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A B S T R A C T

Some microstructure parameters, such as permeability, remain elusive because mathematical models that
express their relationship to the MR signal accurately are intractable. Here, we propose to use computational
models learned from simulations to estimate these parameters. We demonstrate the approach in an example
which estimates water residence time in brain white matter. The residence time τi of water inside axons is a
potentially important biomarker for white matter pathologies of the human central nervous system, as myelin
damage is hypothesised to affect axonal permeability, and thus τi. We construct a computational model using
Monte Carlo simulations and machine learning (specifically here a random forest regressor) in order to learn a
mapping between features derived from diffusion weighted MR signals and ground truth microstructure
parameters, including τi. We test our numerical model using simulated and in vivo human brain data.
Simulation results show that estimated parameters have strong correlations with the ground truth parameters
(R = {0.88, 0.95, 0.82, 0.99}2 ) for volume fraction, residence time, axon radius and diffusivity respectively), and
provide a marked improvement over the most widely used Kärger model (R = {0.75, 0.60, 0.11, 0.99}2 ). The
trained model also estimates sensible microstructure parameters from in vivo human brain data acquired from
healthy controls, matching values found in literature, and provides better reproducibility than the Kärger model
on both the voxel and ROI level. Finally, we acquire data from two Multiple Sclerosis (MS) patients and compare
to the values in healthy subjects. We find that in the splenium of corpus callosum (CC-S) the estimate of the
residence time is 0.57 ± 0.05 s for the healthy subjects, while in the MS patient with a lesion in CC-S it is 0.33 ±
0.12 s in the normal appearing white matter (NAWM) and 0.19 ± 0.11 s in the lesion. In the corticospinal tracts
(CST) the estimate of the residence time is 0.52 ± 0.09 s for the healthy subjects, while in the MS patient with a
lesion in CST it is 0.56 ± 0.05 s in the NAWM and 0.13 ± 0.09 s in the lesion. These results agree with our
expectations that the residence time in lesions would be lower than in NAWM because the loss of myelin should
increase permeability. Overall, we find parameter estimates in the two MS patients consistent with expectations
from the pathology of MS lesions demonstrating the clinical potential of this new technique.

1. Introduction

Techniques such as AxCaliber (Assaf et al., 2008) and ActiveAx
(Alexander et al., 2010) use computational models to provide estimates
of tissue microstructure properties, such as cell size or packing density,

from diffusion-weighted (DW) MR data. These models use simple
geometries such as cylinders and spheres to represent axons and other
cells, so that closed form mathematical expressions can be derived that
closely approximate the expected MR signal. However, some tissue
properties such as permeability or fibre undulation, have previously
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remained elusive because mathematical models that express their
relationship to the MR signal accurately are intractable. Numerical
simulations (Hall and Alexander, 2009) provide flexible forward
models that can capture such effects, however they are computationally
expensive to use in solving the corresponding inverse problem to
estimate parameters from data. Here we propose to use a machine
learning approach to learn the mapping between the underlying model
parameters and the diffusion signal using numerical simulations, and
then use that mapping to estimate the parameters. We demonstrate
this idea on the residence time τi of water molecules inside the white
matter axonal fibres.

There is a widespread interest in developing imaging biomarkers
based on the permeability associated with the intra-axonal water
residence time τi. Permeability is an important property of axonal
membranes, and its changes have been associated with the condition of
the insulating myelin sheet (Nilsson et al., 2013) and with various
neurological conditions, such as Multiple Sclerosis (MS) or Parkinson's
disease (Volles et al., 2001). DW MRI is potentially able to estimate τi
as it is sensitive to the motion of water molecules within tissue.
However, progress has been limited by lack of sufficiently accurate
mathematical models relating τi to the MR signal.

The analytical expressions used to calculate signals of white matter
tissue assume that the water molecules are completely restricted and
thus ignore or use simplistic models of permeability (Van Gelderen
et al., 1994; Callaghan, 1997; Codd and Callaghan, 1999). A new
approach by Grebenkov et al. (2014), assuming high gradients and
narrow pulses, may help to address these issues but current results are
only applicable to compartment sizes substantially larger than human
cells.

Other mathematical models, such as the Kärger model and appar-
ent exchange rate (AXR) imaging, explicitly incorporate τi by consider-
ing the effect of exchange among water pools. Of the two approaches,
the Kärger model (Kärger et al., 1988) is most commonly used (Stanisz
et al., 1997; Lätt et al., 2009; Nilsson et al., 2010) as it is compatible
with data acquired using widely available pulsed gradient spin echo
(PGSE) and stimulated echo (STE) imaging sequences. It accounts for
inter-compartmental water exchange by coupling the DW MR signals
due to the separate compartments via τi. However, it relies on the
assumption that the two individual pools of water are well mixed and it
does not model restriction which in white matter tissue is prominent
due to the presence of axonal membranes which restrict the motion of
water molecules. The Kärger model may still provide a reasonable
description of the diffusion-weighted signal in the long time limit,
however the cell membranes have to be close to impermeable, and in
the case of fast exchange the model fails (Fieremans et al., 2010). Even
though these limitations have been known for over 20 years, there have
been no improvements to the model due to the mathematical intract-
ability of the problem. AXR imaging (Lasič et al., 2011; Nilsson et al.,
2013) has recently been introduced as an alternative to estimating τi
via Kärger model; however it requires specialised double diffusion
encoding imaging sequences (DDE) (Shemesh et al., 2016) and it again
relies on strong assumptions about the compartmentation of water into
a ‘fast’ and ‘slow’ pool. The estimated AXR parameter also conflates τi
with intra-axonal volume fraction f, making it difficult to disentangle
the origin of any measured change. Furthermore, AXR is based on
Gaussian compartments, with time-independent Gaussian diffusion in
each compartment, and allows for only two compartments otherwise
further conflation occurs (Lasič et al., 2016).

Given the inherent difficulties involved in deriving accurate analy-
tical models of exchange with permeable axonal membranes, there
have been alternative approaches which bypass mathematical models
altogether and use simulations to learn how permeability affects
measured DW MRI signals. Nilsson et al. (2010) generate libraries of
microstructure parameters and their corresponding DW MR signals
from Monte Carlo (MC) simulations, and use them to find the nearest-
neighbour microstructure parameters that matched unseen data, i.e.

combinations of tissue parameter values not explored in the training
set. However, nearest-neighbour matching typically has poor general-
isation. Furthermore, using the raw signals to perform the matching is
also potentially inefficient, as it requires new libraries to be generated
for each acquisition protocol used and each library entry is specific to a
particular fibre orientation.

Our machine learning approach constructs a mapping between
microstructural parameters of interest and orientationally invariant
features derived from the DW MR data. We use MC simulations to
generate synthetic signals from a library of histologically relevant
microstructure indices. A random forest regressor then learns the
mapping between features derived from DW MR signals and ground
truth microstructure parameters using the synthetic data, providing an
efficient and accurate method for estimating microstructure para-
meters, including τi, that generalises smoothly between training
examples. We compare our approach to the Kärger model using
simulated data and demonstrate that the trained random forest can
be used to estimate sensible and consistent estimates of microstructure
indices from in vivo healthy human brain white matter. Finally, we
demonstrate the clinical relevance of this approach using data acquired
from two patients with MS.

2. Methods and materials

2.1. Imaging protocol

We use an orientationally invariant, DW-PGSTE protocol with
“echoplanar imaging” (EPI) sequence, optimised (Alexander,
2008) for a two-compartment model with exchange, assuming a
maximum imaging time of approximately 30 minutes. PGSTE se-
quences are particularly well suited for estimating τi, as they allow us
to probe long diffusion times by exploiting the longer T1 compared to
T2 relaxation rates. Here we use an orientationally invariant
protocol, which does not depend on the orientation of the
fibres and is optimised assuming that the fibre orientation is
unknown. The protocol is optimised for the following biophysically
plausible tissue parameters, assuming that axons are modelled as
infinitely long, randomly packed parallel cylinders: intra-axonal vo-
lume fraction f=0.7, intrinsic diffusivity d = 2 × 10 m s−9 2 −1, apparent
diffusivity in the perpendicular direction in the extracellular space
d = 0.7 × 10 m s⊥

−9 2 −1, axon radius R=1 μm, intracellular residence
times τ ∈ {0.05, 0.1, 0.2, 0.4, 1} si , T1=0.832 s (Stanisz et al., 2005).
Exchange is incorporated in the optimisation via the Kärger formalism.
This choice of model and parameter values in the protocol optimisation
are not critical, here we design it to find a combination of measure-
ments broadly sensitive to the white matter parameters of interest: f,
d⊥, d, R and τi. For example, axon radius of 1 μm is relatively large for
human brain (Aboitiz et al., 1992), however since the clinical scanners
are not sensitive to small diameters (Drobnjak et al., 2016), choosing a
smaller R would not make any difference in the optimal sequence. The
resulting protocol contains 108 measurements divided into 4 equal
shells, with Δ ranging from 0.102 to 0.412 s. The final protocol, with
nominal b values, is shown in Table 1. The additional crusher and slice
select gradients used in the PGSTE sequence result in altered diffusion
weighting, which we account for in the data generation (Alexander and
Dyrby, 2013; Lundell et al., 2014).

2.2. Monte Carlo simulations

The first step in constructing our computational model is to use
Monte Carlo simulations (Hall and Alexander, 2009) in combination
with the imaging protocol in Table 1 to generate synthetic diffusion MR
signals from digital phantoms with a wide range of plausible ground
truth microstructure indices.

Each phantom is characterised as a unique combination of five
parameters: the mean μR and standard deviation σR of the axon radius
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distribution, the intrinsic diffusivity of the spins d, the intracellular
volume fraction f and the intracellular water residence time τi. Here,
intracellular residence time τi is defined as the average time a water
molecule spends inside the intracellular space represented by the white
matter axonal fibres. This is connected to permeability through the
expression: k = R

τ2 * i
, where R is the axon radius and k is the perme-

ability. This, and the more general form of this expression are
described in Jespersen et al. (2005) The membrane permeability k is
specified via a probability p of the water molecule stepping through a
membrane when it encounters it. The molecule will be reflected back
with a probability of 1−p. A value of p=0 corresponds to impermeable
membranes while a value of p=1 corresponds to fully permeable
membranes. The relationship between the probability p and the

membrane permeability k is given by the expression: p k= * 6dt
d ,

where dt is the simulation time increment and d is the intrinsic
diffusivity.

To mimic the structure of in vivo human brain data, we model white
matter as a collection of non-abutting parallel cylinders with radii
drawn from a gamma distribution. We construct 12,500 unique white
matter substrates, with substrate parameters randomly selected in the
ranges: μ ∈ [0.2, 5] μmR , σ ∈ [min(0.1, )R

μ
5
R , ] μmμ

2
R (to ensure that the

distributions have a non-zero mode, matching the distributions
observed in histology (Aboitiz et al., 1992)), f ∈ [0.4, 0.7],
τ ∈ [0.02, 0.95] si , d ∈ [0.8, 2.2] × 10 m s−9 2 −1. The cylinders are ran-
domly packed in the substrates as described in Hall and Alexander
(2009), with example substrates shown in Fig. 1.

All simulations are performed using 100,000 spins and 2000 time
steps. We chose these values as they provide precision of 10−10 of the
unweighted signal, which is several orders of magnitude smaller than
realistic signal noise (Hall and Alexander, 2009). The diffusion step size
calculated as in Hall and Alexander (2009) is between 0.5 μm and
0.9 μm, depending on the diffusivity of each substrate. We also choose

100,000 non-abutting parallel cylinders in a substrate to avoid varia-
tion due to sampling of the gamma distribution (Hall et al., 2014).

We generate two sets of signals for each geometry: noise-free and
noisy. As spins undergo T1 relaxation during the mixing time TM
between the second and third 90 degree RF pulses, and thus also
between the two diffusion gradients, measurements made using longer
Δ (and so longer TM) experience more relaxation leading to lower
signal intensities and signal to noise ratios (SNR). For the noisy data
set we scale the signals by TM Texp(− / )1 using T = 0.832 s1 for white
matter at 3 T (from Stanisz et al., 2005). We then add Rician noise,
choosing the standard deviation of the noise σ so that the SNR of the
b=0 images with Δ=0.102 s is 20 which reflects our in-vivo data.

2.3. Data acquisition

We scan two healthy subjects and two MS patients. The first healthy
volunteer is a 32 year old male, and the second healthy volunteer is a
30 year old female. Both healthy volunteers are scanned twice, with the
rescan taking place within a month of the initial scan. The first MS
patient is a 22 year old female with relapsing remitting multiple
sclerosis (RRMS), a disease duration of 2 years and expanded disability
status scale (EDSS) of 2. The second MS patient is a 63 year old male
with secondary progressive multiple sclerosis (SPMS), a disease dura-
tion of 25 years and EDSS of 6. Both MS patients were scanned once.
None of the MS patients recruited into the study experienced a relapse
or a course of corticosteroids three months prior to imaging. We
obtained written informed consent for all participants, and the study
was approved by our local research ethics committee.

All data are acquired using the imaging protocol in Table 1 on a 3 T
Philips Achieva scanner, using a 32-channel receive-only RF coil,
SENSE acceleration factor of 2.5, full k-space acquisition, and receiver
bandwidth of 1948 Hz/pixel. Additional imaging parameters are as

Table 1
PGSTE protocol parameters, optimised for Kärger model parameter estimation.

Shell # b=0 (s mm−2) # gradient directions b (s mm−2) G| | (mT m−1) Δ (s) δ (s) TM (s)

1 4 23 1622 62 0.102 0.0077 0.07
2 4 23 1718 62 0.412 0.0039 0.375
3 4 23 3611 62 0.406 0.0057 0.37
4 4 23 4031 62 0.169 0.0094 0.135

Fig. 1. Example substrates for cylindrical geometries, showing variations in both cell size distribution and packing fraction.
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follows: TE=0.068 s, TR=12 s, FOV=256 mm×256 mm, matrix
size=128×128, slice thickness=4 mm, number of slices=40 (the first
scan of the first volunteer has 30 slices). The total imaging time is
approximately 40 minutes. For the MS patients, in addition to the
diffusion-weighted data we also acquire a high resolution
(1 mm×1 mm×3 mm) T2-weighted scan for the purposes of creating
a lesion mask.

Following the data acquisition, some post-processing steps are
performed. We perform eddy current and motion correction using
the eddy tool in FSL (Smith et al., 2004). As the model that we learn
here for white matter is specific to axons that resemble parallel
cylinders, it is not applicable in regions containing CSF, grey matter
or highly dispersed or crossing white matter fibres. We mask out these
voxels by computing maps of linearity C =L

λ λ
λ
−1 2
1

and planarity

C =P
λ λ

λ
−2 3
1

(Westin et al., 1999) from diffusion tensor (DT) fits to the

lowest b-value shell, and select only those voxels with C > 0.5L and
C < 0.3P . The SNR of the selected white matter region in the b=0 image
with Δ=0.102 s is approximately 19 for all subjects.

2.4. Random forest regression

Random forest regression is a machine learning technique which

here aims to learn the mapping between the microstructure parameters
and the features of the DW MRI signal. The regressor is a collection of
decision trees trained on separate randomly chosen samples from the
available training data (Criminisi et al., 2013). Each tree estimates a set
of parameters of interest from an input feature vector, and the final
estimation is obtained by averaging the estimations from all trees in the
forest (Criminisi et al., 2013). In order to do this, an initial training
step is required in which every tree in the forest learns a mapping from
a vector of signal features to a set of ground-truth microstructure
parameters. The trained forest can then be used to estimate the
parameters given a previously unseen feature vector. Here, the MC
simulations provide training data with known microstructure para-
meters (specified in the simulation); the simulation outputs DW-MR
signals from which we derive the features that form input to the
mapping.

Each tree in the forest is trained as follows: at the parent node of
the tree, we perform an initial linear regression to find a relationship
between the training features and parameters. We then search the
feature space for a partition such that having separate regressions on
either side of the partition improves the estimation. If such a partition
exists the node is split, resulting in a pair of child nodes. We then
continue this procedure for the child nodes, and all subsequent nodes,
until there is no more improvement in the estimation. Randomness is

Fig. 2. A schematic overview of how testing, training and estimation is done with random forest regression. In the appendix we go into further details of the random forest regressor
itself.
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typically introduced into the forest in two key ways. The first method,
termed bagging, trains each tree on a randomly selected subset of the
training data (Breiman, 1996); the second uses a subset of feature
space to search for the best partition at each node (Criminisi et al.,
2013). In the appendix we provide a more detailed explanation of the
method. In the following sections we provide more details on the
features we use in training, as well as the training and testing
procedures.

2.4.1. Feature extraction
The feature vector used in this study comprises rotationally

invariant features derived from diffusion tensor and 4th order spherical
harmonic (SH) fits to each shell of data separately. The features that we
calculate from the DT are the eigenvectors λ1, λ2, λ3, the mean
diffusivity MD and the fractional anisotropy FA for each voxel. From
the spherical harmonic fits, we calculate the mean and peak ADC, peak
dispersion (i.e. the eigenvalues of the hessian matrix at the peak),
anisotropy, skewness and kurtosis of the apparent diffusion coefficient
profile, as well as simple combinations of the SH coefficients given by

∑I a= | |k
i k

k

k i
=−

,
2

(1)

for k = 0, 2, 4 where ak i, is the coefficient of SH order k and index i. The

skewness of the ADC profile f is ( )
∫

∫
f x F

f x

( ( ) − )

( )
1/3S

S

3

3 and the kurtosis is

( )
∫

∫
f x F

f x

( ( ) − )

( )
1/4S

S

4

4 , where ∫F f x= ( )
S

and S is the unit sphere. This gives 15

features from each shell for a total of 60. When fitting the DT and SH
models, we compensate for the additional STE gradients as described
in Lundell et al. (2014). Although some of these features are not
mutually independent, we include all of them in order to have a
comprehensive set to ensure we can find the most informative split
criteria.

2.4.2. Training, testing and estimation
In Fig. 2 we show a schematic overview of how training, testing and

estimation are done using the random forest regression. We use a
widely used and freely available random forest regressor in the sci-kit
learn python toolkit (Pedregosa et al., 2011) with 100 trees and a
maximum depth of 20. Accuracy generally increases with the number
of trees and tree depths. Preliminary experiments found that we obtain
diminishing returns in accuracy above these values, but computational
complexity increases. We use bagging to inject randomness into the
forest. In the Appendix we provide an overview of the random forest
regression method we use. More in-depth details of the implementa-
tion are available on the scikit-learn website (http://scikit-learn.org/).
We train separate regressors for the noisy and noise-free data sets
resulting in two distinct forests. The forests are trained on 10,000 of
the 12,500 feature vectors, with the remaining 2500 previously unseen
feature vectors used for testing. This is repeated for 100 randomly
generated test and training sets to investigate bias due to the choice of
training data. The testing phase allows us to evaluate how well the
regressors perform by directly comparing the estimations to the known
ground truth values. When estimating from the noise-free test feature
vectors we use the random forest trained on noise-free data, whereas
we use the random forest trained on the noisy data to estimate from the
noisy test feature vectors.

Following the training and testing stages, we use the noisy random
forest regressor on the in vivo human data sets. We use the noisy rather
than noise-free random forest regressor as it has similar noise
characteristics to the actual MR data.

The parameters that we estimate during the random forest regres-
sion describe the underlying microstructure properties of the tissue.
We combine μR and σR, which describe size distribution of cells, into a
single volume-weighted radius index α (Alexander et al., 2010), so that

the final set of parameters we estimate are f, τi, α and d.

2.5. Kärger model fitting

The most commonly used mathematical model to estimate τi from
diffusion-weighted PGSE or PGSTE data is the Kärger model (Stanisz
et al., 1997; Lätt et al., 2009; Nilsson et al., 2010). Therefore, in order
to compare our approach to the current state of the art method, we fit a
two-compartment Kärger model to the 2,500 noise-free and noisy test
data sets and the masked white matter voxels from the in vivo human
data sets.

The intracellular compartment, with volume fraction f, is modelled
using randomly packed, parallel cylinders characterised by a single
radius index α and with an intra-axonal water residence time τi. The
extracellular space is modelled as a cylindrically symmetric DT with
diffusivities, d and d⊥. d is assumed to be the same in both compart-
ments, and d⊥ is estimated from d and f using the tortuosity model in
Szafer et al. (1995).

Prior to model fitting, each measurement is normalised by the mean
b=0 measurement with the same TM to eliminate T1 effects. For all
data sets the model is fit using Markov Chain Monte Carlo (MCMC)
(Gilks et al., 1994) with an offset Gaussian noise model (Panagiotaki
et al., 2012) (assuming different noise standard deviations σ for each
shell of data, which we estimate a priori) to sample from the posterior
distribution over the model parameters. The burn-in phase for the
MCMC consists of 10,000 steps, after which we collect 1000 samples at
an interval of 100 steps.

2.6. Data analysis

2.6.1. Simulated data
To assess how well the random forest estimates and Kärger model

estimates match the known ground truth values in the test set, we use
Bland-Altman plots and calculate for each parameter. Bland-Altman
plots show the means of the ground truth and estimated values plotted
against their differences, allowing us to assess the bias in our estimates.
Points on the Bland-Altman plots are colour-coded with colour bars
showing the percentage error. Due to better visibility we limit the
colour bar to −50 to 50 %, with points outside of this range taking the
same colour as the two maximum range points. The supplementary
material includes additional visualisation of the agreement using
scatter plots.

To determine whether the choice of training set used for the
random forest regression introduces bias, we calculate the mean and
standard deviation of the correlation coefficients for each parameter
over all 100 training/test sets.

2.6.2. Healthy subjects
We use the scan-rescan data from the two healthy volunteer

subjects to investigate intra-subject reproducibility on both the region
of interest (ROI) and voxel level.

For the ROI analysis, we manually define regions in the splenium
(CC-S) and genu (CC-G) of the corpus callosum, the left (ALIC-L) and
right (ALIC-R) anterior limbs of the internal capsule and the left (CST-
L) and right (CST-R) corticospinal tracts on the scan and rescan FA
maps for both volunteers. We calculate the mean parameter estimates
from the random forest and Kärger model in each ROI for both the
scan and rescan data and plot scatter plots of scan versus rescan
estimates and Bland-Altman plots for f, τi, α and d individually. Bland-
Altman plots show the mean of the scan and rescan parameter
estimates against their difference; for highly reproducible parameters
the points on a Bland-Altman plot should be closely clustered about the
zero difference line. We also investigate the regional variability of each
model parameter by calculating the coefficient of variation (CoV),
defined as the ratio of the standard deviation to the mean, i.e. s

μ
and
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represents the variability of a parameter in relation to its mean value
over the population. To do this, for each parameter, we pool together
the scan and rescan parameter estimates for both volunteers in each
region.

We also investigate intra-subject reproducibility on the voxel level.
For each subject, we warp the parameter maps estimated from the
rescan data into the space of the scan data using the FLIRT tool in FSL
(Jenkinson et al., 2002) in order to obtain the correspondence between
voxels. To assess the similarities between the scan and rescan, we again
use Bland-Altman plots and calculate correlation coefficients for each
parameter. The supplementary material includes additional visualisa-
tion of the agreement using scatter plots.

2.6.3. MS subjects
To investigate the sensitivity of the random forest and the Kärger

model to tissue damage in MS lesions, an expert clinical researcher
(NC) marked the lesions on the high resolution T2-weighted images.
We also mark additional ROIs in the contralateral normal appearing
white matter (NAWM) for comparison. The ROI and lesion masks are
then registered to the mean b=0 image from shell 1 of the diffusion-
weighted data using FLIRT (Jenkinson et al., 2002). We use this shell
for registration as it has the shortest diffusion time and so provides the
best contrast.

In the first subject, in the early stages of MS, two of the marked
lesions overlap the white matter mask completely and are investigated
further. For the second subject, in the late stage of MS, the lesions are
much more widespread, overlapping most of the white matter mask
used to select voxels for analysis. However for this subject, our analysis
is limited by the availability of contralateral NAWM for comparison
and thus we only use one lesion in the CST. We then calculate the mean
parameter estimates from both models in the lesions and control ROIs
and compare. We then used t-test to find out if there is a statistically
significant difference between parameter values in the lesions com-
pared to those in NAWM.

3. Results

3.1. Simulations

Fig. 3 shows Bland-Altman plots of f, α, τi and d for both the
random forest regressor and the Kärger model for noise-free data
generated from cylinder substrates. The data points are colour-coded

according to how close the estimates are to the actual values and the
percentage error is shown on the colour bars. The solid black line
indicates the mean difference between ground truth and estimated
parameters and the dashed lines show the 95% limits of agreement. For
the random forest model, points are clustered about the zero difference
line, indicating low bias. However, despite the absence of noise the
recovery of the parameters is not perfect. In particular, for f, τi and α,
there is some bias in the estimated values which depends on the ground
truth value, for example, large values of τi are consistently under-
estimated. However, the noise-free performance provides a benchmark
for the best estimation we can achieve given the data available.
Correlation coefficients are also strong for all parameters (f: R2=0.88,
τi: R

2=0.95, α: R2=0.82, d: R2=0.99).
Estimates obtained from the Kärger model are generally less

accurate and more biased. In particular, τi is consistently under-
estimated for all ground truth values, and although low diffusivities
are well-recovered, the model underestimates high diffusivities.
Correlations between ground truth and estimated values of f
(R2=0.75) and d (R2=0.99) are good, however the model struggles to
recover τi (R

2=0.60) and α (R2=0.11). It consistently underestimates τi,
and provides no correlation between ground truth and estimated α.

Fig. 4 shows similar plots, but for simulated data with SNR=20. For
the random forest model, the results for all parameters are consistent
with those obtained from the noise-free data, although the 95% limits
of agreement are slightly wider. Although the mean difference lines are
mostly close to zero, again we see that there is some bias in our
estimates, which depends on the ground truth values. For f (R2=0.70),
we see that the larger volume fractions tend to be underestimated
slightly whereas low f are slightly overestimated. This is also the case
for τi (R2=0.70). Residence times of up to approximately 0.6 s are
estimated well, after which the estimates level off. The estimations of
axon radius index are weaker than of the other parameters (R2=0.48),
but we still see a positive correlation, indicating that the method is still
able to distinguish small axons from large axons even in the presence of
noise. Diffusivities are again very well estimated (R2=0.98).

The addition of noise weakens the performance of the Karger model
still further. The 95% limits of agreement are much wider than for the
random forest model, and again there is more bias in τi and d. Similar
to the random forest model, there is some bias in f (R2=0.65), although
the Kärger model tends to underestimate low values and slightly
overestimate higher values. Once again, the Kärger model struggles
to estimate high d, despite having a high correlation coefficient

Fig. 3. Bland-Altman plots for f, τi, α, d for both the random forest and the Kärger model for noise-free data simulated from cylinder substrates.
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(R2=0.96). The Kärger model is again much worse at estimating τi
(R2=0.40) and α (R2=0.02). As can be seen from both the Bland-
Altman plot and the correlation coefficients, estimations of α are now
essentially noise.

Table 2 shows mean correlation coefficients for f, τi, α and d
averaged over the 100 training/test data sets for both noise-free data
and data with SNR=20. The correlations between the ground truth and
estimated values are very consistent for all parameters and both noise
levels, indicating that while the random forest model needs sufficient
coverage of the parameter range, it is not biased by the choice of
training data.

3.2. Healthy subjects

Fig. 5(a) shows scan and rescan parameter maps estimated using
the random forest regressor across representative axial, coronal and
sagittal slices for the first healthy volunteer. An initial visual inspection
suggests good agreement between the scan and rescan parameters,
with positive correlation coefficients (f: R2=0.57, τi: R2=0.45, α:
R2=0.48, d: R2=0.65) and similar trends observed across all the major
white matter tracts. The values estimated for all parameters are within
plausible ranges. Estimates of volume fraction f are in the range 0.44-
0.65. The upper bound is slightly lower than expected, but as suggested
by the simulation results in Fig. 4 large f tends to be underestimated by
the random forest when the data is noisy. However, we still see the
expected high-low-high trend in f across the mid-sagittal CC. Estimates
of τi are consistently in the range 0.4–0.5 s across the major tracts. The
scan and rescan maps of d are also highly consistent, with estimations
for most voxels in the range 1.4–1.8×10−9 m2 s−1.

Fig. 5(b) shows the scan and rescan parameter maps estimated
using the Kärger model across the same slices. Estimates of volume
fraction f are in the range 0.2–0.8. We see the high-low-high trend in f
more distinctly in the Kärger model data than in the random forest data
although estimated volume fractions in the midbody of the CC (0.25–
0.3) are lower than expected, especially as the white matter masks were
generated using a linearity threshold of 0.5. The scan and rescan maps
of f are generally in good agreement though with R2=0.57, which is the
same correlation coefficient as that of the random forest estimate.
Maps of τi are noisier and show less consistency between the scan and
rescan data with R2=0.28, lower than that of the random forest
estimate. Moreover, the location of these areas varies from scan to
rescan. For example there are several voxels in the splenium of the
mid-sagittal CC which have low τi in the scan data but much higher τi
in the rescan data (shown by the arrows in Fig. 5(b)). Both the scan and
rescan maps of α are very noisy, with an extremely low correlation
coefficient of R2=0.06 and no discernible patterns in the data.
Estimates of d however do appear reproducible (R2=0.66), and in the
range of 0.8–1.4×10−9 m2 s−1.

To provide a more quantitative analysis, we warp the parameters
maps derived from the rescan data into the space of the scan data using
the FLIRT tool in FSL (Jenkinson et al., 2002). Bland-Altman plots of
scan versus rescan parameter estimates of f, τi, α and d across
corresponding voxels for both the random forest and Kärger model
are displayed in Fig. 5(c). The data points are colour-coded based on
the difference between scan and rescan parameter estimates, with
colour indicating percentage error. The colour scale is the same for the
random forest and Kärger model for each parameter. Neither model
shows significant bias for any parameter, and all points are clustered
about the zero difference line. For f, τi and α, the random forest model
has better reproducibility as suggested by the narrower 95% limit lines,
but for d these limits are roughly the same for both methods. The
correlation coefficients for f (random forest: R2=0.57, Kärger model:
R2=0.57), d (random forest: R2=0.65, Kärger model: R2=0.66), τi
(random forest: R2=0.45, Kärger model: R2=0.28) and α (random
forest: R2=0.48, Kärger model: R2=0.06) also support these findings.
Scatter plots showing these correlations for both subjects are included
in the supplementary material.

Figs. 6(a)–(c) show equivalent parameter maps and scatter plots for
volunteer 2. As for subject 1, the scan and rescan maps for the random
forest model show good visual similarities for all parameters. We see
the high-low-high trend in f and the low-high-low trend in α across the

Fig. 4. Bland-Altman plots of f, τi, α, d for both the random forest and the Kärger model for data simulated from cylinder substrates with SNR=20.

Table 2
Means and standard deviations of the correlation coefficients between ground truth and
estimated values using 100 different training and test data sets for the random forest
model, for both SNR = ∞ and SNR=20.

SNR = ∞ SNR=20

Parameter μ(R2) σ(R2) μ(R2) σ(R2)

f 0.882 0.005 0.708 0.010
τi 0.946 0.002 0.694 0.009
α 0.817 0.006 0.491 0.015
d 0.999 0.000 0.978 0.001
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Fig. 5. Scan-rescan data for volunteer 1.
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Fig. 6. Scan-rescan data for volunteer 2.
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mid-sagittal CC and estimates of τi and d are consistent between scans
as well as between the two subjects. For the Kärger model, reprodu-
cibility is again reasonable for f and d but the maps of τi and α are
noisy. Fig. 6(c) shows voxelwise Bland-Altman plots of scan versus
rescan parameters. As for the first volunteer, these plots show that
there is no bias between scan and rescan estimates for either method,
although again the random forest model has better reproducibility for f,
τi and α as indicated by the narrower 95% limit of agreement lines. The
correlation coefficients for the random forest and Kärger model are
very similar for f (random forest: R2=0.73, Kärger model: R2=0.73) and
d (random forest: R2=0.72, Kärger model: R2=0.75), but the reprodu-
cibility of residence time (random forest: R2=0.63, Kärger model:
R2=0.35) and axon radius metrics (random forest: R2=0.56, Kärger
model: R2=0.02) is much higher for the random forest than the Kärger
model.

Following on from the voxelwise analysis of scan-rescan reprodu-
cibility, we analyse the reproducibility of the indices across regions of
interest (ROIs). We manually define ROIs in the splenium (CC-S) and
genu (CC-G) of the corpus callosum, the left (ALIC-L) and right (ALIC-
R) anterior limbs of the internal capsule and the left (CST-L) and right
(CST-R) corticospinal tracts on the scan and rescan data for both
volunteers. Fig. 7 shows an example ROI mask overlaid on the FA
image of the scan data for volunteer 2. We calculate the mean
parameter estimates from the random forest and Kärger model in each
ROI for all data sets. The top row of Fig. 7 shows scatter plots of scan
versus rescan estimates of f, τi, α and d. Results from the Kärger model
(blue) and the random forest (pink) are shown on the same plots. The
random forest shows high reproducibility for all parameters at the ROI
level. Estimates of d from the Kärger model show good reproducibility,
matching that of the random forest. However f, τi and in particular α
show lower reproducibility. The bottom row of Fig. 7 shows a Bland-
Altman plot, which plots the mean of the scan and rescan parameter
estimates against their difference. Dashed lines indicate the 95% limits
for each method. The results of the Bland-Altman analysis confirm the
results of the correlation plots. For d, the data points from both the
random forest and Kärger model show similar spread about the zero
line, indicating that the methods have equivalent reproducibility.
However, for the other three parameters the data points for the
random forest are more closely clustered around the zero line than
the data points for the Kärger model, indicating that the scan and
rescan parameter estimates from the random forest model show better
agreement.

Finally, we pool the scan and rescan parameter estimates for both
subjects across the six regions of interest and calculate the mean μ,
standard deviation σ and coefficient of variation (CoV) of each
parameter in each region (as described in the Methods section).
Tables 3 and 4 show the results for the random forest and Kärger
model respectively. CoVs are lower for all parameters when estimated
using the random forest as opposed to the Kärger model. The two
methods perform similarly for d; both methods result in similar
standard deviations, but the CoVs for the Kärger model appear slightly
higher than for the random forest due to the slightly lower mean
estimates of d. However, for f, τi and α, CoVs calculated from random
forest parameter estimates are substantially lower than for the Kärger
model.

3.3. MS patients

In Fig. 8, we present the parameter maps of the first MS subject
(early stage MS). First from the left is a b=0 image with the overlaid
lesion mask (red areas in squares) and respective normal appearing
white matter tissue (NAWM) (green areas in circles). The remaining
four columns are parameter maps from the same slice estimated using
the random forest model (top row) and Kärger model (bottom row). An
initial visual inspection of parameter maps, suggests that neither the
random forest nor the Kärger model detects any obvious parameter
differences in the lesion in genu (top area in a square), compared to the
respective NAWM tissue (top area in a circle). For the lesion in
splenium though (bottom area in a square), there are differences
compared to the NAWM (bottom area in a circle): τi estimated using
the random forest is reduced relative to the NAWM area and the
volume fraction estimated by Kärger model is lower compared to the
NAWM. When comparing random forest and Kärger model parameter
estimates, random forest provide higher values than Kärger model for
all four parameter maps over all white matter voxels.

Equivalent parameter maps for the second subject with late stage
MS are shown in Fig. 9. In this subject the lesions are much more
widespread, overlapping most of the white matter mask used to select
voxels for analysis, including the genu and the corticospinal tracts. An
initial visual inspection of the whole white matter mask shows more
dramatic changes in the parameter maps for both the random forest
and Kärger model compared to the first MS subject in early stage MS.
For the random forest model, there is a reduction in f and τi and an
increase in α in the lesion area (red area in a square) compared to the

Fig. 7. The left hand panel shows example regions of interests used in the analysis overlaid on the FA map of subject 1. The top row shows the correlation of scan-rescan estimates of all
parameters using both the random forest regression (RFR) and Kärger model (KM). The bottom row shows the equivalent Bland-Altman plots.
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contralateral NAWM (green area in a circle). For the Kärger model, f
and τi are lower in the lesion areas compared to the contralateral
NAWM, but there also appears to be increase in d.

To provide a more quantitative analysis, we calculate the mean
parameter estimates from both models in the lesions we marked in
Figs. 7 and 8 (red areas in squares), and their respective contralateral
NAWM ROIs (green areas in circles), as shown in Table 5. In the lesion
in the genu of subject 1, the diffusivity is higher than that in NAWM.
The difference between the other model parameters is not statistically
significant. For the lesion in the splenium of subject 1, the random
forest estimates a lower τi of 0.19 s in the lesion compared to 0.33 s in
the contralateral NAWM. The random forest also estimates a higher α
in the lesion compared to the NAWM. The Kärger model does not show
any differences in τi or α, but it does suggest a reduction in axonal
volume fraction in the lesion, with f dropping from 0.35 in the NAWM

to 0.26.
For the lesion in the CST of subject 2, the quantitative analysis

confirms the initial visual inspection. Using the random forest model,
we find that f drops from 0.52 to 0.47 and τi is reduced from 0.56 s in
the NAWM to 0.13 s in the lesion. There is also an increase in α from
3.3 μm to 4.3 μm, as well as an increase in d, although for d the change
is the same order of magnitude as the standard deviation across the
ROI. Estimates from the Kärger model show a larger decrease in f from
0.41 in NAWM to 0.18 in the lesion. τi also decreases from 0.71 s in the
NAWM to 0.33 s in the lesion, although the standard deviation is much
higher when using the Kärger model compared to the random forest.
The intrinsic diffusivity increases from 1.50×10−9 m2 s−1 to
1.84×10−9 m2 s−1. There is also an increase in the mean value of α in
the lesion compared to the NAWM, but the standard deviation is much
larger than the apparent change. Lesion parameter values for which

Table 3
Mean, standard deviation and coefficient of variation of all parameters estimated using the random forest model in all six regions of interest.

f τi (s) α (μm) d (×10−9 m2s−1)

ROI μ( ± σ) CoV μ( ± σ) CoV μ( ± σ) CoV μ( ± σ) CoV

CC-S 0.61(0.02) 3.9 0.57(0.05) 9.2 1.65(0.58) 35.1 1.67(0.19) 11.3
CC-G 0.59(0.02) 3.2 0.60(0.04) 7.4 2.26(0.70) 31.1 1.89(0.09) 4.6
ALIC-L 0.51(0.04) 7.0 0.48(0.10) 20.1 3.05(0.43) 14.0 1.61(0.18) 11.2
ALIC-R 0.50(0.04) 8.3 0.46(0.11) 24.2 3.14(0.52) 16.6 1.63(0.18) 10.8
CST-L 0.53(0.04) 7.1 0.54(0.08) 14.4 3.06(0.32) 10.3 1.70(0.15) 8.9
CST-R 0.53(0.04) 7.1 0.52(0.09) 16.7 3.09(0.35) 11.4 1.66(0.14) 8.7

Table 4
Mean, standard deviation and coefficient of variation of all parameters estimated using the Kärger model in all six regions of interest.

f τi (s) α (μm) d (×10−9 m2s−1)

ROI μ( ± σ) CoV μ( ± σ) CoV μ( ± σ) CoV μ( ± σ) CoV

CC-S 0.56(0.09) 15.4 0.37(0.28) 75.9 1.79(1.52) 85.2 1.16(0.19) 16.0
CC-G 0.55(0.10) 17.5 0.59(0.24) 41.9 2.32(1.86) 80.1 1.41(0.14) 9.9
ALIC-L 0.37(0.06) 17.1 0.44(0.15) 33.9 1.77(0.96) 54.4 1.14(0.15) 13.6
ALIC-R 0.33(0.07) 20.9 0.45(0.15) 34.1 1.78(1.04) 58.3 1.12(0.13) 12.0
CST-L 0.42(0.05) 11.9 0.67(0.16) 23.8 1.78(0.95) 53.2 1.40(0.15) 11.0
CST-R 0.41(0.06) 14.1 0.59(0.16) 27.0 1.84(0.92) 50.3 1.26(0.13) 10.3

Fig. 8. Mean b=0 image and parameter maps showing f, τi, α and d estimated using the random forest and estimated using the Kärger model for the first MS subject. There are two
lesions (red areas in squares), one in genu and one in splenium, and the mask for these is overlaid on the mean b=0 image. For each of the lesions, its respective contralateral normal
appearing white matter (NAWM) mask is shown as well (green areas in circles).
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there is a statistically significant difference (p < 0.02) to the values in
NAWM are marked with stars.

4. Discussion

In this study we have introduced a computational framework to
learn a computational model that maps features derived from DW MR
signals to microstructure parameters. This approach supports the
estimation of microstructure parameters that have previously proven
elusive due to lack of accurate mathematical models relating them to
the MR signal. The key example we focus on here is the residence time
of water between intra and extracellular spaces and we used random
forest regression to learn the mapping. Simulations show that the
parameter correlations from the new computational model approach

are much stronger than those obtained using the Kärger model,
particularly for residence time τi and axon diameter index α. The
trained random forest also estimates sensible microstructure para-
meters from in vivo human data, even for parameters such as α and τi
which only weakly influence the DW MR signals available from human
scanners (Drobnjak et al., 2016; Nilsson et al., 2013). From scan-
rescan data of healthy subjects, we show that results from the random
forest have better reproducibility than the Kärger model on both the
voxel and ROI level. Finally, data acquired from two MS patients
demonstrate the clinical potential of estimates of exchange-related
parameters obtained this way. In both subjects, we observe reductions
in f and τi and increases in α in lesions compared to NAWM when
using the random forest model, which is consistent with expectations
from the pathology of MS lesions. In particular we expect the axon
diameter index to be higher in lesions than NAWM, because small
axons are more vulnerable to MS pathology (DeLuca et al., 2006; De
Luca et al., 2004; Huang et al., 2016); axonal loss corresponds to lower
f; and myelin damage can be expected to reduce τi.

4.1. Simulations

Our simulation results, which cover a wide range of ground truth
parameters, including both situations in which the system is close to
well-mixed (short τi; long Δ) and not well-mixed (long τi), show that
the Kärger model performs worse than the random forest approach as
it is less able to recover the underlying ground truth parameters
accurately. Kärger model consistently underestimates τi, even short τi,
i.e. less than 0.1 s, where for the longest diffusion times of 0.406 s and
0.412 s in the protocol, the system approximates the well-mixed
conditions for which the Kärger model is valid. However, the compar-
ison is not totally fair, as the random forest is trained directly on
simulated data, while Kärger model, although used to optimise the
protocol for sensitivity to τi, is not. Nevertheless, the comparison is
worthwhile, because, the study still provides a useful insight into the
limitations of the Kärger model's assumptions, i.e. that the system is
well-mixed, in situations where they are known to be violated, as in
white matter. We show that for realistic white matter models Kärger
model provides inaccurate estimates, which could be argued are
expected as Kärger model is not meant to be valid under those
assumptions. Nevertheless, it is worthwhile to do the comparison

Fig. 9. Mean b=0 image and parameter maps showing f, τi, α and d estimated using the random forest and estimated using the Kärger model for the second MS subject. Masks for the
lesion and NAWM are overlaid on the mean b=0 image. The lesion is in CST and is coloured in red (in a square), and the NAWM is also in CST but contralateral to the lesion and is
coloured in green (in a circle).

Table 5
Mean and standard deviation of random forest regression (RFR) and Kärger model (KM)
parameters in MS lesions compared to contralateral NAWM in both MS subjects. Lesion
parameter values which are statistically different (p < 0.02) to the values in NAWM are
marked with stars.

MS subject 1 MS subject 2

CC: Genu CC: Splenium CST

Lesion NAWM Lesion NAWM Lesion NAWM

RFR f 0.49
(0.03)

0.50 (0.04) 0.49
(0.02)

0.52 (0.05) 0.47
(0.01) *

0.52 (0.04)

τi 0.48
(0.07)

0.45 (0.09) 0.19
(0.11) *

0.33 (0.12) 0.13
(0.09) *

0.56 (0.05)

α 3.24
(0.39)

3.16 (0.41) 3.25
(0.77)

2.60 (0.73) 4.30
(0.39) *

3.30 (0.23)

d 1.74
(0.13) *

1.51 (0.14) 1.69
(0.22)

1.76 (0.26) 1.96
(0.07) *

1.91 (0.06)

KM f 0.35
(0.04)

0.33 (0.06) 0.26
(0.12)

0.35 (0.14) 0.18
(0.04) *

0.41 (0.05)

τi 0.48
(0.09) *

0.36 (0.07) 0.22
(0.15)

0.22 (0.18) 0.33
(0.22) *

0.71 (0.12)

α 1.82
(1.10)

2.28 (1.06) 1.74
(1.22)

1.74 (1.22) 2.39
(1.08)

1.86 (1.19)

d 1.36
(0.11) *

1.06 (0.13) 1.24
(0.25)

1.22 (0.23) 1.84
(0.17) *

1.50 (0.08)
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because Kärger model provides the current standard model of ex-
change for PGSE and PGSTE data, even when diffusion is restricted,
and the evaluation of its performance under these more realistic
conditions is important.

To investigate the performance of the Kärger model further, we also
consider the case in which the Kärger model is fitted to test data
generated from the Kärger model, both with and without noise i.e. the
situation in which the Kärger model should explain the underlying data
exactly (results not shown here). For noise-free data, the Kärger model
estimates f (R2=0.98), τi (R

2=0.76) and d (R2=1) well. Estimates of τi
are still not exact as, even at an maximum diffusion time of 0.412 s, the
signals generated from the Kärger model for any τi greater than ≈0.6 s
are virtually indistinguishable. Estimates of α are still poor (R2=0.21)
but as discussed earlier the protocol was not optimised for maximum
sensitivity to this parameter. For noisy data with SNR=20, estimations
of f (R2=0.87) and d (R2=0.96) are still strong, but results for τi
(R2=0.35) and α (R2=0.09) are poor. This implies that estimates of τi
from the Kärger model are extremely sensitive to noise, and thus the
model is unlikely to be able to provide meaningful estimates of
intracellular water residence time from data obtained under realistic
acquisition conditions.

4.2. Healthy subjects

The scan-rescan experiments in healthy subjects show that the
random forest has good reproducibility compared to the Kärger model.
However for all parameters the correlation coefficients are much lower
than the very high reproducibility of DT-derived parameters such as
FA, which typically has a CoV of 0.8–3.0% (Vollmar et al., 2010) or
NODDI parameters (Tariq et al., 2013) which achieve CoV of around
5–6%. Difficulties in registering the scan and rescan volumes due to
different numbers of slices in the data sets contribute, but mainly this
arises because sensitivity of the signal to τi and α is weak. However, we
also note that the CoVs for τi estimated using the random forest model
with the current protocol compare favourably to values published in a
recent reproducibility study of AXR imaging (Lampinen et al., 2014).
Lampinen et al estimate the CoV of AXR in the CC, ALIC and CST and
report values of 58%, 41% and 45% respectively. Their study differs
from ours in that they combine AXR estimates from the left and right
ALICs and CSTs and from the genu and splenium of the CC; if we
combine our data in a similar manner, the CoVs for τi would be 8.9%,
22.3% and 15.6%. However, they also have a larger number of subjects
and note that at least in the CST approximately half of the variance can
be attributed to inter-subject differences.

Random forest estimates for the residence time and the axon
diameter are closer to the reported values in literature than those of
the Kärger model. There are numerous voxels in which Kärger model
estimates τi to be between 0.01 and 0.06 s. These values are an order of
magnitude smaller than the values reported in literature (Finkelstein,
1976; Quirk et al., 2003). Estimates of d using Kärger model are in the
range 0.8–1.4×10−9 m2 s−1 which is lower than what we would
typically expect in the in-vivo white matter tissue (Kaden et al.,
2016) The ROI analysis shows that for f, τi and α, CoVs calculated
from random forest parameter estimates are substantially lower than
for the Kärger model, suggesting that the random forest may provide
more consistent estimations of microstructure indices across a popula-
tion. We also note that for the random forest method, the values of f
that are estimated fall in a narrower range than those estimated using
the Kärger model, which may artificially narrow the 95% limits slightly.
This is due to the range of volume fractions present in the training set
(f=0.4–0.7) which was chosen to be representative of white matter
tissue. Also, the correlation coefficients are much higher for the second
volunteer than the first volunteer, which may be due to a better
registration between the data sets.

4.3. MS subjects

In MS subjects, we observe reductions in f and τi and increases in α
in lesions compared to NAWM when using the random forest model.
This is intuitive as the breakdown of myelin in the lesion is likely to
make the residence time shorter compared to the NAWM, the damage
of the tissue is likely to cause cell loss and the small axons are found to
be preferentially damaged (DeLuca et al., 2006; De Luca et al., 2004;
Huang et al., 2016). Analysing further and comparing the NAWM in
MS subjects to the same ROIs in healthy subjects (presented in Table 3,
CC:S, CC:G, CST-R) we observe that the trend continues, i.e. we
observe reductions in f and τi and increases in α in patients' NAWM
compared to healthy subjects. It has been shown previously that
NAWM in MS subjects is somewhat damaged compared to the normal
tissue (Filippi et al., 2012) and our results support this suggestion.
These are just preliminary results because the number of both MS and
healthy subjects is quite small. However, the trends are plausible and
the estimated parameters sensible. We also found that, for one of the
lesions in the first MS subject, almost no difference between the
parameters in the lesion and the NAWM tissue was found. This could
be because the lesion was relatively new compared to the other lesion
and the damage has not yet fully developed. However, using the Kärger
model for that lesion produces counterintuitive results as we found that
the residence time was shorter in the NAWM than in the lesion itself.
This is the opposite trend to what we expect, as damage to the myelin
sheath is thought to increase permeability and thus reduce the
residence time. We did not observe this when using the random forest
model, and therefore believe that the difference is more likely due to
noisy estimation of τi using the Kärger model. In future, we plan to
translate the technique for estimating residence time τi we introduced
here. We show some promising new results, however a larger study of
MS patients is necessary in order to investigate whether the parameters
of the random forest model, in particular τi, could act as suitable
biomarkers for detecting and tracking changes in MS pathology.

4.4. Limitations and further work

One of the limitations of the work we present here is that the
training uses a very simple model of white matter tissue. Specifically,
the model uses long straight circular cylinders that mimic axon bundles
and does not account for myelin water, curvature of axons, dispersion
or crossing fibres. However, the general idea we present here, of
computational models based on simulations and machine learning
extends naturally to much more complex models. Future work will
investigate incorporation of such effects, although these require further
development of the simulation system we use to construct training
data.

Another limitation of the current study is that the machine learning
procedure is tested on the same type of substrates that it was trained
on. We note however that although the model of the substrate is the
same, the model parameters between the training and the test data are
different so the results demonstrate generalization to some extent.
Future work will explore a meaningful evaluation using more diverse
test data with additional effects (e.g. undulation, dispersion or a
histology-based-mash). However, this would require substantial
further development of our simulation system and is outside of the
scope of this paper. One important advance for the future is to use the
random forest regression to obtain measures of uncertainty (as in
Tanno et al., 2016) to highlight situations where the signals are
unfamiliar so the model produces unreliable results.

The success of random forest regression is dependent on the
sensitivity of the diffusion MR signal to the parameters of interest.
This can be seen in the simulation results where for τi greater than the
maximum diffusion time, the difference in signals (and thus in the
features) due to differences in τi is within the standard deviation of the
noise, and so cannot be differentiated. The estimations of axon radius
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index are weaker than that of the other parameters (R2=0.48), with
errors going as high as 100% in some cases as can be seen in Figs. 3 and
4, which is simply due to a low sensitivity of the signal to axon diameter
for the gradient strength used (Drobnjak et al., 2016). Nevertheless, for
both residence time and axon diameter we still see a positive correla-
tion between the estimates and the ground truth, indicating that the
method is able to distinguish small axons from large axons and very
permeable from impermeable axons even in the presence of noise. The
sensitivity of the signal and hence the reproducibility of our parameters
can potentially be improved by optimising the acquisition protocol
further, e.g. by improving the angular resolution (subject to time
constraints) or increasing the maximum diffusion time or gradient
strength to provide better contrast (also subject to SNR constraints) or
using the random forest model in the protocol optimisation instead of
the Kärger model.

The results we obtained in-vivo are inherently difficult to validate.
Accurate estimates of τi are not obtainable via histology, however, an
existing study of intra- to extra-axonal water exchange across the whole
in vivo rat brain using relaxometry and contrast agents suggests a mean
τi of approximately 0.55 s (Quirk et al., 2003) aligning with our
estimates. Furthermore, studies on sphingomyelin membranes (which
are found in axonal membranes) estimate permeabilities of
≈1×10−6 ms−1 (Finkelstein, 1976), which correspond to residence
times of 0.3–0.6 s for axons with radii of 0.5–1 μm. The maps of α
are slightly noisier, but we observe the characteristic low-high-low
trend across the CC (Aboitiz et al., 1992) in both scan and rescan maps.
Although it is possible that the random forest distinguishes the small
axons in the genu and splenium from the larger ones in the midbody
and cortico-spinal tract, other effects not accounted for in the model
(dispersion, undulation, etc.) mean that it does not accurately recover
actual mean diameters. The scan and rescan maps of d are highly
consistent. The estimations for most voxels lie in the range 1.4–
1.8×10−9 m2 s−1, which is plausible for white matter tissue.

We used the same intrinsic diffusivity and the same MR parameters
such as T1 and T2 inside and outside the axons. This assumption may
be inaccurate, particularly in pathology, and departures would indeed
disrupt the parameter estimates. The method of using machine
learning to generate computational models extends naturally to situa-
tions where these parameters differ in different water pools. However,
accurate estimations of such parameters would demand richer data sets
with higher b-values - the computational models do not affect funda-
mental limitations on identifiability, as discussed for example in
Jelescu et al. (2016).

One possible way to improve performance of the Karger model in
recovering ground truth parameters in simulation is to constrain its
parameters to the range used in the simulation. We note that the
random forest model is not constrained in this way either, as the linear
models at each leaf node can extrapolate, although in practice the
random forest does limit parameter estimates mostly within that range.
Even so, constraining the Kärger model to the same range is unlikely to
improve performance. For example, in the noise free case, 86% of the
Kärger model's estimates of intracellular exchange time and 99% of the
Kärger models estimates of axon radius index are within the same
range as the random forest training values anyway. The intracellular
exchange rate is constrained to be positive in the Kärger model, and of

the 14% of estimates that do lie outside of the random forest training
set range most are simply slightly closer to zero. For these values,
constraining Kärger model further will result in them converging to the
lower limit, which will not improve the correlation with the ground
truth values.

The random forest models that we use are non-linear although they
do use a linear model at the leaf nodes. Linear models at the leaf nodes
prove to be a good trade off between the segregation of the training set
and the complexity of the models at each leaf node, however the future
work may explore alternative leaf node models such as constant
quadratic etc. Criminisi et al. (2013).

4.5. Conclusions

We propose to use machine learning to construct computational
models that relate the MR signal to microstructure parameters. We
demonstrate the idea by testing the ability to estimate residence time τi
using clinical scanner settings. This can potentially be important as the
axonal membrane permeability, which is associated with the residence
time, is hypothesised to be correlated with the condition of the
insulating myelin sheaths around the axonal fibre (Nilsson et al.,
2013). Numerous white matter pathologies of the human central
nervous system, such as MS, spinal cord injury and leukodystrophies,
are characterised by damage to the myelin; thus sensitive and specific
biomarkers, such as the residence time τi that we estimate here, could
improve the diagnosis of and treatment for these conditions.

The computational modelling approach we use here opens doors to
estimating a wide range of other parameters for which mathematical
models are intractable: undulation; properties of the extra-cellular
space; etc. The approach, as used here, also neatly avoids the need for
any analytical model of tortuous extra-cellular diffusion for which only
approximations are available (Burcaw et al., 2015). Given that these
compartment models tend to overestimate key microstructure para-
meters such as the axon diameter (Alexander et al., 2010), including
the effects of these intractable parameters not only gives us clinically
useful parameters, but may also improve the estimation of other
microstructure indices. Although the mapping we learn is specifically
for randomly packed, parallel, non-abutting cylinders and a STE
imaging sequence, the approach easily extends to other tissue config-
urations and pulse sequences. In future we plan to incorporate models
of fibre dispersion into our MC simulations to extend our technique to
dispersed white matter fibre regions as well as grey matter. We also
plan to investigate more specialised pulse sequences, such as the AXR
sequence (Nilsson et al., 2013) or optimised generalised gradients
(Drobnjak et al., 2010, 2011), which may improve sensitivity as well as
allowing us to compare other analytic models, or other kinds of
machine learning technique, e.g. deep learning.
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A.1. Random forest regression

The random forest regressor used here was implemented using the open source scikit-learn python toolkit (Pedregosa et al., 2011), a widely used
free software machine learning library for Python. The random forest regressor method has two stages. Firstly, during the training stage the forest
learns a mapping between the features of the data (in our case the metrics derived from the diffusion MRI signals) and the parameters to be
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estimated (tissue microstructure parameters). Secondly, during the testing stage, the forest uses the mapping to estimate tissue parameters from
previously unseen data.

A random forest regressor is formed of a collection of regression decision trees and its output is a weighted average of the estimate from each
individual decision tree (see Fig. A10). A decision tree is formed of internal nodes (represented by grey circles in Fig. A11), terminal nodes (the blue
rectangles) and edges which connect all the nodes in a hierarchical fashion. Each internal node has one incoming and two outgoing edges and stores
a test (split function) that it applies to the incoming data, which is a multi-dimensional vector that, here, contains rotationally invariant features of
the MRI signal corresponding to a substrate. After the test, the data is sent along one of the outgoing edges depending on the result of the test. The

Fig. A10. Random Forest Regressor. The regressor used here is formed of 100 trees and the final estimations of the tissue parameters are obtained by averaging over the estimations of
each individual decision tree.

Fig. A11. Regression decision tree: the ensemble model representing the training stage. During the training, each tree receives a random subset of labelled feature vectors which are
used to optimise the parameters of the tree in order to maximise the information gain and increase the confidence of the estimations. The terminal nodes store the predictor that relates
the incoming data to the estimates of the microstructure parameters of interest: f τ α, ,i and d.
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terminal nodes store the predictor that relates the incoming data to the final answer, which here is the estimate of the microstructure parameters of
interest.

The training phase decides on three things: the internal structure of the tree, i.e. what internal and leaf nodes exist; the test at each internal
node; and the regression function at each leaf node. It does that through a greedy splitting process: it starts with all the input training data V at the
root node and constructs a linear mapping from V to the corresponding labels. Here V is a set of feature vectors V FV FV FV= { , ,…, }n1 2 each derived
from the diffusion MRI signals of n different substrates and the labels are the corresponding ground truth microstructure parameters for each
substrate. The training phase then seeks a test that divides the training data into two subsets V1 and V2, each with an independent linear mapping,
in such a way as to maximise the information gain over the single mapping at the root node. If no pair of mappings increases the information over
the single one, the root node remains a leaf node. Otherwise it splits into two siblings containing the two subsets and the process continues
recursively until no information gain can be found. At the end of the training stage, each tree encodes a piece-wise linear mapping between the
feature vectors (MRI signal features) and the parameters to be estimated (the four microstructure parameters f τ α d, , ,i ).

For the testing stage, previously unseen feature vectors are fed into the random forest. Using the mapping learned during the training stage, the
forest returns estimated tissue parameters for each of the previously unseen substrate feature vectors. Random forests repeat the same training
process for each decision tree but introduce randomness in different ways. Here we use bagging, which trains each decision tree on a different,
randomly selected subset of data. Randomisation is introduced into the training process as it has been shown to improve the performance of the
forest and its robustness to noise (Criminisi et al., 2013).

A more in-depth discussion together with details of the implementation is available in scikit online documentation in http://scikit-learn.org and
papers (Criminisi et al., 2013) and (Pedregosa et al., 2011).

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.neuroimage.2017.02.013.
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