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Truncating and Missense Mutations in IGHMBP2
Cause Charcot-Marie Tooth Disease Type 2
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Alejandro Horga,1,2 Zane Jaunmuktane,7 Paola Saveri,8 Vedrana Milic Rasic,9 Jonathan Baets,5,10,11

Marina Bartsakoulia,6 Rafal Ploski,12 Pawel Teterycz,12 Milos Nikolic,13 Ros Quinlivan,1 Matilde Laura,1,2

Mary G. Sweeney,3 Franco Taroni,14 Michael P. Lunn,1 Isabella Moroni,15 Michael Gonzalez,16

Michael G. Hanna,1,2 Conceicao Bettencourt,2 Elodie Chabrol,17 Andre Franke,18 Katja von Au,19

Markus Schilhabel,18 Dagmara Kabzi�nska,4 Irena Hausmanowa-Petrusewicz,4 Sebastian Brandner,7

Siew Choo Lim,20 Haiwei Song,20,21 Byung-Ok Choi,22 Rita Horvath,6 Ki-Wha Chung,23

Stephan Zuchner,16 Davide Pareyson,8 Matthew Harms,24 Mary M. Reilly,1,2 and Henry Houlden1,2,3,*

Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s

with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-m-

binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited

IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1),

where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting

and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 muta-

tions in CMT2 were mainly loss-of-function nonsense in the 50 region of the gene in combination with a truncating frameshift,

missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared

to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2

than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels.
Charcot-Marie-Tooth disease (CMT) is a genetically hetero-

geneous disorder of the peripheral nervous system with an

estimated prevalence of 1 in 2,500 individuals.1 Clinical

manifestations of CMT include slowly progressive distal

weakness, wasting, and sensory loss, which spreads proxi-

mally as the disease progresses. Clinically, CMT can be

divided into two major phenotypic types: a demyelinating

form (CMT type 1 [CMT1]) and an axonal form (CMT type

2 [CMT2]).2–6 Mutations in 15 unique genes have so far

been identified as causing CMT2. Despite this significant

progress, about 70% of people with CMT2 do not have a

genetic diagnosis.2–9 The identification of the remaining

CMT2 genes is expected to yield important insights into

the disease pathways and pathophysiology associated
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with axonal degeneration. In addition, it is becoming

evident that the phenotypic and genotypic intersection

of CMT2 with related motor neuron disorders of axonal

degeneration and other neuromuscular diseases is more

extensive than previously thought, increasing the impor-

tance of gene identification and characterization in this

area.10,11

We initially studied a family where two siblings were

affected with CMT2. The onset was in late childhood,

with slowly progressive disease and parents that were clin-

ically and electrically unaffected (family A). The proband is

currently 43 (family A, individual 1) and her sister is 40

years of age (family A, individual 2), both work, are able

to drive, and use a stick to walk with silicon ankle foot
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Figure 1. Photographs of CMT2 Individ-
uals with IGHMBP2 Mutations
(A) Legs and feet of family A, with individ-
ual II.1 also showing silicon ankle foot
orthosis.
(B) Hands of family A, individual II.1.
(C) Left hand of family B, individual II.2.
(D) Right foot of family B, individual II.1.
(E) Trombone-shaped tongue of family A,
individual II.1.
(F) Left hand of family B, individual II.1.
orthosis. Examination of the index case at 43 years of age

revealed bilateral foot drop, distal weakness, and wasting

in the upper and lower limbs, with mild proximal lower

limb weakness (Figure 1). Reflexes were absent and there

was sensory loss in the feet and hands. Cranial nerves

were normal apart from a trombone-shaped tongue

(Figure 1). There were no respiratory problems. Chest X-

ray and sleep study was normal; nerve conduction studies

and sural nerve biopsy indicated an axonal neuropathy

(Figure 2). Her sister hadmilder clinical features, and exam-

ination findings at the age of 40 years revealed bilateral

foot drop, distal weakness, and wasting in the upper and

lower limbs and areflexia. There were no respiratory prob-

lems and an axonal neuropathy was seen on nerve conduc-

tion studies (Table 1, Table 2, Table 3; see also Table S1

available online).

Known mutations in genes implicated in CMT2 were

excluded by Sanger sequencing and whole-exome

sequencing and linkage analysis were carried out, with

informed consent and IRB ethics approval UCL/UCLH
The American Journal of Human Gen
99/N103. Exome sequencing was

performed as previously described12

using the Agilent SureSelect kit and

run on the Illumina HiSeq 2500.

Sequences were aligned with the

Burrows-Wheeler Aligner, duplicates

were removed with Picard, indels

aligned and base quality scores recali-

brated with the Genome Analysis

Toolkit (GATK). The average sequenc-

ing depth was 55-fold with variants

being filtered according to pathoge-

nicity, inheritance pattern, and segre-

gation in the family.

Two compound heterozygousmuta-

tions were identified in the affected

individuals in immunoglobulin heli-

case m-binding protein 2 (IGHMBP2

[MIM600502]; RefSeq: NM_002180.2),

a nonsense 50 mutation (c.138T>A:

p.Cys46*) and a 30 frameshift muta-

tion in the last exon of the gene

(c.2911_2912delAG: p.Arg971Glufs*

4). The mother and father were hetero-

zygous for the c.138T>A and c.2911_
2912delAG mutations, respectively. These mutations were

absent from the 1000 Genomes database (healthy controls)

and our in-house exome database of 480 clinically and neu-

ropathologically normal controls. Mutations in IGHMBP2

have previously been associated with a different phenotype,

spinal muscular atrophy with respiratory distress type 1

(SMARD1 [MIM: 604320]), a devastating neuromuscular

disorder with muscle weakness and atrophy severely

affecting the diaphragm.13–16 SMARD1 mutations are typi-

cally missense in the helicase domain or mutations where

both alleles are loss-of-function, usually in the 50 region of

thegene.14,17Theonsetof thiscondition isusually inthefirst

few weeks of life with early respiratory failure and death in

infancy, typically before 12 months of age.14–39 The longest

surviving children reported were 13 and 15 years of age,

they had profound upper and lower limb muscle and trunk

weakness and respiratory compromise.18,30 Three children

have been reportedwith delayed onset of respiratory distress

of between 4 and 10 years old and designated juvenile

SMARD1.18,35,39
etics 95, 590–601, November 6, 2014 591



Figure 2. Morphological Appearances
of the Sural Nerve Biopsy in the Individual
with IGHMBP2 Mutation, Healthy Age-
Matched Control and Individual with
MFN2 Mutation
(A, D, and G) Sural nerve biopsy of a
healthy age-matched control.
(B, E, andH) Sural nerve biopsy of a patient
with IGHMBP2 mutation.
(C, F, and I) Sural nerve biopsy of an indi-
vidual with known MFN2 mutation. Semi-
thin resin sections stained with toluidine
blue (A, healthy age-matched control; C,
individual with known MFN2 mutation)
and methylene blue azure–basic fuchsin
(MBA-BF) (B, individual with IGHMBP2
mutation). When compared with the con-
trol (A), the biopsy of the individual with
IGHMBP2 mutation (B) shows a moderate
reduction in density of the large myelin-
ated fibers, whereas the small myelinated
fibers are well preserved and regeneration
clusters is not a feature. In contrast, in
the individual with MFN2 mutation (C),
there is near complete loss of large fibers
and severe widespread loss of small
myelinated fibers. Ultrastructural assess-
ment reveals occasional actively degener-
ating axonal profiles (E, red arrowhead)

in the individual with IGHMBP2 mutation. In the individual with MFN2 mutation rare regeneration clusters are seen (F, brown arrow-
head). The thickness and configuration of the myelin sheaths of remaining large (D and E, blue arrowheads) and small myelinated fibers
(G, H, and I, green arrowheads) are similar to that seen in a healthy age-matched control.
Scale bar represents 35 mm in (A)–(C) and 5 mm in (D)–(I).
IGHMBP2 was Sanger sequenced in a cohort of 85 likely

recessive CMT2 families, and CMT exome sequence data

was analyzed from the Hussman Institute for Human

Genomics. A total of 11 CMT2 families with IGHMBP2mu-

tations were identified (Table 1). All families with CMT2

and IGHMBP2 mutations showed an autosomal recessive

pattern of inheritance but in two families only one hetero-

zygous pathogenic mutation was identified (Table 1;

Figure 3). The phenotype consisted of childhood onset,

progressive CMT2 with mild proximal weakness and scoli-

osis in some cases. Sensory involvement was mild glove

and stocking and electrophysiology indicated a sensory

and motor axonal neuropathy in all cases (Tables 2 and

3). Two further cases had unusually shaped tongues

(Figure 1); none of the cases had significant respiratory

compromise, recurrent chest infections or previous venti-

lator assistance or sleep apnea. One case had trisomy 21

and Down syndrome (Tables 2 and 3).

Three families (five individuals) carried the p.Cys46*

nonsense variant in combination with either an AG dele-

tion, causing a p.Arg971Glufs*4 frameshift in the last

exon (family A and B), or a novel p.Phe202Val variant

(family C). Haplotype analysis indicated that a common

founder was unlikely in the individuals with p.Cys46*

variants (Figure S1, Table S2). In the IGHMBP2 helicase

domain40 (PDB code 4B3G), Cys46 is located in the b-bar-

rel of domain 1B and the side chain does not interact with

any neighboring residues. Phe202 is part of an a-helix

in domain 1A and is pathogenic, but not central to the pro-
592 The American Journal of Human Genetics 95, 590–601, Novemb
tein structure, suggesting amilder phenotype. Family 4 has

compound heterozygous missense mutations and presents

with a known severe pathogenic variant p. Val580Ile and

a novel variant p.Pro531Thr. Pro531 lies in a loop region

and is exposed to the solvent region on the protein surface.

The side chain of the residue does not interact with neigh-

boring residues and will likely have a milder phenotype

(Figure S2). Val580 lies near a b strand in the core of

domain 2A and interacts with Ser539 on a neighboring

strand to stabilize the RecA-like fold. Mutating Val580 to

isoleucine, which has a longer side chain, likely disrupts

the formation of the b sheet and hence destabilizes domain

2A (Figure S2). Similarly, in family G (p.Trp386Arg), mutat-

ing a hydrophobic residue to a positively charged residue

can result in protein instability due to the loss of some

favorable van der Waals contacts with neighboring hydro-

phobic residues. The other missense mutations at Asn245,

Val373, and Ala528 (families I and J) are also predicted

to cause protein instability, resulting in loss of functional

protein40 (Figure S2). In the two families with a single

IGHMBP2 mutation and recessive CMT2 phenotype, we

additionally analyzed the 50 promoter region and the

exome BAM files for sequencing coverage and carried out

IGHMBP2 cDNA sequencing in the two affected individ-

uals from family K. The cDNA analysis identified that the

stop mutation was hemizygous, suggesting a deletion on

the other allele (Figure S3; Table 1).

The neurophysiological pattern in individuals with

CMT2 and IGHMBP2 mutations was consistent with a
er 6, 2014



Table 1. List of IGHMBP2 Mutations Found in Individuals with Axonal Neuropathy

Family Ethnicity Sex Diagnosis
Age at
Onset

Current
Age Protein Change Nucleotide Change

A English Female CMT2 7 years 43 years p.Cys46* þ p.Arg971Glufs*4 c.138T>A þ c.2911_2912delAG

A English Female CMT2 6 years 40 years p.Cys46* þ p.Arg971Glufs*4 c.138T>A þ c.2911_2912delAG

B English Male CMT2 5 years 23 years p.Cys46* þ p.Arg971Glufs*4 c.138T>A þ c.2911_2912delAG

C Serbian Male CMT2 2 years 14 years p.Cys46* þ p.Phe202Val c.138T>A þ c.604T>G

C Serbian Female CMT2 2 years 15 years p.Cys46* þ p.Phe202Val c.138T>A þ c.604T>G

D Pakistani Female CMT2 þ
Down
Syndrome

7 years 20 years p.Pro531Thr þ p.Val580Ile c.1591C>A þ c.1738G>A

E Vietnamese Female CMT2 3 years 39 years p.Arg605* þ p.His924YTyr c.1813C>T þ c.2770C>T

F English Male CMT2 4 years 15 years p.Ser80Gly þ p.Cys496* c.238A>G þ c.1488C>A

G USA Female CMT2 6 years 10 years p.Trp386Arg þ p.Arg971Glufs*4 c.1156T>C þ c.2911_2912delAG

H Polish Female CMT2 4 years 28 years p.990_994del (Hom) c.2968_2980del (Hom)

I Italian Female CMT2 1 years 12 years p.Val373Gly þ p.Ala528Thr c.1118T>G þ c.1582G>A

I Italian Male CMT2 1 years 6 years p.Val373Gly þ p.Ala528Thr c.1118T>G þ c. 1582G>A

J Korean Male CMT2 5 years 41 years p.Asn245Ser (Het) c.734A>G (Het)

K English Male CMT2 7 years 20 years p.Arg605* (Het) þ deletion c.1813C>T (Het) þ deletion

K English Female CMT2 10 years 18 years p.Arg605* (Het) þ deletion c.1813C>T (Het) þ deletion

Hom, homozygous; Het, Heterozygous.
mildmotor and sensory axonal polyneuropathy (velocities

40–50 m/s) (Table 3). This is in contrast to SMARD1 with

markedly reduced motor conduction velocities (around

20 m/s), particularly in the legs, and a very marked reduc-

tion or loss of the compound muscle action potential.41

Nerve biopsy in CMT2 family A, individual 1 showed a

moderate reduction in density of the large myelinated

fibers, whereas the small myelinated fibers are well pre-

served. This is in contrast with the individual with a

MFN2 mutation where there is near complete loss of

large fibers and severe widespread loss of small myelinated

fibers. Ultrastructural assessment revealed occasional

actively degenerating axonal profiles in CMT2 with an

IGHMBP2 mutation, but these were rare in MFN2 patients

(Figure 2).

Fibroblast and lymphoblastoid cell lines from families 1

and 2 were used to investigate whether the c.138T>A

mutation resulted in nonsense mediated decay. The pres-

ence of both wild-type (WT) and mutant mRNA persisted

in carriers and affected individuals, indicating that

NMD has not been activated (Figure S3). Because the

c.2911_2912del mutation is located in the last exon of

the gene, we would not expect nonsense-mediated decay

to occur. Fibroblasts from individuals with SMARD1 with

heterozygous or homozygous frameshift mutations also

failed to show NMD (Figure S3), suggesting that IGHMBP2

is protected from NMD and likely produces truncated

protein products.

Considering the presumed existence of a truncated pro-

tein in the CMT2 cell lines, and for the missense muta-
The American
tions, immunofluorescence experiments were performed

to detect changes in the localization or potential clustering

of the truncated protein. Misfolded or mislocalized pro-

teins can interact inappropriately with other cellular fac-

tors to cause toxicity. However, results show no difference

between fibroblast lines of individuals with SMARD1 or

CMT2 in comparison with controls and carriers (Figure 4;

Figure S4).

Protein quantification was estimated in both fibroblast

and lymphoblastoid cell lines from IGHMBP2-associated

CMT2, SMARD1, carriers, and controls to investigate

whether abundance of residual protein correlates with

the severity of the disease (Table S3). When comparing

the fibroblast lines of six CMT2 and two SMARD1 individ-

uals against controls, a clear difference in protein levels

can be observed (Figure 5). Looking at the levels of the

protein in all fibroblast and lymphoblastoid cell lines, sin-

gle heterozygous carriers of IGHMBP2-associated CMT2

mutations were found to have intermediate IGHMBP2 pro-

tein levels in between affected and control individuals

(Figure 5). Interestingly, in the three individuals with the

p.Cys46* and p.Arg971Glufs*4 combination of variants, a

band was detected between 70–80 kDa. This band was

not observed in any other affected individuals, carriers or

controls (Figure 5). Using online tools, we estimated the

molecular weight of the truncated protein resulting from

the p.Cys46* variant at 52 kDa, whereas the p.Arg971-

Glufs*4 frameshift results in a protein of 109 kDa. In pre-

vious experiments, physicochemical properties of the WT

protein in comparison with the p.Thr493Ile variant,
Journal of Human Genetics 95, 590–601, November 6, 2014 593



Table 2. Electrophysiology Data for the Individuals with CMT2

Individual 1 2 3 4 5 6 7 8 9 10 12 13 11 14 15

Family no. A A B C C D E F G H I I J K K

Sex/age (y) F/43 F/40 M/23 M/14 F/15 F/19 F/39 M/15 F/10 F/28 F/12 M/6 M/41 M/20 F/18

Ethnicity English English English Serbian Serbian Pakistani Vietnam English USA Polish Italian Italian Korean English English

Age at first
symptoms

7 years 6 years <5 years <2 years <2 years <10 years <3 years 4 years 6
years

4 years 1 years 1 years 5 years 7 years 10 years

First
symptoms

Toe
walking

Toe
walking

Difficulty
walking

Delayed
milestones

Delayed
walking

hypotonia,
foot drop

Delayed
milestones

Foot
drop

Foot
drop

Hand
weakness

Limb
weakness

equino-
varus

Gait
difficulty

Foot
drop

Feet
deformity

Weaknessa

UL þþþ þþþ þþ þþþ þþþ þþþ þþþ þþ N þþ þþþ þ þ þþ þ

LL þþþ þþþ þþ þþþ þþþ þþþ þþþ þþ þþ þþþ þþþ þþ þþ þþ þ

Pinprickb

UL N N þ N N n/a N n/a N þ þ n/a þ N N

LL þ N þ N N n/a N n/a N n/a þ n/a þ N N

Vibrationc

UL N N N N N n/a N n/a N n/a n/a n/a þþ N N

LL þ N þ N N n/a N n/a N n/a n/a n/a þþ N N

Reflexes

UL Abs Abs Abs Abs Abs Abs Abs n/a þ þ/� Abs abs abs N N

LL Abs Abs Abs Abs Abs Abs Abs n/a Abs
(AJ)

Abs Abs abs abs AJ þ/�

Bulbar Rhomboid
tongue

Wasted
tongue

No No No Wasted
tongue

No n/a No No No No No No No

Respiratory
support

No No No No No No No No No No No No No No No

Overall
maximal
function

Independent
ambulation

Independent
ambulation

Independent
ambulation

n/a n/a Independent
ambulation

n/a n/a n/a n/a Independent
ambulation

Walking
with
stick

Independent
ambulation

Independent
ambulation

Independent
ambulation

Walking
aids

AFO AFO (past) n/a WC WC WC WC since
16

AFO AFO WC WC since
age 5 years

Bilateral
support

AFO AFOþCrutches No

AFO, ankle-foot orthosis; n/a, not available; LL, lower limbs; UL, upper limbs; WC, wheelchair.
aWeakness: N, normal; þ > 4, distal muscles, þþ < 4, distal muscles, þþþ, proximal weakness (knee flexion and extension, elbow flexion and extension or above).
bPinprick and vibration sensation: N, normal; þ, reduced below wrist/ankle; þþ, reduced below knee/elbow; þþþ, reduced at or above elbow/knee.
cReflexes: N, normal/present; þþ, brisk; þþþ, brisk with extensor plantars; þ/�, present with reinforcement; abs, absent; abs (AJ), absent ankle jerks only.
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Table 3. Electrophysiology Data from the Individuals from Our CMT2 Cohort

Individual 1 2 3 4 5 6 7 11 12 13 14 15

Family no. A A B C D D E I I J K K

Age at examination (y) 17 25 16 20 13 7 32 7 1.5 40 12 10

Radial n.

Sensory Amp 2 mV Abs Abs 13 mV NT NT n/a Abs n/a NT 16 mV n/a

Sensory CV 50 m/s Abs Abs 69 m/s NT NT n/a Abs n/a NT 63 m/s n/a

Median n.

Motor DML NT Abs Abs 3.5 ms 5.1 ms 3.1 ms Abs Abs n/a 6 ms 2.8 ms 3.2 ms

Motor Amp NT Abs Abs 5.7 mV 0.02 mV 2.8 mV Abs Abs n/a 0.7 mV 18.8 mV 21.8 mV

Motor CV NT Abs Abs 46 m/s 30 m/s 42 m/s Abs Abs n/a 33.6 m/s 58 m/s 58 m/s

Sensory Amp Abs Abs Abs 6 mV Abs 20 mV 2.2 uV Abs Abs Abs 32 mV 26 mV

Sensory CV Abs Abs Abs 45 m/s Abs 49 m/s 59.8 m/s Abs Abs Abs 60 m/s 52 m/s

Ulnar n.

Motor DML 3.8 ms 3.3 ms 4.3 ms 3.5 ms NT NT Abs n/a n/a 3.1 2.8 ms 3.2 ms

Motor Amp 0.8 mV 3.7 mV 5.7 mV 2.9 mV NT NT Abs n/a n/a 14.3 8.9 mV 12.8 mV

Motor CV 51 m/s 51 m/s 45 m/s 46 m/s NT NT Abs n/a 55 m/s 41.1 58 m/s 62 m/s

Sensory Amp NT Abs Abs Abs Abs 12 mV 2.0 uV n/a n/a Abs 16 mV 14 mV

Sensory CV NT Abs Abs Abs Abs 48 m/s 50.3 m/s n/a n/a Abs 67 m/s 53 m/s

Peroneal n.

Motor DML NT Abs Abs NT NT Abs n/a Abs Abs Abs Abs 4.9 ms

Motor Amp NT Abs Abs NT NT Abs n/a Abs Abs Abs Abs 4.6 mV

Motor CV NT Abs Abs NT NT Abs n/a Abs Abs Abs Abs 51 m/s

Tibial n.

Motor DML 9.3 ms Abs Abs NT Abs Abs n/a n/a Abs Abs 6.3 ms 4.3 ms

Motor Amp 0.08 mV Abs Abs NT Abs Abs n/a n/a Abs Abs 2 mV 8.2 mV

Motor CV 34 m/s Abs Abs NT Abs Abs n/a n/a Abs Abs 46 m/s 50 m/s

Sural n.

Sensory Amp Abs Abs Abs Abs Abs Abs n/a Abs Abs Abs 38 mV 35 mV

Sensory CV Abs Abs Abs Abs Abs Abs n/a Abs Abs Abs 59 m/s 49 m/s

Abs, absent; NT, not tested.
known to cause SMARD1, have been investigated. Results

showed a degradation band at 75 kDa that was primarily

present in the p.Thr493Ile transfected cells and comprises

the N-terminal amino acid residues 1–674.8 Similar to this

variant, the p.Cys46* variant or the p.Arg971Glufs*4

frameshift in these individuals could alter the physico-

chemical properties of the protein and results in a degrada-

tion product at 75 kDa. Because neither of the carriers with

either the p.Cys46* and p.Arg971Glufs*4 variant show a

band at this molecular weight, it could be hypothesized

that the lower levels of functioning protein in the com-

pound heterozygous individuals activate a feedback mech-

anism that preserved any residual truncated protein.

The mRNA expression of IGHMBP2 in six brain regions

was assessed in humans during development.42 After birth,
The American
the expression of IGHMBP2 shows an increase in the cere-

bellar cortex, whereas in other brain regions there is a small

decrease. IGHMBP2 expression levels seem to be constant

throughout adult life (Figure S5). In adults, using data

from ten regions of normal human postmortem brain tis-

sue,42 the highest IGHMBP2 expression levels were also

in the cerebellum. Expression in other body tissues was

ubiquitous, with moderate expression in fibroblasts and

lymphoblastoid cell lines (Figure S5). These data indicate

the importance of the IGHMBP2 protein in the peripheral

nerve but suggest that in other tissues with high expres-

sion, such as the cerebellum, the protein has a less impor-

tant function as individuals with IGHMBP2 mutations do

not have cerebellar signs. CMT2 is characterized by a high-

ly heterogeneous genotype, with mutations in several
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Figure 3. Pedigrees of Four CMT2 Families Affected by IGHMBP2 Mutations and Chromatograms of These Mutations
(A–D) Pedigrees of family A (A), family B (B), family C (C), and family D (D).
(E) A schematic of IGHMBP2 (993 amino acids) showing the helicase, R3H, and ZnF domains. The relative base pair positions of the iden-
tified mutations are located. Mutations in bold are nonsense or frameshift and result in an altered transcript. * ¼ pathogenic mutations
found before in SMARD1 patients.
(F) Conservation of the missense mutations found in IGHMBP2. A selected subset of 9 species were chosen, representing the 100 species
available at the USCS browser. Red boxes indicate the location of the amino acid changed due to the mutation.
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Figure 4. Localization of the IGHMBP2
Protein in Fibroblasts
Scale bar represents 44.00 mm. Green repre-
sents IGHMBP2; blue represents 4’,6-dia-
midino-2-phenylindole (DAPI) staining
for the nucleus. No difference in clustering
of the truncated protein is found between
the control and both the affected individ-
uals and the carrier. SMARD1 ¼ p.Gly98Fs;
CMT2 ¼ p.Cys46* þ p.Arg971Glufs*4;
Carrier¼ p.Arg971Glufs*4. Cells were fixed
in 4% paraformaldehyde, permeabilized
in 0.05% Triton X-100 and blocked in
10% FBS. Coverslips were incubated with
a 1:1000 dilution of primary antibody
(Millipore) for 60 min, washed with PBS
and incubated with a 1:2000 dilution of
goat anti-mouse immunoglobulin G Alexa
Fluor 488-A11008 secondary antibody
(Invitrogen) for 60 min. Following, the
coverslips were washed with PBS and
mounted on microscope slides with Pro-
long Gold Antifade with DAPI and imaged
using a Zeiss 710 confocal microscope
(Carl Zeiss AG) with the 633 oil immersion
objective.
unique genes being responsible for disease. The genetic

background plays an important role in the classification

of the disease and is crucial to find common pathways to

explain the characteristic features seen in most affected

individuals. No direct interactions between IGHMBP2

and any of the CMT2 proteins have been found so far.

However, with the GeneMANIA prediction server,43 the

presence of a network of interacting proteins known in

CMT2 with IGHMBP2 can be observed (Figure S6). Given

that many people with CMT2 are genetically undefined,

and with the increasing amount of genetic data available,

network analysis will be important in identifying causative

and modifying gene pathways.

Together, our studies indicate that autosomal recessive

IGHMBP2 mutations are a cause of CMT2. The clinical pre-

sentation is of a relatively pure form of CMT2, some more

severe than others as seen in Tables 2 and 3, and typically

what is seen in a number of the other genetic causes of

CMT2, such as those individual with defects in MFN2,

MPZ, MED25, and Lamin A/C genes. In contrast, SMARD1

usually presents in the first few days or weeks of life and

children usually die before they are 1 year old. In addition,

neurophysiology is much milder in CMT2 as compared to

SMARD1 (Table 3), and the CMT2 sural nerve biopsy shows

similar mild features (Figure 2).

Previous work by Guenther and Grohmann and

colleagues also quantified the residual IGHMBP2 protein

levels in a mouse model of SMARD1 and in lymphoblas-

toid cell lines from children with SMARD1. They found
The American Journal of Human Gen
significant differences in the

IGHMBP2 protein levels of individ-

uals with typical congenital SMARD1,

juvenile SMARD1 (respiratory distress
at 3.5 months), and controls. Despite the reduction in

protein levels, IGHMBP2 mRNA levels were not decreased

in individuals with SMARD1 and IGHMBP2 mutations, an

identical result which we also found in individuals with

CMT2 (data not shown). This suggests that defective or

truncated proteins undergo posttranslational degradation.

Although we have found a number of IGHMBP2 muta-

tions associated with CMT2, and mutations are usually

different to SMARD1 in type and combination and result

in higher residual protein levels in CMT2 as compared

with SMARD1 and controls, we are cautious whether

this always correlates with the onset of disease and

phenotype. Protein levels are reduced in missense and

nonsense or frameshift mutations, but the numbers are

too few to correlate exact figures and there might be dif-

ferences between mutation types. In addition, these ex-

periments were carried out on material such as fibroblast

and lymphoblastoid cell lines, which are not primarily

affected in CMT2 or SMARD1. However, IGHMBP2

mRNA is widely expressed throughout the body and it is

likely that these tissues might reflect the consequences

of mutations. A further genetic factor that might modify

the phenotype was identified in the IGHMBP2 mouse

model (nmd) and was contained within the BAC-27k3

transgene. Expression of this transgene completely

rescued the reduction in the total number of myelinated

axons in the nmd femoral motor nerves. The syntenic

genomic area in humans contains four tRNATyr genes

and the activator of basal transcription 1 (ABT1) gene;29
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Figure 5. Protein Levels of IGHMBP2
Normalized Against an Actin Control in
All Individuals for Both Fibroblasts and
Lymphoblastoid Cell Lines
(A) Protein levels in fibroblast cell lines of
families A, B, and C.
(B) Protein levels in lymphoblastoid cell
lines of families A and B. Family A consists
of two affected individuals (II.1þ II.2) with
lower levels of the protein in fibroblasts
in comparison with the carrier of the
p.Arg971Glufs*4 mutation (I.1). This is
consistent in lymphoblasts, where individ-
ual II.2 has lower levels than the carrier
(I.1). Family B consists of one affected
individual (I.1) with lower levels of the
IGHMBP2 protein in comparison with the
carriers of the p.Cys46* mutation (II.2,
I.1) or the p.Arg971Glufs*4 mutation
(I.2). These all have lower levels than the
unaffected sibling of the patient (II.3).
This is consistent in the lymphoblasts.
For family C, only two patient fibroblasts
cell lines were available, both showing
reduced levels in comparison with con-
trols. All SMARD1 fibroblasts and lympho-
blasts have lower levels than any of the
individuals. * ¼ individuals with CMT2.
(C) Protein levels of the IGHMBP2 protein
normalized against actin in controls,
CMT2 individuals, and SMARD1 indi-
viduals. There is a significant difference
between all groups. All samples were stan-
dardized against two controls: C1 and C2.
Data are presented as mean 5 SEM.
Statistical analysis was performed with
Bonferroni’s multiple comparison test.
*p < 0.05; ***p < 0.0001.
(D) Existence of a degradation band
around 70–80 kDa in individuals with
CMT2 and a combination of the p.Cys46*
and p.Arg971Glufs*4 mutations.
Cells were lysed in 50 ml of NP40 buffer
(150 mM Tris (pH 8), 1 mM EDTA,
150 mM NaCl, 0.5% NP40) containing

13 complete protease inhibitor cocktail (Roche). 80 mg of protein was run on a 4%–12% Bis-Tris gel, blocked in 5% (w/v) milk for
1 hr at room temperature. Membranes were incubated overnight with the primary antibody (Millipore) at 4�C. b-actin (Sigma) was
used as a loading control.
no variations were found in these genes in the index cases

with CMT2 studied here.

IGHMBP2 consists of 993 amino acids, 7 putative

helicase motifs,44 and a DEAD box-like motif, typical for

RNA helicases.45 IGHMBP2 contains a DNA-binding

domain at position 638�786, including the helicase

motifs V and VI44,46,47 and the nucleic acid-binding R3H

motif48 is involved in immunoglobulin switching,47 in

pre-mRNA processing,45 and in regulation of transcription

by DNA binding.49 In this respect, IGHMBP2 resembles the

SMN protein, which binds directly to DNA and RNA.50,51

Senataxin (SETX [MIM 608465]) encodes an 302.8 kD

protein that contains a DNA/RNA helicase domain with

strong homology to human UPF1 regulator of nonsense

transcripts homolog (UPF1 [MIM 601430]) and IGHMBP2.

Heterozygous mutations in SETX cause a type of motor

neuronopathy called ALS4 and different mutations, in-
598 The American Journal of Human Genetics 95, 590–601, Novemb
herited in a recessive fashion cause an ataxia with neuro-

pathy called ataxia-oculomotor apraxia type 2 (AOA2

[MIM 606002]). The overlap in homology suggests that

DNA/RNA helicase dysfunction might play an important

role in the development of different types of neuropathy.

The helicase domain of SETX also showed strong homol-

ogy with UPF1, which, like IGHMBP2, also plays a role in

producing mature mRNA.52 We suggest that mutations in

IGHMBP2 may lead to the dysfunction of the helicase

activity of this protein. It is conceivable that the reduced

protein levels or the abnormal IGHMBP2 protein in

SMARD1 and CMT2 impair the capacity of neurons to

produce error-free mature mRNA, thus leading to neuronal

degeneration. The overlap in gene type and function with

the identification of different phenotypes illustrate the

increasingly recognized shared molecular mechanisms

that underlie the inherited neuropathies.
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Supplemental Data

Supplemental Data include six figures and three tables and can be

found with this article online at http://www.cell.com/ajhg.
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Figure S1 Haplotyping results for families A,B and C. (A) Pedigree of family A (B) Pedigree of Family 
B (C) Pedigree of family C (D) Markers that were shared between the three families for the c.138T>A 
mutations or the two families for the c.2911_2912delAG. Distance of the genetic markers to the gene 
were the following: DS11S1889: 1,357,985; DS11S4178: 481,951; D11D4113: 57,567; D11S4095: 
560,092; D11S4139:  1,796,202. 



 

Figure S2 Mapping of the missense mutations of family D, I and K on to the IGHMBP2 structure. All 
the missense mutations are mapped onto the structure of hIghmbp2-RNA (PDB code: 4B3G) with the 
Cα atoms of the mutated residues shown as red spheres. AMPPNP (in grey) is modelled by 
superposition of the structure of hIghmbp2-RNA with that of human Upf1ΔCH-AMPPNP (PDB 
code:2GJK). The bound ssRNA is shown as yellow tube. (A)  Missense mutations in Family D (B and 
C) Missense mutation in Family I. (D) Missense mutations in Family J. 

 

 

Figure S3 Sequence electropherograms of the p.138T>A mutation in the mRNA of lymphoblasts 

and fibroblasts of CMT2 individuals and carriers, the c.1813C>T mutation in fibroblasts of CMT2 

individuals, and frameshift mutations in fibroblasts of SMARD1 individuals. The p.138T>A 

nonsense mutation is still present in the mRNA of both affected individuals and carriers in 

comparison with mRNA from a non-mutation control, indicating NMD is not present. The same is 



observed for the frameshift mutations in the SMARD1 fibroblasts in comparison with mRNA from a 

non-mutation control, indicating there is no NMD. RNA was extracted from fibroblasts using 

QIAzol
® 

reagent (Invitrogen, United States) and the miRNeasy Mini kit (Qiagen, UK) whereafter 

cDNA was synthesized with SuperScript II reverse transcriptase (Invitrogen, United states). The 

resulting cDNA was used to perform a standard PCR reaction and sequencing analysis.  

 

Figure S4 Localization of the IGHMBP2 protein in fibroblasts. Scale bar = 58.00 μm. (A) Green: 
IGHMBP2; Blue: 4',6-diamidino-2-phenylindole (DAPI) staining for the nucleus. No difference in 
clustering of the truncated protein is found between the control and both the affected individuals and 
the carrier. (B) Green: Incubation with Alexa Fluor 488-A11008 secondary antibody only; Blue: 4',6-
diamidino-2-phenylindole (DAPI) staining for the nucleus. A negligible background can be observed. 
(C) Green: Actin; Blue: 4',6-diamidino-2-phenylindole (DAPI) staining for the nucleus. The overall 
structure of the cells is similar. SMARD1= p.Gly98Fs; CMT2 = p.Cys46* + p.Arg971Glufs*4; Carrier = 
p.Arg971Glufs*4. Cells were fixed in 4% paraformaldehyde, permeabilised in 0.05% Triton X-100 and 
blocked in 10% FBS. Cover slips were incubated with a 1:1000 dilution of primary antibody (Millipore, 
UK) for 60 minutes, washed with PBS and incubated with a 1:2000 dilution of goat anti-mouse IgG 
Alexa Fluor 488-A11008 secondary antibody (Invitrogen, United states) for 60 minutes. Following, the 
cover slips were washed with PBS and mounted on microscope slides with Prolong Gold Antifade 
with DAPI and imaged using a Zeiss 710 confocal microscope (Carl Zeiss AG, Germany) with the 63x 
oil immersion objective.  
 

 



 

 

Figure S5 mRNA expression levels in different tissues at different stages of life.  (A) Data from the 

Human Brain Transcriptome (HBT) project (http://hbatlas.org/), Expression of IGHMBP2 is slightly 

elevated in Cerebellar cortex and decreased in other tissues after birth (300 days). Expression stays 

constant throughout life. CBC: the cerebellar cortex, MD: mediodorsal nucleus of the thalamus, STR: 

striatum, AMY: amygdala, HIP:hippocampus, NCX: 11 areas of the neocortex. (B) Data from the UK 

Brain Expression Consortium (http://caprica.genetics.kcl.ac.uk:51519/BRAINEAC/). Regional brain 

distribution of IGHMBP2 mRNA expression in the normal human brain was determined using 

microarray analysis of human post-mortem brain tissue from the UK Human Brain Expression 

Consortium (Trabzuni et al, 2011).  Expression is highest in cerebellum, followed by the cortex. 

CRBL: cerebellum,  FCTX: frontal cortex, HIPP: hippocampus, MEDU: medulla, OCTX: occipital 

cortex, PUTM: putamen, SNIG: substantia nigra, TCTX: temporal cortex, THAL: thalamus, WHMT: 

white matter. (C) Expression of IGHMBP2 (top row) in various human tissues was determined by 

reverse transcriptase polymerase chain reaction using gene-specific primers against cDNA 

generated from tissue-specific RNA as compared to the housekeeping gene GAPDH (bottom row). 

Expression of IGHMBP2 is ubiquitous, with a moderate expression in fibroblasts (18) and 

lymphoblastoid cell lines (19), used in experiments, 1 = ladder;  2  = Thrachea; 3 = Thyroid; 4 = 

Prostate; 5 = Skeletal muscle; 6 = Spleen; 7 = Small intestine; 8 = Thymus; 9 = Lung; 10 = Placenta; 

11 = Kidney; 12 = Adipose tissue; 13 = Brain; 14 = Esophagus; 15 = Colon; 16 = Heart; 17 = Liver; 18 

= Fibroblasts; 19 = Lymphoblastoid cell lines; 20 = no cDNA control. Expression was determined 

using gene-specific primers against cDNA generated from tissue-specific RNA in the FirstChoice 

Human Total RNA Survey Panel (Life Technologies, Carlsbad, USA). The cDNA was synthesised 

with SuperScript II reverse and the resulting cDNA product was then used as a template for the RT-

PCR reaction at 30 cycles with primers specific to IGHMBP2 cDNA and a comparative reaction with a 

GAPDH housekeeping gene. This was visualised on a 2% agarose gel with EtBr. 



 

 

Figure S6 Protein interaction network of IGHMBP2 with several CMT2 proteins. AARS: Alanyl tRNA 
synthetase; DNM2: Dynamin 2; DHTKD1: dehydrogenase E1 and transketolase domain-containing 1; 
DYNC1H1: dynein, cytoplasmic 1, heavy chain 1; GDAP1: ganglioside-induced differentiation-
associated protein 1; GARS: Glycyl tRNA synthetase; HINT1: Histidine triad nucleotide binding 
protein 1; HSBP!: Heat Shock Protein 27 kDa; HSPB8: Heat shock protein, 22 kDa; KIF1β: Kinesin 
family member 1B; MFN2: Mitofusin 2; MPZ: myelin protein zero; RAB7: Ras-related protein 7; 
TRPV4: Transient receptor potential cation channel subfamily V member 4. 

 
 



Individual 1 2 3 4 5 6 7 8 9 10 12 13 11 14 15 

Family no. A A B C C D E F G H I I J K K 

Sex/age 
(y) 

F/42 F/38 M/23 M/14 F/15 F/19 F/39 M/15 F/10 F/28 F/12 M/6 M/41 M/20 F/18 

Ethnicity English English English Serbian Serbian Pakistani 
Vietnam

ese 
English USA Polish Italian Italian Korean English English 

Consangui
nity 

No No n/a No No                                                                                     No No n/a n/a No No No No No No 

Mutation 

p.Cys46* 
+ 

p.Arg971
Glufs*4 

p.Cys46* 
+ 

p.Arg971
Glufs*4 

p.Cys46*
+ 

p.Arg971
Glufs*4 

p.Cys46* 
+ 

p.Phe202
Val 

p.Cys46* 
+ 

p.Phe202
Val 

p.Pro531T
hr + 

p.Val580Ile 

p.Arg605
* + 

p.His924
Tyr 

p.Ser80G
ly + 

p.Cys496
* 

p.Trp386A
rg + 

p.Q970fs 

p.990_99
4Fs 

(Hom) 

p.Val373G
ly + 

p.Ala528T
hr 

p.Val373
Gly + 

p.Ala528T
hr 

p.Asn245
Ser (Het) 

p.Arg605* 
(Het) 

p.Arg605
* (Het) 

Age at first 
symptom/

s 
7 y 6 y <5 y <2 y <2 y <10 y < 3y 4 y 6 y 4 y 1y 1y 5 y 7y 10y 

First 
symptom/

s 

Toe 
walking, 

high 
stepping 

gait 

Toe 
walking, 

hand and 
leg 

weakness 

Difficulty 
walking, 

foot drop 

Delayed 
motor 

milestone
s, 

hypotonia 

Delayed 
walking 

Developm
ental 
delay, 

hypotonia, 
foot drop 

Delayed 
motor 

mileston
es 

Foot 
drop 

Foot drop, 
high 

stepping 
gait 

Hand 
weakness
, difficulty 

walking 

Congenita
l: bilateral 

hand 
fingers 
flexion 

and 
equinovar

us foot  

Congenit
al: 

bilateral 
equinova
rus foot 

Gait 
difficulty 

Foot drop, 
clumsines

s 

Feet 
deformity
, heel/toe 
walking, 

gait 
difficulty 

Hand 
involveme

nt 

Intrinsic 
hand 

muscles 
'never 
fully 

develope
d' 

First 
noticed at 

age 6 y 
(thenar 

muscles) 

First 
noticed at 
age 10 y 
(thenar 

muscles) 

Yes  
(severe)  

Yes 
(severe) 

Present at 
age 11 y          

(on exam) 

At onset?  
Not 

recogniz
ed; later 
definitely 

n/a n/a 

First 
noticed 

at age 4 y 
(thenar 

muscles) 

severe yes 
Yes (8 
years) 

Intrinsic 
hand 

muscles 
symmetric

ally 

Intrinsic 
hand 

muscles 
mildly 

affected 

Weakness
a
                               

    UL +++ +++ ++ +++ +++ +++ +++ ++ N ++ +++ + + ++ + 

    LL +++ +++ ++ +++ +++ +++ +++ ++ ++ +++ +++ ++ ++ ++ + 



Pinprick
b
                               

    UL N N + N N n/a N n/a N 

hard to 
be 

estimate
d 

+ n/a + N N 

    LL + N + N N n/a N n/a N n/a + n/a + N N 

Vibration
c
                               

    UL N N N N N n/a N n/a N n/a n/a n/a ++ N N 

    LL + N + N N n/a N n/a N n/a n/a n/a ++ N N 

Reflexes                               

    UL Abs Abs Abs Abs Abs Abs Abs n/a + +/- Abs abs abs N N 

    LL Abs Abs Abs Abs Abs Abs Abs n/a Abs (AJ) Abs Abs abs abs AJ +/- 

Bulbar 
involveme

nt 

No 
(rhomboi
d-shaped 
tongue) 

Wasted 
tongue 

No No No                                                                                     
Wasted 
tongue 

No n/a No No No No No No No 

Respirator
y 

compromi
se 

No No No No No No No No No No No No No No No 

Ever 
needed 

ventilation 
or 

respiratoy 
support  

No No No No No No No No No No No No No No No 



Musculosk
eletal 

deformitie
s 

Equinus 
feet 

deformity
, Achilles 
tendon 

contractu
re 

(surgery) 

n/a 
Feet 

deformity 
(surgery) 

Lumbar 
hyperlord

osis, 
scoliosis 

Lumbar 
hyperlord

osis 

Lumbar 
hyperlordo

sis, limb 
contractur

es 

Varus 
feet 

deformit
y, 

dislocate
d hips 

No spinal 
deformit

y 

No spinal 
deformity, 

Achilles 
tendon 

contractur
e 

Scoliosis 

Achilles 
tendon 

contractu
res, 

scoliosis  

Achilles 
tendon 

contractu
res 

Thenar 
muscle 
atrohy 

(right>lef
t), Pes 
cavus  

Equinus 
feet 

deformity 
(surgery) 

Equinus 
feet 

deformity 
(surgery) 

Overall 
maximal 
function 

Independ
ent 

ambulati
on 

Independ
ent 

ambulati
on 

Independ
ent 

ambulati
on 

n/a n/a 

Independe
nt 

ambulatio
n 

ambulati
on lost in 

early 
teens 

n/a n/a n/a 

Independ
ent 

ambulatio
n  

Walking 
with 

support 

FDS(3), 
CMTNS(1
9), 9 hole 
peg test 

(23.3 sec) 

Independe
nt 

ambulatio
n 

Independ
ent 

ambulati
on 

Walking 
aids 

AFO 
AFO 

(past) 
n/a WC WC WC 

WC since 
16 

AFO AFO WC 
WC since 

age 5 
years 

Bilateral 
support 

AFO 
AFO+Crutc

hes 
No 

Other 
features 

n/a 

Wasted 
right 

shoulder 
and lower 

cranial 
nerves  

n/a n/a 
Without 

other 
features 

Trisomy 21 
mosaicism 

n/a 

Small 
focus of 
increase
d signal 
in right 

cerebella
r 

hemisph
ere 

(brain 
MRI) 

McCune 
Albright 

syndrome 
(unconfir

med) 

Obese 

Marked 
worsenin
g during 
febrile 
illness 

No 
Sensory 
ataxia 

Without 
other 

features 

Without 
other 

features 

Table S1 AFO = ankle-foot orthosis; n/a = not available; LL= lower limbs; UL= upper limbs; WC = wheelchair      
  
a Weakness: N normal; + >4 distal muscles, ++ <4 distal muscles, +++ proximal weakness (knee flexion and extension, elbow flexion and extension or 
above)  
b Pinprick and vibration sensation: N normal; + reduced below wrist/ankle; ++ reduced below knee/elbow; +++ reduced at or above elbow/knee.  
  
c Reflexes: N normal/present; ++ brisk; +++ brisk with extensor plantars; +/- = present with reinforcement; abs = absent; abs (AJ) = absent ankle jerks only 



Microsatellite 
marker name  Chromosome location 

Distance from 
IGHMBP2  

D11S1889 11:67313143-67313325 1.51 cM 

D11S4178 11:68189108-68189359 1.12 cM 

IGHMBP2  11: 68671310-68708067 0 cM 

D11S4113 11:68765634-68765859 0.1 cM 

D11S4095 11:69268159-69268361 1.09 cM 

D11S4139 11:70504269-70504461 3.97 cM  

Table S2 Informative microsatellite markers used for haplotyping of  
the CMT2 families. cM = centimorgan.  

 

 

Patient Family 
no. 

Sex/Age Fibroblasts Lymphoblastoid 
cell lines  

Phenotype Mutation 

1 A F/41 A. II.1  CMT2 p.Cys46* + 
p.Arg971Glufs*4 

2 A F/38 A. II.2 A. II.2 CMT2 p.Cys46* + 
p.Arg971Glufs*4 

3 B M/23 B. II.1 B. II.1 CMT2 p.Cys46* + 
p.Arg971Glufs*4 

4 C M/14 C. II.1  Severe CMT2 p.Cys46* + 
p.Phe202Val 

5 C F/15 C. II.2  Severe CMT2 p.Cys46* + 
p.Phe202Val 

6 D F/19 D. II.1  CMT2 p.Pro531Thr + 
p.Val580Ile 

Carrier 1 A M/72 A. I.1 A. I.1 Unaffected 
carrier 

p.Arg971Glufs*4 

Carrier 2 B M/57 B. I.1 B. I.1 Unaffected 
carrier 

p.Cys46* 

Carrier 3 B M/21 B. II.2 B. II.2 Unaffected 
carrier 

p.Cys46* 

Unaffected  
Sibling 

B M/19 B. II.3 B. II.3 Unaffected   

Carrier 4   B F/54 B. I.2 B. I.2 Unaffected 
carrier 

p.Arg971Glufs*4 

SMARD1 1   <1y S1  SMARD1 p.Gly98Fs 

SMARD1 2   <1y S2  SMARD1 p.Gln544Fs + p. 
Arg637Cys 

SMARD1 3    S3 SMARD1 p.His213Arg 

SMARD1 4    S4 SMARD1 c.2611+1G>T 

Control 1  F/54 C1  Unaffected  

Control 2  M/9 C2  Unaffected  

Control 3  F/39 C3  Unaffected   

Control 4  Unknown C4  SMN1  

Table S3 List of fibroblasts and lymphoblastoid cell lines available for investigation of protein levels. 
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