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Abstract

Social learning is studied when heterogeneous agents can select whom to observe. An
agent learns from the average action in her neighborhood. She may face a tradeoff between
joining a large neighborhood where most agents have different preferences than she does or
a small neighborhood where agents share her preferences. Typically, her choice will not be
socially optimal, and the equilibrium outcome may involve inefficient pooling.

1 Introduction

The study of social learning formalizes the idea that people facing decisions under imperfect
information may seek guidance from the way that other people they know have acted (and fared)
in similar situations. Implicit elements of this story are a social structure indicating whom
an agent observes (and who observes her) and an inference process describing how an agent
incorporates her observations in choosing her optimal action. Most work on social learning
has focused on the inference process, taking the social structure to be exogenous. However,
when agents differ in their preferences, the value of social learning to an agent depends critically
on choosing the right set of agents to observe. This paper looks at a model in which agents
with diverse preferences must first choose a neighborhood and then choose an action based
on their observation of how other agents in that neighborhood have acted (plus some private
information). In choosing a neighborhood, agents will often face a new tradeoff between large
samples with diffuse preferences and smaller, targeted ones. When large samples prevail, there
will be pooling on a neighborhood, creating an obstacle to complete learning that is reminiscent
of, but distinct from, herding on actions.

To introduce the main ideas, consider the decision problem of an agent who wants to go
to the movies. There are only two films, X and Y , both of which are showing at the two
theaters in town, the arthouse (A) theater and the megaplex (M). Filmgoer preferences are
of two types, arty and mainstream. Both types generally agree on the elements that make a
good movie but differ on their relative importance (good dialogue vs. car chases, for example).
Each filmgoer first chooses which theater to drive to and then decides which movie to see on
the basis of her (noisy) private signal and what people ahead of her in line seem to prefer. (But
she doesn’t mind waiting in line per se.) How should a filmgoer decide where to go?
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If there were only one theater and only a single type of agent, then standard models of
sequential social learning would fit this story quite well. However, when agents have diverse
preferences and different choices about where to gather information, the picture becomes more
complex. Once she has arrived at a theater, our filmgoer must assess how much information
can be gleaned from the line’s behavior. She must consider how much her predecessors have
relied on their signals, as in the standard case, but also how similar their preferences are likely
to be to hers. One step back, her belief about which theater is likely to be more informative for
her will generally depend on her type and her beliefs about the composition of the two lines.

For example, suppose that it is well known that arty filmgoers are relatively rare and tend
to frequent the arthouse theater, while mainstream filmgoers go to the megaplex. In deciding
which theater to go to, an arty agent must trade off noise due to a small observation sample
(at A) versus noise due differing preferences (at M). In general, this tradeoff can go in either
direction; let us imagine that it favors M . Now consider the choice of the next arty agent.
The line at A is no more informative than it would have been for her predecessor, while the
line at M has become strictly more informative — so she will drive to M as will all subsequent
arty agents. Thus, pooling on an information source is a possibility.

As is usual with social learning, agents do not account for the value that later agents
derive from the private information embodied in their film choices. However, the sign of this
externality is no longer straightforward; mainstream agents may wish their arty predecessors
had used their private information less rather than more, for example. There is also a second
externality that is new: the choice of an information source affects the information available
to later filmgoers, but agents do not take this into account when deciding which theater to
drive to. Pooling onM is an example of this — although pooling may reflect each agent’s short
run interest, in the long run it can lead to incomplete learning if the preferences of arty and
mainstream filmgoers cannot be disentangled. In contrast, if the filmgoers were to segregate at
different theaters, complete learning might obtain.1

The rest of this paper develops a simple model in which these issues can be explored. Like
the example above, the model has two types of agents and two “information neighborhoods”;
however, the action space will be continuous, not discrete. The neighborhoods could be thought
of as physical locations, such as theaters or retail stores, or non-geographic communities like
professional organizations or online chat sites. What is important is that neighborhoods are
mutually exclusive — an agent can join only one — and that information flows within neigh-
borhoods, but not between them. Agents join a neighborhood, observe the average action
taken there, and then choose their own actions, which are then incorporated into the average
observed by subsequent agents. Section 2 introduces this model and develops a recursive char-
acterization of its social learning equilibria (Lemmas 1, 2, and 3). Section 3 provides a deeper
exploration of equilibrium behavior. We show that if pooling starts, then it persists forever
(Lemma 4) and provide conditions under which pooling either occurs in the first period or not
at all (Proposition 1). Next we turn to long run learning. If the agents separate by type, each
type eventually converges to its optimal action, but because of the underutilization of private
information, this convergence is only at rate ln t (Proposition 2). On the other hand, when
the agents pool, their actions eventually converge, but this limiting action is suboptimal for

1With the discrete actions in this example, we would also have to worry the possibility that complete learning
fails due to herding. This will not be a concern in the model developed later, as the action spaces are continuous.
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both types. Although the limiting action favors the preferences of the more populous type in
absolute terms, it overweights the preferences of the minority type relative to their share of the
population (Proposition 3). Finally, we consider welfare-improving interventions in a pooling
equilibrium. A social planner can always improve time average utility by reducing noise in
either public or private signals (Propositions 4 and 5). Furthermore, a policy of enforcing
segregation for a limited time can suffice to divert the population into an separating equilib-
rium with complete learning (Proposition 6). However, complete learning can be a deceptive
benchmark for efficiency because the rate of learning is quite slow. We present several examples
demonstrating that for relatively modest social discount factors, pooling may actually lead to
higher welfare than separation. Before turning to the model, this section concludes with a brief
discussion of where our model fits in broader literature on social learning.

In its basic template of agents acting sequentially after observing a private signal and some
of the actions of agents before them, our model builds on the seminal contributions of Banerjee
[2] and Bikhchandani, Hirshleifer, and Welch (BHW) [3]. These papers developed the insight
that with discrete actions and identical preferences it is possible for all agents past a certain
point to rationally disregard their private signals and follow the lead of the agents before them.
Much subsequent work has focused on clarifying and expanding the conditions under which
these information cascades can occur. Along these lines, Smith and Sorensen [6] embellish
BHW-style models with heterogeneous agents, while retaining an exogenous information struc-
ture. They show that contrarian types can tend to break up herds and also how pooling by
different types can lead to incomplete learning, an effect they call confounded learning. In
their model, confounded learning arises because agents have no way to restrict their attention
to predessors with similar preferences to theirs. Our work shows that even when agents can
restrict their attention in this way, they may rationally choose not to, so incomplete learning
can be a persistent phenomenon. In assuming that different agents may have access to different
observation samples, our work has parallels with many non-sequential models of social learning,
including Ellison and Fudenberg [4], [5], and Bala and Goyal [1]; however, all of these papers
assume observation samples to be exogenous. Finally, we follow Vives [7] (and depart from the
work above) in focusing on normal learning with a continuous action space. The continuous
action space is interesting in its own right and has the added benefit of always generating com-
plete learning when agents are homogeneous, permitting the effects of pooling with multiple
types to stand out in sharper relief.

2 The Model

There is an infinite sequence of cohorts of agents, indexed by the natural numbers. Each cohort
consists of r Red agents and g Green agents, with g < r. An agent’s type is private. The
preferences of an agent of type T ∈ {R,G} are given by

uT (x) = −(λT − x)2 (1)

where λT = θ + µT is composed of a term θ that is common to all agents and a type-specific
parameter µT . Prior beliefs about θ are diffuse, while priors on µR, and µG are assumed to
follow independent normal distributions with mean zero and variance σ2µ. Each agent i receives
a (conditionally independent) signal si about its preference λT (i) which is also assumed to be
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normally distributed: si ∼ N(λT (i),σ
2
s). Occasionally, we will need to refer to i’s private

signal error εi = si − λT (i) ∼ N(0,σ2s).

Structure of the Game
The sequence of actions is as follows. Agents live for a single period. In period t, each agent

i in cohort t must choose to join one of two neighborhoods, 1 or 2. At this stage, the only
information available to her is the history of the size of each neighborhood in periods 1 through
t − 1, ht−11 and ht−12 . After joining a neighborhood n, the agent observes the average action
x̄t−1n taken in her neighborhood in the past (that is, over all previous cohorts, 0 through t− 1)
as well as her private signal si. She then chooses an action xi to try to maximize her payoff as
given by (1). We make one final assumption: there is a seed cohort (which could be thought
of as cohort 0) containing r0 Red agents, all assigned to neighborhood 1, and g0 Green agents,
all assigned to neighborhood 2, and all of this is common knowledge. These agents have no
history to observe; they must rely on their private signals alone.

Equilibrium
The strategy of an agent consists of a neighborhood choice function and an action function.

The neighborhood choice function ntT (h
t−1
1 , ht−12 ) ∈ {1, 2} specifies which neighborhood to join

as a function of the history of each neighborhood in period t− 1 and the agent’s type T . The
action function xtT (s, x̄, n, h

t−1
1 , ht−12 ) specifies the agent’s action as a function of her private

signal, the average action she sees, the identity of the neighborhood she has joined, the neigh-
borhood histories, and her type. In the sequel, we will suppress arguments whenever doing so
should not cause confusion.

Definition 1 A Social Learning Equilibrium (SLE) is a collection of strategies and beliefs for
each agent such that her beliefs are obtained via Bayes’ rule whenever possible and her strategy
maximizes the expectation of (1) given her beliefs.

Beliefs and Social Learning
In order to begin to characterize equilibria of the model, we will present a few lemmas

capturing some observations about optimal behavior and beliefs.

Lemma 1 Suppose that a Red agent believes that the average action in her neighborhood to be
given by

x̄ = ρRλR + ρGλG + υ

where ρR + ρG = 1, υ ∼ N(0,σ2υ), and υ is uncorrelated the other stochastic elements in the
model. Then her optimal action x is given by

x = αs+ (1− α)x̄

where
α =

τ s
τ s + τ x̄

4



and

τ s = 1/σ2s

τ x̄ = (2ρ2Gσ
2
µ + σ2υ)

−1

If she is Green, we have the same result, replacing τ x̄ with

τ x̄ = (2ρ
2
Rσ

2
µ + σ2υ)

−1

Proof. Appendix.
To paraphrase, if an agent believes the average action she observes to be a weighted average

of her type’s target and the other type’s target, plus noise, then her optimal action is a weighted
average of her private signal and this average action. Note that the weight that an agent places
on the average action is higher when the weight it places on her target is higher. Now consider
the agent’s neighborhood choice.

Lemma 2 Under the conditions of Lemma 1, the agent’s expected payoff is −(τ s + τ x̄)
−1 =

−ασ2s. Thus, if the agent’s beliefs about each neighborhood take the form in Lemma 1, she
should choose the neighborhood with the higher value of τ x̄.

Proof. Omitted.
Finally, let us demonstrate that the hypothesized form of beliefs is justified. Suppose the

agents in cohort t share beliefs about the two neighborhoods that take the form described in
Lemma 1. Let us write υt−1n and ρt−1nT for the beliefs about neighborhood n, and τ t−1nT for the
precision of the average action in n as a signal about λT . If τ

t−1
1T > τ t−12T (τ t−11T < τ t−12T ) for

both types, then all of the agents in cohort t will choose neighborhood 1 (2). In this case, we
will say that the agents pool on neighborhood 1 (2). Otherwise, we will say that the agents
separate. Now consider the beliefs of cohort t + 1. By assumption, they observe the same
neighborhood histories as cohort t agents, so their beliefs conditional on ht−11 and ht−12 are the
same. Furthermore, they can anticipate the neighborhood choices that the cohort t agents
will make and the weights that they will give to their private signals in making action choices.
Thus, cohort t+1 agents will believe x̄tn to be a weighted average of x̄

t−1
n and the private signals

of cohort t agents. It is not difficult to see that this weighted average will preserve the form
described in Lemma 1. The details of this mapping from cohort t to cohort t+1 beliefs are laid
out below. In anticipation of the equilibrium outcomes, only certain cases are considered. Note
one more bit of notation: we will write Dtn for the total number of agents who have chosen
neighborhood n in all cohorts up to and including cohort t.

Lemma 3 (Updating of beliefs)
Let rtn and g

t
n be the number of Red and Green agents who in cohort t who choose neigh-

borhood n, following Lemma 2. SLE beliefs take the form specified by Lemma 1 and can be
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characterized by the following recursive relationship for all t ≥ 1 :

ρtnR =
Kt
nρ
t−1
nR + r

t
nαnR

Dtn

ρtnG =
Kt
nρ
t−1
nG + g

t
nαnG

Dtn

σ2υtn = (Kt2
n σ

2
υt−1n

+ (rtnα
t2
nR + g

t
nα

t2
nG)σ

2
s)/D

t2
n

where

Kt
n = Dtn − rtnαtnR − gtnαtnG

Dtn = Dt−1n + rtn + g
t
n

and αtnR and αtnG are the weights used by cohort t agents according to Lemma 1, and

ρ01R = ρ02G = 1

σ2v01
= σ2s/r0

σ2v02
= σ2s/g0

Proof. (Appendix)
These three lemmas fully characterize a social learning equilibrium of the model. Although

we will not prove it, the fact that this equilibrium is generically unique should be clear. The
only possible source of multiplicity would be indifference over which neighborhood to join, and
with our assumption of initial separation, this indifference can only occur for zero-measure
subsets of parameters.

The critical tradeoff in the model is illustrated by the expression for the precision of a
neighborhood’s average action as a signal about λT , τnT = (2(1− ρnT )

2σ2µ + σ2υn)
−1. As υn is

a weighted average of past private signal errors in neighborhood n, its variance will tend to be
lower in in the neighborhood that has been more popular in the past. This reflects the benefit
of learning in the neighborhood that offers a larger sample. However, there is also noise due to
the fact that the sample that an agent observes may represent the actions of many agents who
do not share her preferences. The smaller is ρnT , the less the information of type T agents is
reflected in neighborhood n’s average action.

3 Results

The model permits us to address some natural questions about the long run outcomes of social
learning. We start by examining the circumstances under which agents separate or pool over
neighborhoods in the long run.

As an opening shot, we can show that once a neighborhood is abandoned by one cohort,
later cohorts never return to it. The basic logic here is quite simple: the signal provided by an
abandoned neighborhood does not change from period to period, while the other neighborhood’s
signal tends to improve as its sample grows. The story is a bit more complicated than this, as
pooling may temporarily reduce the value of the signal for one of the types at the unabandoned
neighborhood. However, in equilibrium, this effect never makes it worthwhile to switch to the
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neighborhood that was abandoned. Let us say that the seed cohort is consistent with the later
cohorts if it preserves the same ratio of types: r0 = kr and g0 = kg for some k > 0. We say
that the seed cohort is consistent and full strength if k ≥ 1, that is, if it is as least as populous
as later cohorts. Then we have the following.

Lemma 4 Suppose the seed cohort is consistent. In a SLE, suppose that no agent chooses some
neighborhood for a cohort t. Then no agent chooses that neighborhood for any t0 > t.

Proof. Let t be the first period in which the agents pool. Then in cohorts 1 through
t − 1, Red (Green) agents choose neighborhood 1 (2).2 The first step is to show that the
cumulative private signal error is lower in every period for the neighborhood with the larger
sample: σ2υz1

< σ2υz2
for all z < t. This straightforward exercise is left to Lemma 5 in the

appendix. Now observe that

τ t−11R = 1/σ2
υt−11

τ t−11G = (2σ2µ + σ2
υt−11

)−1

τ t−12R = (2σ2µ + σ2
υt−12

)−1

τ t−12G = 1/σ2
υt−12

Period t pooling cannot be on neighborhood 2, as σ2
υt−11

< σ2
υt−12

and σ2µ > 0 imply τ
t−1
1R > τ t−12R .

Suppose then that pooling is on 1, so we must have 2σ2µ + σ2
υt−11

< σ2
υt−12

. Suppose toward a

contradiction that t0 > t is the first period in which some agent returns to 2. Suppose this
agent is Green. Then, because there has been pooling on 1 in the meantime, 1 > ρt

0−1
1G > 0.

Furthermore, because σ2υz1 is monotonically decreasing, we have σ
2
υt
0=1
1

≤ σ2
υt−11

. Thus, τ t
0−1
1G =

(2(1− ρt
0−1
1G )2σ2µ + σ2

υt
0=1
1

)−1 > τ t−11G . On the other hand, with no agents settling in 2, we have

τ t
0−1
1G = τ t−12G . Thus, if Greens preferred 1 in period t, they will still prefer 1 in period t

0, so it
cannot be a Green agent who returns to 2. Suppose instead that it is a Red agent. Then we have
τ t

0−1
2R = τ t−12R = (2σ2µ + σ2

υt−12

)−1. On the other hand, τ t
0−1
1R = (2(ρt

0−1
1G )2σ2µ + σ2

υt
0=1
1

)−1. Because

ρt
0−1
1G < 1 and σ2

υt
0=1
1

≤ σ2
υt−11

, τ t
0−1
1R > τ t

0−1
2R so Reds cannot switch to neighborhood 2 either.

Consequently, if pooling on neighborhood 1 starts, no agent will ever return to neighborhood
2.

Lemma 4 means that equilibrium outcomes are easy to characterize. Either both neighbor-
hoods are always occupied and separated by type, or at some point pooling on the “majority”
neighborhood begins. Requiring the seed cohorts to be consistent simplifies the proof, but a
similar result could be obtained without this assumption. However, consistency is necessary for
the following result showing that pooling occurs immediately, if at all.

Proposition 1 If the seed cohort is consistent and full strength, then the SLE entails immediate
2We have ignored the possibility that there is a “flip-flop” in some period t0 < t, with cohort t0 Reds choosing

2 and Greens choosing 1. This cannot happen; if Greens prefer 1 (for example), even though its history at t0

contains only Reds, then Reds must strictly prefer 1 as well.
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pooling (i.e., in cohort 1) on neighborhood 1 if

σ2µ
σ2s
<
1

2k
(
1

g
− 1
r
)

and separation otherwise.

Proof. Appealing to the proof of Lemma 4, pooling occurs in the first period for which
σ2
υt−12

− σ2
υt−11

> 2σ2µ (as this is the condition for Green agents to choose 1). Lemma 6, in the

appendix, shows that if the seed cohort is consistent and full strength, then σ2
υt−12

− σ2
υt−11

is

decreasing in t; this implies that any pooling must be immediate. The condition for pooling
follows from earlier expressions for σ2

υ01
and σ2

υ02
.

The comparative statics of the pooling condition are relatively straightforward and intuitive.
If preference differences between the two types are substantial (large σ2µ), then it will be optimal
to learn from one’s own type. On the other hand, if idiosyncratic error matters (large σ2s) and the
majority smooths out significantly more idiosyncratic variation (r >> g), then even minority
types will find it optimal to learn in the minority neighborhood. The intuition behind the
consistency condition is also straightforward. If neighborhood 1 is smaller than neighborhood 2
at date 0 but larger in all subsequent cohorts, the public signal in neighborhood 1 may leapfrog
the signal in neighborhood 2 at some t > 1, in which case there may be delayed pooling.
Consistency ensures that any advantage to being in neighborhood 1 is present from the start.
The necessity of the full strength condition is less clear; it is helpful in proving Lemma 6 but
perhaps could be relaxed.

Next we look at whether learning will be complete in the long run and sketch some implica-
tions for welfare. By complete learning, we really mean complete type-specific learning; that is,
the estimate of a type T agent should converge in distribution to a point mass at λT . It should
come as no surprise that in a separating equilibrium, complete learning prevails. Informally,
as long as the average action in a neighborhood is only finitely precise, agents will continue
to incorporate their private signals with a strictly positive weight, driving convergence to the
true value of λT . However, it is also clear that complete learning can never arise in a pooling
equilibrium, as the average action in the active neighborhood can never reveal both λR and
λG with certainty. In what follows, we formalize these points and characterize the limiting
information revealed in a pooling equilibrium.

Proposition 2 In a separating SLE, the average action in neighborhood 1 (2) converges to λR
(λG) at rate ln t. That is, complete learning obtains.

As noted above, it is not surprising that complete learning is obtained. The fact over-reliance
on public information results in a convergence rate for σ2υ that is slower than the standard rate of
t is also to be expected following the work of Vives. However, while Vives predicts convergence
at rate t1/3, in our model convergence is at the substantially slower rate of ln t. The difference
can be attributed to the fact that in Vives’ model, agents observe a noisy signal of the action
of the most recent cohort, while here the signal incorporates the actions of all earlier agents.
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Proposition 3 In a pooling SLE, the average action converges to x̄∞ = ρ∞R λR+ ρ∞G λG, where
ρ∞R and ρ∞G are defined by

g

r
=

µ
ρ∞G
ρ∞R

¶3 σ2s + 2ρ∞2

R σ2µ

σ2s + 2ρ
∞2

G σ2µ

=
ρ∞G
ρ∞R

α∞R
α∞G

Proof. The proof proceeds through a sequence of steps. First we show that under pooling,
the weights that agents place on their own signals cannot all go to zero. This means that private
signal error vanishes from x̄ as t→∞. Third, as long as own-signal weights do not explode, ρtR
and ρtG must converge. This in turn implies the convergence of α

t
R and αtG. Finally, given the

laws of motion for ρtR, ρ
t
G, α

t
R, and αtG, when they converge, they must satisfy the expression

above.
Using Lemma 1 and the fact that ρtR+ρtG = 1, one can show that max{αtR,αtG} ≥ σ2µ/(σ

2
µ+

2σ2s). This means that σ
2
υt → 0. The proof, which is similar to one for the separating case, is

omitted.
Next, observe that

ρtR − ρt−1R = (Kt/Dt − 1)ρt−1R + rαtR/D
t

= (rαtR − ρt−1R (rαtR − gαtG))/Dt

The terms in the numerator are uniformly bounded, and the total number of agents grows
without bound, Dt → ∞, so ρtR − ρt−1R → 0. Then, by completeness of the unit interval, ρtR
converges to some ρ∞R (and similarly for ρtG).

Again using Lemma 1, the convergence of ρtR, ρ
t
G, and σ2υt implies

αtT → α∞T =
2(1− ρ∞T )

2σ2µ
2(1− ρ∞T )2σ2µ + σ2s

Now return to the expression for ρtR−ρt−1R above. We have shown that the numerator converges
to some constantmR. Then, becauseDt grows at rate t, for t large enough, successive increments
are close to proportional tomR/t. IfmR 6= 0, the sum of these terms diverges, contradicting the
convergence of ρtR, so we must have mR = 0. We proceed similarly for ρ

t
G−ρt−1G and substitute

for α∞R and α∞G to get the result in the proposition.
Some special cases may help to illustrate this result. First, suppose that the difference

in preferences between types is large relative to the error in individual signals (σ2µ/σ
2
s large).

Then ρ∞R → r/(r + g) and ρ∞R → g/(r + g); that is, the weight of each type’s target action
in the average action of the group converges to the type’s population share. This results from
the fact that agents rely entirely on their own signals, even in the limit as t grows large.3 At
the other extreme, when individual errors are large relative to the difference in preferences,
ρ∞R → r1/3/(r1/3 + g1/3) and ρ∞R → g1/3/(r1/3 + g1/3). In other words, the limiting average
action places more weight on the preferences of the minority type than its population share

3Of course, under the assumption of initial separation, a pooling equilibrium is unlikely to arise in these
circumstances.
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would indicate, although this weight is still less than one-half. This “bias” is due the fact that
minority types place more weight on their private signals in the limit than majority types do
because the average pooled action is less informative for them. This bias can be substantial;
for example, if Green agents represent 11% of the population, the weight of their preferences
on the average action will be 33%. Of course, the significance of this bias depends on whether
a small σ2µ/σ

2
s ratio is driven by small preference differences or noisy individual signals. In the

latter case, the effect of pooling on welfare may be important.

3.1 Welfare

We will consider the perspective of a social planner whose welfare function is the undiscounted
time average payoff across all agents. This is equivalent to the limiting average payoff of cohort
t, as t goes to infinity. Under this definition, separating equilibria trivially match the social
optimum, but pooling equilibria will be inefficient.

Let us write WSLE for social welfare in a pooling equilibrium. Using Lemma 2, we have

WSLE = −rα
∞
R + gα

∞
G

r + g
σ2s (2)

We will look at a number of possible policy interventions and ask whether each could improve
social welfare. These include interventions that affect welfare in a pooling equilibrium as well
as interventions that shift the population from a pooling to a separating equilibrium. First, the
former case.

One obvious channel through which a social planner might influence learning is via public
information. For example, if the social planner could identify Red and Green agents and observe
their actions, she could release the average action taken by each type. This would generate
complete learning and a limiting welfare loss of 0. Of course, to assume that the agents’ types
are observable is, in a sense, to assume away the social learning problem. Alternatively, imagine
a social planner whose only role is to publish the average action in neighborhood 1. Could she
ever improve welfare by injecting noise into her announcement? The question arises because
the pooling equilibrium puts too much weight, from a welfare perspective, on the minority
target. Adding noise to the announced average action will induce both types to put more
weight on their private signals, but this effect will tend to be greater for the majority type (as
it is starting from a lower private signal weight). This should shift the average action toward
the majority’s target, which in principle could improve welfare. However, it turns out that this
is not a possibility:

Proposition 4 The social planner cannot improve welfare in a pooling equilibrium by adding
noise to the average action.

Proof. The problem is already evident in (2): adding noise can only improve welfare if
the ultimate effect of this is to reduce α∞R or reduce α∞G , but in fact, they must both increase.
Suppose the social planner adds ωt ∼ N(0, γ) to the average action before announcing it. Let
αT and ρT (α

0
T and ρ0T ) be the limiting weights without (with) the intervention. Then we have

α0T =
2(1− ρ0T )

2σ2µ + γ

2(1− ρ0T )2σ2µ + γ + σ2s
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If ρ0T ≤ ρT , then α0T > αT . This must be true for one of the types; suppose wlog it is true for
G. Then by the second part of Proposition 3, which still applies, we have

α0R =
g

r

ρ0R
ρ0G

α0G

Then, α0G > αG and ρ0G ≤ ρG imply α
0
R > αR. Thus, adding noise increases both α∞R and α∞G ,

which by (2) decreases welfare.
On the other hand, if the social planner can make the agents’ private signals more precise,

it should always do so. The benefits here come through two channels. There is the direct effect
that can be observed in (2) and there is also an indirect effect: when private signals improve,
the average action moves closer to the majority’s target, and this is welfare-improving.

Proposition 5 The social planner can improve welfare in a pooling equilibrium by making
private signals more precise (reducing σ2s).

Proof. Appendix.
It may also be possible for the social planner to steer the population into an efficient separat-

ing equilibrium through appropriate an appropriate policy. Here we suppose that the planner
can enforce separation for a limited period of time before allowing agents to choose neighbor-
hoods freely.4 This is modeled in reduced form with the assumption that the planner can set
the the seed populations in each neighborhood to r0 = rk and g0 = gk for some k reflecting the
length of time for which separation can be imposed. We ask whether there are any values of k
for which the planner can guide the population to an efficient separating equilibrium.

Proposition 6 There exists some k̄ such that imposing k ≥ k̄ periods of separation suffices to
generate a separating and efficient SLE.

Proof. By taking k̄ large enough, we can ensure that each neighborhood’s error is closer
to its target action than the expected preference difference between types. To be precise, take
k̄ such that σ2s/k̄r < σ2s/k̄g < 2σ

2
µ. Then assuming separation through cohort t (for arbitrary

t), τ t2G > 1/2σ
2
µ > τ t1G and τ t1R > 1/2σ

2
µ > τ t2R, so cohort t+ 1 separates as well.

Given the slow rate at which agents learn, both in separating and pooling equilibria, it is also
worth asking how welfare compares along the learning path. To illustrate the importance of this
question, consider a separated Red neighborhood with a cohort size r = 1 (and r0 = 1). The
expected utility of cohorts 1, 1000, and 1,000,000 respectively are −0.5, −0.0757, and −0.0380.
Looking only at the fact that expected utility rises eventually to 0 is to miss a large part of the
picture. Here, the analysis becomes intractable, and we resort to numerical examples.

Example 1
Suppose r = 10, g = 1, k = 1, σ2s = 1, and σ2µ = 0.1. In this case, the SLE will be a

pooling equilibrium. The table below provides two measures of short run welfare for each type.
The first is the time average payoff per agent for the first 1,000,000 cohorts. The second is a
discounted sum of payoffs, weighted by cohort size, with discount rate δ = 0.01. The first two
columns for each type present welfare under a (hypothetical) separating scenario and in the
pooling SLE. The third column presents the percentage welfare gain under pooling.

4This, of course, requires that the planner can identify types, at least temporarily.
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Red Green

Separating (s) Pooling (p) p-s
|s| Separating (s) Pooling (p) p-s

|s|
Time Avg. Utility −0.0290 −0.0283 2.2% −0.0426 −.1358 −219%
Discounted Utility −56.9 −52.8 7.2% −14.7 −17.3 −16.4%

In this case, pooling provides modest benefits to the majority type over any reasonable time
horizon. In contrast, pooling hurts the minority type rather substantially, particularly later
cohorts who bear almost all of the losses. That these losses occur in the SLE can be traced to
the short-run incentives of early Green cohorts.

Example 2
Suppose r = g = 1, k = 1, σ2s = 1, and σ2µ = 0.01. In this case, the SLE will be separating.

However, the preference difference between the types is small enough that if they were to pool
initially, both types would benefit from the larger sample size, and these benefits would persist
for a relatively long time. To illustrate, we consider the same two measures of welfare as in
Example 1. (The Green type is omitted, as payoffs for the two types are identical.)

Red

Separating (s) Pooling (p) p-s
|s|

Time Avg. Utility −0.0426 −0.0421 1.1%

Discounted Utility −14.7 −12.1 18.0%

It is an indication of the slow speed of learning that the utility of the one millionth cohort is
higher under pooling than under separation, even though the former converges to −0.005 and
the latter to 0. Any welfare function with even a modest amount of discounting will recommend
intervention to encourage pooling in this example.

4 Discussion

1. Observing average vs. individual, actions

Sequential learning models often assume that agents observe the full sequence of preceding
actions. What are the consequences of replacing this unrealistic assumption with the
equally stylized assumption that an agent only observes the average preceding action?
First, we remove the possibility for an agent in a pooling neighborhood to infer additional
information about her type’s target from the distribution of actions. In many markets,
the premise that agents do not have or process highly detailed information about the
distribution of past actions is probably reasonable. Even if agents could mine these
distributions, they would be running a race against time — with each successive period,
actions by the two types differ less as each type relies more on the public history. Whether
complete learning could prevail in this situation is an open question.

A second implication of observing averages is that agents cannot distinguish the actions
of more recent cohorts from those who acted earlier; we discuss this in the next section.

2. The speed of learning

The slow learning result of Proposition 2 depends on two factors. The first is that the
reliance of new cohorts on their private signals shrinks commensurately as the precision of
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the public statistic increases. The second is that the contribution of new cohorts to the
public statistic shrinks at rate t. Boosting the influence of new cohorts through either
of these channels will tend to speed up learning. For example, in the model of Vives,
cohorts are observed separately, but with noise. Due to the first factor above, the signal
to noise ratio in the observed actions of later cohorts deteriorates, and consequently, the
contribution of new cohorts to the public statistic diminishes, but at rate slower than t.
The net result is learning at rate t1/3. Going further, if the aggregate statistic places a
constant weight on the actions of the newest cohorts, then learning at rate t is restored.

3. Benefits of diversity

The idea that a diversity of preferences can benefit a group by discouraging it from
swinging to extremes is a familiar one. There is a natural extension of this idea to
sequential learning, namely that neighborhoods including several different types of agents
are less susceptible to herding on the “wrong” action because it is more difficult to find
histories for which all of the types ignore their signals. Our formulation rules out this
scenario in order to focus on the negative implications of pooling, but a more complete
welfare analysis would take both factors into account.
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5 Appendix

Proof of Lemma 1
Proof. We can write x̄ as x̄ = λR + ρG(µG − µR) + υ. Consider that the agent has two

conditionally independent, normally distributed signals regarding the true value of λR. It is
a standard result that in order to minimize a quadratic loss function, her optimal action is to
take a linear combination of the two signals with weights proportional to their precisions. The
precision of her private signal is just τ s, and the variance of ρG(µG − µR) + υ is 2ρ2Gσ

2
µ + σ2υ,

hence the result.

Proof of Lemma 3
Proof. By assumption, the seed cohort is separated, so ρ01R = ρ02G = 1. Agents in the seed

cohort place full weight on their private signals, so σ2
υ01
= σ2s/r0 and σ

2
υ02
= σ2s/g0. Now suppose

for arbitrary t that cohort t’s beliefs about the average action in the two neighborhoods can
be summarized by ρt−1nT and σ2

υt−1n
, n ∈ {1, 2}, T ∈ {R,G}. Then, apply Lemmas 1 and 2. All

agents of the same type have the same optimal neighborhood choice, so there are four possible
neighborhood assignments for the cohort t agents: (rt1, g

t
1) ∈ {(0, 0), (0, g), (r, 0), (r, g)} (with

the complement of agents in neighborhood 2). In any of these cases, the optimal own signal
weight for a cohort t agent of type T in neighborhood n is αtnT as given by Lemma 1. Since the
period t− 1 average action in neighborhood n was given by

x̄t−1n = ρt−1nR λR + ρt−1nG λG + υt−1n

the action of an arbitrary cohort t, type T agent in this neighborhood is

αtnT (λT + εti) + (1− αtnT )(ρ
t−1
nR λR + ρt−1nG λG + υt−1n )

The average action after period t is composed of rtn such actions with T = R, g
t
n such actions

with T = G, and Dt−1n earlier actions averaging x̄t−1n . Thus the new average action is

x̄tn =

Dt−1n x̄t−1n + (rtn(1− αtnR) + g
t
n(1− αtnG))x̄

t−1
n

+ rtnα
t
nRλR + g

t
nα

t
nGλG + αtnRΣ

rtn
i=1ε

t
i + αtnGΣ

gtn
j=1ε

t
j

Dt−1n + rtn + g
t
n

=
Kt
n

Dtn
x̄t−1n +

rtnα
t
nR

Dtn
λR +

gtnα
t
nG

Dtn
λG +

αtnRΣ
rtn
i=1ε

t
i + αtnGΣ

gtn
j=1ε

t
j

Dtn

=
Kt
nρ
t−1
nR + r

t
nα

t
nR

Dtn
λR +

Kt
nρ
t−1
nG + g

t
nα

t
nG

Dtn
λG + υtn

where

υtn =
Kt
n

Dtn
υt−1n +

αtnRΣ
rtn
i=1ε

t
i + αtnGΣ

gtn
j=1ε

t
j

Dtn

Because υt−1n and the εti’s and εtj ’s are uncorrelated and distributed N(0,σ
2
υt−1n

) and N(0,σ2s)

respectively, υtn is normally distributed with zero mean and variance

σ2υtn =

µ
Kt
n

Dtn

¶2
σ2
υt−1n

+ rtn

µ
αtnR
Dtn

¶2
σ2s + g

t
n

µ
αtnG
Dtn

¶2
σ2s
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Thus x̄tn can be written in the form x̄tn = ρtnRλR + ρtnGλG + υtn, where ρ
t
nR, ρ

t
nG, and σ2υtn

are
specified by the recursive relationships stated in the Lemma whenever x̄t−1n also takes this form.
Because this format is valid for t = 0, it is therefore valid for all t.

Lemma 5 If the seed cohorts are consistent, then under separation public information is more
precise in the Red neighborhood in every period, that is, σ2

υt1
< σ2

υt2
for all t ≥ 1.

Proof. Consider an arbitrary neighborhood under separation in which the seed population
is n0 > 0 and the cohort size is n. (Ultimately we will look at (n0, n) = (r0, r) or (n0, n) = (g0, g).
Let k = n0/n. Write σ2t = σ2υt for the variance of the public information in this neighborhood
and let κt be defined by σ2t = κtσ

2
s. We will use Lemmas 1 and 3 to characterize a recursive

relationship for κt. Lemma 1 gives us αt =
κt−1
1+κt−1 , and Lemma 3 yields Dt = n(t + k) and

hence κt = h(κt−1;n, t̃), t̃where t̃ = t+ k and

h(κ;n, t̃) =

µ
1− κ

(κ+ 1) t̃

¶2
κ+

1

n

κ2

(κ+ 1)2 t̃2
(3)

First, we want to show that, holding k and n constant, h is monotonic: a larger κt−1 implies a
larger κt. Differentiating h and conveniently grouping terms yields

hκ(κ;n, t̃) =
n
¡
t̃− 1¢2 κ3 + 3n ¡t̃− 1¢2 κ2 + 2κ+ 3nt̃(t̃− 1)κ+ nt̃(t̃− κ)

n (1 + κ)3 t̃

Since 0 < κt ≤ 1 and k > 0, all of the terms in the numerator are strictly positive for t ≥ 1,
so hκ(κ;n, t̃) > 0. Next, observe that n0 > n ⇒ h(κ;n0, t̃) < h(κ;n, t̃). Finally, consider two
separated neighborhoods with consistent seed cohorts r0 = kr in neighborhood 1 and g0 = kg
in neighborhood 2. Suppose κ1,t−1 < κ2,t−1 for some t ≥ 1. Then

κ1t = h(κ1,t−1; r, t+ k) < h(κ2,t−1; r, t+ k)

< h(κ2,t−1; g, t+ k) = κ2t

Furthermore, we have κ1,0 = 1/r0 = 1/kr < 1/kg = 1/g0 = κ2,0. By induction, κ1t < κ2t for
all t ≥ 0, and consequently, σ2

υt1
< σ2

υt2
for all t ≥ 0.

Lemma 6 If the seed cohorts are consistent and full strength, then under separation, σ2
υt2
−σ2

υt1
is strictly decreasing in t.

Proof. Equivalently, we must show that

κ1,t−1 − κ1,t < κ2,t−1 − κ2,t, or

(1− κ1,t/κ1,t−1)κ1,t−1 < (1− κ2,t/κ2,t−1)κ2,t−1

holds for all t ≥ 1. Since we know that κ1,t < κ2,t, it suffices to prove the stronger claim that

κ1,t/κ1,t−1 > κ2,t/κ2,t−1

for all t ≥ 1. (Variance declines proportionately more slowly in neighborhood 1, after its initial
advantage.) Complications arise because new signals arrive faster in neighborhood 1; we must
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show that this is outweighed by Red agents’ greater reliance on public information. The first
step is to show that t̃(κ2,t − κ1,t) is increasing. Loosely, this says that the greater incentive to
use public information in neighborhood 1 does not decrease too quickly over time. Then we
show that the importance of new information declines about one order of t faster than this.

Define bn,t = t̃κn,t, so we must show that ∆bt = b2,t − b1,t is increasing. Substituting in (3)
and simplifying, we have

bt+1 =
t̃+ 1

t̃
bt

µ
1− bt

(bt + t̃)(t̃+ 1)

¶2
+
1

n

b2t
(bt + t̃)2(t̃+ 1)

=

¡
bt + t̃+ 1

¢2
t̃+ bt/n¡

t̃+ 1
¢ ¡
bt + t̃

¢2 bt

With some algebra, we have

bt+1 − bt = bt
(t̃− bt)(bt + t̃) + t̃+ bt/n

(bt + t̃)2(t̃+ 1)

≡ Ct(bt, n)

so ∆bt+1 = ∆bt + Ct(b2,t, g) − Ct(b1,t, r). If Ct(b2,t, g) − Ct(b1,t, r) > 0, we are done. Since
Ct(bt, n) is decreasing in n, it suffices to show Ct(b2,t, r)−Ct(b1,t, r) > 0. We will show this for
r ≥ 2. (By assumption, r > g ≥ 1.) Differentiate Ct :

dCt(bt, n)

dbt
=

¡
t̃3 − bt(b2t + 3btt̃+ t̃2)

¢
+ t̃(t̃− bt) + 2t̃bt/n¡

bt + t̃
¢3 ¡

t̃+ 1
¢

The second and third terms in the numerator are positive (κt ≤ 1 ⇒ bt ≤ t̃). The first term is
positive whenever κt <

√
2− 1 ≈ 0.41. But if n ≥ 2 and k ≥ 1, then κ1 ≤ 13

36 ≈ 0.36. (If n = 2
and k = 1, then κ1 =

13
36 and straightforward algebra reveals that κ1 is decreasing in n and in

k for n ≥ 2 and k ≥ 1.) Then because κt is decreasing, κt ≤ 13
36 for all t ≥ 1. Thus, if r ≥ 2,

∆bt+1 > ∆bt for all t ≥ 1. For t = 0, use the fact that κ0 = 1
kn and t̃ = k to get

b1 − b0 = kn

(1 + kn)2

which is decreasing in n for kn > 1. Thus we have b2,1− b2,0 > b1,1− b1,0, so ∆b1 > ∆b0. Hence
∆bt is increasing for all t ≥ 0.

2. We want to show that κ1,t − κ1,t+1 < κ2,t − κ2,t+1 for all t ≥ 0. Expand 3 to get

κt − κt+1 =
κt

(t̃+ 1)2

µ
2(t̃+ 1)αt − α2t −

1

n

αt
1 + κt

¶
where αt = κt/(1 + κt) as before. Because κ1,t < κ2,t, it suffices to show that the second
term in this expression is smaller in neighborhood 1. That is, we need

Lt ≡ 2(t̃+ 1)(α2,t − α1,t)− (α22,t − α21,t)− (
1

g

α2,t
1 + κ2,t

− 1
r

α1,t
1 + κ1,t

) > 0 (4)
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for all t ≥ 0. First, observe that for t = 0, we have κt =
1
kn , so the final term in Lt

becomes k(α22,0 − α21,0), so for t = 0 we need the following to hold.

2(k + 1)(α2,0 − α1,0)− (1 + k)(α22,0 − α21,0) > 0 or

(k + 1)(2− (α2,0 + α1,0))(α2,0 − α1,0) > 0

But α2,t > α1,t whenever κ2,t > κ1,t and αn,t < 1, so this inequality holds, and κ1,t −
κ1,t+1 < κ2,t − κ2,t+1 holds for t = 0. Now suppose that the relationship holds for all
t ≤ t0 − 1 and evaluate Lt at t0. We can write the last term in brackets as

k(κ2,0β2,t0 − κ1,0β1,t0)

where βn,t0 = κn,t/(1 + κn,t)
2. Note that βn,t is increasing in κn,t when κn,t ≤ 1, as is the

case here. Manipulate this to get

k(α22,0 − α21,0) + k(κ2,0(β2,t0 − β2,0) + κ1,0(β1,0 − β1,t0))

< k(α22,0 − α21,0) + kκ2,0((β2,t0 − β1,t0)− (β2,0 − β1,0))

< k(α22,0 − α21,0) + kκ2,0(β2,t0 − β1,t0)

< k(α22,0 − α21,0) + kκ2,0(α2,t0 − α1,t0)

The second and third steps follow because κ2,0 > κ1,0 and because β1,0 − β1,t0 > 0

(monotonicity of βn,t and κn,t decreasing in t). The last step uses the easily derived fact
that x > y ⇒ x

1+x − y
1+y >

x
(1+x)2 − y

(1+y)2 . Thus we have

Lt > 2(t̃+ 1)(α2,t0 − α1,t0)− (α22,t0 − α21,t0)− k(α22,0 − α21,0)− kκ2,0(α2,t0 − α1,t0)

=
¡
2k + 2t0 + 2− (α2,t0 + α1,t0)− kκ2,0

¢
(α2,t0 − α1,t0)− k(α2,0 + α1,0)(α2,0 − α1,0)

>
¡
k + 2t0 + 1

¢
(α2,t0 − α1,t0)− k(α2,0 + α1,0)(α2,0 − α1,0)

The last step uses the fact that κn,t ≤ 1 and hence αn,t ≤ 1
2 . There are two cases to

consider. Suppose α2,t0 − α1,t0 > α2,0 − α1,0. Then,

Lt0 >
¡
k + 2t0 + 1− k(α2,0 + α1,0)

¢
(α2,0 − α1,0)

> (2t0 + 1)(α2,0 − α1,0) > 0

Now suppose α2,t0 − α1,t0 < α2,0 − α1,0. > 0. We have

Lt0 >
¡
k + 2t0 + 1

¢
(α2,t0 − α1,t0)− k(α2,0 − α1,0)

= ∆dt0 −∆d0 + (t0 + 1)(α2,t0 − α1,t0)

where we define dn,t = t̃αn,t and ∆dt = t̃(α2,t − α1,t) by analogy to bt. Observe that
∆dt =

∆bt
(1+κ2,t)(1+κ1,t)

. Thus ∆bt increasing and κn,t decreasing in t imply that ∆dt is
increasing in t. But then, ∆dt0 − ∆d0 > 0 in the expression above, so we have Lt > 0

as we claimed. This shows that κ1,t − κ1,t+1 < κ2,t − κ2,t+1 for all t ≥ 0, completing the
proof.
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Proof of Proposition 2
Proof. Consider an arbitrary separated neighborhood. We must show that σ2υtn → 0 at

rate 1/ ln t, or equivalently, that κt → 0 at rate 1/ ln t, where κn,t is defined by σ2υtn
≡ κn,tσ

2
s

and we drop the neighborhood subscript to avoid clutter. Let n0 and n be the size of cohorts
0 and t > 0 respectively in this neighborhood, and let k = n0/n. Lemma 5 shows that κt is
defined by

κt+1 = (1− αt/(1 + k + t))
2κt +

1

n

µ
αt

1 + k + t

¶2
(5)

where the own-signal weight αt is given by αt = κt/(1 + κt). First we will show that κt is
strictly decreasing and thus must converge to some κ∞. Then we compare the sequence of
finite differences κt+1 − κt to a family of differential equations in order to bound κt above and
below by continuous functions that go to zero at rate 1/ ln t.

Using the (5), we have

κt+1 < (1− αt/(1 + k + t))
2κ+

1

n

µ
αt

1 + k + t

¶
κt

≤ (1− αt/(1 + k + t))κ+
1

n

µ
αt

1 + k + t

¶
κt

≤ (1− αt/(1 + k + t))κ+

µ
αt

1 + k + t

¶
κt

= κt

The first line uses αt < κt and 1 + k + t ≥ 1, and the third line uses n ≥ 1. Then, κt+1 < κt
and κt ≥ 0 ∀ t imply that κt converges.

Now we find the upper bound. Select an arbitrary t∗. For all t ≥ t∗ we have

κt − κt+1 =
αt

1 + k + t

µ
2κt −

µ
αt

1 + k + t

¶
(κt +

1

n
)

¶
>

αt
1 + k + t

µ
2κt −

µ
αt

1 + k + t

¶
(κt + 1)

¶
=

αtκt
1 + k + t

µ
2− 1

1 + k + t

¶
>

αtκt
1 + k + t

=
κ2t

1 + κt

1

1 + k + t

>
κ2t

1 + κ0

1

1 + k + t

> M1κ
2
t /t

where the constantM1 in the final line is chosen so thatM1 <
1

1+κ0
t∗

1+k+t∗ . Consider the family
of solutions ys(t) = κs

1+M1κs ln t/s
to the differential equation ẏ = −M1y

2/t parameterized by the

initial condition (s,κs). It is easy to see that ys is decreasing in t, and therefore that M1y
2
s/t
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is decreasing in t, so ys is convex. Then, for each t0 ≥ t∗, we have

κt0+1 − κt0 < −M1κ
2
t0/t

0

<

Z t0+1

t0
ẏt0 dt

= yt0(t
0 + 1)− κt0

and hence
κt0+1 < yt0(t

0 + 1)

But this means that
yt0+1(t

0 + 1) < yt0(t0 + 1)

for all t0 ≥ t∗. Since differential equation trajectories cannot cross, we have yt+1 < yt for all
t0 ≥ t∗. Putting the pieces together, we have κt < yt∗(t) = κt∗

1+M1κt∗ ln t/t∗
for all t ≥ t∗. (Recall

that our choice of t∗ was arbitrary.) Thus, κt goes to zero at least as fast as 1/ ln t.
Now we find a lower bound for κt in order to show that it vanishes no faster than 1/ ln t.

Proceeding in a manner similar to that above, we have

κt − κt+1 =
αt

1 + k + t

µ
2κt −

µ
αt

1 + k + t

¶
(κt +

1

n
)

¶
<

2αtκt
1 + k + t

<
2κ2t
t

We choose an arbitrary t∗ ≥ 9. Let zs(t) be the family of solutions to ẏ = −M2y
2/t with initial

condition (s,κs). The idea is that the zs should decline faster than κt; in order to achieve this,
M2 must be taken large enough to compensate for the convexity of zs. We choose M2 = 10. In
this case, for u ∈ [0, 1] and s ≥ t∗ we have

żs(s+ u) = − 10

s+ u

µ
κs

1 + 10 (ln(s+ u)/s)κs

¶2
< − 10κ

2
s

s+ 1

µ
1

1 + 10 ln(10/9)

¶2
< −20

9

κ2s
s+ 1

< −2κ
2
s

s
< κs+1 − κs

From here we proceed as for the upper bound to show that κt0+1 > zt0(t0 + 1) and zt0+1 > zt0
for all t0 ≥ t∗. Consequently, we have κt > zt∗(t) = κt∗

1+10κt∗ ln t/t∗
, so κt → 0 at rate no faster

than 1/ ln t.

Proof of Proposition 5
Proof. We simply differentiate (2) with respect to σ2s. Using the definitions of α

∞
T (and
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dropping the superscript ∞) we have

dWSLE

dσ2s
= − 1

r + g

¡
rα2R + gα

2
G

¢
+

µ
∂WSLE

∂ρR

dρR
dσ2s

+
∂WSLE

∂ρG

dρG
dσ2s

¶
We must show that the second term is negative. First note that dρR/dσ

2
s = −dρG/dσ2s < 0,

using Proposition 3 and the fact that ρR > 1/2. Thus it suffices to show that
∂WSLE
∂ρR

− ∂WSLE
∂ρG

>

0, or equivalently, that Z ≡ r∂αR/∂ρG − g∂αG/∂ρR > 0. Using the definition of αR, we have
dαR
dρG

=
2

ρG
αR(1− αR)

dαG
dρR

=
2

ρR
αG(1− αG)

Using Proposition 3, we can write Z = ((1 − αR)/ρ
2
G − (1 − αG)/ρ

2
R)κ, where κ = rαRρG =

gαGρR > 0. Using the fact that ρR > 1/2 and αR < αG, we have Z > 0, as claimed.
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