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Abstract 

How do people learn causal structure? In two studies we investigated 

the interplay between temporal order, intervention and covariational cues. In 

Study 1 temporal order overrode covariation information, leading to spurious 

causal inferences when the temporal cues were misleading. In Study 2 both 

temporal order and intervention contributed to accurate causal inference, well 

beyond that achievable through covariational data alone. Together the studies 

show that people use both temporal order and interventional cues to infer 

causal structure, and that these cues dominate the available statistical 

information. We endorse a hypothesis-driven account of learning, whereby 

people use cues such as temporal order to generate initial models, and then 

test these models against the incoming covariational data.  
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Introduction 

Inferring what causes what is notoriously difficult both in principle 

(Hume, 1748) and in practice (McKim & Turner, 1997). Does drug usage cause 

crime or does crime cause drug usage?  Or perhaps something else – maybe 

something quite complicated – causes both?  One cue to help us infer causal 

structure comes from the order in which events occur over time.  Causes 

precede their effects, so an event that comes later cannot be the cause of an 

earlier event. The relation between drug usage and crime is clarified by the 

discovery that for female offenders drug usage typically precedes criminal 

activity (Johnson, 2004). This reduces the likelihood that involvement in crime 

is the cause of drug use.  

But temporal order can mislead. Lightning does not cause thunder, 

roosters do not cause the sun to rise, and the petrol gauge showing empty 

does not cause the car to stop, despite the temporal precedence of the first 

event in each case. Consider the recent health scare in the UK about the link 

between the MMR jab and autism. Many parents were convinced that the 

vaccine had caused their child to develop autism because of the onset of 

behavioral symptoms soon after the jab was given. This mistaken inference 

had potentially harmful consequences, reducing the use of the vaccine in the 

general population and adding to the risk of childhood disease.  

More generally, there are two main ways that temporal order can 

misinform us about causal structure. First, two events might be causally 
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linked, but our assumptions about their temporal order might mislead us 

about the direction of this link. Second, two events might be spuriously 

correlated due to a common cause, as in the example of lightning and 

thunder. In this case the temporal delay experienced between the two events 

can lead to the erroneous belief that the earlier event causes the later one, 

when there is in fact no causal relation between the two.  

Previous research 

 Despite its potential to both inform and mislead our causal inferences, 

the role of temporal order has been assumed rather than investigated in the 

recent psychological literature. Earlier work did examine the spatiotemporal 

conditions that promote causal inference (Michotte, 1946; Shultz, 1982; 

Waldmann & Holyoak, 1992), but current studies tend to presuppose the 

causal structure under investigation, and explore how people quantify the 

parameters of this structure (Griffiths & Tenenbaum, in press). With respect to 

temporality, research has focused on the influence of time delay on judgments 

of causal strength, a major finding being that as the delay between two events 

increases, judgments of causal strength decrease (Shanks, Pearson & 

Dickinson, 1989), unless there is good reason to expect a delay (Buehner & 

May, 2002, 2003; Hagmayer & Waldmann, 2002). However, in these learning 

paradigms events are pre-sorted as potential causes or effects (e.g., button 

presses and lights going on; shell firings and explosions), so the main causal 

relations are already presumed. The participant’s task is to quantify the 
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strengths of these relations rather than to infer whether or not the relations 

exist. This leaves us with the question of how people use temporal order to 

infer the underlying causal structure that links events. This is the central 

question addressed in this paper. 

Covariation information 

Along with the temporal order of events, people are often exposed to 

covariational information. Repeated observations of a causal system can 

reveal statistical relations between events and in turn these statistical relations 

can point to a causal relation. Current learning models focus on how people 

translate this covariational data into judgments of causality (Cheng, 1997; 

Shanks, 2004). However, covariation alone will rarely suffice for inferring a 

unique causal structure (see Spirtes, Glymour & Scheines, 1993). For example, 

a strong correlation between cholesterol level and heart disease does not by 

itself reveal whether cholesterol levels cause heart disease or vice-versa, or 

whether both are the result of a common cause.  

Covariational data is more informative when combined with 

additional assumptions about the system under study (Waldmann, 1996). For 

example, if one assumes that effects never occur due to hidden causes1 (and 

cannot occur spontaneously), then covariation data might be sufficient to infer 

causal direction. This is because the assumption of no hidden causes implies 

that an event that occurs alone cannot be an effect-only variable, so it must be 

a cause variable (and also possibly an effect variable too). For example, 
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suppose that A and B are correlated, and there are no other hidden causes. If 

one sometimes observes A alone then one can infer that it must be a cause of 

B, not an effect. This simplifying strategy would also work if hidden causes 

were assumed to be very rare (rather than impossible). 

Covariational information is also more discriminating when combined 

with information about temporal order. Recall the example of a correlation 

between cholesterol and heart disease. If high cholesterol turns out to precede 

heart disease then the possibility that the latter causes the former can be ruled 

out. Normatively, joint knowledge of covariational and temporal information 

seems critical in many types of causal induction.  How people make such 

judgments remains an open question.  They might use both cues or they 

might focus on one or the other.  The trade-off between temporal and 

covariational information will be examined in Study 1. 

Intervention 

Another fundamental route to causal knowledge is to intervene on the 

system under study. By manipulating certain variables and observing their 

effect (or lack of effect) on other variables, one can learn about their 

underlying causal relations. This is fundamental to the experimental method 

in science, as well as to the informal experiments that we conduct everyday.  

One critical advantage of intervention is that it can discriminate between 

causal structures that are difficult or impossible to distinguish by observation 

alone.   Intervention provides this inferential advantage by disconnecting 
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intervened-on variables from their causes (Pearl, 2000; Spirtes, Glymour & 

Scheines, 1993).  

 However, interventions are typically confounded with a temporal 

order cue (Lagnado & Sloman, 2004): an intervention takes place prior to any 

of its effects, so an implicit temporal ordering is set up by the act of 

intervention itself. Does interventional learning benefit people due to this 

implicit temporal cue or for some other reason? This question will be pursued 

in Study 2. 

Temporal order vs. covariation 

Study 1 pits temporal order cues against covariational cues and 

measures people’s judgments of causal structure. We constructed a learning 

environment in which people could use both temporal and statistical cues to 

induce causal structure. The paradigm was inspired by viruses (electronic or 

otherwise) whose temporal order of transmission is not necessarily reflected 

by the order in which they manifest. This is because there can be variability in 

the time of transmission of a virus from host to host, as well as variability in 

the time it takes for an infection to reveal itself. 

 Suppose that your computer crashes due to an email virus. Twenty 

minutes later your office-mate’s computer also crashes (see Figure 1). A 

natural inference is that your computer transmitted the virus to your office-

mate’s computer (model 1). But this is not the only possibility. Perhaps you 

both received the virus from a common source, but it arrived at your 
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computer first (model 2). Another possibility is that your office-mate received 

the virus first, and then transmitted it to you, but it took longer to corrupt 

their computer (model 3).   

 Clearly the temporal order in which the email virus manifests itself (by 

crashing the computer) does not guarantee an inference about the order in 

which the computers were infected, nor about who infected who. More 

generally, the causal order in which events occur cannot simply be read off 

from the temporal order in which events occur (or appear to occur). Temporal 

order is often a reliable cue, but it is also fallible.  

Other cues can help narrow down the possibilities. In the email virus 

example, the covariations amongst the presence or absence of viruses on the 

three computers can help to discriminate among the models. This is greatly 

facilitated if one assumes that there is only one external input to the network 

(computer C) and no other hidden causes of the virus. For example, if 

repeated observations show that sometimes computer B is infected without 

computer A being infected one can rule out model 1. Further, if computer A is 

sometimes infected without computer B being infected, one can also rule out 

model 3 and thus conclude that model 2 is correct.2 In this case the temporal 

ordering of events is ambiguous between several possible causal models, but 

the covariational information, in combination with certain assumptions about 

the absence of hidden causes, can be used to discriminate amongst them.  
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The key question addressed in Study 1 is how temporal order and 

covariation are integrated to infer causal structure. In particular, we test the 

hypothesis that temporal order can override sparse covariational information 

and lead to spurious causal inferences. To test this implication, the 

covariational information in the learning environment in Study 1 was held 

constant, but the temporal order was manipulated.   

STUDY 1 

Participants sent test messages to a small computer network in order to 

figure out which connections were working. They completed four problems 

each with the same underlying causal structure (see Figure 2), but with 

information presented in various temporal orders. In each case the 

covariational information seen by the participants, together with the 

assumption that email messages could not appear unless they had been sent 

by the participants themselves (e.g., no hidden causes), was sufficient to 

uncover the unique causal structure. However, the validity of the temporal 

order information was varied between problems. In some cases it matched the 

underlying structure; in other cases it suggested alternative structures. 

Participants were made fully aware that the temporal information was 

unreliable. 

Method 

Participants and apparatus 
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Twenty-four students from University College London were paid £7 

(about $12) to participate in the experiment. They were tested individually on 

a PC. 

Materials 

 The same probabilistic model was used to generate network responses 

for all four problems (Figure 2). Each working connection had a 0.8 

probability of passing a message from one computer to another, and messages 

could not appear on a computer unless they had been passed by a connected 

computer. The probabilities of each possible pattern of messages are shown in 

Table 1.  

In each problem the computer network was presented on the screen in 

a fixed spatial configuration (see Figure 2). The source computer (A) was 

always placed at the bottom, but the locations of the other three computers (B, 

C and D) were systematically varied across problems.  The computers in each 

network were labelled with a different set of three-letter names. These sets of 

labels were rotated across problems for each participant. 

Procedure 

 Participants were instructed that they would be presented with four 

similar inference problems.  In each problem their task was to test a faulty 

computer network in order to establish which connections were working. To 

do this they had to send test messages to one computer (labelled ‘A’ in Figure 

2) and then see which other computers received the message. They were told 
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that some connections work 80% of the time and some do not work at all, and 

that a working connection from computer X to computer Y implied nothing 

about whether there was a working connection from Y to X. They were also 

instructed that messages could not reach a computer unless they had been 

sent by the participants themselves (e.g., there were no hidden causes of the 

email messages). 

Participants were also informed that there would be time delays in the 

appearance of the messages on the computer screens. They were told that 

these delays could be either due to variability in the time it takes for a 

message to be transmitted from computer to computer or in the time it takes 

for a message, once received, to be displayed on a computer monitor. The 

implication of this latter possibility was emphasized: “This means that it is 

possible for a message to be transmitted by a computer before it is displayed 

on its own screen (in the same way that you may pass on a virus before it 

becomes active on your own computer)”. 

  Each problem consisted of a learning and a testing phase. In the 

learning phase participants sent 100 test messages to the network, one at a 

time. To ensure that participants were engaged in the task, on every fifth test 

they were asked to predict whether a specified computer would receive the 

message. These questions were rotated across computers.  

 There were four temporal order conditions. In each condition 

information about whether a computer had received a test message was 
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displayed in a different temporal order (see Table 2). In condition 1 the 

information for all computers was displayed simultaneously, so there were no 

temporal cues.  In condition 4 the temporal ordering matched the actual 

network structure, whereas in conditions 2 and 3 it suggested different causal 

structures.  Temporal order was created by inserting one second delays.  

Each problem was followed by an identical test phase. Participants 

were asked a set of 10 questions. First, for each of nine possible connections 

they were asked whether they thought that the connection was working (and 

were reminded that working connections still only worked 80% of the time). 

They responded “yes” or ”no”. Second, they were asked an inferential 

question: “Suppose you had to send an important message to computer C. 

Would it be better to send it from B or D?”  After answering this question 

participants proceeded to the next problem.  

 

Results and Discussion 

Structural questions. The proportions of links endorsed by participants 

in each time condition are shown in Table 3. An ANOVA with time condition 

and link as within-participant factors revealed a main effect of link, F(8,184) = 

13.5, p < 0.001, no main effect of time condition, F(3, 69) < 1, and a significant 

interaction between time and link, F(24, 552) = 7.72, p < 0.001. 

The relation between link choices and time condition are illustrated in 

Figure 3. For each time condition a summary model was constructed from the 
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links that were endorsed by more than 50% of participants. Inspection of 

these models shows use of both temporal and covariational information, with 

the former dominating the latter. Thus, even though all four problems had 

identical structure and therefore generated the same covariational data, link 

choices were heavily influenced by the temporal ordering. This is most 

apparent when the temporal orderings conflicted with the underlying 

structure (conditions 2 and 3). In both conditions participants inserted links 

that were implied by the temporal cues but not by the patterns of covariation 

(e.g., link D→C in problem 2, and links D→C, A→D, C→B in problem 3).  

Inferences. The proportion of participants choosing computer B (the 

correct answer) was 75% for time condition 1, 62.5% for time condition 2, 

20.8% for time condition 3, and 75% for time condition 4. A within-participant 

ANOVA revealed a significant effect of time condition, F(3,69) = 7.95, p < 

0.001. Paired comparisons showed that condition 3 was significantly lower 

than the other three conditions (condition 3 vs. 1, t(23)= 4.03, p < 0.001; 

condition 3 vs. 2, t(23)= 3.12, p < 0.01; condition 3 vs. 4, t(23)= 4.51, p < 0.001), 

but no other differences were significant.  

A more revealing analysis combined responses in conditions 2 and 3 

into a ‘time delay’ category (where messages on computer C were preceded 

by messages on computer D), and compared this with a ‘simultaneous’ 

category that combined conditions 1 and 4 (where the messages on C and D 

appeared simultaneously). Mean correct responses in the ‘simultaneous’ 
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category (75%) were significantly higher than those in the ‘time delay’ 

category (41.7%), t(94) = 3.48, p = 0.001.  

These results reflect the strong influence of temporal ordering on 

participants’ judgments. Those that experienced a systematic delay between 

the appearance of messages on computers D and C were more likely to use D 

(rather than B) to send a message to C. This mimics the pattern of link 

selections. Most participants (89%) who chose computer D also erroneously 

endorsed a connection from D to C, whereas only 58 per cent who did not 

choose computer D did.  

STUDY 2 

Recent work in psychology suggests that both adults and children can 

learn causal structure through the appropriate use of interventions (Gopnik et 

al., 2004; Lagnado & Sloman, 2002, 2004; Sobel, 2003; Steyvers et al., 2003). As 

noted in the introduction, what is special about intervention, as opposed to 

mere observation, is that it can modify the structure of the system under 

study. Suitably chosen interventions thus allow one to distinguish between 

causal models that are ‘observationally’ equivalent (Pearl, 2000; Spirtes, 

Glymour & Scheines, 1993).  

To illustrate, suppose you know that listening to country music and 

suicide rates are correlated across numerous metropolitan areas (Stack & 

Gundlach, 1992), and you want to determine whether listening to country 

music causes suicide rates, suicide rates causes listening to country music, or 
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both result from a common cause. In the absence of any prior assumptions or 

knowledge, the covariational data alone are insufficient to answer this 

question. However, suitable interventions can determine the correct model.  

For example, if you intervene on the amount of airtime devoted to country 

music, and the suicide rate changes, you can infer a causal link from country 

music to suicide. This is because your intervention disconnects the level of 

country music on the radio from its usual causes, and thus eliminates any 

confounding variables that may affect both levels of country music and 

suicide rates.  

However, there are several factors aside from the special kind of 

information that intervention affords that might drive its advantage over 

observation. First, interventions and temporal order are typically confounded 

(both in laboratory experiments and the real world). An intervened-on 

variable must change its value before changes in its effects. Even if changes 

appear to be simultaneous, people can infer that changes other than their 

interventions are effects, not causes.  In this way people can benefit from 

intervention even if they fail to change their causal models appropriately to 

represent their interventions (Lagnado & Sloman, 2004).  

To return to the example above, suppose one uses the simple heuristic 

that any changes that occur after one’s intervention are effects of the 

intervened-on variable. This also permits one to infer that listening to country 

music causes suicide rates from the fact that suicide rates change after the 
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airtime devoted to country music is changed. However, in this case it is 

achieved without explicit representation of the intervention or the potential 

structural modifications that it entails. In this way an intervener can benefit 

from the fact that an intervention decouples the intervened-on variable from 

its other causes without being aware of this fact. It is enough that the 

intervener is using some heuristic based on temporal order. This confound 

between intervention and temporal order needs to be teased apart before we 

conclude that people are rational experimentalists.  

Another potential difference between intervention and observation lies 

in the distribution of information that people can receive about a system. 

While observers may typically receive a representative sampling of the 

system’s autonomous behavior, the information that interveners receive 

depends on what interventions they make. This is not just because their 

interventions can modify the system, but also because their choices modulate 

the frequencies of the data that they receive. For example, if all your 

interventions are directed at one specific cause of an event you will receive 

little information about alternative causes of that same event. Lagnado and 

Sloman (2004) ruled out selective information as a determinant of learning 

success in their experiments, but it is important to examine the pattern of 

interventions that interveners make, to establish whether this can affect the 

difference between intervention and observation. 
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Third, interventional learning may promote more directed hypothesis-

testing. Thus someone who repeatedly intervenes on a system is in a better 

position to test their own hypotheses than someone who merely observes the 

system. So far there is mixed evidence as to whether the opportunity to 

hypothesis test enhances interventional learning.  Sobel and Kushnir (2003) 

report that it does; Lagnado and Sloman (2004) and Osman and Heyes (2005) 

found that it does not.  

Intervention vs. temporal order 

Lagnado and Sloman (2004) showed that temporal order cues 

improved causal learning, irrespective of whether learners were intervening 

or just observing. However, generally low levels of performance made it 

difficult to quantify the separate effects of temporal order cues and 

intervention. The low levels of performance observed in these studies can be 

attributed in part to the possibility of unknown hidden causes. These made 

recovery of the correct causal models more difficult in both the intervention 

and observation conditions (see Lagnado and Sloman, 2004, for a detailed 

discussion). To boost learning performance in the current study, and thereby 

permit a more robust analysis of the relation between temporal order and 

intervention, participants were given causal problems with no hidden causes.  

Overview of Study 2 

Participants either manipulated or observed on-screen switches (see 

Figure 4) in order to figure out the causal connections between these 
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components. They completed six problems each with a different causal model 

(see Table 4, column 2). Participants were divided into three groups: those 

who could freely intervene on the causal system, those who simply observed 

the system’s behavior, and those who observed the results of another person’s 

interventions (yoked to the active interveners). Within each group 

participants were presented with information about the switches’ values in 

two temporal orders, either consistent with, or opposite to, the underlying 

causal structure. 

Method 

Participants and apparatus 

Seventy-two students from Brown University were each paid $10 to 

participate in the experiment. They were tested individually on a PC. 

Materials 

There were six learning tasks. In each task probabilistic data were 

generated according to a specific causal model. Each causal model was made 

up from several identical components connected by causal links (see Table 4). 

All causal links were probabilistic and of the same strength.  If component A 

was linked to component B, then there was an 80% chance that activation of A 

would lead to activation of B and no chance that B would activate if A did not 

(so there were no hidden causes). 

Each component had an internal state (activated /not activated), a 

slider indicator of this state (on/off), and a binary switch (on/off) used to 
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activate this internal state. Components could either be activated directly – by 

someone clicking on the binary switch -- or indirectly -- through the activation 

of a linked component. Slider indicators simply registered whether or not 

their components were activated, and could not be used to activate 

components (see Figure 4). The components (but not the links) of a causal 

system were displayed on the screen in spatial configurations that did not 

give any clues as to the underlying causal structure.  

Procedure 

All participants were told that they would be presented with six short 

learning tasks. In each task they had to figure out how the components in a 

system were causally connected. They were warned that the links were 

probabilistic, and thus not guaranteed to work on every occasion. They were 

not explicitly told that there were no hidden causes that might activate the 

components, although this would have been a natural assumption to make on 

the basis of the instructions.   

Participants were given a fixed number of trials for each task (see Table 

5, column 3), and the task order was counterbalanced. They divided into three 

groups: active intervention, yoked intervention and observation. Those in the 

active intervention group were told that they would be able to intervene on 

the system by switching on any of the components (one at a time) and seeing 

which other components were activated.  At the start of each trial all the 

components were switched off, and participants could choose just one 
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component to intervene on (switch on).  After this intervention, the activation 

statuses of all the components were displayed via the slider indicators. This 

was done in one of two temporal orders (see below).  See Figure 4 for an 

example of the screen appearance during an intervention trial. 

Participants in the yoked intervention group were told that they would 

be watching another agent trying to learn about the system. They were in fact 

yoked to the performance of individuals from the active intervention 

condition.  On each trial they were shown which component the agent had 

intervened on, and the slider indicator values for all the components. Again 

these were displayed in one of two temporal orders.  

Participants in the observation group were told that they would be 

watching the autonomous behavior of the system. On each trial they observed 

the slider values for each of the components. These was generated trial-by-

trial by randomly activating one of the source components (those that had no 

links feeding into them from other components) and letting this permeate 

through the system according to the probabilistic links. Participants were 

given no clues as to which component had been externally activated, and 

which were activated by a linked component.  

The temporal order of the display of the components’ states (i.e., their 

slider indicators) was manipulated (see Table 4). In the consistent time 

condition the slider values were displayed in a temporal order that matched 

the causal model. For example, for the A → B model, the slider value on 
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component A was displayed before component B. In the inconsistent time 

condition the reverse ordering was used. Both conditions used 0.5 second 

delays throughout. The temporal ordering (consistent or inconsistent) was 

systematically varied within-participants; it was fixed within a particular task, 

but counterbalanced across tasks. 

All participants were forewarned that there would be temporal delays 

in the display of slider values, and that these could not be used as a reliable 

guide to causal order. They were not informed, however, about the systematic 

nature of these time delays. After completing each task participants were 

asked about the causal links between components. They were asked about the 

presence or absence of a causal link for all possible links in the model as in 

Study 1. 

Results and Discussion 

The mean correct model choices3 by group (intervention, yoked 

intervention, observation) and time condition (consistent, inconsistent) are 

shown in Figure 5. A mixed ANOVA revealed a main effect of group, F(2, 69) 

= 25.96, p < 0.001, a main effect of time condition, F(1, 69) = 20.88, p < 0.001, 

and an interaction between group and time, F(2, 69) = 4.00, p < 0.05.  

Paired comparisons showed that in both the yoked intervention (79.2% vs. 

52.8%) and observation condition (54.2% vs. 16.7%) correct model choices 

were significantly higher when the temporal order was consistent rather than 

inconsistent (t(23) = 2.84, p < 0.01 and t(23) = 3.87, p < 0.01, respectively). 
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However, in the active intervention condition showed no significant 

difference between temporal conditions (77.8% vs. 73.6%, t(23) = 0.65, ns.).  So, 

while the expected drop in performance with inconsistent temporal order was 

evident in the yoked intervention and observation groups, it was not in the 

active intervention group.  

Individual link analysis 

An alternative way to analyze the response data is in terms of 

individual links (as in Study 1). This allows us to look at the effect of temporal 

order on link choice in both the time consistent and time inconsistent 

conditions. For each participant, and across all six models, we computed the 

proportion of links that were chosen with or against the experienced temporal 

order. All links between variables were included in the analysis except those 

that linked variables that appeared simultaneously (see Table 4).  

The summary results for each of the three learning conditions are 

shown in Figure 6. A mixed ANOVA was conducted with time direction 

(with, against) as a within-participant factor, and group (intervention, yoked 

intervention, observation) as a between-participant factor. It revealed a main 

effect of time direction, F(1,69) = 33.43, p < 0.001, a main effect of group, 

F(2,69) = 7.43, p < 0.01, and a time direction by group interaction, F(2,69) = 

11.27, p < 0.001. Paired comparisons showed that links that fit the experienced 

time direction predominated in the observation condition (76.3% vs. 23.7%, 

t(23) = 6.83, p < 0.001) and yoked intervention condition (56.7% vs. 43.3%, t(23) 
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= 2.11, p < 0.05). There was no significant difference in the active intervention 

condition (52.3% vs. 47.7%, t(23) = 0.81, ns.). These results reinforce the 

conclusions drawn from the analysis of correct models: time direction has a 

strong effect on link choices in the observation condition, somewhat less in 

the yoked condition, and none in the intervention condition.  

Choices between Markov equivalent models 

As noted above, one of the main limitations of purely covariational 

data is their failure to discriminate between observationally (Markov) 

equivalent models. This meant that unless observers made the assumption 

that there were no hidden causes the best that they could do was to infer a 

class of Markov equivalent models. 

Did experienced time order affect which Markov equivalent model 

observers selected? To address this question we looked at all those model 

choices that corresponded either to the actual model or one of its Markov 

equivalents (we term these choices Markov correct). We then compared how 

many of these Markov correct choices went with or against the experienced 

temporal order (both in the time consistent and time reversed conditions). For 

example, in problem 1 the model that fitted the experienced time direction 

was A→B in the time consistent condition and B→A in the time reversed 

condition.  

Across all six problems 41% of the total model choices (59 out of 144) 

were Markov correct and fitted the experienced time order, whereas only 
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14.5% (10 out of 144) were Markov correct and against the experienced time 

order. This difference was highly significant (t(23) = 5.78, p < 0.001), and 

shows that experienced temporal order exerts a strong effect on choices 

between Markov equivalent models.  

Pattern of interventions 

 The distribution of interventions made by the active interveners (and 

also seen by the yoked interveners) were analyzed separately for each of the 

six models.  Separate ANOVAs were conducted for each problem, with time 

(consistent, inconsistent) and node intervened-on as within-participant 

factors. These revealed no effects of time (for all models Fs < 1), but main 

effects of node for five of the models (model 1, F(1,22) = 4.87, p < 0.05; model 

3, F(2,44) = 11.21, p < 0.01; model 4, F(2,44) = 14.58, p < 0.01; model 5, F(3,66) = 

11.30, p < 0.01;  model 6, F(3,66) = 18.52, p < 0.01) and a marginal effect of node 

for model 2 (F(2,44) = 2.98, p = 0.06). 

Table 5 shows the overall distributions of interventions for each model 

(collapsed across time consistent and inconsistent conditions). Paired 

comparisons revealed that for all the problems the effect-only node was 

chosen significantly less than the other nodes: model 1, t(23) = 2.23, p < 0.05; 

model 2, t(23) = 2.23, p < 0.05; model 3, t(23) = 4.61, p < 0.01; model 4, t(23) = 

4.03, p < 0.01; model 5, t(23) = 6.79, p < 0.01; model 6, t(23) = 8.26, p < 0.01.  

By symmetry these comparisons also showed that the root nodes in 

models 1, 2 and 4 were chosen significantly more than the other nodes. 
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Additional paired comparisons showed that this did not hold for the chain 

model (3), where there was no difference between the proportion of 

interventions on root nodes (A) and intermediate nodes (B), t(23) = 0.30, ns. 

However, in both model 5 and model 6 there was a significant preference for 

the root nodes (t(23) = 2.33, p < 0.05 and t(23) = 3.14, p < 0.01, respectively). 

In sum, the analyses of the distributions of interventions revealed: (1) 

no difference in the pattern of interventions between time consistent and time 

inconsistent conditions; (2) a lower proportion of interventions on the effect-

only nodes; (3) a preference for the root nodes except in model 3.   

The tendency not to intervene on effect-only nodes is perfectly 

reasonable as these interventions convey the least amount of information 

about causal structure (Scheines, Easterday, & Danks, in press; Steyvers et al., 

2003). The tendency to intervene on root nodes in models 1, 2 and 4 is likewise 

reasonable, as is the lack of a preference for the root node in model 3.  

However, the marked preference for the root node in model 6 is not optimal, 

and is reflected in the lower number of correct choices for that model (see 

Table 6).    

The distributions of interventions also suggest that interveners do not 

see a particularly unrepresentative sampling of trial types as compared to 

observers. This would only occur if the interveners had omitted to intervene 

on the root nodes of a model. In fact the above analysis shows that the 

opposite is true, that they have some preference for root nodes. This implies 
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that the key difference between interveners and observers, in terms of the 

kind of information that they receive, hinges on the structural changes due to 

intervention rather than simply different frequencies of trial types.  

Study 2B 

Why were active interveners unaffected by temporal order? One 

possible reason emerged in post-experimental questioning: interveners might 

have overcome the inconsistent temporal order cue by first figuring out that 

in some problems the temporal ordering was reversed and then computing 

the correct model by mentally reversing the time order in which the slider 

information had been displayed. This would have been particularly easy in 

the two-variable problem.   

A follow-up study (2B) was designed to test this idea.  The inconsistent 

temporal order was made uninformative by making the order of events 

random on each trial with the constraint that the veridical causal order was 

never used. Apart from this difference the method and procedure were 

identical to the previous intervention condition. Twenty-four new 

participants from the same population as in Study 2 completed all six 

problems in an intervention condition with temporal order (either consistent 

or randomized) as a within-participant factor. The results for this group are 

also shown in Figure 5 (labelled intervention 2), and their choices for the 

individual problems are shown in Table 6.  
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When participants received information in the consistent temporal 

order they performed significantly better than when they received it in the 

randomized order (76.4% vs. 52.8%, t(23) = 2.99, p < 0.01). Indeed the level of 

performance for interveners in the randomized time order condition was no 

different to that achieved by observers in the time consistent condition in 

Study 2 (52.8% vs. 54%, t(46) = 0.13, ns).  Inspection of Figure 5 shows parallel 

shifts from time consistent to time inconsistent conditions for intervention 2 

and observation. This suggests that intervention and time order provide 

separate additive cues to causal structure.  

GENERAL DISCUSSION 

These studies investigated how people use temporal order to infer 

causal structure. Study 1 found that temporal order overrode covariation 

information, leading to spurious inferences when temporal cues were 

misleading. Study 2 found that both temporal order and intervention 

contributed to accurate causal inference, well beyond that achievable through 

covariational information alone. However, when interveners received 

information in a randomized order (Study 2B) they performed no better than 

observers who received information in a consistent order. 

Taken together these findings show that temporal order and 

intervention afford separate cues to causal structure, and work best when 

they combine rather than conflict. This explains the efficacy of interventions 
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in most everyday contexts, where temporal order supplements the evidence 

provided by intervention.  

Hypothesis-driven vs. data-driven learning 

Two broad theoretical approaches to human causal learning can be 

distinguished. Data-driven theories assume that the learner builds up causal 

knowledge by extracting statistical relations from the correlational data they 

are exposed to (Glymour, 2003; Shanks, 2004). As noted in the introduction, 

however, there are both theoretical and practical reasons why this cannot be 

the full story. The studies in this paper reinforce this conclusion: people 

struggle to infer causal structure when exposed to covariational information 

alone. This held true even when the induction problem was simplified by 

ensuring that there were no unknown hidden causes of the observed patterns 

of covariation.  

In contrast, hypothesis-driven approaches (e.g., Steyvers et al., 2003; 

Tenenbaum & Griffiths, 2003; Waldmann, 1996; Waldmann & Hagmayer, 

2001) maintain that people use prior assumptions to guide the learning 

process. One elaboration of this idea argues that learners use a variety of non-

statistical cues (temporal order, intervention, prior knowledge) to construct 

their initial causal models, and these models are then confirmed or revised in 

the light of subsequent data (Lagnado, Waldmann, Hagmayer, & Sloman, in 

press). 
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Our current findings are readily interpretable within the hypothesis-

driven framework. Participants in both studies allowed the temporal order 

cue -- which was apparent on the very first trial -- to dictate the kinds of 

models they constructed and tested. And the effects of this cue persisted even 

when the covariational data were inconsistent with it.  

To illustrate, consider the causal judgments in Study 1. When the data 

were presented in temporal order ABDC participants incorrectly endorsed the 

link from D to C (in line with the fact that D preceded C), but correctly 

endorsed the link from A to C (Figure 3, condition 2). A plausible explanation 

for this pattern of judgments is that participants first used the temporal 

ordering to hypothesize an initial model (A→B→D→C). This model was then 

confirmed by most of the test trials (e.g., patterns 1, 3, 4 and 5, accounting for 

87% of the trials). However, occasionally they saw a test pattern that 

contradicted this model (pattern 2: A, B, C, ~D). To accommodate this new 

evidence, they added a link from B to C, but did not remove the redundant 

link from D to C, because this still fit the temporal ordering.  

Similarly, when the data were presented in temporal order ADCB 

(condition 3) participants were likely to have constructed an initial model that 

matched the temporal order (A→D→C→B). This too would have been 

confirmed by the majority of trials (patterns 1 and 5, accounting for 71% of 

trials). In the face of the anomalous patterns (2, 3, 4) about 60% of participants 



Time as a guide to cause 30 

inserted the A→B link. This model would account for 87% of the data patterns 

(all except pattern 2).  

The advantage for interventional learning found in Study 2 also 

supports a hypothesis-driven account. Interventions will be most effective if 

they can target specific hypothetical models to test. At the very least someone 

must conjecture that the variable that they choose to intervene on is a 

potential cause. Our analyses of the distribution of interventions in Study 2 

confirm this view. There were significantly less interventions made on effect-

only nodes than on other nodes. And this makes good sense, because they 

cause nothing else to happen in the system and are least informative about the 

correct causal structure. Other studies have also found that for simple models 

people are close to optimal in their choice of interventions (Scheines et al., in 

press; Steyvers et al., 2003). This would be unlikely if they did not formulate 

hypothetical models in advance.  

Using cues in proportion to their reliability 

A more general perspective on the current findings is that people are 

using cues such as temporal order and covariation in proportion to the 

reliability (or variability) of these cues. On this view the dominance of 

temporal over covariational information in controlling people’s judgments 

was due to the greater reliability of the temporal order cue. Indeed in Study 1, 

and the time consistent conditions in Study 2, the temporal order cue had no 

variability. In contrast, the probabilistic nature of the models in both studies 
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ensured that the covariation information was variable. This view would 

predict that if the reliability of the temporal cue in Study 1 was reduced, for 

example, by adding noise to the temporal delays, then people would place 

less weight on this cue.  

The idea that people combine cues in proportion to their reliability 

receives independent support from Griffiths (2005), who showed that 

participants’ confidence in the existence of a causal relation was proportional 

to the variability of the covariational information they were presented. A key 

idea there, as here, is that people use covariation information to corroborate 

their prior hypotheses about causal links.  

The benefits of intervention 

There are various reasons why interventions can enhance learning of 

causal structure (Lagnado & Sloman, 2004). The main focus of recent research 

has been on the special information it provides due to the fact that 

interventions modify the structure of the system under investigation (Gopnik 

et al., 2004; Steyvers et al., 2003). The additive effect of intervention in Study 2 

confirms the importance of this aspect in human learning. However, there are 

several other factors that typically accompany interventions and that can also 

contribute to its efficacy.  

A learner who can make repeated interventions can benefit from the 

fact that they can more readily test their own hypotheses. Although Lagnado 

and Sloman (2004) and Osman and Heyes (2005) found no difference between 
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‘active’ and ‘yoked’ interveners, Sobel and Kushnir (2003) reported an 

advantage for the former. Study 2 sheds some light on this question. Recall 

that in the time consistent condition active interveners and yoked interveners 

performed equally well, but in the time-reversed condition the former 

outperformed the latter. This suggests that under favorable learning 

conditions (e.g., with an informative time cue) the freedom to choose one’s 

own interventions adds nothing to the benefits of interventional information. 

However, under more demanding conditions (e.g., time reversed), the ability 

to choose one’s own interventions, and perhaps make the intervened-on 

variable more salient, does help learners. 

The main question addressed in Study 2 was the interplay between 

temporal order and intervention. Previous experimental studies often 

confound these factors, so it is possible that people simply use a temporal cue 

to reap the benefits of intervention. Our results show that there is an effect of 

intervention beyond that gained through the temporal order cue, but also 

show that temporal order accounts for a fair proportion of the advantage.  

This has important implications for our understanding of intervention, 

which is at the heart of causality.  Despite all the continuing excitement about 

interventional over observational learning, it looks like some of the benefit 

might just have to do with the temporal cue and attentional benefits. This 

implies that any temporal cue might help people learn, as long as it is 



Time as a guide to cause 33 

consistent with the to-be-learned structure. This may explain the appeal of 

flow diagrams. 

Conclusions 

In sum, our studies show that people use both temporal order and 

interventional cues to infer causal structure, and that these cues dominate the 

available statistical information. They also support a hypothesis-driven 

account of learning, whereby people use cues such as temporal order to 

generate initial models, and then test these models against the incoming 

covariational data.  

This allows us to make good inferences on the basis of slender data, 

but can also expose us to certain causal illusions. As our studies show, the 

latter are especially prevalent when the temporal order of events conspires to 

mislead us. And this holds in everyday life. Compelling as the inference 

might be, the fact that you just yelled at the television set does not give you 

credit for your team’s game-winning goal.  
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 Footnotes 

1. Strictly speaking this amounts to the assumption that there are no hidden 

causes other than exogenous inputs to the system, and that these inputs only 

affect root variables.  

2. More generally, the three models imply different patterns of conditional 

dependence. For example, only model 2 implies that A and B are 

probabilistically independent conditional on C. 

3. The correct model for each problem was the causal model that was actually 

used to generate the data. Of course observers are at a disadvantage with 

respect to interveners here because covariational data alone is insufficient to 

identify a unique model (except for the model in problem 2). It seems likely 

that observers assumed that there were no additional hidden causes (i.e., no 

switches activated purely spontaneously), in which case unique identification 

is possible. The later analyses in terms of individual link choices and Markov 

equivalent models, however, shows that temporal order is the driving 

influence in participant’s judgments regardless of which models are counted 

as correct. 
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Table 1. Probabilities of each possible pattern of messages in Study 1. 

 

Pattern Computers with 
message present 

Probability 

1 ABCD 0.512 

2 ABC 0.128 

3 ABD 0.128 

4 AB 0.032 

5 A 0.200 
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Table 2. 

Temporal order of display of information (one second delays) for the four 

conditions in Study 1. 

 

 Time steps 

Condition t1 t2 t3 t4 

1 
A  

B or C or D 
   

2 A B D C 

3 A D C B 

4 A B C or D  

 

Note: Inclusive ‘or’ is used throughout. For example, in condition 4 at time 

step 3, either C or D, or both can occur.  

 



Time as a guide to cause 41 

Table 3.   

Proportion of participants affirming causal relation for each relation in each 

time order.  True causal relations are shown in bold. 

 

 Time Order 

Causal relation 

1 

Simultaneous 

2 

ABDC 

3 

ADCB 

4 

AB[CD] 

AB 1.00* 0.96* 0.58 0.92* 

AC 0.38 0.17 0.88* 0.29 

AD 0.33 0.13 0.54 0.33 

BD 0.75* 0.79* 0.21 0.79* 

DB 0.63 0.38 0.79* 0.50 

BC 0.75* 0.96* 0.38 0.88* 

CB 0.50 0.46 0.50 0.46 

DC 0.25 0.83* 0.71* 0.21 

CD 0.29 0.21 0.33 0.29 

 
* p < 0.05 greater than 50% 
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Table 4.  

Temporal order of display of information (with 0.5 second delays between 

time steps) for the two time conditions in Study 2. 

 

 

 

Task 

 

 

Model 

Time Consistent 

  t1                t2               t3              t4 

Time Reversed 

  t1                t2               t3              t4 

1 A → B A B   B A   

2 A → C ← B A or B C   C A or B   

3 A → B → C A B C  C B A  

4 B ← A → C A B or C   B or C A   

5 
A → C → D 

        B 
A or B C D  D C A or B  

6 A → B → C → D A B C D D C B A 

 

Note: Inclusive ‘or’ is used throughout. For example, in the time consistent 

condition of task 2, at time step 1 either A or B, or both can occur.  
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Table 5. 

Distribution of interventions for each model in the learning phase of Study 2.  

 

 

 

Task 

 

 

Model 

 

 

Tests 

% Intervention 

    A               B               C           D 

1 A → B 10 54 46   

2 A → C ← B 20 37 34 30  

3 A → B → C 20 37 36 27  

4 B ← A → C 20 45 27 28  

5 
A → C → D 

     B 
30 28 31 25 16 

6 A → B → C → D 30 33 25 25 17 
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Table 6. 

Percentage of correct choices for each model in Study 2 and 2B. 

  Study 2 Study 2B 

 

 

Task 

 

 

Model 

% Correct choices 

 Time Consistent  

   1        2         3 

 

Time Reversed 

 1          2         3 

Time 

Consistent 

Time 

Randomized 

1 A → B 92 75 83 83 67 17 100 67 

2 A → C ← B 83 83 75 92 67 25 100 67 

3 A → B → C 75 92 42 67 58 0 83 58 

4 B ← A → C 100 92 58 83 75 25 100 58 

5 
A → C → D 

     B 
75 75 25 50 17 8 50 33 

6 A → B → C → D 42 58 42 67 33 0 42 33 
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Figure captions 

Figure 1. Three possible models when the virus appears on computer A 

before computer B. Model 1 is the natural inference on the basis of temporal 

order. Model 2 has a common cause C that infects both A and B separately. 

Model 3 has a structure directly opposite to order in which the viruses 

appear.   

Figure 2. Structure of computer networks for all conditions in Study 1. 

Figure 3. Summary model choices for the four temporal order conditions in 

Study 1. Note that only links endorsed by > 50% participants are shown, and 

the thickness of the arrows corresponds to the percentage of participants 

selecting that link (thickest link = 100%). 

Figure 4. Screen in learning phase for problem 2. Top panel shows screen 

prior to intervention. Bottom panel shows screen after participant has 

switched on A, C has switched on, but B has remained switched off. In the 

temporally consistent condition the slider on A would have registered before 

the slider on C. In the temporally inconsistent condition the slider on C would 

have registered first. 

Figure 5. Percent correct model choices in Study 2 showing effects of 

intervention and temporal order. Note that for intervention2 the temporal 

order in the inconsistent condition was randomized rather than reversed.  

Figure 6. Proportion of links chosen by time direction for four of the six 

models in Study 2.
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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 Figure 6 
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