cyclic succession of warm and glacial
periods forced by geometrical changes in the Sun-Earth orbit, are simu-
lated by simple models with a certain degree of success. The global and
continental scale aspects of human-induced climate change, as simulated
by the models forced by increasing greenhouse gas concentration, are
largely reproducible [by the models, acp]. Although this is not an absolute
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proof, it provides evidence that such externally forced climate change may
be predictable, if their forcing mechanisms are known or can be predicted
(ipcc 2001a [Baede et al. 2001], Ch. 1: 96).

Of course, these considerations do not count as proof and we must not rest
assured that the response of the climate system remains close-to-linear in-
stead of exponential for all forcings. The climate system may show rapid
change as a response to both internal processes or rapidly changing external
forcing. Such events are considered improbable and unpredictable but not
impossible, which is why ipcc reports always address the possibility of such
‘unexpected events’ or ‘surprises’. There are many other examples of recog-
nised ignorance in climate simulation. For instance, in section 3.5, the exam-
ple of the positive feedback between higher temperatures and higher co2 was
introduced. The climate scientists are ignorant about what processes actually
cause this positive feedback.

Methodological unreliability of climate simulation — Most of the qualifica-
tions of climate simulation discussed in the previous section – and indeed a
large part of the discussion in this study – fall under this heading. The overall
judgement by the ipcc (2001a) of the methodological unreliability of climate
simulation is that although each model has its strengths and weaknesses,
coupled models, when taken together, are ‘suitable tools’ (ipcc 2001a, ts: 54)
for the study of climate change. According to climate scientists, models are
improving and becoming more reliable1. I will give some of their reasons, fol-
lowing the criteria for methodological quality outlined in section 3.6.

Theoretical basis: Although many parameterisations in climate models are
still not theoretically based, some disturbing ad hoc corrections such as flux
adjustment have been removed from some models by developing new par-
ameterisations.

Empirical basis: Although many parts of the models have still not been rig-
orously compared with empirical data, the amount of available historic data
and its spatial coverage are increasing and make systematic comparisons and
model improvements on the basis of this data possible. New parameterisa-
tions have been developed that are empirically more adequate.2

Comparison with other simulations: Many climate models are involved in
the ipcc assessment and intercomparison makes it possible to determine
what results are replicated by the different models. Such replication does not
entail that the models are correct, however, since all models may be wrong in
some respects. An example of the latter possibility is the difference between
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climate-model estimates and measurements of the global averaged tempera-
ture of the lowest 8 km of the atmosphere over the last 20 years. The models
show a statistically significant warming similar to surface warming, while
satellite and weather balloon measurements show no statistically significant
warming over this period.3 The cause of this difference is still unknown.

Peer consensus: The descriptions of the various comprehensive climate
models are usually published in peer-reviewed journals. The ipcc intercom-
parison and evaluation process provides a second round of peer review for the
different models.

However, the analysis, and especially the communication, of the methodo-
logical dimension of uncertainty is still underdeveloped in the ipcc, as will
be shown in a case study in the next chapter. Much more systematic evalua-
tions of the methodological quality of climate simulations can and should be
carried out.

Value diversity in climate simulation — Since a range of factors influence the
assumptions made by individuals and groups of modellers in their climate
simulation practice – think of, e.g., organisational mission, career paths,
funding patterns, interaction with policy makers, management and leader-
ship styles within simulation laboratories, and different epistemic styles –
these assumptions are potentially value-laden. Examples are preferences for
different styles of climate modelling (see section 5.4): different climate scien-
tists may entertain different goals of simulation in their climate-simulation
practice and some may favour simple climate models while others favour
more complex ones. Furthermore, the political views of the climate scientists
may influence their modelling choices. Based on the distinctions introduced
in sections 2.5 and 3.7, the values that play a role in making climate-simula-
tion choices are of four kinds:

General epistemic values: Scientists’ general ideas about complexity – that
is, whether models should be made as complex as possible or kept as simple
as possible – influence preferences for different modelling strategies.

Discipline-bound epistemic values: The disciplines climate scientists belong
to influence the emphasis they decide to put on, for instance, physical pro-
cesses versus biological processes in complex climate models.

Socio-cultural values: The views of climate scientists of why they are per-
forming their simulations, e.g. to provide policy advice, may influence choices
in their models. For instance, flux adjustment was deemed necessary for some
models in order to be able to perform simulations with political relevance.
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Practical values: Practical issues such as obtaining results on time and re-
maining within a given budget pose limitations to climate simulation. For ex-
ample, a lack of computing capacity influences the resolution of models and
what processes are included in models and what processes are not.

Since a combination of values often influences the choices that climate mod-
ellers make, it is difficult in practice to determine what values in fact did in-
fluence a particular choice. Methodologies for exploring the value-ladenness
of assumptions such as the one developed by Kloprogge et al. (2005) may of-
fer some assistance in determining which values may have had more influ-
ence than others.

6.3 Climate-simulation uncertainty and the causal attribution
of temperature change

‘Detection’ of climate change concerns the question of whether a warming of
the earth’s surface that is significantly larger than the internal variability of
the climate system can be detected. In this section, I will focus on the ques-
tion of whether a significant part of the detected warming can be attributed to
human influences. In figure 6.1, climate-simulation results for different radi-
ative forcings, featuring different combinations of natural and anthropo-
genic forcings, were shown.

Without climate simulations, detection and attribution studies would be
severely hampered:

To detect the response to anthropogenic or natural climate forcing in
observations, we require estimates of the expected space–time pattern of
the response. The influences of natural and anthropogenic forcing on the
observed climate can be separated only if the spatial and temporal varia-
tion of each component is known. These patterns cannot be determined
from the observed instrumental record because variations due to different
external forcings are superimposed on each other and on internal climate
variations. Hence climate models are usually used to estimate the contri-
bution from each factor. The models range from simpler energy balance
models to the most complex coupled atmosphere–ocean general circula-
tion models that simulate the spatial and temporal variations of many cli-
matic parameters (ipcc 2001a [Mitchell et al. 2001], Ch. 12: 705).
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The ipcc (2001a) report concludes that a warming of about 0.5°C over the
last 50 years can be detected and that it is ‘likely’ that most of this warming is
attributabe to the human-induced increase in greenhouse-gas concentra-
tions. This conclusion is one of the most important conclusions ever pub-
lished by the ipcc. Where the Second Assessment Report concluded in 1995
that ‘the balance of evidence suggests a discernible human influence on
global climate’, the latest conclusion gives a quantified statement (‘most’),
which is qualified by an assessment of the confidence experts have in this
statement (they consider it ‘likely’ to be true, i.e., with a judgemental estimate
of a 66-90% chance, as the ipcc defines ‘likely’ in its 2001 report). The con-
clusion was interpreted by politicians to support their determination to im-
plement climate policies (by reaching the Bonn Agreement in July 2001, con-
cerning the implementation of the Kyoto Protocol of 1997). The comparison
between the model simulations and observations shown in figure 6.1 is often
used to illustrate that the recent climate change can indeed be attributed to
human influences.

But what are the simulation uncertainties involved in attributing recent
climate change to human influences? The five key uncertainties are de-
scribed in table 6.1. Their identification as key uncertainties and their de-
scriptions follow from the discussion of detection and attribution uncertain-
ties in Chapter 12 of the ipcc (2001a) report (Mitchell et. al 2001).

Table 6.1 Sources of simulation uncertainty in climate-change attribution

Source Short name Description

1 Internal
climate
variability

The precise magnitude of natural internal climate variability
remains uncertain. The amplitude of internal variability in
the models most often used in detection studies differs by up
to a factor of two from that seen in the instrumental tempera-
ture record on annual to decadal time-scales, with some
models showing similar or larger variability than observed.
However, the instrumental record is only marginally useful
for validating model estimates of variability on the multi-de-
cadal time-scales that are relevant for detection (ipcc 2001a
[Mitchell et al. 2001], Ch. 12: 729).

2 Natural
forcing

For all but the most recent two decades, the accuracy of the
estimates of natural forcing may be limited, being based en-
tirely on proxy data for solar irradiance and on limited sur-
face data for volcanoes. There are some indications that solar
irradiance fluctuations have indirect effects in addition to
direct radiative heating, for example due to the substantially
stronger variation in the uv band and its effect on ozone, or
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hypothesised changes in cloud cover. These mechanisms re-
main particularly uncertain and currently are not incorpo-
rated in most efforts to simulate the climate effect of solar
irradiance variations, as no quantitative estimates of their
magnitude are currently available (ipcc 2001a [Mitchell et
al. 2001], Ch. 12: 729).

3 Anthropogenic
forcing

The major uncertainty in anthropogenic forcing arises from
the indirect effect of aerosols. The global mean forcing is
highly uncertain. The estimated forcing patterns vary from a
predominantly Northern Hemisphere forcing similar to that
due to direct aerosol effects to a more globally uniform distri-
bution, similar but opposite in sign to that associated with
changes in greenhouse gases (ipcc 2001a [Mitchell et al.
2001], Ch. 12: 729).

4 Response
patterns to
natural and
anthropogenic
forcing

There remains considerable uncertainty in the amplitude
and pattern of the climate response to changes in radiative
forcing. The large uncertainty in climate sensitivity, 1.5 to
4.5°C for a doubling of atmospheric carbon dioxide, has not
been reduced since the sar, nor is it likely to be reduced in the
near future by the evidence provided by the surface tempera-
ture signal alone. ... There is greater pattern similarity be-
tween simulations of greenhouse gases alone, and of green-
house gases and aerosols using the same model, than be-
tween simulations of the response to the same change in
greenhouse gases using different models. This leads to some
inconsistency in the estimation of the separate greenhouse
gas and aerosol components using different models (ipcc

2001a [Mitchell et al. 2001], Ch. 12: 729).
5 Free

atmosphere
trends

There are unresolved differences between the observed and
modelled temperature variations in the free atmosphere
[portion of the earth’s atmosphere above the planetary
boundary layer, acp]. ... It is not clear whether this is due to
model or observational error, or neglected forcings in the
models (ipcc 2001a [Mitchell et al. 2001], Ch. 12: 729).

(1) Internal climate variability — Simulation models are used to estimate the
internal climate variability for lack of a reliable direct estimate from the
observational record. The bandwidth of the grey model results in figure 5.4
represents only one model’s estimate of the internal climate variability. Here
only the uncertainty related to the sensitive dependence on initial conditions
is taken into account. Four model runs were performed starting from differ-
ent but equally probable inititial conditions to determine each grey band. The
resulting width of the band – or a width calculated on the basis of model runs
using different models – can be used as a statistical estimate of the internal

Uncertainties in climate simulation 129



130 Simulating nature

climate variability, an ontic uncertainty.4 Since this ontic uncertainty is
exactly what one is looking for, the matrix cell [Output processing and inter-
pretation, Ontic uncertainty] has been identified as a crucial uncertainty type.
The statistical statement that is reached in the Summary for Policymakers of
ipcc (2001a) is the following: ‘The warming over the past 100 years is very
unlikely to be due to internal variability alone’ (ipcc 2001a, spm: 10). This
statement is claimed to be insensitive to the model used to estimate internal
variability, and ‘recent changes cannot be accounted for as pure internal vari-
ability, even if the amplitude of simulated internal variations is increased by a
factor of two or perhaps more’ (ipcc 2001a, ts: 56). The variation of esti-
mates of internal variability among models can be characterised as an
epistemic uncertainty due to uncertainties located in the conceptual models
and the corresponding mathematical models. Since we have no available stat-
istical judgements about the quality of the different climate models used, the
uncertainty range associated with the location of model structure is of the
scenario-uncertainty type. The value-ladenness of choices in making climate-
simulation assumptions has been alluded to before. Many choices are also
possible with respect to the framing of interpretations.

(2) Natural forcing — The uncertainties in data of historical natural forcings
enter the models mainly through the model inputs. With respect to the po-
tential influence by the sun, there is recognised ignorance about possible pro-
cesses – not included in climate models – through which the sun might exert
a stronger influence on the earth’s climate. There are many choices possible
in producing the historical reconstructions. Some of the reconstructions
used contain statistical uncertainty ranges, others do not. In the latter case of-
ten different reconstructions, without statistical qualifications, are available –
making it possible to express scenario uncertainty.

(3) Anthropogenic forcing — Uncertainties in greenhouse-gas emissions are
located in the model inputs. The forcing by aerosols is calculated in some
models as part of the simulation by using atmospheric chemistry models
coupled to climate models.

(4) Response patterns — Different models give widely differing response pat-
terns in terms of regional temperature changes for similar forcings. In figure
6.3 the vertical bars represent the statistical uncertainty (taking into account
internal variability) about whether a computer-simulated temperature re-
sponse signal can be matched with the observations. In figure 6.3a, if a range
encompasses the value of zero, this implies that the signal cannot be detected
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at all. The left-most signal (greenhouse-gas forcing only, using the Hadley
Centre’s HadCM2 model) shows that the warming over the last century has
been overestimated by factor of two: inclusion of sulphate aerosols – which
led to cooling – is thus needed to produce realistic warming trends.

(5) Free atmosphere trends — Over the last 20 years, statistically significant
differences between the temperature change of the lowest 8 km of the atmos-
phere (this is largely free atmosphere, above the planetary boundary layer),
determined from satellite and weather balloon measurements, and the tem-
perature change at the surface, have been found. This difference is not found
over a longer time-scale of 50 years. Climate models have not been able to re-
produce the recent differences in temperature change between the surface
and the lower atmosphere. If the observations are correct, there may be some-
thing wrong in the model inputs. Alternatively, there is a similar structural
error in all climate models.

Table 6.2 summarises the uncertainty sources and types that deserve particu-
lar attention when assessing and communicating climate-simulation uncer-
tainty in climate-change attribution. The uncertainty matrix proposed in
Chapter 3 is used for this purpose. The assignment of the different levels of
priority is based on the author’s own subjective expert judgement. The table
contains more information than is discussed in the text. It must be regarded
as a starting point for a discussion with climate modellers and others. Crucial
aspects to communicate are: the epistemic nature of the uncertainty, the rec-
ognition of ignorance and the methodological unreliability of the models.
Since many different models are used in the ipcc, the dimension of value
diversity is already partly addressed.

All the sources of uncertainty discussed above impair the accuracy and
reliability2 of claims that can be made with respect to detection and attribu-
tion of climate change. Some of the uncertainty can be expressed statistically.
However, it is only a part of the uncertainty that is captured in the statistical
uncertainty statements made in Chapter 12 of the ipcc (2001a) report. In
addition, qualitative judgements of the reliability2 of the models for the pur-
pose of detection and attribution of climate change are indispensable. As will
be shown in Chapter 7 of this study, the lead authors of Chapter 12 used the
qualifier ‘likely’ instead of ‘very likely’ for the proposition that ‘most of the
observed recent warming is attributable to human influences’, while the stat-
istical model-based evidence suggests that the qualifier ‘very likely’ should
have been used. Although this is not explicitly stated in the ipcc (2001a)
report, a qualitative judgement on the unreliability2 of climate models was
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Figure 6.3 (a) Estimates of the ‘scaling factors’ by which the amplitude of several

model-simulated temperature signals (G = greenhouse gases; GS = greenhouse and

sulphate forcing; GSI = GS including the aerosol indirect effect; GSIO = GSI and strato-

spheric ozone depletion; SIO = suplhate forcing including the direct effect and strato-

spheric ozone depletion; N = natural external forcing, including solar and volcanic; So

= solar forcing; V = volcanic forcing) must be multiplied to reproduce the correspond-

ing changes in the observed record. The vertical bars indicate the 5 to 95% uncertainty

range due to internal variability. Different comprehensive climate models have been

used (their acronyms are written below the plots). For instance, the first model

(HadCM2 with only greenhouse gas emissions and no other forcings included) overes-

timates the observed temperature change with a factor of two, resulting in a scaling

factor of 0.5; this shows that the compensating effect of sulphate aerosols must be in-

cluded in the model to obtain a more realistic simulation. (b) Estimated contributions

to global mean warming over the 20th century, based on the results shown in (a).

Source: ipcc 2001a, ts: 60.
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used to argue for lowering the probability estimate to the category of ‘likely’.5

Using climate models, a model-based inexactness estimate, and statistical
procedures, the ipcc estimated that the proposition is ‘very likely’ (with a
90-99% chance) to be true. The qualitative assessment of the models led the
authors to change the category of the qualifier, but they did not have the
vocabulary to explicitly distinguish the two uncertainty sorts of inexactness
and unreliability2 and their separate impacts on the main conclusion.

One of the problems with the statistical uncertainty statements in the
ipcc wg i report is that lead authors often used the likely/very likely vocabu-
lary in a frequentist statistics mode (mainly in relation to observations in the
past). Officially, as it also says in footnote 7 of the spm, the chances given in
the wg i report are ‘judgmental estimates of confidence’, implying a Bayesian
statistics mode. In the future, the ipcc should make transparent what kind of
statistics is being used and how the assessment of the unreliability2 of mod-
els is taken into account. The ‘likelihood’ terminology cannot adequately rep-
resent model unreliability2. At least, it is difficult if not impossible to distill
the lead authors’ judgement of climate-model unreliability2, as it influences
the attribution conclusion, from the word ‘likely’. This was one of the factors
affecting the deliberations on the attribution statement during the ipcc wg i

Plenary Session in Shanghai in January 2001 (see Chapter 7).

6.4 Conclusion

Even though all climate models contain ad hoc ‘parameterisations’ and can be
criticised methodologically for that reason, climate scientists generally feel
confident to use these models for climate-change studies. However, the ipcc

lacks a typology of uncertainty which can be used to assess uncertainties more
systematically. The typology of simulation uncertainty proposed in Chapter 3
can be fruitfully applied in the analysis of climate-simulation uncertainty,
as was shown for the simulation-related sources of uncertainty in climate-
change attribution studies. By applying the typology it is immediately obvious
that only part of the uncertainty can be expressed statistically. Additional qual-
itative judgements on the reliability2 of the climate-simulation models are
needed – and indeed played an important role in the production of the ipcc

(2001a) report. Since the vocabulary needed to explicitly distinguish between
the two uncertainty sorts of inexactness and unreliability2 was not available to
the Lead Authors, the influence of their qualitative judgements on reaching
their final conclusion remained largely invisible to outsiders.
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Chapter 7

Assessments of climate-simulation uncertainty
for policy advice

7.1 Introduction

The subject of climate change is imbued with scientific dissensus on what
precisely is happening, and will happen, with the climate. Part of this
dissensus is related to the large uncertainties in climate simulation discussed
in the previous chapter. Furthermore, there is disagreement on political ob-
jectives vis-à-vis anthropogenic climate change (e.g., To what extent do we
want to limit anthropogenic interference with the climate system? What
should we do to mitigate the likely causes of climate change and to what ex-
tent should we prepare to adapt to it?). Perceptions of the climate-change risk
vary widely both across the globe and within societies. Thus, the uncertain-
ties are large – with climate simulation being a significant contributor to
these uncertainties – and the stakes are high. This puts the problem of
anthropogenic climate change in the category of ‘unstructured’ policy prob-
lems (see Chapter 4).

In the climate-change debate, the stakes are indeed high. On the one hand,
some key players in the economy feel their existence threatened by calls for
drastic reductions of co2 emissions. And a significant group of politicians al-
ready judge the first step, the Kyoto Protocol, to have too high macro-eco-
nomic costs. For developed countries, reductions in projected Gross Domes-
tic Product (gdp) due to the Kyoto Protocol are between 0.1 and 2% in 2010
(ipcc 2001b, spm: 10).1 Climate-policy costs may be expected to become
higher for larger emission reductions than those agreed upon in the Kyoto
Protocol. Furthermore, some sectors in some locations, such as agriculture
outside of the tropics, will – at least initially and with some adaptation – bene-
fit from climate change (ipcc 2001b: 9). On the other hand, the stakes are
also high for those who risk damage (to themselves or to things they value) by
the projected climate change. For instance, some ecosystems are projected to
become irreversibly damaged, species will become extinct, small-island de-
veloping states risk disappearance with continued sea level rise, food produc-
tion may suffer in many areas, et cetera (see ipcc 2001b). In addition, some



players see business opportunities for more environmentally friendly tech-
nology.

Future climate policies will most likely be a mixture of adaptation by soci-
eties to human-induced climate change and mitigation of the cause of this
change, mainly by reducing greenhouse-gas emissions. We are in the tragic
situation that some future changes in the climate system as a consequence of
increased greenhouse-gas concentrations already seem inevitable. Even if we
drastically cut back our emissions and the atmospheric concentration of
greenhouse gases stabilised, the global average temperature is projected to
continue to rise by a few tenths of a degree per century for a century or more,
while sea level is projected to continue to rise for many centuries (ipcc

2001d, spm
2: 16). This is due to inertia in the climate system: it takes a long

time for heat to be transported into the oceans and ice sheets only respond
slowly. But the projected climate-changes also pose significant risks to soci-
eties and ecosystems in the nearer future. Already, recent regional changes in
climate have been observed to affect ecosystems (ipcc 2001b, spm: 3). Eco-
systems are vulnerable to climate change and some are projected to become
irreversibly damaged (ipcc 2001b, spm: 4). Many human systems are sensi-
tive and some of these systems are vulnerable to climate change (ipcc 2001b,
spm: 5). Distributional issues are important here, since societies with the
least resources have the least capacity to adapt and are most vulnerable (ipcc

2001b, spm: 8). To sum up: since some significant climate change is already
projected to be inevitable with little uncertainty, adaptation to climate change
will be a necessary ingredient of climate policy. Furthermore, if we want to
avoid taking the risk that the impacts become even higher, we will need to
mitigate the likely cause of climate change, that is, reduce our greenhouse-
gas emissions.

What could the role of scientists be as policy advisers in unstructured
problem contexts? In Chapter 4, I followed Hisschemöller et al. (2001) in
characterising the role of science as that of ‘problem recogniser’. The author-
ity of scientists who take on this role can be assumed to reside in the scien-
tists’ ability to assess and communicate uncertainty and analyse the different
values and perspectives on the problem. In the case of climate change, al-
though climate scientists are quite certain about the fact that warming can be
observed over the last five decades and judge that it is likely that this warming
largely results from anthropogenic causes, there remain important uncer-
tainties. Not only are there uncertainties associated with the attribution of the
observed climate change, but we are also confronted with additional uncer-
tainties in future climate-change projections, uncertainties about the impacts
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of the projected changes, uncertainties about the costs of these impacts, and,
not least, uncertainties about the costs and benefits of different climate-
change policies (adaptation and mitigation measures). These uncertainties
need not be obstacles for political decision making on climate policy. It can be
– and indeed has been – decided that some precautionary action is war-
ranted.3 What action that should be is understandably a matter of intense con-
troversy. In this situation, the assessment of uncertainties and the views that
the different actors involved in the policy problem hold on these uncertain-
ties provide crucial input for an informed political debate on the issue of cli-
mate change.

Just as people hold different views on risks, so they also have different
perspectives on uncertainties, including climate-simulation uncertainty. In
the public debate on possible measures to curb CO2 emissions, critics of the
proposed policy measures typically refer to uncertainties in climate simula-
tion. They argue that there is no empirical evidence of the problem (‘we don’t
see human-induced global warming happening yet’) and that prediction of cli-
mate far into the future (e.g., the year 2100) is not possible in a reliable man-
ner. Since many of the critics currently admit that the earth’s surface has
warmed by about 0.5°C over the last 50 years, the alleged lack of evidence is
basically a negative assessment of the quality of climate simulation, since
only from the combination of the observations and an explanatory model can
one attribute the observed changes to human influences instead of natural
fluctuations, as was discussed in Chapter 5. From a philosophical point of
view the critics certainly seem to have a case. The question of the reliability of
climate simulation is a legitimate one. The uncertainties involved in climate
simulation have taken on a central role in the sound-science debate and a sig-
nificant part of the political discussion on climate change to date has focused
on the relationship of models to data (Edwards 1999). Their perspective on
the issue of climate change often leads lobbyists of the coal and oil industry to
take only the lower range of the future climate projections in figure 6.2 into
account. They typically claim that climate sensitivity (the sensitivity of the
surface temperature to a doubling of co2) is low.

At the other extreme, we find some lobbyists within the environmental
movement who deem the upper range of the climate projections to be the
most likely. Some environmentalists have criticised climate simulations for
the fact that they would not be able to adequately model abrupt changes in the
climate system (e.g., in the 1990s, Jeremy Leggett of Greenpeace; see Leggett
1999). From this perspective, the climate system could well be too compli-
cated to be modelled adequately.4
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As we have seen in section 5.4, climate scientists themselves hold differ-
ent political views on the climate-change problem. The way both experts and
lay people interpret climate-simulation uncertainty may be informed by the
science–policy setting of the climate models. It is therefore impossible to
neatly separate climate science and policy.

This chapter studies more closely how scientists may realise their role of
uncertainty assessors and communicators under conditions of polarised pol-
itical debate and severe scientific uncertainty, that is, in the context of an un-
structured policy problem. First, the Intergovernmental Panel on Climate
Change (ipcc) will be analysed as a boundary organisation between science
and politics that by virtue of its rules and ways of proceeding in the produc-
tion of assessments of climate change has produced sophisticated and bal-
anced assessments of climate-simulation uncertainty. The way the ipcc dealt
with this uncertainty in its latest report will be closely scrutinised. Second,
methods of integrated assessment that explicitly include value-laden perspec-
tives on uncertainty are evaluated with respect to their ability to inform polit-
ical debate on unstructured policy problems. An example of a study by rivm/
mnp is examined in some detail.

7.2 The Intergovernmental Panel on Climate Change (IPCC) and
its communication of climate-simulation uncertainty

One can analyse climate science and policy as a whole in terms of a ‘climate
regime’, being ‘the suite of social, political, scientific, and economic net-
works and institutions (both formal and informal) that have emerged in re-
sponse to human threats to the earth’s climate system’ (Miller 2001: 497). In
figure 7.1, this climate regime is graphically depicted. In the middle of the
diagram, one finds the ipcc. Let us here briefly recount how this climate
regime, and specifically the ipcc, came about.

In the 1980s, climate scientists were very much involved in raising inter-
national political awareness for the human-induced global-warming prob-
lem. This heightened awareness led to strong incentives provided by the
international political community for the international scientific assess-
ments of global warming. Meteorological and climate research – considered
as a separate activity from policy advising – had already been international-
ised in the 1950s. Large-scale scientific cooperation through international
research programs had started with the International Geophysical Year in
1957/1958. Thirty years later, in 1988, public attention for the global warm-
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ing issue sharply increased in many countries (Social Learning Group 2001).
That same year, at the end of the Cold War, many countries decided to coop-
erate on scientific climate-policy advising within the framework of the United
Nations. For that purpose a new international organisation was established:
the ‘Intergovernmental Panel on Climate Change’ (ipcc), formally a daugh-
ter organisation of both the World Meteorological Organisation and the
United Nations Environment Programme.

The success of the ipcc can be measured as the degree to which this
boundary organisation between science and policy is able both to bring cli-
mate science to policy in a way that policy makers consider legitimate and re-
tain legitimacy in the scientific domain. It seems that the connection between
climate science and policy has successfully been made by the ipcc. One can
think, first of all, of the 1992 unfccc (United Nations Framework Conven-
tion on Climate Change),5 the 1997 Kyoto Protocol and the 2001 Bonn Agree-
ment. Reaching those agreements was indeed facilitated by the first, second
and third ipcc assessment reports, respectively. The first report (1990) had
confirmed that scientists thought that climate change may pose a serious
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Figure 7.1 The institutional landscape of the climate regime. wmo = World Meteoro-

logical Organisation; unep = un Environment Programme; ipcc = un Intergovern-

mental Panel on Climate Change (jointly instituted by wmo and unep); igbp = Inter-

national Geosphere–Biosphere Programme; unfccc = un Framework Convention

on Climate Change; sbsta = Subsidiary Body for Scientific and Technological Advice.

Source: Miller 2001 (generalised by the author from u.s. institutions).

/



risk, though much was still uncertain (e.g., whether the observed warming
could be attributed to human influences) and had proposed ingredients for
the climate-change convention. The second report (finalised in 1995) con-
cluded that ‘the balance of evidence suggests a discernible human influence
on global climate’ (ipcc 1996, spm: 4), implying that the evidence for human
influence had increased. The third report (2001) gave an even stronger mes-
sage that ‘there is new and stronger evidence that most of the warming ob-
served over the last 50 years is attributable to human activities’ (ipcc 2001a,
spm: 10). Since all governments accept the ipcc reports and approve the
Summaries for Policymakers line by line, the authority of ipcc reports is ac-
knowledged at meetings of the Framework Convention. Furthermore, the
ipcc has proved to be responsive to requests for more tailored advice by the
convention. Thus, worldwide, ipcc reports are used directly in the policy-
making process. Even countries with governments that are sceptical about
the Kyoto Protocol accept the full ipcc reports, albeit often reluctantly, as
authoritative.

The policy relevance of the ipcc is thus ensured by its ties to the climate
convention and by it being an intergovernmental body. In fact, the reason for
establishing the ipcc in 1988 was the need perceived at the end of the 1980s
for an international agreement on the issue of global warming (Agrawala
1998). Since some governments were not yet convinced that there was
enough scientific evidence for the problem to justify actions, an intergovern-
mental (not just international) body was created to provide an assessment of
all available knowledge on the issue that subsequently could not be discred-
ited during the negotiation of actions. In fact, one could hypothesise that the
ipcc has been so successful because the problem addressed was already con-
sidered relevant and consensual legitimation for climate policies was pre-
cisely what was sought. This view would entail that the ipcc fulfilled a role
not as problem recogniser in an unstructured problem context, but as prob-
lem solver for a structured problem. However, even though some govern-
ments would like to treat the problem of climate change in this way, the large
uncertainties attached to many of the findings of the ipcc and the reality of
the different interests of countries in intergovernmental negotiations, give
rise to another hypothesis. It may have been, in particular, the assessment
and communication of uncertainties, and the consequent careful phrasing of
the conclusions in the assessments by the ipcc that gave rise to its authority
in policy-making circles.

The ties of the ipcc with political processes aimed at climate action have
remained strong ever since, although the link has gradually become less direct.
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With the first comprehensive assessment, released in 1990, the ipcc pro-
vided direct input to the policy process. For example, the 1990 report explicitly
discussed possible ingredients for a climate convention. After the convention
had gained momentum in 1995, the Subsidiary Body for Scientific and Tech-
nological Advice (sbsta) took over the discussion of matters closely related to
the convention. This convention body now is the intermediary between the
ipcc and the convention and has good working relations with the ipcc.

After the Third Assessment Report (tar) was completed in 2001, the
sbsta defined its role vis-à-vis the ipcc as a forum to discuss the political im-
pact of the ipcc conclusions in the context of the climate convention, e.g., the
definition of ‘dangerous anthropogenic interference with the climate system’
(referring to Article 2 of the unfccc) and, related to that, necessary future
commitments (that is, emission reductions). The ipcc has made it very clear
in its Synthesis Report volume of the tar (ipcc 2001d) that the answers to
such political questions, although they must be scientifically informed, basi-
cally involve value judgements. The first sentence of this report reads:

Natural, technical, and social sciences can provide essential information
and evidence needed for decisions on what constitutes ‘dangerous
anthropogenic interference with the climate system’. At the same time,
such decisions are value judgments determined through socio-political
processes, taking into account considerations such as development, equity,
and sustainability, as well as uncertainties and risk (ipcc 2001d, spm: 1).

In order to ensure that the ‘essential information and evidence needed for
decisions’ is indeed delivered to the climate convention, the sbsta guides the
ipcc in taking up policy-relevant questions, for instance by commissioning
Special Reports or Technical Papers from the ipcc, or by having govern-
ments submit ‘policy-relevant scientific questions’ to be addressed by the
ipcc. The Synthesis Report of the tar is structured around nine questions
that were approved by the ipcc on the basis of submissions solicited by the
sbsta.

The ipcc thus tries to maintain legitimacy in the eyes of governments.
Apart from the linkage to policy making, another factor that determines the
success of a boundary organisation is the degree to which the organisation is
perceived by scientists to give an adequate representation of the science. In
this respect, the credibility of the ipcc is quite high. ipcc reports are often
used as standard works of reference for climate science and the key uncer-
tainties identified often guide priority setting for research. Still, criticism is
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voiced in parts of the scientific community about the direct interaction be-
tween scientists and policy makers in the production of the Summaries for
Policymakers of ipcc reports. Although the number of scientists critical of
the ipcc seems to have been declining over the years, some vocal critics still
remain. These critics usually accept the main reports as being of a high scien-
tific quality, but disqualify the Summaries for Policymakers as being ‘too po-
litical’. Some of these critics themselves hold the political view that climate
measures should not be installed and from their point of view the ipcc is
considered to be too successful in its interaction with policy makers but un-
successful in terms of remaining faithful to science. Since we have already
concluded that concerns about the reliability of climate models are legitim-
ate, such criticisms warrant a closer look into the assessment of simulation
uncertainty by the ipcc, and specifically into the writing of the Summaries
for Policymakers. This investigation is taken up in this chapter.

The strong interaction between climate science and policy, which is often
publicly discussed and criticised, has led to a growing body of social science
literature on this interaction, starting in the mid-1990s (a few years after the
first ipcc reports had appeared). Some studies pointed out how intimately
the ipcc and policy making were actually interwoven (e.g., Boehmer-Chris-
tiansen 1994a; 1994b; Shackley and Skodvin 1995; Shackley and Wynne
1996; Skodvin 2000). This has been evaluated negatively by some social sci-
entists as an inappropriate interaction between climate science and climate
policy, or more generally as a symptom of a more widespread ‘problem’ in en-
vironmental policy making where ‘ambitious efforts made by scientific insti-
tutions to influence international evironmental policy’ have become common
(Boehmer-Christiansen 1994a: 141). In this line of reasoning, the increasing
attention paid by the ipcc to communicating uncertainty on the human-
induced global-warming problem to policy makers has led to a weakening of
the influence of climate scientists on the actual policies being implemented.
The unfccc of 1992 indeed did not include any binding emission reduction
targets. And the Kyoto Protocol of 1997, with its small binding targets for the
developed countries, could also be said to be much less strong than some cli-
mate scientists wanted.

Still, not all analysts associate the ipcc with careful uncertainty commu-
nication. And there is indeed some evidence for deviations from the general
picture that the ipcc has become more sensitive to uncertainty. The follow-
ing is a quote from ipcc chairman Robert Watson, providing a reply to a re-
porter’s question about uncertainties at a press conference during a session
of the climate convention:6
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I don’t think there is any doubt that the Earth’s climate is changing. I don’t
think there is any doubt we humans are involved in that change. And I
don’t think there is any doubt that further climate change is inevitable,
and that most of the consequences will be adverse. Are there scientific
uncertainties? Yes. It is not a reason for policy inaction (ipcc Chairman,
Press Conference, Resumed session of the 6th Conference of the Parties,
Bonn, Germany, July 2001).

The second and third sentences spoken here by the ipcc chairman do not ad-
equately reflect the uncertainty about the associated statements that is com-
municated in ipcc reports. He performs his role as advisory scientist very
emphatically at this climate-convention session. He is an example of a profes-
sional serving a mediating role between science and policy, and he can be
considered a member of a ‘hybrid science-policy community in its own right’
(Shackley and Wynne 1996: 276). The chairman in this quote wants to send a
clear message both to the public and the politicians that we do have a global
warming problem, but he does not want to offend the scientists he represents
by denying the presence of uncertainties. His statements are kept vague (no
numbers are given) and their impact on a lay public, including politicians,
must be considered significant. However, if we take a closer look at the sec-
ond and third sentences of the quote, the chairman, by wanting to play a cata-
lyzing role at the climate convention, runs the risk of undermining the re-
ports published by the ipcc. These do contain more cautious statements, as
will be discussed below.

The ipcc has often been critised in public by scientists and lobbyists for
its failure to properly communicate to policy makers the uncertainties in-
volved in simulating climate. The quote from the ipcc chairman at the press
conference could be cited by these critics as evidence for their position. Their
criticism of the chairman could run along the following lines: ‘Of course
there are doubts about all three propositions stated by the chairman (espe-
cially about the last two), and he implictly acknowledges this by his allusion
to the uncertainties that do remain. However, how policy makers should
deal with these uncertainties is a political matter. By suppressing the com-
munication of uncertainties in his claims that there are no doubts on the
three stated propositions, he behaves irresponsibly for a scientist giving
advice to policy makers, politicians and the public. It gives them the wrong
signal, namely that the scientists are fully certain about these claims and that
therefore the implementation of climate policies is warranted’. Similarly, crit-
ics could argue that the climate convention and the Kyoto Protocol were
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based on an inappropriate use of climate-change simulation. Some could
go so far as to claim that projections of future climate are impeded by such
formidable uncertainties that they are virtually useless (pun intended).
Finally, they could criticise the use of simulations for the detection of cli-
mate change (against the background of internal climate variability) and for
the attribution of detected changes to anthropogenic and natural causes, re-
spectively. Again, their criticism could be that in climate-change detection
and attribution studies the simulation uncertainties have not been properly
taken into account. Such criticisms did indeed surface during the Plenary
Session of wg i in Shanghai in January 2001, where the spm was approved
(see section 7.2.3).

The last sentence of the quote from the ipcc chairman, that uncertainty
is not a reason for policy inaction, borders on being policy prescriptive. ipcc

procedures state that the ipcc should deliver ‘policy-relevant but policy-neu-
tral’ assessments. So we are confronted here with the question of how the
ipcc chairman’s sentence can be interpreted as being ‘policy neutral’. It is
useful at this point to compare his statement to the press with what he said in
his introductory talk to an ipcc-internal audience of country delegates and
lead authors who were present at the January 2001 meeting in Shanghai of
ipcc Working Group i (wg i):

The credibility of the ipcc relies on the knowledge and standing of the
lead authors, reviewers and technical support units. ipcc reports are
intended to be policy relevant, not policy prescribing. Governments are
involved in the review process by providing comments; the challenge for
the lead authors is to come up with clear and crisp answers. The ipcc has
been successful: at every policy-making stage there was applause for the
ipcc. We must remain diligent: the text must be absolutely correct. In
Montreal [where in May 2000 the spm of the Special Report on Land Use,
Land-Use Change, and Forestry was approved] it nearly went wrong: the
ipcc was very close to becoming policy prescriptive due to attempts by
some countries. The success of the ipcc was visible in The Hague: the
question whether climate change is an issue was not considered relevant
anymore. We have succeeded in getting across that message (ipcc wg i

Co-Chair, plenary session, Shanghai, January 2001).

From the last sentence of this quote it becomes clear that the chairman con-
siders it a success for the ipcc to have influenced policy makers by having
them consider climate change (used in the sense of ‘human-induced climate
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change’ here) to be an important issue. The policy neutrality of the ipcc

should be taken to pertain to the contents of the measures that should be
taken. Since the precautionary principle is part of the unfccc, the Chair-
man’s statement that the presence of uncertainties does not constitute a rea-
son for policy inaction can be interpreted as a reiteration of the correspond-
ing article of the unfccc.

Within its own proceedings, the ipcc is indeed trying to stay policy neu-
tral. An example may illustrate this. In the first review of the tar wg i report,
the co-chair of wg i was not entirely happy with the second sentence of the
full report:

Many consider the prospect of human-induced climate change as a matter
of concern (ipcc 2001a, Ch. 1: 87).

The co-chair thought this sentence came too close to expressing concern as
ipcc (Expert Comments on 1st Draft, January 2000). He therefore suggested
referring instead to the ‘possibility’ of the ‘prospect’ of human-induced cli-
mate change and to say that because of this possibility ‘it is important to as-
certain the influence’ of human activities. The comment was rejected by the
lead authors since they did not agree that the sentence implied that the ipcc

was expressing concern. The lead authors merely wanted to note that there
was concern, which seems to be correct. To some readers the sentence might
not look that innocent, however, especially when read together with the sen-
tence that follows:

The ipcc Second Assessment Report presented scientific evidence that
human activities may already be influencing the climate (ipcc 2001a, Ch.
1: 87).

It can be interpreted to mean that the concern is justified by the evidence pro-
vided by the ipcc. This justificatory step is not explicitly taken here by the
ipcc, but is left to politicians and the public to interpret. Of course, since the
ipcc indeed presented preliminary evidence of a human-induced global-
warming problem, and since the effects of the future warming were projected
to be largely adverse, one can easily argue that concern is justified.

When we evaluate the communication of uncertainties by the ipcc, we
have to pay attention to the fact that the ipcc has some influence on future
funding for climate science.7 The climate convention in its setup is already
very research intensive, as opposed to alternative setups that can be imag-
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ined, in which strong precautionary action could be taken without requiring
additional scientific advice. In this situation, climate scientists may have an
interest in communicating through the ipcc mainly uncertainties instead of
very strong messages without caveats. If we indeed interpret the ipcc scien-
tists’ intentions as pursuing only their own financial interests, their efforts in
uncertainty communication can be evaluated as follows:

The primary interest of research is the creation of concern in order to
demonstrate policy relevance and attract funding (Boehmer-Christiansen
1994a: 141).

However, this somewhat negative reading of climate scientists’ intentions is
implausible as a single explanation for increased uncertainty communica-
tion. A better explanation for the increasing attention being paid to uncer-
tainties by the ipcc is given by procedural shifts and changed participation in
the production of the ipcc assessments (Shackley and Skodvin 1995). More
generally, the role of procedures, especially those concerning the review of
ipcc reports, is important in structuring the science–policy interaction that
takes place through the ipcc (Skodvin 2000). The ipcc is a boundary organ-
isation that was specifically designed for the purpose of this interaction and
that has subsequently evolved in practice to further improve on the structur-
ing of the interaction. Of course, the explanation of the increasing attention
being paid to uncertainty that focuses on the subtle interplay of actors medi-
ated by procedures does not entail that the scientists have no interest in com-
municating uncertainty, but that this interest should not be regarded as the
driving force.

In the ipcc process, political and epistemic motives can be found to be in-
tertwined, sometimes leading to the suppression of uncertainty communica-
tion. The ipcc process is inevitably a politicised one due to the formal ties to
the climate convention, but since in the ipcc proceedings one tries to adhere
to rules of procedure, the number of times the politicisation is allowed to sur-
face is minimised. Everyone involved in the ipcc has implicit ideas about the
impact of ipcc statements on the policy process. These ideas are sometimes
made explicit, as Shackley et al. (1999) experienced when they received hos-
tile reactions from some of the pragmatist modellers involved in their at-
tempt to study differences of opinion on climate simulation in the climate-
science community.8 These pragmatists thought that publications on flux ad-
justment would diminish the effectiveness of climate policy. The author has
experienced similarly hostile reactions from a reviewer of the Bulletin of the
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American Meteorological Society, who commented on a paper of his9 about
the undervalued role of simple models as compared to comprehensive mod-
els (e.g., gcms) that outsiders should not meddle with climate scientists’ in-
ternal affairs. Shackley et al. (1999) hypothesise that the public expression of
‘intra-peer community differences’ is subdued due to the presence of green-
house sceptics in society, who are typically very vocal critics of the ipcc.
Shackley et al. ironically observe that there seems to be an agreement be-
tween some of the ipcc lead authors and the sceptics on the political conse-
quences of putting more emphasis on uncertainties in the summaries of the
reports. They advise the ipcc to accept politicisation as a given and ‘to find
ways to communicate informed agreement and disagreement, and informed
judgements concerning levels of confidence in knowledge claims, as well as
divulging the processes by which assumptions are formed and disagree-
ments resolved’ (Shackley et al. 1999: 448). The solution suggested by
Shackley and co-authors is that the scientists involved should abandon the
idea that communicating uncertainties inevitably leads to disbelief and policy
inaction. Of course, in reality uncertainties are often politicised, but the ideal
that I, with Shackley et al., wish to uphold is that the different perspectives on
uncertainty can be made more explicit and can themselves become part of
societal debate.

It appears that through regular revisions of both the scope of the reports
and the rules of procedure, the ipcc has adjusted to external criticism. Many
social scientists have published negative evaluations of how the early ipcc

had treated critics of both the scientific claims and the policy proposals put
forward by the ipcc (as mentioned above, until 1990 the ipcc had the task of
making policy proposals; from 1990 onwards this task was taken over by
other bodies).10 Furthermore, some scientists criticise the ipcc for allowing
direct interaction between scientists and policy makers in the production of
the Summaries for Policymakers of ipcc reports. In order to be successful as
a boundary organisation, however, such an interaction is definitely needed.
However, the boundary between science and politics clearly needs continu-
ous maintenance. As Guston writes:

The success of a boundary organization is determined by principals [a
term from principal-agent theory, acp] on either side of the boundary. ...
The success of the organization in performing [the] tasks [of pleasing both
sides] can be taken as the stability of the boundary, while in practice the
boundary continues to be negotiated at the lowest level and the greatest
nuance within the confines of the organization (Guston 2001: 401).
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The question then becomes what safeguards have been built into the ipcc

procedures (both formal and informal) for retaining a certain level of ‘stabil-
ity of the boundary’. In the remainder of this section, first the ipcc review
process will be analysed (7.2.1) and sceptical criticism of this process, as it oc-
curred in the Third Assessment Report, will be investigated (7.2.2). Subse-
quently, the negotiations ‘at the lowest level and the greatest nuance’ will be
pictured and interpreted with respect to the spm formulation concerning the
likelihood of human-induced warming (7.2.3). The purpose of the latter an-
alysis is to study closely a crucial aspect of the final report, related to problem-
atic aspects of the uncertainty vocabulary of the ipcc (2001) report and its im-
pact on the communication of climate-simulation uncertainty. Finally, the
guidance materials that have been prepared by the ipcc to assist the lead
authors in their assessment and communication of uncertainty will be evalu-
ated (7.2.4).

7.2.1 The IPCC review process

The ipcc has always paid a significant amount of attention to the quality of its
review process. Compared to the traditional peer review process for journal
articles, the peer review process for ipcc reports is vastly larger in scale and
much more sophisticated in procedure. Some numbers related to the wg i

contribution to the tar, titled Climate Change 2001: The Scientific Basis (ipcc

2001a), may give an impression of the amount of work involved in the produc-
tion of ipcc reports. The 14 chapters of the tar wg i report were written by
122 lead authors and 515 contributing authors, who had started their writing
in July 1998. One and a half years later, in January 2001, when the final ver-
sions of the chapters were accepted at the ipcc wg i plenary session in Shang-
hai, four revisions had been made of drafts of the chapters.11 The review
rounds involved 420 experts and 100 governments. At the plenary session in
Shanghai, the Summary for Policymakers (spm) of the report was approved
line by line by the governments in four days. The approval of the spm went
hand in hand with the final revision of the chapters: where the final wordings
of the spm differed from the text contained within the chapters, the precise
wording of the chapters was revised accordingly for reasons of consistency.

The review comments on both the chapters and the spm were forwarded to
the lead authors, who came together for lead author meetings, consisting of
lead author plenaries and chapter meetings. The lead authors were asked to
write down explicitly what was done with each comment received. It is import-
ant to note here that, since the quality of the review process is not guaranteed
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by simply involving a large quantity of people, we have to look at the quality of
the review comments that were submitted. In fact, many of the comments
turned out to be of a quality similar to good article review comments.

Review editors then checked whether all review comments had received a
fair treatment. An important task for the review editors was to guide the lead
authors in their treatment of genuine scientific controversies. The role of re-
view editor was newly added in the ipcc procedures after the sar. In the first
and second assessment reports, a similar role was played by the working-
group Bureaux (consisting of elected officials, mostly scientists, who manage
the working groups) and Technical Support Units (tsus, consisting of staff
members assisting the production of working-group reports). After the com-
pletion of the sar commentators had observed that more explicit rules of pro-
cedure were needed, while recognising that the ipcc should not become a
‘science-stifling, inflexible bureaucracy’ (Edwards and Schneider 2001: 228).
There is a tension between scientific informality and the adherence to formal
rules of procedure:

One of the ipcc’s most important features is its openness and inclusivity;
balancing this against scientific informality will require constant vigi-
lance, and perhaps a reconsideration of the formal review process
(Edwards and Schneider 2001: 228).

Through the new procedural rules, the editorial role was explicitly defined,
enhancing the transparency of the review process. Review editors were asked
before the plenary sessions whether they had ensured that ‘all substantive ex-
pert and government review comments’ had been ‘afforded appropriate con-
sideration’ and that ‘genuine controversies’ had been ‘reflected adequately in
the text of the Report’ (ipcc Procedures 1999). For all 14 chapters of the wg i

report all review editors (two per chapter) responded positively to these ques-
tions. A further innovation that increased the transparency of the process was
the possibility for all participating reviewers to obtain all review comments
and the comments by the lead authors on these comments through e-mail
from the tsus.

Although the editors of the tar wg i report had hoped that the report
would become less voluminous than the sar wg i report (which had con-
tained 572 pages), the authors did not succeed in keeping it short. The whole
report became 944 pages long. This happened despite the fact that the re-
port’s chapters, following ipcc’s tar Decision Paper of 1997, primarily as-
sessed information published since 1995, the year that the sar had been
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finalised. The 14 chapters comprise most of the 700 pages or so of the tar

wg i report. The growth in volume of the chapters was primarily related to
the sheer increase in the number of scientific publications dealing with the
issue of climate change. All the information contained in the individual chap-
ters (which each have an Executive Summary) was summarised into one spm

of 17 pages (i.e., about 2% of the total volume occupied by the chapters).
Given the politicisation of the global warming issue, it is understandable

that much of the criticism of the ipcc has been directed at the spms, specific-
ally at the way these are reviewed at final plenary sessions, where govern-
ments have to approve the spm text, tables and figures in detail, that is, line by
line. In principle, ipcc plenary sessions operate by consensus. Therefore,
everything is done to ensure that all governments can agree with the spm.
Since governments have different political agendas, they also hold different
views on what constitutes a proper ‘balance’ (a word used very often during
plenary sessions) between the amount of space devoted to positive claims
(concerning what we know about climate change) and the amount of space
devoted to negative claims (concerning the uncertainties that remain). Given
this context, it is interesting to see how one of the co-chairs of wg i intro-
duced the governmental approval process in Shanghai (each working group
has two co-chairs: one from a developed and one from a developing country;
the wg i co-chairs were Sir John Houghton from the u.k. and Prof. Ding
Yihui from China):

The ipcc provides a scientific assessment; therefore all proposals for
changes in the spm must be related to scientific accuracy, scientific bal-
ance, clarity of message, understandability to policy makers and relevance
to policy. The procedure is – based on the October text [Final Draft, October
2000] – to proceed bullet by bullet or sentence by sentence. The proposals
for change by the lead authors, in response to government comments, are
then considered. New proposals for wording changes can be made by the
delegates. These proposals are checked with the lead authors for accuracy,
balance, and consistency with the chapters. If possible, the plenary should
reach agreement on the new text, otherwise the text will be referred to
either a small group to construct new draft wording among agreed lines, or
to an open contact group to work with the lead authors to resolve issues and
construct a new draft text. If the agreed spm text implies changes in the
technical summary or the chapters, lead authors will make the necessary
changes and present these to the plenary towards the end of the meeting
(ipcc wg i Co-Chair, plenary session, Shanghai, January 2001).
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Thus the co-chair made clear which five normative criteria are allowed to
play an explicit role during the meeting. Any proposal for changes in the text
– also if they were politically motivated – should thus be cast in terms of
‘scientific accuracy’, ‘scientific balance’, ‘clarity of message’, ‘understand-
ability to policy makers’ and ‘relevance to policy’. Furthermore, the import-
ant role of the lead authors came to the fore: although it is formally the gov-
ernments that decide on the text, they are not free to make whatever changes
they want.

After this introduction by the co-chair one government raised its flag and
was given the floor. This government expressed its particular concern that
the lead authors would have too much influence on the final text by being al-
lowed to apply criteria such as balance themselves. According to this country
the governments were responsible for the text, and not the lead authors. Fur-
thermore, the country was afraid the plenary in practice would not discuss
the Final Draft (October 2000) but would instead discuss the new ‘Shanghai
Draft’ prepared by the lead authors just before the meeting. Since countries
had submitted their comments on the basis of the Final Draft and had pre-
pared to work with those comments, it would be too difficult for the countries
to work with a new draft which, on the one hand, most countries had not yet
read and, on the other hand, contained quite substantial changes. The
co-chair at this point tried to steer the meeting away from politicisation:

This is a scientific meeting, consisting of a scientific debate, where, of
course, governments should decide on their positions. The lead authors
are here to help us. The starting point shall be the October text, which will
be projected on the screen; the Shanghai Draft is only intended to be of
help. Regarding the criterion of balance, it is a scientific balance that
should be strived for, not a political balance (ipcc wg i Co-Chair, plenary
session, Shanghai, January 2001).

Through such rituals, which are part and parcel of most ipcc plenary ses-
sions, the criteria regulating the changes that can be made to the text are
made explicit and thereby given extra force. Later during the meeting refer-
ences are often made to the criteria mentioned at the beginning of the ses-
sion. Actually, in practice, the plenary session did not use the Final Draft in-
stead of the Shanghai Draft, even though it had agreed to do so. Apparently
most countries agreed with the lead authors that it was more efficient to start
the discussion from the latest version produced by the lead authors. The
country that had first made the objection preferred not to push the issue.
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Since the aim of the ipcc is to produce reports that are credible not only
among scientists and governments but also within society at large, represen-
tatives of non-governmental organisations are admitted to ipcc sessions as
observers, and experts from all organisations that represent interested or af-
fected parties are invited to participate in the review process. The tsus have
considerable freedom to circulate the drafts widely for review. The following
experts are eligible (and actively approached) to participate (ipcc Procedures
1999):

• Experts who have significant expertise and/or publications in particu-
lar areas covered by the Report.

• Experts nominated by governments as Coordinating Lead Authors,
Lead Authors, contributing authors or expert reviewers as included in
lists maintained by the ipcc Secretariat.

• Expert reviewers nominated by appropriate organisations.

It is the ‘appropriate organisations’ category which makes it possible for tsus
to really open up the ipcc review process. The wg i tsu considered this cat-
egory to include at least every organisation that expressed an interest. For
instance, in the tar wg i review comments one can find comments from
special-interest organisations (including fossil-fuel lobbies and environmen-
tal organisations). Some of the stakeholders, notably those representing the
interests of fossil-fuel industries and oil-exporting countries (but also several
independent sceptics – typically asked to be involved for their expertise), have
repeatedly claimed that their views were not seriously considered in the ipcc

reports. It is true that special-interest organisations do not co-decide on the
text and in general observers are not even allowed to speak at the plenary ses-
sions. However, their viewpoints, as expressed through the expert review
rounds, are seriously considered by the authors, and through the review-edi-
tor mechanisms checks of the way lead authors handle their comments are
included.

As was discussed in Chapter 3, peer review is a necessary ingredient in
the evaluation of simulation models. The ipcc review process provides for a
significant second review mechanism and helps lead authors to arrive at an
even better grasp of the limitations of climate simulation models. The assess-
ment of uncertainties, for example as carried out by the ipcc, will necessarily
be a cooperative enterprise – both among individual lead authors and among
lead authors and reviewers (comprising both scientists and, since the stakes
are high, non-scientists).
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7.2.2 Sceptical criticism of the review process

One very prominent sceptic with regard to the state-of-the-art of climate sim-
ulation is mit meteorologist Richard Lindzen. In 1998 he was made part of
the ipcc process as an ipcc tar wg i lead author (of the chapter on ‘Physical
Climate Processes and Feedbacks’; this chapter had one co-ordinating lead
author, Thomas Stocker, and ten lead authors). Although Lindzen is gener-
ally satisfied with the way the full report was produced, he strongly criticises
the production and review process of the spm. He testified before the u.s.
Senate Commerce Committee on 1 May 2001 that many questions relevant to
climate change cannot yet be answered by scientists and that the spm of the
wg i report is not an adequate reflection of the full report. Lindzen sees him-
self as playing a functional role as a greenhouse sceptic. In an interview he
admitted that while in the early years of the ipcc he felt it was a ‘moral obliga-
tion’ to voice his sceptical opinions, ‘now it is more a matter of being stuck
with a role’ (Scientific American, November 2001).

Most scientists would agree with Lindzen that the claims made by the
ipcc will not be the definitive say on the issue of climate change. This is why
the ipcc in the tar has introduced in its vocabulary a gradual scale for expert
confidence judgments, which makes it possible to include an assessment of
the quality of climate models in the conclusions derived from these models –
albeit in probabilistic terms. Trying to capture controversies on the quality of
models in ‘consensus’ judgments is tricky, of course, since the expert who
thinks that the models are certainly wrong, would not agree on a statement
that ‘there is a 10-33% chance that the models are wrong’ – even if such a
statement is intended to explicitly take his minority viewpoint into account.
The central target of Lindzen’s criticism is the published version of the detec-
tion and attribution conclusion in the wg i spm, which was discussed in
Chapters 5 and 6:

In the light of new evidence and taking into account the remaining uncer-
tainties, most of the observed warming over the last 50 years is likely7 to
have been due to the increase in greenhouse gas concentrations (ipcc

2001a, spm: 10).

Here ‘likely’, according to the corresponding footnote 7, is to be read as a
66-90% chance (defined in the footnote as a ‘judgmental estimate of confi-
dence’) that the statement is true. Lindzen is quite sure about the fact that the
models are wrong and he does not trust the lead authors’ judgment.
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Since Lindzen has been very closely involved with the ipcc, his criticisms
merit a more detailed investigation, especially since his criticisms are related
to the assessment of climate-simulation uncertainty. In his testimony before
the Senate, Lindzen made three claims about the spm:

1 the spm distorts the underlying science (which is adequately repre-
sented by the chapters);

2 the spm is ‘written by representatives from governments, ngos and
business’;

3 the spm was significantly modified at the plenary session in Shanghai.

The first claim is related to the ‘misrepresentation’, according to Lindzen, of
computer-model uncertainty in the spm. An example is the qualification con-
tained in the attribution statement just quoted (a claim that is ‘likely’ true, ac-
cording to the spm). Lindzen had not been involved in writing the spm and he
pointed out in his testimony that only a fraction of the lead authors had been
members of the core writing team. He did not add, however, that the full writ-
ing team consisted of about 60 lead authors (i.e., about half of the lead
authors were involved in the drafting). The spm representation of his own
chapter was taken by Lindzen to demonstrate his case. He claimed that the
whole chapter was summarised, inadequately, by the following sentence:

Understanding of climate processes and their incorporation in climate
models have improved, including water vapour, sea-ice dynamics, and
ocean heat transport (ipcc tar wg i spm: 9).

Lindzen’s problem with this conclusion cannot be that it does not come from
the chapter, since these ‘improvements’ were indeed all mentioned in the
chapter’s Executive Summary. Furthermore, some caveats related to this
statement were put in an introductory spm sentence immediately above the
quoted conclusion:

[Complex physically-based climate] models cannot yet simulate all aspects
of climate (e.g., they still cannot account fully for the observed trend in the
surface-troposphere temperature difference since 1979) and there are par-
ticular uncertainties associated with clouds and their interaction with
radiation and aerosols (ipcc tar wg i spm: 9).
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Thus, Lindzen’s claim that there is only one sentence dedicated to his chapter
in the spm is not true. My contention is that Lindzen was not satisfied with
the phrase ‘there are particular uncertainties associated with clouds and their
interaction with radiation and aerosols’. He might have preferred that the fol-
lowing statement was transferred from the Executive Summary of his chap-
ter to the spm:

The physical basis of the cloud parameterisations included into the models
has also been greatly improved. However, this increased physical veracity
has not reduced the uncertainty attached to cloud feedbacks: even the sign
of this feedback remains unknown (ipcc tar wg i Chapter 7: 419).

Apparently, in the face of space constraints, the lead authors who drafted the
spm had decided not to include these statements in the spm. Here again the
issue of ‘balance’ surfaces. The ipcc could have decided to include these
statements and leave others out. It is debatable whether the fact that this did
not happen must be regarded as a serious misrepresentation of science (that
is, a more serious misrepresentation than any summary inevitably is).

Lindzen’s second claim, that the spm is written by non-scientific outsid-
ers, is not true, in the sense that governments can make proposals for textual
changes, but the lead authors have to agree on those changes. Indeed, the
spm drafting team (consisting only of participating scientists) paid serious at-
tention to all comments received from experts (including experts from ngos
and business lobbies) and governments (as monitored by the review editors).
As shown above, there were five criteria guiding the spm writing process: sci-
entific accuracy, scientific balance, clarity of message, understandability to
policy makers and relevance to policy. During the plenary session in Shang-
hai only the different government delegations (but not the observers, as
noted earlier) could make comments on the text. Depending on lead authors’
responses, texts were changed or left unchanged. Usually the interventions
were of such a nature that the lead authors did not have a problem with the
suggested changes, that is, they agreed specifically that the suggestions were
not at odds with the criteria of scientific accuracy and scientific balance, and
the changes were deemed consistent with the chapters. Sometimes the ple-
nary was not able to reach consensus, either because the lead authors did not
agree with a suggestion or because governments disagreed among them-
selves. Since the ipcc has to work under the procedural rule of decision mak-
ing by consensus, the task of coming up with a text that was agreeable to all
(including the lead authors) could in those cases be delegated to a contact
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group, chaired by one or more countries or by a member of the working
group Bureau. One of the pieces of text that was given to a contact group was
the concluding statement on attribution criticised by Lindzen. This relates to
Lindzen’s next claim.

Lindzen’s third claim is that the spm draft was significantly modified in
Shanghai. Although he did not explicitly say so, he apparently thought that
the quality of the text had deteriorated because of the modifications. How-
ever, in his testimony Lindzen, had made an erroneous comparison. He com-
pared the Second Draft (April 2000) instead of the Final Draft (October
2000) to the published version, which made the change look larger than it ac-
tually was. In order to evaluate Lindzen’s claim I will here list the four latest
versions of the paragraph:
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Second draft (April 2000)
From the body of evidence since IPCC (1996), we conclude that there has been a dis-
cernible human influence on global climate. Studies are beginning to separate the
contributions to observed climate change attributable to individual external
influences, both anthropogenic and natural. This work suggests that anthro-
pogenic greenhouse gases are a substantial contributor to the observed warm-
ing, especially over the past years. However, the accuracy of these estimates
continues to be limited by uncertainties in estimates of internal variability,
natural and anthropogenic forcing, and the climate response to external forc-
ing (emphasis added in bold).

Final draft (October 2000)
It is likely that increasing concentrations of anthropogenic greenhouse gases
have contributed substantially to the observed warming over the last 50 years.
Nevertheless, the accuracy of estimates of the magnitude of anthropogenic
warming, and particularly of the influence of the individual external factors,
continues to be limited by uncertainties in estimates of internal variability,
natural and anthropogenic radiative factors, in particular the forcing by
anthropogenic aerosols, and the climate response to those factors (emphasis
added in bold).

Shanghai draft (January 2001)
The precision of estimates of the contribution from individual factors to recent
climate change continues to be limited by uncertainties in internal variability,



So what has actually happened to this paragraph? The main changes in the
step from Second Draft to Final Draft were the introduction of the word
‘likely’ (incorporating both a statistical estimate of internal climate variability
and an assessment of climate-model uncertainty) and the deletion of the first
two sentences (they actually appeared elsewhere in the same section). The
third sentence of the Second Draft became the first sentence of the Final
Draft (in a more precise formulation). The following draft, the Shanghai
Draft, is similar to the Final Draft except for the order of the two sentences.
Finally, two changes were made during the Shanghai meeting: ‘substantial’
was changed into ‘most’ and the specification of the four sources of uncer-
tainty was removed. The phrase ‘remaining uncertainties’ now refers to what
is stated in the introductory text of the section, namely that ‘many of the
sources of uncertainty identified in the sar still remain to some degree’
(ipcc 2001a, spm: 10). What happened during the Shanghai meeting was
that several governments were opposed to the word ‘substantially’, which was
therefore later replaced by ‘most’ in a contact group meeting (for a detailed
account of this meeting see the appendix).

It must be clear by now that I do not agree with Lindzen’s negative evalu-
ation of the review process for the spm. Still, the detection and attribution
section of the Final Draft version of the spm was substantially changed before
the Shanghai meeting and some significant changes were not made in re-
sponse to government comments. An example of a sentence that was not in
the spm of the Final Draft and not even in the Executive Summary of Chapter
12 is the following

Most of these studies find that, over the last 50 years, the estimated rate and
magnitude of warming due to increasing concentrations of greenhouse
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natural and anthropogenic forcing, in particular that by anthropogenic aero-
sols, and the estimated climate response. Despite these uncertainties, it is likely
that increasing concentrations of anthropogenic greenhouse gases have contributed
substantially to the observed warming over the last 50 years (emphasis added in
bold).

Approved version (January 2001)
In the light of new evidence and taking into account the remaining uncertain-
ties, most of the observed warming over the last 50 years is likely7 to have been
due to the increase in greenhouse gas concentrations (emphasis added in bold).



gases alone are comparable with, or larger than, the observed warming
(ipcc 2001a, spm: 10).12

This sentence constituted the basis for one of the most important conclu-
sions of the ipcc (2001) report that ‘there is new and stronger evidence that
most of the warming observed over the last 50 years is attributable to human
activities’ (ipcc 2001a, spm: 10). To be sure, these statements were backed by
a sentence in the chapter text itself (and by the underlying science), but – that
is the point that must be made here – they were formulated by the lead
authors late in the process. As prescribed by ipcc procedure, the Executive
Summary of Chapter 12 was changed at the Plenary Session in Shanghai to
make it consistent again with the spm, and this change was presented to the
plenary at the end of its session.

7.2.3 Negotiating the wording of the summary for policymakers

Uncertainties are not objectively given. Experts typically have diverging opin-
ions about how uncertain a given statement is. Furthermore, actors that have
a stake in the way uncertainties are assessed and communicated by the ipcc

will try to influence the formulation of the Summary for Policymakers. The
positive conclusions communicated by the ipcc are taken by the govern-
ments and experts involved to be ‘robust’, given the assessment of uncertain-
ties. The phrase ‘robust conclusion’ is defined by the ipcc as one that holds
‘under a variety of approaches, methods, models, and assumptions and ... [is]
expected to be relatively unaffected by uncertainties’ (ipcc 2001d, spm: 19).
According to the ipcc, one of the prime examples of a robust conclusion is
that ‘most of the observed warming over the last 50 years is likely to have been
due to the increase in greenhouse gas concentrations’. In this example we
can see that one way to ensure robustness of a conclusion is to explicitly in-
clude a qualifier within the positive statement, based on an assessment of the
uncertainties involved. Here, by adding the word ‘likely’ (and specifying what
is precisely meant) the conclusion just mentioned became robust, according
to the lead authors’ judgement.

As was shown in Chapter 6, the main conclusion of the tar on the attri-
bution of climate change to human influences only implicitly reflects the col-
lective expert judgment on the unreliability2 of climate-simulation results, ex-
pressed on a quantitative scale (‘66-90% chance’). The collective assessment
processes as done within the ipcc in principle provides a unique institution-
alised opportunity to try to reach consensus on the models’ unreliability2 and
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their impact on the formulation of the main attribution statements. How-
ever, this opportunity was not fully exploited, partly because the ipcc is lack-
ing a typology of uncertainty, which – if suitably chosen – would allow one to
unequivocally communicate the unreliability2 of climate simulation. Still, in
the production of the tar the issue of unreliability2 was addressed by the lead
authors, and different model approaches were compared and confronted
with each other. Furthermore, the possibility that all models have similar
flaws was seriously considered.

When the ipcc came together in Shanghai in January 2001, the robust
conclusion mentioned above on ‘detection and attribution’ could not be
quickly agreed upon in the plenary meeting. There were obviously political
agendas behind the attempts at obstruction by one country in particular.13

The argument that was used by this country was that the word ‘substantial’
could not adequately be translated into its own language, an official un lan-
guage.14 When subsequently a delegate of another country – without a similar
political agenda – claimed that the translation was also problematic for his
language (another official un language), the chair decided to relegate the is-
sue to a contact-group meeting. The proceedings of this contact-group meet-
ing can be found in the appendix, interspersed with my hypothetical analysis
of what people were thinking when they were acting. Political agendas clearly
play a role for countries in their attempts at reformulating conclusions; but
these political agendas are able to force changes in the text only by referring to
scientific issues or to problems with the clarity of the language. In this case,
one country, which did have a political agenda to downplay the issue of cli-
mate change, first used the argument of clarity in the plenary session (with
the translation of ‘substantial’ purportedly being unclear) and subsequently
made an issue of the way the lead authors’ assessment of computer-model
uncertainty was inadequately conveyed by the word ‘substantial’ in the con-
tact group. In my judgement, since the tar wg i report does not clearly dis-
tinguish between inexactness and unreliability2 in its formulation of robust
conclusions, it was difficult for this country to separately raise the issue of
model unreliability2. Still, its interventions led to a significant change in the
text, as can be read in the appendix.

The proceedings of the contact-group meeting give an interesting
glimpse into the functioning of the ipcc as a boundary organisation between
science and politics. From these proceedings we can conclude that political
motives leading to the use of methodological arguments can be effective in
changing the text of the spm. Most observers present in Shanghai had failed
to recognise that the country originally raising the objection wished to put a
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quantitative modelling statement in the conclusion of the detection and attri-
bution section of the Summary for Policymakers of the ipcc wg i tar, with a
clear reference to that fact that it was ‘only’ a modelling statement, in order
for the country to be able to downplay the conclusion. The end result was
probably not what the country really wanted. However, the lead authors had
in the end accommodated the change as genuinely reflecting the contents of
the underlying chapter.

It was the difficulty of assessing and communicating computer-model
unreliability2, as compared with unreliability1, that caused the lead authors to
pause when asked to use a relatively strong modelling statement from the
body of the detection and attribution section in the conclusion. Since the
word ‘likely’ did not appear in this modelling statement, it even disappeared
from view for a moment. The discussion in the contact group – and more
broadly, the quality of the ipcc tar report – could have been facilitated by
explicitly referring to the distinction between the unreliability1 and un-
reliability2 sorts of uncertainty. Of course this would not have directly solved
the country’s problem with the use of computer simulation in climate sci-
ence. There could still have been discussion about the unreliability2 of mod-
els and the appropriate way to communicate this unreliability2. But at least
the discussion would have focused on the unreliability2 sort of uncertainty, or
the quality of models, as such instead of lumping together two sorts of uncer-
tainty.

7.2.4 IPCC guidance materials for uncertainty assessment and
communication

The problem that the lead authors of the detection and attribution statements
in the ipcc Third Assessment Report ran into with respect to uncertainty
communication can be understood from the way ipcc wg i had implement-
ed the ipcc guidance on uncertainty communication. In the preparation of
the tar, a strong demand for a more systematic approach to uncertainties
was identified and the subsequent discussion led to a so-called cross-cutting
‘Guidance Paper’ on uncertainties (Moss and Schneider 2000). In that guid-
ance paper, Moss and Schneider proposed that authors should use a proba-
bilistic scale that expresses Bayesian confidence estimates about claims in
five categories: very low confidence (0-5%), low confidence (5-33%), medium
confidence (33-67%), high confidence (67-95%) and very high confindence
(95-100%). As a supplement to this scale, writing teams could explain their
choice of category for particular claims by making use of four qualitative un-
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certainty expressions: ‘well established’, ‘established but incomplete’, ‘com-
peting explanations’ and ‘speculative’. In wg i, however, the scale proposed
by Moss and Schneider was changed into a likelihood scale which was not
unequivocally defined as a Bayesian scale. For the statements on climate
observations, the scale was used as a purely frequentist scale. For the model-
ling statements, for instance the attribution statement extensively discussed
in this chapter, the scale represented a hybrid of frequentist and Bayesian
statistics.15 First, a frequentist estimate was made of the chance that most of
the observed warming was attributable to human influences (resulting in the
‘very likely’ category, 90-99%).16 Subsequently, an informal Bayesian updat-
ing was performed on the basis of judgements on the unreliability2 of the
models, and the likelihood category ‘likely’ (66-90%) was chosen. The rea-
son for wg i to propose its own scale was that the ipcc guidance materials for
the tar lacked advice on how to represent frequentist statistical claims.

More recently, in the preparation of the ipcc Fourth Assessment Report
(due in 2007), the situation of having two separate probability scales within
the ipcc was judged to be confusing and additional guidance was prepared.17

The problem that I have identified in this chapter has not been solved, how-
ever. In fact it has become worse, since lead authors are now encouraged to
use only one of two scales (confidence or likelihood), without having the op-
tion to use the qualitative terminology as a supplement to these scales, as was
originally proposed. Now, this qualitative terminology can only be used as a
substitute, in case no probabilistic statements can be made. However, I ad-
vise the ipcc to find some standardised way to qualify its quantitative statis-
tical statements. At the very least the reasons for the choice of a likelihood cat-
egory should be made transparent, which was not the case in the tar.

7.3 An example of exploiting societal perspectives to communicate
climate-simulation uncertainty

The latest ipcc guidance notes recommend that ipcc authors ‘use neutral
language’ and ‘avoid value laden statements’ (ipcc 2005: 3). But given the
unstructured nature of the problem of anthropogenic climate change, an al-
ternative strategy to the communication of uncertainties is to consider uncer-
tainties explicitly from different value-laden perspectives on risk in an inte-
grated assessment of climate change. The presence in society of different per-
spectives on climate-change risks can be exploited in communicating the
meaning of climate-simulation uncertainty to policy makers. A pioneering

Assessments of climate-simulation uncertainty for policy advice 161



example of how this can be done is the targets model project (Rotmans and
de Vries 1997) performed by rivm/mnp in the mid-1990s. Note that such an
integrated assessment methodology is complementary to the ipcc assess-
ment of climate change. The ipcc assessment of climate-simulation uncer-
tainty can be used as input for the integrated assessment.

In the targets model (the acronym targets stands for ‘Tool to Assess
Regional and Global Environmental and health Targets for Sustainability’),
different perspectives on a large number of uncertainties about issues of
sustainability were explicitly included in simulation models. The targets

model is an integrated assessment model that simulates both natural and
social processes – and their interactions – that play a role in problems of
sustainability, such as anthropogenic climate change. The time-scale of inter-
est is about a century. By building integrated assessment models, modellers
can provide insight into the influence of important model uncertainties on
outcomes of interest for a certain policy problem. This can be done in several
ways. In the targets model project, the rivm/mnp decided to include dif-
ferent plausible model structures or parameters for the same processes (e.g.,
the response of the climate system to increased co2 concentrations), creating
different model options within the targets model. Each time the targets

model is run a different ‘model route’ can be realised, depending on pre-
given specifications. In the specification of the model routes, the variation of
model relations and model parameters was coupled to perspectives on risk.
The way in which the targets researchers did this coupling is explained
below (for more information, see van Asselt and Rotmans 1997).

The point of departure for determining the perspectives used in the tar-

gets model was a simplified version of ‘cultural theory’. Cultural theory has
been developed by Mary Douglas, Michael Thompson, and Aaron Wildavasky,
among others (see, e.g., Thompson et al. 1990). In Douglas’ original ‘grid-
group theory’ (the precursor of cultural theory) it was assumed that the vari-
ability in the way individuals take part in social life can adequately be de-
scribed on the basis of two dimensions (those of grid and group). The ‘group’
dimension refers to the presence of social ties with a certain social group. The
‘grid’ dimension refers to the freedom of individuals to make choices (be-
longing to a group does not necessarily limit individual freedom of choice).
The assumption is made in grid-group theory that these dimensions are inde-
pendent from each other. Thompson et al. (1990: 26-29) couple the way indi-
viduals take part in social life to different ‘myths of nature’.18 In the targets

model three different perspectives are distinguished: the ‘individualist’ (low
group; high grid), the ‘egalitarian’ (high group, high grid) and the ‘hier-
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archist’ (high group, low grid) perspectives. The two remaining perspectives
distinguished within cultural theory, namely the ‘fatalist’ (low group, low
grid) and the ‘hermit’ (middle group, middle grid) perspectives, are left aside
in the targets model. The perspectives as they have been used in the tar-

gets model concern, on the one hand, visions on nature and humans (how
nature and society work – called ‘world views’), and, on the other hand, pre-
ferred management styles (how we should govern). It must be remembered
that the perspectives used are caricatures. Sometimes these perspectives are
recognisable in debates, but individual people cannot be strictly categorised
in terms of the notions of cultural theory.

In the individualist perspective, nature is robust against human perturba-
tions. In this perspective, people are oriented toward (rationally) satisfying
their own wants and they think ‘anthropocentrically’. The individualist man-
agement style consists of adapting policy to changes in natural and societal
conditions, aiming toward strong economic growth and knowingly taking
risks (thus, on the one hand, the perception of risks is coloured by world
views and, on the other hand, dealing with these perceived risks is coloured
by the preferred management style). Since the targets model operates at a
high level of aggregation (the variables have been defined at the regional or
global level), the individualist management style has been implemented as
the ‘top-down’ governance by a world governor (who wishes to facilitate that
people can hold their individualist perspective) instead of it being modelled
as the resultant of parties that operate as individualists (‘bottom-up’ ap-
proach).

As opposed to the individualist perspective, from the egalitarian perspec-
tive nature is vulnerable. Small perturbations can lead to catastrophes. Hu-
man influences on ecosystems are considered to be significant disruptions
and are dangerous in most cases. In this perspective, humans are good by na-
ture, but they are malleable. Relationships that are based on equality with na-
ture and fellow human beings evoke the goodness of people. The egalitarian
perspective is connected with ‘ecocentric’ thought. This also becomes evident
from the egalitarian management style, which is aimed at precaution and can
be characterised as risk avoiding.

Finally, a hierarchist perspective is characterised by a conception of nature
as robust within particular limits. In the hierarchist perspective, individual
humans are ‘sinful’ and can be redeemed by means of the appropriate soci-
etal institutions (aimed at both human well-being and nature quality). The
hierarchist perspective is connected with ‘participating’ thought, an attitude
of partnership with nature (thus neither anthropocentrism nor ecocentrism).
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In the hierarchist management style, controlled economic growth is allowed
and the taking of particular risks is accepted. The limits of the stability of na-
ture are systematically studied and one tries to stay within the limits found.

In defining the different model routes that can be followed in the tar-

gets model, the perspectives’ assumptions of how nature and society work
have been translated into scientific assumptions about model structures and
model parameters.19 For the model parameter ‘climate sensitivity’ (described
in Chapter 5), for example, the individualist (think of the coal and oil lobby)
chooses a value in the lower end of the range of uncertainty (which is a 1.5°C
equilibrium temperature increase for a doubling of the co2 concentration)
and the egalitarian (think of the environmental lobby) chooses a value in the
upper end of this range (being 4.5°C)). The hierarchist, finally, chooses a
value that lies between these two values. Note that the range of 1.5 to 4.5°C is
the current ipcc uncertainty range for climate sensitivity.

Subsequently, the model can be run for this century using nine different
combinations of world views and management styles, producing a set of
future scenarios, in three of which the world behaves in the way the manage-
ment style assumes it to behave and in six of which there is a mismatch be-
tween real-world behaviour and management style. We can, for instance, see
what happens if the egalitarian world view is correct but an individualist
management style is chosen for governing the world. From running such a
scenario we can learn that all limits that should be met – if the egalitarian
world view is indeed true – will be excessively exceeded.

The targets model approach thus delivers more than just an estimate
of model uncertainty. It makes it possible to attach meaning to the model re-
sults for the nine scenarios that result from this approach. These nine scenar-
ios can be divided into two groups. The first group of scenarios are three ‘uto-
pias’, in which world views and management styles belong to the same per-
spective.20 These scenarios show the future developments (of, for instance,
global temperature change) associated with three possible worlds, in which
the management styles chosen fit the real workings of nature and human be-
haviour. The range of these three model results can be interpreted as a first
estimate of the simulation uncertainty of the integrated assessment model
(this uncertainty obviously encompasses many more uncertainties than
those related to the simulation of climate). The second group of scenarios are
six ‘dystopias’. In the dystopias there is a mismatch between the factual be-
haviour of nature and humans, on the one hand, and the management style
chosen, on the other hand. The outcomes of the dystopias can help policy
makers to judge the three management styles.
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How does this relate to the issue of climate change and climate-simula-
tion uncertainty? The targets researchers have produced nine scenarios for
climate change (see den Elzen et al. 1997). When the egalitarian world view is
combined with either the individualist or the hierarchist management style,
one finds that the upper limit for the co2 concentration according to the egali-
tarian world view (450 ppmv, or ‘particles per million by volume’, meaning
450 co2 molecules in 1 million air molecules; the preindustrial concentration
was 280 ppmv) will be seriously exceeded from 2050 onwards. Thus from
the egalitarian perspective, both other management styles entail large risks.
In contrast, if the individualist world view is true (assuming that 650 ppmv is
safe), none of the management styles leads to exceeding this norm before the
end of the century.

The advantage of using integrated assessment models in science-for-pol-
icy is that models from different scientific disciplines (in the case of tar-

gets, models of the physical climate system, energy, population, among oth-
ers) are combined. The intention of such models is to produce useful infor-
mation for policy makers – information which is expected to have added
value as compared to monodisciplinary knowledge. Apart from the advan-
tages of this kind of models, the disadvantages of most integrated assessment
models – as assessed by Rotmans and Dowlatabadi (1998) – are that: (i) they
are very complex; (ii) they use a high level of aggregation; (iii) they lack cred-
ibility in the different scientific disciplines; (iv) they treat uncertainties in an
inadequate manner (the targets model being an exception); (v) they apply a
deterministic paradigm; (vi) they have only been marginally verified and vali-
dated (as far as this is possible at all); (vii) they contain inadequate knowledge;
and (viii) they are limited in the modelling formalism by the application of
only a few standard methods. The targets model has been able to remove
some of these disadvantages (notably i, iii, iv). The advantages offered by inte-
grated assessment models are that they allow – even if only at a rudimentary
level – the study of interactions and feedbacks that cannot be studied other-
wise; that they are flexible and fast; and that they can help intensify the com-
munication between scientists and policy makers. To conclude, even though
some methodological challenges remain, the targets approach is definitely
attractive for making connections between scientific information and politic-
al choices. It can assist policy makers in making choices under climate-simu-
lation uncertainty. However, it is important that such models are not used as
substitutes for political decision making: they should be regarded merely as
quantitative tools to communicate uncertainties.21
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7.4 Conclusion

In this chapter, I have analysed two examples of the communication of cli-
mate-simulation uncertainty in policy advice. These are examples of assess-
ments of climate change that were performed at different scales: one by an in-
tergovernmental organisation (ipcc) and another by a national agency
(rivm/mnp). The ipcc uses value-neutral statistical expressions of uncer-
tainty (e.g., it is ‘likely’ that most of the observed warming is due to human in-
fluences; or, the climate sensitivity is between 1.5 and 4.5°C), while the tar-

gets aproach uses value-laden scenario expressions of uncertainty (e.g., an
egalitarian assumption on climate sensitivity is 4.5°C, while an individualist
assumption is 1.5°C). As approaches for scientists to offer policy advice on
unstructured policy problems, they have different characteristics. The ipcc

strategy, notably that of wg i, tends to downplay value-ladenness, and is
therefore able to maintain a clear boundary between science and policy, while
still involving policy makers in its deliberations on the wording of summaries
for policy makers. targets offers the possibility to explicitly discuss values
in relation to climate risks (what bets are we willing to take on the magnitude
of climate sensitivity?).

Neither of these strategies is ideal, but they both need to be pursued, since
they are both able to communicate climate-simulation uncertainty to policy
makers, albeit in different manners. Meanwhile, improvements need to be
made to both strategies. The ipcc will have to become more transparent in its
assessment of uncertainty (e.g., Why is a particular likelihood category
chosen?, What is the unreliability2 of the underlying climate simulations?)
and will have an opportunity to do so in its Fourth Assessment Report due in
2007. The mnp will have to replace its too schematic perspectives based on
cultural theory by perspectives derived from the interaction with policy mak-
ers and stakeholders in order to tailor its perspective-based assessment and
modelling activities to the audiences that play a role in the political and soci-
etal debate.
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Chapter 8

Conclusions

The basic tenets of this study are that there is a plurality of simulation mod-
els, methodologies and values in simulation practice; that the kind and rea-
sonableness of this plurality can be understood philosophically; and that
this plurality should be cherished. This plurality is important for scientific
reasons and, where simulation is used in policy making, for socio-political
reasons. In conclusion, I will take stock of the results obtained in the various
chapters and determine what answers can be given to the five research ques-
tions posed in chapter 1.

8.1 Uncertainty associated with scientific simulation

The first research question was: ‘What specific types of uncertainty are asso-
ciated with scientific simulation?’ By following a strategy similar to Giora
Hon’s (1989; 2003), who arrived at the structural features of experiment
through a philosophical analysis of the notion of error in experimentation, I
have proposed four central elements of simulation that correspond to the
locations where uncertainties arise in simulation practice. In this way, it has
been possible to ‘transcend the “etc. list”’ (Hon 2003) of the myriad elements
(strategies, methods, procedures, conceptions, styles, etc.) that constitute this
practice. The central elements of simulation are: (1) the conceptual and math-
ematical model; (2) the model inputs; (3) the technical model implementa-
tion; and (4) the processed output data and their interpretation. By analysing
these elements, I have been able to clarify what is specific about the types of
uncertainty that are associated with scientific simulation, as compared with
other scientific practices.

In addition, in order to arrive at a complete characterisation of the uncer-
tainties involved in simulation, I have extended Funtowicz and Ravetz’s
(1990) typology of uncertainty and presented five uncertainty dimensions be-
sides the dimension of location: (i) nature of uncertainty; (ii) range of uncer-
tainty; (iii) recognised ignorance; (iv) methodological unreliability and (v)
value diversity.



In the discussion of the four main elements of simulation practice, four
philosophical issues with respect to simulation were addressed, which enable
some general characterisations of simulation uncertainty to be formulated.

1 I argued against Cartwright (1983) that the distinction between general
theory and models should be considered to be a relative one: some theoret-
ical equations that are considered as a model from the perspective of a more
fundamental (sub)discipline can also be considered as a general theory
from which approximate models are derived. Simulation models are not
fully derived from theory, however. For instance, most simulation models
of complex systems contain a number of ‘parameterisations’ of processes
that cannot be simulated in more detail. These parameterisations are typi-
cally not fully based on general theory. By determining both the extent to
which simulation models are derived from general theory and the scope of
the general theory, one can assess the theoretical quality of simulations.

2 I emphasised that the accuracy of a simulation can be increased by using
real-world input (following Morgan 2003), but that the extent to which the
outcomes are reliable depends not only on the input data, but also on the
reliability of the conceptual and mathematical model (an issue that is
emphasised too little by Morgan).

3 Extending Radder’s (1996) account of experimental reproducibility, I ar-
gued that reproducing simulation runs by using one technical model im-
plementation on the same computer system is typically unproblematic,
while transferring computer models to other computer systems, or build-
ing new model implementations, is more difficult. The latter strategies
can provide checks on the effects of numerical approximations and mis-
takes in the original computer programs.

4 In section 2.3.4, I showed that by using advanced visualisation tech-
niques, including animation, simulationists can come to better under-
stand the processes under study, provided that they keep track of the influ-
ence of the projection methods chosen to produce the pictures. These
projection methods are to a large extent arbitrary, leading to the risk of
incorrect conclusions.

Some conclusions on simulation uncertainty can also be drawn from the
discussion of each of the five uncertainty dimensions besides the location
dimension.
i Although the nature of simulation uncertainty can be ontic, there is usu-

ally an epistemic uncertainty about this ontic uncertainty. Epistemic un-
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certainty is a consequence of the incompleteness and fallibility of know-
ledge (as included, for instance, in the model structure or the model
inputs). In principle, simulation models can simulate ontic uncertainty,
that is, the intrinsically indeterminate and/or variable character of the sys-
tem under study. The uncertainty of assumptions in the model, however,
results in epistemic uncertainty about ontic uncertainty.

ii Uncertainty ranges of two types can be determined for the results of simu-
lations: statistical uncertainty ranges and scenario-uncertainty ranges.
Statistical uncertainty ranges can be determined either from comparing
the simulation results with measurements – provided that accurate and
sufficient measurements are available – or from uncertainty analysis –
provided that the accuracy of the different elements in simulation is
known. Scenario-uncertainty ranges (based on ‘what-if’ questions) are
generally more easy to construct by varying simulation elements.

iii Since simulation models are simplified representations of reality, sim-
ulationists who study complex systems must be aware of the fact that im-
portant processes that may strongly influence the nonlinear behaviour
(e.g., nonlinear feedbacks) of these systems may be poorly represented – or
even absent – in the models. More generally, we realise – in one way or an-
other – that some uncertainties are present, but we cannot establish any
useful estimate, e.g., due to limits of predictability and knowability (‘chaos’)
or due to unknown processes. This ignorance should be recognised and, in
our claims based on simulation results, we must be open about it.

iv It is often not possible to establish the accuracy of the results of a simula-
tion. The methodological rigour of the simulation may then be regarded
as an alternative for accuracy as an estimate of the reliability (then de-
noted by reliability2) of a simulation. Four criteria distinguished for this
purpose are: theoretical basis, empirical basis, comparison with other
simulations and acceptance/support within and outside the peer commu-
nity. First, it is important both to determine the extent to which simula-
tion models are derived from general theory and to determine the scope of
the general theory. Second, it should be assessed to what extent simula-
tions are based on and/or have been tested against observations or experi-
ments. The qualitative assessment of the fit between simulation results
and the system of study also belongs to the assessment of the empirical
basis. Third, the results of simulations should be related to the results of
other simulations of similar processes, in order to determine whether the
results are replicable. Fourth, the simulation should be peer reviewed, at
least internally within a discipline, and also externally – if this is relevant.
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v Since simulationists often have considerable freedom in making choices,
simulations inevitably have a subjective component and may be influ-
enced by epistemic and non-epistemic values held by the simulationist.
The general epistemic, disciplinary-bound epistemic, socio-political and
practical values shaping a simulation need to be assessed.

The uncertainty typology that I used in this study incorporates a broad notion
of ‘uncertainty’. It is, in particular, much broader than statistics. By highlight-
ing the dimensions of methodological unreliability and value diversity, I have
been able to give a more adequate account of simulation practice and its un-
certainties than would have been possible by extending error-statistical ac-
counts of experimental practice (such as Mayo 1996) to simulation pracice.

8.2 Differences and similarities between simulation and experimental
uncertainty

The second research question was: ‘What are the differences and similarities
between simulation uncertainty and experimental uncertainty?’ In sections
2.6 and 3.8, the practices and uncertainties of simulation and experimenta-
tion were compared and differences and similarities were identified. My
claim is that, although there are similarities between simulation and experi-
mentation, the differences are fundamental. I have dealt with four questions
that can help in answering the second research question:

1 Is simulation a form of experimentation?
2 How close can simulation come to material experiments?
3 Are both simulation and experimentation forms of modelling?
4 How does the norm of reproducibility in simulation practice compare

with the same norm in experimental practice?

I will here answer these questions on the basis of the results gained in the
present study.

Is simulation a form of experimentation? Simulations are often character-
ised by philosophers and social students of science as ‘experiments’ on theor-
ies (e.g., Rohrlich 1991; Humphreys 1994; Galison 1996; Dowling 1999;
Keller 2003; Morgan 2003). By analysing simulation as a laboratory practice,
the skills involved in ‘experimenting’, ‘playing around’, ‘tinkering’, etc. with
simulation models show some superficial analogies to the skills in experi-
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mental practice. However, the elements of simulation practice are different
from those in experimental practice. The main difference is that what is ma-
nipulated in simulation practice are mathematical models materialised in
computer programs and not material models. Thus the skills are of a differ-
ent nature. And the uncertainties corresponding to material elements are of a
different nature too. I consider the difference between mathematical and ma-
terial manipulations to be fundamental, and I therefore propose not to associ-
ate the term ‘experiment’ with simulation.

How close can simulation come to material experiments? Morgan (2003)
claims that some simulations look more like material experiments than oth-
ers (based on the verisimilitude of the input data to reality), and hence are less
uncertain than other simulations. However, as I have shown, this proximity
between simulation and experimentation should only be interpreted as close-
ness of the mathematical input of the simulation to the material input of the
material experiment. It does not entail closeness of the mathematical model
and the model results to reality.

Are both simulation and experimentation forms of modelling? Both simula-
tion and experimental practices involve models of the outside world and ex-
trapolation of the results obtained in the laboratory to this outside world.
Thus both practices are confronted with the different types of uncertainties in
models. This similarity between simulation and experimentation is import-
ant, since when models in experiments remain hidden from view, the fact
that the results of measurements are sensitive to modelling assumptions can
be obscured. However, the representational relationship between a mathe-
matical model and reality is different in kind from the representational rela-
tionship between a material model and reality. Experiments are confronted
with more types of uncertainty than simulations.

How does the norm of reproducibility in simulation practice compare with the
same norm in experimental practice? The norm of the reproducibility pertains
to both simulation and experimental practice. However, the activities in-
volved in meeting this norm are not the same, and generally the norm is
more difficult to meet in experimental practice than in simulation practice.
Again, experimental practice involves more types of uncertainty that have to
be overcome in order to obtain reproducibility.

From the main difference between simulation and experimentation, namely
that the physical nature that is under study is not present in the simulation
laboratory, we can conclude that there are additional types of uncertainty in
experimental practice. In material experiments, we may be ‘confounded’ by a
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behaviour of the natural processes that is different from what we expected,
while we can only be ‘surprised’ by the properties of mathematical models.
But although there may be fewer types of uncertainty in simulation practice,
the model uncertainty in simulation may well be larger than all uncertainties
involved in experimentation. Since this need not be so, however, I conclude
that the question of whether uncertainties in experimentation are smaller
than uncertainties in simulation has to be decided on a case by case basis.

8.3 Assessment and communication of scientific simulation
uncertainties in science-for-policy

The third research question was: ‘What are appropriate ways to assess and
communicate scientific simulation uncertainties in science-for-policy?’ In
Chapter 4, I argued that since policy makers are usually not themselves able
to judge the uncertainty of scientific simulation-model outcomes, scientific
policy advisers must carefully weigh how to present their conclusions. I
agreed with Funtowicz and Ravetz that policy problems with high societal
stakes and high scientific uncertainty attached to them require ‘post-normal
science’ as a problem-solving strategy and I emphasised that post-normal sci-
ence poses a special challenge to scientific advisers to appropriately and re-
sponsibly assess and communicate uncertainties.

I showed that the way uncertainties in simulation should be dealt with by
scientific advisers depends on the type of policy problem they are confronted
with. Four types of policy problems were therefore distinguished on the basis
of literature in the area of political science (Ezrahi 1980; Hisschemöller and
Hoppe 1996; Hisschemöller et al. 2001). These policy-problem types vary in
the level of agreement on the political objectives and on the scientific know-
ledge relevant to the problem. I claimed that the Guidance on Uncertainty As-
sessment and Communication introduced by mnp, which incorporates these
insights from political science, can be used as a practical methodology to
determine what information on simulation uncertainty is appropriate to be
included in policy advice.

The analysis of simulation uncertainty in science that was presented in
Chapters 2 and 3 (see 8.1) provides relevant insights that should be taken into
account when assessing and communicating scientific simulation uncertain-
ties in science-for-policy.
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8.4 Uncertainty associated with the simulation-based attribution
of climate change to human influences

In the climate case, for instance, one can find different simulation models
that make mutually conflicting claims about what the climate system is like.
Climate scientists are unable to identify which climate model does actually
incorporate the most realistic assumptions about the climatic system. What
the uncertainty typology of this study offers them is a means to assess dimen-
sions of uncertainty other than inaccuracy. In particular, the dimensions of
recognised ignorance and methodological unreliability need their systematic
attention.

The fourth research question was: ‘What specific types of uncertainty are
associated with the simulation-based attribution of climate change to human
influences?’ In general, the parameterisation of clouds constitutes the most
important source of uncertainty in climate models. For the attribution of the
observed global warming over the last 50 years to human influences, the five
key uncertainties are: the internal climate variability (an ontic uncertainty
simulated by climate models, hence giving rise to epistemic uncertainty
about this ontic uncertainty), the natural forcing (located in the model in-
puts), the anthropogenic forcing (through the emission of greenhouse gases,
among other factors), the response patterns to natural and anthropogenic
forcing and the free atmosphere temperature trends. For all of these key un-
certainties, it is crucial to assess and communicate the recognised ignorance
and methodological unreliability.

By assessing all these uncertainties, the ipcc reached the conclusion in
2001 that it is ‘likely’ (between 66 and 90% chance) that the largest part of
the observed warming is due to human influences. The simulation uncer-
tainty thus does not preclude poliy-relevant statements about climate change.
Whether the said conclusion was the result of an appropriate assessment and
communication of uncertainty will be discussed in the next section.

8.5 Assessment and communication of attribution uncertainty
in IPCC (2001)

The fifth research question was: ‘Have these uncertainties been appropri-
ately assessed and communicated in the Working Group i contribution to the
Third Assessment Report of the ipcc (2001)?’ The ipcc lacks a typology of
uncertainty which can be used to systematically assess uncertainties. The
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typology of simulation uncertainty proposed in this study can be fruitfully
applied in the analysis of climate-simulation uncertainty, as was shown for
the simulation-related sources of uncertainty in climate-change attribution
studies. By applying the typology it is immediately obvious that only part of
the uncertainty can be expressed statistically. Additional qualitative judge-
ments on the reliability2 of the climate-simulation models are needed – and
indeed played an important role in the production of the ipcc (2001a) report.
Since the vocabulary needed to explicitly distinguish between the two uncer-
tainty sorts of inaccuracy and unreliability2 was not available to the lead
authors, the influence of their qualitative judgements on reaching their final
conclusion remained largely invisible to outsiders. Still, the review process of
the Third Assessment Report and ipcc’s assessment of uncertainty were
evaluated positively in this study. However, the ipcc’s communication of un-
certainty still needs further improvement.

As an alternative to communicating climate-simulation uncertainty via
value-neutral statistical expressions of uncertainty, as is done by the ipcc, I
sketched the targets aproach, a perspective-based integrated assessment
methodology to communicate uncertainties within a risk framework. Both
the ipcc and the targets strategies were found to have advantages and dis-
advantages. It follows from this study that both strategies can be used in a
complementary manner. The ipcc procedure can guide the assessment and
expression of the range of uncertainty and, via perspective-based risk assess-
ment, this range can be made more meaningful for policy makers.
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Appendix

Proceedings and discussion of the IPCC contact group

meeting on attribution, 20 January 2001, Shanghai

In this appendix, I will present the proceedings (indented text) and my dis-
cussion of the contact group meeting on the final paragraph of the ipcc

(2001a) detection and attribution section in the Summary for Policymakers
that was held in Shanghai on 20 January 2001.1 I was present at this meeting
as a philosophical observer within the Dutch Delegation. I sat at the table next
to the lead authors in the small meeting room, but did not participate in the
discussion.

The session started at 8:00 a.m. and was chaired by the Chairman of the
ipcc. Here is the text of the paragraph that was distributed to the delegates be-
fore the beginning of the plenary session (the Shanghai Draft) (changes with
respect to the Final Draft are marked by strike-through and underlining):

‘It is likely that increasing concentrations of anthropogenic greenhouse
gases have contributed substantially to the observed warming over the last
50 years. Nevertheless, the accuracyThe precision accuracy of estimates of
the magnitude of anthropogenic warming, and particularly of the contri-
bution frominfluence of the individual external factors,factors to recent
climate change continues to be limited by uncertainties in estimates of in-
ternal variability, natural and anthropogenic forcingradiative factors, in
particular that the forcing by anthropogenic aerosols, and the estimated
climate response to those factors. Despite these uncertainties, it is likely that
increasing concentrations of anthropogenic greenhouse gases have contributed
substantially to the observed warming over the last 50 years.’

This was the standard way in which revisions of text were presented in
Shanghai. The Shanghai Draft itself had also been distributed in a striked-
through/underlined version.2

The Chair opens the contact group session and sums up three questions
that need to be addressed: (1) the language of the paragraph (e.g., the use
of the word ‘substantially’), (2) the ordering of the sentences, and (3) the



way uncertainties are characterised. He proposes to discuss the issue of
ordering at the end of the session. He then goes through the section text
that has already been approved and concludes his introduction by noting
that there was much support in the plenary session for keeping the word
‘substantially’ in the text and that the lead authors had worked on the pre-
cise wording for one and a half years.

The main objection initially raised by one country (country B)3 during the ple-
nary was that the word ‘substantial’ could not adequately be translated into its
own language, one of the un languages.4 Usually such arguments are used
for lack of real arguments. It is taken to signal that some country just wants to
get rid of a specific word, for political reasons. Most people who were present
in Shanghai thought that this was the case for country B: they just wanted to
get rid of ‘substantial’ in order to have it replaced, preferably by something
weaker, e.g. ‘discernible’.

The language of the final sentence of the draft
Country B says it has problems with the word ‘substantial’, since it is not a
scientifically defined term. B states that they would like to see numbers in
the text. In response to the Chair’s question of which wording they would
like to have as a substitute, B provides an alternative: ‘comparable with, or
larger than’. The Chair verifies with B that they think that the use of
phrases such as ‘largely due to’ or ‘most of’ would do instead of ‘substan-
tial’. B replies that they have similar problems with ‘largely due to’, since
also that is a subjective phrase.

At this point, many of the participants were caught by surprise. Instead of
proposing to weaken ‘substantial’ to something like ‘discernible’ (as was
used five years earlier in the sar) country B asked for a stronger and quanti-
fied claim. From a speculative point of view (circumstantial evidence will fol-
low during discussion of the proceedings below), I think the reason why
country B wanted to push the lead authors toward a quantified comparative
statement is to better expose the epistemological issue that, in this case, mod-
els are compared to observations. By using the word ‘substantial’, the fact that
a model simulation is used becomes less clear to the reader. Country B thinks
that if, in this conclusion, the strongest model statement of the whole detec-
tion and attribution section (that the greenhouse gas signal of the last 50
years was estimated to be comparable with, or larger than the observed warm-
ing) is emphasised, it will subsequently be easier to dismiss the conclusion as
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‘just based on models’ (since country B prefers to hold and proclaim the view
that all climate simulations are unreliable). In particular, the ‘larger than’
phrase is attractive for this purpose, as will be seen below.

The reason why the lead authors had come up with a relatively weak con-
clusion at the end of the detection and attribution section was that they
wanted not only to give an estimate of the inexactness of the claim (in terms
of estimated model error); they also wanted to take unreliability2 into account
(by using the word ‘likely’ instead of ‘very likely’). The lead authors are at this
point not judging the stronger modelling statement to be reliable2 enough to
be ‘likely’ true.

The Chair asks B how they would like the entire sentence to read. B replies
that they would also like to see a reference to the use of models in the sen-
tence. The lead author who is operating the laptop that is used to project
alternative sentences on the screen objects that it is the observations that
lead to this conclusion. Furthermore, one of the co-ordinating lead authors
objects to changing the text from ‘substantial’ to ‘comparable with, or larg-
er than’, since the current statement containing ‘substantial’ is a rather
weak one. The co-ordinating lead author tells B that he does not under-
stand why B thinks the sentence would be misinterpreted. B replies that
attribution involves a comparison of models with observations.

The laptop lead author gets a sense of what country B is up to, but he overre-
acts. It is obvious that model results play an important role (see Chapter 5).
What the lead author wants to say here, granting him a charitable reading, is
that particular types of uncertainty (e.g., that due to uncertainty in climate
sensitivity) can be taken into account in detection and attribution studies
(ipcc 2001a, spm: 10). The co-ordinating lead author, however, is very frank
about the fact that it is a considered judgment that is presented here.

Country C (represented by a review editor of the detection and attribution
chapter) proposes an alternative wording to accommodate some of the
concerns of B: ‘The warming attributable to increasing concentrations of
anthropogenic greenhouse gases is likely to be comparable with the ob-
served warming over the last 50 years’. After this proposal the lead authors
discuss among themselves whether or not this statement (using the word
‘comparable’) is scientifically justified, or not (i.e., too strong).
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Here some progress is made towards a solution. Country C’s delegate is very
influential within the ipcc, being a member of the ipcc wg i Bureau. People
listen to him. He happened to be the review editor for the relevant chapter, so
he knows exactly what everyone is up to. The sentence he crafts here com-
pletely matches the expectations of country B – but it turns out to be still a bit
too strong for the lead authors, as we will see later.

Country D asks whether the authors only would like to show that there is a
correlation, without specifying the magnitude. In that case ‘substantial’
would be just as good as ‘comparable’.

It was unclear, I imagine, to most participants what could possibly be meant
by using the word ‘comparable’ without making a quantitative comparison –
and thus specifying the magnitude. The intervention was ignored, anyhow.

The Chair remarks that the phrase ‘comparable with’ has already been
used in an earlier bullet point in the text (‘Most of these studies find that,
over the last 50 years, the estimated rate and magnitude of warming due to
increasing concentrations of greenhouse gases alone are comparable
with, or larger than, the observed warming’.), that it is not a matter of com-
paring model results to observations, and that the contact group should
come up with a real conclusion for the section.

Here we see that the new sentence that was added to the spm in Shanghai is
used by the Chair to justify a rejection of country B’s request. But the Chair’s
observation is not new to country B. In their proposal to use ‘comparable
with, or larger than’ they explicitly referred to the earlier bullet. Country B
also knows that the Chair’s statement ‘that it is not a matter of comparing
model results to observations’ is incorrect. The Chair is apparently slightly
misled by the earlier intervention of the laptop lead author.

The lead authors bring back the results of their internal discussion to the
group. They repeat that since ‘substantially’ is weaker than ‘largely due to’,
they would like to stick with the former phrase.

Country C’s delegate had already suggested in the plenary that ‘largely due to’
be used. The lead authors now narrow down the options to either ‘substan-
tially’ or ‘largely due to’, while expressing a preference for the former phrase.
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‘Comparable with’ is not mentioned by the lead authors as an option that can
be considered.

Country E proposes to use the phrase ‘first factor’, to which the lead
authors reply that there are problems with quantifying the other signals
than the anthropogenic greenhouse-gas signal. Country F does not agree
with the lead authors’ reply and proposes to use ‘principally’ instead of
‘substantially’. B supports E’s intervention. Country G makes another pro-
posal: ‘dominant factor’. D: ‘primary factor’. Chair: ‘principal cause’. B
states that they could agree with ‘larger than’. The lead authors explain
that ‘substantial’ was used in a non-quantified relative sense.

At this point in the meeting it becomes clear that many countries want to see
a stronger statement than the one containing ‘substantial’. Country B is try-
ing to make the most of it by changing their proposal to use ‘comparable
with, or larger than’ into ‘larger than’.

E wants to change the word ‘warming’ in the final sentence to ‘warming of
the climate system’.

This intervention was ignored: it was not considered important at this point.

C makes a new proposal: ‘The observed warming over the last 50 years is
mainly due to increasing concentrations of anthropogenic greenhouse
gases’ (thus reversing the order of the sentence). According to C, this
makes the sentence flow better. This sentence is typed into the computer
and appears on the screen. [Up till now the lead author has acted quite cha-
otically in typing in alternatives (or refusing to do so) and scrolling sen-
tences on and off the screen – the Chair had to call him to order for the ses-
sion to be able to proceed in a structured manner.] A subsequent interven-
tion proposes to change the sentence to ‘Most of the observed warming
over the last 50 years is due to increasing concentrations of anthropogenic
greenhouse gases’. Another intervention proposes to delete ‘anthropo-
genic’. E wants to have the phrase ‘principal cause’ in the sentence. [The
two alternatives are simultaneously displayed on the screen – with the
‘principal cause’ formulation on top.] C suggests to insert ‘now likely’
before ‘due to’. This is not typed onto the screen, however.
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Here country C’s delegate makes the proposal that will more or less finally
prevail. ‘Mainly due to’ is inconspicuously changed into ‘most’. One word,
however, is still missing: despite the request to put it on the screen: ‘likely’.

The lead authors could accept the ‘principal cause’ formulation, but repeat
that they really prefer to keep the original formulation using ‘substan-
tially’. [Although it becomes clear that the lead authors disagree among
themselves at this stage; it is especially the lead author at the laptop who
objects to using ‘most’.] B reminds the session that it should be an ipcc

wg i judgment (not only a judgment by the lead authors). B makes clear it
could go with the second formulation on the screen [the one containing
‘most’] and not with formulations using ‘principal cause’ or ‘substan-
tially’. Country H objects to the ‘principal cause’ formulation: other causes
should be mentioned here as well, otherwise the sentence would be unbal-
anced. The Chair reminds H that the other causes are already mentioned
in other paragraphs of the section. C says that ‘most’ is good. G thinks that
the use of ‘most’ will naturally lead to the question ‘what about the rest?’
and is therefore not entirely happy with the word. Country J reminds the
session to insert ‘It is likely that’ before ‘most’ in the sentence.

The uncertainty phrase ‘likely’ is not forgotten. ‘Most’ appears to be on the
winning side.

The lead author at the laptop thinks that using ‘most’ would mean that one
study showing a 45% contribution can refute the ipcc conclusion. J
replies that this is not the case, since the word ‘likely’ is also used in the
sentence. The lead authors first say that they had agreed that if ‘substan-
tial’ was not possible, they would be willing to go along with C’s earlier
proposal to use ‘largely due to’. It finally turns out that they are now also
willing to agree with ‘most’.

‘Most’ is clearly pushing the lead authors to the limit of what they are willing
to defend. But now that the lead authors have accepted ‘most’, the race is run,
as will become obvious below.

E does not want to start the sentence with ‘It is likely that’. The lead
authors [especially the one at the laptop] agree and immediately delete the
phrase from the screen. The Chair gets angry with the lead author at the
laptop, forces him to reinsert ‘It is likely that’ and tells him that this is an
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intergovernmental meeting and the lead authors are only allowed to say
whether something is wrong or not.

This was a clear example of powerplay by the Chair. Apart from structuring
procedures, leadership plays a central role in the ipcc (Skodvin 2000).

G proposes to remove ‘most’. The lead authors do not agree now. Also E is
against ‘most’. The Chair decides to close the discussion on the language
of the sentence by proposing to keep ‘most’ [he puts some pressure on the
delegates by saying that the session has to move on, since time is running
out]. No one objects.

Thus there was no longer a possibility for countries to get rid of ‘most’ after
the lead authors had agreed.

Characterisation of uncertainties and ordering
C proposes to discuss the uncertainties in the same sentence using the
qualifier: ‘In light of the new evidence and taking into account remaining
uncertainties, …’ D does not want to have a qualifier at the beginning of
the sentence. B, however, does. The Chair suggests that one could do with-
out the qualifier. C agrees that it can be removed again. H wants to put ‘in
light of the new evidence’ later in the sentence and make a second sen-
tence discussing the uncertainties. D repeats that it wants to get rid of the
qualifier. The Chair proposes to keep the sentence as it now is (i.e., includ-
ing the qualifier). E does not agree and wants to have the qualifier re-
moved. The Chair asks the countries to give their vote. There appears to be
a split among the countries. The Chair asks the participants to accept the
sentence as it appears now on the screen as a compromise [several minor
editorial changes were made, not documented as interventions in the
above]:

‘In the light of the new evidence and taking into account the remaining
uncertainties, most of the observed warming over the last 50 years is likely
to have been due to the increase in greenhouse gas concentrations.’

D is willing to accept the sentence as a compromise. Also E agrees. No one
else objects. The session is closed.
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Now with the session being closed, the word ‘most’ trickles down to the title
of the section as well, which – after extensive discussion not documented
here – becomes:

There is new and stronger evidence that most of the warming observed over
the last 50 years is attributable to human activities (ipcc 2001a, spm: 10).

This is the message that is sent out to the world. In the media is has become
‘it is certain that most ...’ And country B used the first opportunity in the
sbsta where the ipcc tar was discussed to air its view that the science ‘is still
very uncertain’...
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Notes

Notes with Chapter 1

1 The mnp became an independent part of the rivm in May 2005. As of 1 January
2006, the mnp is no longer subsumed under the rivm, but has become a fully in-
dependent governmental agency.

2 Presently director of the mnp.
3 See van Asselt (2000) and van der Sluijs (2002) for more information about this

debate.
4 This accuracy was high enough for drawing the conclusions that I wanted to draw.
5 On this, Professor Nieuwstadt had to agree. Although I did not bring this into the

discussion, I knew that Nieuwstadt was well aware of this fact, since the les model
was his.

6 As a note for those unfamiliar with the Dutch university system: as in many other
countries, PhD students are admitted to defend their dissertation only after it has
been approved by an assessment committee. Nieuwstadt, who was an external
member of this committee, had already approved it.

7 Both ‘new’ aspects of scientific research are made possible by the high speed with
which computers perform calculations. And both aspects are interrelated: we can
derive new theories by ‘playing’ with variants of old theories and the calculation of
results for the new theories is often unfeasible without using the computer.

8 The recent rise in the amount of work on simulation in these fields may be partly
related to the wide applicability of the concept of ‘complex systems’ (see Casti 1997,
who provides a popularised account of the use of simulation in the natural and so-
cial sciences to study complex systems). Many simulations in both the natural and
social sciences share system-theoretical concepts.

9 In Hartmann’s description, the term ‘simulation’ is not intended to be limited to
computer simulation. Here, we are only interested in computer simulation, how-
ever. What is entailed by the ‘imitation relation’ is discussed below in the main text.

10 It is assumed that there is a real world and that the relationship between a simula-
tion and this real world – no matter how this relationship is conceived – is of inter-
est to both scientists and analysts of scientific practice. The definition does not im-
ply that the possible real world processes to be imitated should be realised, or even
practically realisable, in nature. In cases where simulation is used to study the
workings of processes under artificial conditions, there is still an assumed rela-
tionship with the possible behaviour of the real world under those conditions, even
if the conditions are not realisable in practice.



11 Morgan (2003) claims that some simulations are also representative of and represen-
tative for real-world processes. This position will be investigated in Chapter 2.

12 It is not implied here that the detailed specification of the process in the computer
should realistically represent all the details of the real process.

13 Bailer-Jones and Hartmann (1999) distinguish between three different kinds of
models that play a role in science: scale models, analogical models (based on certain
relevant similarities), and theoretical models. Usually, scale models and analogical
models are material. Theoretical models are of an abstract-theoretical nature. How-
ever, other subdivisions can be made and, above all, such distinctions between
kinds of models should not be interpreted as absolute. For example, a particular
model can be an analogical and a theoretical model at the same time. This is true,
for instance, for the 19th century billiard-ball model of gases (kinetic theory),
which was extensively discussed by Hesse (1963).

14 This should remind us of the fact that scientific practices, including the specific
elements that play key roles in them, remain in flux and change over time.

15 A Monte Carlo simulation – although it may be used to perform calculations on the
dynamics of systems of particles – differs from the second type of simulation, since
it does not keep track of a set of particles interacting with each other, that is, it does
not explicitly include a system of particles in its imitation of the process studied.

16 The director of the u.s. Department of Energy’s Office of Science, Raymond
Orbach, for instance, said in Business Week: ‘I’m a theoretical physicist, and there
are some problems for which there aren’t any theories. You can only understand
that science through simulations’ (Port and Tashiro 2004; see http://www.
businessweek.com/magazine/content/04_23/b3886002.htm).

17 These include university departments (Vrije Universiteit Amsterdam: Theoretical
Physics, Philosophy; Utrecht University: Marine and Atmospheric Research; and
again Vrije Universiteit: Philosophy), national graduate schools (Atmospheric and
Marine Research; Science, Technology and Modern Culture), a un body (Intergov-
ernmental Panel on Climate Change), a governmental agency (Netherlands Envi-
ronmental Assessment Agency), and disciplinary fields (theoretical nuclear phys-
ics; philosophy of science; atmospheric physics and chemistry; social studies of sci-
ence; political science; environmental science; uncertainty analysis; and sustain-
ability assessment).

18 Laudan argues that besides these two examples of justification processes (which
are part of the standard ‘hierarchical model of justification’ in the philosophy of
science), three other justification processes play a role in scientific practice
(Laudan 1984: 63): (i) methods are constrained by factual claims; (ii) methods
must exhibit the realisability of aims (if aims cannot be realised, this counts against
the aims); and (iii) factual claims must harmonise with the aims. None of the levels
is more fundamental than any other.

19 Brown (1988: 193) states that ‘on the model I am proposing, the predicate “rational”
characterizes an individual’s decisions and beliefs, it does not characterize proposi-
tions and it does not characterize communities’.

20 Here, again, plurality enters. Science consists of many different, but intercon-
nected, practices.
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21 See also Ravetz (1996: 75-108).
22 I was admitted to the Dutch government delegation as a ‘philosophical observer’.

Although I did participate in the discussion on several statements on climate-
change observations, I did not participate in the discussions on (simulation-based)
climate-change attribution analysed in Chapter 8.

Notes with Chapter 2

1 The term ‘simulation laboratory’ is introduced below.
2 Hence lists enumerating the elements of scientific practice typically end with ‘etc.’,

as is discussed by Hacking (1992: 31-32) and Hon (2003: 181-182).
3 The present approach to a conceptualisation of scientific practice derives from

Hon (1989), who applied it to the practice of experimentation and termed the dif-
ferent types of activity ‘stages’. Although his term ‘stages’ was not intended to im-
ply that the activities belonging to the different stages are actually carried out in a
consecutive order (typically many iterations take place; see also note 8), I do not
adopt his term in order to avoid confusion.

4 This does not imply that simulation uncertainties, the main topic of this study, are
small or unimportant. It just means that several of the uncertainties that simu-
lationists face – both methodological and institutional – are reduced, in the sense
that there is a community of scientists who share the same methodology. Addi-
tionally, there are some general statistical methods and procedures for dealing
with uncertainty that are widely shared among simulationists. However, despite
the stability of simulation practice, I will argue in Chapter 3 that the application of
statistical methods is not sufficient for adequately dealing with uncertainty.

5 The material processes occurring in the simulation laboratory are of course very
different from the material processes that are represented: the electrical processes
taking place inside the computer in no way materially resemble the phenomena
outside the simulation laboratory.

6 The Bohrian apparatus-world complexes have the characteristic that the phenom-
ena created in the laboratory do not occur in nature. Back inference from these
phenomena to nature outside the laboratory is problematic since the apparatus
contribute to the form and qualities of the phenomenon. Still, the dispositions of
nature actualised in Bohrian apparatus ‘permit limited inferences from what is
displayed in Bohrian artifacts to the causal powers of nature’ (Harré 2003: 38).

7 More evidence for the stabilisation of simulation practice is provided in 2.3.3.
8 The number of journals in the Thomson Scientific Master Journal List (http://sci-

entific.thomson.com/ mjl) containing the word ‘computational’ in their titles was
37 on 7 July 2006 (the numbers for ‘simulation’ and ‘computation’ were 10 and 16,
respectively).

9 Some examples are: the Modeling and Numerical Simulation Laboratory at the
Ecole Supérieure d’Ingénieurs en Electronique et Electrotechnique in Paris (http://
www.esiee.fr/en/research/mosim.php), the Multiscale Simulation Laboratory at
Stanford University (http://msl.stanford.edu), the Berkeley Environmental Simu-
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lation Laboratory (http://www-laep.ced.berkeley.edu/research/simlab), the Climate
Simulation Laboratory at the National Center for Atmospheric Research (http://
www.cisl.ucar.edu/csl).

10 Input and output marks are here considered as separate elements.
11 As was argued by Nickles (1988: 33), ‘[s]cience transforms itself by more or less

continuously reworking its previous results and techniques’. A ‘multipass’ ac-
count of scientific practice more adequately captures its dynamic than a ‘one-pass’
account.

12 Some models allow for the specification of the model parameters as model input,
which facilitates the variation of these parameters.

13 Some philosophers of science have suggested that many approximations in mod-
els are purely mathematical, leaving the basic physical assumptions intact (see, e.g,
Redhead 1980; Koperski 1998). One of the examples given by Koperski (1998: 629)
is the approximated form of the Navier–Stokes equations that is used for simula-
tion in fluid dynamics. It is argued here, however, that mathematical and physical
approximations go hand in hand in this case: the mathematical approximations
are justified by physical arguments.

14 A prime example of a model, often discussed by philosophers of science, is Bohr’s
1913 model of the atom. Bohr’s inconsistent model led to the consistent theory of
quantum mechanics (after the model had been transformed). Note that Morrison
and Morgan (1999: 36) expressed their concern that from the way models have
been treated in the philosophy of science people could erroneously conclude that
all models must be regarded as ‘preliminary theories’.

15 Cartwright’s (1983) distinction between fundamental and phenomenological laws
should thus be relativised too. Cartwright (1999: 242) herself later revised her view
on the nature of the distinction: ‘I shall call these [phenomenological laws] represen-
tative models. This is a departure from the terminology I have used before. In How
the Laws of Physics Lie (1983) I called these models phenomenological to stress the
distance between fundamental theory and theory-motivated models that are accu-
rate to the phenomena. But How the Laws of Physics Lie supposed, as does the se-
mantic view [which considers theories as sets of models, acp], that the theory itself
in its abstract formulation supplies us with models to represent the world. They
just do not represent it all that accurately. ... Here I want to argue for a different
kind of separation: these theories in physics do not generally represent what hap-
pens in the world; only models represent in this way, and the models that do so are
not already part of any theory.’ But she stills retains the distinction between funda-
mental theory and representative models; hence, my criticism that this distinction
is a relative one, still applies.

16 In this context, ‘forecast models’ are models that ‘predict the deterministic evolu-
tion of the atmosphere or some macroscopic portion of it’, for example Numerical
Weather Prediction models (Randall and Wielicki 1997: 400).

17 The atmospheric boundary layer, also called planetary boundary layer, is the turbu-
lent layer at the bottom of atmosphere (near the planetary boundary – the earth’s
surface), which varies in height between approximately 100 and 1,500 m. If the
boundary layer is convective, plumes rise and sink.
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18 Thus, a parameterisation within a simulation can itself consist of, or be derived
from, another simulation.

19 von Storch (2001) gives a positive judgement of this situation. Both simple and
complex models are needed. He calls the simple models ‘cognitive models’ and the
complex models ‘quasi-realistic models’. The latter play the role of surrogate real-
ity, and they are themselves not considered useful by von Storch for generating un-
derstanding.

20 This is an example of the application of cellular-automata models outside biology,
the discipline to which Keller (2003) restricts her discussion of the third type of
simulation.

21 An example of the latter are the idealised input data that I used for the simple and
complex models in my turbulence–chemistry simulations: in many simulations,
the fluxes of chemical species into the boundary layer were kept constant.

22 Clearly, the accuracy of simulation results is also dependent on the reliability of the
model (see Chapter 3).

23 4-d data assimilation is a statistical technique for bringing time-dependent 3-d

model variables as close as possible to observations taken at different places and
different times.

24 For information on the Oak Ridge National Laboratory Visible Human Project see
http://www.ornl.gov/sci/virtualhuman. The National Library of Medicine’s Vis-
ible Human Project can be visited at http://www.nlm.nih.gov/research/visible/
visible_gallery.html.

25 The stylised bone has ‘a structure that begins as a simple 3-d grid of internal
squares. The individual side elements within the grid are given assorted widths
based on averages of measurements of internal strut widths (taken from a number
of real cow bones) and are gently angled in relation to each other by use of a ran-
dom-assignment process’ (Morgan 2003: 222).

26 The first fortran compiler was delivered in 1957 and the first c compiler in 1973.
27 In ‘object-oriented’ programming languages, for instance, the concepts of ‘classes’

and ‘instances’ of objects allow for a new kind of modelling approach, facilitating
easy implementation, e.g., of cellular automata.

28 Bugs are errors at the stage of model implementation, not at the stage of model for-
mulation.

29 The ‘norm of reproducibility’ has been shown to play a significant role in the stabil-
ity of experimental practice (see Radder 1996: 9-44, 119-135).

30 Notably, some simulationists are building new computers, but this is the exception
nowadays, not the rule.

31 Although some simulationists are involved in the development of new software
techniques and numerical calculation methods, that is, are involved in the continu-
ing process of standardisation, this is a minority.

32 The theoretical interpretation p⇒ q consists of the theoretical result (q) – a propos-
ition – and other theoretical descriptions (p) that all play a role in inferring the re-
sult.

33 The skills needed to carry out simulation studies have been discussed above. They
mainly reside at the theoretical level and less at the material level of interacting
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with the computer. Thus there is a hypothetical but realisable possibility that all
physical interactions with the computer (typing on the keyboard, moving the
mouse, etc.) are performed by lay persons receiving instructions in ordinary lan-
guage from the simulationist (cf. Radder 1988, who introduced the concept of lay
persons receiving instructions in ordinary language in his analysis of the material
realisation of experiments).

34 This is not the case, however, if ‘real’ stochastic processes like radio-active decay
are used to generate ‘random numbers’ within the program.

35 If this second type of reproducibility is attained by a simulationist who wants to
transfer a simulation model from one computer to another computer, this does not
yet mean that other users necessarily have the skills to use the model. They need
sufficient skills with the model in order to able to actually reproduce simulations.

36 But it can still be an artefact of the simulation model, that is, not represent real pro-
cesses.

37 Nowak’s ‘method of idealisation and concretisation’ has been taken up by Nancy
Cartwright (1989), among others. Note that Cartwright later revised her view on
the relation between models and theories, see note 15.

38 This becomes evident when scientists are asked about their ‘philosophy of sci-
ence’. In many scientific fields, methodological papers have been written by lead-
ing scientists who proclaim Popper’s philosophy of falsification (for the atmo-
spheric sciences see, e.g., Randall and Wielicki 1997).

39 This should come as no surprise, since Popper was mainly concerned with the con-
text of justification and kept this context distinct from the context of discovery, like
most of the philosophers of science for most of the 20th century.

40 Oreskes et al. do not state that the focus of modelling research should be on falsifi-
cation. According to them, the primary function of models is heuristic. They fur-
thermore conclude that ‘models can only be evaluated in relative terms’ (Oreskes et
al. 1994: 641).

41 There are several limitations to the applicability of these philosophies. Firstly, the
hard core is never so hard as to forbid all alterations (see the case of Bohr’s atomic
theory in Radder 1982). Secondly, the method of stepwise concretisation does not
capture all important features of scientific theorising, nor, for that matter, scien-
tific simulation (cf. Kirschenmann 1985: 228-232).

42 Paraphrasing Einstein: ‘Everything should be made as simple as possible, but no
simpler’.

43 One of the first analyses of the instrumental role played by models in science was a
book chapter by the philosopher of science Leo Apostel, which began as follows:
‘Scientific research utilises models in many places, as instruments in the service of
many different needs’ (Apostel 1961: 1). Subsequently, Apostel went on to give a
long list of instrumental functions. For a review of recent literature on models as
‘technological artefacts’, see Petersen (2000b).

44 According to Longino, the contextual values can affect science through back-
ground assumptions. Longino’s normative view on the role of contextual values is
that they make possible ‘criticism from alternative points of view’, which ‘is re-
quired for objectivity’ (Longino 1990: 76). She locates the ‘objectivity’ of science in
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the deliberative processes used to develop knowledge and, if possible, reach agree-
ment (see Douglas 2004 for a comparison of Longino’s notion of ‘objectivity’ with
other notions).

45 The relationship with observational practices is left implicit in this section.
46 Theoretical science can also be analysed in terms of practical work which includes

tinkering; in that case it concerns tinkering with equations (Merz and Knorr Cetina
1997).

47 In experimental practices, material models of the outside world are used and the
theoretical interpretation of the phenomena is extrapolated to the world outside
the laboratory.

Notes with Chapter 3

1 Note that defining uncertainty as ‘lack of knowledge’ does not imply that the lack-
ing knowledge can be gained in principle. See the discussion on ‘ontic uncertainty’
below.

2 This typology is a synthesis of two lines of typologies, one based on the dimensions
inexactness, unreliability and recognised ignorance (e.g, Funtowicz and Ravetz, 1990;
van der Sluijs, 1995; 1997) and one based on the dimensions nature of uncertainty
and level of uncertainty (Walker et al. 2003; Janssen et al. 2003). I have kept ‘recog-
nised ignorance’ as a separate dimension – thus taking it out of the ‘level’ of uncer-
tainty dimension – and have relabeled the remaining cluster of ‘statistical’ uncer-
tainty and ‘scenario’ uncertainty as the dimension range of uncertainty. Addi-
tionally, the dimension value-ladenness of choices was taken from Janssen et al.
(2003).

3 How that could be done will be elaborated in Chapter 4.
4 Note that although van Asselt first distinghuises between variability and lack of

knowledge as ‘the two major sources of uncertainty’ (van Asselt 2000: 85), she sub-
sequently indicates that ‘lack of knowledge is partly a result of variability’ (van
Asselt 2000: 86). The latter statement is consistent with my use of the phrase ‘lack
of knowledge’.

5 For a detailed analysis of the meaning and genesis of this statement see Part II of
this study.

6 The switch can work the other way round (from statistical uncertainty to scenario
uncertainty), if one later realises that too little is known.

7 The ‘climate sensitivity’ is defined as the equilibrium global surface temperature
increase for a doubling of the co2 concentration.

8 See van der Sluijs et al. 1998 for an overview of the ranges that have been given and
their meaning. He argues that the range of climate sensitivity has acted as an ‘an-
choring device’, with the range receiving a different meaning with virtually every
new assessment of climate change (see Chapter 4 for further discussion on this
topic).

9 The term ‘exactness’ (or ‘inexactness’) has many meanings (Kirschenmann 1982).
I propose to this one in accordance with Funtowicz and Ravetz (1990).
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10 The theory of statistical error analysis, as is developed for instance by Deborah
Mayo (1996) for experimentation, is too limited for a proper analysis of uncertainty
in science. Both in the experimental and the simulation laboratory it is often not a
straightforward exercise to determine the reliability1 of a simulation: there are
many different factors involved that could cause error. The standard view of error
in scientific textbooks holds that, ‘apart from random errors, all experimental er-
rors can be eliminated’ – a view which is grossly mistaken, however, since the com-
plexity of actual reality typically prevents systematic errors from being reducible to
zero (Hon 1989: 476). The distinction between systematic and random errors is
only mathematically based and has only limited value for actually determining er-
ror in scientific practice. I therefore agree with Hon (2003: 191-193) that the theory
behind the concepts of random and systematic errors is purely statistical and not
related to the locations and other dimensions of uncertainty.

11 A way out could be to establish the reliability of the elements by applying them
under different circumstances, that is, in different simulations, and trying to find
out to what extent they affect the reliability of the different simulations. The suc-
cess of this approach is limited by the fact that multiple errors could exist simultan-
eously.

12 Note, however, that Cartwright has changed her view (see Chapter 2, note 15).
13 This follows from the constraint structure for theories, which entails that they are

more universal than models (Weinert 1999).
14 The quantitative assessment of the comparison between simulation and experi-

ment or observation may lead to estimates of the range of uncertainty (accuracy).
15 It may be the case that within a group of models all models agree, that is, replicate

each others’ result, but that they are all unreliable1, for instance, if they are all built
on the same unreliable1 principles. In order to guard against those situations, com-
parison of model results with empirical data remains crucial.

16 Popper writes: ‘A theory is a tool which we test by applying it, and which we judge
as to its fitness by the results of its application’ (Popper 1959: 108). It is the notion
of ‘judgment’ that I wish to emphasise here. According to Popper, science involves
the application of ‘methodological rules’, which “are very different from the rules
usually called ‘logical’. Although logic may perhaps set up criteria for deciding
whether a statement is testable, it certainly is not concerned with the question
whether anyone exerts himself to test it” (Popper 1959: 54).

17 ‘Bias’ is used here to indicate a systematic influence of values and should not be
interpreted as a pejorative term.

18 The same is true for observations. Some observational measurements, for in-
stance, strongly depend on models, but they are often presented as unproblematic
measurements (e.g., satellite measurements). It may also happen that the com-
parison of a simulation model result with an observational measurement may not
lead to unequivocal conclusions if the observation is dependent on another simula-
tion model (e.g., when comparing historic runs of climate models with weather
measurements derived from numerical weather prediction models).

19 The main difference between my typology and that of Janssen et al. (2003) is that I
have added a separate dimension for ‘recognised ignorance’ (see note 2).
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20 In 1921, the economist Frank Knight introduced the still influential distinction be-
tween ‘risk’ (for which one can calculate the odds) and ‘uncertainty’ (for which one
cannot); see Knight (2002).

21 Wynne (1992) distinguishes between ‘risk’, ‘uncertainty’, ‘ignorance’ and ‘inde-
terminacy’.

22 Wynne (1992: 114) states that ‘a far more difficult problem [than uncertainty] is ig-
norance, which by definion escapes recognition’. Contrary to Wynne, I distinguish
between recognised and pure ignorance and include recognised ignorance in my
wider definition of uncertainty. I agree with Wynne, however, that recognised ig-
norance is the most difficult type of uncertainty.

Notes with Chapter 4

1 The phrase ‘science for policy’ was also used in the title of Funtowicz and Ravetz
(1990): Uncertainty and Quality in Science for Policy.

2 Obviously, providing insight into the uncertainties involved in policy advice is
necessary more generally, not only in the case of scientific computer simulation,
but also in the case of experiments and observations. While the main emphasis in
this chapter is on simulation-model uncertainty, the general discussion of the sci-
ence–policy interface and the assessment of uncertainty in science-for-policy is not
only valid for scientific simulation.

3 The difference being that the u.s. politicians participated more fully in the debate
and nearly took a decision to ban the use of computer simulation in environmental
policy making, while in the Netherlands the vast majority of politicians continued
to trust the environmental scientists and their use of simulation.

4 Ezrahi’s different types of policy problems are introduced in the next section.
5 Jasanoff’s (1990) position thus comes closer to the technocratic than to the demo-

cratic ideal.
6 The ipcc consists of three working groups. The current distribution of subjects

addressed by each working group is as follows: Working Group i deals with the (nat-
ural) scientific basis of climate change; Working Group ii addresses issues of im-
pacts, adaptation, and vulnerability; and Working Group iii assesses mitigation op-
tions. The analysis presented in Part ii of this study focuses on Working Group i.

7 See http://www.unepmap.gr.
8 One can thus say that the scientific assessments and the Med Plan were co-pro-

duced.
9 Contrary to conventional wisdom that sees the European Union endorsing the pre-

cautionary principle and proactively regulating risks and the United States oppos-
ing it and waiting for evidence of harm before regulating, cross-atlantic compari-
sons have demonstrated that differences in relative precaution depend more on
the context of the particular risk than on broad differences in national regulatory
regimes (Wiener and Rogers 2002).

10 ‘Risk’ is used here as ‘a concept to give meaning to things, forces, or circumstances
that pose danger to people or to what they value. Descriptions of risk are typically
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stated in terms of the likelihood of harm or loss from a hazard and usually include:
an identification of what is ‘at risk’ and may be harmed or lost (e.g., health of hu-
man beings or an ecosystem, personal property, quality of life, ability to carry on an
economic activity); the hazard that may occasion this loss; and a judgment about
the likelihood that harm will occur’ (u.s. National Research Council 1996b:
215-216). This definition of ‘risk’ leaves room for pluralism: people can have differ-
ent perspectives on risks. For instance, whether someone considers something to
be ‘at risk’ depends on their valuation of what could be at risk.

11 These two variables are not totally independent, in the sense that the recognition of
system uncertainty is typically enhanced if the decision stakes are high (see
Jasanoff and Wynne 1998: 12).

12 The other two types of problem-solving strategies are: applied science (low systems
uncertainty and/or low decision stakes) and professional consultancy (medium-
level systems uncertainty and/or medium-level decision stakes) (e.g., Funtowicz
and Ravetz 1991; 1993).

13 See http://www.sandia.gov/NNSA/ASC/programs/progs.html (visited at 19 April
2006).

14 These simulations pertain to many aspects of the problems. Examples are: (i) ex-
plosions of liquid natural gas, (ii) flight movements, and (iii) water treatment.
Many of these simulations concern not only simulation of nature but also simula-
tion of human behaviour.

15 Cf. the definition of ‘risk’ given in note 10.
16 There is a continuous interaction between reasoning grounded in feelings and rea-

soning grounded in universally applicable rules (cf. Brown’s model of rationality
introduced in Chapter 1). Scientific advisers must be aware of the fact that their
judgements may be incomplete if they do not take the reasons of citizens for their
evaluation of risks into account. In addition, it is important for advisers to realise
that they are actors who may influence the feelings of citizens by the way the results
of risk assessments are presented; in the case of risk communication, for instance,
it has been observed that the feelings caused by the presentation of risks depend on
whether the risks were communicated as percentages (e.g., ‘0.1%’) or as relative
frequencies (e.g., ‘1 in 1,000’). The latter way of communicating risk leads to stron-
ger feelings; the strongest feelings are caused by individual stories. In order to pre-
vent the use of simulation models in public policy making from neglecting ‘softer’
aspects of the policy problems, for which, e.g., qualitative uncertainty assessment
is needed, policy analysts, in addition to using models, must also draw on their feel-
ings, according to the psychologist Paul Slovic.

17 ‘Ambiguity’ is the term used by Klinke and Renn (2002) to denote differences in
how problems are framed by different actors. In my typology, ambiguity is related
to the value-diversity dimension of uncertainty.

18 Klinke and Renn (2002: 1083) present a ‘decision tree’ for classifying risks into one
of the six classes that they distinguish. I will not discuss their classes here, but
merely list the five main questions of their decision tree: (1) Is the risk potential
known? (2) Thresholds on criteria exceeded? (3) Damage potential known? (4) Di-
saster potential high? and (5) Social mobilisation high?
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19 To increase the readiness to resume nuclear testing constitutes part of the Science
Campaign within the Defense Programs of the National Nuclear Security Admin-
istration (see http://www.nnsa.doe.gov/defense.htm, visited on 19 April 2006).

20 See Wet milieubeheer article 4.2.1 (concerning mnp’s environmental outlooks),
effective since 1994, originally for rivm, but since 1 January 2006 for mnp as a
separate organisation.

21 Only some elements of the Guidance are specific to environmental assessments
and, with only minor changes, the Guidance can be used in any area of scientific
policy advising. Furthermore, although a strong emphasis is put on assessing sim-
ulation uncertainty, the methodology encompasses all sources of information
used in science-for-policy.

22 In order to facilitate the internal debate on this topic and to identify tools for stake-
holder participation, mnp commissioned the Radboud University Nijmegen to de-
velop, together with mnp, a guidance on stakeholder participation. This guidance
is scheduled to become available in the autumn of 2006.

23 Note that ranges can also be expressed linguistically in a qualitative manner (cf.
van Asselt 2000: 313-319).

Notes with Chapter 5

1 Nothing is implied in this statement about the causes of the observed change. Just
as the term was used in the ipcc (2001a) report, ‘very likely’ here means a chance
between 66 and 90% (‘judgmental estimate of confidence’) that there was indeed
was a change in climate. ‘Climate’ can be defined as ‘the statistical description [of
weather] in terms of the mean and variability of relevant quantities over a period of
time ranging from months to thousands or millions of years’ (ipcc 2001a, Glos-
sary: 788). Classically, this period is taken to be 30 years (definition by the World
Meteorological Organisation). Obviously, the length of the period is important if
we are interested in change. 30 years is typically the longest timescale of economic
planning. The indicator for climate change that is most often used is global average
temperature; other quantities, such as regional temperatures, precipitation, or ex-
treme weather events can be used as well, but the changes in these other quantities
are often statistically less significant.

2 In references to ipcc (2001a), aside from the page number in the whole report, the
part of the report is also included: e.g., spm = Summary for Policymakers; ts =
Technical Summary; Ch. x = Chapter x; or Glossary.

3 Recently, figure 5.1b has come under dispute (see the criticism by McIntyre and
McKitrick 2005). In this figure, the results of one temperature reconstruction, by
Mann et al. (1999), for the last 1,000 years are shown. Given the uncertainty
ranges, other reconstructions are possible, and have indeed been published. In the
ipcc (2001) assessment, several different reconstructions were used and the con-
clusions that are stated in the Summary for Policymakers have taken these into
account.
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4 Still, mathematical models – not of the type used in dynamic simulations – are in-
volved in interpreting, interpolating and averaging inhomogeneous proxy data [see
note 5].

5 ‘Proxies’ such as tree rings, corals, ice cores and historical records are ‘interpreted,
using physical and biophysical principles, to represent some combination of cli-
mate-related variations back in time’ (ipcc 2001a, Glossary: 795).

6 An interaction mechanism within a complex system is called a ‘feedback’ when the
result of an initial process triggers changes in a second process that in turn influ-
ences the initial one. To give an example: if the atmosphere warms up it will hold
more water vapour; if water vapour increases in the atmosphere the greenhouse ef-
fect associated with water vapour will increase, leading to an even warmer atmos-
phere (positive feedback). An interaction is called ‘non-linear’ when there is no
simple proportional relation between cause and effect.

7 ‘Radiative forcing’ is ‘the change in the net vertical irradiance (expressed in Watts
per square metre: W/m2) at the tropopause due to an internal change or a change in
the external forcing of the climate system, such as, for example, a change in the
concentration of carbon dioxide or the output of the Sun. Usually, radiative forcing
is computed after allowing for stratospheric temperatures to readjust to radiative
equilibrium, but with all tropospheric properties held fixed at their unperturbed
values. Radiative forcing is called instantaneous if no change in stratospheric tem-
perature is accounted for’ (ipcc 2001, Glossary: 795).

8 ‘Aerosols’ are ‘airborne solid or liquid particles, with a typical size between 0.01
and 10 μm and residing in the atmosphere for at least several hours. Aerosols may
be of either natural or anthropogenic origin. Aerosols may influence climate in two
ways: directly through scattering and absorbing radiation, and indirectly through
acting as condensation nuclei for cloud formation or modifying the optical proper-
ties and lifetime of clouds’ (ipcc 2001, Glossary: 787). The most important
anthropogenic aerosol precursor is sulphur dioxide, SO2, which reacts in the at-
mosphere to form sulphate aerosols.

9 This estimate is based primarily on the number of academic meteorology depart-
ments worldwide, which is about one hundred (one-third of which is in the United
States). In most of these departments at least simple climate models are run, for
either climate research or education, or both. In addition, climate simulation takes
place in earth system science, oceanography, geography, geology, biology, chemis-
try, and physics departments. Finally, outside the universities, most developed
countries have one or more research institutes in which climate simulations are
being done.

10 In the ipcc (2001a) report: 34 aogcms from 19 modelling centres were assessed
(ipcc 2001a, Ch. 8: 478).

11 Tim Palmer observes that ‘to quantify climate change with cloud-resolving climate
models will require computers with substantially higher performance [than 1012

floating point operations per second, the maximum speed now, acp] – we must
start looking towards machines with sustained speeds in the Petaflop range (1015

floating point operations per second)’ (Palmer 2005: 45). He claims that ‘petaflop
computing is not science fiction – the main high-performance computing manu-
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facturers are actively working towards this goal and are expected to reach it in the
coming few years’ (Palmer 2005: 46). I am not sure whether Palmer’s prediction is
correct. It is definitely not certain that (i) the speed that Palmer mentions will
indeed be reached within a matter of years and (ii) whether the uncertainties in the
models will become significantly smaller by this increase in resolution.

12 The United Nations Framework Convention on Climate Change requested that
the ipcc produce a technical paper (Harvey et al. 1997) on the characteristics,
strengths, and weaknesses of simple climate models in relation to more complex
ones. The main reason for this request was to document the simple climate models
that were used for extensive sensitivity and scenario analysis in the Working
Group i volume of the 1995 ipcc Second Assessment Report. In climate science,
the term ‘complex climate model’ is often used instead of the term ‘comprehensive
climate model’, which is preferred here, since simple climate models can also in-
clude non-linear feedbacks and thus model complexity, albeit simply.

13 Only a partially ordered hierarchy, based on the notion of ‘complexity’, can be de-
fined since the complexity of the different model aspects (resolution, number of
processes included, etc.) is not necessarily correlated: some models may include
many processes at low resolution, or vice versa.

14 For completeness, it should be mentioned that in some other simple climate mod-
els (for instance, ‘radiative–convective climate models’) the climate sensitivity is
simulated, albeit relying on a very crude parameterisation.

15 Still, simple climate models also contain nonlinearities that may lead to the model-
ling of other types of surprises.

16 Technically, ‘flux adjustment’ involves the introduction of a systematic bias in the
fluxes between the ocean and the atmosphere before these fluxes are imposed on
the model ocean and atmosphere.

17 This is not to say that Harvey et al. (1997) do not emphasise the importance of sim-
ple climate models. As in other climate modelling ‘primers’ (e.g., McGuffie and
Henderson-Sellers 1997), the value of simple climate models is acknowledged.

18 The Hadley Centre moved with the MetOffice to Exeter in 2003.
19 The ipcc assessments give most weight to results that have been published in in-

ternationally peer-reviewed journals. Hence the Hadley Centre publishes its re-
sults in journals such as Nature.

20 The uncertainties in climate simulation will be dealt with in detail in the next chap-
ter.

Notes with Chapter 6

1 The width of the band is a measure for the simulated internal climate variability
due to natural internal processes within the climate system, e.g. El Niño.

2 There is a trade-off with theoretical quality here: if parameterisations are just tuned
to reproduce the new data, then the theoretical quality diminishes. The best way to
proceed is to try to understand where the parameterisations are going wrong and
why, and to propose new and better parameterisations.
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3 Over a longer period, from 1950 until 2000, the simulation results and measure-
ment do agree, however.

4 Even though the number of runs is only four, the runs can be compared at different
times and therefore enough data becomes available for a statistical estimate.

5 It was stated orally by the Co-ordinating Lead Author, John Mitchell, at the ipcc

Working Group i Plenary Session in Shanghai, January 2001; and confirmed later
by him in an interview.

Notes with Chapter 7

1 Over the period 2000-2010 this amounts to a reduction of the gdp growth rate by
0.01-0.2 percentage points/year. Over this period average yearly gdp growth rates
of 2-3% are typically projected. In 2004, the gdp in oecd countries was about 9%
higher than in 2000 (see http://www.oecd.org).

2 See Chapter 5, note 2.
3 Stephen Gardiner (2004: 577) argues ‘that the endorsement by many policy mak-

ers of some form of precautionary ... approach is reasonable for climate change’.
His argument is based on Rawls’ criteria for the application of a maximin principle
(Gardiner 2004: 577).

4 Ironically, the latter argument can also be used by the coal and oil lobby – only they
would come to a different conclusion: we should not take the model outcomes seri-
ously, because nothing is the matter. In contrast, the environmental movement ar-
gues for a precautionary approach, as is also adopted in the unfccc.

5 In 1992, the United Nations Framework Convention on Climate Change
(unfccc) was signed in Rio de Janeiro. The assumption underlying the unfccc

is that climate change is being caused by human activities, but the expression ‘cli-
mate change’ had a different meaning as compared with how it is used in the con-
text of the ipcc. In order to avoid misunderstanding, the ipcc repeatedly adds the
following footnote to its reports: ‘Climate change in ipcc usage refers to any
change in climate over time, whether due to natural variability or as a result of hu-
man activity. This usage differs from that in the Framework Convention on Cli-
mate Change, where climate change refers to a change of climate that is attributed
directly or indirectly to human activity, that alters the composition of the global at-
mosphere and that is in addition to natural climate variability observed over com-
parable time periods’ (ipcc 2001a, spm: 2). In this study, the expression ‘climate
change’ is used in the sense the ipcc uses it.

6 The quotes from meetings or press conferences presented in this chapter are tran-
scripts of these sessions based on the author’s notes. This quote from Watson was
obtained through the unfccc’s webcast service and was not edited by the author,
except for punctuation.

7 ipcc wg i assesses the state of climate science as expressed in the scientific litera-
ture. The ipcc does not itself perform or fund research.
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8 Such reactions are understandable: Shackley et al. as social students of science are
rightfully considered by the modellers as actors in the societal debate on climate
simulation.

9 Petersen (2000a).
10 Social scientists have also been vocal critics of the domination of the early ipcc by

natural scientists. For the first assessment report of 1990 this natural-science bias
can readily be demonstrated: social scientists participated in its production only on
a small scale. This changed, however, in the next round of comprehensive assess-
ment: one of the three parts of the Second Assessment Report (sar), which ap-
peared in 1996, was produced by a working group named ‘Economic and Social
Dimensions of Climate Change’ and many social scientists participated in its pro-
duction. While the sar was under production, a broad community of social scien-
tists decided to produce an independent extensive review of social-science litera-
ture of relevance to the human-induced global-warming problem (Rayner and
Malone 1998). Much of the material of that review can be found again in the tar,
which like all ipcc reports provides a ‘synthesis of material drawn from available
literature’ (ipcc Procedures 1999).

11 The following four official drafts were prepared: ‘First Draft’ (Expert Review; No-
vember 1999), ‘Second Draft’ (government and Expert Review; April 2000 – in-
cluding the first draft of the spm), ‘Final Draft’ (government Review; October
2000), and ‘Shanghai Draft’ (last-minute draft of the spm taking the comments on
the Final Draft into account; prepared for use at the plenary session in Shanghai;
January 2001).

12 That the estimates of the greenhouse-gas contribution to the observed warming
can also be larger than the observations is due to the fact that anthropogenic emis-
sions of sulphur dioxide that lead to the formation of sulphate particles in the at-
mosphere have a compensating cooling effect.

13 A formal condition for my participation as a philosophical observer in ipcc meet-
ings was that I would ensure anonymity of countries. The meetings of the ipcc are
not open to the public. Since I gained access to the meeting as a member of the
Dutch government delegation, this government did not want to become respon-
sible for a breach of bureaucratic confidentiality rules. This shows how much the
ipcc is considered a diplomatic forum by governments.

14 The official un languages into which ipcc documents are translated are: Arabic,
Chinese, English, French, Russian and Spanish.

15 As was explained in section 3.4, the frequentist paradigm in statistics departs from
‘objective’ probabilities based on the empirically determined frequency of
occurence of events. In contrast, in Bayesian statistics, probabilities are ‘subjec-
tive’, based on expert judgement and reflecting all information that is available on a
particular event (not necessarily the frequence of occurence).

16 The confidence and likelihood scales were somewhat different for the lowest and
highest categories (0-5% and 95-100% versus 0-1% and 99-100%, respectively).

17 Notes for Lead Authors of the ipcc Fourth Assessment Report on Addressing Un-
certainties, July 2005 (see http://www.ipcc.ch/activity/ uncertaintyguidancenote.
pdf).
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18 Thompson et al. (1990: 28) state that they ‘have deduced [these myths] by asking
[respondents] how nature would have to be conceived for our ... ways of life to be liv-
able’. It is not well-established that indeed people’s visions on nature and visions
on human beings and society are really coupled, as is assumed in this version of
cultural theory. This is still an open question for sociologists working on this topic.

19 The way the perspectives are connected in the targets model to alternative scien-
tific assumptions can give the impression that there is a simple relation between a
scientist’s political view and her scientific beliefs. Indeed, van Asselt and Rotmans
(1997) refer to the Sociology of Scientific Knowledge in order to argue for the plau-
sibility of such a connection. However, it is difficult to find evidence for this pos-
ition in scientific practice (see, e.g., Pickering 1992). Therefore I propose to inter-
pret the coupling as relationships between societal perspectives on risk and what
these entail in terms of scientific assumptions (within a range of plausible and es-
tablished scientific assumptions), rather than as a claim that political views would
determine the development of scientific knowledge.

20 The terms ‘utopia’ and ‘dystopia’ (see below) are used by the targets modellers as
technical terms, to denote a match, or mismatch, between the assumed and real
behaviour of the world.

21 Compared with an earlier publication (Petersen 2000b) I have become more posi-
tive about the merits of perspective-based approaches. The mnp has applied a
somewhat similar approach in its Sustainability Outlook of 2004 and is currently
considering follow-up modelling activities.

Notes with the Appendix

1 I have sent my transcript of the proceedings (edited on the basis of my notes) to one
of the Co-ordinating Lead Authors of the detection and attribution chapter in order
to have him check its accuracy and have received a positive response.

2 See the box in Chapter 7 for more readable versions of both the Final Draft and the
Shanghai Draft.

3 The names of the seven countries (labelled ‘B’ through ‘H’) that played an identifi-
able role in this contact group meeting remain anonymous (see Chapter 7, note 13).

4 A second country, within a different political group, supported country B’s inter-
vention by stating ‘substantial’ was also difficult to translate in its language (an-
other un language).
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Samenvatting

Het simuleren van de natuur

Een filosofische studie van onzekerheden in computersimulatie en
hun rol in klimaatwetenschap en -beleidsadvisering

Onzekerheden in computersimulaties van natuurlijke systemen staan zowel
in de wetenschap als in de politiek ter discussie. Zo wordt reeds sinds de intro-
ductie van computersimulatie in de wetenschap gediscussieerd over de status
van simulatiewetenschap ten opzichte van experimentele en theoretische we-
tenschap. En in politieke kringen worden vraagtekens gezet bij het gebruik
van de resultaten van computersimulatie in overheidsbeleid. De praktijk van
wetenschappelijke simulatie en de rol van simulatie in wetenschap en beleid
geven aanleiding tot verschillende filosofische vragen.

In deel i van dit proefschrift komen de volgende drie algemene onder-
zoeksvragen ten aanzien van onzekerheid in simulatie aan bod:

1 Welke specifieke typen van onzekerheid zijn verbonden aan weten-
schappelijke simulatie?

2 Wat zijn de verschillen en overeenkomsten tussen simulatie-onzeker-
heid en experimentele onzekerheid?

3 Wat zijn gepaste manieren om onzekerheden in wetenschappelijke
simulatie te beoordelen en te communiceren in wetenschappelijke
beleidsadvisering?

De computersimulaties die in deze studie worden besproken, bestaan alle uit
een wiskundig model dat een natuurlijk proces imiteert en is geïmplemen-
teerd op een computer. Deze studie betreft alle wetenschapsgebieden waarin
natuurlijke systemen (‘dode’ of ‘levende’) worden gesimuleerd. De voorbeel-
den die de revue passeren, betreffen doorgaans complexe systemen. Een deel
van de analyse is ook van toepassing op de simulatie van sociale systemen als
complexe systemen, hoewel de reflexieve capaciteit van de mens een aparte
studie van de rol van simulatie in de sociale en economische wetenschappen
vergt. De beleidsterreinen die in deel i aan bod komen, zijn zeer divers. Voor-
beelden zijn de ontwikkeling van kernwapens, milieuvraagstukken, en het
testen van geneesmiddelen.



In deel ii van dit proefschrift wordt één probleem in het bijzonder belicht,
namelijk de door de mens veroorzaakte klimaatverandering. Heeft de mens
momenteel een aanzienlijke invloed op het klimaat? Volgens beleidsmakers
hebben wetenschappers die vraag in de context van het Intergovernmental
Panel on Climate Change (ipcc) positief beantwoord. Hoe komen weten-
schappers tot zulke conclusies en waarom vertrouwen beleidsmakers hen?
Om een adequaat antwoord te kunnen geven op deze laatste vragen moet een
beroep worden gedaan op sociologisch en filosofisch onderzoek naar de rol
van modellen in de wetenschap en naar de translatie van modelresultaten
naar een politieke context. In het bijzonder verdient de kritiek van ‘broeikas-
sceptici’ op het ipcc-proces aandacht. Hun bewering is doorgaans dat de
onzekerheden in klimaatmodellen niet adequaat wordt weergegeven in de
‘samenvattingen voor beleidsmakers’ die het ipcc produceert van haar dikke
assessmentrapporten. Het ipcc is aan deze kritiek tegemoetgekomen door
de reviewprocedures verder te verbeteren. De vraag in hoeverre het ipcc erin
slaagt om onzekerheden op een gepaste manier te communiceren is van cru-
ciaal belang voor het legitimeren van klimaatbeleid. In deel ii worden de fi-
losofische inzichten over simulatie-onzekerheid uit deel i toegepast in een
evaluatie van de omgang met klimaatmodelonzekerheid door het ipcc. De
volgende twee specifieke onderzoeksvragen worden in deel ii behandeld:

4 Welke specifieke typen van simulatie-onzekerheid zijn verbonden aan
de toeschrijving van klimaatverandering aan menselijke invloeden?

5 Zijn deze onzekerheden op een gepaste manier beoordeeld en gecom-
municeerd in het derde assessmentrapport van het ipcc (2001a)?

De uitgangspunten van deze studie zijn (i) dat er in de simulatiepraktijk een
scala aan modellen, methodologieën en waardeoriëntaties bestaat, (ii) dat de
aard van en redenen voor dit scala filosofisch begrepen kan worden en (iii) dat
dit scala gekoesterd moet worden. Zo’n veelvoud aan benaderingen is belang-
rijk om wetenschappelijke redenen en – in het geval dat simulatie wordt
gebruikt bij het maken van beleid – ook om socio-politieke redenen.

Ik zal hieronder kort aangeven welke antwoorden zijn verkregen op de
onderzoeksvragen van deze studie.
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1 Onzekerheid verbonden aan wetenschappelijke simulatie

De eerste onderzoeksvraag handelt over de specifieke typen van onzekerheid
die zijn verbonden aan wetenschappelijke simulatie. Analoog aan de strategie
van Giora Hon (1989; 2003) – die de structurele elementen van de praktijk
van experimenteren afleidt uit een filosofische analyse van de notie van fou-
ten in experimenten – stel ik vier centrale elementen in simulatie voor, die
corresponderen met de locaties waar onzekerheden ontstaan in de simulatie-
praktijk. Deze elementen zijn: (1) het conceptuele and wiskundige model,
(2) de modelinputs, (3) de technische modelimplementatie en (4) de bewerkte
outputdata en hun interpretatie. Middels een analyse van deze elementen kan
worden verduidelijkt wat er specifiek is aan de typen van onzekerheid die zijn
verbonden aan wetenschappelijke simulatie in vergelijking met andere we-
tenschappelijke praktijken. Daarnaast heb ik de onzekerheidstypologie van
Funtowicz en Ravetz (1990) uitgebreid en onderscheid ik naast de locatie-
dimensie van onzekerheid vijf andere dimensies: (i) onzekerheidsaard (epis-
temische onzekerheid vs. ontische onzekerheid), (ii) onzekerheidsbereik
(statistische onzekerheid vs. scenario-onzekerheid); (iii) erkende onwetend-
heid; (iv) methodologische onbetrouwbaarheid en (v) waardediversiteit.

In mijn discussie van de vier centrale elementen in de simulatiepraktijk
worden vier filosofische kwesties behandeld met betrekking tot simulatie.
Aan de hand van deze kwesties kunnen enkele algemene karakteriseringen
van simulatie-onzekerheid worden gegeven.

(1) Het onderscheid tussen algemene theorie en modellen moet worden
beschouwd als een relatief onderscheid (contra Cartwright 1983): be-
paalde theoretische formules die als model worden opgevat vanuit het
perspectief van een meer fundamentele (sub)discipline kunnen ook
worden opgevat als algemene theorie waaruit benaderende modellen
worden afgeleid. Simulatiemodellen worden echter niet volledig afge-
leid uit theorie. De meeste simulatiemodellen van complexe systemen
bevatten bijvoorbeeld een aantal ‘parameterisaties’ van processen die
niet in meer detail gesimuleerd kunnen worden. Deze parameterisaties
zijn doorgaans niet volledig gebaseerd op algemene theorie. Door te
bepalen in welke mate simulatiemodellen zijn afgeleid uit een algemene
theorie en wat de draagwijdte van de algemene theorie is kan de theoreti-
sche kwaliteit van simulaties worden beoordeeld.

(2) Hoewel men de nauwkeurigheid van een simulatie toe kan laten nemen
door empirische input te gebruiken (pro Morgan 2003), hangt de mate
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waarin de uitkomsten betrouwbaar zijn niet alleen of van de inputdata,
maar ook van de betrouwbaarheid van het conceptuele en wiskundige
model (een kwestie die door Morgan te weinig wordt benadrukt).

(3) Voortbouwend op Radders (1996) beschrijving van de reproduceerbaar-
heid van experimenten beargumenteer ik dat het reproduceren van
simulatieruns met één bepaalde technische modelimplementatie op één
computersysteem doorgaans onproblematisch is, maar dat het overzet-
ten van computermodellen naar andere computersystemen of het ont-
wikkelen van nieuwe modelimplementaties moeilijker is. De laatstge-
noemde strategieën kunnen helpen om te controleren wat de effecten
zijn van numerieke benaderingen en fouten in de oorspronkelijke com-
puterprogramma’s.

(4) Door geavanceerde visualisatietechnieken te gebruiken – waaronder
animaties – kunnen wetenschappers die simulaties uitvoeren tot een
beter begrip komen van de processen die worden bestudeerd, mits zij de
invloed van de projectiemethoden die worden gebruikt om de beelden te
produceren in het oog houden. Deze projectiemethoden zijn vaak wille-
keurig gekozen, wat leidt tot het risico dat onjuiste conclusies worden
getrokken.

Ook worden conclusies over simulatie-onzekerheid getrokken uit de discus-
sie van elk van de vijf onzekerheidsdimensies naast de locatiedimensie.

(i) Hoewel the aard van simulatie-onzekerheid ontisch kan zijn, is er ge-
woonlijk ook een epistemische onzekerheid over deze ontische onzeker-
heid. Epistemische onzekerheid is een gevolg van de onvolledigheid en
feilbaarheid van kennis (die bijvoorbeeld is vervat in de modelstructuur
of de modelinputs). In principe kunnen simulatiemodellen ontische
onzekerheid – dat wil zeggen het intrinsiek onbepaalbare en/of variabele
karakter van het systeem dat wordt bestudeerd – simuleren. De onzeker-
heid van aannames in het model resulteren echter in epistemische on-
zekerheid over ontische onzekerheid.

(ii) Een onzekerheidsbereik voor de resultaten van simulaties is een statis-
tisch onzekerheidsbereik of een scenario-onzekerheidsbereik. Een sta-
tistisch onzekerheidsbereik kan worden bepaald door de simulatieresul-
taten met metingen te vergelijken – aangenomen dat nauwkeurige en
voldoende metingen beschikbaar zijn – of door middel van onzeker-
heidsanalyse – aangenomen dat de nauwkeurigheid van de verschil-
lende elementen in simulatie bekend is. Een scenario-onzekerheids-
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bereik (gebaseerd op ‘wat-als’ vragen) is over het algemeen gemakkelij-
ker te construeren door simulatie-elementen te variëren.

(iii) Omdat simulatiemodellen vereenvoudigde representaties zijn van de
werkelijkheid, moeten wetenschappers die simulatiemodellen maken
van complexe systemen zich bewust zijn van het feit dat belangrijke pro-
cessen die sterk het niet-lineaire gedrag kunnen beïnvloeden, slecht
gerepresenteerd – of zelfs afwezig – kunnen zijn in de modellen. In alge-
menere zin realiseren we ons van sommige onzekerheden dat ze aan-
wezig zijn, maar kunnen we geen bruikbare schatting van deze onzeker-
heid maken, bijvoorbeeld vanwege de grenzen aan voorspelbaarheid en
kenbaarheid (‘chaos’) of vanwege onbekende processen. Deze onwe-
tendheid dient onderkend worden en in onze beweringen die zijn geba-
seerd op simulatieresultaten, dienen we er open over te zijn.

(iv) Het is vaak niet mogelijk om de nauwkeurigheid van simulatieresulta-
ten te bepalen. De methodologische hardheid van een simulatie kan dan
worden beschouwd als een alternatief voor deze nauwkeurigheid bij het
schatten van de betrouwbaarheid van een simulatie. Vier criteria kunnen
voor dit doel worden onderscheiden: de theoretische basis, de empiri-
sche basis, de vergelijking met andere simulaties en de acceptatie/steun
binnen en buiten de gemeenschap van peers. Ten eerste is het belangrijk
om zowel te bepalen in welke mate simulatiemodellen zijn afgeleid uit
algemene theorie als na te gaan wat de reikwijdte is van de algemene the-
orie. Ten tweede moet worden beoordeeld in welke mate simulaties zijn
gebaseerd op en/of zijn getoetst aan waarnemingen of experimenten.
Ten derde moeten de resultaten van simulaties worden gerelateerd aan
de resultaten van andere simulaties van overeenkomstige processen om
te bepalen of de resultaten repliceerbaar zijn. Ten vierde moet de simula-
tie onderworpen worden aan peer review. Dit moet in ieder geval intern
binnen een wetenschappelijke discipline gebeuren, maar het kan daar-
naast ook extern plaatsvinden – indien dat relevant is.

(v) Omdat wetenschappers die simulaties uitvoeren aanmerkelijke vrijheid
hebben om keuzes te maken in hun simulatiemodellen, bevatten simu-
laties onvermijdelijk een subjectieve component en kunnen ze worden
beïnvloed door de epistemische en niet-epistemische waarden van de
onderzoeker. De algemene epistemische, discipline-gebonden episte-
mische, socio-politieke en praktische waarden die een rol spelen bij de
totstandkoming van een simulatie dienen te worden beoordeeld.
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De onzekerheidstypologie die ik gebruik in deze studie gaat uit van een breed
begrip van onzekerheid. Dit begrip is met name veel breder dan wat valt onder
de noemer van statistiek. De aandacht voor de dimensies van methodolo-
gische onbetrouwbaarheid en waardediversiteit maakt het een adequatere
beschrijving van de praktijk van simulatie en de daaraan verbonden onzeker-
heden te geven dan mogelijk zou zijn met een uitbreiding van foutenstatis-
tische beschrijvingen van de praktijk van experimenteren (zoals die van Mayo
1996) naar de praktijk van simulatie.

2 Verschillen en overeenkomsten tussen simulatie-onzekerheid en
experimentele onzekerheid

De tweede onderzoeksvraag gaat over de verschillen en overeenkomsten tus-
sen simulatie-onzekerheid en experimentele onzekerheid. Hoewel er over-
eenkomsten zijn, bestaan er ook fundamentele verschillen. De onderzoeks-
vraag kan beantwoord worden aan de hand van de volgende vier deelvragen:

1 Is simulatie een vorm van experimenteren?
2 Hoe dicht kunnen simulaties daadwerkelijke (materiële) experimen-

ten benaderen?
3 Zijn zowel simulaties als experimenten vormen van modelleren?
4 Hoe verhoudt de norm van reproduceerbaarheid in de simulatieprak-

tijk zich tot dezelfde norm in de experimentele praktijk?

De antwoorden op deze vragen op grond van de resultaten van de voorlig-
gende studie zijn als volgt.

Is simulatie een vorm van experimenteren? — Simulaties worden door filo-
sofen en sociaal-wetenschappelijke wetenschapsonderzoekers vaak geken-
schetst als ‘experimenten’ met theorieën (b.v. Rohrlich 1991; Humphreys
1994; Galison 1996; Dowling 1999; Keller 2003; Morgan 2003). In een ana-
lyse van simulatie als laboratoriumpraktijk vertonen de vaardigheden die ge-
paard gaan met ‘experimenteren’ met simulatiemodellen enkele oppervlak-
kige analogieën met de vaardigheden die een rol spelen in de experimentele
praktijk. De elementen in de twee praktijken van simulatie verschillen echter.
Het belangrijkste verschil is dat in de simulatiepraktijk wiskundige modellen
worden gemanipuleerd die zijn gematerialiseerd in computerprogramma’s,
en geen materiële modellen. De benodigde vaardigheden zijn daarom van
een andere aard. En de onzekerheden die gepaard gaan met materiële ele-
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menten, zijn ook van een andere aard. Ik beschouw het verschil tussen wis-
kundige en materiële manipulaties als fundamenteel en stel daarom voor om
de term ‘experiment’ niet te koppelen aan simulatie.

Hoe dicht kunnen simulaties daadwerkelijke (materiële) experimenten benade-
ren? — Morgan (2003) beweert dat sommige simulaties meer lijken op mate-
riële experimenten dan andere en dat deze simulaties daarom minder onzeker
zijn dan andere simulaties. Zoals ik heb laten zien, kan deze overeenkomst
tussen simulatie en experiment alleen geïnterpreteerd worden als overeen-
komst tussen de wiskundige input van de simulatie en de materiële input van
het materiële experiment, maar houdt dit niet noodzakelijkerwijs in dat het
wiskundige model en de modelresultaten dicht bij de werkelijkheid zitten.

Zijn zowel simulaties als experimenten vormen van modelleren? — Zowel in
simulatie- als in experimentele praktijken is sprake van modellen van de bui-
tenwereld en extrapolatie van de resultaten die in het laboratorium zijn verkre-
gen, naar deze buitenwereld. In beide praktijken worden onderzoekers dus ge-
confronteerd met de verschillende typen van onzekerheid in modellen. Deze
overeenkomst tussen simulatie en experimenteren is belangrijk omdat, wan-
neer de rol van modellen in experimenten onzichtbaar blijft, men ten onrechte
zou kunnen concluderen dat de resultaten van experimenten, bijvoorbeeld van
metingen, niet gevoelig zijn voor modelaannames. De aard van de represente-
rende relatie tussen een wiskundig model en de werkelijkheid verschilt echter
van die tussen een materieel model en de werkelijkheid. Experimenten zijn in
dit opzicht behept met meer typen van onzekerheid dan simulaties.

Hoe verhoudt de norm van reproduceerbaarheid in de simulatiepraktijk zich tot
dezelfde norm in de experimentele praktijk? — Hoewel deze norm betrekking
heeft op zowel de simulatie- als de experimentele praktijk, zijn de activiteiten
die gericht zijn op het voldoen aan deze norm niet dezelfde. In het algemeen
is het moeilijker aan de norm te voldoen in de experimentele dan in de simula-
tiepraktijk. Zoals uit het voorafgaande volgt, moeten in de experimentele
praktijk meer typen van onzekerheid worden overwonnen om reproduceer-
baarheid te bereiken.

Uit het belangrijkste verschil tussen simulatie and experimenteren, namelijk
dat de fysieke natuur die wordt bestudeerd, niet in het simulatielaboratorium
aanwezig is, kunnen we dus concluderen dat er additionele typen van onze-
kerheid zijn in de praktijk van experimenteren. In materiële experimenten
kunnen we ‘verward’ worden door gedrag van het natuurlijke proces dat ver-
schilt van wat we verwachtten, terwijl we hoogstens ‘verrast’ kunnen worden
door de eigenschappen van wiskundige modellen. Ondanks het voorkomen
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van minder typen van onzekerheid in de simulatiepraktijk, kan de model-
onzekerheid in simulaties gemakkelijk groter zijn dan alle onzekerheden in
een experiment. Omdat dit echter niet noodzakelijkerwijs het geval is, conclu-
deer ik dat de vraag of onzekerheden in het experimenteren kleiner zijn dan
onzekerheden in simulatie van geval tot geval moet worden beantwoord.

3 Beoordeling en communicatie van wetenschappelijke
simulatie-onzekerheid in wetenschappelijke beleidsadvisering

De derde vraag betreft gepaste manieren om onzekerheden in wetenschap-
pelijke simulatie te beoordelen en te communiceren in wetenschappelijke
beleidsadvisering. Omdat beleidsmakers doorgaans zelf niet in staat zijn de
onzekerheid in de uitkomsten van wetenschappelijke simulatiemodellen te
beoordelen, moeten wetenschappelijke beleidsadviseurs zorgvuldig afwegen
hoe ze hun conclusies presenteren. Ik stem in met Funtowicz en Ravetz, die
stellen dat beleidsproblemen waarbij grote maatschappelijke belangen en
grote wetenschappelijke onzekerheden een rol spelen een ‘post-normale’ pro-
bleemoplossingsstrategie behoeven en ik benadruk daarbij dat post-normale
wetenschap een bijzondere uitdaging oplevert voor wetenschappelijke beleids-
adviseurs om op gepaste manier onzekerheden te beoordelen en te communi-
ceren.

De wijze waarop door wetenschappelijke beleidsadviseurs met onzeker-
heden in simulaties moet worden omgegaan hangt af van het type beleidspro-
bleem waarmee ze worden geconfronteerd. Het is zinvol om onderscheid te
maken tussen vier typen van beleidsproblemen op basis van literatuur in
de politieke wetenschappen (Ezrahi 1980; Hisschemöller en Hoppe 1996;
Hisschemöller et al. 2001). Deze typen van beleidsproblemen verschillen in
de mate van overeenstemming over politieke doelen en de mate van overeen-
stemming over welke wetenschappelijke kennis relevant is voor het pro-
bleem. De Leidraad voor Omgaan met Onzekerheden die bij het mnp is inge-
voerd en waarin deze inzichten uit de politieke wetenschappen zijn verwerkt,
kan worden gebruikt als een praktische methodologie om te bepalen welke in-
formatie over simulatie-onzekerheid geschikt en gewenst is om opgenomen
te worden in beleidsadviezen.

Het antwoord op de eerste onderzoeksvraag over de specifieke typen van
onzekerheid die zijn verbonden aan wetenschappelijke simulatie kan ge-
bruikt worden bij de beoordeling en communicatie van onzekerheden in de
wetenschappelijke beleidsadvisering.
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4 Simulatie-onzekerheid verbonden aan de toeschrijving van
klimaatverandering aan menselijke invloeden

In de klimaatcasus treft men verschillende simulatiemodellen aan die weder-
zijds conflicterende beweringen impliceren over hoe het klimaatsysteem
werkt. Klimaatwetenschappers zijn niet in staat om te bepalen welk klimaat-
model nu werkelijk de meest realistische aannames over het klimaatsysteem
bevat. De onzekerheidstypologie uit deze studie biedt hun een hulpmiddel
om ook andere dimensies van onzekerheid te analyseren dan slechts onnauw-
keurigheid. Met name de dimensies van erkende onwetendheid en methodo-
logische onbetrouwbaarheid behoeven hun systematische aandacht.

De vierde onderzoeksvraag heeft betrekking op de specifieke typen van
simulatie-onzekerheid die zijn verbonden aan de toeschrijving van klimaat-
verandering aan menselijke invloeden. Over het algemeen is de parameterisa-
tie van wolken de belangrijkste bron van onzekerheid in klimaatmodellen.
Voor de toeschrijving van de waargenomen opwarming over de afgelopen
50 jaar aan menselijke invloeden zijn de vijf belangrijkste onzekerheden:
de interne klimaatvariabiliteit (een ontische onzekerheid die wordt gesimu-
leerd door klimaatmodellen, wat leidt tot epistemische onzekerheid over deze
ontische onzekerheid), de natuurlijke stralingsforcering van het klimaat
(gelokaliseerd in the modelinputs), de antropogene stralingsforcering (onder
andere middels de uitstoot van broeikasgassen), de patronen van respons op
natuurlijke en antropogene stralingsforceringen en de trends in de tempera-
tuur van de vrije atmosfeer (boven de atmosferische grenslaag nabij het aard-
oppervlak). Voor al deze onzekerheden is het cruciaal om de erkende on-
wetendheid en de methodologische onbetrouwbaarheid te beoordelen en te
communiceren.

Al deze onzekerheden wegend kwam het ipcc in 2001 tot de conclusie
dat het ‘waarschijnlijk’ is (tussen 66 en 90% kans) dat het grootste deel van
de waargenomen opwarming is veroorzaakt door menselijke invloeden. De
simulatie-onzekerheid maakt het dus niet geheel onmogelijk om beleidsrele-
vante uitspraken over klimaatverandering te doen. Of de genoemde conclusie
gepast is, komt aan bod komt bij de beantwoording van onderzoeksvraag 5.
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5 Beoordeling en communicatie van toeschrijvingsonzekerheid in
IPCC (2001)

In de vijfde onderzoeksvraag gaat het erom of bovengenoemde onzekerheden
op een gepaste manier zijn beoordeeld en gecommuniceerd in het derde as-
sessmentrapport van het ipcc. Het ipcc heeft geen typologie van onzeker-
heid die gebruikt kan worden om op systematische wijze onzekerheden te
beoordelen. De hier voorgestelde typologie van simulatie-onzekerheid kan
met vrucht worden toegepast in de analyse van onzekerheid in klimaatsimula-
tie, zoals in deze studie wordt aangetoond voor de aan simulatie gerelateerde
bronnen van onzekerheid in de toeschrijving van klimaatverandering aan
menselijke invloeden. Als men de typologie toepast, wordt onmiddellijk dui-
delijk dat slechts een deel van de onzekerheid statistisch kan worden uitge-
drukt. Additionele kwalitatieve oordelen over de betrouwbaarheid van de kli-
maatsimulatiemodellen zijn nodig. Deze speelden inderdaad een belangrijke
rol in de productie van het rapport van het ipcc (2001a). Maar omdat de
hoofdauteurs geen vocabulaire ter beschikking stond om een expliciet onder-
scheid te hanteren tussen de twee onzekerheidssoorten van onnauwkeurig-
heid en onbetrouwbaarheid, bleef de invloed van hun kwalitatieve oordelen
op hun eindconclusies grotendeels onzichtbaar voor buitenstaanders. Desal-
niettemin is mijn evaluatie van het reviewproces van het derde assessment-
rapport positief en ben ik van mening dat de beoordeling van onzekerheid op
gepaste wijze heeft plaatsgevonden. Aan de communicatie van onzekerheid
valt echter nog wel het een en ander te verbeteren.

Een alternatief voor het communiceren van onzekerheid in klimaatsimu-
latie middels waardeneutrale statistische uitdrukkingen van onzekerheid,
zoals wordt gedaan door het ipcc, is de zogenaamde targets-aanpak, een
op perspectieven gebaseerde integrated assessment methodologie waarin over
onzekerheden wordt gecommuniceerd binnen een risicoraamwerk. Beide
strategieën, die van het ipcc en die van targets, hebben voor- en nadelen.
Uit deze studie volgt dat beide strategieën op complementaire wijze kunnen
worden gebruikt. De ipcc-procedure kan leiden tot de beoordeling en uit-
drukking van het onzekerheidsbereik, en een op perspectieven gebaseerde
risicobeoordeling kan dit onzekerheidsbereik meer betekenisvol maken voor
beleidsmakers.
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