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Spectral Nonlocal Restoration of Hyperspectral
Images With Low-Rank Property

Rui Zhu, Mingzhi Dong, and Jing-Hao Xue

Abstract—Restoration is important in preprocessing hyperspec-
tral images (HSI) to improve their visual quality and the accuracy
in target detection or classification. In this paper, we propose a
new low-rank spectral nonlocal approach (LRSNL) to the simul-
taneous removal of a mixture of different types of noises, such as
Gaussian noises, salt and pepper impulse noises, and fixed-pattern
noises including stripes and dead pixel lines. The low-rank (LR)
property is exploited to obtain precleaned patches, which can then
be better clustered in our spectral nonlocal method (SNL). The
SNL method takes both spectral and spatial information into con-
sideration to remove mixed noises as well as preserve the fine
structures of images. Experiments on both synthetic and real
data demonstrate that LRSNL, although simple, is an effective
approach to the restoration of HSI.

Index Terms—Hyperspectral image, low rank (LR), nonlocal
means, restoration, spectral and spatial information.

I. INTRODUCTION

H YPERSPECTRAL images (HSI) are captured on 100s of
narrow spectral bands ranging from 400 to 2400 nm, rep-

resented as a three-dimensional (3-D) data cube containing both
spectral and spatial information. During the capture of HSI, var-
ious kinds of noises are introduced, polluting the images. The
noises also affect further HSI applications such as classifica-
tion, target detection, and unmixing. In order to recover clean
images and facilitate further applications, image restoration is
required as a preprocessing.

The restoration of HSI has attracted considerable attention
recently [1]–[10]. The 3-D representation of HSI makes the HSI
restoration different from the traditional two-dimensional (2-D)
image restoration, with both spectral and spatial information at
our disposal.

Common denoising methods, such as maximum noise frac-
tion (MNF) [4], orthogonal, or oblique subspace projection [5],
[6], and frequency domain filtering [7], [8], reconstruct the
image in a transformed domain. They, however, fail to restore
image edges effectively. Wavelet-based restoration methods
[8]–[10] can preserve details of images such as edges. However,
it depends on prior knowledge to choose an appropriate type
of wavelet transform. Besides being represented in a trans-
formed domain, spatial information in the original image can
be exploited directly. Most of the methods that consider spatial
information are based on local information from neighbouring
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pixels. However, local methods exploit limited information of
the true image. In contrast, nonlocal approaches use informa-
tion from the whole image, based on the assumption that a
small patch of the image can be represented by similar patches
in other places of the same image [11]. In this way, the fine spa-
tial structures of the image can be preserved. Qian and Ye [1]
adopted this idea and applied a nonlocal sparse model to the
HSI restoration, in which the overlapped patches of the image
are clustered and a sparse learning method is applied to each
cluster. In [1], patches in each cluster are assumed to be rep-
resented by the same dictionary. However, how to choose the
dictionary is based on certain prior knowledge.

Without using prior knowledge, Golbabaee and
Vandergheynst [2] and Zhang et al. [3] solved the HSI
restoration problem utilising the low-rank (LR) property of
HSI. The LR property can be attributed to the high correlation
between hyperspectral signatures of pixels. Hence, the images
can be expressed by a linear combination of a limited number
of endmembers. In [3], an LR matrix recovery model was
developed to simultaneously remove several types of noises,
such as Gaussian noises, impulse noises, stripes, and dead
lines. Stripes and dead lines are fixed-pattern bad pixels due
to variations in detection [5], [8], [12]. Impulse noises, stripes,
and dead lines can be sparse, since they only appear in few
bands or few pixels within a band.

However, the LR methods, mainly exploiting the spectral
correlation between spectral bands, may not preserve fine spa-
tial structures. On the other hand, the nonlocal techniques
mainly exploit the spatial correlation between spatial patches.

Hence, to exploit the best of both worlds, in this paper we
propose a new low-rank spectral nonlocal (LRSNL) approach,
which will consider both spectral and spatial information. It
combines both the LR property of HSI and the nonlocal method
for the HSI restoration. In addition, we extend the standard
nonlocal approach for 2-D images to 3-D HSI, using spectral
information to remove the mixed noises as well as preserve the
fine spatial structures of the image.

II. METHODOLOGY

The proposed HSI restoration approach (LRSNL) contains
two major parts: 1) using the LR property to obtain pre-cleaned
patches and 2) applying the spectral nonlocal (SNL) method
to restore the image. The LR precleaning is to improve the
performance of the nonlocal restoration. The importance of pre-
cleaning has been shown in the experiments of [13] and [14],
where better clustering results of the patches are obtained after a
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first round of denoising. We shall also demonstrate this through
our experiments.

A. LR Precleaning of HSI

To explain the LR property of HSI, we first transform the
3-D data cube into a 2-D matrix. Suppose the size of an HSI
data cube is M ×N ×Q, where M and N represent the total
numbers of pixels in height and width, and Q is the num-
ber of spectral bands. The cube can be rearranged as a 2-D
matrix of (M ×N)×Q, with each column representing the
reflectance from a specific spectral band, and each row repre-
senting the spectral signature of a specific pixel. Note that the
spatial information is nevertheless lost after this transformation.

The LR property can be associated with the linear mixing
model of HSI. In the linear mixing model, HSI are considered
as a linear mixture of several endmembers: Ũ = AST , where
Ũ is the transformed 2-D matrix of the HSI and A is an (M ×
N)×K matrix representing the abundance of K endmembers;
the endmembers are concatenated into a Q×K matrix S. Since
there are a limited number of endmembers, the rank of Ũ is
limited [2].

The captured noisy HSI can be modeled as

V = U +N (1)

where V is the noisy HSI cube, U is the true, clean HSI cube,
and N denotes the noise [15].

To preclean the noisy V , the HSI cube is first divided
into small patches of size m×m×Q, where m is much
smaller than min(M,N). Each patch is centred at a pixel, thus
the number of patches is M ×N . All the patches are trans-
formed to 2-D matrices of size (m×m)×Q. For pixel (i, j),
i = 1, . . . ,M and j = 1, . . . , N , its noisy patch matrix Vij is
precleaned by using the LR property of HSI

Ûij = argmin
Uij

‖Vij − Uij‖2F s.t. rank(Uij) ≤ K (2)

where Vij and Uij denote the noisy and clean patch matri-
ces centred at (i, j), respectively, ‖ · ‖F denotes the Frobenius
norm of matrix, and K is a predefined constant that indicates
the maximal rank of the clean patch matrix [15].

As we mentioned, the LR methods only consider the spectral
correlation, and thus may not preserve the fine spatial struc-
tures of the image. Fig. 1 shows the LR restoration results from
LRMR [3] for two bands of a synthetic Indian Pines dataset.
(The construction of this synthetic dataset will be detailed in
Section III-A). We can observe that in both cases using only
the LR property tends to over-smooth the images. To fur-
ther recover the fine spatial structures, we propose a spectral
nonlocal approach.

B. Spectral Nonlocal Restoration of HSI

The standard nonlocal means algorithm (NL) for 2-D images
[11] considers the spatial information of images and aims to
preserve the fine structures during image restoration. In NL, the
image is divided into small patches and each pixel is restored

Fig. 1. LR restoration of two images: images with (a) Gaussian noises and (c) a
mixture of Gaussian and impulse noises, and their LRMR results in (b) and (d),
respectively.

as the weighted average of the pixels that have a neighborhood
similar to the neighborhood of the target pixel. Although NL
can effectively remove Gaussian noises, it cannot handle fixed-
pattern noises such as dead pixel lines and stripes. For a dead
pixel, the pixels that have the most similar neighbors will be the
neighboring dead pixels, hence the neighboring dead pixels will
have large weights and the restoration of a dead pixel is still a
dead pixel.

To extend NL for HIS reconstruction, we incorporate the
spectral information into NL. In our proposed method LRSNL,
we assume that the weights of pixels, that have a neighborhood
similar to that of the target pixel, are the same over all spectral
bands. These weights are thus calculated based on the mean dis-
similarity between patches over all bands. As a result, if dead
lines and stripes are few, the effect of these noises will be small
and the bands containing these noises can be restored by using
information from other spectral bands. In this way, we extend
the standard NL to a SNL, such that it can be readily applied to
HIS to reduce various types of noises.

Fig. 2 illustrates the difference between NL and SNL for HIS.
Fig. 2(a) shows a part of a spectral band of the Indian Pines
synthetic data. The areas with the same colour have the same
land cover. Fig. 2(b) shows the noisy image with two dead pixel
lines, and P is a dead pixel on the left-hand line. The colour
of P, different from other dead pixels, is to visually indicate
its position. The true value of pixel P is 0.190 and the noisy
value is 0. Fig. 2(c) and (d) shows the pixels similar to P found
by NL and SNL, respectively. The dead pixels in squares A
and B are the similar pixels found by NL, so clearly P will be
restored as a dead pixel with value remaining 0. In contrast, the
similar pixels found by SNL are all the pixels in squares C and
D. Although there are dead pixels in the two squares, a large
number of normal pixels will overwhelm the influence of the
dead pixels. The restored value of P by using SNL is actually
0.178, close to its true value.
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Fig. 2. Comparison of NL and SNL for dead lines: (a) original; (b) noisy;
(c) NL; and (d) SNL.

Let us describe the SNL algorithm as follows. Instead of cal-
culating the similarity between patches based on the precleaned
2-D matrix, we transform the 2-D matrix back to the 3-D cube
and calculate the similarity based on this cube. The dissimilar-
ity between two patches, respectively, centred at pixels (i, j)
and (k, l), can be defined as

Dij,kl =
1

Q

Q∑
q=1

‖Ûij,q − Ûkl,q‖2F , k �= i or l �= j (3)

where q indexes the spectral bands. The pixel (i, j) can be
recovered by a weighted average of all other pixels in the
image. The weight that pixel (k, l) carries to pixel (i, j) can
be expressed as

wij,kl =
e−Dij,kl/h

2

∑
k,l e

−Dij,kl/h2 (4)

where h is the parameter indicating the decay of the exponen-
tial function, which reduces the weight with the dissimilarity
between the two patches.

From (3), we can see that the dissimilarity between two
patches is evaluated as the average of the dissimilarity over all
spectral bands. That is, the weights for restoring each pixel take
advantage of the spectral information available. Hence, pixels
affected by impulse noises or dead pixels can then be restored
through using information from other spectral bands.

In NL and SNL, each patch is compared with all other
patches and all the associated weights are calculated. This will
result in high-computational costs when the image is large. To
reduce the costs, Buades et al. [11] suggest to set a searching
area, compute the dissimilarity between the patches within this
area, and restore a pixel based on the weighted average only
within this area.

Although the proposed SNL can remove mixed noises and
preserve the fine structures of images, it cannot perform well

Algorithm 1. LRSNL: Low-Rank Spectral Nonlocal

Input: V , m, K, h
Output: U cleaned

1: Divide the data cube V into overlapped patches of size m×
m×Q. Transform each patch into a 2-D matrix of size (m×
m)×Q.
2: Preclean patches using the low-rank property as (2).
3: Calculate the weights between the precleaned patches using
(3) and (4).
4: Restore each pixel using the weighted average of all other
pixels in the searching area to obtain U cleaned.

when pixel values are largely affected by noises since the pixels
are restored as the weighted average of pixels within the image.
Using LR as a precleaning step will remove some noises and
thus lead to better clustering and restoration.

Therefore, the proposed LRSNL can be summarized in
Algorithm 1.

III. EXPERIMENTS

A. Synthetic Data Experiments

1) Data and Experimental Settings: An Indian Pine dataset
is used for our synthetic experiments. The dataset is created
based on the ground truth of Indian Pine (http://www.ehu.
es/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes) and the spectral signatures from the USGS digital
spectral library (http://speclab.cr.usgs.gov/spectral.lib06). The
ground truth describes the real land cover materials of the
Indian Pine area and thus this synthetic dataset can be viewed as
clean HSI that represent a real-world situation. This dataset has
been widely used for validating the techniques of hyperspectral
image processing and analysis [1]. The image of Indian Pine
is of size 145× 145 and the spectral signatures in the library
describe the reflectance of 223 spectral bands. According to
the ground truth, pixels of the image are classified into 17
categories. Each pixel is assigned with a spectral signature
based on its category. Thus, the synthetic data cube is of size
145× 145× 223 with reflectance values within range [0, 0.5].

The performance of restoration methods is evaluated in two
ways. First, the restored images and spectral signatures are
shown directly for visual comparison. Since, there are numer-
ous pixels and spectral bands, only a few of them are presented
in this paper. Second, the performance is also quantitatively
measured by the improved signal to noise ratio (ISNR) for each
spectral band [1]

ISNRi = 10 log10

M∑
x=1

N∑
y=1

[unoised
i (x, y)− ui(x, y)]

2

M∑
x=1

N∑
y=1

[ucleaned
i (x, y)− ui(x, y)]2

(5)

where M and N are the numbers of rows and columns of the
image of a specific spectral band, unoised

i (x, y) is the noisy
value of a pixel (x, y) of band i, ui(x, y) is its true value, and
ucleaned
i (x, y) is its restored value.
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Fig. 3. Effect of tuning parameters: (a) the patch size and the rank of the clean
matrix; and (b) the filtering parameter h.

As with [3], our synthetic dataset covers four types of noises:
1) Gaussian noises with standard deviation ranging from 0.01
to 0.03 are added randomly to all the spectral bands; 2) 20%
salt and pepper impulse noises are added to band 20 and band
22; 3) dead lines are added to band 5 to band 14 in the same
positions; and (4) stripes are added to band 50 and 70. Due
to the similarity between dead lines and stripes, we omit the
presentation of results for stripes in this paper.

The proposed method (LRSNL) is compared with the LR
matrix recovery method (LRMR) [3] and the SNL that does
not have the LR precleaning step. LRMR transforms the 3-D
cube into a 2-D matrix and takes advantage of the LR property
of the 2-D matrix. The mixed noises are removed by using the
LR matrix recovery model, which treats the clean image as a
LR matrix and treats the noises, such as impulse noise and dead
lines, as a sparse matrix. The GoDec algorithm [16] is used
to solve the optimization problem in LRMR. We also compare
LRSNL with SNL to show the effect of precleaning.

There are three parameters in Algorithm 1 to be tuned: the
patch size, the rank of the clean matrix, and the filtering parame-
ter h. The average ISNR is chosen as the performance measure.
The performance of LRSNL with respect to the patch size and
the rank of the clean matrix is shown in Fig. 3(a). Since the
standard deviation is in the range of [0.01, 0.03], h is simply
set to the mean of this interval, 0.02. The performance is rel-
atively stable when the rank is larger than 4, given the patch
size. Hence, when we explore the effect of the filtering param-
eter h, we fix the patch size to 3× 3 and the rank to 4. Fig. 3(b)
plots the performance of LRSNL with respect h in this case. It
shows that the value of h is slightly better to be 0.015 than 0.02.
Hence, we set the value of h in (4) to 0.015.

For all methods, the 3-D cube is divided into small patches of
size 3× 3× 223, and each small patch is transformed into a 2-
D matrix of size 9× 223. In LRMR, the rank of the clean matrix
is chosen from {2, 4, 6, 8} and the cardinality of the sparse
matrix is chosen from {30, 50, 70, 100}. The 16 combinations
of the two parameters are evaluated and the best combination
is chosen based on the average ISNR. The combination of rank
2 and cardinality 50 provides the best performance and is cho-
sen for the experiments. In our LRSNL, the rank is set to 4.
To reduce the computational cost, the searching area is set to
a 21× 21 square centred at the target pixel in the SNL step of
LRSNL, by following the experiments in [11].

2) Results: Fig. 4 is the plot of ISNR versus all bands. It
shows that our method can restore the noisy images better than

Fig. 4. ISNR of LRMR, SNL, and the proposed LRSNL.

Fig. 5. Restoration of the spectral signature of pixel (136, 21): (a) original;
(b) noisy; (c) LRMR; (d) SNL; and (e) LRSNL.

do LRMR and SNL in almost all spectral bands. We note that
the performances of LRSNL, LRMR, and SNL at band 140 are
almost the same. This is mainly because only small Gaussian
noise with a standard deviation of 0.016 has been added to
the band. LRMR can perform well on bands with such small
Gaussian noise, but compared with LRSNL and SNL it cannot
remove large mixed noises in other bands. The restored spectral
signatures of pixel (136, 21) are shown in Fig. 5. Compared
with the original spectral signature, LRSNL also provides the
best results while LRMR performs the worst.

A synthetic image with only Gaussian noises and its restored
images are shown in Fig. 6. The result from LRMR shows
that large Gaussian noises cannot be effectively removed, edges
are over-smoothed, and fine details are lost. Compared with
LRMR, SNL, and LRSNL remove most of Gaussian noises and
recover the fine details of the original image. The colours of
the results of LRSNL are much closer to those of the origi-
nal image compared with those of SNL, which indicates that
LRSNL produces an image closer to the original image.

Fig. 7 presents the restoration results of an image with a mix-
ture of Gaussian and impulse noises. LRSNL performs the best
among the three methods. Blurred white dots in Fig. 7(c) indi-
cate that LRMR performs badly on removing impulse noises.
Gaussian noises also still exist in the LRMR results. LRSNL
and SNL can remove most of the impulse noises, but SNL
provides a much darker image than does LRSNL.
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Fig. 6. Restoration of band 30 with Gaussian noises: (a) original; (b) noisy;
(c) LRMR; (d) SNL; and (e) LRSNL.

Fig. 7. Restoration of band 20 with a mixture of Gaussian and impulse noises:
(a) original; (b) noisy; (c) LRMR; (d) SNL; and (e) LRSNL.

Compared with LRMR and SNL, LRSNL also shows supe-
rior performance against stripes and dead pixel lines. Fig. 8
displays the restoration results of an image with a mixture of
Gaussian noises and dead pixel lines, in (c) of which the blurred
black lines indicate that LRMR cannot effectively remove the
dead lines. Some short lines in Fig. 8(d) indicate that SNL alone
cannot effectively remove the dead pixel lines that appear over
several bands. Moreover, the two dead pixel lines on the right-
hand side are on the edges of land covers, and Fig. 8(e) shows
that LRSNL still performs well on these dead pixel lines.

In summary, from Figs. 4 to 8, we can observe that the pro-
posed LRSNL approach performs well in all the four situations.
LRMR cannot effectively remove the mixed noises, and the fine
structures within the images are also lost in its restored results.
SNL performs better than LRMR but worse than LRSNL, as
the patches are not precleaned. The colours of the restored
results confirm that the restored values of SNL are worse than
those of LRSNL. SNL also cannot effectively remove the dead
pixel lines that appear successively in several bands. In con-
trast, LRSNL can effectively remove the mixed noises as well
as preserve the fine spatial structures.

Fig. 8. Restoration of band 14 with a mixture of Gaussian noises and dead pixel
lines: (a) original; (b) noisy; (c) LRMR; (d) SNL; and (e) LRSNL.

Fig. 9. Restoration of band 130 of an EO-1 Hyperion dataset: (a) original;
(b) LRMR; (c) SNL; and (d) LRSNL.

B. Real-Data Experiments

An EO-1 Hyperion image dataset is used in our real-
data experiments (http://eros.usgs.gov/find-data). The original
dataset is of size 3371× 931× 242. A subset of size 200×
200× 163 is used here after the removal of water pollution
bands. The pixel values of each band are normalized to [0, 1]
before experiments. For all methods, the dataset is first divided
into patches of size 3× 3× 163 and transformed into a 2-D
matrix of size 9× 163. As with the experiments in Section III-
A, for LRMR, the rank of the clean image is set to 2 and
the cardinality of the sparse matrix is set to 50. For LRSNL,
the rank is set to 4 and the parameter h is set to 0.015. The
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searching area is set to a 21× 21 square centred at the target
pixel.

A large number of spectral bands of the original hyperspec-
tral data cube are polluted by a mixture of dead pixel lines,
stripes, and other noises. The restoration results of band 130
are shown in Fig. 9. LRMR can only remove part of dead
pixel lines and stripes, as shown in Fig. 9(b). It also tends to
over-smooth some edges. Although SNL preserves more fine
structures compared with LRMR, the dead pixel line still can
be spotted as shown in Fig. 9(c). Apparently, LRSNL performs
the best among the three methods. It can remove almost all the
noises and preserve the details as well, as shown in Fig. 9(d).

IV. CONCLUSION

In this paper, we have proposed LRSNL, a simple and effec-
tive restoration method for hyperspectral images. In LRSNL,
the standard NL algorithm is extended to SNL to take advan-
tage of both spectral and spatial information. Hence, a mixture
of different types of noises can be removed simultaneously, and
at the same time the fine details and local structures of the clean
image can be preserved. For a better clustering of the patches
in SNL, the LR property of the clean hyperspectral image is
exploited in a precleaning step. The experiments have demon-
strated the effectiveness of LRSNL and the importance of the
precleaning step.

LRSNL treats all spectral bands the same and simply uses
the average of all the bands to calculate similarities between
patches. However, when spectral bands are of different impor-
tance, an adaptive weighting scheme is better to be developed.
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