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ABSTRACT

The Orthologous Matrix (OMA) project is a method
and associated database inferring evolutionary re-
lationships amongst currently 1706 complete pro-
teomes (i.e. the protein sequence associated for
every protein-coding gene in all genomes). In this
update article, we present six major new develop-
ments in OMA: (i) a new web interface; (ii) Gene
Ontology function predictions as part of the OMA
pipeline; (iii) better support for plant genomes and
in particular homeologs in the wheat genome; (iv)
a new synteny viewer providing the genomic con-
text of orthologs; (v) statically computed hierar-
chical orthologous groups subsets downloadable
in OrthoXML format; and (vi) possibility to export
parts of the all-against-all computations and to com-
bine them with custom data for ‘client-side’ orthol-
ogy prediction. OMA can be accessed through the
OMA Browser and various programmatic interfaces
at http://omabrowser.org.

INTRODUCTION

The flood of newly sequenced genomes presents a daunt-
ing interpretation challenge. Fortunately, the common ori-
gin of all living beings implies that many genes are con-
served across species––in some cases despite billions of
years of intervening evolution. Elucidating evolutionary re-
lationships amongst genes and genomes is thus a key step
in the analysis of new data. Sequences that have a common
ancestry––homologs––are typically refined into orthologs,

which are pairs of genes that started diverging via specia-
tion, and paralogues, which are pairs of genes that started
diverging via gene duplication (1,2). This distinction is use-
ful in a broad range of contexts, including multigene phylo-
genetic inference, propagation of experimental knowledge
from model organisms to non-model organisms and the
study of gene evolution and adaptation (reviewed in 3,4).
The need for orthology inference has led to the development
of numerous methods (reviewed in 5) and databases, notably
including EggNOG (6), Ensembl Compara (7), Inparanoid
(8), MBGD (9), OrthoDB (10), OrthoMCL (11), Panther
(12), PhylomeDB (13), Plaza (14) and OMA (15).

The OMA (Orthologous MAtrix) project is a method
and database for the inference of orthologs amongst com-
plete proteomes (i.e. the protein sequences associated for ev-
ery protein-coding gene in all genomes). Initiated in 2004,
OMA has undergone 17 major releases, steadily increasing
the number of proteomes under consideration from 150 to
1706 across all domains of life. Besides its large scope, the
distinctive features of OMA are the high specificity of the
inferred orthologs (e.g. 16–19), feature-rich web interface,
availability of data in a wide range of formats and interfaces
and frequent update schedule of two releases per year.

In this update paper, after providing a brief review of
the OMA pipeline, we present major new features recently
added to OMA: a new web interface and reorganization, in-
tegrated gene ontology function prediction, better support
of plant genomes, a synteny viewer depicting orthology rela-
tionships in their genomic context, statically computed hier-
archical orthologous groups (HOGs) and the possibility to
export genomes including all-against-all computations and
to combine them with custom genome/transcriptome data.
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OVERVIEW OF THE OMA INFERENCE PIPELINE

OMA’s inference algorithm consists of three main phases:

(i) First, to infer homologous sequences (sequences of
common ancestry), we compute all-against-all Smith–
Waterman alignments between every sequence and re-
tain significant matches.

(ii) Second, to infer orthologous pairs (the subset of ho-
mologs related by speciation events), mutually clos-
est homologs are identified based on evolutionary dis-
tances, taking into account distance inference uncer-
tainty and the possibility of hidden paralogy due to
differential gene losses (20,21).

(iii) Third, these orthologs are clustered in two different
ways, which are useful for different purposes: (a) we
identify cliques of orthologous pairs (OMA groups).
Because all relations in one OMA group are ortholo-
gous, these are useful as marker genes for phylogenetic
reconstruction and tend to be highly specific (18); (b)
we identify HOGs, groups of genes defined for partic-
ular taxonomic ranges and identify all genes that have
descended from a common ancestral gene in that tax-
onomic range (22).

OMA infers evolutionary relationships between genes
from protein sequences, using one protein sequence per
gene. If multiple splicing variants are possible, the best one
in terms of matches with other genomes is selected, which
is not necessarily the longest one (15).

NEW WEB INTERFACE WITH BETTER ORGANIZA-
TION

The OMA browser has been reorganised and redesigned
to make it user-friendlier. The menu bar provides a con-
sistent and persistent overview of all main functionalities.
The documentation and help pages have been restructured
and extended. The new ‘responsive’ layout takes advantage
of large contemporary screens whilst also accommodating
small screens such as smartphones and tablets. The landing
page now provides pointers to introductory explanations
for new users and recent announcements for returning users
(Figure 1).

GENE ONTOLOGY FUNCTION INFERENCE AS PART
OF THE OMA PIPELINE

One key motivation for orthology inference is to com-
putationally predict the roles that genes play in living
organisms––e.g. Cellular Component, Molecular Function
and Biological Process of the Gene Ontology (23). For
many years, Gene Ontology (GO) annotations from the
UniProt-GOA database (24) have been linked to all se-
quences in OMA. Additionally, we now provide inferred
annotations based on orthology relationships: within the
orthologous groups, we propagate GO annotations across
different species.

To infer GO annotations, we start with curated anno-
tations that are based on direct evidence from the lit-
erature: GO evidence codes EXP, IDA, IPI, IMP, IGI
and IEP (http://geneontology.org/page/guide-go-evidence-

codes). We then propagate them across OMA groups––sets
of genes for which all members are inferred to be mu-
tually orthologous––as these have been previously shown
to be highly coherent in terms of functional annotations
(25). Additionally, to avoid over-propagating clade-specific
terms (e.g. ‘nematode larval development’ outside the ne-
matodes), we require that propagated terms be used in
at least one literature-based annotation in the clade in
question. For example, the OMA group with fingerprint
‘VWQCDTP’ contains a Caenorhabditis elegans gene an-
notated with the GO term ‘nematode larval development’
(Figure 2); this term is not appropriate for genes outside
of the Nematoda phylum. Therefore, when propagating this
GO term to, for example, the poorly annotated Arabidopsis
thaliana protein within the same OMA group, we only prop-
agate those parent terms of ‘nematode larval development’
that are known to be associated with plant proteins; in this
case, the most specific amongst those is ‘post-embryonic
development’ (Figure 2). Indeed, the propagated annota-
tion complements one of the known annotations for the A.
thaliana protein, ‘embryo sac development’.

Overall, the OMA database now provides 442 376 477
function annotations for 7 947 728 proteins (Figure 3).
Amongst the available annotations, most are computation-
ally inferred; our own predictions constitute about 20% of
the available annotations.

Function annotations based on OMA orthologs are par-
ticularly valuable for proteins for which other computa-
tional annotation methods provide no annotations and the
available annotations assigned by curators are relatively
general and/or sparse. In the most recent OMA release, we
provide annotations for 423 983 proteins for which there are
no other electronic annotations. For example, at the time
of writing the A. thaliana protein with UniProt identifier
Q8VYZ5 had no electronically inferred GO annotations
(evidence code IEA); it had five annotations based on ev-
idence codes ISS or RCA, which are not used in our prop-
agation pipeline; and the annotations from literature-based
evidence were ‘nucleolus’ (IDA), ‘rRNA processing’ (IMP)
and ‘embryo sac development’ (IMP). Using our OMA an-
notation pipeline, we assigned new annotations that com-
plement these: for example, we inferred GO terms ‘RNA
5’-end processing’ and ‘endonucleolytic cleavage involved
in rRNA processing’ that complement the known experi-
mental annotation ‘rRNA processing’; we inferred the GO
term ‘post-embryonic development’ that complements the
known experimental annotation ‘embryo sac development’
(Figure 3).

BETTER SUPPORT FOR PLANT GENOMES, INCLUD-
ING HOMEOLOGY IN WHEAT

One research area where comparative genomics can make
an important difference is modern crop science. Indeed,
plant genomes tend to have highly redundant genomes as
a result of their complex history of duplication and hy-
bridisation events. With almost all genes being available in
several copies on multiple sub-genomes, the use of com-
parative genomics is essential in order to map knowledge
across different species. Several specialised plant resources
already exist––such as Ensembl Plants (26), Gramene (27),
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Figure 1. User-centric new design. The website has been redesigned with an emphasis on usability.

Greenphyl (28) and Plaza (29)––but there is value in pro-
viding plant support in resources inferring orthology across
all domains of life. Also, plant-based analyses can ben-
efit from the other distinctive features of OMA, such as
its highly specific predictions and ability to infer HOGs.
We have improved plant genome support in OMA by
adding and updating more plant genomes and by infer-
ring and annotating homeology––genes related through
polyploidization––in the wheat genome.

The number of plant species in the OMA database has
increased from 8 to 28 plants in recent years. In the latest re-
lease, we have added Selaginella moellendorffii (a lycophyte)
as the deepest branching vascular plant and Physcomitrella
patens (a bryophyte) as a representative of the non-vascular
plants, thus widening the taxon set to cover ∼450 mil-
lion years of plant evolution (30). We have also added
the important model grass species Brachypodium distachyon
and Aegilops tauschii. Additionally, we have added a va-
riety of crop species of practical and economic impor-
tance, which are especially useful to plant geneticists and
breeders. These species include: banana (Musa acuminata
subsp. malaccensis), potato (Solanum tuberosum), several
rice species (Oryza brachyantha, Oryza glaberrima, Oryza

sativa subsp. indica), foxtail millet (Setaria italica) and bread
wheat (Triticum aestivum).

In particular, bread wheat is the staple food source for
30% of the human population, making it one of the world’s
most important cereal crops. However, its very large (17
Gb), highly repetitive, hexaploid (2n = 6x = 42) genome,
has made studying its organization and evolution notori-
ously challenging due to the lack of a high-quality reference
sequence. Wheat is a recent allopolyploid resulting from two
recent (<0.8 MYA ago) hybridization events between three
diploid progenitors, of which the most distant pair diverged
an estimated 6.5 MYA ago (31). Following that hybridiza-
tion event, there has seemingly been little or no recombina-
tion across the chromosomes derived from the three pro-
genitor genomes (32). It is therefore helpful to think of
these three sets of chromosomes as ‘subgenomes’. This gives
rise to the notion of homeologous (also spelled ‘homoe-
ologous’) chromosomes––closely related pairs of chromo-
somes between two subgenomes. These homeologous chro-
mosomes have maintained a high degree of conservation
amongst them, with highly similar genes located on the
same chromosomal group (1 to 7) of each subgenome. How-
ever, because there have been extensive gene duplications,
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Figure 2. Gene Ontology propagation in the OMA pipeline. New Gene Ontology (GO) annotations for the sparsely annotated Arabidopsis thaliana protein
Q8VYZ5 are inferred by propagating annotations from other members of the OMA group, taking into account implied parental terms and lineage-specific
terms (see main text). For example, the inferred biological process Gene Ontology (GO) term ‘post-embryonic development’ is based on the more specific
GO term ‘nematode larval development’; the latter is in itself inappropriate to assign to a protein in the plant clade. Proteins are labelled with their
SwissProt/UniProt identifiers. The abbreviations ARATH, CAEEL, SCHIPO, DROME, HUMAN and YEAST refer to species Arabidopsis thaliana,
Caenorhabditis elegans, Schizosaccharomyces pombe, Drosophila melanogaster, Homo sapiens and Saccharomyces cerevisiae, respectively.

losses and rearrangements in the Triticeae lineage (32–35),
the relationship across homeologs is not necessarily 1:1:1.

In OMA, we define homeologous genes as pairs of ho-
mologous genes that have started diverging through specia-
tion between the progenitor genomes and then merged back
into the same genome by hybridization. Thus, homeologs
can be thought of as ‘orthologs between subgenomes’. This
suggests a simple way of adapting the OMA pipeline to in-
fer homeologs: we first partitioned the predicted wheat pro-
teins into the three subgenomes based on the annotation

of the IWGSC (32), then inferred ‘orthologs’ between these
subgenomes using our standard pipeline. Although concep-
tually straightforward, this procedure is complicated by the
fragmentary nature of the current wheat survey genome,
consisting of many contigs and resulting in numerous genes
which are split, misannotated, or simply missing.

Dubious homeolog inferences are discarded in two steps.
The first filter, part of the standard OMA algorithm, iden-
tifies instances of differential gene losses through witnesses
of non-orthology in a third genome (21). This filter dis-
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Figure 3. Numbers of electronic Gene Ontology annotations in the OMA
database. Three major sources of electronic annotations are shown: anno-
tations through the association of InterPro records with GO terms, anno-
tations based on UniProtKB keyword mappings and annotations inferred
in the OMA pipeline. The intersections show the numbers of annotations
in common amongst the resources.

carded 4166 pairs. The second filter, developed specifically
for homeology detection, considers the distribution of the
evolutionary distances and removes outliers (defined as
gene pairs with a distance higher than 2.5 standard devi-
ations above the mean distance) from the set of reported
homeologs. This discarded an additional 2212 pairs.

Two indicators suggest that the bulk of these discarded
pairs are indeed unlikely to be homeologous. First, assum-
ing that the majority of genes have remained in their an-
cestral position in the Triticeae lineage, most homeologous
relationships should be between genes on corresponding
chromosome groups. Yet only 14.7% of all the pairs dis-
carded by witnesses of non-orthology and 34.7% of out-
liers are inferred to be between the same chromosome group
(compared to 14.5% for random pairs). Second, because the
three progenitor genomes diverged relatively recently (∼6.5
MYA), most homeologs can be expected to be highly simi-
lar. Yet the evolutionary distance between discarded home-
ologous pairs is on average much higher than for the re-
tained pairs, even if we only consider pairs filtered in the
first step (Figure 4A).

We applied the same indicators to the 62 910 retained
homeolog inferences. The proportion of retained home-
ologs involving pairs of genes on corresponding chromo-
some groups was considerably higher (62.8% versus 14.7–
34.7% for discarded pairs). Furthermore, as expected, the
distribution of evolutionary distance between predicted
homeologs was skewed towards low distances, with a mean
of 12.6 PAM (0.126 substitutions per site) and a standard
deviation of 20.6 PAM (Figure 4B). As an additional as-
sessment, we selected a random subset of 20 homeologous
gene pairs and performed a manual validation taking into

account sequence quality, gene annotation, shared chromo-
some group, percentage identity and evolutionary distance
between pairs. Fifty-five percent of the predictions could be
confirmed, with the rest being either inconclusive or likely
mistakes due to misannotations (transposons, chloroplast
genes), missing true homeologous counterparts, etc. (Sup-
plementary Table S1). Given that the process of flow sorting
of the wheat chromosomes and arms resulted in on average
10% contamination with other chromosomes (32), a small
proportion of bona fide homeolog pairs can be expected to
be erroneously annotated as belonging to different chromo-
some group.

In the OMA browser, retained homeolog inferences are
labelled as ‘high confidence’ if they involve genes belonging
to consistent chromosome groups, and ‘low confidence’ if
they do not. In the latest release, this resulted in 39 442 pairs
(63.2%) of high-confidence homeology predictions and 23
468 (36.8%) low-confidence ones. The average percent iden-
tity for the 12 high confidence pairs is 95.4% compared to
90.5% for low confidence pairs. We chose not to be too strin-
gent in the cut-off for evolutionary distance and/or percent
identity because although most homeolog pairs have a high
degree of conservation, this might not necessarily be true for
certain genes that evolve quickly such as disease resistance
genes (36), transcription factors (37) or pentatricopeptide
repeat proteins (38).

NEW SYNTENY VIEWER PROVIDING THE GENOMIC
CONTEXT OF ORTHOLOGS

In the absence of genome rearrangement, orthology rela-
tionships can be expected to be consistent across neighbour-
ing genes––a concept commonly referred to as ‘shared syn-
teny’. Patterns of syntenic conservation or divergence can
shed light on the evolutionary history of genomic loci of in-
terest; they can also reveal sequencing artefacts, misanno-
tations or orthology inference errors. Synteny visualization
tools have been successfully developed in several compara-
tive genomics databases such as Yeast Gene Order Browser
(39), Genomicus (40) or GnpIS (41). The OMA Browser
now features a synteny viewer as well.

The OMA synteny viewer uses a typical layout: genes are
represented by boxes, with neighbouring genes displayed
in adjacent columns and orthologous regions displayed in
different rows. The reference syntenic block, centred on a
query gene, is displayed in the first row. The other rows are
centred on genes that are orthologous to the query gene, or-
dered by increasing taxonomic distance to the query gene
species. Orthology relationships to each gene contained
in the reference syntenic block are coded using different
colours. To convey many-to-one and many-to-many rela-
tionships, we use stripes of the relevant colours. To aid clar-
ity, hovering over a gene highlights all orthologs of the same
colour including those with stripes. The data can be conve-
niently explored by clicking on any gene, which recentres
the display on that gene as a new query.

To illustrate the usefulness of the new synteny viewer,
consider the arrangement of alcohol dehydrogenase (ADH)
genes around human ADH1A (Figure 5). The human ADH
gene cluster ADH7 (class IV)-ADH1C (class I)-ADH1B
(class I)-ADH1A (class I)-ADH6 (class V)-ADH4 (class
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Figure 4. Distribution of evolutionary distances for homeologous pairs that were (A) discarded via witness of non-homeology or because they were outliers,
or (B) retained as inferred homeologs. In both plots, the blue colour represents pairs where both homeologs are located on the same chromosome group
and the red colour indicates pairs where homeologs are located on different chromosome groups. The y-axes are drawn at different scales but the grid is
consistent across the two plots.

II)-ADH5 (class III) is displayed in the first row. Because
the cluster sits on the complementary strand, it appears in
reverse order––starting in column 3 (Gene ID 22172) and
ending in column −3 (22163). The synteny viewer suggests
that the neighbourhood of orthologous genes is well con-
served amongst simians, but the conservation diminishes as
we move to more distant lineages. Genes with stripes are in
one-to-many or many-to-many orthologous relationships
with human ADH1A (22168), human ADH1B (22169)

and human ADH1C (22171). In particular, the presence of
two orthologs in the bushbaby (OTOGA) suggests a sep-
arate duplication within the lemur lineage, yielding many-
to-many orthology. These observations are all consistent
with detailed analyses in the literature (42). Although posi-
tioned within well-conserved syntenic regions, genes 13367
in the chimp (PANTR) and 15069 in the gorilla (GORGO)
have no human orthologous counterpart in this region. On
account of their very short lengths––13 AA and 14 AA,
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Figure 5. Screenshot of the new OMA synteny viewer with the ADH1A gene in human (Gene ID 22168) as query. Each gene is illustrated as a box
containing a numerical OMA Gene ID and an arrow to indicate the gene’s orientation. The colour of genes outside the query species indicates orthologous
relationship with human genes, with bands of colour capturing many-to-one and many-to-many relationships. Genes that are non-orthologous to all nine
human genes contained in this window are displayed in grey. The fragmented assemblies of tarsier (TARSY) and mouse lemur (MICMU) contain no genes
next to 03287 and 02276, respectively.

respectively––they are likely to be fragments. Furthermore,
the absence of flanking genes in the tarsier (TARSY) and
mouse lemur (MICMU) is due to the low quality of the
genome assembly in these regions.

BETTER SUPPORT FOR HOGS

As discussed above in the overview of the OMA pipeline,
HOGs are a key output of the OMA algorithm; they group
all the sequences that have descended from a single common
ancestral gene within clades of interest. This provides an in-
tuitive framework to generalise the concept of orthology to
more than two species. For instance, if we consider the hu-
man ADH1A gene discussed in the previous section, it be-
longs to an HOG containing ADH1B and ADH1C as well,
whilst at the more specific level of simians, the three genes
belong to three distinct HOGs. This difference in resolu-
tion makes intuitive sense because as we consider a broader
or narrower range of species, the shared attributes amongst
them can be expected to be coarser or finer.

OMA HOGs are inferred from orthologous pairs using a
fast and effective algorithm described previously (22). How-
ever, until recently, the OMA Browser had been dynami-
cally inferring these HOGs on user demand. Large families
could take a few minutes to process. Furthermore, because
of the non-deterministic nature of the inference algorithm,

there could be small inconsistencies for requests at different
taxonomic levels (e.g. one sequence included in an HOG
defined at the level of vertebrates but not included at the
level of all bilateria). Starting with the latest release, HOGs
are precomputed thereby providing rapid user access and
consistent inferences. HOGs can now be downloaded in Or-
thoXML format (43) for further analyses.

One potential use of the HOGs data is to map gene
losses, duplications and gains onto species trees. Indeed,
since HOGs are defined in terms of ancestral genomes at all
internal nodes in the species tree, keeping track of the num-
ber of HOGs and their content whilst traversing the tree can
yield these quantities. Contrary to approaches solely based
on gene counts in extant genomes (e.g. 44), HOGs take
into account relationships between the actual sequences and
thus can be expected to yield more precise estimates. Fur-
thermore, this approach allows the user to identify the spe-
cific genes that underwent duplication or losses on particu-
lar branches of the phylogeny.

To illustrate this application, we provide an estimate of
gains and losses in the primate tree obtained by parsing
OMA HOGs (Figure 6). Large numbers of losses on ter-
minal branches can be indicative of fragmentary genomes
(45), such as the tarsier with its low 1.82x coverage. Even
so, previous studies have reported elevated duplication and
loss rates in the primate lineage (46).
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Figure 6. Gene losses, duplications and gains from hierarchical orthologous groups. Gene duplications, losses and gains on the primate lineage inferred
from OMA hierarchical orthologous groups.

Figure 7. Selection tool for pre-computed genome export. This new function enables users to export genomes of interest and their associated all-against-all
comparisons for analysis in the OMA standalone software.
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EXPORT OF PROTEIN SETS AND THEIR ASSOCI-
ATED ALL-AGAINST-ALL COMPUTATIONS

As genome and transcriptome sequencing are becoming af-
fordable and ubiquitous, there is an increasing need for or-
thology prediction on custom data. As a solution to this,
we have developed OMA standalone, a downloadable open
source implementation of the OMA pipeline for Linux and
Mac (the details of the software are the focus of a forthcom-
ing publication). To enable users to efficiently combine cus-
tom and public genomes, we have added the possibility of
exporting OMA genomes, including all-against-all compu-
tations amongst them, as input files for OMA standalone.
The function is accessible via the ‘Download’ menu in the
navigation bar of the new OMA Browser interface. Users
can select up to 50 genomes for export (Figure 7), which to-
gether with OMA standalone are packaged for download
as a single compressed tar file.

OUTLOOK

For just over a decade, the OMA database has provided
orthology inference amongst complete genomes. It has re-
mained true to its mission of providing reliable, high-quality
orthology inferences across a broad taxonomic range. With
17 major releases, each including ∼100 additional and up-
dated genomes, the project has been maintained with sus-
tained endurance. At the same time it has also gained nu-
merous functionalities, of which the most recent are high-
lighted in this update.

So what awaits OMA in the coming decade? One major
challenge facing many phylogenomic resources is to keep
abreast of the rapid increase in sequencing data (4). In
OMA, the all-against-all protein comparison phase––the
most time-consuming phase with >7 million CPU hours
logged to date––grows quadratically with the number of
sequences under consideration. But computational bottle-
necks are nothing new in OMA; they have been a leitmotif
all along and our experience has been that they can gen-
erally be overcome through software optimization (e.g. 47)
or new heuristics (e.g. 48). We also see potential in sharing
computations across different resources and have initiated
a joint effort with OrthoDB (10) in that direction.

Another challenge lies with fragmentary, poorly anno-
tated genomes and their potentially disruptive effect on or-
thology inference and interpretation. Yet at the same time,
orthology can also help identify split genes (49). Further-
more, as discussed above, orthology combined with synteny
information or integrated across multiple species in hierar-
chical groups can also uncover quality problems with the
data.

One thing however seems certain: as the pace of genome
sequencing continues to accelerate, elucidating evolution-
ary relationships across different genes will remain the key
to exploiting the richness of this data. OMA is thus likely
to stay relevant.
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