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Summary

1. Species are seldomdistributed at randomacross a community, but instead show spatial structure that is deter-

mined by environmental gradients and/or biotic interactions. Analysis of the spatial co-associations of species

may therefore reveal information on the processes that helped to shape those patterns.

2. We propose a multivariate approach that uses the spatial co-associations between all pairs of species to find

subcommunities of species whose distribution in the study area is positively correlated. Our method, which

begins with the patterns of individuals, is particularly well-suited for communities with large numbers of species

and gives rare species an equal weight.We propose amethod to quantify amaximumnumber of subcommunities

that are significantlymore correlated than expected under a null model of species independence.

3. Using data on the distribution of tree and shrub species from a 50 ha forest plot on Barro Colorado Island

(BCI), Panama, we show that ourmethod can be used to construct biologically meaningful subcommunities that

are linked to the spatial structure of the plant community. As an example, we construct spatial maps from the

subcommunities that closely follow habitats based on environmental gradients (such as slope) as well as different

biotic conditions (such as canopy gaps).

4. We discuss extensions and adaptations to our method that might be appropriate for other types of spatially

referenced data and for other ecological communities. We make suggestions for other ways to interpret the sub-

communities using phylogenetic relationships, biological traits and environmental variables as covariates and

note that subcommunities that are hard to interpret may suggest groups of species and/or regions of the land-

scape thatmerit further attention.

Key-words: Barro Colorado Island, community ecology, spatial pattern, niche theory, neutral

theory, clustering, point process

Introduction

Understanding the processes that underpin observed patterns

of biodiversity and how functionally similar species coexist in

close spatial proximity are among the primary challenges in

ecology (Hardin 1960; Wright 2002). Biodiversity may bolster

ecosystem stability and productivity (Isbell, Polley & Wilsey

2009; Cardinale et al. 2012) and is therefore an important

aspect in the environmental services that ecosystems provide to

society. However, land-use changes (Brooks et al. 2002), grow-

ing populations (Williams 2013) and climate change (Bellard

et al. 2012) may all threaten biodiversity and ecosystems in

general. Understanding the ecological processes that both cre-

ate and maintain high biodiversity is important for protecting

diverse ecosystems.

Through the Center for Tropical Forest Science and the

ForestGEO initiative (2013), there are now data available on

multiple large-scale forest plots for which all trees and shrubs

are individually mapped and identified to species level. Spatial

analyses of these individual-based tree data sets have often

focussed on univariate approaches to investigate the spatial

distributions and attempt to quantify the variation in species

distributions that can be explained by other processes/factors

such as abundance (e.g. Condit et al. 2000); recent changes in

local abundance (Fl€ugge, Olhede & Murrell 2012); dispersal

mechanism (e.g.Muller-Landau&Hardesty 2005); conspecific

density dependence (e.g. Bagchi et al. 2011) and habitat associ-

ation (e.g. Harms et al. 2001; Itoh et al. 2010; Ledo et al.

2013). However, other studies also consider pairs of species

and multivariate patterns to look for assemblages of species

that might be related to different habitat types (e.g. Mart�ınez

et al. 2010; Wang et al. 2010; Lan et al. 2012; Luo et al. 2012;

Wiegand et al. 2012; Baldeck et al. 2013; Punchi-Manage

et al. 2013) as well as quantify the roles of habitat association

and dispersal limitation in determining species area relation-

ships, individual species area relationships (ISARS) and the

spatial variation of beta diversity measures (Wiegand et al.

2007; Wang et al. 2011; Cheng et al. 2012; Rajala & Illian

2012;Wang et al. 2013).*Correspondence author. E-mail: d.murrell@ucl.ac.uk
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A multivariate spatial approach is useful because it can be

used to highlight groups of species that are found together

more often than expected by chance. Once these groups of

species have been identified, it is possible to investigate the

processes that are driving their spatial association. Recent

studies have begun to explore the potential of multivariate

spatial methods to uncover new biological insight by starting

with locations in the landscape and using methods to group

similar areas (and assemblages of species) together (e.g.

Baldeck et al. 2013; Punchi-Manage et al. 2013). For exam-

ple, Punchi-Manage et al. (2013) use the Bray–Curtis dissimi-

larity measure combined with a multivariate regression tree

(MRT) analysis to show five distinct habitat types emerge

across all life-history stages of a mixed dipterocarp forest in

Sri Lanka. The added value of this approach is the ability to

quantify the contribution of environmental covariates to the

variation in local species composition, and in this investiga-

tion, it was estimated that approximately 25% of the

variation could be attributed to topographic variables. In a

separate study, Baldeck et al. (2013) also used the Bray–

Curtis dissimilarity analysis of species composition for quad-

rats at the 20 m scale, but instead used principal coordinates

of neighbour matrices (PCNM) to model spatial structure in

the variation of community composition among quadrats

(see also Borcard & Legendre 2002; Legendre et al. 2009).

This variation was partitioned into portions explained by

soil, topographic and spatial variables. Similar to Punchi-

Manage et al. (2013), the results for eight separate mixed

forests showed the soil and topographic covariates could

explain 19–39% of the variation, but that spatial processes

such as dispersal limitation and other unmeasured environ-

mental variables could explain a further 19–37% of the varia-

tion. Both studies highlight the importance of small-scale

environmental variation in structuring species-rich plant

communities, but also that biological processes are likely to

play an important role.

Although the location- or quadrat-based approach has

clear benefits, one could alternatively start by focusing on

individuals and consider the average biotic neighbourhood

of an individual of a particular species, the so-called

plant’s-eye-view (Turkington & Harper 1979). This neigh-

bourhood approach summarizes the spatial co-association

of pairs of species by comparing the observed mean density

of neighbours of one species around individuals of another

species with that expected if the two species were arranged

across the landscape independently of each other (e.g. Wie-

gand et al. 2012). These summaries of spatial co-association

could be used to detect subcommunities of species that have

similar spatial associations to one another. Any emergent

subcommunities would naturally show spatial correlation

and interpretation of their make-up, as in other multivariate

pattern analyses, could be based upon both biological and

abiotic variables.

The neighbourhood-based approach is strongly linked to

spatial ecological theory for population and community

dynamics where the spatial co-association measures can be

state variables (e.g. Murrell 2010) and this may be used to

better understand the interspecific patterns under investiga-

tion. For example, theory has shown that strong interspe-

cific competition should lead to negative spatial co-

associations as heterospecific individuals are removed from

neighbourhoods (Murrell, Purves & Law 2001). On the

other hand, positive spatial associations can occur if spe-

cies interactions are positive (Callaway 1995), or if species

have shared preferences in habitat. Limited dispersal, a

strongly stochastic process that generates spatial structure,

may also lead to some strong positive or negative co-asso-

ciations, but overall, one would expect it to create spatial

independence between species, and it may help to obscure

the signal of spatial associations between pairs of species.

Indeed, Wiegand et al. (2012) found that once the effects

of habitat association are removed, the proportion of spe-

cies-pair spatial co-associations that can be distinguished

from independent may be quite low for very diverse com-

munities (including the BCI plot). The authors attributed

this to the influence of dispersal limitation combined with

often low local abundances leading to a high level of

statistical noise that they referred to as a dilution effect.

In what follows we outline a method for grouping together

species according to their interspecific (bivariate) spatial co-

associations with an example where the interpretation of the

groups of species is based largely upon environmental niches,

although the reader should note that other covariates such as

species traits could also be used to understand the membership

of the subcommunities. Our method has three steps. First, the

interspecific spatial co-associations are quantified, taking into

account differences in abundance and within-species spatial

distribution. The second step involves using a well-established

clustering algorithm to group species together that have similar

spatial co-associations. The final step is to then create a map

denoting locations in the landscape where each subcommunity

dominates.

To illustrate our approach, we use the Barro Colorado

Island (BCI) forest dynamics plot (Hubbell, Condit & Foster

2005), which allows us to contrast our results with those of

previous studies. In particular, we compare our results and

methods to previous work on habitats at BCI (Harms et al.

2001; Kanagaraj et al. 2011) and other ForestGEO-CTFS

sites (Baldeck et al. 2013; Punchi-Manage et al. 2013). While

Harms et al. (2001) analyse the spatial pattern of individual

species and test for correlations with habitats defined on the

basis of environmental variables, the other three studies take

the joint distribution of all species into account and are

based on methods that compute the dissimilarity of the spe-

cies composition at different spatial locations. Our method

is complementary to those latter methods, as it does not

focus on the species composition at certain locations, but on

the co-associations between species across space – or in

other words, where alternative methods average across spe-

cies to find spatial locations with similar species assemblages,

we average across space to find groups of species that co-

associate with one another.
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Materials andmethods

DATA

We use the data from the Barro Colorado Island (BCI) 50 ha long-

term forest dynamics plot in Panama (see Condit 1998; Hubbell

et al. 1999; Hubbell, Condit & Foster 2005). The forest plot at BCI

was established in 1980, and from 1985 onward; complete censuses

of all trees and shrubs above 1 cm diameter at breast height (DBH)

have been repeated every five years. All individuals are identified to

species level, and their position and size are recorded in every cen-

sus. Each individual is classified as adult or juvenile by comparing it

to a species-specific DBH criteria based on estimates by Robin Fos-

ter on the typical sizes when species become reproductive (R. Foster,

unpublished data). Our analysis includes 141 shrub and tree species

(out of 301 species), namely those with at least 10 adults and 10

juveniles in the most recent 2010 census. Species with fewer individu-

als are excluded because in this instance, it is not possible to esti-

mate reliable co-association values for both the juvenile and the

adult populations. This criterion excludes very rare species, species

that do not reproduce in the plot itself, and small shrub species for

which all individuals included in the census are classified as adults.

Considering only adults would lead to the inclusion of another 34

species (26 of which are shrub species where all individuals in the

census are classified as adults). In our interpretation of the results,

we also use the shade-tolerance indices (available for 124 of the 141

species) from Comita et al. (2010) to compare the species in different

groups. In total, the analyses that follow include 153 634 trees and

shrubs (35 156 adults and 118 478 juveniles) out of 207 259 individ-

uals above 1 cm DBH in the 2010 census (see Appendix S1 for list

of species, abundances, shade-tolerance indices and Robin Foster

estimates).

ANALYSIS

Bivariate co-associationmeasure

As a measure of the spatial co-association of two species a and b,

we use the bivariate version of the Ripley’s Ka,b(r) standardized by

the neighbourhood area (Lotwick & Silverman 1982; Wiegand &

Moloney 2004). This means the expected value of the standardized

Ripley’s K for a random superposition is equal to one, indepen-

dent of scale. We use the standardized Ripley’s K with a radius of

10 m that is defined as:

ra;bð10Þ � Ka;bð10Þ
pr2

� A
PNa

i¼1 Nai ;b;10

NbNaA10
; eqn 1

whereNai ;b;10 is the number of neighbours of species bwithin the inter-

val 0–10 m froma focal individual i of species a;Na andNb are the total

number of individuals of the respective species in the sample; A is the

size of the study area and A10 is the size of a circle with 10 m radius r

and Ka,b(10) the bivariate Ripley’s K for a radius of 10 m. Edge effects

are avoided by using a buffer zone which was created by excluding indi-

viduals of species a from the sample that was closer than the neighbour-

hood radius to the edge of the study area (Haase 1995). We chose a

buffer zone for edge correction as it gives unbiased results, is very effi-

cient to compute and disregards few data for a radius of 10 m.Depend-

ing on the size and shape of the study area, the radius of the

neighbourhood and the available computational resources, other

choices of edge correction may be preferable (for a detailed discussion,

see Illian et al. (2008)).

Co-associationmatrix and normalization

It is necessary to normalize ra,b(10) because the tree and shrub species

vary, both in their abundance and in their within-species spatial associ-

ation (Condit et al. 2000; Fl€ugge, Olhede & Murrell 2012). Conse-

quently, it is difficult to compare the co-association measures ra,b(10)

for different pairs of species, in ameaningful way, because themarginal

properties of both species vary. We therefore normalize the co-associa-

tion values �ra;bð10Þ, accounting for marginal within-species aggrega-

tion and abundance, where we define:

�ra;bð10Þ �
0 for a ¼ b

ra;bð10Þ�1

stdðrRða;bÞð10ÞÞ
for a 6¼ b

(
: eqn 2

We produced 1000 randomized replicates of the spatial co-associa-

tions between every pair of species (a,b) by random torus translations

(Lotwick & Silverman 1982; Harms et al. 2001) of the spatial locations

of species b in relation to the spatial locations of species a. From these

shifted patterns R(a,b), we computed the co-associations rR(a,b)(10) as

described before and then computed the standard deviation of all 1000

values std(rR(a,b)(10)). We remove unity from Equation 2 because

under the assumption of random superposition (spatial independence)

of two species, the expectation ofra,b(10) is unity. By doing so, we shift

the co-association values such that, compared to a null model of

random superposition, negative values indicate co-segregation and

positive values indicate co-aggregation.

As ra,b(10) is identical to rb,a(10), except for an asymmetry in the

estimation introduced by the edge correction which does not affect the

expected value, it is sufficient to compute the upper or lower triangle of

thematrix to obtain the symmetric matrix of all pairwise co-association

values. The diagonal entries of the matrix are set to zero, because we

are not interested in the within-species spatial associations.

Clustering of species into subcommunities

We use the popular non-hierarchical k-means clustering algorithm

(Gan, Ma &Wu 2007) to group the species into k disjunct sets of spe-

cies with themost similar co-association values. Species are represented

by the rows of the normalized co-association matrix. We use 100 repli-

cations of the k-means algorithm with random initialization to find the

clustering that minimizes the sum of the difference D(k) between the

vectors of co-association values of species and the centroids of their

clusters. We define �ri�ð10Þ as the vector of normalized co-association

values between all species and species i, and ci=n denotes species i is

assigned to the n-th cluster. The sum of the differenceD(k) is then com-

puted as the sum of the Euclidean distances of each species co-associa-

tion vector �ri�ð10Þ to the cluster centre of its cluster

ci

P
j2Species dci ;cj �rj�ð10ÞP

j2Species dci ;cj

� �
:

DðkÞ ¼
X

i2Species
�ri�ð10Þ �

P
j2Species dci ;cj �rj�ð10ÞP

j2Species dci ;cj

�����
�����
2

eqn 3

with the Kronecker delta, dci ;cj , defined to be zero if ci6¼cj and one if

ci=cj. The result is that each group is a collection of species that show

similar co-association patterns both within the group as well as with

species in other groups.

To determine the upper limit of k for which the individual clusters

contain meaningful information on the spatial patterns of the species,

we use the normalized co-association matrix for 1000 forests (hereafter

referred to as random forests) in which the within-species pattern is

held constant, but where all species are shifted relative to each other via

random torus translations. For both the BCI data and each random
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forest, we then compute the sum of the within-cluster species to cen-

troid distancesD(k) for all k between 1 and the number of species. The

sum of the difference D(k) is a measure of how well the clustering fits

the data (i.e. how homogeneous the species are within a cluster). With

increasing k, D(k) trivially gets smaller, because more clusters can

always partition a set such that the sum of the within-cluster distances

is smaller than with fewer clusters. However, the amount by which D

(k) decreases from D(k1) to D(k2) (with k2>k1) holds information on

the inherent number of clusters in the data. We therefore compare D

(k)�D(k+1) for all k between 1 and 140 (number of species minus 1) for

the BCI data with the 1000 random forests. If the species at BCI are

more likely to be found in the same or different spatial regions, we

would expect D(k)�D(k+1) to be larger than in a random forest for at

least the first few clusters k. This would show that the structure of the

forest is not random, but that there are indeed subcommunities that

reduce the sum of within-cluster distances more than what would be

expected in a randomnullmodel. To avoid interpreting potentially spu-

rious effects, at most those number of clusters k that exhibit statistical

significance are investigated. In the analyses below, we use a 1% signifi-

cance level, that is k is significant ifD(k)�D(k+1) for the species at BCI

is larger than for 99%of the random forests.

Finally, we do not adopt hierarchical (either aglomorative or divi-

sive) clustering methods, but recluster all species for each possible

choice of number of clusters k. This is because we want to achieve the

best clustering for any choice of cluster numbers, without constraint, as

this will allow us to choose an appropriate value of k. If we wished to

achieve a hierarchical understanding of groupings, alternative methods

could be applied (Hastie, Tibshirani & Friedman 2009). Also, there are

scenarios, where spatial contiguity is enforced by the choice of cluster-

ing procedure (Gordon 1996). We chose to not apply such methods, as

we wish the data to naturally reproduce spatial contiguity from uncon-

strained algorithms.

Densitymaps

Once all species are grouped, the next step is to explore the spatial dis-

tribution of the subcommunities in the landscape. For that purpose, we

first use the variable bandwidth kernel density estimator byBotev,Gro-

towski & Kroese (2010) to estimate the relative density of each species

across the 50 ha plot. We then compute the mean relative density

across the 50 ha for each subcommunity. In line with our clustering

method, this method of computing the relative density for subcommu-

nities weighs each species identically, independent of its abundance, as

we are less concerned with the absolute density of individuals in a cer-

tain region (in which case we should weigh the species density maps by

abundance or basal area), but instead, we want to find regions at which

most species in the subcommunity co-occur (but see Appendix S5 for

abundance-weighted results). However, it should be noted that the vari-

able bandwidth kernel density estimator adapts the bandwidth to the

detail of the available data and therefore smooths the point pattern

with a larger bandwidth for rarer species. Thus, in practice, rare species

generally have less influence on the mean kernel density of a subcom-

munity than common species.

Subcommunitymaps

The information in the subcommunity density plots can be condensed

into a single panel showing the dominant cluster, that is the subcommu-

nity with the highest mean relative density, for each 20-by-20 m quad-

rat in the forest plot. Below, we draw such a figure by representing each

subcommunity with a different colour, and drawing amap of the 50 ha

forest plot where each 20-by-20 m quadrat is coloured according to the

subcommunity that has the highest mean relative density (Figs 3 and

4).

Software

All analyses are conducted usingMathwork’s MATLAB R2012b, and the

source code is available as supplementary material. However, the

reader should note that the method could be easily implemented in R

(http://www.r-project.org/) since k-means clustering functions (e.g. in

the stats library) and kernel density estimators (e.g. in the kernsmooth

library) are standard tools.

Results

CO-ASSOCIATION MATRIX AND NORMALIZATION

Figure 1 shows the normalized co-association matrix of the

adult population in the 2010 census. Each row (and column)

represents the co-association values of one species with all oth-

ers. The colour-coded bars along the side of the matrix show

the clustering of the species for k=5 clusters (the colours are the
same as those in Fig. 3).

CLUSTERING OF SPECIES INTO SUBCOMMUNIT IES

Comparing D(k)�D(k+1) between the data of the adult indi-

viduals of the 141 study species at the 2010 census, and 1000

Fig. 1. The normalized co-association matrix between the adults of the

141 tree and shrub species from the BCI plot investigated here. Each

row and column represents the co-associations of one species with all

the others. Red indicates that two species are aggregated, and yellow

that they are segregated, in comparison to a random null model. The

matrix is symmetric about the diagonal, and the colours on the side

show which species are grouped together in one subcommunity by the

k-means algorithm (with k = 5) using the same colour coding as in Fig.

3d. Species are sorted by first sorting them according to their groups

with k = 10, and then stepwise reducing the number of clusters and

minimally resorting the species to group them according to the lower

number of groups – the stepwise resorting is repeated until k = 5 is

reached.
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random forests based on the same individuals, shows that

D(k)�D(k+1) is larger for the true data than for 99% of the

random forests up to values of k = 10 (see Appendix S2). This

indicates that at least ten disjoint sets of species can be defined

on the basis of their spatial distribution within the BCI forest

plot, and within these sets, species are more correlated than

expected by chance, that is assuming spatial independence

between pairs of species. For k > 10, however, the additional

fine scale structure in the data can no longer be distinguished

from random effects. In order to enable better comparison of

our results to those obtained byHarms et al. (2001), we choose

to use k = 5 for most of our analyses (see Tables 1 and 2 for

summary information on the clustering with k = 5), but

further information on k = 6 to k = 10 clusters is given in

Appendix S3.

DENSITY MAPS

The panels of Fig. 2 show the spatial variationmean density of

the adult individuals of each of the five subcommunities as esti-

mated by Botev’s kernel density estimator (Botev, Grotowski

&Kroese 2010).

SUBCOMMUNITY MAPS

Figure 3 shows the dominant subcommunities in the 50 ha

forest plot for k between 2 and 5 clusters for the adult popu-

lation of the 2010 census (see Appendix S3 for subcommu-

nity maps for number of clusters up to k = 10). Our results

largely concur with those of Harms et al. (2001). The first

partitioning at k = 2 (Fig. 3a) seems to distinguish between

the more wet habitat at the slopes and the drier plateau hab-

itats. However, at k = 2, part of the north-western low pla-

teau is grouped together with the slope (coloured red),

rather than with the remainder of the plateau habitat

(coloured green). For k = 3 (Fig. 3b), we do not find a

distinction between the high plateau and the low plateau.

Instead, the partitioning follows similar borders as the first,

except that the north-western low plateau (cyan) stands out

as a separate subcommunity. Thus, the remaining parts of

the low plateau are still grouped together with the high pla-

teau and the young forest. Only when increasing the number

of clusters to k = 4 (Fig. 3c), do we find a separate high pla-

teau/young forest subcommunity while still finding the split

between the north-western and the south-eastern part of the

low plateau. For k = 5 clusters (Fig. 3d, based on the sub-

community densities shown in Fig. 2), we find a subcommu-

nity dominated by swamp species, together with some more

widely spread shade-intolerant pioneer species. The divide

between the north-western low plateau and the south-eastern

low plateau seems to be mainly driven by life-history strat-

egy, since the species of the south-eastern subcommunity

have the highest mean shade-tolerance index of all clusters

(Table 1), and the species of the north-western low plateau

subcommunity are the second most shade intolerant on

average (only the swamp/pioneer subcommunity has a lower

mean shade-tolerance index).

The results for the juveniles (Fig. 4) are slightly less clear,

although life-history strategy seems to be an important factor

differentiating the subcommunities, suggesting light gaps drive

some of the spatial structure evident in the plot. Most notably,

the first grouping for k=2 (Fig. 4a) seems to be made along the

line of shade tolerance (mean shade-tolerance index for the

’purple’ subcommunity is�1�01 � 1�55; for the ’blue’ subcom-

munity, it is 0�50 � 0�79). For k > 2 (Fig. 4b–d), there always

seems to be a subcommunity of highly shade-intolerant species

beside those subcommunities that are more influenced by habi-

tat and more similar to the subcommunities found for the

adults (see Table 2 for summary information on the juveniles

with k = 5). The results from the juveniles support the result

from the adults that slope is themost important environmental

variable to distinguish habitats with different species composi-

tions at BCI.

Table 1. Summary information on the number of species, number of

adult individuals andmean shade-tolerance index (* and **markmean

shade-tolerance values that significantly depart from expected shade

tolerance under the null hypothesis that shade tolerance is independent

of grouping, on a 5% and 1% significance level, respectively; we used

bootstrapping to compute the expected mean shade tolerance under

the null hypothesis by randomly drawing shade-tolerance values from

the set of all species) for the clustering with k = 5 subcommunities on

the basis of the adult individuals in the 2010 census at Barro Colorado

Island (BCI)

Subcommunity name

Number

of

species

Number

of

adults

Mean shade

tolerance (�std)

South-eastern low plateau 37 7821 0�55** (�0�93)
North-western low plateau 33 2488 �0�63* (�1�48)
Swamp/shade-intolerant

pioneers

13 1997 �1�57** (�1�96)

High plateau/young forest 37 17 164 0�17 (�0�95)
Slope 21 5686 0�45 (�0�70)

Table 2. Summary information on the number of species, number of

juvenile individuals and mean shade-tolerance index (* and ** mark

mean shade-tolerance values that significantly depart from expected

shade tolerance under the null hypothesis that shade tolerance is inde-

pendent of grouping, on a 5% and 1% significance level, respectively;

we used bootstrapping to compute the expected mean shade tolerance

under the null hypothesis by randomly drawing shade-tolerance values

from the set of all species) for the clustering with k = 5 subcommunities

on the basis of the juvenile individuals in the 2010 census at BarroColo-

rado Island (BCI)

Subcommunity

name

Number of

species

Number of

juveniles

Mean shade

tolerance (�std)

Blue/low plateau 32 41 573 0�95** (�0�51)
Light blue/mixed 37 10 498 �0�01 (�0�98)
Purple/shade-

intolerant pioneers

13 3720 �2�51** (�1�34)

Green/mixed-

swamp

26 17 448 �0�56 (�1�33)

Red/slope 33 41 573 0�49* (�0�50)
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Discussion

There are an increasing number of data sets available that pro-

vide rich spatial data for communities with large numbers of

species and individuals (ForestGEO-CTFS 2013). While early

studies havemainly focused on the spatial distributions of indi-

vidual species, only aggregating the results to summarize the

number of species that show certain spatial associations

(e.g. Harms et al. 2001) or reporting a median value (e.g. Con-

dit et al. 2000), an increasing number of studies usemethods to

draw information from the joint spatial distribution of species

(e.g. Mart�ınez et al. 2010; Wang et al. 2010; Lan et al. 2012;

Luo et al. 2012; Wiegand et al. 2012; Baldeck et al. 2013;

Punchi-Manage et al. 2013). The method we introduce makes

use of an individual-based spatial co-association measure to

group species together based upon their co-occurrence in the

landscape, and we believe it provides a valuable addition to the

growing toolkit of multivariate methods in spatial pattern

analysis. In what follows we will discuss the strengths and limi-

tations of our method and explore some of the possible exten-

sions and adaptations that may be required for different data

sets and biological questions.

The first step of our method is to calculate a normalized co-

association matrix. The matrix of co-associations (Fig. 1) is

itself an interesting object that could be used for other analyses

such as the comparison of the degree of segregation and aggre-

gation between different groups of species or communities.

The normalization procedure we outline in Equation 2 is nec-

essary tomake the individual entries of thematrix comparable,

but the precise measure that is used to compute co-associations

will differ depending on the scale of the processes of interest, in

the particular community and the available data. So, for exam-

ple, while the BCI data set holds information on individual tree

locations using precise x- and y-coordinates, ourmethod could
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Fig. 2. Each panel shows themean relative density of adults in the 2010 census obtained for one of five subcommunities. Red indicates that there are

comparatively many individuals from that set of species while blue indicates lower relative densities. Densities were computed using Botev, Grotow-

ski & Kroese (2010) kernel density estimator for each individual species and then averaged over all species in each subcommunity. The grey-scale

map in subpanel (f) shows the different habitats at Barro Colorado Island (BCI) as defined byHarms et al. (2001).
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easily be adapted if the data are for the presence/absence in a

grid since the key ingredient required to group the species is a

matrix of spatial co-associations. Similarly, the matrix can be

computed for a variety of spatial scales. We use circles of 10 m

diameter to compute co-association values for our analyses, as

this is a scale at whichmany important ecological processes are

happening in our study system (Uriarte et al. 2004). This scale

also provides a good balance between covering a wide enough
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Fig. 3. Depicted are the subcommunities with the highest mean relative density for each 20-by-20 m quadrat for the number of cluster k between

k = 2 and k = 5 (top-left to bottom-right) for the adult plants in the 2010 census.
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Fig. 4. Depicted are the subcommunities with the highest mean relative density for each 20-by-20 m quadrat for the number of clusters k between

k = 2 and k = 5 (top-left to bottom-right) for the juvenile plants in the 2010 census.

© 2014 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.,

Methods in Ecology and Evolution, 5, 1214–1224

1220 A. J. Fl€ugge, S. C. Olhede & D. J. Murrell



area to achieve stable numerical results (i.e. for most species

pairs, we find individuals of the other species in at least some of

the neighbourhoods around the focus species) while still cap-

turing fine-scaled differences in species distribution (Fl€ugge,

Olhede & Murrell 2012). Different species may show spatial

correlations at different spatial scales, but because we were

looking at the spatial structure of the plant community with all

species, we used the same scale for all species pairs to keep the

results comparable. However, the co-associations between spe-

cies are relatively stable for small changes to neighbourhood

diameter since the neighbourhood densities at different scales

are highly correlated (Condit et al. 2000). Our experience

shows that species that are assigned to a different cluster at a

different scale are also likely to be the least typical species for

that subcommunity. A detailed analysis of how the species co-

associations change with scale is beyond the scope of this study

(see Appendix S4 for cursory results on the 5 and 20 m scale),

but we note that as an alternative to choosing a particular scale

of analysis, a different approach could be to use a measure of

spatial association such as the cross-pair overlap that averages

the pair-correlation function over a range of distances (Brown

et al. 2011).

The second step defines subcommunities from the co-associ-

ationmatrix and explores the number of statistically significant

clusters in the data. Giving an upper limit for the number of

subcommunities that can be distinguished from random is an

important aspect of our method. By torus translating the full

patterns for each species, we vary only the between-species pat-

terns, while keeping the within-species patterns fixed. The

advantages of this model are that it is very quick to compute

randomized patterns and that it does not rely on fitting amodel

to describe the within-species pattern. The disadvantage, how-

ever, is that it only breaks the observed relationships of pat-

terns between species, but does not produce all the variability

present in stochastic realizations of within-species patterns.

More sophisticated methods that fit models to the within-spe-

cies variability of spatial patterns are available (Illian et al.

2008;Wiegand, He&Hubbell 2013).

The method to cluster species into subcommunities could

also be adapted where appropriate. For example, if the expec-

tation is that clusters breakdown into subclusters (e.g. groups

relating to slope habitat break down into upper and lower

slope groups), then hierarchical clustering methods (Gan, Ma

&Wu 2007) could be used. We also note that our measure for

co-association is not symmetrical for co-aggregation and segre-

gation and our clusters are therefore potentially more strongly

driven by positive associations between species.

Our results suggest there is statistically significant structure

in the co-association matrix for up to ten subcommunities for

the adults at BCI (see Appendix S2), but we argue that below

this cut-off, there is no a priori correct number of clusters to

analyse. By considering different numbers of subcommunities,

we can explore which spatial structures are most prevalent and

are therefore the strongest. In our main analyses, we concen-

trated on k = 5 clusters because this allowed easy comparison

with previous analyses using different methods. However, fur-

ther in-depth analysis of the characteristics of the species in the

full k = 10 clusters could lead to new insights into ecologically

important factors structuring the plant community at BCI.

More information about the species and/or the abiotic envi-

ronment is likely to be required to explain large number of

clusters. A possible extension of our study could be to use the

data on soil chemicals available for the BCI plot (Dalling et al.

2009; Condit et al. 2013). Baldeck et al. (2013) and John et al.

(2007) indicate that soil properties can explain a significant

part of the spatial distribution of species at BCI, and this might

explain the additional structure when k ranges between 6 and

10. We also note that instead of looking at density maps and

subcommunity maps, one could also stop at the clustering

stage and analyse the attributes of species in the various sub-

communities to explore what they have in common and what

distinguishes them. In this case, the focus would be on species

traits such as wood density, seed size, maximum adult size, etc.

(Wright et al. 2010), or investigating the within and between

subcommunities pattern of phylogenetic relatedness.

Although the interpretation of our species clusters focuses

mainly on the role of environmental niches, other biotic and

abiotic processes may be influential and the subcommunities

represent realized rather than fundamental niches. In our

example, it is clear that subcommunities are influenced by both

environmental gradients such as slope and elevation, but also

biotic conditions such as canopy gaps caused by treefall. The

biotic factors may include both positive as well as negative

forces acting on species spatial pattern since species are clus-

tered according to similar positive and negative interspecific

associations. A canopy gap, for example, provides particularly

advantageous conditions for shade-intolerant species (Wright

et al. 2003). On the other hand, shared pathogens or superior

competitors could conceivably restrict the range of some spe-

cies to those parts of the forest where the pathogen or competi-

tor is not present. Spatial clustering of groups of species could

also arise from positive interactions between the species, and

the challenge is to be able to differentiate between, or quantify

the roles of these candidate processes in generating the spatial

associations, especially in species-rich communities where the

spatial ecological signals of biotic interactions may be quite

weak (Wiegand et al. 2012).

The third step takes the species clusters and computes rela-

tive density maps and a number of adaptations could be

required depending on the data used. Firstly, we use a density

estimation kernel that smooths the individual stemmap to pro-

duce a continuous density distribution over the whole area. If

the datawere based on presence/absence in a grid, then a differ-

ent kernel density estimator would be appropriate. Secondly,

because we are particularly interested in rare species, we weight

each species equally in the calculation of the mean subcommu-

nity density, but other methods of weighting the contribution

of species depending on abundance, biomass or other measure

of relevance or reliability of the data are possible. Weighting

by stem abundance might bias the results towards species that

produce lots of juveniles, whereas weighting by biomass would

bias towards species that produce large individuals and both

might lead to different, but biologically informative interpreta-

tions of the spatial densitymaps.
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The choice of weighting in abundance to produce the density

maps allows us to detect patterns not dictated by a single, or a

few, very abundant species. Kanagaraj et al. (2011), for exam-

ple, found the result that juveniles showed more habitat parti-

tioning than adults at BCI, despite adults being exposed to

habitat filtering processes over a longer time. This might be

explained by the fact that juvenile results are dominated by

shade-tolerant species, which generally have size distributions

that are more juvenile dominated than in shade-intolerant spe-

cies and at the same time might be more dependent on numer-

ous soil variables compared to shade-intolerant species that

mainly rely on gaps in the canopy for recruitment.

In the final step, we summarize the information from the

density maps of the subcommunities into a single map for the

whole community, but we could have instead analysed the cor-

relation between the density of the various subcommunities to

the value of other continuous variables, such as soil nutrients.

One key advantage of the multivariate approach is increased

statistical power compared to looking for such correlations on

a species-by-species basis, and this also allows the inclusion of

relatively rare species into the analysis. By condensing the sub-

community maps into one, we get a result that is comparable

to methods by Kanagaraj et al. (2011), Punchi-Manage et al.

(2013) and Baldeck et al. (2013) that focus on the similarity of

species compositions at spatial locations within the study area.

In contrast to those studies, we start with groups of species and

then consider how these subcommunities are spread over the

landscape, and this will lead to different, but potentially com-

plementary, results and interpretations. For example, if there

are subcommunities that partially overlap in space, for exam-

ple two disjoint sets of species A and B that partially overlap,

then Kanagaraj et al. (2011), Punchi-Manage et al. (2013) and

Baldeck et al. (2013) might detect three different spatial areas,

two areas where only species of groupA orB occur and a third

area where individuals of species from both sets A and B are

present. In contrast, a neighbourhood-based approach such as

that introduced here would detect the two subcommunities,

but would then assign the area where they overlap to one or

the other depending on which group is more dominant. The

choice of approach would depend upon whether locations or

groups of species are the objects of interest. This can be inter-

preted as a choice of trade-off between bias and variance.

Perhaps a more similar method is presented by Legendre

(2005) who adaptsKendall’s coefficient of concordance to look

for groups of species that are positively associated with one

another across a number of discrete sites in the landscape.

Here, for each study species, sample sites are ranked according

to abundance observed, with the first ranked site having the

highest abundance and the last ranked the lowest abundance.

Kendall’s coefficient of concordance is then computed to test

whether the rankings are all independent of one another, and if

the null hypothesis is rejected, post hoc tests are required to see

which species positively associate across the sites. This method

has the advantage of being relatively simple and works well for

data where discrete locations are sampled (such as soil cores)

rather than the locations of all individuals such as in the BCI

data set, whereas ourmethodworks well for point process data

covering one sample area. Legendre (2005) also points out

Kendall’s coefficient of concordance ranges from 0 (all species

are independent) to 1 (all species are perfectly associated

according to the site ranking) and does not work so well for

assemblages where there are strong negative associations,

something which cannot be ruled out a priori for most plant

communities. In contrast, our method uses both positive and

negative associations to cluster species into groups, and the test

for statistical significance is on the subcommunities rather than

the large number of pairwise associations.

In conclusion, we have outlined a novel method to com-

pare spatial co-associations between different pairs of species

of different abundances and within-species aggregation.

Using the resultant matrix of normalized co-association val-

ues, we propose a method to group species into subcommu-

nities of spatially co-associated species and provide a

measure of the number of statistically significant subcommu-

nities. The interpretation of these subcommunities depends

on the system under study and the information available for

this purpose. However, even when interpretation is difficult

due to a lack of relevant covariates, the methods will suggest

groups of species and areas of the landscape that merit fur-

ther investigation. Moreover, by defining subcommunities,

we are able to incorporate relatively rare species that might

not be sufficiently abundant to be included in traditional spe-

cies-focussed habitat association studies. As such, we believe

our method is a useful addition to existing methods for mul-

tivariate spatial pattern analysis and can increase the under-

standing of communities that exhibit high biodiversity and

for which the processes that structure the communities

are not obvious to the human observer or not as yet well

understood.
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