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Abstract

Background: Different methods of evaluating diagnostic performance when comparing diagnostic tests may lead to
different results. We compared two such approaches, sensitivity and specificity with area under the Receiver Operating
Characteristic Curve (ROC AUC) for the evaluation of CT colonography for the detection of polyps, either with or without
computer assisted detection.

Methods: In a multireader multicase study of 10 readers and 107 cases we compared sensitivity and specificity, using
radiological reporting of the presence or absence of polyps, to ROC AUC calculated from confidence scores concerning the
presence of polyps. Both methods were assessed against a reference standard. Here we focus on five readers, selected to
illustrate issues in design and analysis. We compared diagnostic measures within readers, showing that differences in results
are due to statistical methods.

Results: Reader performance varied widely depending on whether sensitivity and specificity or ROC AUC was used. There
were problems using confidence scores; in assigning scores to all cases; in use of zero scores when no polyps were
identified; the bimodal non-normal distribution of scores; fitting ROC curves due to extrapolation beyond the study data;
and the undue influence of a few false positive results. Variation due to use of different ROC methods exceeded differences
between test results for ROC AUC.

Conclusions: The confidence scores recorded in our study violated many assumptions of ROC AUC methods, rendering
these methods inappropriate. The problems we identified will apply to other detection studies using confidence scores. We
found sensitivity and specificity were a more reliable and clinically appropriate method to compare diagnostic tests.
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Introduction

Comparisons of diagnostic tests aim to inform healthcare

providers and patients which tests are most accurate. The ideal test

would give all patients a correct diagnosis, in a short time and with

minimal inconvenience to the patient. Unfortunately no test is

perfect, and in practice some patients with the target disease will

be missed (false negative result), and some patients without disease

will be diagnosed incorrectly with disease (false positive result).

Measuring diagnostic performance
There are three main approaches for comparing diagnostic test

accuracy that use different statistical measures. In a previous paper

we have discussed these approaches with illustrative examples [1].

The first approach is to use paired measures at specific test

thresholds, using either sensitivity and specificity, positive predic-

tive value and negative predictive value (PPV and NPV), or

positive likelihood ratio and negative likelihood ratio (LR+ and

LR2). A second approach is to examine test performance across

all diagnostic test thresholds, using summary measures such as

ROC AUC or diagnostic odds ratio (DOR). A third approach

gives an overall measure at a specific threshold (or series of

thresholds), reported alongside the paired measures for example

using a weighted comparison measure [2,3] or net benefit [4,5];

using a single measure can be to simplify comparisons of overall

results compared to using paired measures that are likely to change
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in different directions, of which sensitivity and specificity are the

best known examples.

Multi-Reader Multi-Case designs
In radiology, multi-reader multi-case (MRMC) studies are often

used to compare the diagnostic accuracy of alternative imaging

approaches and this design is currently required by the United

States Food and Drug Administration (FDA) for pre-market

evaluation [6]. Key attributes of good study design are uncontro-

versial and include interpretation of medical images from the

clinical population of interest by radiologists typical of those who

would read the test in clinical practice, and unaware of the patient

disease status or prevalence of abnormality. Studies often compare

test interpretation by the same radiologists in the same patients,

with the only difference being the diagnostic test. Multi-reader

multi-case studies can either use a fully crossed design, where all

readers interpret all patient images or split-plot designs [7].

Learning and order bias are reduced by presenting images and

tests to each reader in random order. Interpretation of the same

case is often separated by at least one month to reduce potential

for recall bias.

Clinical utility of CT colonography
Computed tomography (CT) colonography is a CT scanning

technique used to identify colon polyps, the precursor of colon

cancer. Diagnostic improvement occurs when correct detection of

patients with polyps increases (false negative results are reduced),

corresponding to an increase in sensitivity, without an unaccept-

able increase in false positive diagnoses, corresponding to a

decrease in specificity. It is important to take disease prevalence

into account when balancing changes in sensitivity and specificity.

We have recently measured the relative value that patients and

clinicians place on false positive results compared to false negative

results using discrete choice experiments [8]. Both patients and

medical professionals valued reducing false negative (increasing

sensitivity) more desirable than reducing false positive results

(reduction in specificity) for both colon polyps and colon cancer

[8]. Similarly when in mammography screening women will

exchange 500 false-positives for one additional cancer [9]. This is

pertinent to ROC AUC, where the analysis automatically sets a

weighting of the relative importance of diagnoses [1].

Sensitivity and specificity are usually direct measures calculated

from diagnostic data reported by radiologists in normal clinical

practice, namely the presence or absence of polyps. By contrast

ROC AUC is a summary measure of performance across all

potential diagnostic thresholds for positivity, rather than perfor-

mance at any specific threshold. As such ROC AUC is classified as

a surrogate endpoint [10].

ROC AUC requires confidence scores
ROC AUC is derived from confidence scores which are scores

usually assigned by radiologists to indicate their confidence in their

diagnosis. Confidence scores may or may not form part of the

normal clinical report. Confidence scores can be assigned either to

individual lesions within a patient, or to an overall patient

diagnosis.

In imaging studies there are two broad types of clinical scenario

in which confidence scores can be assigned to enable calculation of

ROC AUC. In ‘‘classification’’ studies, visualised lesions are

classified according to morphological characteristics perceived by

the radiologist; for example in mammography studies lesions are

either benign or malignant and the strength of the radiologist’s

belief is captured using a confidence scale such as ‘benign’,

‘probably benign’, ‘equivocal’, ‘probably malignant’, or ‘definitely

malignant’. If there is a lesion on every image presented, then the

task is purely classification. In some studies the confidence score is

adapted from a clinical measure used in clinical practice, such as

the BI-RAD scale [11].

In ‘‘detection’’ or ‘‘presence versus absence’’ studies, readers are

asked to record their confidence regarding the presence or absence

of a lesion rather than its nature; often a scale such as 0 to 100 is

used. These confidence scores are often recorded in clinical trials

solely to calculate ROC AUC. It has been suggested that lesion

size could act as a confidence score for ‘‘presence/absence studies’’

linked to normal clinical practice. However this approach is flawed

as lesion size cannot be measured when there is no lesion.

Many studies are hybrids between these two scenarios. For

example not all images may contain a lesion, and readers may be

asked to classify lesions when present and use a different

confidence score when not. Similarly ‘‘detection’’ studies may

require readers to report confidence scores for abnormalities that

they do not classify as lesions.

Aim of research
In this paper we compare two statistical methods for measuring

diagnostic performance, namely sensitivity and specificity versus

ROC AUC. When used to compare two diagnostic tests these

methods may estimate diagnostic performance differently. In this

article we investigate why this can happen using data from a

previously published clinical study [12] and examine which aspects

of study design and characteristics of the data contributed to ROC

AUC method assumptions being considered inappropriate.

We illustrate the issues using a study comparing CT colono-

graphy with and without Computer Assisted Detection (CAD) to

identify colon polyps [12]. We compare the diagnostic measure

area under the Receiver Operating Characteristic Curve (ROC

AUC) to sensitivity and specificity. This work was motivated by an

FDA strong presumption in favour of using ROC AUC to

measure diagnostic accuracy for licensing of CAD in radiological

imaging [6]. We identify and present the problems encountered

when using ROC AUC to measure diagnostic performance.

Methods

Study design
Full methods for the study are described in the original study

publication [12]. In brief, ten radiologists each read CT

colonography images from the same 107 patients, reading images

with and without CAD assistance to detect colon polyps. Each

read was separated by two months to avoid potential recall bias,

with both test and patient order randomised for each reader. The

reference standard was a consensus of two from a panel of three

experienced and independent radiologists who read each case

combination with colonoscopy reports: 60 patients had polyps and

47 were normal.

Each reader identified polyps, noting their diameter and

location. In addition they recorded whether they believed the

patient case was normal (i.e. no polyps were seen) or abnormal

(where polyps were reported). All statistical measures were

calculated per patient since a positive CT colonography will

mean subsequent colonoscopy (where the entire colon is examined

and polyps removed). Sensitivity was the percentage of patients

identified by radiologists as having a polyp, either through true

positive or false positive polyp identification(s), from patients

positive according to the reference standard. This definition of

sensitivity reflects that patients are referred based on identification

of polyps in the clinical referral pathway. Specificity is the

percentage of patients where no polyps were reported by
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radiologists, of those classified as negative by the reference

standard. Table 1 shows the steps used to calculate ROC AUC

in this study. A confidence score between 1 and 100 was reported

for each potential polyp identified, with readers instructed to use

scores of 25 or above for polyps with high confidence and scores of

1 to 24 for abnormalities believed more likely to be something else.

Where no confidence score was recorded by radiologists, a zero

score was introduced during statistical analysis. Where more than

one polyp was recorded per patient, the highest confidence score

recorded with each patient was used for analysis. ROC AUC

calculations used DBM MRMC v2.1 (http://www-radiology.

uchicago.edu/krl/KRL_ROC/software_index6.htm) and Pro-

proc v0.0 (http://metz-roc.uchicago.edu/MetzROC/software/

software) [13]. DBM MRMC fits ROC curves based on

parametric binormal methods [14]. PROPROC fits ROC curves

based on a maximum-likelihood estimation using a proper

binormal distribution [13]. In this paper, for illustrative purposes,

we selected five of the ten readers that best demonstrate issues

when comparing sensitivity and specificity versus ROC AUC.

Results

Different diagnostic performance
We compared the diagnostic performance of two tests to detect

colonic polyps, CT colonography either with or without CAD,

using the difference in diagnostic accuracy measured by (i) the

number of patients correctly diagnosed and (ii) ROC AUC. We

expected diagnostic performance to increase when CAD was used.

However, we observed no clear relationship between these two

measures of diagnostic performance despite readers and cases

being identical (Figure 1A).

We then investigated the relationship between the difference in

sensitivity and specificity and the difference in ROC AUC (DROC

AUC) for individual readers, focussing on five of the ten readers as

illustrative examples (Figure 1B & 1C). Readers 2, 3 and 5

exhibited clear gains in sensitivity of 21, 22 and 21%, along with

decreases in specificity of 15, 11 and 8% respectively. Reader 5

had the best performance followed by readers 3 and 2 respectively.

Reader 4 also had a 13% increase in sensitivity with a smaller 4%

decrease in specificity. Reader 1, by contrast, showed no increase

in sensitivity but unusually had a 4% increase in specificity. Use of

CAD improved clinical diagnosis in readers 2 to 5 but not in

reader 1, based on the large increases in sensitivity when using

CAD. As noted above, these are considered more important to

both clinicians and patients than smaller reductions in specificity

[8]. By contrast, the change in ROC AUC (Figure 1B) defines a

positive benefit of CAD in readers 1 and 5 and a negative benefit

in readers 2, 3 and 4. Perversely, reader 1 had one of the highest

increases in ROC AUC (Figure 1A and 1B) since CAD had no

influence on sensitivity, the most clinically important aspect, and

also had little impact on specificity.

Problems recording confidence scores that cause zero
values

During our study readers encountered several problems when

assigning the confidence scores needed to derive ROC AUC. A

key problem was that radiologists only reported confidence scores

for regions of the colon where they identified polyps, despite

instructions to use confidence scores between 1 and 25 to report

irregularities that were, on balance, likely not polyps. CT

colonography of a normal colon identifies many potential

abnormalities that are ultimately proven not to be polyps, often

numerous, and it was impracticable to score all of these or to select

a meaningful subset to score. Further, when an abnormality

believed to be a polyp was encountered, it tended to be reported

with high confidence. In order to include all patients in the study,

the statistician or data manager assigned a value of zero when a

confidence score was not assigned by a radiologist.

Figure 2 shows the distribution of confidence scores for five

readers. The most common score for every reader was zero. This

zero-inflated ‘‘spike’’ then accompanies a second distribution of

the confidence scores assigned for abnormalities believed to be

polyps. This results in a bimodal distribution of confidence scores

that cannot be not transformed to a normal distribution by simple

data transformations used in standard open source software [15]

developed for these analyses (Figure 2). Despite instructions in

which distinct ranges of scores were linked to descriptions of

confidence, each reader interprets the guidance differently and

uses the scores in different ways.

Examples of distributions of confidence scores from
literature

Very few published articles using MRMC ROC AUC report

the distribution of confidence scores. We identified only two

examples from the literature where individual reader scores were

reported and another where the distribution of scores across the

group of readers was shown (Figure 3 [16–18]). These examples

show clearly that the distribution of confidence scores is not close

to normality in either patient group, with or without monotonic

Table 1. Steps in calculation of ROC AUC.

Step A: Assigning confidence scores

N Confidence scores were assigned by radiologists. Missing values assigned a value of zero by the data manager or statistician.

Step B: Building the ROC curve from confidence scores and calculating ROC AUC

N Distributions of the confidence scores were examined. Evaluation of potential limitations arising from non-normal distributions or extreme values.

N Real data points directly generated from confidence scores presented in ROC space

N ROC curves fitted using both parametric and nonparametric methods and examination of differences in resulting ROC AUCs. Evaluation of sensitivity of ROC curve to
key values (such as values of confidence scores if few false positives), especially important as there are few false positive results.

N ROC AUC calculated using both parametric and nonparametric methods

Step C: ROC AUC averaged across multiple readers and cases

N Different models using fixed and random effects used to model data

N Random effects with 95% confidence intervals modelled by resampling (bootstrap [40]). Alternative methods can include jackknife [41]), permutation [42] or
probabilistic method [43].

doi:10.1371/journal.pone.0107633.t001
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transformation. However they generally have one peak (unimodal)

rather than distributions with more than one peak, as observed in

our study.

Authors of two other studies where confidence scores were used

to rate the presence or absence of polyps in CT colonography,

reported that scores were non-normal [19] [20]. Baker et al. stated

this as a reason why MRMC ROC AUC analysis was not used

[19]. Petrick et al noted that the lack of normally distributed scores

led to empirical ROC analysis only via bespoke alteration to the

software used, as standard parametric binormal ROC curve fitting

could not be used [20].

Position of data points on a ROC curve
ROC curves are constructed by calculating sensitivity and

specificity at all possible thresholds of confidence score to define a

positive test result. Figure 4 shows the actual data points

underlying ROC curves in our study. Fitting a ROC curve across

all values of specificity requires extensive extrapolation beyond the

study data with the result that the area underneath the

extrapolated curve dominates ROC AUC rather than being

driven by observed data.

Fitting a ROC curve and calculating ROC AUC
Different methods can be used to fit ROC curves. These can

generate different curves from the same study data and so produce

different ROC AUCs. Figure 4 shows two curve fitting methods

available in the Metz programs; the DBM MRMC method based

on parametric binormal methods [14] (dotted line), and the

PROPROC method based on ‘proper’ binormal distributions [13]

(solid line). Non-parametric methods can also be used [21]. For

readers 2 and 5 the extrapolated portion of the ROC curves differ

greatly, demonstrating how the fitting method chosen can

influence the calculated ROC AUC. Further, for reader 4 the

DBM MRMC method was unable to fit a curve, as there were no

false positive diagnoses. Table 2 shows ROC AUCs generated

from these two methods and also using the Wilcoxon method,

which is a non-parametric method that makes no assumptions

regarding data distribution and which can be calculated without

fitting any ROC curve. It should be noted that in many published

clinical studies, the difference in ROC AUC between two tests

being compared tends to be small, in the region of 0.07 [22,23].

Impact of few false positives on ROC AUC
A further undesirable characteristic of the surrogate endpoint

DROC AUC in our study, was the large difference in DROC

AUC precipitated by small differences in the confidence scores

ascribed to false positives. Figure 5 shows the ROC curves of one

reader (reader 4 in other figures) with two false positive detections

with confidence scores of 40 and 50 respectively (reader 4

figure 2). This corresponds to the curve in orange and a ROC

AUC of 0.84. Artificially increasing these two confidence scores to

70 increases the ROC AUC to 0.96 (yellow curve), whereas

changing them to 20 and 70 respectively results in an ROC AUC

of 0.92 (brown curve). Thus the shape of the ROC curve is heavily

Figure 1. Difference in diagnostic performance of two tests showing readers from a multi-reader study. Change in diagnostic
performance of CT colonography for the detection of polyps; difference with computer assisted detection (CAD) minus without CAD. Results from
individual readers. A. Comparison of increase in the number of patients with a correct diagnosis with change in ROC AUC. The five readers selected
for illustrative purposes as examples for the rest of the article are labelled from 1 to 5. B. Arrows indicate values of sensitivity and specificity for each
reader, the arrow bases showing unassisted read values and the arrow head the CAD assisted read values for the same reader. C. Difference in ROC
AUC using two methods for fitting ROC curves. ROC AUC could not be calculated for reader 4 using LabMRMC method.
doi:10.1371/journal.pone.0107633.g001
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dependent on the relative ranking of confidence scores ascribed to

two false positive patients versus true positive diagnoses. In our

study the median number of patients with false positive scores per

reader in unassisted reads was 2 of 107 patients, demonstrating

how ROC AUC may be influenced heavily by a very small

proportion of the observed data.

Discussion

Standard measures and ROC AUC do not correlate
We compared two diagnostic measures: ROC AUC, the

percentage of patients with a correct diagnosis, and sensitivity

and specificity, to quantify the impact of using CT colonography

with and without CAD. Each measure was calculated for

interpretation of the same patients by the same reader.

Diagnostic performance between imaging tests is often assessed

by the difference in ROC AUC, which is the measure preferred by

the FDA for regulatory licensing [6]. We favour using the

difference in sensitivity and difference in specificity, as these can

calculated using test measurements made in clinical practice,

which are direct measures measured from real patients (i.e.

without need for confidence scores). By contrast ROC AUC is a

surrogate measure, as it does not assess test performance at a

relevant clinical threshold, but instead assesses performance

averaged over all possible thresholds.

In our study, the change in ROC AUC was not correlated with

the change in the proportion of patients correctly diagnosed, for

the same readers interpreting the same patients (Figure 1).

Readers in whom a decrease in ROC AUC indicated decreased

accuracy when using CAD actually exhibited increased accuracy

when assessed by the difference in sensitivity and specificity

(Figure 1B and 1C).

Problems with confidence scores of zero
ROC AUC analysis requires confidence scores of diagnostic

certainty to build the ROC curve. In our study we found that

radiologists did not assign confidence scores in patients in whom

they detected no abnormality. A zero score was therefore assigned

by the study statistician in order to include all patients in the

analysis (Figure 2). These scores then had an adverse effect on the

analysis in several ways:

Firstly, some scores are default values of zero when no score was

defined by radiologists in this study. Less obviously, the zero scores

are a score based on whole patient diagnosis at an almost infinite

number of locations in CT colonography where an abnormality

might have been detected, whereas when an abnormality is

detected the score is based on that specific region of interest within

the image. Also, radiologists interpret and assign scores differently,

despite receiving the same scoring instructions.

Secondly, there are often two types of true negative scores. In

our study true negatives could result either because the colon wall

was perceived to be normal or when an abnormality was perceived

but was correctly identified (and scored) as not being a polyp. In a

mammographic comparison of digital and film techniques, two

types of true negative findings are also described; the first where no

finding was identified and the second where a finding was

identified but was thought to be benign rather than malignant

[11]. Study designs where every image includes a lesion may have

only one type of true negative (e.g. a lesion is seen but is believed to

be benign rather than malignant), but most other studies are likely

Figure 2. Distribution of confidence scores for patients with and without polyps. Each histogram shows the distribution of confidence
score values using CAD CT colonography for an individual reader separately for patients with (brown) and without polyps (yellow) based on the
reference standard. Five readers are shown in plots labelled 1 to 5.
doi:10.1371/journal.pone.0107633.g002
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Figure 3. Distribution of published confidence scores. Published confidence scores assigned by individual readers (Reader 1 and Reader 2)
reported for patients without disease (DN) and patients with disease (DP) from two studies. In Hussain et al. [17], classification of MR imaging of
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to have more than one type of true negative if they include patients

with no abnormality.

A third issue is that in studies comparing two tests, there is an

expectation that a better test will increase confidence scores.

However for true negative results due to ‘‘normal’’ patients there is

no room for improvement since a score of zero cannot be

decreased further. Where there are a large number of such true

negatives, there is little ability to demonstrate any diagnostic

improvement.

A fourth and important issue is that zero scores mean that the

basic requirement for a ROC curve to summarise all data in a

valid fashion is broken, namely that the data is normally

distributed or can be transformed to a normal distribution by a

monotonic function [24]. In our study, the data from all patients

where a zero score was assigned only contribute to the point at the

origin of the ROC curve at the top right hand corner of the plot

and so do not contribute to the shape of the curve. The ROC

AUC then becomes a summary of a subset of the study data and,

as in our study, is likely not to include data from a large proportion

of patients in whom no abnormality was detected. These patients

include both those with a true negative result and those with a false

negative result. In our study, due to high specificity indicating

good test performance, 80% to 100% of TN patients were not

included in the ROC curve. In addition due to a lower sensitivity

between 28% to 77%, FN patients were also excluded. Overall,

only 15% to 47% of the 107 patients in the study actually

contributed to the ROC curve and, therefore, the ROC AUC.

Harrington pertinently highlights this as a key issue, noting that

ROC AUC is silent on false-negative and true-negative diagnoses

despite their substantial clinical importance [25]. The distribution

of confidence scores in our study was bimodal and resembles the

distribution of rainfall data, where there are definite zero values

(days on which there is no rain) together with continuous scores

(reflecting the amount of rain on those days when it does rain).

Problems modelling rainfall data are well-recognised, due to the

lack of continuity between the zero scores (binary data) and those

that are continuous. Thus rainfall models are often split; one

model describes the probability that a day is wet or dry (binary

data), and a second describes the amount of rain when the weather

is wet (continuous data) [26].

There are significant issues with modelling data that is neither

solely discrete nor continuous. Accordingly, we feel it is

inappropriate to model such data in the simple binormal format

to calculate a ROC curve.

Other problems with confidence score distribution
The distribution of confidence scores can also cause problems

even where there are no problems with zero scores. ROC AUC

was introduced to medical diagnosis [27] based on its ability to

cirrohotic liver used categories: 1 definitely benign; 2 probably benign; 3 possibly malignant; 4 definitely malignant. In Westphalen et al. [18],
classification of MR imaging of peripheral zone tissue from patients with prostate cancer used categories: 1 likely benign; 2 possibly benign; 3
equivocal or indeterminate; 4 possibly malignant; 5 likely malignant.
doi:10.1371/journal.pone.0107633.g003

Figure 4. Different curve fitting methods. ROC plots each for an individual reader using CT colonography without CAD. Green dots indicate real
data points underlying curve fitting. ROC curve are shown extrapolated from these data using DBM MRMC (red dotted line) and PROPROC software
(blue solid line). Five readers are shown in plots labelled 1 to 5.
doi:10.1371/journal.pone.0107633.g004
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distinguish between two diagnostic alternatives (with and without

target condition or disease) and assuming the distributions of

confidence scores are normally distributed for patients both with

and without disease. However most radiological tests are clinically

useful because they facilitate identification of patients with disease

or ruling out patients who don’t have disease, and so the

distributions of confidence scores for either or both sets of patients

are usually not normally distributed. Disappointingly, most papers

that cite the MRMC using DBM MRMC or Metz software do not

report the distribution of confidence scores in their data. Figure 3

shows two examples of distributions of confidence scores from our

study, which demonstrate the characteristic of extreme scores in

patients either with or without disease. Hanley has shown that for

classification studies with a small number of rating categories,

ROC curves can be reasonable under a mixture of normal

distributions even for data with highly non normal distributions

[28]. However others have raised concerns for ROC AUC analysis

for tests intended to identify well defined abnormalities [29] (i.e.

tests where there are few false positive results such as diagnosis of

ankle fractures using single view radiographs [30]). With well

defined abnormalities, there are two issues: firstly the distribution

of confidence scores is highly non-normal and cannot be

transformed to a normal distribution, and secondly there may be

few false positive results that then lead to curve fitting problems

(see figure 5). Both of these components lead to a situation where

confidence scores for patients with and without disease do not

have sufficient overlap to fit a reliable ROC model. Where there is

little overlap, then confidence scores essentially represent binary

decisions, possibly with an equivocal category. Reviewing several

of his studies for detection of well defined abnormalities, Gur

found that with a few exceptions, more than 90% of interpreta-

tions had scores at the extremes of the range (i.e. greater than 89%

or less than 11% on the confidence scale) [29]. Gur suggested this

might be a particular characteristic of detection studies, as opposed

to characterisation studies. Dorfman et al have also identified

issues when using ROC AUC to analyse tests that dichotomise

into clearly positive and negative results, and so generate few false

positives [30].

One suggestion is that when confidence scores are not normally

distributed, readers are re-trained to spread their confidence scores

across the full range of the available scale [31]. We share the

concerns expressed by Gur that this process intended to achieve a

better spread of data specifically for ROC analysis raises doubts

about subsequent generalisability of findings to the clinical

environment [29]. We also note that the ranking methods used

to analyse confidence scores in DBM MRMC software acts to

condense and reduce the difference between scores in cases where

there is good separation of scores due to well-defined abnormal-

ities. These ranking methods will therefore undervalue the

discrimination of better tests [32] whereas tests with poorer

discrimination between confidence scores will be overvalued.

Unfortunately, the better the test, the worse ROC methodology

performs as an analysis tool due to confidence scores being

concentrated at extreme values or violating distributional

assumptions. Perversely, the worse the imaging test, the better

these statistical methods make it appear.

Although studies using typical characterisation categories such

as ‘normal’, ‘probably normal’, ‘equivocal’, ‘probably abnormal’,

or ‘definitely abnormal’ may avoid problems with normality

assumptions [28], other key issues arise since these categories do

not conform to an evenly spaced ordinal score giving an ROC

AUC value which is harder to interpret [25]. Some scoring

systems such as BI-RADS (Breast Imaging-Reporting and Data

System) have been analysed using ROC AUC but are not ordinal.

Table 2. ROC AUC using different methods and different ROC curves.

Reader Wilcoxon ROC AUC (SE) DBM MRMC ROC AUC (SE) PROPROC ROC AUC (SE)

1 0.724 (0.048) 0.814 (0.123) 0.814 (0.120)

2 0.737 (0.048) 0.922 (0.073) 0.952 (0.034)

3 0.732 (0.048) 0.887 (0.105) 0.887 (0.105)

4 NC (NC) NC (NC) 1 (NC)

5 0.589 (0.055) 0.469 (0.141) 0.641 (0.046)

ROC AUC and standard errors calculated for five readers using CT colonography without CAD.
The Wilcoxon method is equivalent to the Wilcoxon statistic, an empirical method not requiring a ROC curve to be fitted. DBM and PROPROC methods sometimes give
different ROC AUC because different ROC curves are fitted as seen in figure 5 for Readers 2 and 5. NC = could not be calculated with DBM MRMC software.
doi:10.1371/journal.pone.0107633.t002

Figure 5. Impact of few false positives. ROC curve for reader 4
using CT colonography with CAD. The data from the original read
(orange curve) includes two patients where false positive polyps have
been indicated with confidence scores of 40 and 50. Perturbing these
two patient scores to values of 70 (yellow curve) and 20 and 70 (brown
curve) demonstrate changes in ROC curves. Sensitivity and specificity
are expressed as percentages.
doi:10.1371/journal.pone.0107633.g005
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A BI-RADS rating of 2, defined as benign abnormality, does not

imply a greater suspicion of cancer than a BI-RADS rating of 1,

which is defined as no abnormality; both are confident diagnoses

of non-malignancy. Concerns about using such non ordinal scores

in ROC AUC analyses have been raised [25].

Furthermore, confidence scores for classification of abnormality

in radiological studies are not based on a single characteristic, but

are a composite assessment often including assessments of size,

shape, morphology and other visual information [25]. The

component parts of this composite score are not constrained to

ensure they are used equivalently by different readers in a multi-

reader study. Indeed a lack of constraint is also likely to mean that

scores are used differently even within a single reader comparing

two tests in the same patient. Harrington further points out that

there is no evidence that confidence levels are reported in a

consistent, reliable basis throughout a single experiment by all

radiologists or even within each radiologist, an assumption

important in ROC construction and interpretation of ROC

AUC He outlines how the basis of confidence ratings vary across

radiologists and lists 10 different interpretations when radiologists

were asked to define ‘‘high confidence’’, varying from ‘‘the image

quality is good’’, ‘‘the finding is obvious’’, ‘‘the finding is familiar’’,

to confidence in their own judgement [25]. The lack of a defined

objective measure of confidence means there is no standard to

ensure consistency of confidence scores within or between readers

across interpretations and when comparing tests. This explains

why we found very different values and distributions of confidence

scores in our study (Figure 2).

Issues when confidence scores are disconnected from
normal clinical practice

Confidence scores for ROC AUC analysis can be obtained

either by adapting standard clinical reporting scales (e.g. BI-

RADS) or by using scales specifically designed to calculate ROC

AUC. The advantage of using non-standard scores is that these

can be specifically designed to improve statistical power and fit

with statistical assumptions. Such scales are often wide (e.g. from 1

to 100) and are clearly ordinal. However there can be problems

with how such scores are used by radiologists and extrapolation to

a clinical context.

When confidence scores are not based on standard clinical

categories, the ROC curve does not correspond to a clinical

decision curve but is based on what Dorfman et al have termed

virtual operating points [30]. The interpretation and relevance of

derived performance measures such as ROC AUC is then

problematic unless the ROC curve is identical when confidence

scores based on standard clinical categories are used [25]. Given

the problems of interpreting ROC AUC when based on

confidence scores disconnected from clinical categories, sugges-

tions as to how to train readers to distribute their scores to reduce

violation of statistical assumptions seem somewhat to have lost

clinical relevance [31]. When confidence scores are disconnected

from normal clinical practice there are problems in how

radiologists assign such scores, particularly when the concepts

underlying them may be counter to concepts used in standard

clinical systems. Krupinski [33] comments on the disconnect

between the confidence scores used in the ‘‘laboratory’’ to assess

CAD assisted mammography versus the BI-RADS scales and

binary endpoints used by radiologists in clinical practice. Gur [29]

is similarly concerned that where there are well defined

abnormalities, an attempt to use continuous confidence scores

imposes a mismatch between the study and the readers’ normal

clinical situation. When forced to score confidence for a well

defined abnormality, readers may resort to scoring on their

assessment of lesion subtlety or lesion size rather than their

confidence of seeing the abnormality. In support of that idea, we

found an association between confidence scores and polyp size.

ROC curves
In a study like ours, the shape of the ROC curve, and hence the

value of ROC AUC is likely to be highly dependent on the scores

for a few false positive results (Table 2 & Figure 5). Gur et al found

curve fitting was highly dependent on the last experimentally

ascertained data point [34] particularly where there are well

defined abnormalities [29]. The last experimentally ascertained

data points are those with the lowest specificity values and are

highly influenced by confidence scores assigned to false positive

diagnoses.

Different curve fitting methods can produce different curves for

the same data (Figure 4), with very different resulting values for

the ROC AUC (Table 2). This phenomenon can be particularly

pronounced when data points are restricted to a very small part of

the graph so that extensive extrapolation is required to draw the

curve and calculate ROC AUC. Other researchers have also

found that different methods can calculate different ROC AUC

values [35] and this is recognised in FDA guidelines where it is

specified that both parametric and non parametric methods

should be used [6].

Some curve fitting methods failed with our data because some

readers did not identify any false positive results (also known as

‘‘degenerate’’ data). A similar study to ours, using CT colono-

graphy to detect polyps, also experienced difficulties with fitting

curves using the parametric methods included in DBM MRMC

software, and reported that empirical ROC analysis was used

instead [20]. However this may merely move the issues elsewhere;

Gur et al found empirical non-parametric methods of fitting ROC

curves highly dependent on the last experimentally ascertained

data point, to a greater degree than ROC curves fitted using

parametric methods [34]. Furthermore with data similar to our

study, the ROC curve itself does not represent a good summary of

all patient data due to the large proportion of patients with

extreme confidence score values.

One way to reduce the influence of extrapolation from the study

data and therefore weight the ROC AUC to the most clinically

relevant data, is to use a partial ROC AUC, for example restricted

to values between 75% to 100% specificity (i.e. 1-specificity in the

range of 0% to 25%). However using a partial ROC AUC

introduces new problems including the arbitrary choice of

thresholds, which can affect which readers would have the highest

ROC AUC [1]. The choice of threshold is particularly challenging

to justify in a study such as ours with ten different readers and two

tests, all with data points extending across slightly different ranges

of specificity [34].

Interpreting ROC AUC
Three common interpretations of ROC AUC have been

proposed [36]; the average test sensitivity across all possible values

of specificity; the average specificity across all possible values of

sensitivity; the probability that randomly selected pairs of patients,

one with and one without disease, would be ordered correctly for

probability of disease.

Figure 4 illustrates why in our study we are not interested in the

average value of sensitivity across all possible values of specificity,

as most values of specificity do not occur in clinical practice with

our test. The dots show real data corresponding to the range of

thresholds at which our tests perform in clinical practice. Similarly

not all values of sensitivity are used in practice. The probability

that randomly selected pairs of patients, one with and one without
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disease, would be ordered correctly for probability of disease is not

useful in clinical practice as patients do not attend outpatient

clinics in pairs! [37]

ROC AUC is widely presented as a measure that avoids

mistakes arising from comparing tests at single thresholds,

particularly if ROC curves cross [38]. However some authors

caution that when ROC curves cross or have different shapes,

comparisons of ROC AUC are invalid [39]. We presented further

problems with ROC AUC and its interpretation for patients in a

previous article [1].

Some proponents of ROC AUC view the shift in sensitivity and

specificity seen in our study as not indicating a change in

diagnostic performance, because ROC curves with and without

CAD overlap, and dismiss the increased sensitivity as simply

corresponding to a change in test threshold. Using a microscope to

identify cytological abnormalities magnifies cells and hence

changes the test threshold at which abnormalities can be detected,

but this threshold change is not seen as irrelevant to clinical

practice. In the same way, we maintain that to change the average

operating threshold of a test across readers using CAD CT

colonography should not be disregarded as an irrelevance, but

assessed according to its impact on the accurate diagnosis of

patients.

Conclusions

In our study comparisons of diagnostic performance derived

from differences in ROC AUC led to very different conclusions

than differences in sensitivity and specificity. Assigning confidence

scores was found to be problematic in this detection study and the

distribution of these scores was highly non-normal with the result

that the ROC curve only summarised data from between 15% to

47% of the 107 patients per reader. Differences in curve fitting and

methods for calculating ROC AUC led to differences in calculated

values which were greater than the typical difference in ROC

AUC observed in published studies. We summarise problems

reported by other researchers and caution trialists to examine their

study design and data to establish whether ROC AUC assump-

tions are likely to be met, particularly for detection studies. In our

study sensitivity and specificity give a more clinically relevant

summary of diagnostic performance since they are based on the

diagnostic decisions used to guide clinical management.
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