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Abstract

e-MERLIN is a recent upgrade to the MERLIN radio array. This enhanced facility utilises
recent developments in wide bandwidth receivers, a new WIDAR correlator, and a new op-
tical fibre network. This upgrade provides an increase in sensitivity and image fidelity, but
also results in a significant increase in data volume. This thesis is motivated by the Cygnus
OB2 Radio Survey (COBRaS), an e-MERLIN Legacy project observing the core region
of the largest OB association in the northern hemisphere. COBRaS has been awarded
~ 300 hours observing time, resulting in a total Legacy dataset of tens of terabytes. It
is not feasible to calibrate this amount of data manually, highlighting the necessity for
automated procedures.

This thesis primarily contains technical development for eeMERLIN during the com-
missioning phase and early Legacy observations from COBRaS, which focuses on the
creation of automated flagging and calibration pipelines. This includes an automated
RFI-mitigation and reduction tool (SERPent), as well as a full calibration pipeline consist-
ing of: phase calibration with fringe fitting, amplitude calibration with the flux calibrator
3C286, bandpass calibration with spectral index and curvature fitting, and automated self-
calibration on combined or individual IFs. A program for extracting fluxes for resolved
and unresolved sources from radio maps with a detection significance boosting module has
also been developed.

In addition to the technical work, scientific preparations and initial results for CO-
BRaS are also presented. A catalogue amalgamation routine for the Cyg OB2 association
cross correlates previous surveys of Cyg OB2 into one definitive catalogue. Subsequent
specific catalogues are compiled from this one catalogue to create an OB star catalogue

and candidate catalogue. The predicted mass loss rates and radio fluxes from the winds



of O-type stars and early B-type supergiants are determined, and this includes predic-
tions from smooth wind models as well as predictions including the effects of clumping in
the winds. The inclusion of an X-ray variability study of the Chandra Cyg OB2 Legacy
dataset, provides a multi-wavelength view of the population of Cyg OB2, which comple-
ments COBRaS. The first COBRaS 1.6 GHz and 5 GHz radio images of Cyg OB2 are
presented with source and flux lists and some initial analysis.

The technical developments presented in this thesis are discussed in the context of

COBRaS and of future interferometers such as the SKA and its associated pathfinders.
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Chapter 1

Introduction

“In the beginning the Universe was created. This has made a lot of people very angry and

has been widely regarded as a bad move.”

Douglas Adams

This thesis presents the technical development for the Cygnus OB2 Radio Survey (CO-
BRaS; P.I. Prof Raman Prinja, UCL), the deepest and most sensitive radio survey of an
OB association to date. As one of the Legacy projects with the expanded Multi Ele-
mental Radio Linked Interferometry Network (e-MERLIN), COBRaS exploits the recent
upgrades in receiver technology (bandwidth) to produce a substantial dataset on the Cyg
OB2 region. The key aim of this thesis is to process this large volume of data, automati-
cally editing and calibrating the interferometric datasets, and analysing the resulting radio
maps. These technical goals are essential in order to achieve the full scientific goals of CO-
BRaS. The primary subject of COBRaS is to analyse the radio properties of massive stars
within the core region of Cyg OB2, with particular emphasis on mass loss studies and the
effects of clumping structure throughout the winds of massive stars. In addition to these
technical challenges, this thesis contains a substantial amount of scientific preparation in
the form of the amalgamation of previous surveys into one definitive archive catalogue
and producing OB candidate catalogues. The predicted mass loss rates and radio fluxes

for smooth and clumped winds for O-type stars and B supergiants are presented. These

21
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are compared with observed radio fluxes of massive stars in Cyg OB2, including the first
radio maps from COBRaS. This thesis also explores the X-ray variability properties of O
stars with the Chandra Cyg OB2 Legacy survey, giving a multi-wavelength perspective
into the massive star population of Cyg OB2.

This Chapter introduces the theory of radio interferometry (Section 1.1), a description
of the e-MERLIN radio telescope (Section 1.2), an overview of the COBRaS project (Sec-
tion 1.3) and finally a restatement of the thesis aims with a summary of the structure of

the thesis (Section 1.4).

1.1 Introduction to Radio Interferometry

Scientific advancement is more than just the pursuit of knowledge. More often than not it
is limited by technology, and therefore drives the need for technological innovations, which
can have applications outside the original research field. In the case of radio astronomy,
interferometry (the method of combining signal from multiple telescopes) has furthered
our understanding of the radio universe by dramatically improving the available angular
resolution of any observations, previously limited by the diameter of single radio dishes.
The first radio observations were conducted by Karl Jansky (after whom the units for
radio flux are named) in the 1930s, who discovered a radio source fixed on the sidereal
day (Jansky 1933). This source was later designated Sagittarius A, one of the brightest
sources of radio waves in the sky, emitted by electrons moving in a strong magnetic field.

The first radio interferometric observations came later in 1946 in Australia, using an old
World War II radar antenna on a sea cliff. By observing the direct radiation from the source
and the reflections from the sea, an extra path length, or phase change was introduced into
the system resulting in clear maxima and minima interference fringes (McCready et al.
1947). The observations showed daily intensity variations over six months correlating with
the incidence of sunspots and also rapid fluctuations on the order of seconds to minutes
in duration.

The technique of phase switching was developed by Sir Martin Ryle in 1952 and was
a way to combine signals for early interferometers. If the phase of a signal is periodically
switched then the difference between these signals is proportional to the time average of the
cross-correlation between two antennas (Ryle 1952). This is equivalent to the combination

of the sine and cosine correlators in modern interferometers, see Section 1.1.3 for details.
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The technique of aperture synthesis, pivotal to radio interferometry imaging with mul-
tiple antennas, was developed and applied to the Cambridge one-mile telescope (Elsmore
et al. 1966) and signalled a new era of interferometry for both connected interferometers
such as the Very Large Array (VLA), the Multi Elemental Radio Linked Interferometer
Network (MERLIN), and for non-connected Very Long Baseline Interferometry (VLBI)
such as the Very Long Baseline Array (VLBA) and the European VLBI Network (EVN).
Deconvolution methods deployed in aperture synthesis such as the CLEAN algorithm
(Hogbom 1974; Clark 1980) and the Maximum Entropy Method (MEM) (Narayan and
Nityananda 1986) have been applicable to medical imaging techniques (Simpson et al.
1995; Jannetta et al. 2004; Jackson and Jannetta 2006).

Interferometry allows milli-arcsecond astronomy at radio frequencies and allows even
more accurate astrometric measurements. It is possible to combine the observations from
multiple interferometric arrays together to increase the resolution and sensitivity on dif-
ferent physical scales by covering different baseline lengths with the different arrays.

The current generation of interferometers is benefiting from numerous upgrades to
receivers, electronics, correlators and optical fibre networks, increasing the available fre-
quency bandwidth and thus sensitivity. Recent upgrades to the VLA, now named the
Jansky Very Large Array (JVLA), MERLIN — e-MERLIN and new interferometers such
as the Low Frequency Array (LOFAR) and the Atacama Large Millimeter /submillimeter
Array (ALMA) to name a few, now provide the most sensitive windows into the radio
spectrum (from MHz to THz frequencies) pushing the sensitivity to puJy levels.

Along with new hardware such as wide bandwidth receivers, software development is
necessary to exploit these technological advancements, either in the form of modifications
to existing programs or entirely new software packages or pipelines. This is particularly
true for systems managing large datasets, i.e. several TBs, where the creation of automated
algorithms is a necessity and large amounts of manual intervention is unfeasible.

The future will contain ever bigger and more sensitive arrays with the Square Kilo-
metre Array (SKA), being arguably the biggest experiment ever undertaken in sheer size,
computational requirements and science implications. It has been confirmed that the SKA
will be split between South Africa and Australia, with the mid-frequency dishes (500 MHz
- 3 GHz) planned for the South African site and the low frequency (~50 - 300 MHz) phased
arrays situated at the Australian site (Taylor 2013). The SKA will provide an increase in

sensitivity by many orders of magnitude, observing the radio universe at the ~ nJy level.
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An introduction to radio interferometric theory is presented here and some of the
current features of the current crop of interferometers and their recent upgrades are dis-
cussed. Firstly, a simplified example using the two element interferometer providing a brief
overview of the theory is given. This will be followed by more detailed sections on the sep-
arate parts and methods of the interferometer (Antenna and Receiver Systems, Complex
Correlators), the visibility plane, radio interferometric imaging via deconvolution theory

and polarisation effects.

1.1.1 The Two Element Interferometer

Interferometry is the process of coherently correlating two or more electric fields measured
at different locations. To achieve this, a collecting area or ‘sensor’ (antenna) is used at
each location to collect the signal and convert it to a voltage, which is then correlated
with other voltages from other antennas. The quantities which the interferometer retains
are the amplitude and the phase part of the electromagnetic wave.

The astronomical source is assumed to be located at an infinite distance from the
interferometer, thus the wavefront will be in the Fraunhofer regime, i.e. flat. This plane
parallel approximation is a fair assumption given the vast, albeit finite distances to sources.
Thus the electric field component of a source emitting a monochromatic electromagnetic

planar wave is given by the real part of
E(t) = Re {A(t) *™'}, (1.1)

i.e. using Euler’s formula e’® = cos(¢) + i sin(¢), where the real part is the cosine term

and the imaginary part is the sine term, this reduces to
E(t) = A(t) cos(2mvt). (1.2)

This wave arrives at two elements separated by a baseline b, from the direction of the
source which is denoted by the unit vector s. The geometry of this simple interferometer is
shown in Figure 1.1. Each individual antenna within an array measures the incoming wave
as a signal voltage. For any given wavefront there are two voltages (V; and Vj}), a time of
arrival t at antenna j, giving a distance d = c7, where ¢ is the speed of electromagnetic

radiation in a vacuum, and 7 is the geometric delay for a wavefront between the two
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Figure 1.1: Simple two element interferometer diagram, including baseline geometry with
respect to the incoming wave and a simplified electronics and receiver systems. Figure
from Thompson (1999).

antennas. From inspection we find that d = b -s (or d = b cos ¢, in trigonometric form
where 0 = 7/2 — 6). After some substitution we arrive at:

Ty = (1.3)

which shows the geometric time delay and gives the position on the sky.

The recorded voltage contains both the amplitude and phase information of the wave,
and is passed through a series of systems as depicted in Figure 1.2. This modifies the
signal in ways which will be discussed in greater detail later (see Antenna and Receiver

Systems, Section 1.1.2, and Complex Correlators, Section 1.1.3).
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Figure 1.2: Signal path from source to visibilities via the antenna, correlator and their
subsystems. Figure taken from Carlson (2012).

Essentially there are two voltages from each antenna in this system:
Vi(t) = v; cos (2mv (t —74)) and Vj(t) = v; cos(2mvt) which arise from Equation 1.2.
These pass through a correlator which multiplies and time averages (or integrates; denoted

by the angled brackets) the two signals to produce the correlator output . (7,):

re(1g) = (Vi (t) V; (1))

v;v; cos (2 (t — 74)) cos (2mvt))

(
=

v; fuj

[cos (2mv (t — 14) — 2mvt) + cos (2mv (t — 74) + 27wt)]>

= <U’2vj [cos (2mvTy) + cos (dmvt + 27w7-g)]>

= vv; cos (2mvTy), (1.4)

where the product-sum cosine rule: cosf cos ¢ = cos (60 — @) + cos (0 + ¢) /2 is used, and
the rapidly varying term cos (4wvt 4+ 2mv1,) reduces to zero.

The geometric delay varies as the Earth rotates, thus the wave arrival orientation with
respect to the different baselines will also change due to the cosine term in Equation 1.4.
Since the interferometer measures the interference fringe pattern of the source, the array

tracks the source as it passes through each fringe, where each fringe size is defined by
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~ A/b. The cosine term represents the fringe phase and the v;v; term represents the
fringe amplitude which is proportional to the received power!.

The sky brightness B (v, s) is defined as the intensity in the direction of the source (i.e.
the unit vector s) for some frequency v. Since in this example, monochromatic radiation
is assumed, the frequency dependence of the sky brightness is neglected, i.e. the sky
brightness is a function of intensity in the direction of the source B (s) only. The power
received by the correlator over the entire sky surface (47 steradians) is found by integrating

the correlator response over the solid angle dQ2. Thus the output of the correlator r (b) in

terms of the sky brightness and baseline geometry is given by
2 b-
/ B(s i SdQ (1.5)

where the sky brightness represents the power received i.e. v;v; in Equation 1.4, and the
cosine term has been converted as a function of baseline postion by substituting Equation
1.3 for 7.

As can be seen in Equation 1.4; the correlator’s response follows a cosinusoidal pattern
which is only sensitive to the even part of the sky brightness. To reveal the odd part, the
correlator must be responsive to fringes with a phase difference of 7/2. This is achieved
by adding in a phase shift to the signal from one of the antennas in a baseline before cross
correlation occurs. This changes the signal’s phase but leaves the amplitude unaffected.

Thus the modified signal at antenna j would be
Vj(t) = v; cos 2mvt — (7/2)). (1.6)

This modifies the input signal into the correlator to Vj(t) = v; sin(27vt), as cos(¢p—7/2) =

'This depends on the bandwidth of the observation as well as the efficiency of the antenna elements,
affecting subsequent equations and will be explored in Section 1.1.2.
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sin(¢). Thus Equation 1.7 shows the output of the sine correlator:

= (vjv; cos (2mv (t — 74)) sin (27vt))

= (%13 i (20t + 270 (1 7)) — sim (20t — 270 (0~ 7))
- < i2vj [sin (47wt — 27vT,y) — sin (27W7—9)]>

<

= vv; sin (27vTy) (1.7)

where the product-sum rule: sinf cos¢ = sin (6 + ¢) — sin (0 — ¢) /2 is used, and the
rapidly varying term sin (47vt — 2mv7,) reduces to zero. Equation 1.7 has the same re-
sponse as Equation 1.4, except that the cosine term is switched for a sine term.

A correlator which produces both the even and odd part of the sky brightness response
is called a complex correlator. These terms can be combined to produce the full response
of the interferometer, which we define as the complex visibility V(b), and after some

manipulation?, becomes:
V (u,v,w) = /// B(l,m,n) e 2rillutmuvtnw) dldﬂ (1.8)
n
I m n

where u, v, w are baseline coordinates, [, m,n are the corresponding coordinate system for
the sky and are the directional cosines with respect to the baseline vectors, and B (I, m,n)
is the sky brightness.

It is important to stress that this is not the whole picture as we have assumed
monochromatic radiation, and in practice a number of coefficients are included to account
for effects from the antenna response and bandwidth which will modify the interferometer’s
response (see Chapter 3 on calibration). Furthermore, the full response of the interfer-
ometer given by Equation 1.8 describes the raw measurements of the interferometer and
requires further manipulation to calibrate issues such as phase delays from atmospheric
distortion, gain (amplitude and phase) variations in time, and a non-flat bandpass re-
sponse causing complex gain variations in frequency. Chapter 3 discusses all of these
issues and how they are solved in detail. However, for demonstration purposes they have

been neglected for this simplified example.

2See Appendix B for details.
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1.1.2 Radio Antenna and Receivers

The main advantage of interferometry compared to single dish radio observations is the
vast increase in angular resolution. The angular resolution 6 of single dish radio astron-
omy is diffraction limited by the diameter D of the antenna for a wavelength \; 0 = %.
Interferometry is a system of two or more telescopes separated by a distance B, or ‘base-
line’, which observe the same source. The length of a baseline is measured in units of
wavelengths of the central frequency of the observation. Thus the angular resolution at
a certain wavelength A is now limited by the longest baseline of an interferometric array;
0~ %.

Before any interferometric properties are presented or discussed, we must treat each
component of the array as an individual system, i.e. for a correlated interferometer each
antenna is, to begin with, separate. Firstly the type of antenna and receiver is to be
considered, and the defining factor on the shape or nature of the radio antenna is the
frequency of the observation. There is a general division between two main types of
antenna design (although there are some overlaps). For observations with wavelengths
shorter than 1 m (high frequency > 300 MHz), a parabolic reflector dish is favoured,
because a mesh reflector will not have sufficient spacing to reflect the wave. This occurs
when the spacing exceeds a fraction of the wave, typically on the order of A\/20. For
observations with wavelengths longer than 1 m (low frequency < 300 MHz) the antennas
can ultilize a cheaper wire mesh design with ‘gaps’ in the collecting surface because the
required surface accuracy is less relative to higher frequency requirements.

e-MERLIN and other higher frequency (> 300 MHz) arrays use reflector antennas
which can vary in diameter from metres to 100 m for fully steerable dishes. There are two
considerations to be made when choosing a certain reflector design: the type of mount
and the optics system.

There are two types of mounts; equatorial mounts and elevation over azimuth (alt-
azimuth) mounts. The alt-azimuth mount is simpler to calibrate for as the effects of gravity
(which affects the aperture shape) are constant throughout the observation. However, since
the aperture rotates with respect to the source, the beam profile will rotate. If the beam
shape is elliptical this may cause the brightness distribution to smear over time.

Equatorial mounts have the advantage of being aligned to the polar axis, parallel to

the rotation of the Earth and thus are able to track the target source. Hence, equatorial
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mounts do not suffer from beam rotation. The big disadvantage is that gravity does not
act in the same observation plane, and calibrating for these effects can be complicated.

Figure 1.3 shows a number of optical systems with different orientations of the telescope
feed and receivers, each with advantages and disadvantages. The prime focus system ((a)
in Figure 1.3) is implemented at Westerbork Radio Synthesis Telescope (WRST) and
the Lovell, Mark IT and Defford antennas in e-MERLIN (Garrington et al. 2004). This
arrangement allows full frequency coverage over the primary reflector whereas the inclusion
of a secondary reflector in the other systems limits the coverage by the practical size of
the secondary. The disadvantages of this setup are the restricted space and access to the
feed and receiver and the noise reflected off the ground.

The other e-MERLIN antennas, Darnhall, Pickmere, Knockin (referred to as the E-
systems) and Cambridge are Cassegrain in design with an off-axis feed carousel which
rotates the feeds into the focal plane. The advantage of the Cassegrain design is that
the feeds and receivers are easy to access, there is no noise from ground spillover and the
reflectors can be shaped to provide more illumination (Napier 1999). From here onwards,
the term ‘antenna’ refers to reflector telescopes associated with high frequency (> 300
MHz) observations as applicable with the various e-MERLIN antennas.

The sensitivity of the individual antenna is defined by its effective collecting area
A(v,0,¢) m? where v the frequency, and 6 and ¢ are the directional coordinates. The
overall efficiency of this aperture depends on a number of factors. Imperfections in the
antenna surface cause phase errors at the feed and thus a decrease in power, represented by
the surface efficiency ns. Any secondary reflector and its supports physically blocking ra-
diation from reaching the primary reflector or feed are described by the blockage efficiency
np. The feed spillover efficiency n¢pin accounts for power lost when radiation is directed
from the reflector (primary or secondary depending on antenna design) to the feed. The
illumination taper efficiency 7t represents the discrepancy in illumination between the
outer and inner parts of the reflector (Napier 1999).

The antenna performance is thus modified to account for these aperture inefficiencies
to produce the relation between on-axis response (response at the centre of the main lobe

of A(v,0,¢)) Ao, the physical area of the aperture A and the aperture efficiency n (where

N = Ns Nb Nspill Nt):

A() =N A. (19)
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Figure 1.3: Antenna optics systems: (a) Prime focus, (b) Cassegrain, (c) Off-axis
Cassegrain, (d) Naysmith, (e) Beam waveguide, (f) Offset Cassegrain. Figure from Napier
(1999).
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The power received from a source follows a diffraction pattern where the maximum
response is at the pointing centre (peak of the beam). If a source were positioned at an
angle 6 from the pointing centre, the power is reduced as a function of this angle, A(0)
of the main lobe. The response at the pointing centre is A(f = 0) = 1 and almost no
radiation is received at 6§ > A/D, where D is the diameter of the antenna. Combining
the effective collecting area A(v, 6, ¢) with the response at the pointing centre Ay gives an

equation for the normalized pattern or primary beam

A(v,0,9)

Aprirnary (V, 07 ¢) = AO

(1.10)

where Aprimary (v, 6, ¢) is known as the primary beam and is essentially the point spread
function (PSF) for the antenna. Thus the true power received by the antenna includes

this PSF or primary beam term in the form
P (v,0,¢) = Aptimary (,0,0) B (v,0,9) Av AQ (1.11)

where P(v, 0, ¢) is the power received (in Watts), B(v, 0, ¢) is the sky brightness, Av is the
bandwidth and A is the solid angle on the sky. The primary beam response correction
can be applied as another calibration component which is discussed in

Chapter 3.

The waves focused from either the primary reflector or sub reflector (depending on an-
tenna design) are directed to the antenna feed, where a splitter separates the two orthogo-
nal polarisation components which are special cases of elliptical polarisation. Polarisation
effects in interferometry are discussed in Section 1.1.6.

After the electromagnetic radiation has passed through the antenna element and the
necessary feed for the observed wavelength, the signal is very weak. A low noise amplifier
increases the signal strength before any subsequent electronics or processes add additional
noise to the signal. The signal voltage is then fed into an intermediate frequency (IF) mix
converter where it is multiplied with a local oscillator (LO) frequency by synthesizers to
a lower frequency range (also known as ‘down-conversion’)3. The amplitude modulated

signal is symmetrical about this local oscillator frequency, displaying a mirror signal on

3This frequency range can in some cases be higher than the observed frequency range. It will be
translated to a sufficiently high frequency as to retain a wide bandwidth and so the modulation has no
negative frequency components, but low enough for the electronic signals to be easier to handle.
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either side. For single-sideband mixers where the observed frequencies are v < 100 GHz,
one of the sidebands is removed. This is to ensure that the signals from two different
antennas are at the same frequency before cross correlation, as well as increasing the
output power of the signal. See Napier et al. (1983) for a more detailed description of the
amplifiers and converters used at the VLA.

At this stage the signal is transferred to a quantizer (also known as the digitizer) and
is sampled using Nyquist sampling theorem i.e. sampled at twice the signal bandwidth
to obtain all the information (Carlson 2012). The Nyquist theorem states that a function
with no frequencies above v can be determined by sampling at Nsamples < 1/2v, or twice
a frequency cycle. As the signal is quantized there is a loss in sensitivity due to the digital
representation of the signal deviating from the true signal shape. Increasing the sampling
to twice the Nyquist rate will result in greater sensitivity, however it may be more prudent
to represent each sample by 2-bits?. A 2-bit quantisation scheme allocates one of the bits
to represent the sign of the voltage (0 for positive and 1 for negative), and the other bit
is assigned 0, if the input voltage is between two chosen levels £V} and 1 if the voltage is
outside the transition levels (Cooper 1970). Every eventuality is designated a state with
a corresponding weighting factor which is saved for that sample of the signal.

Following quantisation, the signal is passed to the correlator, where the voltages from
two antennas are multipled together to produce a range of bit products shown in Table 2
in Cooper (1970). The rest of the process (shown in Figure 1.2) is performed by the cross
correlator and will be covered in Section 1.1.3 on correlators.

So far only the antenna response (efficiency) has been discussed, and described by
Equation 1.9, which defines the sensitivity of the antenna. However, this does not include
the noise contributes from the electronics and other parts of the receiver system. Thermal
noise present in wires or cables and the amplifier etc, will lower the sensitivity of the
receiver system by decreasing the signal-to-noise ratio, thus the system is cryogenically
cooled to reduce this effect. The final sensitivity of the antenna and receiver system

(commonly known as the Radiometer equation) is defined by

AT — Tsys o Tsource + Tantenna +TRX (1.12)

VBT VBT

where AT is the sensitivity of the receiver, Tyource iS the astronomical noise from the

“Modern correlators e.g. WIDAR at e-MERLIN and JVLA and the correlator at ALMA, have 3-bit to
8-bit correlator modes available.
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source, Tantenna 1S the noise contribution from the antenna, e.g. antenna shape, spillover
etc (described previously), Trx is the noise contribution from the receivers, B is the
bandwidth of the observation, and 7 is the integration time (total time on source). The
sensitivity of any radio map oy is also a function of the antenna efficiency Ay (Equation

1.9) and the number of antennas in the array N, and is given by

V2kAT

0y = ——
Ao /N(l\;*l)

2k Tyys
_ V2k Ty (1.13)

Any/ Ll\;_l) Br

where k is the Boltzmann constant. Typical values for the variables in Equation 1.13 for

e-MERLIN are: 7 = 0.7, Tgys = 50 Kelvin (K), N = 7, and A = 7 (r/2)* where 1 is the

antenna diameter. For e-MERLIN this area is the average antenna area for the array ~

1113 m?2.

1.1.3 Complex Correlators

The principle task of the correlator is to combine the input voltage signals from different
antennas in an interferometric array, for all possible permutations, to produce a coherent
interference fringe or complex visibility function. This is broken down into multiple steps,
where the correlator may include parts of the receiver system such as the quantizer. Since
this operation acts purely on the voltage from a single antenna, it is discussed separately
in Section 1.1.2. This section will focus on correlation of the output sampled signals.

For connected interferometers the voltage from all antennas is routed directly to the
correlator, whereas the signal from non-connected (VLBI) arrays is recorded onto external
hardrives (or tapes in times of old) and transported to the correlator site of that particular
VLBI network. However, some VLBI arrays such as e-VLBI and e-MERLIN are connected
via an optical fibre network. The exact processes the correlator performs depends on the
correlator design, architecture and setup which will vary with each system.

The first correction is conducted on the antenna-dependent wavefront errors, i.e. the
tracking delay as described previously. A digital delay is introduced to the voltage signal,
along with the LO reference frequency used at the IF mixer. Because the LO reference
frequency differs from the frequency detected at the antenna, also causing differences to

the digital delay, a fringe phase correction is introduced to compensate (Carlson 2012). At
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this fringe phase correction, the signals from other antennas are cross-correlated together
twice, once for the even part of the sky and once for the odd part, or previously described
as the cosine and sine correlations. The signals are then summed to produce the visibility

function or interferometric equation (Equation 1.8).

vi(t) — Ti > FFT

[dt éi)»fdt [dt

v v

sz(i’h) Vij(VZ) Vz’j(VN)

Uj(t)—Tj P FFT

(a) FX Correlator

[dt [dt

| FET |

F
{Vij(ve) | K
(b) XF Correlator

=1...N}

Figure 1.4: FX correlator (a) and XF correlator (b) flow diagrams. See text for full
description of both correlator architectures. Figures taken from Brisken (2004).

The complex correlators have a number of architectures, or methods to create visibili-
ties from the individual antenna signals. The two most common are FX and XF correlators,
where F denotes the Fast Fourier Transform (FFT) and X denotes cross-correlation. FX
correlators perform a FFT on the signal after the digital delay and before the cross corre-
lation. A spectrum is available before integration (summation). The XF correlator cross
correlates before with different delays for different frequencies (and antennas), integrates
and then performs a FFT. Both architectures are shown in Figure 1.4.

The Wideband Interferometric Digital Architecture (WIDAR) correlator implemented
at JVLA, ALMA and e-MERLIN, is a hybrid of the two architectures described above
(FXF). This correlator contains a filter which first divides the signal into sub-bands or IFs
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(F) and then performs the same procedure as the XF correlator architecture.

1.1.4 Visibilities and the Visibility Plane (Fourier Space)

The complex visibility is the final output from the correlator, and represents the interfer-
ometer’s response to the sky brightness. There is a visibility for every baseline configura-
tion, frequency channel in the bandwidth grouped into intermediate frequencies (IFs) or
sub-bands, and integration time (the smallest sample rate of the correlator), which is usu-
ally on the order of ~ one second. Each visibility is approximately equal to one Fourier
component of the observed sky brightness, a fact demonstrated by Equation 1.8. The
baseline vectors (u,v,w) comprise the coordinate system of the interferometer and repre-
sent directions to the East, the North and the phase tracking centre (where the antenna
are pointing directly at) respectively. The corresponding coordinate system for the sky is
(I,m,n), these are the directional cosines with respect to the baseline vectors (u, v, w).

Visualisation of the baseline geometry is possible by plotting the visibilities as a func-
tion of their baseline vectors u and v to form what is commonly known as the u,v plane
or u,v coverage. A visibility exists for every integration time (from the correlator) and
for every channel in the bandwidth receiver (i.e. the smallest frequency increment of the
observation). Figure 1.5 shows the w,v coverage of a single baseline from MERLIN (a)
and the u, v coverage of a single baseline from e-MERLIN (b). The short periodical gaps
in the ellipse arc are due to the interferometer observing a phase calibrator source for a
technique called phase referencing which will be discussed in Chapter 3.

The rotation of the Earth continually changes the orientation of every baseline, and
thus the visibility and the corresponding Fourier component change in time. The baseline
projection traces out an ellipse in the u,v plane, as the source crosses the sky and the
baseline geometry changes. This essentially maps out a different part of the source struc-
ture and thus fills in a different part of the u,v plane which is the Fourier transform of
the sky brightness. The ellipse arc length is then simply the total integration time of the
observation.

For the assumption concerning monochromatic radiation, the arc thickness (or visibil-
ities in the radial direction from the origin) would be one visibility thick. Interferometers
have a bandwidth of finite size divided into IFs which are comprised of a number of chan-
nels also of finite frequency. Therefore for every integration time a visibility exists for

each channel within the full bandwidth. As the w,v plane is in units of wavelength, and
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Figure 1.5: (a) MERLIN single baseline u, v coverage of M82 and (b) e-MERLIN single
baseline u, v coverage of 2007+4029. The elliptical morphology arises from the baseline
geometry change from the Earth’s rotation.

a range of wavelengths are observed by the bandwidth, the visibility from each channel is
displaced from the central frequency (centre of the ellipse arc, and band) by a factor of
the wavelength difference.

The u, v coverage can be thought of as equivalent to the aperture of an optical telescope,
where a larger aperture equates to a greater collecting area and thus greater sensitivity.
For interferometry, the collecting area is not always complete and therefore it is a fuller
u,v coverage (i.e. more visibilities) which produces more Fourier components for image
reconstruction via deconvolution which leads to greater sensitivity.

The baseline lengths and position in this plane determine what part of the source
structure is seen. Small baselines are sensitive to large scale structures and large baselines
detect small scale structure. Alternatively, this can be described in Fourier space as;
large u, v scales (large baselines) correspond to high frequency sinusoiduals of the Fourier
transform, which can detect small scale structure from the source, and conversely; small
u, v scales (small baselines) are represented by low frequency sinusoiduals which transform
to large scale structure.

There is a second arc (Figure 1.5) which is a reflection through the origin of the u,v
plane of the first arc track. This is a consequence of the sky brightness being a real function

and thus its Fourier transform (visibility) V (u,v) is Hermitian, i.e. V(u,v) =V (—u, —v)".
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1.1.5 Radio Interferometric Imaging via Deconvolution

Before the imaging process, the data will have undergone calibration, modifying the in-
terferometric equation to account for a number of issues, explained briefly in Section 1.1.1
and in more detail later in Chapter 3 (Radio Interferometric Calibration Pipeline for CO-
BRaS). Now a description on imaging with deconvolution is given.

The interferometric equation (Equation 1.8) from Section 1.1.1 is three dimensional,
but can be approximated to two dimensions when the 27 wn component is much less than
unity. This is the coplanar baseline assumption, and is valid when the baseline vectors
trace out a concentric circle with the Earth’s rotation axis (Thompson 1999). This is appli-
cable to East-West interferometers. However, one-dimensional East-West interferometers
suffer a lack of visibilities in the v direction. For two-dimensional interferometers, certain
conditions will allow for a two dimensional representation of the visibility equation. If the
|I| and |m/| terms in Equation 1.8 are small enough i.e. a small field of view (as [ and m
describe the source structure), the n term can be treated as approximately zero (Equation

1.14 is from Thompson 1999)
(Vi—e-m- 1w~ e ~ 0 (1.14)
2

Ignoring the w term can induce errors from aberration into the observations, similar to
field curvature in an optical telescope (Anita Richards, MERLIN user guide). Removing

the w dependence reduces the measurement equation to

V, (u,v) = / / B, (I,m) e~ 27 (u+mv) gp g, (1.15)
lJm

where V,, (u,v) and B, (I,m) are now functions of frequency, i.e. not assuming monochro-
matic radiation as in Equation 1.8 for the simplified two element interferometer example.

Reducing the interferometric equation to 2D has a significant benefit in aperture syn-
thesis. The computational cost of the 2D Fourier transform is more feasible than the
transform of the 3D relation. This is applicable for observations with a small field of view,
or where the source of interest is located at the phase centre. However, for COBRaS this
is not true, with wide-field imaging necessary for the science goals (see Sections 1.3.3 and
1.3.4), the problems and solutions to wide-field and wide-band imaging are discussed later

in Chapter 3, but involve the 2D relation.



1.1. INTRODUCTION TO RADIO INTERFEROMETRY 39

The u, v coverage is the response of the interferometer, whose Fourier transform is the
complete sky brightness only if the u,v coverage is completely filled. In practice this is
not true as is evident in Figure 1.5. Therefore a sampling function S (u,v) is introduced
with the visibility function in Equation 1.15 where S (u,v) is zero where no data exists
in the u,v plane. Directly inverting Equation 1.15 to find the sky brightness, or as is the

new case, the dirty image B” (I, m), produces
B2 (1,m) = // Vi (u,v) S (u,v) ™ +vm) gy dy, (1.16)

It is possible to apply convolution theory to the variables in Equation 1.16. Convolution

theory states that for the Fourier transform of two functions f and g,

frg=FYHEW) - Flo)}, (1.17)

where * denotes convolution and F represents the Fourier transform. This relation is used

for the terms on the right hand side of Equation 1.16 giving

B) = FHF W) - F(S)}

where the inverse Fourier transform of Equation 1.15 is used for B, and

P(l,m)= //S(u,v) 2l om) gy, dy (1.19)

is the point spread function (PSF), also known as the synthesised beam or dirty beam.

To calulcate the Fourier transform for Equation 1.18, Fast Fourier Transforms (FFT)
are used with the data distributed over a grid. This is preferred to the direct Fourier
transform which in O formalism (denoting processing time or number of operations i.e.
performance) is O (N4) compared to O (NQ) for the FFT (Briggs et al. 1999). There-
fore considering FFTs and the incomplete u, v coverage, gridding methods or non-linear
methods are necessary for imaging in radio interferometry.

The gridding of the visibility data for the FFT enables the synthesised beam shape to
be manipulated by different weighting schemes. These weighting schemes extrapolate over

the grid positions where no visibility data exists in different ways, maximising different
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properties in the final image.

Natural weighting is one of the density weighting schemes which gives equal weight
to all visibilities, thereby emphasising grid cells containing many visibilities. This increases
sensitivity at the cost of producing a synthesised beam with large side-lobes, decreasing
the resolution.

Uniform weighting is another density weighting scheme which gives equal weight
to all grid cells, regardless of visibility distribution. This maximises the effect of long
baselines on the beam shape, creating a narrow beam profile with lower side-lobe levels
thereby increasing resolution at the cost of sensitivity.

Robust weighting (Briggs 1995) is a density weighting scheme which is a hybrid
of natural and uniform weighting. Robust weighting attempts to find a balance between
the two schemes by creating a PSF that smoothly varies from one scheme to the other
depending on a single tunable parameter.

Tapering is a weighting scheme which multiplies the weights by a Gaussian. Tapering
can be combined with any other weighting scheme to compromise between sensitivity and
resolution. Gaussian tapering is the optimum weighting for detecting Gaussian sources

and increases the detectability of an extended source (SMA user guide).

CLEAN Algorithm

The most common traditional imaging algorithms used in aperture synthesis are the
CLEAN and Maximum Entropy Method (MEM) algorithms. More recent and sophis-
ticated imaging algorithms derived from these two are discussed in the wide-field and
wide-band sections in Chapter 3.

The original CLEAN algorithm devised by Hégbom (1974) solves the convolution equa-
tion (Equation 1.16) by representing radio sources as a number of point sources. The peak
strengths and positions of these point sources is found iteratively and the final image is
the sum of these components convolved with the CLEAN beam, usually represented by a

Gaussian (Cornwell et al. 1999). The algorithm proceeds as follows:

1. Search for the strength and position of the highest intensity peak in the dirty image
BP.

2. Subtract the dirty beam P from the dirty image at the position of the point source

found in step 1. The beam P is multiplied by a loop gain v < 1.
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3. The position and strength of the point source subtracted is recorded in a model.

4. Go back to step 1, unless all remaining peaks are below a specified user level. The

remaining dirty image (minus subtracted peaks) is the residual image.

5. Convolve the model of point sources with a CLEAN beam, which is usually an

elliptical Gaussian fitted to the central lobe of the dirty beam.

6. Add the residual image to the CLEANed image.

A FFT-based CLEAN algorithm by Clark (1980) performs in a similar fashion to
Hogbom’s algorithm, but finds the positions and strengths of point sources by only using
a fraction of the dirty beam profile. The Clark algorithm operates in two cycles, the major

and minor cycles and proceeds as follows:

1. Minor Cycle - A segment of the beam is selected with the highest exterior side-lobe

i.e. the central portion of the dirty beam.

2. Minor Cycle - Peaks are selected from the dirty image if the strength of the source

is greater than the highest side-lobe of the beam from step 1.

3. Minor Cycle - A Hégbom CLEAN is performed on all of the selected points from
step 2 using the segment of the beam from step 1. This continues for this list of

points until all sources selected are weaker than the side-lobe.

4. Major Cycle - The model created in step 3 is then transformed via a FFT, multi-
plied by the sampling function (the inverse transform of the PSF) transformed back
and subtracted from the dirty image. Also any errors in the residual images from

previous minor cycles are corrected by subsequent minor cycles.

This algorithm is sufficient to find CLEAN components for dirty beams which have
fairly good side-lobe patterns. Omne further modification to the CLEAN algorithm is
the Cotton-Schwab algorithm (Schwab 1984) where the major cycle subtracts CLEAN
components from the un-gridded visibility data. This enables the removal of aliasing noise
and gridding errors if the inverse Fourier transform of these components to each u, v sample
is accurate enough (Cornwell et al. 1999). The algorithm also decides whether to use the
direct Fourier transform for a small number of CLEAN components to increase accuracy,

or to use the FFT for large numbers of CLEAN components.
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A major advantage of the Cotton-Schwab algorithm is its ability to CLEAN many
separate fields independently in the minor cycles and remove all of the CLEAN components
together in the major cycle. Calculating the residual for each small field allows for the w-
term in the full 3D measurement equation (Equation 1.8) to be determined. This corrects
for non-coplanar baselines which is a problem for large arrays and wide-field imaging (see

Chapter 3 for discussions). This is the algorithm used in the AIPS task IMAGR®.

Maximum Entropy Algorithm

Another algorithm is the MEM, a form of information theory, which selects a probability
distribution that best fits the data within the noise level from all the possible distributions
and also has maximum entropy. Maximum entropy is defined as a positive image with a
compressed range of pixel values forcing the image to be “smooth” (Cornwell et al. 1999).

Entropy takes the general form:
H=-> L In 2k (1.20)
3 M

where I, is the reconstructed image and My, is the expected or a priori image.
Each visibility cannot be exactly fitted by the probability distribution to produce a
positive value and therefore the data is constrained by a x? fit of the probability distibution

to the observed image being equal to the expected value

—

Vi (uk, vi) — V (ug, vg) 2
=y W) = VGl o)
k V(ug ,vk)

where V' (ug , vg) is the probability distribution, V' mk) is the observed image and
0‘2/(% o) 15 the variance of the image, i.e. Gaussian noise (Cornwell et al. 1999).

Images with around one million pixels take a similar amount of time for MEM and
CLEAN, with MEM being faster for larger images and CLEAN faster for smaller images.
MEM can also be faster than CLEAN when the image is filled with emission, but CLEAN

is faster for sources which are well represented by a small number of point sources and for

images with high dynamic ranges (Cornwell and Evans 1985).

SA full list of the AIPS Nomenclature is given in Appendix A.
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1.1.6 Polarisation Effects

This section briefly discusses some of the general effects of polarisation for interferometers.
Both the electric and magnetic field vectors of an electromagnetic wave trace an ellipse,
the orientation of which defines the polarisation state of the wave. Only the electric field
of the wave can be measured by the antenna feeds. The ellipse defining the electric wave
is comprised of two orthogonal components which sum to produce either linear or circular
polarisations. Linear polarisations have two cartesian components X and Y, and circular
polarisations have left and right hand circular components (simply L and R).

The relation of the intensity of the wave and the polarisation ellipse are defined by
Stokes parameters named after George Stokes who devised them in the 1850’s. The Stokes
parameters are intensity I, linear polarisation Q and U, and circular polarisation V. The

relation of the Stokes parameters and circular polarisations is given by

ER = Re{AR 62ﬂiut}

EL — Re{AL eiéRL e27‘r’il/t}

= (Ar®) +(AL?) = (Er ER") + (EL EL7) (1.22)
Q= (2 Ag AL cos OgL) = (Er EL") + (EL ER")
U=(2Ar AL sin dgr) =i((Er EL") — (EL ER"))
V = (4r%) — (AL?) = (Er ER") — (EL EL").

Interferometers have dual polarisation feeds which produce four correlation states, RR,
LL, RL and LR for circular and XX, YY, XY, YX for linear polarisations. These four states
can be utilised with the relations in Equation 1.22 to create intensity and polarisation
maps. Numerous considerations involving the calibration for polarisation effects from the
atmosphere and system electronics are beyond the scope of this thesis, because the initial

goal of COBRaS is an intensity study, utilising only parallel polarisations.

1.2 e-MERLIN

e-MERLINS is a UK National Facility operated by The University of Manchester on behalf
of the Science and Technology Facilities Council (STFC). It is an upgrade to the MERLIN

(Multi-Element Radio Linked Interferometer Network) array, consisting of seven radio

5e-MERLIN: http://www.e-merlin.ac.uk/
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telescopes. Figure 1.6 shows the distribution of telescopes spanning across the UK.

Figure 1.6: Positions of the seven radio telescopes of e-MERLIN across the United King-
dom. Clockwise from top; Lovell, Mark II, Cambridge, Defford, Knockin, Darnhall and
Pickmere.

The upgrade consists of a new optical fibre network connecting each telescope to the
Jodrell Bank Observatory, where the new WIDAR correlator developed by the Dominion
Radio Astrophysical Observatory (DRAO) resides. New bandwidth receivers increase
the useable bandwidth by two orders of magnitude, resulting in a continuum sensitivity
increase of a factor of 10 or more compared to the old MERLIN array. To demonstrate
this sensitivity increase, Figure 1.7 shows the u,v coverage of the old MERLIN array
displayed alongside the u,v coverage of e-MERLIN. The MERLIN u,v coverage is a 12
hour observation of M82 with declination: +69° 40’ 47" (data courtesy of Danielle Fenech;
private communication), and the ee-MERLIN w, v coverage is a COBRaS L-band Legacy
observation with declination: +41° 22’ 48”. Despite the lower declination and shorter
total observation time, the e-MERLIN wu, v plot shows a dramatic increase in coverage in
the radial direction due to the increase in L-band bandwidth from 16 MHz to 512 MHz.

There are three observing bands for ee MERLIN. L-band operates at 1.3 - 1.8 GHz, C-
band at 4 - 8 GHz and K-band at 22 - 24 GHz, with the available maximum bandwidths
of 512 MHz for L-band and 2048 MHz for C and K-bands per polarisation (circular).
Throughout this thesis, observations with frequencies between 1.3 - 1.8 GHz will be referred

to as L-band as the new bandwidth encompasses all of these frequencies. Observations
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Figure 1.7: (a) MERLIN u, v coverage of M82 observation at 1.6 GHz with 16 MHz band-
width and (b) e-MERLIN u, v coverage of L-band Legacy Pointing C (including calibration
sources) at 1.5 GHz with 512 MHz bandwidth.

with frequencies between 4 - 8 GHz will be referred to as C-band. All bands are comprised
of smaller sub-bands or intermediate frequencies (IFs; in the AIPS nomenclature), which
segregate the total bandwidth into groups of channels.

The new correlator at Jodrell Bank Observatory is a smaller version of the WIDAR
correlator at the JVLA. A range of correlator capabilities is available for both continuum
and spectral-line observations, and the reader is referred to the relevant literature for
details (Garrington et al. 2004; http://www.e-merlin.ac.uk/tech/).

The shortest baseline of e-MERLIN is the Lovell - Mark II baseline of 400 m. However,
the large difference in uv-spacing sampled between this baseline and the next shortest
baseline of ~ 11km (Mark II - Pickmere), means the Lovell - Mark II baseline is not
used. This is because there are inadequate data to fully recover any diffuse structures on
large spatial scales seen on this very short baseline and connect the smaller spatial scales
detected by the other baselines in the array during the imaging process (Rob Beswick,
private communication). The smallest useable baseline is therefore Mark II - Pickmere
(11 km) and the largest baseline is Lovell - Cambridge (217 km).

This provides eeMERLIN with resolutions of ~ 150, 40 and 12 mas for L-, C- and K-
band observations respectively (with small changes over the frequency range of each band).
Table 1.1 gives the expected technical capabilities of a fully commissioned e-MERLIN

array.



1.3. THE E-MERLIN CyagNuUs OB2 RADIO SURVEY 46

Table 1.1: Technical Capabilities of e-MERLIN

1.5 GHz 5 GHz 22 GHz
(L-band) (C-band) (K-band)

Resolution (mas) 150 40 12
Field of View (arcmin) 30 7 2.0
Bandwidth (GHz) 0.5 2 2
Freq. Range (GHz) 1.3-18 4-38 22-24
Sensitivity (uJy/bm) in full imaging run 5-6 1.8-23 ~ 15
Surface brightness sensitivity (K) ~ 190 ~ 70 ~ 530
Astrometric performance (mas) ~ 2 ~1 ~ 2
Amplitude calibration 2% 1% 10%

General capabilities of the full ee MERLIN array. The sensitivity and surface brightness
numbers include e-MERLIN and the Lovell telescope. The field of view decreases with
inclusion of the Lovell telescope by approximately 20/(v/ 1.4GHz) arcmin, where v is
the observed frequency. This table is taken from the e-MERLIN website: http://www.e-
merlin.ac.uk/tech/ .

1.3 The e-MERLIN Cygnus OB2 Radio Survey

The Cygnus OB2 Radio Survey (COBRaS; P.I. Prof. Raman Prinja, UCL) is an e-
MERLIN Legacy project on the Cygnus OB2 association (Cyg OB2), the largest OB
association in the northern hemisphere and one of five OB associations in the Cygnus X
region. COBRaS will provide the deepest, most sensitive radio survey of the region using
observations at L. and C-band, with ~ 300 hours of observing time on the core region
of the assoication. This substantial dataset will enable a range of diverse astrophysical
topics to be explored, and will have direct links to other wavelength surveys, generating a
multi-wavelength window into one of the most spectacular massive stellar clusters in the

Galaxy.

1.3.1 The Cygnus OB2 Association

The Cyg OB2 association is a young massive cluster in the heart of the Cygnus X region
of the Galaxy, residing behind a large molecular cloud called the Great Cygnus Rift.
Cyg OB2 was first observed by Miinch and Morgan (1953), who noticed a number of
blue giants in the region, with subsequent photometric and spectroscopic observations
by Johnson and Morgan (1954). Further studies were made by Morgan et al. (1954),
Schulte (1956b), Schulte (1956a) and UBV photometric investigations by Lawrence and
Reddish (1965) and Reddish et al. (1967). The first general census of the massive star
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population in Cyg OB2 using UBV photometry and spectroscopy for spectral classification
was conducted by Massey and Thompson (1991) with subsequent surveys in near-IR with
the Two Micron All Sky Survey (2MASS; Knédlseder 2000; Comerdn et al. 2002), and in
X-rays with Chandra (Albacete Colombo et al. 2007b; Drake 2009).

All surveys have indicated a rich diverse population of stars within the Cyg OB2 region.
Knédlseder (2000) showed Cyg OB2 to have a total cluster mass of (4 - 10) x 10* Mg,
with 120 + 20 O-type and 2600 + 400 OB type stars. In addition to these OB stars,
Cyg OB2 is home to Be stars, young stellar objects (YSOs), two known Wolf-Rayet (WR)
stars (WR 145, WR 146), a candidate luminous blue variable (LBV) (G79.29+0.46), HII
regions (DR 15, DR 17, DR 18, DR 20 etc.) and a v-ray source (TeV J203244130). Figure
1.8 shows a Herschel image at 70, 160, and 250 pum of the Cyg OB2 region with labels
of the surrounding HII regions. Most of the population of Cyg OB2 is obscured by the

molecular cloud.

G79.2940.46 — o
. .

Figure 1.8: Image of Cyg OB2 and the surrounding regions from Herschel observed at
70 (blue), 160 (green), and 250 (red) pum. North is situated towards the right, and East
towards the top of the image. Figure taken from the ESA website.

The Cyg OB2 association extends across ~ 2 degrees of sky, which corresponds to ~
60 parsecs at an assumed distance of 1.7 kpc (Massey and Thompson 1991). However, this
distance is uncertain with values ranging over 1.2 - 2.1 kpc in the literature (Hanson 2003;
Reddish et al. 1966), with the uncertainty originating from the variable visual extinction
(4™ - 10™; Knodlseder 2000) in the Cygnus X region. Recent parallax observations of 6.7
GHz methanol and 22 GHz water masers have constrained the distance of Cyg OB2 to
1.40 £ 0.08 kpc (Rygl et al. 2012; Wright et al. in prep.). The estimated age of Cyg OB2
is ~ 2 - 3 Myr (Albacete Colombo et al. 2007b), in keeping with that of young massive

clusters.
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Table 1.2: Physical Properties of Cyg OB2

Physical Parameter Reference
Centre (J2000) a = 20" 33™ 10°, § = 4+41° 12/

Total Stellar Mass (4 - 10) x 10* Mg 1

O Star Members 120 £+ 20 1

OB Star Members 2600 + 400 1
Association Diameter ~ 2° 1
Distance 1.40 £ 0.08 kpc 2
Visual Extinction 4™ to 20™ 1
Age 2 -3 Myr 3

References: 1. Knodlseder (2000), 2. Rygl et al. (2012), 3. Albacete Colombo
et al. (2007b).

The Cyg OB2 association thus provides a good laboratory to study a diverse range of
stellar and cluster astrophysics. Radio observations from e-MERLIN and COBRaS have
the benefit of piercing through the giant molecular cloud avoiding problems with variable
extinction. A summary of all the adopted physical properties of Cyg OB2 is given in Table
1.2.

1.3.2 The Role of Massive Star Winds in the Galaxy

Massive stars are a rare but important population in the Galaxy. The powerful winds
of massive stars influence the dynamics of the clusters in which the majority of them
reside, expelling mass and ionising the matter in the surrounding regions. In particular
the intense UV photons from OB stars can cause evaporation and compression of the
surrounding ISM, forming comet shaped clouds which induce the formation of low and
intermediate mass stars (Lee and Chen 2007). Such triggered star formation is possibly
occurring in Cyg OB2 where the collective winds of OB stars in the core of Cyg OB2 are
triggering star formation in the prepheral HII region DR 15 (Vink et al. 2008).

Massive stars are one of the most important objects to transfer chemically enriched
material into the ISM from internal nuclear processes throughout their lifetimes. Helium
is produced via the CNO cycle during the main sequence phase, and also during the WR
phase and then subsequently, carbon oxygen, silicon and iron (and nickel, but often not
referred to in the literature because of its 10% abundance compared to iron), with the
resulting energy emitted from the eventual supernova, intense enough to create further
heavier elements.

Moreover, massive stars are the progenitors of supernova events, making the whole
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lifetime of a massive star, from birth to death, the most important component in galactic
chemical evolution. This includes further star and planet formation from the expelled

material, as well as metallicity fractions for the ISM and future stellar systems.

1.3.3 COBRaS Scientific Analysis Goals

The COBRaS Legacy project aims to advance the scientific knowledge and understanding

of a number of inter-related themes in stellar astrophysics with three major scientific areas.

1. The mass loss and the evolution process in massive stars.
There is currently a major discrepancy between the mass loss rates of OB stars
determined from observed Ha and radio free-free processes (so called density-squared
methods; see Chapter 5) and those from ultra-violet (UV) resonance lines of P4*, by
an order of magnitude or more (Prinja et al. 2005; Fullerton et al. 2006; Puls et al.
2006). This disparity has significant consequences for the evolution and final stages
of a massive star’s life (which is strongly driven by mass loss) and the interaction
of massive stars and the instellar medium, where feedback mechanisms of the stellar
winds from massive stars drives the galactic chemical evolution. The proposed cause
of this discordance is believed to arise from clumped and/or porous stellar winds
as evidenced by observations of the aforementioned P4t discrepancy (Prinja and
Massa 2010; Prinja and Massa 2013; and references therein), X-ray spectroscopy
(Crowther 2007; Puls et al. 2008), and theoretical hydrodynamical models, which
predict instabilities from the radiation driving mechanism (Owocki and Rybicki 1984;
Dessart and Owocki 2005). COBRaS provides a robust way to measure accurate
radio fluxes for OB stars (at 6 cm and 20 c¢cm), which is free from uncertain wind
parameters such as the terminal velocity” (see Chapter 5 for details). This in turn
will provide a foundation to investigate the discrepancy between observed radio
fluxes and fluxes predicted from smooth wind models on a large scale, and also to
determine the clumping factors and the effects of wind structure far out in the winds

of massive stars.

2. The massive binary frequency and particle acceleration in colliding-wind
binaries.

The frequency of massive binaries in stellar clusters is currently uncertain, with

"However, mass loss rates are dependent on terminal velocity.
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estimates ranging from 20-60% of all O stars as members of binary systems (Sana
et al. 2008, NGC 6231 cluster; De Becker et al. 2006, IC 1805). Binary fractions,
information about mass distribution among binaries and orbital parameters etc. are
important for evolution and population modeling (Dionne and Robert 2006) and for

understanding stellar populations and cluster dynamics (Eldridge et al. 2008).

The accurate measurement of radio fluxes with the spectral index information of
massive stellar winds and colliding wind binaries from COBRaS will provide a good
laboratory to investigate particle acceleration via the Fermi mechanism in real phys-

ical scenarios (Pittard and Dougherty 2006).

3. Triggered and on-going star formation.

Vink et al. (2008) conducted a survey using the INT Photometric H-alpha Survey
of the Northern Galactic Plane (IPHAS) towards Cyg OB2 and the H II region
DR 15, detecting 50 new pre-main-sequence (PMS) candidates via their strong Ho
emissions. A prominent arc of T Tauri stars was found close to DR 15 (Figure 1 in
Vink et al. 2008), suggesting that these strong emission-line objects could just be
the tip of a much larger low mass PMS population yet to be discovered. The authors
also suggest the possible scenario, where the central OB star winds are triggering
star formation in the southern periphery region of DR 15. No confirmed instance of
triggered star formation from OB star winds has ever been observed because of the
difficulty in making this connection. Whilst DR 15 is not in the COBRaS survey
region, a complementary dataset could arise from a recently accepted JVLA (Priority
C) proposal ‘Triggered star formation in DR 15: the Cyg OB2 HII region’ (P.I. Dr
Danielle Fenech) observing at L-band and C-band.

For on-going star formation in the main core of Cyg OB2, radio observations could
reveal so-called weak T-Tauri stars (WTTS) which may be the dominant population
of pre-main sequence (PMS) stars. These stars differ from classic T-Tauri stars
(CTTS) by their weak Ha emission line (W) < 10 A), making these objects difficult
to identify. However, WTTS are non-thermal radio emitters whereas CTTS and
Herbig Ae/Be stars are thermal (O’Neal et al. 1990; Skinner et al. 1993). The
emphasis from COBRaS on providing spectral index information with accurate radio

fluxes will therefore help in distinguishing the population of PMS stars in Cyg OB2.
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1.3.4 COBRaS Technical Analysis Goals

In order to achieve the full scientific goals stated in Section 1.3.3, a number of technical
areas are to be addressed. Automated software is required where possible, due to the large

Legacy data volume. These technical areas are:

Data Processing

The development of data reduction processes to initially assess the data quality and
create four main tiers of data output: calibrated visibility data, individual pointing
images, full mosaiced images of the core at L-band and C-band, and source and flux

lists with spectral information.

Calibration

The creation of a large pipeline to process the observations from raw data (AIPS
UVFITS or CASA measurement sets) to fully calibrated datasets ready for imaging.

This includes automated data editing due to the infeasibility of manual invention.

Imaging

Considerations for wide-band and wide-field imaging for e-MERLIN in the data
analysis of COBRaS datasets, containing faceted imaging and removal of aliasing
sources for each pointing. Developments for achieving optimal mosaicing using a

heterogeneous array are also required.

Analysis

Pipelines for source location, flux and position extraction and determining spectral
index information are necessary for the science goals of COBRaS. This provides the
first step in source classification in determining between thermal and non-thermal
emission, the second step is to cross correlate the source lists generated with exisiting

catalogues. A definitive catalogue of previous surveys is thus also required.

Data Archiving

Outputs from the project are to be made available to the community via the Vir-
tual Observatory (VO) library. The fully calibrated pointings will also be available
through VO links to an external location as direct access to AIPS UVFITS or CASA

measurement sets may not be feasible.
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All pipelines are to be written in Python/ ParselTongue languages which are commonly

used in connection with the AIPS software package.

1.3.5 COBRaS Observations

COBRaS has been awarded ~ 300 hours of e-MERLIN observing time, including the Lovell
telescope, which is split between L-band (42 hours) and C-band (252) observations. In
total there are 7 L-band pointings and 42 C-band pointings centred on the core region
of Cyg OB2. Figure 1.9 shows a close up of the C-band (a) and L-band (b) mosaicing
strategies of the core region of Cyg OB2.

The e-MERLIN observations involve phase referencing (see Chapter 3 on calibration),
which consists of alternating between observing a phase calibrator and the target field. For
COBRaS Legacy observations, the observed target field cycles through all of the different
pointings which make up the mosaic to optimise the u,v coverage of each field and the

observing time required to achieve enough sensitivity per pointing.

1.3.6 Synergies with Multi-wavelength Studies of Cyg OB2

The COBRaS project has direct links with other surveys at different wavelengths, pro-
viding a unified view across the electromagnetic spectrum of Cyg OB2. In the X-rays,
the Chandra Cyg OB2 Survey (Drake 2009; Wright 2011) contains a 100 ks 16" x 16’
observation of the core region of Cyg OB2. The sensitivity of this survey is such that the
dataset is expected to be complete to 95% for stellar masses down to one solar mass. The
Chandra dataset provides probes into the X-ray behaviour of the shocked winds of OB
stars and colliding wind interaction regions of massive binaries.

In the optical, the Isaac Newton Telescope Galactic Plane Ha Survey (IPHAS; Drew
et al. 2005) has obtained deep images of Cyg OB2 in the Ha, r’ and i’ bands. In addition
to this photometry, IPHAS has MMT HectoSpec spectroscopy of ~ 1000 sources in the
Cyg OB2 region. Another study in the optical (which also includes near-IR spectroscopy)
is the Ha Radial Velocity Survey of Cyg OB2 (Kiminki et al. 2007). This survey presents
a long term study on massive binaries in Cyg OB2, and in conjunction with COBRaS will
enable the properties of wind clumping to be investigated from the mass loss diagnostics
from different wavelengths, which probes different regions in the stellar wind (See Chapter
5).

In the near-IR, 2MASS (Skrutskie et al. 2006), and mid-IR Spitzer (Werner et al. 2004)
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Figure 1.9: (a) C-band and (b) L-band mosaicing strategy for COBRaS observations on
the core region of Cyg OB2. The black points are X-ray sources from the Chandra Cyg
OB2 Legacy survey (Drake 2009), and known radio OB sources in blue.
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IRAC and MIPS (Fazio et al. 2004; Rieke et al. 2004) surveys are essential in helping
complete the picture of star formation in the surrounding regions. Radio continuum
measurements from COBRaS with IR photometry will lead to new information on the HII

regions and whether the winds of massive stars induce triggered star formation.

1.4 Thesis Aims

This thesis addresses many areas of the data analysis issues presented in Section 1.3.4
from the COBRaS proposal. This includes the technical development of pipelines and
algorithms to solve these technical problems (excluding imaging) as well as investigating
the first results from the COBRaS L-band Legacy and C-band commissioning observations
and the Chandra X-ray Legacy dataset. The layout of the thesis is as follows.

Chapter 2 describes a new reduction and RFI-mitigation program for e-MERLIN,
SERPent, which takes a raw interferometric AIPS UVFITS dataset and prepares it for
calibration by editing and flagging bad, unusable data.

Chapter 3 introduces the automated COBRaS calibration pipeline which consists of
phase, amplitude, bandpass calibration and self-calibration. The pipeline is tested on
C-band e-MERLIN commissioning data and COBRaS L-band Legacy data. The chapter
also includes discussions on wide-band and wide-field imaging techniques and mosaicing
strategies with e-MERLIN for the COBRaS project.

Chapter 4 contains catalogue amalgamation routines to compile a complete catalogue
of previous surveys of the Cyg OB2 region. The chapter also contains analysis packages for
source detection and flux extraction on a pixel-by-pixel basis. Monte Carlo simulations
with somewhat idealised Gaussian noise are conducted to test the performance of the
methods against the standard AIPS flux extraction method JMFIT. In addition to the
flux extraction, a significance boosting module is created to cross-reference the sources in
the maps with the aforementioned catalogues and increase the detection sigma significance
using Bayes’ Theorem.

Chapter 5 contains the predictions of mass loss rates and radio fluxes from free-free
emission of OB stars in Cyg OB2 using theoretical stellar parameters from the literature.
Radio fluxes are determined for O-type stars and B supergiants for smooth winds and
clumped winds. The first L-band Legacy maps and C-band commissioning maps are

presented here with results in the form of source and flux lists and some analysis.



1.4. THESIS AIMS 55

Chapter 6 is a study of X-ray variability of O-type stars from the Chandra Legacy
survey of Cyg OB2. Finally, Chapter 7 contains a summary and conclusions from this
thesis, and discussions on future work in the field of software development for radio inter-

ferometry.



Chapter 2

Radio Frequency Interference

Mitigation with SERPent

A common mistake that people make when trying to design something completely

foolproof is to underestimate the ingenuity of complete fools.

Douglas Adams

The first part of the automated radio interferometric pipeline is the preparation of the
raw dataset by editing bad or unusable data. The reduction and removal of Radio Fre-
quency Interference (RFI) is essential to enable accurate calibration of e-MERLIN data.
This chapter presents the Scripted E-merlin Rfi-mitigation PipelinE for iNTerferometry
(SERPent) algorithm applied to commissioning e-MERLIN and COBRaS Legacy datasets.

Some details from this chapter are also presented in Peck and Fenech (2013).

2.1 RFI Mitigation Techniques

Modern interferometers are becoming increasingly more sensitive and powerful, with re-
sulting datasets becoming ever bigger. Therefore, the need for automation of certain pro-
cedures in reduction and calibration of interferometric data is vital. The manual removal
of radio-frequency interference (RFI) and other bad unusable data by the user presents a

major ‘bottleneck’ in this reduction and calibration procedure.

o6
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Until recently, the manual flagging of typical datasets took a reasonable amount of
time, with data sizes being on the order of Megabytes (MB). Improvements in receivers,
electronics, correlators and optical fibre networks, result in observations which span a
wide frequency range, into bands which are not protected for radio astronomy, thereby
increasing the incidence of RFI. With future emphasis on multi-observation and full sky
surveys (in the case of the SKA), data sizes will be on the order of Terabytes (TB)
for the current crop of interferometers (including e-MERLIN) and even larger for future
instruments (e.g. SKA), making manual flagging unfeasible. It is clear that automation of
this process is necessary for the current generation of interferometers such as e-MERLIN,
JVLA, ALMA, LOFAR and for future interferometers (MeerKAT, ASKAP, SKA).

One of the toughest challenges in RFI mitigation is accounting for its variable inten-
sity, morphology and unpredictable nature. RFI can arise from many sources such as radio
stations, microwaves, lightning, aeroplanes, mobile phones, CCTV etc. Some of these oc-
cur at specific frequencies (radio stations, mobile phones) and may only be problematic
for certain arrays. The individual array characteristics and the corresponding RFI envi-
ronment, needs to be considered to achieve optimal RFI reduction. Therefore, creating
robust methods to mitigate RFI to a certain level to enable the highest sensitivity mapping
possible, is essential.

Mitigation can be applied at two stages in the interferometric data reduction process:
pre-correlation and post-correlation of the antenna signals. Both of these methods can be

complementary to one another, as they will remove different kinds of RFI.

2.1.1 Pre-correlation RFI Mitigation

Pre-correlation is a very powerful option for RFI mitigation because the observational
data are still at their highest time resolution (sub-integration time) (Offringa et al. 2010a),
although executing the processes on small sections of the entire observation at the station
in real time is challenging. Niamsuwan et al. (2005) test a strategy termed asynchronous
pulse blanking (APB) on simulated data to constrain the inherent parameters associated
with the algorithm. The method maintains a selection of the real-time data within the
computer’s memory to enable deletion of contamination when an RFI pulse is detected.
Only when a sample exits the buffer is the blanking operation performed. The amount of
time before and after the RFI spike to be removed depends on one of the input parameters,

including an aggressiveness parameter () which controls the detection level threshold.
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The Cumulative Sum (CUSUM) threshold method of RFI in the time-frequency do-
main has been conducted by Baan et al. (2004) at the Westerbork Synthesis Radio Tele-
scope (WSRT) as part of the RFI mitigation subsystem (RFIMS) before the correlation
of the signal. Another thresholding method using x? statistics is proposed by Weber et al.

(1997) and applied to spectral line observations.

2.1.2 Post-correlation RFI Mitigation

One advantage of post-correlation RFI mitigation is an inherent mitigation routine through
the cross correlation of visibilities from different antennas. An RFI incident at any individ-
ual antenna location will not exist after correlation, because the corresponding RFI signal
is not present at other antenna locations. The appearance of correlated RFI in VLBI is
therefore unlikely, but interference can be correlated on ‘short’ baselines (Roshi and Perley
2003). Whilst technically e-MERLIN conducts VLBI in the sense that e-MERLIN obser-
vations require fringe-fitting (See Section 3.6), it still suffers from relatively short baselines
compared to those comprising the EVN, VLBA and Global VLBI array configurations.
Therefore RFT is seen in e-MERLIN observations.

Post-correlation is the final stage to remove RFI before calibration procedures com-
mence. Methods include the use of an independent RFI reference signal from an additional
receiver horn pointing in the direction of the RFI source to subtract the RFI from the data
(Briggs et al. 2000), and fringe-fitting for spatially and temporally constant RFI (Athreya
2009), where the RFT causes the observed visibilities to deviate from the true visibilities
when plotted in the real and imaginary visibility plane (see Figure 1 in Athreya 2009).

Thresholding methods can also be applied in post-correlation RFI mitigation, because
the cross-correlated visibility amplitudes increase when RFT is present. Offringa et al.
(2010a) analyse a number of threshold methods with simulated and real data from LO-
FAR and WSRT, and demonstrate that the SumThreshold method (explained in Section
2.2) performs better by successfully characterising more RFI than the other rival meth-
ods. These include the Cumulative Sum method (stated earlier, see Baan et al. 2004),

VarThreshold and Singular Value Decomposition (SVD).

2.1.3 Reduction and RFI Mitigation for e-MERLIN

Every interferometer around the world is unique, having a different baseline distribution,

location, observed frequency band, RFI environment etc. Therefore, the method of mit-
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igation needs consideration and the implementation and any parameters used may need
to be optimised to suit any individual array characteristics. For example, WRST is a
large and sparse interferometer where the RFI is sometimes partially coherent. For this
reason, post-correlation spatial processing algorithms are not always effective. Baan et al.
(2004) conclude that real-time, pre-correlation time-frequency analysis conducted at each
antenna would be more effective than any post-correlation method.

Automated flaggers are compared on accuracy, computational performance, robustness
and any technical requirements they impose (Offringa et al. 2010b). These criteria and
the needs of the interferometer, will define which method is the most practical for that
particular array.

For e-MERLIN, there is no hardware in place at Jodrell Bank to enable the implemen-
tation of pre-correlation RFI mitigation methods such as those described in Section 2.1.1.
Commissioning data from e-MERLIN revealed the incidence of RFI varying simultane-
ously over time and frequency, an example is given in Figure 2.1. Evaluating the number
of post-correlation methods available, and consulting the recent (at the time of inception
of SERPent) study by Offringa et al. (2010a), the SumThreshold methodology offers a
strong strategy to form the basis of an e-MERLIN specific reduction and RFI mitigation
algorithm, SERPent (Peck and Fenech 2013).

Additional specific e-MERLIN issues arose during the creation of SERPent, including
the Lovell stationary scan (Section 2.3.1), and the zero-level amplitude dropouts (Section
2.3.2). These problems are described and discussed later, but highlight the need for a new
software package which reduces and mitigates RFI for the e-MERLIN system.

2.2 SumThreshold Method

The most effective thresholding method currently available is demonstrated by Offringa
et al. (2010a) to be the SumThreshold and this is the adopted RFT detection algorithm
for SERPent. An overview of the method is given here, for a more in depth analysis of
the process see Offringa et al. (2010a).

Threshold methods work on the basis that RFI increases visibility amplitudes for the
times and frequencies in which they are present. Therefore there is a considerable differ-
ence compared to other RFI-free visibility amplitudes, making these RFI contaminated

visibilities statistical outliers. If the RFI amplitudes fulfil a certain threshold condition,
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Figure 2.1: Time-frequency plot of the visibilities of the source 05554398 from dataset
number 3 (see Table 2.1). A single IF and RR polarisation is shown with a frequency
range from 4.54 to 4.66 GHz from the baseline Knockin-Pickmere (5 — 7). RFI is seen to
vary both in time (vertical axes) and frequency (horizontal axes) at around 4.64 GHz.

they are detected and flagged. The threshold level is dictated by the statistics of the
relevant visibility subset, which can be the entire observation (all time scans, frequency
channels, baselines etc.) or a smaller portion, for example: separate baselines, IFs and
polarisations. This has the advantage of increasing the reliability of the statistics, because
RFI may be independent of baseline and the distribution between IFs may differ. This
is particularly relevant for L-band (1.3 - 1.8 GHz) observations where the RFI is more
problematic.

The visibility data within AIPS is sorted by time and then baseline (TB format).
Within each time-baseline data sample the data is further divided by IF, channels, stoke
parameters and the real, imaginary and weight of the visibility (re: Section 1.1.1). The
SumThreshold method applied in SERPent works on visibility data which is separated by
baselines and polarisations and arranged in a 2D array, with the individual time scans and
frequency channels comprising the array axes i.e. time-frequency space. The frequency
axis is further split by IFs. The idea is that peak RFI and broadband RFI will be easily
detectable when the visibility amplitudes are arranged in time-frequency space.

When appending visibilities in the time-frequency space, if the visibility weight is
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greater than 0.0 i.e. if data exists for that time and frequency, then the magnitude of the
real and complex part of the visibility is taken to constitute the amplitude. The visibility
weight is present from cross correlation, where it operates as a noise scaling factor during
correlation to account for the different antenna sensitivities in the eeMERLIN array. If the
weight is 0.0 or less, i.e. no data exists for this time-frequency position on this baseline,
then the amplitude is set to ‘NaN’. This datum has no effect on the sample statistics
or threshold value, but acts as a structural substitute for that elemental position within
the array, which both AIPS and SERPent require to retain the correct time-frequency
information. The Python module NumPy is employed to create and manipulate the 2D
arrays, as the module is implemented with performance-optimised Fortran code!.

There are two concepts associated with the SumThreshold method: the threshold ()
and the subset size (IV). The threshold levels are discussed below in Section 2.2.1. A subset
is defined as N number of elements in one direction (i.e. the window is one dimensional)
of the 2D array (time or frequency) which is to be tested. Within this subset window, the
amplitudes are averaged and if the average amplitude exceeds the threshold level x(N),
the elements within the subset window are flagged in a separate flag array (which is a
float array in NumPy with the same size and structure as the data array). A 0.0, in this
flag array denotes a normal visibility, 1.0 signifies RFI in the time direction, 2.0 for the
frequency direction and higher values for any subsquent runs of the flagger function.

Once all permutations of the subset size N in the time direction has finished, all
flagged elements are then set to the next threshold level. This is a unique feature of the
SumThreshold method which differs from normal thresholding methods. The algorithm
then proceeds to the next subset size in a specified series and repeats. This subset series
increases as Sy = [1,2,4,8,16,32,64], which provides a good balance between flagging
performance and computational performance (Offringa et al. 2010a).

Once all the subset sizes in the series have checked for RFI in the time direction,
the process is repeated in the frequency direction in exactly the same manner. Running
the SumThreshold method in both time and frequency direction constitutes one full run
of the algorithm. Subsequent full runs of the algorithm check the flag array for flagged
amplitudes which are then set to the next threshold level before the algorithm commences.
This removes previously found RFI and helps the algorithm to search for any remaining

weaker RFI.

Tt should be noted here that how this module is compiled can have a significant effect on performance.
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In addition to the SumThreshold methodology, certain clauses have been added to
prevent the algorithm from over-flagging the dataset. If any threshold level reaches the
mean + « variance estimate, where 0.0 < a < 5.0, the flagging run for that direction
(time or frequency) stops. The default kickout clause added in SERPent is set at a = 3.0,
with smaller values allowing more flagging and higher values restricting the algorithm.

The flagging process can run multiple times at the cost of computational time, and by
default an initial run of subset N = 1 only, is included to remove extremely high amplitude
RFI. This is followed by two full runs of the algorithm (as described above); the first with
a subset size N up to 32 and the second size N up to 256. The subset size N, can be
manually selected by the user for optimisation purposes.

The execution of these full two runs is conditional on two factors: that the maximum
value within the array after each run is a certain factor of the median, and flags exist
from the previous run. On each subsequent cycle, all flagged visibilities from the previous
run are set to the next threshold in the visibility array so they don’t skew the subsequent
statistics and any weaker RFI which may remain can be found. This is necessary be-
cause some RFT in the eeMERLIN commissioning data are found to exist over a range of

amplitude levels, even as high as 10,000 times the astronomical signal.

2.2.1 Statistical Variance Estimators

The variance of a sample is an important estimator of statistical outliers which represent
RFI. Some statistical methods are sensitive to extreme values whereas others are robust
against them. A study into a range of methods and various estimators is described and
tested by Fridman (2008). The median absolute deviation (MAD) and median of pairwise
averaged squares are the most effective estimators that remove outliers, although Fridman
(2008) comments that both are not as efficient, (i.e. needs a larger sample population)
as other methods. Since the sample size in any given observation from e-MERLIN will
be sufficiently large, with over 500 channels per IF and over 100 time intervals for one
scan giving > 50,000 values, this is not an issue. The breakdown point for MAD is
also very high (0.5), i.e. almost half the data may be contaminated by outliers (Fridman
2008). MAD is adopted for this algorithm as an initial statistical estimator of the visibility
population because of these robust properties, reducing the bias of RFI on the sample.
Again, Fridman (2008) stresses that the type and intensity of RFI, type of observation

and the method of implementation are important factors when deciding what estimate to
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use for any given interferometer.

The MAD is the variance estimator employed in the SERPent algorithm and is defined
by Equation 2.1, where median;(x;) is the median of the original population. This median
is then subtracted from every element in the population, creating a new modified sample
of the same size as the original. The median of this new population is then calculated and
multipled by a constant scale factor 1.4286 to make this estimation consistent with that

of an expected Gaussian distribution (Rousseeuw and Croux 1993; Fridman 2008).

MAD = 1.4826 median;{|z; — median; (z;) |} (2.1)

The first threshold level x(1) (i.e. when the size of the scanning window N = 1) is
determined by the median of the sample (median(z;)), the variance estimator (MAD) and
an aggressiveness parameter 3 as shown in Equation 2.2 (Niamsuwan et al. 2005). Since the
median is less sensitive to outliers, it is preferred to the traditional mean in this equation
and the MAD to the traditional standard deviation for similar reasons. If the data is
Gaussian in nature then the MAD value will be similar to the standard deviation (and the
median to the mean). A range of values for [ has been tested for multiple observations
and frequencies and a stable value of around 8 = 25 was empirically found to be used as
the default in the algorithm. Increasing the value of 3 reduces the aggressiveness of the

threshold and decreasing the value increases the aggressiveness.

x (1) = median,; (z;) + BM AD (2.2)

The subsequent threshold levels (i.e. window sizes N > 1) are determined by Equation
2.3 where N is the subset value, and p = 1.5, empirically works well for the SumThreshold
method (Offringa et al. (2010a)) and defines how coarse the difference in threshold levels
is.
X(N)

X(N) = ploss N (2.3)

2.3 SERPent

The aim of SERPent (Peck and Fenech 2013) is to provide a script which flags bad radio

interferometric visibilities and that is quick and simple to set up and run. SERPent is
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written in the Parseltongue programming language, because it is a Python based language
which enables AIPS tasks to be imported as modules into the script. The direct application
to e-MERLIN and COBRaS, has defined SERPent to interact with AIPS at the front-end
and back-end of the algorithm, i.e. to read data into SERPent from AIPS and write the
flag extension table (FG table) back into AIPS. Therefore, the Parseltongue programming
language is an obvious choice for SERPent. It is also a popular choice for pipelines
and is used extensively for European Very Long Baseline Interferometry (VLBI) Network
(EVN) calibration.?. Another advantage of using a Python based language is that it is
independent of compilers, which enables quick easy execution to fulfill the aforementioned
requirements. The SERPent software has been made publically available to download?
and has been tested on a number of systems.

SERPent is comprised of two text files; the first is the full body of code which executes
all the modules within SERPent, and the second is an input file. This input file is where the
user chooses which data to run SERPent on, and the different parameters within SERPent
(although defaults are made for the flagging routines). These include: AIPS information
variables, number of central processing units (NCPUs) to use, which baselines to flag, the
phase calibrator name and flagging parameters (see Section 2.2.1). To demonstrate the

ease of input selection, a section of the input file is shown below.

# Data Information:

ATIPS_user_number = 101 # The AIPS user number the data is on.
Name = '1436+6336" # The uvdata name of the catalogue.
Klass = 'SPLIT ' # The uvdata klass.

Disk =1 # The uvdata disk number.

Seq = 1 # The uvdata sequence number.

# Parallelization Information:

NCPU = 4 # Define here the number of CPUs you want to use.
# Parallelization will distribute the jobs amongst
# the number specified here.

# Directory Information:

path2folder = '/home/lwp/aips_test/' # Directory where SERPent
# outputs are written to.

2EVN Parseltongue pipeline:
http://www.jive.nl/wiki/doku.php?id=parseltongue:grimoire
3http://www.ucl.ac.uk/star /research/stars_galaxies/cobras/technical /rfi
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The main flagging parameters in the input file are the aggressiveness () and subset
size (N) for the first and second full flagging runs and p (see Section 2.2.1), and the
kickout sigma level where the flagging stops if the threshold reaches the median plus the
designated factor of the MAD.

Figure 2.2 shows a logical flow diagram of the SERPent process to explain the many
functions within the algorithm. The interaction with other programs such as AIPS, Python
pickle files (storage files for Python information) and the input file are highlighted in this
figure.

SERPent has been tested on a range of datasets and by multiple institutions around
the world. To demonstrate the performance of the several passages within SERPent, a
group of test datasets is given in Table 2.1. For ease of reference, each dataset has been

assigned a number which will be used throughout this chapter.
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Figure 2.2: A logic flow chart of the SERPent process.
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2.3.1 Lovell Stationary Scan Removal

A bright phase calibrator (phase-cal) is observed for the technique of phase referencing,
which is necessary for Very Long Baseline Interferometry (VLBI), in order to provide com-
plex (amplitude and phase) solutions during calibration. This is achieved by alternating
scans of the target and phase-cal source.

The Lovell telescope has a slow slew speed in comparison to the other telescopes
within the array. This presents a unique problem to the e MERLIN array. When phase-
referencing it only participates in every alternative phase-cal scan, remaining stationary
on the target for the other scans. This results in baselines containing the Lovell telescope
to have two different amplitude levels for the phase calibrator.

In most cases the phase-cal will be brighter than the target source, thus when the
Lovell is observing the phase-cal, the received flux will be greater than when the Lovell
does not participate in the phase-cal scan and remains on the target source.

Figure 2.3 shows the visibilities of the phase-cal for the Lovell-Knockin baseline, plotted
in amplitude-time. The three windows display; top - before any flagging, middle - after
flagging using the Lovell passage, and bottom - after flagging including the zero-level
passage. There are two distinct amplitude levels, the highest is where the Lovell antenna
contributes to the observation and the lowest is where the Lovell does not contribute.

SERPent detects whether the baseline contains the Lovell antenna and then executes
the Lovell stationary scan passage appropriately. It defines each scan by checking whether
the time duration between each scan is a factor larger than the integration time. If the
average amplitude of all the visibilities within the scan is consistent with being a Stationary
scan, it is flagged. This passage is essential for Lovell baselines. If the stationary scans
(which make up 50% of the total data) remain, the good phase-cal data would be treated
as RFI in the flagging sequence and therefore flagged.

In Figure 2.3 an additional effect can be seen which contributes to the zero-level am-
plitudes (see Section 2.3.2 for details). However, a careful inspection reveals that this
additional zero-level contribution is part of the ‘on-target’ Lovell scan, and not part of
the Lovell stationary scan. The antenna has started to receive signal before the antenna
has been properly aligned causing in-scan zero-level amplitudes to be observed. These are
dealt with in another SERPent passage (see Section 2.3.2 on zero-level dropouts).

SERPent’s Lovell Stationary Scan passage removes the time intervals involved in the
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Figure 2.3: Amplitude-time plot with correlator counts on the y-axis and time on the x-
axis, displaying a single IF and polarisation for the phase-cal source: 20074404, baseline
1-5 (Lovell - Knockin) from dataset number 8. The top figure shows the visibilities before
any flagging is done. The two distinct amplitude levels can be seen and the Lovell and
zero-level dropouts are present. The middle figure shows the same visibilities after the
Lovell stationary scan passage. The bottom figure shows the same visibilities after the
Lovell and zero-level dropout passages. Both types of dropouts have been successfully

flagged.
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stationary scans for all channels within the tested IF from the NumPy visibility and flag
arrays. A separate Lovell-only flag text file is created, as well as a combined master flag
text file. This is done by dumping the flag information into a Python Pickle file, which is
later read and combined with other files from other baselines and IFs. This combined flag
text file is read into AIPS and attached to the input data as an AIPS flag extension table
(FG), at the end of the script.

2.3.2 Zero-level Amplitude Dropouts Removal

Early COBRaS commissioning data revealed bad visibilities in the form of zero-level (vis-
ibility amplitudes ~ zero correlator counts) in-scan amplitudes (example: Figures 2.3 and
2.4), possibly a result of a system failure, telescope slew errors or the recording of data be-
fore the telescope was actually ‘on-source’. The zero-level amplitudes reside within scans
containing good data and therefore need their own passage within SERPent to be flagged
because these issues can arise on any baseline. This zero-level passage considers any visi-
bility within all scans and it therefore does not matter where these zero-level amplitudes
occur. It is expected that this effect will most likely occur either at the beginning or end
of the scan.

The zero-level dropout separates the data in the same manner as the SumThreshold
algorithm i.e. by baseline, IF and polarisation, and calculates the median of this sample.
Then a series of tests are made on each visibility to determine whether it lies within
a threshold i.e. beneath the median level minus a factor of 3 x MAD, or beneath 0.0
amplitude plus a factor of 2 x MAD etc. The breakdown limit of this process is when
more than 50% of the data is at the zero-level amplitude.

In addition to the zero-level passage described above, it is useful to trim the very edges
of every scan, because SERPent can miss a few visibilities which are in transition between
the zero-level dropout and on-source amplitude levels. The AIPS task QUACK can be
implemented for this job for a very short section of the scan (~ 5s), and has the option
to be implemented in the COBRaS calibration pipeline (see Section 3.5) after a full run
of SERPent.

Figure 2.3 shows the visibilities in an amplitude-time plot, after the Lovell (middle)
and zero-level (bottom) passages have been performed. It can be seen that both have
removed low-level off-source amplitudes which would have affected calibration and RFI

mitigation.
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Figure 2.4: Amplitude-time plot with correlator counts on the y-axis and time in hours
on the x-axis, of the source: 05554398, baseline Mark II - Darnhall (2-8) from a single
IF and polarisation from dataset number 5. The top figure shows the visibilities before
the zero-level passage with two distinct amplitude levels at the beginning and end of the
observation. The bottom figure shows the visibilities after the zero-level passage has been
executed. The previous zero-level dropouts have been successfully removed.

To demonstrate the power of the zero-level dropouts passage, and its ability to remove
dropouts from anywhere within the scan, dataset number 5 contains zero-level dropouts at
the beginning and end of the scan and also contains a few minutes of the previous source
scan. This reinforces the idea that the zero-level dropouts result from telescope slews or
from the correlation. Figure 2.4 demonstrates that SERPent’s zero-level passage can deal
with dropouts at the beginning or end of the scan after the successful flagging of these

low amplitudes.
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2.3.3 RFI Mitigation Performance

As discussed in Section 2.1, RFI originates from a variety of sources. Some of the origins
of RFI for e-MERLIN are known e.g. CCTV interference in L-band (1376 MHz), but
others can be unpredictable, and neither are mitigated at the antenna or at the correlator
level before data processing.

SERPent has been tested on both L-band (1.3 - 1.8 GHz) and C-band (4 - 8 GHz)
observations (see Table 2.1 for datasets) which contain different amounts and types of
RFI. L-band is typically more noisy with both broadband and narrowband RFI common
in observations, whereas C-band is generally RFI quiet with only some narrow RFI present
in observations (although broadband RFI has been seen).

The edges of the IFs often contain noise as a result of the reduced response of the
bandpass. SERPent can detect and flag this because it behaves in the same way RFI
does. We now present a series of before and after figures which depict SERPent’s flagging
ability on a range of e-MERLIN datasets.

Figure 2.5 displays the dataset number 9 (centred on 5.75 GHz), with the visibilities
sorted in time along the y-axis and channels in frequency along the x-axis, with all four IF's
side by side. There is some weak narrowband and broadband RFI in the central channels
and some noise present at the edges of IFs 1 and 4. Figure 2.6 shows the same data
after SERPent flagging. All of the narrowband and broadband RFI and IF edge noise has
been detected and successfully flagged. This level of RFI detection and flagging is more
accurate and delicate than what can be achieved with visual, manual flagging.

Dataset number 4 (centred on 1.56 GHz, with 12 IFs) provides a greater test of SER-
Pent’s flagging capabilities because of the increased incidence of RFI at L band. Once
again the presence of narrowband and broadband RFI can be seen in Figure 2.7. There
is in fact more RFI present at lower levels, but this can not be seen in the spectral win-
dow before flagging. Note, IF 9 (1.61 - 1.64 GHz) has been automatically flagged by the
correlator, before any processing of the data has been done.

Figure 2.8 shows the L-band data following flagging by SERPent, again demonstrating
the intricate nature of RFI detection by finding strong and weak RFI, as well as RFI which
encompasses both large and small areas in the time-frequency space. Flagging to this level
of accuracy on large datasets by hand would take an unfeasible amount of time.

There are examples of more complex RFI in the commissioning datasets from e-
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Figure 2.5: Time-frequency plot of the visibilities of the target field: 20324411 from
dataset number 9. Four IFs are plotted together with the bandwidth of 512 MHz from
5.49 to 6.00 GHz, from the Defford-Cambridge baseline. Weak narrowband and broadband
RFT are present and noise in the edges of some IFs can also be seen.

MERLIN, varying in time and frequency simultaneously. The noisy COBRaS 2011 dataset
at frequency 4.412 GHz and source: 0555+398 shown in Figure 2.1, demonstrates some
RFI which varied over time and frequency. As stated before, thresholding methods are
the most robust way to detect these unusual types of RFI, and Figure 2.9 displays how
SERPent can deal with RFI of this nature.

One further example of some peculiar multiple RFI found in e-MERLIN commissioning
datasets can be seen from the source 14074284, on the baseline 1-8 (Lovell - Darnhall)
in Figure 2.10. This RFI, of unknown origin, seems to drift in frequency over time and
not necessarily in a constant direction. The before and after time-frequency plot in Figure
2.10 shows the complex shape of this RFI and how SERPent again has successfully flagged
all of it.

These are only a small selection of examples from the commissioning e-MERLIN

archives, but demonstrate the unpredictable nature of RFI and how thresholding detection
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Figure 2.6: Time-frequency plot of the visibilities of the target field: 20324411 from
dataset number 9. Four IFs are plotted together with the bandwidth of 512 MHz from
5.49 to 6.00 GHz, from the Defford-Cambridge baseline. All of the visible narrowband and
broadband RFI and the noise in the edges of IFs 1 and 4 has been flagged by SERPent.

methods can find RFI of any morphology. SERPent can easily convert this information
into a readable ATIPS FG table which is automatically appended to the input data in AIPS

as part of the script.

2.3.4 Computational Performance

One important criteria for automated flaggers is computational performance. We have
analysed the computational performance of SERPent on a number of computer systems,
the details of which are given in Table 2.2. The difference in number of processors, Central
Processing Units (CPUs) per processor and memory size covers a range of modest speci-

fications available to institutions across the world (please refer to Table 2.2 for details).



2.3. SERPENT 75

TIME (DAY/HOUR/MIN)

1/13:00_
1/05:00

0/21:00-E=

1 1 1 1 H 1 1 1 1
1.36 1.39 1.42 1.45 1.48 1.52 1.55 1.58 1.61 1.64 1.68 1.71 1.74
FREQUENCY (GHz)

Figure 2.7: Time-frequency plot of the visibilities of the target field: 20334411 from
dataset number 4. Twelve IFs are plotted together with the bandwidth of 384 MHz
from 1.36 to 1.74 GHz, from the Defford-Darnhall baseline. A variety of narrowband
and broadband RFI can be seen, and many more weaker RFI are present but are below
the current contrast levels, once the stronger visible RFI is removed, the weaker RFT is
revealed. Note: IF 9 has been flagged by the online correlator before post-correlation
reduction and processing.
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Figure 2.8: Time-frequency plot of the visibilities of the target field: 20334411 from
dataset number 4. Twelve IFs are plotted together with the bandwidth of 384 MHz from
1.36 to 1.74 GHz, from the Defford-Darnhall baseline. A lot of strong narrowband and
broadband RFT has successfully been flagged, along with weaker RFI which was not visible
in Figure 2.7.
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Figure 2.9: Time-frequency plot of the visibilities of the source: 0555+398 from dataset
number 3. A single IF and RR polarisation is shown with a frequency range from 4.54 to
4.66 GHz from the baseline Knockin-Pickmere. The before image can be seen in Figure 2.1.
After a run of SERPent, the time and frequency variant RFI has been flagged successfully.

Table 2.2: Computer Systems

Computer Name Memory Processor NCPUs
(GB) (GHz)

Leviathan (1 node)? 100 3.20 16

Kria? 40 2.93 24

Cornish1? 16 3.20 8

Megan? 48 2.40 16

Systems at: 1: University College London, UK. 2: Univer-
sity of Manchester, UK. 3: Netherlands Institute for Radio
Astronomy (ASTRON), Netherlands.

To increase computational performance, SERPent is parallelised by splitting the data
into ‘jobs’ which are evenly distributed across a number of CPUs. SERPent is parallelised
in both baselines and IFs to maximize the even spread across CPUs and uses a user-
designated number of CPUs specified in the input file. Initial tests on modest data sizes

revealed a significant increase in performance. These tests also show that the processing
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Figure 2.10: Time-frequency plot of the visibilities of the source: 14074284 (dataset
number 2). A single IF and RR polarisation is shown with a frequency range from 1.62
to 1.69 GHz from the baseline Lovell-Darnhall. Left; is the before image where the RFI
varying in amplitude over time and frequency can be clearly seen, Right; is the clean,
post-SERPent flagging image. Note that the contrast levels of the normal (unaffected)
visibilities are different in each plot due to the influence of the RFI skewing the contrast
levels.

time scales linearly with the data volume.
The effects of memory and the number of CPUs (NCPUs) used on the computational
performance is assessed here, by testing SERPent on dataset number 1, 1.63 GB (see

Table 2.1 for details). Figure 2.11 portrays the relative performance ratio to a single
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CPU on the same system. All systems have linear relations with a peak CPU efficiency
achieved at around 8 CPUs. At this point adding more CPUs still increases performance
but at a slower rate. We can infer that using 10 CPUs on this dataset has increased the
performance by a factor ~ 7 compared to using only 1 CPU on the same system. Runs

on other datasets gave similar performance results.
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Figure 2.11: The speed relations of running SERPent on multiple CPUs on a range of
computers relative to the performance of a single CPU on the same system. Even at high
number of CPUs there are significant gains in performance which should increase further
beyond 24 CPUs with datasets with a greater number of jobs available.

The tail-off in Figure 2.11 may result from this particular dataset, where a few IF-
baseline combinations suffer from severe RFI (L-band observations). These jobs take
more time to process, and as the number of jobs per CPU decreases, the portion of total
time taken becomes biased towards the time taken by these ‘heavy’ jobs. This is because
all other CPUs have finished processing and are waiting idle whilst the CPU with the
‘heavy’ job is still processing. Therefore, the performance relative to 1 CPU is affected by
these jobs. However, the performance relative to 1 CPU is expected to increase further
for a dataset with a higher number of total jobs (where the data has been distributed in a

larger set of smaller segments), because the influence on the total computational time by
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any lengthy jobs is minimised. This, and the (random) distribution of jobs, is the reason
a turnover after 8 CPUs is seen. This could also explain the fluctuations in performance
on certain systems after 8 CPUs.

Moreover, the limiting factor in the overall runtime of SERPent is calculating the
averages of each window subset, which has been optimised for each subset N%, but is
performed a large number of times. This number is estimated as follows. The number of
polarisations, IFs and baselines, for Legacy data are 4, 16 (C-band), and 20 respectively.
With two full runs with Sy going to N = 32 for the first run and N = 256 for the
second run, resulting in 30 Sy cycles per observed source. Assuming 512 channels per IF
(reasonable assumption for COBRaS) this results in the averaging function being called
~ 2 x 107 x number of integration times of observation, per source.

Increasing the amount of memory of each CPU also increased the computational perfor-
mance, albeit by a smaller factor than the parallelisation. Comparing computers with the
same processing speed (Leviathan and Cornish1 both have 3.2 GHz processors), Leviathan
has 6.25 GB memory per CPU, and Cornishl has 2 GB memory per CPU. Figure 2.12
shows that the amount of memory per CPU decreases in significance as the number of
CPUs increases from a factor of 1.22 for 1 CPU to 1.14 when running on 8 CPUs. This
is because the effect of parallelisation on performance is greater than the benefit of hav-
ing extra memory per CPU. This shows that the limiting factor of running SERPent on
interferometric datasets is the shear volume of data that needs processing over a number
of CPUs and not the result of a lack of memory.

The raw (unaveraged) COBRaS July 2012 C-band data (datasets 5 - 9) (97 GB) takes
20 hours to process with SERPent, yielding a flagging rate of ~ 110 GB/day. When the
same dataset is averaged to 25 GB, SERPent takes ~ 6 hours with Leviathan (100 GB
Memory and 16 CPUs), which is consistent with linear scaling in data size and time. This
approximately results in a processing rate of 6.9 GB CPU~! day~!. These extrapolations
may vary in actual performance due to other factors such as the number of jobs SERPent
creates, which is dependent on the number of baselines and IFs in any observation. The
amount of RFI will also affect performance, as less RFI means SERPent can skip flagging

runs due to kickout clauses in the flagging sequence etc. However, these remain reasonable

4For N = 1 the array element is simply tested against the threshold i.e. no averaging function is used.
For N > 2 the Python .sum() function is found to have a flat performance, i.e. the time to calculate the
summation of a slice (or window subset N) from the NumPy array is independent of the size of the slice.
This function is found to be faster than all other summations and average functions.
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Figure 2.12: The performance relations of Leviathan/ Cornishl, both with 3.2GHz pro-
cessors. As the number of CPUs increases the impact of Leviathan’s larger memory per
CPU on computational performance decreases.

estimates for predicted performances.

To process a 1 TB dataset in a day, the user will require ~ 145 CPUs processing at
6.9 GB CPU~! day~! (rate taken from processing COBRaS July 2012 C-band dataset;
dataset numbers 5 - 9). As discussed before, further increase in the number of CPUs won'’t
result in an increase in performance because the job/CPU factor is the limitation in the
parallelisation for the COBRaS July 2012 C-band dataset. However, an increase in the
number of jobs because of an increase in the number of IFs for full ee MERLIN Legacy
data will provide an increase on the factor 7 seen in Figure 2.11 from the parallelisation.

It would be simple to parallelise even further in polarisations, as currently every po-
larisation for each baseline and IF are contained within the same ‘job’ but processed
separately by the flagging sequence. This would potentially increase the number of jobs
by a factor of 4 (for full polarisation studies). However, only computers with a high num-
ber of CPUs (NCPUs > 100) would predominantly benefit from this, in addition to the
increase in the number of jobs resulting from the increase in bandwidth. There is scope to
change the parallelisation method from using Python fork processes to utilising Python’s
multiprocessing module to provide a more even distribution of jobs, and this is discussed

in Section 2.5.
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2.4 Conclusions and Discussions

2.4.1 Conclusions

SERPent automates the reduction, flagging and preparation procedures of post-correlated
radio interferometric datasets, specifically those from e-MERLIN. SERPent is in the pro-
cess of being tested on EVN and Global VLBI datasets, showing good early results. SER-
Pent is written in Parseltongue, a common scripting language utilised prominently with
the EVN, so that the user could start flagging data which has been loaded within the
AIPS environment with relative ease. SERPent can be easily added to existing and future
pipelines.

The entire SERPent program consists of only two text files. The first is the main
SERPent code to be executed, and the second is a user input file designed so the user
does not have to interact with the main body of code. The input file also has the benefit
of making the input parameters obvious and therefore intuitive to set. This gives the
freedom to the user to pursue their own flagging philosophy, i.e. whether they want to
be aggressive or conservative with the flagging, but also includes a set of default inputs
which will perform well on most datasets.

SERPent is designed to be run on ‘high-end desktop’ computer systems. The examples
in this thesis used a system with 16 CPUs and 100 GB of Memory (Leviathan) and
was flagging at ~ 110 GB day~!. This throughput will increase with full e-MERLIN
Legacy data as the number of ‘jobs’ will increase with full bandwidth, providing a higher
throughput with a higher number of CPUs. It is unlikely that one will be able to process
full e-MERLIN legacy data on a modest desktop computer. Although obvious advantages
in increased computer facilities and real world limitations on smaller systems are apparent,
SERPent can be used by institutions without access to super computer clusters.

Section 2.3 has demonstrated that SERPent can reduce and flag current e-MERLIN
commissioning data, which will have many more complications than a stable fully commis-
sioned e-MERLIN including the Legacy datasets. The benefit of using real data instead of
simulated data is obvious, and SERPent is now part of the offical pipeline for e-MERLIN,
used at Jodrell Bank and other international groups.

In the wider context of this thesis and indeed the astrophysics community, more general
conclusions can be gleaned from the experience of creating and developing SERPent. When

testing and verifying the performance of any piece of software, real data is imperative. No
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matter how many times some software is run on simulated data or even real observations, a
new real dataset will almost certainly be different. This may lead to the discovery of bugs
or a change in performance. This statement is magnified in the case of e-MERLIN where
much of the upgrade process was conducted without any modelling of antenna responses
etc. during the commissioning phase.

During the first release of SERPent to the international community, the e-MERLIN
correlator’s behaviour changed and the introduction of previously absent NaN’s or empty
visibilities from the correlator affected the performance on all of SERPent’s passages. The
only way to minimise the possibility of this is through the testing on as many real datasets
as possible, to make the software robust and reduce the chance of failure on any given
future run. In other words, you can never anticipate everything a real dataset (or a small
selection of datasets) will throw at you.

Another conclusion from developing software like SERPent is to get people to use any
piece of new software it has to have one or more of the following charateristics: it must be
simple to use and run, contain a method which is more advanced than current methods/
functions, be robustly tested to minimise failures, be modular or integrated with current
packages and formats so users don’t have to learn or modify existing code.

SERPent ticks most, if not all of these points, with the only limitation being the
testing issue above, as SERPent is stable and working well, but is still a relatively new
piece of software. Otherwise, being an algorithm written in Python/ Parseltongue with
only two files, it is free of compilers and easy to use and interact with. It also benefits
from Python’s modulised nature and is part of COBRaS (see Chapter 3), and e-MERLIN’s
calibration pipeline. Finally, SERPent uses the most advanced existing method of RFI
mitigation via thresholding (studies by Offringa et al. 2010a), along with passages dealing
with e-MERLIN specific issues.

2.4.2 Discussion

When constructing an automated flagging script, the flagging philosophy has to be con-
sidered and decided. Whilst flagging all of the RFI and flagging none of the data is the
idealistic scenario, even with implementing the SumThreshold Method with an extremely
low false-positive detection percentage, either some RFI will remain or some good data will
be flagged. This is the reality of working with real datasets from imperfect instruments

and environments.
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Following discussions at the e-MERLIN early science meeting (Manchester, 11th - 12th
April 2014), some of the strong narrowband RFI in the L-band observations contaminate
neighbouring channels via ringing. This has been seen to affect the entire IF at certain
times with RFI. Suggestions of applying Hanning smoothing to the channels before running
SERPent may reduce the impact of ringing and increase the performance of SERPent and
calibration (Simon Garrington; private communication).

There is a philosophy which states ‘no data is better than bad data’ (a comment made

on data editing at the 13"

Synthesis Imaging Workshop at Socorro, May 2012), promoting
aggressive flagging, while others who would rather flag 80-90% of RFI and have some of
the weaker, lesser RFI remain (Rob Beswick; commenting on SERPent at the RadioNet
Advanced Radio Astronomy workshop in Manchester, November 2012). Obviously both
strategies can not be accommodated in total automation, therefore SERPent has the
option for the user to decide some of the flagging parameters. These parameters include
the aggressiveness (), subset sizes (N) and kickout thresholds. The AIPS REFLG task
has also been seen to over-flag at times, although it is necessary to condense the number
of rows in the AIPS FG table. For further discussion on REFLG, see Section 2.5.

The computational performance of SERPent is probably the area which requires most
improvement and future plans are in place to improve this (see Section 2.5). It currently
flags ~ 110 GB/day with 16 CPUs, which is reasonable for commissioning e-MERLIN
datasets. However, for e-MERLIN Legacy data this will be slow. It is obvious that
including more CPUs could solve this problem, as 16 CPUs is still very modest in modern
computing terms, however this is merely shifting the problem onto hardware (and isn’t
very constructive). The flagging sequence makes two full passes through the SumThreshold
method (the original AOflagger; Offringa et al. 2010b makes 5 passes) in order to maximise
RFI detections, and skips these passes if the threshold level is low enough. This is currently
the limiting factor in terms of performance. Reducing this to one full pass would speed
SERPent up considerably at the expense of RFI mitigation performance. Note that the
amount of RFI also affects computational performance, because more RFI means more
full runs completed within SERPent, and less RFI means more cycles are skipped due to
the invoked kickout clauses implemented in the flagging sequence to stop over flagging and
increase speed performance.

Comparing SERPent with flagging implementations on the JVLA and LOFAR, the

data volume per processing time appears to be slower. In the case with LOFAR, the
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AOflagger has been written in a high-level language (C++) and includes specific compiler
settings to achieve the optimal performance (Offringa 2012). In addition, the AOflagger
is heavily parallelised over multiple cores and nodes on a super cluster, vectorised, and
is part of the LOFAR pipeline which fully reduces and calibrates observations for users.
This is different in the case of e-MERLIN, where the data will still be in a raw format
when presented to the user, who will not have access to the same computing facilities as
LOFAR. There is work currently being conducted on a general e-MERLIN pipeline, and
SERPent is the flagging software implemented for the reduction passage. However, this
is only a general pipeline and does not account for the many calibration techniques and
methods needed for the many diverse projects e-MERLIN will observe for.

In the case of the JVLA, there is no implementation that is as sophiscated in mitigating
RFI as the AOflagger or SERPent methods. The CASA software package is the main
choice for the JVLA, and all developments are focused to this package. On the contrary,
e-MERLIN currently favours AIPS because the ability of fringe fitting (the calculation
of delay, rates and phase offset solutions of each antenna because residual errors remain
after cross correlation from the correlator) exists within the program and is required to
calibrate e-MERLIN data.

According to feedback received from users, SERPent can be rather aggressive at times.
Whilst differing flagging philosophies can account for these views, it should also be con-
sidered that e-MERLIN is not a completely settled system, with noticeable improvements
in data quality output from month to month. For example, there have been filter issues
with some of the COBRaS April 2012 L-band datasets which have since been resolved
(May 2013 L-band dataset), but caused amplitude level issues which then affected RFI
mitigation performance. e-MERLIN is a heterogeneous array whose antennas have other
responsibilities outside of e-MERLIN (Lovell and Cambridge partake in EVN observa-
tions). Compared to other, dedicated arrays such as the VLA/ JVLA and ALMA, both
homogeneous (ALMA has 2 types of antennas) arrays which have been modelled exten-
sively before commissioning. This provides a much smoother transition from the com-
missioning to fully-commissioned phases for the JVLA and ALMA. These factors should
not be over looked with respect to e-MERLIN commissioning and early Legacy datasets,
because both hardware and software changes make maintaining external software such as
SERPent difficult.

The amount of RFI in the test datasets is variable but usually contains a high amount
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of RFI. The kickout clause was added to ensure that good data was protected from the
flagger as more aggressive flagging was required. Inadvertently this variable can set the
overall aggressiveness by allowing the longer flagging runs to flag close to the median of
each sample. The aggressiveness parameter 3 has stayed constant since the inclusion of
the kickout clause. 8 may need to be automatically set depending on spread statistics (i.e.
how many different levels of RFI there are) rather than empirically set, to achieve optimal
flagging.

If (8 is large enough lowering the aggressiveness, then the kickout clause should not
be envoked, but in the regime of aggressive flagging with a low 3 value it can have an
effect on how much is flagged. In essence, § sets the first threshold level, p determines
the difference in the subsequent threshold levels x (V) (i.e. a function of the number of
subsets V) and the kickout clause determines when to stop the algorithm if x(N) gets too
close to the median.

Furthermore the tweaking of SERPent flagging parameters may still yet yield the most
optimised settings for both flagging and speed performances. The best time to conduct
and hone these settings will be once e-MERLIN has settled and finished its commissioning

phase (see Future Work).

2.5 Future Work on SERPent

Software can always be improved, and SERPent is no exception. One of the weaknesses
of SERPent, highlighted in Section 2.4.2, is the computational performance.
Parallelisation has made massive improvements in the performance. However, the
adopted method of parallelisation is not the most efficient. The Python fork process
parallelisation, pre-allocates jobs to CPUs before reducing them. This results in a plateau
in performance at higher NCPUs, because of the ‘heavy’ jobs issue (Figure 2.11). An
alternative exists in Python 2.7, which contains a multiprocessing module. A recent study
on Python parallelisation approaches was conducted by Singh et al. (2013), who showed
that the Python Process/ Queue method from the multiprocessing module performed
better than other methods from the same module and the Parallel Python module. The
Process/ Queue method creates a queue of jobs from which CPUs can access and take
as and when they’ve finished processing a previous job which is added to a second queue

containing finished jobs. Once all jobs are finished the second queue can be read for post-
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processing. This will create an even performance increase by removing the performance
bias from CPUs with a heavy jobs.

Another weak link in SERPent is the behaviour of the AIPS task REFLG, which has not
only been too aggressive at times, but has recently (November 2013) been seen to create
more flag entries than the input table (reported by a number of people; Anita Richards;
Rob Beswick; Megan Argo; Danielle Fenech etc.). This is in complete contradiction to
one of its primary functions which is to condense the FG row entries. Investigations are
ongoing to understand the reason(s) for this behaviour. Despite this, AIPS has an internal
limit to how many FG rows can be read in (10 million), which is not always sufficient. A
passage which does this job outside of AIPS (i.e. within Python/ Parseltongue) has been
considered as a possible solution.

Following further discussion at the e-MERLIN early science meeting, the L-band RFI
may be time dependent. Low declination observations (such as COBRaS ~ 40°) will suffer
from heightened levels of RFI from horizon sources and another big contributor to RFI
has been identified as Manchester airport, just North of Jodrell Bank. Investigations will
start in the future to determine and indentify different sources of RFI at L-band, which
is the first step in order to mitigate the level of RFI during any particular observing run.

Empirical studies are currently underway at UCL and the University of Manchester,
UK, to find the optimal flagging parameters for SERPent, for each antenna or baseline.
This is an important investigation which will affect both the flagging and computational
performance of SERPent, as some antennas are more stable than others within the array
and differ in the amount of RFI in the local environment.

An e-MERLIN L-band RFI mask has also been created (Megan Argo, private com-
munication), in the form of an FG table, which is applied to the dataset before being
processed by SERPent. Whilst this can be added in the calibration pipeline, efforts may
be made to have the option to introduce an FG mask into SERPent. The obvious benefits
to this is that any known RFI will be removed, improving SERPent’s ability to remove
the rest. This RFI mask has been implemented on recent L-band datasets presented in

Chapter 3.



Chapter 3

Radio Interferometric Calibration

Pipeline for COBRaS

The only true wisdom is in knowing that you know nothing.

Socrates

This chapter addresses the interferometric calibration procedures for the COBRaS pipeline,
which follows from the SERPent module (Chapter 2) for the initial reduction and flag-
ging. This chapter also includes discussions on wide-field, wide-bandwidth imaging with

e-MERLIN and mosaicing techniques with a heterogeneous array.

3.1 Calibration Coefficients

This chapter contains the methods which are used to calculate the relations between the
measured interferometric visibilities and the true sky brightness described in Chapter 1.
The interferometric equation (the two-dimensional simplified interferometric equation) is

reproduced here as Equation 3.1 for reference,

V (u,v) = // B (l,m) e~ 2t utmo) qp g, (3.1)
lJm
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where V' are the visibilities measured by the interferometer, B is the sky brightness,
u, v are the coordinate system for the interferometer and [, m are the corresponding sky
coordinates.

The correlator outputs visibilities which contain errors representing effects within the
interferometric system. These can range from atmospheric effects distorting the wavefront
(which affect the phases at different antennas), differences in system electronics over the
observing time, frequency dependent antenna gains etc., all affecting the polarised electro-
magnetic wavefront. To a good approximation, interferometers behave as linear systems
(Fomalont and Perley 1999). The visibilities are sampled at discrete times and therefore
the formula relating the measured visibilities V' to the sky brightness B for antennas ¢ and

j (baseline i j) can be written linearly as
Vij(t) = /l / Gy (t) B, (I,m) e 2m (ai®+visOm) gy g, (3.2)
Equation 3.2 can be abbreviated to
Vij (t) = Gij(t) Bij (t) + €5 () + mij (1), (3.3)

where t is the time of the observation, G;; (t) is the baseline based complex gain, €;; (¢) is
the baseline based complex offset and 7; ; (¢) is the stochastic complex noise. The complex
offset and complex noise derive from the use of two complex correlators (Sine and Cosine
correlators).

Initial calibration is conducted on an antenna basis where the baseline based complex

gain G, (t) is the product of two associated antenna based complex gains g; (¢) and g; (¢):

Gij(t) = gi(t) g;" (t)
= a; (t) a; (t) @D, (3.4)

where a; (t) is the antenna based amplitude correction and ¢; (t) is the antenna based
phase correction for antenna 3.

For e-MERLIN, there are two effects which need calibration, the complex electronic
gain coefficients for phase and amplitude calibration (G;; = ¢;¢;*) and the bandpass
gain coefficients for bandpass calibration (P;; = p;p;*). These coefficients account for

the dominant errors within the e-MERLIN system and are explained in Sections 3.6, 3.7,
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3.8 and 3.9.

3.2 The Closure Relations

The closure relations (sometimes referred to as self-calibration), define the effects of a
closed circuit of antennas on the visibilities which are independent of the individual an-
tenna based errors. More explicitly, the net change in phase and amplitude in a closed
circuit of antennas for a point source is zero and unity respectively. This condition pro-
vides a powerful technique to correct phase and amplitude errors inherent in the measured
visibilities from an interferometer. The property of closure phases and amplitudes was first
recognised by Jennison (1958).

The term self-calibration refers to the fact that a model of a source is used to create
complex gain solutions, which are then applied to the same source, i.e. calibrating on
itself. In this thesis, to avoid confusion, the term ‘self-calibration’ will refer to the cyclic
process of imaging a point source calibrator with IMAGR and using CALIB to solve for the
solutions (see Section 3.9). This is instead of self-calibration being a reference to utilising
the closure relationships within phase and amplitude calibration which the FRING and
CALIB algorithms use to solve the complex gain variations for phase and amplitudes (see
Sections 3.6 and 3.7). All three calibration procedures: phase calibration, amplitude

calibration and self-calibration, exploit the closure relations.

3.2.1 The Closure Phase

The closure phase (triple product) requires a minimum of three antennas to close the circuit
and determine the phase component of the complex gain solutions. To demonstrate the
closure phases in a three antenna system, Figure 3.1 shows antennas ¢, j and k in a circuit.
If a phase delay is introduced above one of the antennas e.g. j (this delay could arise from
structures in the atmosphere above antenna j), this causes a phase shift in the fringe
for the baseline ¢ — j, an equal but opposite delay for baseline j — k and no effect for
baseline k —1i because it is independent of antenna j. The sum of the three fringe phases is
independent of the phase delay above antenna j, because the net change in phase around
the closed triangle will equal zero (as you end up where you started). Therefore the closure
phases are independent to all antenna-induced phase errors. The more antennas present

in an array the more closure triangles can be made and thus more phase information of
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the source can be obtained.

Incoming
wavefront

k

Figure 3.1: Three antennas i, j and k, depicting the closure phase circuit.

Quantitatively this is explained by defining the measured phase for baseline ¢ — j as

¢i j, equal to the true phase @'

i plus errors (0; — 0;) from antennas i and j. The closure

phase O is defined as the sum of the three measured phases from the three baselines

O = ¢ij + djr + ki
= O+ (0 = 0) + O+ (0 — Ok) + GT° + (O — 0))

e+ o 85)
where for a point source O = 0.

3.2.2 The Closure Amplitude

The amplitude closure relationship is similar to the closure phase but is multiplicative,
because it is the real part of a complex function (i.e. complex gain) rather than the

imaginary exponential component. Therefore to reduce to unity the amplitude closure
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requires four antennas. The amplitude closure relation for antennas 4, j, k and [ is

rigl ikl [Vigl Vel
k1] 724l Vil Vil

(3.6)

where 7;; = (g 9;%) Bij (Thompson et al. (1986)). The coefficients in Equation 3.6 cancel
out to leave the closure amplitude equal to unity for a point source.

Exploiting these closure relation properties on a point source will produce phase and
amplitude solutions equal to zero and unity respectively. Any deviations from these solu-
tions are the associated residual errors in the calibration, which modify the complex gain

coefficients in Equation 3.4.

3.3 Outline of the Calibration Pipeline

The COBRaS pipeline contains many individual modules which execute specific tasks

within the calibration procedure. These include:

Editing section - Execute SERPent reduction and flagging module and AIPS QUACK

tasks.
Phase calibration - Perform an initial delay correction and a full global fringe fit.

Amplitude calibration - Bootstrap refined VLA 3C286 fluxes to the point source
0Q208 whilst applying corrections for the increased resolving power of e-MERLIN.

Then determine the fluxes for all the other calibration sources.

Bandpass calibration - Spectral index and curvature corrections performed on a point
source (0Q208, 05554398 or phase calibrator) to calibrate the amplitude variations

across the band.

Self-calibration - Iterative complex gain calibration refinement using a point source

model.

A visual overview of the calibration pipeline is shown in Figure 3.2, depicting each stage

of the pipeline from the raw dataset to fully calibrated visibilities, ready for imaging.
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Figure 3.2: Logic diagram of the calibration procedure. The dark blue boxes; represent
AIPS tasks, yellow boxes; the output extension table from the task (FG = flag table, SN =
solutions table, CL. = calibration table, BP = bandpass solution table), light blue boxes;
the progression of the pipeline, and the green box represents SERPent.
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Table 3.1: Calibration Datasets

Dataset Name Frequency Total Integration IFs Calibration Task
Range (GHz) Time (Hours)

18" July 2012

0555+398 5.49 - 6.00 2 4 Amplitude / Bandpass
13314305 5.49 - 6.00 0.5 4 VLA Flux
1407+284 5.49 - 6.00 0.5 4 Amplitude / Bandpass
2007+4029 5.49 - 6.00 3 4 Phase / Self-cal
2032+411 5.49 - 6.00 8 4 Target field

4" May 2013

05554398 1.25-1.76 0.5 8 Amplitude / Bandpass
13314305 1.25 - 1.76 0.5 8 VLA Flux
14074284 1.25 - 1.76 2 8  Amplitude / Bandpass
200744029 1.25 - 1.76 3 8 Phase / Self-cal
Legacy L-band Pointing C 1.25 - 1.76 1.4 8 Target field

20" 33™ 57.804° + 41° 13’ 12.000”

Legacy L-band Pointing D 1.25 - 1.76 1.4 8 Target field

20" 33™ 10.800° +41° 13’ 12.000”

COBRaS commissioning (18" July 2012) and Legacy (4" May 2013) datasets, all with full circular
polarisations. The target fields are 20324411 and Legacy L-band Pointings C and D.

3.4 Calibration Datasets

The calibration pipeline is tested against two available e-MERLIN commissioning and
COBRaS Legacy datasets, the details of which are presented in Table 3.1. The pipeline
performance results from the C-band commissioning dataset are included at the end of
each calibration procedure, and the results from the L-band Legacy dataset are presented

in Section 3.10.

3.5 Preparation of Data for Calibration

The beginning of the pipeline includes a range of user inputs for the calibration such as
the solution interval for the global fringe fit, whether to average the data (or not) etc.
Useful global variables are initialised here from reading the uvdata (visibility data) header
to represent quantities associated with the observation.

The input raw dataset for the pipeline consists of single source files (via SPLIT/ SPLAT
AIPS tasks) of each calibration source and target field and is set up within AIPS. The
first procedure in the pipeline averages the data at the request of the user in time and
frequency. For the initial COBRaS observations, no averaging is done in order to maintain
the highest resolution possible for the initial calibration run. This comes at a cost of a
large computational processing time for both SERPent (Chapter 2) and the rest of the

calibration process.



3.6. PHASE CALIBRATION 94

Following this setup phase, the SERPent alogrithm is run on each source in turn,
appending an FG table to each when completed. An optional QUACK run can be made
here if necessary to remove any remaining dropout visibilities at the beginning of each
scan. The single source files are concatenated together via the DBCON task to create
a multi-source file comprising of all the sources. Now the formal calibration procedures

start.

3.6 Phase Calibration

The output visibilities from the correlator will almost certainly contain errors arising from
a number of origins inherent within the interferometric system. Timing errors associated
with the clocks at each antenna, errors in the position of antennas within the array, and
atmospheric distortion of the radio wavefront will all cause the visibilities to contain delay
residuals. If one were to integrate the visibilities to obtain the sky brightness (Equation
3.1) without ensuring that the visibility phases are coherent, it would result in a loss in
signal-to-noise of the visibility amplitudes. It is therefore imperitive to calculate these
delay residuals over the observation.

This is conducted on a bright unresolved source in the vicinity of the target field
which is called the phase calibrator. In Fourier space, an unresolved source or point
source is constant. Therefore any corrections will be to ensure that the solutions represent
a constant source in the Fourier domain. These are removed from the interferometer
response, meaning any remaining phase structure represents the atmospheric distortion.

Whilst phase calibration can be conducted on resolved sources, this introduces addi-
tional errors from the source structure. Furthermore, the source will have to be modelled
via self-calibration to create a map which can be used as the input model for calibration.
This creates an additional step in the calibration procedure. Therefore the benefits of
an unresolved phase calibrator are obvious. In the case of COBRaS, the phase calibrator
is J2007+4029, a quasar classified as having a two-sided structure with a hot spot on
one side (Kharb et al. 2010). For e-MERLIN resolutions, this source is slightly resolved
at L-band and C-band, but not significantly and will not introduce major phase errors.
However, self-calibration (Section 3.9) is part of the pipeline and should account for any
phase offsets produced as a function of the resolved nature of J2007+4029.

The reason proximity to the target field is important when calibrating the phases is to
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Table 3.2: Approximate Coherence Times for e-MERLIN

Frequency (GHz) Coherence Time (minutes)
Good Conditions Bad Conditions
1.6 40 1
5) 40 )
22 10 30 seconds

Values for Coherence times taken from the MERLIN User Guide
for the longest e-MERLIN baseline (Mark II - Cambridge).

ensure the phase solutions represent the same pathway through the atmosphere as a radio
wave from the target field would experience. Hence any distortions should be mutually
experienced by the target field and phase calibrator, assuming isoplanacity.

The atmosphere can be considered as having a refractive index, and therefore, turbulent
structures within the atmosphere produce a variable refractive index over the path length
(i.e. the speed of electromagnetic radiation varies). Hence the coherence time length of the
atmosphere depends on the frequency v of the observation. For v < 1 GHz, the ionosphere
affects the wavefront, with free electrons contributing at ¥ < 300 MHz. Furthermore, the
activity of the solar cycle plays a significant role in coherence times, as the Sun affects the
shape of the ionosphere. For higher frequencies, v > 1 GHz, it is the troposphere which
dominates the turbulence of the wavefront.

The phase calibrator is observed periodically between target source observations, with
the switching times not exceeding the atmospheric coherence time for the observed fre-
quency. Table 3.2 gives the approximate coherence times for e-MERLIN frequencies.

To calibrate the phases, the AIPS task FRING is employed to perform an initial delay
correction before also conducting a full global fringe fit. FRING uses a least squares (LS)
algorithm given a source model (point source assumed in the case of J2007+4029) to
estimate the antenna based components of the fringe rate and delays (Schwab and Cotton
1983). To aid the LS algorithm, a Fourier Transform method provides the starting guesses,
as the LS method needs initial parameters to converge on the true global minimisation
function instead of the local minima.

The phase calibration process utilising the AIPS tasks is shown as a logic diagram in
Figure 3.3 as a visual aid.

Within the pipeline, the phase calibrator is defined as a required user input (although

searches for variations are made) and a list of calibrators is also searched for and compiled.
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Figure 3.3: Logic diagram of the phase calibration with AIPS tasks.

These calibrators are also standard for COBRaS observations. During the FRING task, the
phase offsets are referred to a reference antenna, where typically an antenna at the centre
of the array is most suitable. The pipeline automatically searches and chooses either the
Mark IT antenna or Pickmere (if Mark II is not available).

The pipeline then searches through the visibilities to find a search window, e.g. ~ 2
minutes in length, where a fraction of the total number of baselines are available. Smaller
time windows and fewer baselines are successively chosen if no window is found. Then the
first instance of the AIPS task FRING is used to search for the single band delays only, in
a delay window of 450 nanoseconds. This creates one solution for each IF, which is added
to an output SN table.

The geometric delay is frequency independent and therefore calculating the single band
delays for each individual IF should not make any difference than creating one solution for
all IFs. However, these delays are used in the full fringe fit with atmospheric effects having

a frequency dependence on the delays and phases. Moreover, there is no disadvantage for
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not having a solution for each IF. Therefore the pipeline creates separate delays solutions
for each IF and baseline.

The AIPS task CLCAL, takes an input SN solution table and creates the corresponding
CL calibration table, which is used to apply the corrections to the visibility data. CLCAL
can be used at any point in the calibration procedure where an SN table is created. As
the calibration proceeds, new versions of CL tables are created, containing the previous
and new calibrations to the visibilities. The newest table is always used in the next step
of the calibration (see Figure 3.2).

Following the single-band delay correction a full global fringe fit is performed as de-
scribed by Schwab and Cotton (1983). As with the single band delays, a reference antenna
is required along with a designated solution interval (AIPS adverb SOLINT). The solution
interval needs to be large enough to produce an adequate signal-to-noise ratio to find so-
lutions, as well as short enough to maintain coherence and is a matter of balance. The
user can once again define their own solution interval at the beginning of the pipeline
script, however, the defaults provide the worst case scenario (bad conditions) limits given
in Table 3.2. For L-band this is 1 minute, and for C-band this is 5 minutes. The fringe fit
is performed for the entire length of the observation.

Another CLCAL run is made to convert the SN solutions output from the global fringe
fit to CL tables. Figure 3.4 shows a before (a) and after (b) plots of phases as a function of
frequency for OQ208, plotted with the AIPS task POSSM from the C-band commissioning
dataset. This baseline (Lovell-Darnhall) suffers from phase wrapping due to the long
baseline length and the observing configuration. After phase calibration on J20074-4029,
solutions are converted to calibration weights for all sources.

Generally the phases for each antenna are good, flat and stable. Another demonstration
of the phase calibration on longer baselines is shown in Figure 3.5 where the before (a) and
after (b) phases as a function of frequency are plotted. Phase wrapping (phases looping
through ¢ = -180° to 180° etc.) is present before calibration along with other issues.
These are corrected after the fringe fitting demonstrating good interpolation of the phase
solutions.

The phase calibration corrections are tied up in the complex gain coefficients (g; (¢) g; (t);
Equation 3.3). Because of the complex nature of the gain coefficient (Equation 3.4), it
will contain corrections from both phase (¢(¢:(*) =¢i())) and amplitude (a; () a; (t)) cali-

bration procedures.
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Figure 3.4: Phase calibration J2007+4029, C-band e-MERLIN commissioning data on
the Mk II-Defford baseline. Top of each plot are the phases and the bottom are the
amplitudes. (a) shows the phases as a function of frequency before calibration, and (b)
after delay and phase calibration. Phase calibration has smoothed out the phases as a
function of frequency.
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function of frequency.
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3.7 Amplitude Calibration

After phase calibration, the pipeline performs amplitude calibration on all of the calibra-
tion sources. The aim of amplitude calibration is to set the absolute flux level in Janskys
(Jy) for each source. The amplitudes of each source outputted from the correlator is only
an arbitrary count level which has no physical meaning. To scale these correlator counts
to a common flux scale, a source whose flux is well-known needs to be observed.

The method utilised for e-MERLIN involves the flux calibrator source 3C286, which has
been observed extensively over the last few decades by the VLA following an initial study
of the flux density scale by Baars et al. (1977). 3C286 is a compact steep-spectrum quasar
at redshift z = 0.846, with a small resolved component ~ 2”.5 to the South-West (Perley
and Butler 2013). Despite being partially resolved, 3C286 has a flux density which has
been stable over a time span of decades, unlike many other VLA flux calibrators. Therefore
the flux of 3C286 can be used with confidence as a stable flux calibrator to bootstrap its
known flux to a less resolved calibrator for amplitude calibration. The benefits of using a
more unresolved source for amplitude calibration are the same as for phase calibration (in
Section 3.6), namely a point source is better modelled when conducting Fourier analysis
and LS methods, leading to more accurate results. This assumes the point source is stable

and the data is of sufficient quality to perform the extrapolation.
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Figure 3.6: 3C286 radio spectrum from 300 MHz to 50 GHz, figure taken from Perley and
Butler (2013).

Perley and Butler (2013) present a recent study on the common VLA flux calibrators
including 3C286 with the upgraded JVLA. The authors observe the targets at all available
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JVLA frequencies, from 300 MHz to 50 GHz (Figure 3.6) to produce accurate spectral
flux densities, which are conveniently described as polynominal expressions. The spectral

flux density S in Jy is given by
log (8) = ag + ay log (vg) + ag [log (va))? + as [log (va))?, (3.7)
where vg is the frequency in GHz. The coefficients a,, for 3C286 are given in Table 3.3.

Table 3.3: Coefficients for the Spectral Flux Density of 3C286

Source agp aq as as

3C286 1.2515 + 0.0048 -0.4605 £ 0.0163 -0.1715 £ 0.0208 0.0336 £ 0.0082

Coefficients taken from Perley and Butler (2013), table 10.

This polynominal expression cannot be utilised directly for e-MERLIN observations
because of the higher resolving power of e-MERLIN relative to the JVLA. In addition to
Equation 3.7, the baseline length B and frequency v are a function of the resolving power
Or (v, B), and the reduction in central flux density S (6) of a Gaussian PSF represent-

ing 3C286 (fs) is given by (Danielle Fenech, Peter Thomasson, Anita Richards; private

communication):
1
2 2
S/(H) B 2w (QR(V, B) + 95)
SO 1
27 0r (v, B)?
1
= P (3.8)
1+ %
Or (V7 B)

By designating p = [0s/0r (v, B)]?, p has been calculated for a specific frequency (5
GHz) and baseline (Mark II - Pickmere) to produce a reference ratio to scale the resolving

power to any frequency. Using 0 (v, B) = k/v B gives

Vref B ref

p(v, B) = (VB>2 Prefs (3.9)

where ppof is fixed at 0.04 for reference frequency et = 5.00 GHz and reference Mark 11
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- Pickmere baseline length Bes = 11236.79 metres. This gives the final ee MERLIN flux

Se—MERLIN:

Svia

T5 205 (3.10)

Se—MERLIN =

where Syr,a is the JVLA flux given by Equation 3.7 with the coefficients from Table 3.3.
This e-MERLIN flux can then be applied to the 3C286 observation and used for flux and
amplitude calibration, or scaled to an unresolved point source calibrator such as OQ208
for a theoretically optimal flux and amplitude calibration. This is dependent on data
quality for each source, and therefore the pipeline has two options: to use the resolved
3C286 to determine the fluxes of the other calibrator sources, or the OQ208 fluxes scaled
from 3C286 to determine the fluxes of the other calibrator sources.

The pipeline starts the amplitude calibration with a search for the primary flux cali-
brator 3C286 and the point source calibrator OQ208. The central frequencies of each IF
are calculated from the uvdata headers, which will be used in the calibration of the VLA
30286 fluxes. With the wide observing bandwidths of the new e-MERLIN receivers, there
is a significant change in flux over both L-band and C-band observations. The L-band
Legacy datasets have 512 MHz bandwidth with 8 IFs (64 MHz per IF) and COBRaS C-
band Legacy datasets will have 2 GHz bandwidth with 16 IFs (128 MHz per IF). Solving
the flux for the centre of each IF should be sufficient for accurate amplitude calibration.

The shortest available baseline is then computed from two of three antennas; Mark II,
Pickmere and Darnhall. Table 3.4 shows the three shortest baselines and the resolving

percentages of 3C286 at L-band and C-band frequencies.

Table 3.4: Shortest e-MERLIN Baselines

Baseline Baseline Length Resolving Percentage (%)
(in metres) 1.6 GHz 5 GHz
Mark II - Pickmere 11236.79 0.41 3.85
Darnhall - Pickmere 15923.55 0.82 7.44
Mark IT - Darnhall 17737.45 1.01 9.06

The three shortest e-MERLIN baselines with the resolving percentages of 3C286
at 1.6 GHz (L-band) and 5 GHz (C-band).

The e-MERLIN resolved fluxes of 3C286 at the central frequencies of each IF are now
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calculated using Equations 3.8, 3.9 and 3.10. If no scaling is to be done to a more point-like
source, these 3C286 fluxes are directly used in SETJY.

However if the data quality is sufficient (using direct output from the correlator, i.e.
correlator counts) then scaling these 3C286 fluxes to an unresolved source may yield more
accurate calibration. To scale this against the correlator counts, the middle half of the
time-scan of the 3C286 observation (i.e. centred in the middle of the timescan with a
quarter of the scan either side of this centre included) is taken to reduce the chances
of early slew errors and increase the probability that all the antennas have settled on
the source. The middle quarter of each IF is considered to mitigate the effects of the
bandpass edge response (which have not been corrected yet). This should average to the
central frequency of the IF which corresponds to the central frequency flux for each IF as
calculated by Equation 3.10. The correlator counts for parallel polarisations are considered
only, because the cross-hand polarisations are generally noiser and more problematic. This
is valid for COBRaS, because the science goals of COBRaS only require Stokes I (parallel
polarisations).

The correlator counts from this slice (in time and frequency) of the observations is
averaged to a singular value which corresponds directly to the calculations from Equation
3.10 for 3C286. The same process is made for OQ208 to obtain the average correlator
counts for the centre of each IF. A direct scaling between the correlator counts of 3C286
and 0Q208 is multiplied by the resolved e-MERLIN fluxes for each IF, to result in true
e-MERLIN fluxes for the centre of each IF for OQ208.

The rest of the amplitude calibration is conducted with AIPS tasks in the standard
manner. A logic diagram is presented in Figure 3.7 to depict the rest of the amplitude
calibration process.

The first step involves setting the Stokes I flux in the source file (SU table) for OQ208
(or 3C286 depending on which method is used) with SETJY. The other Stokes parameters
are ignored. The pipeline contains two possibilities at this point: run one instance of
CALIB on all of the baselines over the full uv-range, or include a restricted CALIB run on
the shortest baselines on 3C286 before running CALIB again on all calibrator sources over
all baselines. This double run is adopted by the e-MERLIN pipeline and has shown to
provide better calibration solutions (Rob Beswick, Megan Argo; private communication).
The idea is that restricting to shorter baselines reduces the possibility of resolving 3C286

and therefore calculating more accurate solutions initially for the shorter baselines before
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Figure 3.7: Logic diagram of the amplitude calibration procedure.

including the longer baselines into the solutions. AIPS does inherently contain input
models for 3C286, but these can not be used in the calibration because the models are
for the JVLA and do not consider the higher resolving power of e-MERLIN. There are
however future plans for equivalent models for e-MERLIN.

Once the solutions have been found and written to the SN table, the GETJY task is
used to determine the fluxes for individual sources and written into the source table (SU
table). Then a run of CLCAL is made to convert these solutions to the calibration CL
table to include the amplitude component of the electronic gain coefficients (g; g;*). These

will be further refined during self-calibration (Section 3.9) but will now be applied to the
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interferometric equation:

V (u,v) = (9:9;7) // B (l,m) e~ 2™ (utmo) g1 qm, (3.11)

lJm

Figure 3.8 shows the before (a) and after (b) amplitude calibration plots for the point
source OQ208 from the C-band commissioning dataset. The before scaling is in correlator

counts and the after scaling is in Jy.
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Figure 3.8: Amplitude calibration showing before (a) and after (b) plots of J2007+4029
from the C-band commissioning dataset, MkII-Defford baseline. Within each plot; (top)
the phases against frequency, (bottom) the amplitudes against frequency. Note the am-
plitude scales differ in each plot due to the calibration; in the before figure the scale is in
correlator counts, and in the after figure the scale is in Jy.
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3.8 Bandpass Calibration

After amplitude calibration, the response of the receiver across the band needs to be
calibrated to correct the antenna based complex amplitude and phase gain variations
as a function of frequency. Bandpass calibration is important to ensure the accurate
measurement of spectral features e.g. spectral index and curvature of sources. In the case
of COBRaS, spectral indices are required to detect and classify massive binary interaction
regions, which are non-thermal and therefore have a negative spectral index (for details
see Section 5.3.3).

An ideal bandpass would have a flat response at the maximum transmission available
across the whole bandwidth. In reality, the response is not flat across the bandwidth and
the edge frequencies suffer from effects attributed to the bandpass filters. To demonstrate
the response of the bandpass of e-MERLIN, Figure 3.9 shows the L-band bandpass of
3C286 during the L-band Legacy observations.
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Figure 3.9: Example of the uncalibrated e-MERLIN L-band bandpass response, with
channels on the x axis and correlator counts on the y axis. The 512 MHz bandwidth is
split into 8 IF's, each 64 MHz in width, with an individual channel width of 125 kHz.

In addition to the effects of the baseband filters, the spectral index and curvature need

accounting for during the bandpass calibration. This becomes important for new wide-
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band receivers where the flux of a source will vary over the wide bandwidth, i.e. spectral
index properties are observed.

Bandpass calibration uses the same methodology as amplitude and phase calibration,
where a specified bandpass calibrator is used to determine the solutions. This need not
be an unresolved source, as the AIPS bandpass calibration task BPASS has the option for
a source model to be included and the visibility data can be divided by the source model
prior to calibration. Although there is a frequency dependence with a resolved source
which complicates calibration.

However, as stated before, to ease the automation a point-like source is used and
assumed in the calibration procedure, because of the availability of such a source in the
COBRaS observations. The ideal bandpass calibrator is bright and has a flat spectrum
across the band. The bandpass calibrator for COBRaS is OQ208 (with 0555+398 as
a backup/ additional calibrator). The phase calibrator J2007+44029 is also bright and
point-like and therefore can be used for spectral fitting and bandpass calibration.

Figure 3.10 shows the logic diagram of the bandpass procedure, with the AIPS task
BPASS and a spectral fit used to rectify the bandpass responses. The SOUSP task can fit
a polynominal to the fluxes to determine the coefficients which describe the spectral index

and spectral curvature

log (f) = log(fo) + Slog(f) + C (1) [log(f)]?
+ C(2) log (f)]* + C(3) [log ()], (3.12)

where f is the flux, fy is the flux at 1 GHz, S is the spectral index, C' is the spectral
curvature and all logs are base 10. It is unlikely that SOUSP will calculate reliable values
for C'(3), with SETJY only utilising coefficients up to C (2) for flux calibration.

However, SOUSP considers the fluxes from all IFs equally, and makes no judgment
on whether individual fluxes are reasonable whilst fitting a polynominal. One bad flux
from poor quality data or sub-optimal calibration can skew the spectral fit dramatically.
Because of this flaw in the SOUSP task, a spectral fit module is created to remove any
spurious fluxes and then fit a polynominal to the remaining fluxes to produce the spectral
coeflicients required for Equation 3.12 and BPASS. Figure 3.11 shows the before and after
spectral fit and demonstrates the removal of outliers from the main trend. This is achieved

by using a running median, where each flux is compared to the closest two fluxes in
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Figure 3.10: Logic diagram of the bandpass calibration procedure.

frequency and if the flux is beyond a threshold it is removed from the fit. The module
raises a warning if half of the fluxes are removed.

The spectral fit module determines the spectral coefficients, which are expected to be
linear for OQ208 for L-band and possibly quadratic for C-band as the spectrum turns
over at ~ 6 GHz as seen in Figure 3.12. The outputs are read into BPASS as the adverbs
SPECINDX and SPECURVE, representing the spectral index and curvature respectively.

There are two methods to calibrate the bandpass with BPASS: (1); use a least squares
method to calculate the cross-correlated spectra into antenna based complex functions, (2);
use the auto-correlations to calculate the real part (amplitude) of the bandpass response
by setting the phase part of the bandpass response to zero. Since the auto-correlations

have been flagged (contain uncorrelated RFI) and the phases have already been calibrated,
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Figure 3.11: C-band spectral fit of OQ208. (a) is the spectrum of OQ208 from ampli-
tude calibration and (b) is the spectral fit of OQ208. Note that the flux at 5.56 GHz
(corresponding to IF 1) has been removed from the fit.
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Figure 3.12: Spectrum of OQ208 taken from the MOJAVE survey (Lister et al. 2009).
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decomposing the baseline based functions to antenna based functions via method (1) is
adopted in the pipeline.

The bandpass calibrator (OQ208) is divided by a point source model and the scans
averaged in time. Hanning smoothing is applied before the calibration and the centre 75%
of the band is averaged to the so called ‘channel (’ because channel-dependent flagging
has occured with SERPent (this is the recommended action in the AIPS cookbook).

Bandpass calibration with spectral correction with the spectral fit module on OQ208
(C-band) can be seen in Figure 3.13. The first plot (a) shows before bandpass calibration
and the second plot (b) shows after, with only the central 75% of the bandwidth shown.
Before calibration, the amplitudes varied between 4 - 6 Jy over the inner 75% of the
bandwidth, with particularly strong variation in IF 1. Following bandpass calibration,
the amplitudes are flatter across each IF with variations limited to 0.20 Jy for each IF.
A slight increase in amplitude present at higher frequencies is probably a result of the
spectral index of the source.

BPASS writes the solutions to a bandpass (BP) table, which include the amplitude
and phase bandpass coefficients as a function of frequency (p;p;*). These modify the

interferometric equation as follows

Vo) = in") (o) [ [ B ) 0 ddm, (3.13)
!

m

3.9 Self-Calibration

After phase, amplitude and bandpass calibration, residual errors will usually remain within
the visibility data with refinements to the complex gain coefficients possible through self-
calibration. These errors are usually a result of using calibrators to correct for amplitude
and phase errors which were observed at different times and/ or positions in the sky. This
can lead to subtle differences in the electronics over the time span, and/ or differences in
the atmosphere etc. which can leave errors in the calibration gains, i.e. self-calibration
modifies the complex gain coefficient (Equation 3.11).

As discussed in Section 3.2, self-calibration is the process of imaging a point source
calibrator and using the CLEAN components (CC table) from the image to help determine
solutions for the complex gain coefficient via the CALIB algorithm. Self-calibration does

not require an unresolved source (although the advantages have been discussed previously),
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Figure 3.13: Bandpass calibration showing before (a) and after (b) plots of J2007+4029
from the C-band commissioning dataset, MkII-Defford baseline. Within each plot; (top)
the phases against frequency, (bottom) the amplitudes against frequency in Jy. The left
image has a different x axis scale showing all the channels in each IF, whereas the right
image is limited to the central 75% channels. After calibration the amplitudes across the
bandwidth are flatter.
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because the visibilities are normalised to the input model before the complex gain solutions
are determined. The source model must be bright to produce a high signal-to-noise ratio
to determine accurate solutions.

For the COBRaS pipeline the input source for self-calibration is the phase calibrator
source J2007+4029. This source is bright (~ 2 Jy at L-band and ~ 4.5 Jy at C-band), and
only slightly resolved at all e-MERLIN baselines and lies close to the target fields of the
COBRaS project, therefore giving the most accurate phase solutions possible from self-
calibration. Furthermore, COBRAS is a semi-blind survey, with no known other bright
point-like sources in every L-band and C-band field available for more accurate phase
solutions from self-calibration.

The procedure for self-calibration is shown in Figure 3.14 and is as follows. First an
image of the source model is made with the AIPS task IMAGR, applying the most recent
complex gain and bandpass solutions (highest CL and BP tables) from the calibration.
The initial image must not be convolved with too many iterations to avoid introducing
errors early on in the self-calibration. This model is then used in CALIB in self-calibration
mode to calculate the phase gain solutions only. The output SN table solutions are then
converted to CL table calibrations and then the self-calibration source is imaged again
using the updated calibration solutions in the new CL table. The process is repeated until
the root-mean-square (RMS) noise levels-off. Once the residual phase errors have been
corrected, the same self-calibration process is conducted again, but making CALIB solve
for both amplitude and phase solutions (amplitude self-calibration).

The pipeline contains two methods of self-calibration. The first, images the phase
calibrator and creates solutions with all IFs simultaneously, while the second, images and
solves IF's individually. Both methods have advantages and disadvantages which are con-
sidered before selecting one or the other. Combining the IF's in self-calibration will increase
the signal-to-noise ratio and therefore increase the likelihood of finding good solutions in
CALIB. The downside however, is this will introduce radial features or infidelities in the
image as a result of frequency errors from a single solution applied to all channels in all
IFs. This method can also introduce increasing errors away from the phase centre because
of the multi-frequency beams.

Applying self-calibration on individual IFs has the advantage of reducing frequency-
based errors by determining solutions for each IF across the bandwidth. It also retains

spectral index information (a flux solution for each IF) as CALIB does not deal with the
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Figure 3.14: Logic diagram of the self-calibration procedure.
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spectral index!. The disadvantage of this method is the lower signal-to-noise ratio of the
data to find solutions. However, due to the brightness of the phase calibrator (J2007+4029)
used for self-calibration, this resolves the issue of signal-to-noise, allowing self-calibration
to be performed successfully on individual IF's.

Figure 3.15 shows the before (a) and after (b) corrections from self-calibration on
J2007+4029. Subtle corrections have been made to the data in this example such as the

small delay offset between IFs 2 and 3 along with the amplitude levels.
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Figure 3.15: Self-calibration showing before (a) and after (b) plots of J2007+4029 from
the C-band commissioning dataset, MkII-Defford baseline. Within each plot; (top) the
phases against frequency, (bottom) the amplitudes against frequency in Jy.

Finally an image of the phase calibrator J200744029 at C-band is made to demonstrate

LAt the current date of this thesis.
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the calibration performance. Figure 3.16 shows a contour map of J2007+44029 with the
base contour level set at 8 mJy with intervals at -1, 1, 2, 4, 8, 16, 32, 64, 128 x 8 mJy.
The image RMS from the histogram is 4.37 mJy and the image has a peak flux density
of 4.49 Jy/ beam with a dynamic range of just over 1000:1. It is clear that J2007+4029
is slightly resolved with features on the North and South side of the main component,

confirming the two-sided structure description by Kharb et al. (2010).
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Figure 3.16: C-band contour map of J2007+4029. The base contour level is set at 8 mJy
with intervals at -1, 1, 2, 4, 8, 16, 32, 64, 128 x 8 mJy. The synthesised beam is shown in
the bottom left corner.

With the calibration complete for the phase calibrator, the solutions for the complex
gains and bandpass are copied over to the target fields and then one final run of CLCAL
applies the solutions from the SN table in a CL table for the field. The target field can

now be imaged.
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3.10 Calibration Performance on COBRaS L-band Legacy

Pointings

So far only the results from the C-band commissioning data calibration have been pre-
sented. C-band generally has less RFI than L-band and therefore passes through the
pipeline within a higher ratio of good solutions at each calibration step. L-band is more
problematic, with more RFI increasing the probability that any remaining bad data will
produce a lower fraction of good solutions at each stage of the calibration. In essence,
L-band is harder to calibrate than C-band data.

Comparing the relative fractions of good solutions of the C-band commissioning data
and the L-band Legacy data, the commissioning dataset obtained better solutions than
the Legacy data at every stage of the calibration. This further emphasises the difficulty
of lower frequency calibration.

All the results presented in this section are of the phase calibrator J2007+4029 from the
L-band 4" May 2013 dataset averaged over all scans. Figure 3.17 shows the data before
any flagging and calibration has taken place (a), and after the initial delay and phase
calibration (b). Some additional editing of the phase solutions was required to remove
erroneous solutions using the AIPS task SNEDT. The phase solutions are smoothed out
and calibrated as a function of frequency.

After phase calibration, flux scaling is performed using 3C286 as described in Section
3.7 and amplitude calibration to determine the real part of the complex gain correction.
Figure 3.18 shows the calibration as a function of frequency before and after flux and
amplitude calibration. Again manual editing of the SN table were made to remove spurious
gain solutions.

The flux in IF 1 (Figure 3.18) is significantly higher than all of the other IFs. This
is likely to be a result of heightened RFT at these frequencies. This is not the strong or
narrowband RFI (which is mitigated by SERPent) but very weak and/ or broadband RFI
which can cover all of the channels in the IF2. This raises the flux level of every visibility
in IF 1 and is impossible to mitigate without flagging the entire IF.

The next step is bandpass calibration including corrections for spectral index, using the
spectral fit module as described in Section 3.8. The spectral fit is displayed in Figure 3.19.
The spectral index of OQ208 is then passed to the AIPS task BPASS and the bandpass

2Such RFTI arises from ringing effects which have been discussed in Section 2.4.2.
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Figure 3.17: Phase calibration showing before (a) and after (b) plots of J2007+4029 from
the L-band Legacy dataset, MkII-Cambridge baseline. Within each plot; (top) the phases
against frequency, (bottom) the amplitudes against frequency. The y axis is in correlator
counts and the x axis is the channel number.
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Figure 3.18: Amplitude (and flux) calibration showing before (a) and after (b) plots of
J2007+4029 from the L-band Legacy dataset, MkII-Cambridge baseline. Within each
plot; (top) the phases against frequency, (bottom) the amplitudes against frequency. The
y axis is in correlator counts (a) and Jy (b) and the x axis is the channel number.
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repsonse over frequency is flattened. Figure 3.20 shows a before and after plot of the

bandpass calibration which includes the spectral index correction.
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Figure 3.19: L-band spectral fit of OQ208. (a) is the spectrum of OQ208 from ampli-
tude calibration and (b) is the spectral fit of OQ208. Note that the flux at 1.29 GHz
(corresponding to IF 1) has been removed from the fit.

The amplitude level of IF 1 in Figure 3.20 is significantly higher than the other IF's,
due to remaining RFI. IFs 1 and 2 produce the most problems during calibration because
of the large amount of low level broadband RFT at these frequencies, which at times can
consume over half the channels within those IFs. This is also why the flux value for IF 1
has been removed during the spectral fit by the spectral module.

Finally an image of the phase calibrator J2007+4029 at L-band is made to demonstrate
the calibration performance. Figure 3.21 shows a contour map of J2007+44029 with the
base contour level set at 15 mJy with intervals at -1, 1, 2, 4, 8, 16, 32, 64, 128 x 15 mJy.
The image RMS from the histogram is 4.80 mJy and the image has a peak flux density of
2.19 Jy/ beam with a dynamic range of 456:1. The limiting factor in the dynamic range is
probably a result of residual weak RFI remaining in the data. It is clear that J2007+4029
is slightly resolved with features on the North and South side of the main component also

seen in the C-band image (Figure 3.16).

3.11 COBRaS Imaging and Mosaicing

The next sections contain discussions on wide-field and wide-band imaging and mosaicing

techniques with e-MERLIN and COBRaS.
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Figure 3.20: Bandpass calibration showing before (a) and after (b) plots of J2007+4029
from the L-band Legacy dataset, MkII-Cambridge baseline. Within each plot; (top) the
phases against frequency, (bottom) the amplitudes against frequency. The y axis is in Jy
and the x axis is the channel number.
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Figure 3.21: L-band contour map of J2007+4029. The base contour level is set at 15 mJy
with intervals at -1, 1, 2, 4, 8, 16, 32, 64, 128 x 15 mJy. The synthesised beam is shown
in the bottom left corner.

3.11.1 Wide-band Imaging

The increase in receiver bandwidths leads to an increase in continuum sensitivity in images
because of the increased u,v coverage, i.e. interferometer response. This can be easily
demonstrated by comparing the dirty beam (the FT of the interferometer response) for an
individual IF. Figure 3.22 shows the dirty beams at each end of the eeMERLIN L-band;
IFs 1 (central frequency of 1.2865 GHz) and IF 8 (central frequency of 1.7345 GHz). When
incorporating the whole bandwidth, the fidelity of the dirty beam is significantly improved
as a consequence of lower sidelobe levels.

However, the increased bandwidth introduces additional issues into the imaging pro-
cess. The multiple frequencies will cause the spectral index to vary significantly over the

bandwidth, which is particularly problematic for bright sources. There are no expected
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Figure 3.22: The differences in u, v coverage of IF 1 (a; central frequency 1.2865 GHz) and
IF 8 (b; central frequency 1.7345 GHz) each with a 64 MHz bandwidth, and the respective
dirty beams (c and d).

extremely strong sources in the COBRaS field of view, however, spectral index is a key
component to some of COBRAS science goals. This is solved by multi-frequency synthesis
which is explained later.

The primary beam is a function of frequency and therefore, over a wide bandwidth
will change considerably. At the phase centre, the primary beams at all frequencies are
at unity, but further away from the phase centre, radial errors become more pronounced.
This can be accounted for by including a primary beam spectrum i.e. a primary beam
model in the multi-frequency synthesis and by applying wide-field imaging techniques such

as facets, which is explained in Section 3.11.2.
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Furthermore, the angular resolution also scales with frequency, resulting in different
possible resolutions across the bandwidth. A simple solution is to image at the lowest
resolution i.e. at the lowest frequency. However, multi-frequency synthesis allows not
only for imaging at the highest possible resolution (highest frequency) but also retains the
correct spectral index which is affected by the resolution (or strictly, it is limited to the
highest resolution where the signal is detected; Rau and Cornwell 2011).

Conway et al. (1990) produced the first multi-frequency synthesis method ‘double
deconvolution’, where two successive CLEAN deconvolutions determine two components
of the dirty beam; the normal dirty beam By (I, m) and the spectral dirty beam Bj (I, m)
which estimates the spectral index «. This is essentially expressing the spectral function
(flux as a function of frequency I (1g)) of the dirty beam as the first two coefficients of a

Taylor expansion as follows:

Ip(l,m) = I(w) Bo(l, m) + oI () Bi(l,m). (3.14)

Sault and Wieringa (1994) describe a multi-frequency CLEAN algorithm which cal-
culates the Taylor coefficients via least squares minimisation. More recently, Rau and
Cornwell (2011) presented an algorithm which combines multi-scale, deconvolution with
different spatial scales, and multi-frequency synthesis (MS-MFS) which can be used in con-
junction with other wide-field imaging algorithms. These later algorithms also determine
the spectral curvature (3"¢ Taylor coefficient) and higher orders of spectral information.
MS-MFS is implemented in the reduction package CASA.

In the case of COBRaS imaging, the AIPS task IMAGR is an all-purpose cleaning task
which utilises corrections and enhancements for wide-bandwidth (and wide-field) imaging.
Addressing the issues stated above, a number of image parameter adverbs (IMAGRPRM)
are available to allow corrections during deconvolution. The frequency dependent primary
beam effects can be corrected via IMAGRPRM(1) = D, where the primary beam is assumed
to be a uniformly illuminated disk of diameter D metres?.

A simple correction to the spectral index is available in IMAGR to allow a single
correction to be made. Considering that the COBRaS maps will contain multiple point
sources, each possibly having a different spectral index, one correction will not suffice.

Instead spectral information will be gleaned from obtaining fluxes from imaging individual

3AIPS IMAGR help file.
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IFs (or a couple of IF's) for objects bright enough to be detected with the temporally smaller
bandwidth and from obtaining fluxes at both L-band and C-band. For maximising the

absolute detection of sources, the spectral information can be neglected.

3.11.2 Wide-field Imaging

Wide-field imaging is described as an image with a large number of resolution elements
and samples far out into the primary beam, which introduces distortions in the image

arising from a number of origins.

Bandwidth Smearing

Bandwidth smearing (chromatic aberration) produces radial smearing which becomes more
severe further away from the phase centre. If averaging has occured then the gains as a
function of frequency may not have been accurately determined before averaging. Oth-
erwise it is an effect of the wide bandwidth with different frequencies probing different
spatial scales.

The fractional reduction in amplitude of a point source due to bandwidth smearing
Rp, is the ratio of intensity I to the peak response Iy at Av = 0, given by (Bridle and
Schwab 1999; MERLIN user guide):

I [ —

where (3 is the fractional bandwidth x the radial distance in arcsec from the phase centre

in half power beam widths (HPBW) and is given by:

_ar_%

, 3.16
Vo OupBw (3.16)

Time-average Smearing

Time-averaging smearing (de-coherence) produces tangential smearing. This arises from
the poor phase gain solutions for the observation which has then been averaged in time,
losing coherence over the averaged time. Accurate solutions may have been determined
for a point source at the phase centre, but further away, residual phase errors may remain.

The average fractional reduction in amplitude of a point source due to time-average
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smearing (R.) is given by (Bridle and Schwab 1999; MERLIN user guide):

2
(R,) =1-1.22x107° (@) Ta® (3.17)
OuprBW

where O is the radial distance from the phase centre in compressed coordinates (© =
12 +m?2 sin?§), and 7, is the averaging time. This relation is strictly only correct for a

circumpolar point source i.e. 6 = 90°.

Primary Beam Response

The response of the primary beam also affects wide-field imaging, because further out into
the field the interferometer’s response decreases. The AIPS task PBCOR can be used on
images to correct the frequency dependent effects from the primary beam. This requires
modelling of the primary beam response for each baseline for a heterogeneous array such
as e-MERLIN. Another way is to use the previously stated IMAGR adverb IMAGRPRM(1),

which makes a simple frequency dependent correction during imaging.

Non-coplanar Baselines

The last effect from wide-field imaging to consider is the assumption of coplanar arrays,
which is valid for East-West interferometers i.e. antennas that lie on the same latitude, and
for small fields of view, to neglect curvature of the celestial sphere. Non-coplanar effects
can be considered either as the 3D visibility function V (u, v, w) or the Sky Brightness
B (l, m, n) (which is the Fourier transform of the visibility function). Essentially, the
third dimensional direction cosine in either term has to be accounted for. Doing a full
3D Fourier transform is computationally expensive and therefore corrections are made to
project sources from the 3D sky to a tangential 2D plane. Figure 3.23 shows the effects
of a wide field image on the third dimensional term and how sources in the wide field are
projected to a flat plane.

There are two methods to correct the non-coplanar effects, the first is to break up the
field into many facets, or smaller fields, hence approximating to many 2D fields where the
sky curvature is negligible, or applying corrections to the w-term of the visibility function
by reprojection to or from the V (u, v, w) space from or to the V (u, v, w = 0) plane

(Cornwell et al. 2008). The two terms are related by the convolution of a known function
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Figure 3.23: Diagram of the effects of wide-field imaging. The red stars are the locations
of sources within the 3D sky and the white stars are the same sources projected onto a
tangential 2D plane. Figure taken from Muxlow (2007).

B (u, v, w) (the Fourier transform of B (u, v, w)) giving
V(u, v, w) = B(u,v,w) x V(u,v, w=0). (3.18)

The w-projection algorithm is implemented in CASA, with no equivalent in AIPS currently.

The method of splitting the imaging field into facets solves a number of the issues above.
Bandwidth and time-averaging smearing and non-coplanar effects can all be solved using
many facets. For each facet, the specific gain solutions, frequency-dependent solutions
and three dimensional positional information are supplied and then solved with the 2D
Fourier transform. Facets can be placed at any point in the primary beam, on known
sources of interest or overlapping to cover the entire primary beam. The latter is required
for COBRAS. Figure 3.24 shows how the method of faceting solves the three dimensional
problem for wide-field imaging.

IMAGR images and CLEANs the multiple facets with the adverb OVERLAP = 2,
which subtracts the clean components from the current facet (and all other facets) before
imaging the next strongest facet. The AIPS task FLATN is then used to regrid the facets

from IMAGR onto a single map.

3.11.3 Imaging Considerations with e-MERLIN

e-MERLIN is an heterogeneous array with each antenna having a different primary beam.
Not only will the response across each primary beam differ due to different antenna shapes
and surfaces, but there are also three different antenna sizes: 25m, 32m and 76m. This

results in the interferometer beam shape being baseline dependent. Currently, there are
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Figure 3.24: Diagram of the method of faceting. The example has split the original wide-
field image into three separate facets which approximates the local fields as tangential 2D
planes. Figure taken from Muxlow (2007).

on-going investigations into the e-MERLIN combined beam responses, which will consider
the frequency dependent effects of the wide bandwidth as well as the varying beam shapes

from the differing antenna sizes (Wrigley et al. in preparation).

3.12 e-MERLIN Mosaicing Techniques

COBRaS is comprised of 7 L-band pointings and 42 C-band pointings centred on the core
region of Cyg OB2. Each pointing overlaps with one or more adjacent pointings to give
continual coverage. In addition, the overlapped regions also increase the sensitivity due
to the increase in u, v coverage.

e-MERLIN requires a unique mosaicing technique resulting from its heterogeneous
nature. As mentioned in Section 3.11.3, eeMERLIN contains three different antenna di-
ameters: 25m, 32m, and 76m. Baselines containing the Lovell telescope will benefit from
an increase in sensitivity for the inner 50% of the 25m - 25m interferometer beam by a
factor of ~ 2. Figure 3.25 demonstrates these properties.

Not including the Lovell telescope during imaging will result in a dramatic increase in
the field of view. If the original mosaic strategy considers the overlap regions assuming the
inclusion of the Lovell telescope, then additional imaging without the Lovell will produce
pointings which will overlap a greater area into adjacent pointings, increasing the sensitiv-
ity in those areas. Essentially there will be two maps generated, one with the Lovell and
one without. Combining these together will result in the edge regions of the overlapped

pointings to increase in sensitivity.
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Figure 3.25: Sensitivity areas for the Lovell baselines, 76m - 25m interferometer beam
(darker shade blue region), and the 25m - 25m interferometer beam (lighter shade blue
region). The Lovell region has a greater sensitivity around a factor of 2 compared to the
same region within the 25m - 25m beam.

3.13 Discussion

The COBRaS pipeline reduces, and calibrates L-band or C-band continuum data with pas-
sages for amplitude, phase, bandpass with spectral index corrections and self-calibration.
It has considerations for K-band, such as defaults for the atmospheric coherence time. It
does not apply any corrections for polarisations and other polarisation-dependent effects
such as leakage etc. It also includes methods to complete simple manual tasks automati-
cally, for example; selecting a small window for delay correction during phase calibration
and selecting an IMAGR window for self-calibration. These types of tasks arise from the
calibration process previously being a manual process and therefore all the AIPS tasks
requiring manual input and choices.

The pipeline only calculates antenna based corrections and does not consider baseline
based corrections of any kind (closure offset corrections). This is because baseline based
corrections are usually required for images with high dynamic ranges > 10,000:1 (i.e.
highest signal-to-noise ratio in the image). The expected sources in the COBRaS field of
view are on the order of mJy or puJy with the best possible rms of 3 pJy and 7.5 puJy for 5
GHz and 1.6 GHz respectively (COBRaS proposal) and realistic noise levels of 12 -14 uJy
for current e-MERLIN Legacy L-band datasets (Tom Muxlow; private communication).
Therefore the expected highest flux from a source (background galaxy or a massive binary
interaction region) in the COBRaS field is on the order of 10’s mJy, which corresponds to

a dynamic range of ~ 1000:1.
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This pipeline also assumes isoplanicity between the phase calibrator and the target
fields, because there are no known bright point-like sources in any of the fields. Therefore
the assumption that applying the calibration made on the phase calibrator (J2007+4029)
to the target fields is made. Whilst an entirely plausible and valid assumption, it comes
with the caveat that the phase solutions will be limited to a certain degree, not only by
the different atmospheric path between the phase calibrator and fields but also due to
time-average smearing (discussed in Section 3.11.2).

Ideally a phase calibrator would exist in each of the target fields, and should a suf-
ficiently suitable source be found after the initial COBRaS analysis, then further self-
calibration may be possible to refine phase solutions within the target field. This is more
likely for L-band where the field of view is significantly larger than at C-band.

Another improvement in the calibration procedure would arise from incorporating
spectral indices in the CLEAN components during self-calibration (IMAGR). Currently
IMAGR does not intepret the spectral index, and therefore the pipeline attempts to include
this information by performing self-calibration on individual IFs. This is not an optimal
solution to this issue, but it is the easiest to implement using AIPS and IMAGR.

In this chapter, the pipeline is tested on C-band commissioning data and L-band
legacy data. Despite the commissioning nature of the C-band dataset, the data passed
through the pipeline without issue, with a good image and dynamic range of the phase
calibrator map. The L-band data, however, were more problematic, requiring the solutions
from phase and amplitude calibrations to be manually edited with the AIPS task SNEDT.
This may result from insufficient data quality, but is likely to be a result of very weak RFI
remaining in the dataset. Avenues of pursuit to help SERPent and increase successful RFI-
mitigation have been discussed previously (Section 2.4.2). This will help the calibration
pipeline achieve good solutions and output maps, something it has proven with the RFI-
quiet C-band observations. However, what is necessary is an automated passage to assess
and edit the solutions from phase and amplitude calibration. Such a passage has recently
been added to the e-MERLIN pipeline and because of the modulised nature of the e-
MERLIN and COBRaS pipelines, it should be easy to integrate the SN editing module
into the COBRaS pipeline.

As stated above, improvements to the pipeline will occur with more tests with the
rest of the L-band Legacy datasets to increase robustness. Such additional tests will

optimise the pipeline in preparation for the C-band COBRaS dataset, where effects from
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a bandwidth of 2 GHz will produce even larger datasets and therefore greater frequency
dependent errors. There are six times the number of individual pointings for C-band than
L-band, making the stability of the pipeline imperitive.

Creating an automated calibration pipeline is not trivial, and this is especially the case
with e-MERLIN, due to the heterogeneous nature of the array. This is because a number
of issues can arise from the data which will propagate through the pipeline, and accounting
for every eventuality is difficult. It is not possible to create a pipeline which caters to every
need. A general pipeline can be created to produce a simple map to give an idea of what
is present in the field, or a specialised pipeline tailored to a single requirement.

With the abundance of sophisticated imaging software, CASA would provide a con-
vincing argument as a choice of package to calibrate and image data. However, e- MERLIN
requires fringe-fitting to correct the phases and no corresponding task currently exists in
CASA. Converting terabytes worth of AIPS UVFITS data to CASA measurement sets is
computationally expensive and with adequate equivalent algorithms in AIPS for imaging
and mosaicing, seems unnecessary.

New calibration software such as MeqTrees (Noordam and Smirnov 2010) and imag-
ing algorithms exploiting compressed sensing (Wiaux et al. 2009; McEwen and Wiaux
2011) are becoming available for 3" generation interferometers. The MeqTrees package
is designed and optimised for LOFAR and the SKA, in the same way AIPS is for the
VLA/ JVLA and CASA for ALMA and the JVLA. That is not to say that this package is
not applicable to other arrays, but to the author’s knowledge there is no example of this
package being utilised with e-MERLIN.

Compressed sensing algorithms have shown great promise on simulated data (McEwen
and Wiaux 2011) incorporating modern interferometric issues such as wide-field imaging.
However, it remains unknown how such algorithms fair with real observations and all the
problems and issues that come with them. The authors state that the spread spectrum
phenomenon (termed w-projection in this thesis) has been idealised to a constant w, which
will not be the case for a real instrument where values range from w = 0 to w = Umax-
Once again highlighting the importance of real data on testing algorithms, a conclusion
also made from Chapter 2. Moreover, compressed sensing algorithms do not currently
retain spectral information from the images.

It is clear that extensive research is needed on compressed sensing to meet the de-

mands of other existing and operational algorithms. However, the potential and power of
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compressed sensing should not be understated, and it is likely to be a popular route of
investigation for imaging with the SKA, given the speed and performance of the algorithm.

Discussions and research are now starting with existing packages for calibration and
imaging, comparing all the virtues and vices of these with simulated and real observations
to decide whether the SKA can utilise existing software (and if so which package), or
whether new SKA-specific programs will need to be created (Danielle Fenech; private

communication).



Chapter 4

Source Detection, Extraction and

Classification

All that glisters is not gold.

William Shakespeare - The Merchant of Venice

After reduction, calibration and imaging, the final task for the COBRaS pipeline is to
analyse the resulting radio maps of the Cygnus OB2 association. This is done in three
steps: source detection, source extraction and source classification. The classification step
relies on existing knowledge of the association from the catalogues of previous studies. This
chapter discusses techniques for each of these and presents the developed tools designed

to accomplish the science goals set by COBRaS.

4.1 Building the Cyg OB2 Amalgamated Catalogue

The COBRaS Legacy survey expects to detect a number of different sources within the
core region of Cyg OB2. These range from single OB stars, OB binaries, pre-main sequence
stars, and background radio galaxies. Many OB stars will not have been either formally
classified or even detected by previous studies over a number of observed wavelengths

before the COBRaS observations. Therefore, COBRaS can be considered as a semi-blind
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survey, where known positions of candidate sources will help the source detection and
classification but is also a survey which will find new radio sources and should expect no
external contribution.

It is therefore instructive to collect all known information on the area of interest, i.e.
the Cyg OB2 association. Thus a definitive catalogue, amalgamated from all previous
studies in any wavelength regime will be a powerful tool for COBRaS, and indeed, any
large survey.

Catalogue amalgamation is no easy process, with the main issue being (or there not
being) standardisation in cataloging practices. Positional information obviously varies due
to different levels of accuracy and resolution for every survey. The same is the case for any
quantitive information (fluxes, magnitudes etc.), but other fundamental information such
as identifiers or names of sources, can, and should be standardised for specific regions.
This makes archiving much simplier.

To aid this process, the Virtual Observatory (VO) library is used to find existing
catalogues in its vast database, and the TOPCAT/ STILTS (Taylor 2005; Taylor 2006)
programs with the Java scripting language are used to concatenate and manipulate these
catalogues. TOPCAT/ STILTS uses the xmatcher algorithm to match catalogues by their
sky coordinates, and has options to cross correlate any information given in the catalogue
columns, e.g. names or identifiers.

A Jython (an implementation of the Python programming language written in Java)
script is created and contains passages to cross correlate the input catalogues, create sub
catalogues such as the OB catalogue (Section 4.1.6), and amend additional columns for
near-infrared colours (e.g. J-H etc.), stellar parameters for OB stars ( Prinja et al. 1990;
Martins et al. 2005; Searle et al. 2008), mass loss rates as a function of metallicity (Vink
et al. 2001) and empirical radio flux predictions using radio free-free emission (Wright and
Barlow 1975). These fundamental parameters are discussed and investigated in Chapter
5.

The ALADIN interactive sky atlas (Bonnarel et al. 2000) is also employed in this
chapter to visually represent the catalogues onto archival images such as those from the
Sloan Digital Sky Survey (SDSS).

By placing restrictions on the VO search cone of 24 arcminutes around the central
coordinates of the Cyg OB2 core region, right ascension (RA): 20" 33™ 10.8°, and declina-
tion (DEC): 41° 13/ 12", a list of catalogues with sources in the Cyg OB2 region is found.
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Table 4.1 shows all of the catalogues used in creating the Cyg OB2 Amalgamated Cata-
logue. For the Radio Master Catalogue a wider search radius of two degrees is adopted to

consider any future radio observations of the region.

Table 4.1: Table of existing Cyg OB2 catalogues

Reference Common Identifiers = Number of entries
Massey and Thompson (1991) MT91 801
Condon et al. (1998) 72
Pigulski and Kolaczkowski (1998) MT91 288
Comeré6n and Torra (2001) 320
Comerén et al. (2002) Various 85
Setia Gunawan et al. (2003) 31
Wolff et al. (2007) MT91 13
Albacete Colombo et al. (2007b)  AFM2007 & 2MASS 1003
Albacete Colombo et al. (2007a)  AFM2007 & 2MASS 147
Marti et al. (2007) 153
Kiminki et al. (2007) MT91 303 (from 3 tables)
Kiminki et al. (2008) Various 17
Vink et al. (2008) Various 71
Kiminki et al. (2009) Various 22
Wright and Drake (2009) AFM2007 1696
Skiff (2010) Various 150
Kobulnicky et al. (2010) Various 17
Kiminki et al. (2012a) Various 21
Kiminki and Kobulnicky (2012) Various 46
Kobulnicky et al. (2012) Various 28
Comerén and Pasquali (2012) Various 240
Chandra Point Source Catalogue AFM2007 1003
Radio Master Catalogue Various 2850

Galactic O star Catalogue 15
Simbad Database Various 2077

Chandra Point Source Catalogue, contains the same sources as Albacete Colombo et al.
(2007b) catalogue but with different information.

Radio Master Catalogue, from two earlier catalogues: Dixon (1970) and Kuehr et al. (1979).
Galactic O star Catalogue (Maiz-Apelldniz et al. 2004).

Simbad Database, VO search result with search radius of 24 arcminutes.

Table 4.1 shows a list of constituent catalogues which form the Cyg OB2 Amalgamated
Catalogue. Most catalogues have a number of different identifiers (denoted as Various in
Table 4.1), or multiple naming categories within the same ID column. Cross matching
these is difficult, because any difference in the strings (e.g. whitespace) will be recognised
as a false match. Furthermore, Java and STILTS do not allow cross matching of string-
types. However, two common identifiers are present; MT91 (Massey and Thompson 1991)

and AFM2007 (Albacete Colombo et al. 2007b). These form the base of two separate cat-
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alogues before being co-added. All other smaller catalogues are added with sky positional
information with a matching error radius. The error radius can be chosen to be small or
large, and since TOPCAT can pick the best match out of all the candidate matches, a
large radius (e.g. 2 arcseconds) can be chosen with confidence.

Very large surveys such as 2MASS (Skrutskie et al. 2006), are not included because the
source density is too high and cross correlation will result in many false positive matches.
Therefore the 2MASS survey is used as an independent catalogue for further studies, e.g.

the JHK colour plots for OB candidate selection (see Section 4.1.7).

4.1.1 Catalogue Amalgamation with Massey and Thompson (1991) Iden-

tifiers

The first major census of Cyg OB2 with modern CCDs was conducted by Massey and
Thompson (1991). Over 800 members within the core region of the Cyg OB2 association
are catalogued in this UBV photometric and spectroscopic study (IDs are denoted by
MT91) which, as stated previously, provides a good foundation to build a comprehensive
catalogue of the Cyg OB2 region. Three other catalogues have the MT91 identifier in-
formation and are combined with the Massey and Thompson (1991) catalogue using the
STILTS command tmatch2(‘matcher=1d’), matching the MT91 ID numbers of each entry
catalogue.

Firstly, three tables from Kiminki et al. (2007) (Tables 2, 3, and 5 from Kiminki et al.
2007) are combined with the Massey and Thompson (1991) catalogue to form the first part
of the Cyg OB2 Amalgamated Catalogue. This is a six year (1999-2005) radial velocity
survey on 146 OB stars within the Cyg OB2 association, to collect evidence of binarity of
the massive star population. All 303 entries have MT91 IDs. The next catalogue to be
added is Wolff et al. (2007), a rotational velocity study of BO - B3 stars in young clusters.
All 13 stars from this study of the Cyg OB2 field have MT91 IDs. The last catalogue with
MT91 IDs is Pigulski and Kotaczkowski (1998), a photometric study of variable stars in
the Cyg OB2 central region. There are 96 entries which have the same MT91 IDs as those
currently in the Cyg OB2 Amalgamated Catalogue, 182 entries have extended MT91 IDs
(numbers which are not in the original Massey and Thompson (1991) catalogue), and 10
entries have no MT91 IDs. These latter 10 are amalgamated using their sky positions as

explained in Section (4.1.4).
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4.1.2 Catalogue Amalgamation with Albacete Colombo et al. (2007b)
Identifiers

The second common indentifier from Table 4.1 comes from Albacete Colombo et al.
(2007b), a Chandra X-ray study of the Cyg OB2 population. Three more catalogues have
the AFM2007 identifier and are again combined using the STILTS tmatch2 command.
The Chandra point source catalogue contains exactly the same entries as the Albacete
Colombo et al. (2007b) catalogue, but contains additional information about the sources.
The Albacete Colombo et al. (2007a) is a subset of the original catalogue with detailed
information on the flaring nature of some of the X-ray sources. The final catalogue with
the AFM2007 ID is Wright and Drake (2009) which also contains 992 out of 1003 sources
in the Albacete Colombo et al. (2007b) catalogue and another Chandra observation of
Cyg OB2. Entries which do not have the AFM2007 ID information are added by their

sky positions.

4.1.3 Catalogue Amalgamation for Cyg OB2 Radial Velocity Survey

The Cyg OB2 radial velocity survey (see original paper; Kiminki et al. 2007) is an on-
going survey to map the massive binary content of the Cyg OB2 association. There are
a number of subsequent studies: Kiminki et al. (2008), Kiminki et al. (2009), Kobulnicky
et al. (2010), Kobulnicky et al. (2012), Kiminki et al. (2012a), and Kiminki and Kobulnicky
(2012), all containing catalogues which have corresponding columns of information which
are also in the same format, because these originate from the same authors. Therefore,
these are amalgamated together prior to the inclusion into the full Cyg OB2 Amalgamated
Catalogue for the best matching results. Note that Kobulnicky et al. (2010) is a study on
the bow shocks in the Cygnus X region, but has the same catalogue style as those from
the massive binary radial velocity study and is therefore included in this concatenation

subset.

4.1.4 Catalogue Amalgamation with Sky Coordinates

All remaining catalogues either do not have ID information, or have complex names in-
volving string-types which may include multiple different indentifiers, are therefore not
standardised and can not be cross matched using STILTS. These catalogues and the two

base catalogues (from IDs MT91 and AFM2007) are cross correlated with one another
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using the STILTS tmatch2 command and the RAJ2000 and DEJ2000 (RA and DEC at
ephemeris J2000.0) columns. The matching error radius is set to 2 arcseconds, with the
option of only selecting the best match. A brief overview of the catalogues collected into

the Cyg OB2 Amalgamated Catalogue by the sky coordinates is given below.

Condon et al. (1998). The NRAO VLA Sky Survey (NVSS) of the sky northwards of
J2000.0 6 = -40° at the radio frequency of 1.4 GHz. The complete catalogue contains

2 x 108 sources stronger than S ~ 2.5 mJy.

Comerén and Torra (2001). A near-infrared imaging survey of compact HII regions in

the Cygnus X complex with JHK filters.

Comeron et al. (2002). A near-infrared spectroscopic survey of the Cyg OB2 association,

aiming to list all of the O-type members of the association.

Setia Gunawan et al. (2003). A WSRT radio continuum survey at 1400 and 350 MHz
centred on the centre of Cyg OB2, covering 2 square degrees with angular resolutions

of 13 and 55 arcminutes respectively.

Marti et al. (2007). A GMRT and VLA survey at 610 MHz and 1400 MHz centred on
the TeV J2032+4130 source position.

Vink et al. (2008). The INT Photometric Ha Survey of the Northern Galactic Plane
(IPHAS), observing towards the Cyg OB2 association and the HII region DR 15.

Skiff (2010). A catalogue of Stellar Spectral Classifications from the VizieR! online data

catalogue.

Comerén and Pasquali (2012). A near-infrared census study (BJHK filters) using the
USNO-B and 2MASS catalogues on the Cyg OB2 region.

Radio Master Catalogue. An amalgamation of Dixon (1970) and Kuehr et al. (1979)

catalogues which is regularly maintained.?
Galactic O star Catalogues. A catalogue of Galactic O stars (Maiz-Apelldniz et al. 2004).
Simbad Database.

Yhttp://vizier.cfa.harvard.edu/viz-bin/VizieR ?-source=B/mk
http://heasarc.nasa.gov/W3Browse/all /radio.html
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4.1.5 The Cyg OB2 Amalgamated Catalogue

The Cyg OB2 Amalgamated Catalogue has 25 constituent catalogues with a total of 11469
input entries. This reduces to 6679 entries after the cross correlations by identifiers and
sky positions. As certain sources have multiple components, with the catalogues not
necessarily denoting these consistently from one to another, duplicates will exist after the
matching process. Therefore a tidying algorithm is included to match any duplicates in
the Cyg OB2 Amalgamated Catalogue. The catalogue is sorted by RA and a first run is
made for identical positional matches, and a second run is made for those within an error
radius of 2 arcseconds i.e. the same level of accuracy as the cross correlation. The tidying
algorithm outputs a catalogue with 6500 entries.

Ambiguous catalogue entries with more than one component (e.g. Cyg OB2 No. 8)
are not dealt with in any special manner. If each component does not have a unique
identifier or sky position, then the matched component from any subsequent correlation
is somewhat serendipitous in nature. However, when the cross correlation scripts (Section
4.4) are deployed, more than one positive result may be returned. Manual inspection will
validate the final classification of the object, where catalogues with a high source densities
will require more than just position coincidence to justify the origin of any radio flux.
Analysis of the physical properties of each source and of the radio flux will determine the
most probable origin.

To illustrate the coverage of this catalogue, Figure 4.1 shows the central square degree
of the Cyg OB2 association with the Cyg OB2 Amalgamated Catalogue plotted in red.
The core region, and region surrounding the TeV source of Cyg OB2 are clearly identifiable

by the catalogue distribution at the centre and off centre of the image respectively.

4.1.6 The OB Star Catalogue

The Cyg OB2 Amalgamated Catalogue contains a variety of objects of interest from
massive stars to late-type stars and pre-main sequence stars. For this thesis and the
UCL led part of the COBRaS science, the OB stars are of particular interest. The Cyg
OB2 Amalgamated Catalogue has multiple columns from many catalogues with spectral
classifications for certain stars.

Within the Jython catalogue amalgamation script spectral columns are searched for

and combined into one column for reference. If more than one spectral classification
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Figure 4.1: The Cyg OB2 Amalgamated Catalogue (red) over laid on a Palomar image at
0.645 pm over 1.7° x 1.7°.

exists for any source then the first spectral type found in the catalogue is used for this
reference column. All other classifications remain in the catalogue in their respective
original columns. Then a simple search for strings containing ‘O’ or ‘B’ in the spectral
classification are selected to create a known OB catalogue. This known OB catalogue
contains 290 stars, and is a valuable tool for not only source classification, but also for
source detection (see Section 4.4.1 and 4.4.2).

Figure 4.2 shows the known OB catalogue (blue circles) plotted on the same Palomar
image at 0.645 pm as in Figure 4.1. The distribution of OB stars is clustered around the

core region of Cyg OB2, and extends across the association.
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Figure 4.2: The Known OB Catalogue (blue circles) over laid on a Palomar image at 0.645
pm over 1.7° x 1.7°.

4.1.7 The Candidate OB Star Catalogue

A large number of sources (2584, ~ 40% of total sources) in the Cyg OB2 Amalgamated
Catalogue have magnitudes for near-infrared JHK filters. When plotted together, the J-H
and H-K colours can reveal possible spectral information about the population. Comerén
et al. (2002) conducted a study using JHK colours from the 2MASS catalogue for the Cyg
OB2 region. After following up with spectroscopic observations, the authors discovered
that early-type stars resided together in a ‘blue group’, offset from the primary colour
branch consisting of unreddened late-type giants. This is visible in Figure 4.3, taken from

Comerén et al. (2002) as the cluster of circle points at (H-K) < 0.5. The authors comment
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that the number of non-OB stars contaminating this blue group is very small.
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Figure 4.3: J-H versus H-K magnitude colour plot focusing on (H-K) < 0.5. The circles
denoted sources with spectroscopic observations to verify spectral classification. Figure
taken from Comerén et al. (2002).

Applying this technique to sources with JHK magnitudes from the Cyg OB2 Amalga-
mated Catalogue with the known OB stars with JHK magnitudes from the OB catalogue
(see Figure 4.4), it is evident that the ‘blue group’ exists in the Cyg OB2 Amalgamated
Catalogue. Moreover, a number of sources from the main Cyg OB2 Amalgamated Cata-
logue (red) which do not have any spectral classification are also coincident with members
of the early-type blue group.

Therefore by using the known OB catalogue to plot a regression line through the blue
group with a locus of £ 0.1 in (J-H) and < 0.5 in (H-K), and applying this locus to the
super catalogue, a candidate OB catalogue is created from the Cyg OB2 Amalgamated
Catalogue. Only sources with (H-K) < 0.5 are considered as this is the limit stated by
Comerén et al. (2002). Subtracting the known OB catalogue from this newly created
candidate catalogue results in 350 additional unclassified but potential early-type stars
within the Cyg OB2 association. Figure 4.5 shows the Cyg OB2 Amalgamated Catalogue
(red), Known OB Catalogue (blue) and the OB Candidate Catalogue (green).

Until now, the 2MASS point source catalogue has not been considered during the

concatenation process of the Cyg OB2 Amalgamated Catalogue. This is because of the
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Figure 4.4: J-H versus H-K magnitude colour plot with the Cyg OB2 Amalgamated
Catalogue (red) and the known OB catalogue (blue). The majority of the known OB
stars reside within the early-type blue group. A number of unclassified (red data points)
sources appear to belong to the blue group.

high density of sources from the 2MASS catalogue producing confused source matches
during the cross correlation. For a search region of 24 arcminutes centred on the core Cyg
OB2 coordinates, the 2MASS catalogue produces 27090 sources.

However, using the same blue group loci produced from the known OB catalogue,
but this time with the 2MASS catalogue for the Cyg OB2 region as the input catalogue,
produces a larger OB candidate catalogue with 1930 candidates. Figure 4.6 shows the
J-H, H-K colour plots for the 2MASS point source catalogue with the 1930 2MASS OB
candidates plotted on top.

At the end of the catalogue amalgamation routine, there are four main catalogues
for the COBRAS project: the Cyg OB2 Amalgamated Catalogue containing everything
from the constituent catalogues, the known OB catalogue containing classified early-type

stars, the Candidate OB catalogue containing early-type candidates from their JHK colour
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Figure 4.5: J-H versus H-K magnitude colour plot with the Cyg OB2 Amalgamated
Catalogue (red), the known OB catalogue (blue) and the OB Candidate Catalogue (green).
excesses, and the 2MASS OB candidate catalogue. These are valuable resources for a large
survey such as COBRaS, and are all contained within the Jython catalogue amalgamation
script which can be easily updated with new catalogues as and when they are published

in the literature.

4.2 Source Detection Algorithms

Continuing the theme of automated procedures for COBRaS (and indeed other radio
surveys with exceptional data volumes), the detection of sources in the radio maps begins
the final stage of the pipeline. The ideal source finder is one which is complete, finding
all the sources in the image, and one with a low false-positive ratio i.e. finding only real
sources. Due to the importance of source detection, a number of algorithms have been

developed over the years using a multitude of techniques.
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Figure 4.6: Same plot as Figure 4.4, J-H versus H-K magnitude colour plot with the
2MASS catalogue (red) and the 2MASS OB candidate catalogue (blue). The same regres-
sion line and loci from the OB catalogue is used to determine the 2MASS OB candidate
catalogue.

A recent review of source detection methods was conducted by Masias et al. (2012),
with discussions on basic image transformation, Bayesian inference, matched filtering,
multi-scale approaches and wavelet transformations. These cover a range of objectives,
such as source detection, faint source detection, point source detection, extended source
detection and a range of observing bands from X-ray to radio. Recent developments in
radio source detection algorithms for the Australian SKA Pathfinder (ASKAP) Evolution-
ary Map of the Universe (EMU) project have produced two codes: AEGEAN (Hancock
et al. 2012), and BLOBCAT (Hales et al. 2012).

AEGEAN is a radio point source detection algorithm which adopts the floodfill algo-
rithm to detect sources and fit Gaussian point spread functions to the sources, otherwise
known as island of pixels. It assumes all sources are unresolved or point-like and convolves

the image with a Lagrangian matrix to produce a covariance map. This breaks the islands
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into ‘summits’ which signify the peak presence of a point source. Multiple summits within
an island represent multiple blended point sources, and a Gaussian is fitted to each. The
consequent flux extraction will account for multiple blended Gaussian sources.

BLOBCAT is a radio source detection algorithm which also adopts the floodfill al-
gorithm to detect sources (Hales et al. 2012). It however does not assume the source is
unresolved and the flux extraction performs both Gaussian and non-Gaussian routines to
calculate the flux. For resolved sources, it performs a number of corrections for the peak
surface brightness bias, where a Gaussian may over or under estimate the peak flux de-
pending on the nature of the source (see Figure 3 of Hales et al. 2012), and the integrated
surface brightness bias, where the floodfill algorithm does not fill the entire source volume
before the cut off threshold.

Both algorithms use the same floodfill detection method (discussed below) and demon-
strate a high completeness; 93.87% at 50, and reliability; 98.69% at 50 (Hancock et al.
2012). Since COBRaS is also primarily a point source radio survey, this algorithm is

desirable for its proven robustness and automated nature.

4.2.1 Floodfill Algorithm

The floodfill algorithm operates on an image with two inputs; the seed or detection thresh-
old (Ts) and the flood threshold (Tf). If a pixel in the image is above the seed threshold
T, then an island is grown around the seed pixel by testing whether adjacent pixels are
above the flood threshold T;. All pixels that fit the flood threshold criteria are added to
the island and the next adjacent pixels are considered. This iterative procedure continues
until all adjacent pixels to the island are below the flood threshold.

In the AEGEAN algorithm (Hancock et al. 2012) the seed threshold Ty is set to 50 (5
times the noise level) and the flood threshold Ty = 4. This level of flooding is sufficient
to characterise the islands and fit Gaussians to the components. BLOBCAT (Hales et al.
2012) is also seeded at T = 5, but the flood threshold Tt = 2.6, because the authors found
that this enabled true source pixels to be flooded whilst avoiding flooding non-source pixels

and perform a volume bias correction to account for any unfilled source pixels.

4.2.2 Modifications to the Floodfill Algorithm

It is evident that the floodfill algorithm is an effective source detection method. However,

these algorithms have only been tested for 50 sources, enbedded in Gaussian noise. To
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arbitrarily lower the seed and flood thresholds further without considering preventative
ways to mitigate false detections will decrease the reliability.

Other source detection algorithms such as SExtractor (Bertin and Arnouts 1996) have
a minimum island size (chosen by the user) to mitigate false detections. This is a useful
variable to employ, but it is not automated. However, due to the nature of radio in-
terferometric images during deconvolution, the image is convolved with a Gaussian PSF
representation of the synthesised beam. Therefore, an infinitesimally small point source
will assume the shape and size of the CLEANed beam, which in turn is comprised of a
finite number of pixels. No real detectable source can be smaller than the beam with
the addition of noise and therefore no island can have fewer numbers of pixels than the
number of pixels comprising the beam with noise. Exploiting this condition inherent to
radio interferometric images to the source detection mitigates the possibility of false detec-
tions, even in very noisy images, or sources < 5o. AEGEAN does consider the synthesised
beam when fitting Gaussian components to the summits in the curvature maps for flux
extraction, but not during the island flooding, i.e. source detection stage.

For the COBRaS source detection pipeline, it is necessary to push the limit of source
detection below 5o in order to allow the detection of as many OB stellar winds as possible
and to achieve a high completeness of OB stars in Cyg OB2. This condition is an important
modification to the current floodfill algorithm utilised by AEGEAN and BLOBCAT.

The other modification to the COBRaS source detection is another additional run of
the floodfill algorithm with a lower flood threshold to enable more source pixels to be
added to the island. This is because the COBRaS algorithm will either fit Gaussians via
the AIPS task JMFIT (least squares method to fit a Gaussian given a small search region)
or calculate the flux directly from the island pixels (see Section 4.3.1). If the fluxes are
derived from JMFIT, then only one run of the floodfill algorithm is required to obtain the
max pixel position and pixel flux inputs for JMFIT.

This method has the benefits of the restrictive conditions above by having a stricter
flood threshold when identifying sources, and then relaxing this flood threshold when
the source islands are known. It is necessary to flood the island as much as possible for
accurate flux determination from individual island pixels.

Another important aspect to the COBRaS source detection pipeline is that all the
pixels within an island are assumed to be from a single source. This is because the

flux determination is conducted on a pixel-by-pixel basis, summed and corrected for the
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background noise to produce a flux independent from Gaussian fits. Certain expected
sources in the COBRaS field are intrinsically non-Gaussian in shape. For example, binary
interaction regions assume a crescent shape as the more powerful wind of one of the
components of the binary distorts the adiabatic shock region. The absolute shape of the
region depends on the orbital positions of the binary components. To achieve an accurate
flux measurement, non-Gaussian determinations are required. Previously, the fluxes from
these regions were determined by Gaussian fits (typically JMFIT, e.g. Watson et al. 2002)
with manual TVSTAT checks (Dougherty et al. 2005), and as stated above is an option

within the pipeline.

4.3 Flux Extraction in the COBRaS Pipeline

The following sections will analyse the pixel-by-pixel flux extraction method with that of
the Gaussian JMFIT on a variety of simulated point sources with a range of signal to noise

ratios (SNR) and the source positions from the weighted mean of the pixels in an island

4.3.1 Pixel-by-pixel Flux Extraction

After the source detection, a list of island pixels is examined assuming that each island is
a single source. If the flux determination is chosen to be calculated from fitting Gaussians
(via JMFIT) then information on the maximum island pixel position and flux and search
box parameters (typically a few percent of the image size centred on the max pixel) are
given to JMFIT to help with the least squares fitting routine. The peak fluxes and/ or
integrated fluxes and the source position are returned with errors.

If flux analysis is conducted pixel-by-pixel (PP), then the beam area Qyye, is calculated

using information on the resolving beam from the image header as

@maj Omin T

Qarea = 4 In 2 )

(4.1)

where ©p,aj and Oy are the major and minor full width half maximum (FWHM) of the
resolving beam. Dividing the beam area by the pixel area of the beam A produces the

size of the beam (g, in pixels

Q
Q e = area , 42
s1ze 1 ( )
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which is used to convert the fluxes into Janskys rather than Jansky Beam™!. Next, the
flux F of N pixels at positions ¢ and j in the island are summed and divided by g6 to

give the uncorrected flux F, of the source:

(4.3)

The global background noise level (B) of the image is calculated from the histogram
of the pixels within AIPS (IMEAN function) and is multiplied by the number of pixels in
the island N and divided by the beam size. This is subtracted from the uncorrected flux

value determined in Equation 4.3 to give the corrected flux F:

(4.4)

If the background noise level is chosen to be determined locally, a small annulus is
created around the island to enclose the local background pixels adjacent to the island.
To avoid contamination from other local sources, only non-island pixels are considered.
The RMS is calculated using median statistics within the annulus to prevent bias from
spurious pixels. This is more a consideration for real images with artefacts in the image
rather than the simulations presented here.

The error on the flux (oF) is given by

RMS
N / Qsize

oF ; (4.5)

where the RMS is calculated from the histogram of the pixels within AIPS (STD function)
and N is the number of pixels in the island. Equations 4.4 and 4.5 give the integrated flux

and error on the flux from the island of pixels.

4.3.2 Source Position Determination

The source positions can be determined from JMFIT, or from the PP analysis. From the
pixel analysis, the source position can be extracted from the pixel with the maximum flux
value within the island, or from the weighted mean of the pixel fluxes. Here the flux for
each pixel acts as a weight for that pixel position, i.e. favouring the peak pixel more than

the edge of the island pixels where the flux will be close to the noise level. Employing
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this method ensures the most accurate measurement for source position for non-Gaussian
sources as well as unresolved sources.

The weighted mean pixel position of the source (z, y) is given by

N
> @i F(xi, y), y; F (i, yj)
ij=1
(Tws o) = =2 - : (4.6)

> Flai, y))

ij=1

where N is the number of pixels in the island at positions ¢ and j, z; and y; are the pixel
values at ¢ and j respectively, and F' (x;, y;) is the flux at the corresponding pixels. The

error on the weighted position (o, 0,) is given by

N 2
o) =y 2, (Fets) (1)
J=
These pixel values for the position can be converted into RA and DEC positions simply
by calculating the pixel offset position from the centre of the image (information from the
image header) and multiplying by the RA and DEC increment for each pixel. For the
errors, (0, oy) are in the form of a fraction of a pixel, and can be converted by multiplying

by the RA and DEC increment for a pixel.

4.3.3 Source Detection Performance

To test the performance of the source detection with the PP method, a range of Monte
Carlo (MC) simulations were conducted on synthesised datasets. The obvious benefit of
simulations is the ability to control all inputs and to obtain reliable performance statistics.
The first datasets consist of point sources generated by the AIPS task UVCON randomly
distributed over multiple images of 2048 x 2048 pixels. These are then convolved with
IMAGR to create the sources in a map. Ten sources are created per image and a random
variable drawn from a Gaussian distribution is added to each pixel to simulate Gaussian
noise. This random variable has a mean equal to zero and a varying standard deviation to
produce maps of differing signal to noise ratios (SNRs). For each SNR bin, a total of 1000
sources are generated and the median of the fluxes and the first and third quartiles for
the errors are determined, in line with the similar study by Hales et al. (2012). Another

dataset consisting of resolved Gaussian sources is also generated in the same manner.
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The UVCON reconstructions do not contain any intentional simulated errors such as
instrumental system errors or phase errors. Only idealistic Gaussian noise is added after
the imaging process. However, as in real images it is a real possibility that residual
phase errors from the CLEAN process may exist. The effect this will have on the source
extraction is inaccurate source positional information and even decoherence of the source,
particularly for weaker sources.

Another effect to consider during the simulations is ‘clean bias’. Clean bias is the effect
of poor u — v coverage, producing noisy sidelobes in the synthesised beam. This has the
effect of creating clean components during CLEAN from the sidelobes which will reduce
the flux at the true source position (Condon et al. 1998). Resolved sources are particularly
prone to this where the an extended source may appear brighter at these sidelobes than
at the true peak, and flux from the true position is shifted onto these sidelobes. However,
for these simulations and the expected COBRaS field, no resolved sources are expected to
have dimensions several times that of the synthesised beamwidth.

Clean bias has obvious effects for weak sources where the peak flux is already close to
the RMS noise level. There are ways to reduce clean bias which include: using windows
around the sources to restrict the area of cleaning. To use a cleaner synthesised beam,
uniform weighting creates a narrow central profile but noisy sidelobes whereas natural
weighting generally has lower sidelobe levels. Do not over clean as this will increase the
chance of cleaning sidelobes and therefore reducing the fluxes at the true source positions
as described above. Whilst windows are not used during the simulations, the sources are
not ‘weak’ during the CLEAN part of the image reconstruction because noise is added
after the deconvolution.

Unlike previous studies with the floodfill algorithm (Hales et al. 2012; Hancock et al.
2012), source detection and flux extraction performances are tested for sources with SNRs
less than 5 with the total tested subset of SNRs = {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30,
50, 100}. Therefore the two variable inputs for source detection, the seed threshold Tg
and flood threshold Ty, differ from the values used in those studies. A range of values was
empirically tested for SNRs less than 5 and for detecting sources with SNR > 2, Ty = 1.9
RMS and T¢ = 1/4 T for the first run of the floodfill algorithm and T¢ = 0.5 RMS for the
second run (T remains the same). For SNR greater than 10, the seed threshold performed
better (fewer false positives from artefacts in the images) with Ts = 5 RMS for both runs

and the flood threshold remaining the same as before. Note that overflooding is not a
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problem for the PP flux extraction, because any background pixel added to the island will
be normalised by the background subtraction routine, resulting in a negligible positive or
negative contribution to the integrated flux value. However, a suitable cut-off is required
to avoid endlessly adding pixels to the island and stop the program getting stuck in a loop.

If two (or more) sources are generated at the same location (i.e. the islands of the
sources join), they are treated by the algorithm as a single source. For these simulations
there is no penalty for the inability to distinguish blended sources, as this is a key assump-
tion that islands are assumed as a single source. However, the results below do consider
the ability to determine the flux contribution from all of the blended sources as part of

the detection.

Point Sources

The detection of point sources in the simulations for the PP method with global and local
noise estimations and JMFIT is shown in Figure 4.7. The PP method shows similar results
for both noise estimations, with around 90% successful detection at SNR = 2, and 100%
detection at SNR = 3 to 50. At SNR = 100, false positives are produced for both noise
regimes. This is likely to be a result of artefacts from the image creation by IMAGR,
where the deconvolution via CLEAN scatters a small fraction of the flux in the image. It
becomes apparent at this SNR because of the low noise level, however there are only 2
instances for the global and 8 for the local noise estimations in 1000 simulated sources.

JMFIT shows clear false positives at SNR = 2 and 3, where the fitting of multiple
Gaussians to single sources seemingly produces the best x? minimisation. At higher SNRs,
JMFIT has a detection level 2 99.0%, despite the floodfill algorithm (as demonstrated by
the PP method results) feeding 100% correct peak positions and peak fluxes to JMFIT for
these SNRs. At SNR = 30, JMFIT has a 100% detection performance.

Resolved Sources

The results of the resolved source detections with the PP method (global and local noise
estimations) and JMFIT is shown in Figure 4.8. The PP methods achieve similar perfor-
mances for resolved sources as for the point sources, with the biggest difference occuring
at low SNRs. At SNR = 2, only a third of total sources are detected and for SNR = 3,
the performance is ~ 99.0%. Only three false positives for SNR = 100 are detected for

the global noise estimation and one for the local noise. Again this is likely to be resultant
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Figure 4.7: Source detection results for point sources. PP method with global noise in
black, local noise in red and JMFIT in blue. Target number of sources per SNR bin is
1000.
from artefacts from IMAGR scattering flux in the image (and is seen later in Figure 4.13).
JMFIT also struggles at SNR < 5, with false positives arising from the x? minimisa-
tion procedure fitting multiple Gaussian components. Furthermore, with only ~ 360 real
sources detected by the PP method for SNR = 2 passed on to JMFIT, which finds > 1400
sources, results in JMFIT on average fitting four Gaussians per source in an attempt to
recover all of the available flux. At SNRs > 5, JMFIT has a source detection performance

~ 99.0%.

Summary

The source detection results for the PP method and JMFIT are summarised in Table 4.2
for all SNRs.

The precision of these results is determined by the number of sources simulated for
each SNR, e.g. for 1000 sources, a precision of 0.1% can be obtained. Despite a number
of 100% detection performances above, it is never certain that the same precision will be
achieved with subsequent runs. In this particular scenario, the performance is deemed to

be > 99.9%, or accurate to within one decimal place.
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Figure 4.8: Source detection results for resolved sources. PP method with global noise
in black, local noise in red and JMFIT in blue. Target number of sources per SNR bin is
1000.

Table 4.2: Table of Source Detection Results from Simulations

Signal-to-noise Point Sources Resolved Sources
Ratio Global* Local* JMFIT Global* Local* JMFIT
2 901 897 1334 359 328 1439

3 1000 1000 1008 985 992 1256
4 1000 1000 995 1000 1000 1048
5 1000 1000 994 1000 1000 1019
6 1000 1000 994 1000 1000 997
7 1000 1000 993 1000 1000 995
8 1000 1000 995 1000 1000 990
9 1000 1000 996 1000 1000 993

10 1000 1000 998 1000 1000 988
15 1000 1000 991 1000 1000 985
20 1000 1000 989 1000 1000 983
30 1000 1000 1000 1000 1000 987
50 1000 1000 991 1000 1000 986
100 1002 1008 999 1003 1001 997

* The noise estimation regimes for the PP method.
4.3.4 Flux Extraction Performance

The flux extraction performances for point sources and resolved sources generated as

described previously, are now presented for the two PP methods (global and local noise)
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and JMFIT for the SNR = {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50, 100}

Point Sources

Figure 4.9 shows 14 point sources embedded with varying levels of random Gaussian noise

to replicate the subset of tested SNRs.

Figure 4.9: 14 point sources created with UVCON with added Gaussian noise, u = 0,
o =1/SNR. From the top going left to right, SNR = {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20,
30, 50, 100}.

The PP flux extraction method is tested along side the common Gaussian fitting
procedure JMFIT within AIPS. The input parameters for JMFIT are left unconstrained
to ensure an optimal fit. Both global and local background noise determinations for the
PP flux extraction are presented here to determine the performance of each method. The
results for the point source (unresolved) integrated flux extraction can be seen in Figure
4.10, for the PP flux extraction with global (a) and local (b) noise determination and
JMFIT (both figures).

The performance of both methods are generally within the dotted curves, defined by
the random errors, represented by the MAD of the flux density sample from each SNR bin.
JMFIT only overestimates the flux at SNR = 2, with large errors, whilst underestimating
the flux at all other SNRs. The PP method always underestimates the flux with global
background subtraction, but is more accurate than JMFIT for SNR > 5. For SNR < 5, the
PP method performance suffers as a result of an intrinsic property of the method, in that

it is based on a pure PP analysis to determine the noise level and, furthermore, the flux.
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Figure 4.10: Performance of the pixel-by-pixel (black points) and JMFIT (blue line) in-
tegrated flux extractions of point sources. The integrated fluxes are summarised by the
median of the 1000 sources and the first and third quartiles for the errors (error bars and
shading). For reference, expected random errors are indicated by the MAD (dotted lines).
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The greater the noise and thus the uncertainity, the worse the performance. One merit of
this method is that the PP method will rarely overestimate the flux, even in the situation
where too many pixels are added to the island than exists in the real source structure.
This is because each additional pixel will be normalised by the background level during
noise subtraction.

The reason JMFIT does not suffer from the same issue is because it fits Gaussians
via a least squares algorithm to the pixels within a designated region around the source.
The flux value with the smallest x? is the preferred solution. However, a problem with
fitting Gaussians to sources with low SNR is that multiple Gaussian solutions may be
found, indicating the presence of multiple false sources. This has been the case during
these simulations for SNR = 2 and 3 with a number of false positive sources (> 300 for
SNR = 2, and 8 for SNR = 3). Therefore any individual fluxes determined for these SNRs
should be treated with caution, because the median statistics mask a number of incorrect
solutions.

The local noise fluxes have similar behaviour to the global noise fluxes over all SNRs.
This is expected because of the uniform Gaussian noise determination, resulting in similar
local and global noise properties. For a non-uniform noise distribution (which can be
expected in real maps), the local noise estimates may be more accurate than globally
determined noise estimates.

Results from JMFIT are dependent on the initial starting values given to the task.
From the PP analysis of point sources, the positional accuracy of source detection is ~
90% which drops to ~ 30% for resolved sources. It is therefore expected that most positions
of the point sources passed onto the least squares algorithm used by JMFIT are valid, but
the same statement is not true for resolved sources.

Because median statistics are considered for the demonstration of source detection
for each SNR bin, the incorrect characterisation of islands by JMFIT for point sources
is determined more by the inability of the task to correctly fit the islands, as opposed
to incorrect starting values for the least square algorithm giving by the source detection.
However, for resolved sources this statement does not hold as only ~ 30% of the total

source positions were correctly given to JMFIT.
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Resolved Sources

The flux extraction methods are also tested on resolved Gaussian sources generated by
UVCON in the same manner as for the point sources. The sources in this simulation have
a generic structure which is highly resolved in one axis. Figure 4.11 shows 14 resolved
sources embedded with varying levels of random Gaussian noise to replicate the subset of

tested SNRs.

Figure 4.11: 14 resolved sources created with UVCON with added Gaussian noise, y = 0,
o =1/SNR. From the top going left to right, SNR = {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20,
30, 50, 100}.

Both global and local background noise determinations for the PP flux extraction and
JMFIT flux extraction are again presented here to determine the performance of each
method on resolved sources. The results for the resolved source integrated flux extraction
can be seen in Figure 4.12, for the PP flux extraction with global (a) and local (b) noise
determination and JMFIT (both figures).

The apparent systematic offset for both PP methods and JMFIT arises from IMAGR,
with CLEAN’s attempt at deconvolving resolved sources. During this process some of the
flux is scattered throughout the image due to CLEAN’s inability to correctly deconvolve a
resolved source. This affects all source detection and flux extraction methods and results in
the main source component having a lower input flux than the assumed 1.00 Jy input flux
which was entered into UVCON. To demonstrate this, Figure 4.13 is the resultant field

of a resolved source deconvolved with IMAGR with no added Gaussian noise. Obvious
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Figure 4.12: Performance of the pixel-by-pixel (black points) and JMFIT (blue line) inte-
grated flux extractions of resolved sources. The integrated fluxes are summarised by the
median of the 1000 sources and the first and third quartiles for the errors (error bars and
shading). For reference, expected random errors are indicated by the MAD (dotted lines).
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artefacts appear in the field, meaning the main source component does not contain the
total 1.00 Jy input flux from UVCON. To determine the true flux of the main component,
a box is drawn around the source and every pixel within is summed using the AIPS task
IMEAN. To reduce the effects of random errors, 1000 input resolved sources with no noise
are generated and the simulations showed the median flux of these 1000 resolved sources

to be 0.94028 Jy with the median absolute deviation (MAD) equal to 0.00915.

Figure 4.13: Image of a UVCON and IMAGR simulated resolved source with no noise. The
main source component is at the centre of the image with a fraction of the flux scattered
throughout the image.

Redoing Figure 4.12 with the true input flux, reveals the true performance of these
algorithms without the CLEAN deconvolution bias. Figure 4.14 shows integrated flux
extraction of a resolved source for the PP method using global noise (a) and local noise
(b) estimations, and JMFIT (both figures). Note that the y-axis is no longer the normalised
integrated flux (normalised to 1.00 Jy), but the actual integrated flux, with the horizontal
dashed line representing the median of 1000 simulated flux-corrected resolved sources. The
MAD (horizontal dash-dot lines) represents the uncertainty on this median input value.

The true input fluxes in Figure 4.14, show an improved performance for all methods
compared to Figure 4.12. The PP method once again suffers at SNR < 5 due to the
intrinsic noise problems discussed earlier. At around SNR = 7 the flux values are correct
within errors, improving with higher SNRs. Although the fluxes appear to be slightly
overestimated at higher SNRs, the majority of the values are within the third quartile
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Figure 4.14: Performance of the pixel-by-pixel (black and red symbols) and JMFIT (blue
line) integrated flux extractions of flux-corrected resolved sources. The integrated fluxes
are summarised by the median of the 1000 sources and the first and third quartiles for the
errors (error bars and shading). For reference, expected random errors are indicated by
the MAD (dotted lines). The methods are compared to the median of the true resolved
input fluxes from 1000 simulations, shown by the dashed line, with the MAD of the correct
flux input given by dash-dot lines.
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limit, and therefore a result of the nature of the flux-correction implemented above. This
can be interpreted as being a function of random error associated with the flux-correction
rather than an actual overestimate of the flux by the PP method.

The high SNR resolved source fluxes determined from local noise estimation are over-
estimated compared to the corrected input flux. This may result from the localised noise
determination containing negative bowls (regions of negative flux) around the main source
component generated during deconvolution (an effect which can arise from incorrect am-
plitude calibration as well as incomplete apertures in real sources). This could have the
effect of increasing the resultant flux by subtracting less noise. This would explain why
the global noise estimates are within the corrected input flux but the local noise estimates
are not. Despite this, the flux values are within that expected from random errors given
by the MAD.

The performance of JMFIT appears to suffer from the resolved nature of the sources
even after the flux-correction. JMFIT consistently underestimates the flux by ~ 4% at
higher SNRs and only correctly estimates the flux at SNR < 7 due to the large associated
errors. Furthermore, it was shown earlier that JMFIT produces a number of false positives
(see Section 4.3.3) for SNR < 5, and therefore individual fluxes for these SNRs should be

treated with caution.

4.3.5 Source Position Performance

Similar MC simulations also test the performance of the weighted mean position determi-
nation from the PP method and JMFIT’s position determination of the sources. The pixel
offsets are calculated for a smaller subset sample of 100 sources® and the median taken to

represent that SNR bin.

Point Sources

For the point sources, Figure 4.15 shows the PP method with global and local background
subtraction (black and red symbols) and JMFIT (blue lines) positional offsets in pixels.
The positional offsets determined by the PP methods (for both global (a) and local (b)
noise estimates) have a sub-pixel positional accuracy for all SNRs. The accuracy increases
with higher SNR, and starts to plateau at ~ 0.05 pixel offset. Any differences between the

two different noise estimations are within the associated errors. The offsets from JMFIT

3Due to time restrictions, only 100 simulations were performed for each SNR and algorithm.
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Figure 4.15: Performance of PP methods (black and red symbols) and JMFIT (blue line)
positional offsets for point sources. Sub-figure (a) shows the PP method with global
noise estimation and JMFIT fit and sub-figure (b) shows the PP method with local noise
estimation (red triangles). The positional offsets are summarised by the median of the
100 sources and the first and third quartiles for the errors (error bars and shading). For
reference, expected random errors are indicated by the MAD (dotted lines).
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follow a similar trend to the PP methods, with noticable increase in performance at SNR
> 10 which also converges around the same pixel offset. Any visual differences between
the PP method and JMFIT are accounted for by the associated errors given by the first

and third quartiles.

Resolved Sources

For the resolved sources, Figure 4.16 shows the PP method with global and local back-
ground subtraction (black and red symbols) and JMFIT (blue lines) positional offsets in
pixels.

The positional offsets determined by the PP methods (for both global and local noise
estimates) have a sub-pixel positional accuracy for all SNRs but SNR = 2 for both and
SNR = 3 for local noise estimates. Again the accuracy increases with increasing SNR,
and plateaus around 0.10 pixel offset. The offsets from JMFIT follow a similar trend to
those from the PP method with a marginally better performance for higher SNRs, but
consistent within errors.

It is obvious that the PP methods and JMFIT achieve higher accuracy for the point
sources than for the resolved sources. For JMFIT, the lower peak flux of the source makes
determining the centre of the Gaussian profile more difficult. However, the performance
of both increases with higher source SNR, with comparable positional offsets for point

sources and resolved sources at SNR > 100.

4.4 Source Classification via Cross Referencing and Bayes’

Theorem

The final part of the COBRaS pipeline focuses on source classification and significance
boosting for low SNR sources (< 5 SNR) utilising the amalgamated catalogues from Sec-
tion (4.1). Firstly the outputs from the source detection and flux extraction are cross ref-
erenced with an input catalogue within a designated search radius (similar to the ‘tidying’
algorithm in the catalogue concatenation), to create a list of potential matching candidates
for each source. This matching list is then explored in detail to reveal the probabilities

that the sources and candidates are equivalent.
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Figure 4.16: Performance of PP methods (black and red symbols) and JMFIT (blue line)
positional offsets for resolved sources. Sub-figure (a) shows the PP method with global
noise estimation and JMFIT fit and sub-figure (b) shows the PP method with local noise
estimation (red triangles). The positional offsets are summarised by the median of the
100 sources and the first and third quartiles for the errors (error bars and shading). For
reference, expected random errors are indicated by the MAD (dotted lines).
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4.4.1 Cross Referencing Maps and Catalogues

The probability that the catalogue and map source are coincident can be determined by
the product of the Gaussian distributions of each source. The majority of the OB stellar
winds residing within the COBRaS maps are expected to be point sources, or can be
described by Gaussians and therefore the positional probability can be well described by a
Gaussian probability density function (PDF) with the position equal to the mean and error
to the standard deviation of the distribution. The matching source is reasonably described
by a Gaussian PDF, with the position equal to the mean of the PDF and the standard
deviation equal to the matching radius. This produces a wide distribution, but still only
significantly favours a source which coincides with the same position and insignificantly
for a source on the periphery of the distribution.

Given the mean position of the source (zo, yo) and its associated errors o, and oy, the

two dimensional (2D) PDF of the map source f (z, y) at (z, y), is given by

1 :L‘—xo2 — 02
f (z, y)zmexp[_<( 20§> +(y201/§)>]. (4.8)

The expression for the 2D PDF of the catalogue source (g (¢, y)) is similar:
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where the mean position given by the indices (i, jo), with errors o; and o; for the positions
(i, 7)-
The product of two Gaussian PDFs is also a Gaussian PDF| therefore the product of

Equations 4.8 and 4.9 reveals the PDF that the source in the map and catalogue match
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This expression indicates the probability that the two sources are coincident. Gener-
ally, the source has a narrow PDF profile whereas the catalogue source, with its larger

uncertainity has a broad profile. Figure 4.17 shows the two 2D PDFs of a simulated
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example of these two profiles.
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Figure 4.17: Plot of two 2D Gaussian PDFs. The broad Gaussian represents the catalogue
source with its wide matching radius and the narrow Gaussian profile represents the source
in the map. In this example there is a small offset between the source in the map and the
source from the catalogue.

4.4.2 Significance Boosting with Bayes’ Theorem

Bayesian statistics has been applied in detection algorithms (Hobson and McLachlan 2003;
Savage and Oliver 2007; Carvalho et al. 2009) as an alternative method for source extrac-
tion utilising either Monte Carlo Markov Chains (MCMC) or the PowellSnakes algorithm
for parameter estimation. One specific quality of Bayesian analysis is the effect of the prior
knowledge on the posterior distribution, which can be the source positions determined
from another survey or observing band (Savage and Oliver 2007). A brief introduction to
Bayes’ Theorem is given here, for a more formal and detailed description, the reader is

encouraged to refer to Sivia and Skilling (2006).
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Bayes’ Theorem links the probability of hypothesis H being true, with that of the

observed data D via three terms:

P(D|H) x P(H)
P (D)

P(H|D) = (4.11)

where P (H | D) is the posterior distribution (what we want to determine), P (D | H) is
the likelihood function of D given H, P (H) is the prior knowledge of H, and P (D) is the
evidence term which acts as a normalisation constant and for many analysis problems can
be omitted (Sivia and Skilling 2006). If the evidence term is removed then Equation 4.11

reduces to the proportionality:
P(H|D) x P(D|H) x P(H). (4.12)

The application of Bayes’ theorem to cross correlate the source and catalogue positions
using the source SNR is shown by the following. The posterior distribution P(S | G1, G2)
is described as the probability of there being a source S given the source in the map
G1 and the source in the catalogue Gy. The likelihood function P(S | Gp) is given as
the probability of the source S given the source in the map G; and the prior knowlegde
P(S,G1 | Go) is the probability of the source and source in the map given the source in

the catalogue. Substituting these terms into Equation 4.12 gives
P (S ‘ Gl, GQ) X P(S | Gl) x P (S,G1| GQ) (4.13)

The prior knowledge term in Equation 4.13 is the product of the probabilities of the
source and catalogue positions, both described by a 2D Gaussian PDF, which is the
same as Equation 4.10. The likelihood term in Equation 4.13 can be described by the
probability of a tailed Gaussian distribution? using the SNR as the standardised critical
z value for calculating the normal distribution for P (Z > z). The error function of a
Gaussian distribution does precisely this, with an approximation from Bryc (2002) given

by:

22 4+ 5.575192695 z + 12.77436324

e 212 (4.14)
V2723 + 14.38718147 22 + 31.53531977 2 + 2 x 12.77436324

P(Z >z =~

4This is a reasonable assumption, despite the fact the pixel-by-pixel extraction does not assume Gaus-
sianity of the source structure.
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Multiplying the probability outputs from Equations 4.14 and 4.10 for the likelihood and
prior knowledge terms respectively for Equation 4.13 does not increase the significance of
the source. Instead the inverse of each probability is required, or the probability of there
being no source P(no S|Gi,Ga), with corresponding likelihood P(no S|G;) and prior
probability P(no S, G; | Gz). Each term is equivalent to 1 minus the corresponding term

in Equation 4.13, resulting in the boosted significance P(S | G1, G2):

P(noS|Gi,Gz) x P(noS|Gi) x P(noS,Gy | Go)
P(S|Gi1,G2) x 1=[(1—=P(S|Gy)) x (1=P(S,G1|Ga))]. (4.15)

4.4.3 Empirical Simulations of the Significance Boost

Equation 4.15 results in a boosted significance for any source in the vicinity of a known
catalogue source, which is dependent on the SNR, or the level of significance of source
detection. The cross correlation with a known position follows a 2D Gaussian PDF and
increases the significance by larger amounts for more coincident sources than sources on
the periphery of the distribution.

To empirically demonstrate the level of boosting, multiple simulations over a range of
SNRs and over the range of the prior knowledge probability (product PDF of the source
and catalogue position match given by Equation 4.10) are conducted. Figure 4.18 shows
three plots of the posterior probability as a function of the prior probability for three
input SNRs: 2, 3, and 4. When the prior probability is zero (i.e. when no corresponding
catalogue source is matched with a map source), the posterior converges to the tailed
distribution probability for the input SNR.

For example; SNR = 2, prior probability = 0.0, posterior probability ~ 0.9545, i.e. the
same 2 o significance result as before. However, when the sources do coincide e.g. with a
prior probability of 0.94, then the posterior is boosted to ~ 0.9973, i.e. a 3 ¢ significance

result.
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Figure 4.18: Three plots displaying the posterior probability as a function of the prior
probability for input SNRs: 2 (top), 3 (middle) and 4 (bottom). The next significance
level line has been plotted on each figure, with insets for clarity at the injunction of the
posterior and next significance lines. Note the axes scales differ between each figure.
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Table 4.3: Table of boosting threshold probabilities

Input SNR Level Probability at Next Significance Prior Probability needed for

input SNR Level next Significance Level
2 0.95452799 3 0.9408
3 0.99730431 4 0.9766
4 0.99993681 5 0.9910
5 0.99999942 - -

Table of probabilities for input SNRs and the needed prior probabilities to boost to the next
sigma significance level.

The threshold levels to boost up one significance level are given in Table 4.3. The
posterior converges to a probability of 1.0 when the prior probability is also 1.0. Quanti-
tatively, this is misleading as you can never completely reject the null hypothesis (please
consult Section 6.5.1), but the fundamentals of probability theory state that the proba-
bilities of something being true plus the probabilities of something being false equal 1.0
(Sivia and Skilling 2006). Qualitatively, this is seen as a perfect match between the two
sources, which is unlikely, given different levels of precision and the constituent errors.

To demonstrate the requirements to boost over a continuous range of SNRs, Figure
4.19 shows the input SNRs for a range of non-discrete values (to 2 decimal places, i.e. 2.50,
3.95 etc...) and the required prior probability required to boost to the next significance
level. It is evident that for each significance level, the trend is similar but with a greater
exponential gradient when the prior probability — 1.0 for the higher significance levels.

Boosting beyond the 5 o significance is unlikely to produce meaningful practical results
for the applications of source detection. The level of precision in the prior probability
needed to boost to higher levels of significance, far exceeds that of the expected precision
on source position measurements, even at radio interferometry astrometric measurements.
Moreover, a 5 o significance detection is considered the detection threshold in many physics
and astrophysics communities.

For completeness, the values needed for the prior probability to boost to the 5 o
significance level are shown in Figure 4.20, where the prior probability is calculated with a
resolution to 4 decimal places, which equates to the minimum possible SNR to be boosted
to 5 o being SNR = 2.77 (prior = 0.9999 rounded). To boost a 2.00 SNR source to the

5 o level, requires a prior probability of 0.999988 (rounded to 6 decimal places). This
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Figure 4.19: Plot showing the continuous range of 2.00 < SNR < 4.99 prior probabilities
needed to boost the sigma significance to the next integer level. i.e. 2.78 — 3 o level etc.
The dashed lines denoting the integer significance levels are shown for clarity.
again raises the issues of the level of precision needed for the source positions, and also
for the resolution of the product of the two 2D Gaussian PDFs in Equation 4.10 (which is
1/10" of the smallest of the two positional errors) in order to boost over multiple integer
significance levels.

The resolution of the product PDF (Equation 4.10) can be set to any incremental level
at the expense of computational time for higher resolutions. However, the amount of time
necessary to perform these calculations is by no means a limiting factor, but is stated here

as a consideration.

4.5 Conclusions and Discussions

Section 4.1 focuses on the catalogue amalgamation routine for the Cyg OB2 Amalgamated
Catalogue and its constituent catalogues. The Java module STILTS is imported within
the Jython environment to enable scripting of the concatenation of meta table data from

the VO and other databases. The exact procedure is described here and the problems of
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Figure 4.20: Figure showing the prior probability required to boost a SNR to the 5 o
significance level. The figure is restricted to a prior resolution of 4 decimal places where
the limit for boosting to 5 o is SNR = 2.77 (prior required = 0.9999). The inset shows a
zoomed plot around an SNR of 3.5 where the prior needed to boost is ~ 0.999.
catalogue standardisation are also discussed. The main Cyg OB2 catalogue contains 6500
non-duplicate entries and the known OB catalogue contains 290 sources.

Near infra-red photometric methods such as those employed by Comerén et al. (2002)
are also presented and identify 350 potential OB candidates. The same methods are
applied to the 2MASS catalogue to create an additional 1930 OB candidates from the
JHK colours. All of these catalogue will be pivotal in aiding the classification of radio
sources in COBRaS maps.

The second part of this chapter contains a simple modification to the Floodfill alogrithm
utilised by Hancock et al. (2012) and Hales et al. (2012), exploiting a fundamental prop-
erty of radio interferometric constructed images. By using the synthesised beam size as a
condition for source detection (island size) results in the lowering of false positive detec-
tions from a Gaussian simulation. Only at high SNRs (50, 100) were there any signs of
false positives (1 in every 500 sources for point sources) from the source detection, and this

is most likely attributed to artefacts from IMAGR scattering flux during source creation.
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Accounting for these effects, the reliability of the source detection is > 99.9% for point
sources with an SNR > 3. The same modification allows fainter sources to be detected
down to an SNR = 2, with ~ 90% detection for point sources, dropping to ~ 36% for
resolved sources.

A new flux extraction method is presented in Section 4.3, which is independent of
the source structure. The pixel-by-pixel (PP) flux extraction method is shown to be as
accurate as existing methods while not assuming source Gaussianity. It is also tested on
faint sources (SNR < 5), with all determined fluxes within the associated errors for point
sources. For resolved sources, the fluxes coincide with input fluxes at SNR > 7 within
errors, after accounting for the scattered flux from IMAGR. The PP method is comparable
or performs better in flux extraction than JMFIT for SNR > 5. For lower SNRs the method
suffers from its intrinsic property of determining fluxes from higher noise. The sources in
the simulations presented here are Gaussian and resolved Gaussians, because a standard
set of non-Gaussian sources with known signal properties does not appear in the literature
(Hales et al. 2012).

The final section of the chapter describes a novel method to statisitically boost the
sigma significance level of a faint source with SNR < 5.0. Using Bayes’ Theorem, the
posterior probability is given as the tailed Gaussian distribution with the SNR substituting
the critical z value (likelihood) and the product of two 2D Gaussian distributions of the
map source and catalogue source (prior). Empirical simulations are made to find the
theoretical prior probability required to boost a source SNR to a higher sigma significance
level. The precision of the prior probability needed to boost 2.00 <= SNR < 5.00 to the
accepted detection level of 5 o is also discussed.

The Bayesian boosting module uses prior information in the form of catalogues amal-
gamated from previous surveys. The boost requires the positions of source in the COBRaS
maps to coincide with those from the catalogues. Two potential problems arise from this
set up. The first is that the resolution of the COBRaS survey and any previous surveys
will almost certainly differ, with the source positions from COBRaS more likely to have
a higher precision from the high resolution of e-MERLIN. The other consideration is if
COBRaS is compared to another high resolution observation with a significant elapse in
time between the two observations, proper motion effects may influence the absolute posi-
tions from both surveys. These points need to be considered when deploying the Bayesian

module to sources.
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This chapter raises a new issue concerning standardisation, particularly with cata-
logues from surveys. Amalgamating catalogues with known identifiers enables accurate
cross correlation to build complete and large catalogues over a common region in space.
Concatenating catalogues with source sky positions is limited by the positional accuracy
and precision of the constituent catalogues. While this offers the only way to compare
every known source in the sky, because it is the only common property of any source,
localised regions of space (and more practically useful, regions within the Galaxy) can
and should be treated differently. For a definitive catalogue of Cyg OB2 for example, a
common identifier is necessary for all objects belonging to the association for future ref-
erence and studies, as opposed to the various identifiers (e.g. MT91, AFM2007) currently
available. It is possibly within the future scope of the COBRAS project to provide this,
building on the back of the most detailed and deep radio map of the core region of Cyg
OB2.

For the source and flux extraction, the programming language Python is again deployed
here because of its link with Parseltongue and therefore the AIPS package, and because
it is free of compilers and easy to run and modify (syntax friendly). The flux extraction
code presented in this thesis has been set up to accept image files directly from AIPS,
however it has been run on generic fits images, using the pyfits module to read the image
into NumPy arrays. For the latter, the user will have to designate the beam size of the
image to utilise the full capabilities of the algorithm.

The unique feature of the pixel-by-pixel flux extraction method is that the algorithm
does not assume the source to have any specific structure. For non-Gaussian sources such
as massive binary interaction regions this will produce an accurate flux determination
(for a good SNR e.g. > 7), free of any constraining fit parameters used with Gaussian
fits. An interesting application would be to test this method on diffuse regions such as
HII regions (or ultra-compact HII regions), where one would expect that the algorithm
would be limited by its ability to assess the noise of the image from the minority of pixels
representing the background, if the diffuse region covered a significant portion of the image.
This would affect the flux calculation in conjunction with the associated errors from the
algorithm.

It is possible to search for sources in the visibility plane instead of the image domain.
The advantages of model fitting in the visibility plane is that after deconvolution with

CLEAN or MEM, the noise distribution of the image is poorly understood (Pearson 1999).
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Model fitting is most useful when the sky brightness can be described by a model with
a small number of parameters. An example is a field with a small number of unresolved
sources where the parameters are the position and flux densities.

The limitations of model fitting are dependent on the model fitting the data well, the
errors are Gaussian and are known, and that there are no calibration errors and any errors
in the observed visibilities are uncorrelated (Pearson 1999). There are a few programs
which conduct model fitting: the AIPS task UVFIT, SLIME, an add-on AIPS task with a
graphical interface, and DIFMAP (Shepherd 1997) another graphical editor.

Visibility plane source detection could be a avenue of future investigation for big

projects such as MeerGAL with MeerKat and other SKA surveys.



Chapter 5

Radio Emission of Massive Stars

in Cyg OB2

If we knew what it was we were doing, it would not be called research.

Albert Einstein

The theme of this chapter involves the radio emission from massive stars in Cyg OB2.
Firstly, an introduction on the background of massive stars and massive star winds is
given. Secondly, descriptions of the mechanisms of radio emission excess from massive
stars is presented. Thirdly, an investigation into the predicted mass loss rates and radio
fluxes of single massive stars, with and without clumping effects. Finally, a first look at

the initial COBRaS maps accompanied with source and flux lists.

5.1 Massive Stars

Stars are comprised of the fourth state of matter, plasma, and are in hydrostatic equilib-
rium, the balance between self-gravity and thermal pressure. They are internally powered
by the thermonuclear fusion of elements in the core (or shell), where energy and synthe-
sised elements are created and propagate through to the photosphere via convection and

radiation processes. At the photosphere they radiate energy as electromagnetic radiation
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or photons, and material via a stellar wind. These processes change over the lifetime of a
star as it evolves, changing also the composition of the star e.g. neutron-degeneration of
neutron stars.

The most fundamental stellar parameter is mass, which dictates the star’s role and
future in the Galaxy (see Section 1.3.2). Using our the mass of our Sun as the standard
unit (1 solar mass = Mg), stars have a range of stellar masses from the smallest; e.g.
OTS 44, 0.013 M (Luhman et al. 2005) to the largest; al in the R136 cluster ~ 300
Mg (Crowther et al. 2010). Photospheric (or effective) temperature (Teg) broadly scales
with stellar mass (more mass leads to higher pressure and densities, which in turn leads
to higher temperatures), and can be determined through the spectroscopic study of lines
arising at known specific, discrete wavelengths.

To separate the diverse population of stars, a spectral classification scheme called
the MK system devised by Morgan et al. (1943) is used, with some modern additions
accounting for new discoveries. The Havard sequence assigns a letter from the group -
OBAFGKM - to stars depending on which spectral species appear in their spectra (which
roughly depends on their effective temperature). O denotes the hottest stars, decreasing
through the sequence to M, the coolest stars. Each group is further split into subgroups,
designated with a number from 0; the hottest, to 9 the coolest within a group, with an
exception for O stars which start from O2 as the hottest. Spectral precision is such that
the subgroup can be in increments of 0.5, or finer increments around effective tempertures
where complex stellar behaviour is present (as will be seen later).

Stars are further subdivided by their luminosity class, or by the strength of certain
absorption lines and are represented by Roman numerals. 1 stands for supergiants, II,
III and IV for bright, normal and sub- giants respectively, V for main sequence stars
(also known as ‘dwarfs’), and VI for very faint dwarfs and white dwarfs. The supergiants
category can be split again into Ia, Iab and Ib from most to least luminous. Further
additions to the spectral classification can be made to include perculiar features and
specific emission lines by including lower case letters to the description. Figure 5.1 shows
an example of an Hertzprung-Russell (HR) diagram depicting the stellar classification of
a number of stars with differing spectral types and luminosity classes.

This thesis is concerned with massive stars, which are defined as having an initial
stellar mass > 8 Mg and will conclude their lives as spectacular supernova events. This

encapsulates a number of stellar objects at different evolutionary stages, including O and
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Figure 5.1: Hertzprung-Russell Diagram showing the Havard sequence and luminosity
classes.
early (the hottest) B stars, all Wolf-Rayet (WR) stars, Luminous Blue Variables (LBVs),

and red and yellow supergiants.

5.2 The Winds of Massive Stars

The two quantities emitted from the photosphere are electromagnetic radiation and parti-
cles. Emission of the latter constitutes the stellar wind - a continuous outflow of material
from the photosphere to the interstellar medium (ISM). This next section describes the

nature of stellar winds from massive stars.

5.2.1 Mass Loss

For our Sun, the mass loss rate is on the order of ~ 1071 Mg yr=!. Over the Sun’s lifetime
of ~ 10 billion years, it will lose ~ 1072% of its initial mass. This is feeble in comparison
to the mass loss rates of massive stars which are on the order of 1076 Mg, yr=! (Puls et al.
2008), increasing to 1073 Mg yr~! in the most extreme case of the LBV 7 Carina (Hillier
et al. 2001). Therefore, massive stars will lose a substantial fraction of their initial masses
over their lifetimes (typically a few million years), indicating the importance of mass loss
on their evolution.

The single scattering limit for the mass loss rate (Mss), is driven by line radiation and

assumes that so many spectral lines exist that all the photons leaving the star are absorbed
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within the wind. In essence, the momentum of photons L/c is equal to the momentum in

the wind Mss Voo, giving the mass loss rate

: L
Mgs = (5.1)

Voo C

Inputing values for L and v, for ¢ Puppis: L = 8 x 10° Ly and vo, = 2200 km s+
(Lamers and Leitherer 1993) gives a single scattering mass loss rate Mg = 1075 Mg yr.
This is a factor of 0.25 within the observed mass loss rate of MSS =24 x 1076 Mg yr1
(Lamers and Leitherer 1993). There are also theoretical reasons why assuming that all of
the momentum from photons is transferred to the wind material, and will become evident
later.

To answer the question of how a massive star loses mass, one may first consider the
radiative force only as a function of the frequency independent free electron scattering.
The flux of radiative energy at any given radius r is L/ (47rr2) and the corresponding
radiative momentum flux is L/4nr?c. The electron scattering opacity is ke = 0o/ fle,
where o, is the Thomson scattering cross-section (6.6 x 1072° cm?), and p, is the mean
atomic mass of the material in the atmosphere. In the majority of cases hydrogen makes
up the bulk of the wind plasma, resulting in pe ~ 1 and ke = g.. The product of the

opacity of electron scattering and the radiative momentum flux produces the acceleration

due to continuum opacity geont

oo
dmr2e’

(5.2)

Jecont =

The ratio of the acceleration of continuum opacity to that of the gravitational acceleration

of the star given by ggray = GM/7? is denoted by I'. and subsequently by

r. — YGcont _ oL ) 72
¢ Gerav 4nr2c GM

oL
= — 5.3
4re GM (5-3)

This is known as the Eddington parameter, and for massive stars I, approaches unity?,

signifying that matter only needs a small additional acceleration component to break free

!This is a broad statement and neglects the effects of rotation which modifies to the QT limit (Maeder
and Meynet 2000).
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of the star’s gravitational field and become part of the stellar wind. In practice if I'e
reaches 0.639 or the so called break-up limit, then extremely high mass loss rates can
occur such as those in LBVs and WR stars (Maeder and Meynet 2000). However, this
addition acceleration component is gained through the opacity of metal lines, and is now

discussed.

5.2.2 Radiative Line-Driven Wind Theory

It has been stated earlier that the ejection of particles from the outer atmosphere of
massive stars makes up the stellar wind. However, it is the released photons, each carrying
momentum hv/c which drives and accelerates the wind through the opacity of metal ions
(Milne 1926; Kudritzki and Puls 2000 and references within). Morton (1967) discovered
from ultra-violet (UV) observations that if the acceleration from metal ions could be
shared among the more abundant hydrogen and helium species, then significant mass loss
from this radiative line-driving mechanism could be viable. Lucy and Solomon (1970)
and Castor et al. (1975) (hereafter CAK) devised the first theories of radiative line-driven
winds via the absorption in the UV reasonance lines of a number of species.

There are two key concepts which explain the effective acceleration of the line-driving
mechanism. The first is the momentum transfer from photons to ions through line scat-
tering, where the photons originate with a range of angles in the stellar atmosphere and
become more or less isotropic after absorption and re-emission (Puls et al. 2008). The
change in direction angle leads to the radial net outwards transfer of momentum. The
second concept concerns the Doppler effect. If the atmosphere were static but with strong
line absorption, photons would be absorbed and scattered in the lower layers of the at-
mosphere and the upper layers would not receive direct radiation at the wavelength of
the absorption line. If the atmosphere is moving radially outwards, a velocity gradient
exists between the atoms in the outer layers and the seemingly red-shifted photons in the
photosphere. Therefore any photons which are not absorbed in the lower layers can be
absorbed in the upper layers at a different wavelength. In essence, the Doppler shift allows
the absorption of unattenuated UV continuum photons, whose wavelength has shifted to
the wavelength of the absorption ion(s).

The dominant transition lines that contribute the most to the acceleration are UV
resonance lines of abundant elements, i.e. the absorption of photons from the ground

state of C, N and O ions and meta-state levels of Fe. Additional contribution from less
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abundant (but still significant) elements include P, Si, S ions. Lamers and Cassinelli
(1999) show that it is possible for absorption to occur ~ 10° times per absorbing ion,
which accelerates the wind to a terminal velocity v after 10* seconds. This amounts to
the wind attaining terminal velocity within a few stellar radii. This result becomes highly
significant later in this chapter (Section 5.3).

So far it has been stated that photons propagate radially outwards transferring mo-
mentum to ions in the process (Puls et al. 2008). In dense winds the transfer of momentum
from the metal ions to the hydrogen and helium species within the wind is accomplished
by Coulomb collisions (Puls et al. 2008). Via this mechanism it is possible to accelerate
the entire bulk of the wind plasma. Figure 5.2 shows a simplified cartoon of the radiative
line-driven theory setup. In this figure a layer of depth Av lies a distance r away from the

centre of a massive star, and has a mass Am, density p (r) and a local optical depth 75 (r).

w

v+Av

Figure 5.2: Cartoon of a simplified radiative line-driven wind theory.
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A simplified derivation of how the spectral lines can drive a wind is now shown, for a
full description the reader is referred to the work of CAK. First we utilise three simplifying

assumptions:

1. The massive star is assumed to be a point source and only radially streaming photons

interact with the layer.

2. Only strong lines drive the stellar wind with an optical depth 75 >1, absorbing all
the photons in a bandwidth Avy;.

3. A large local velocity gradient Av = %Ar exists across the layer and a range of
frequencies are absorbed by a line transition of rest frequency v; (ignoring intrinsic

width).

The absorption bandwidth Av; can be described in terms of velocity v as a consequence

of the Doppler effect, which in turn can be described in terms of the velocity gradient

Av dv . v;
Ay, = —v; = —Ar—. 5.4
v CV dr Tc (5-4)

The acceleration due to the opacity of spectral lines gjnes is equal to the product of the
total momentum provided by the star (momentum of photons) and the fraction absorbed
by a strong line i of frequency v; and width Ay; (substituting Equation 5.4) divided by
the change in mass AM
1 L L,
Jlines = mz : f Vi

L Lydvvi
AMc L dr c

Ar. (5.5)
where the change in mass AM is defined by the mass continuity relation
M = 47xr?pv (5.6)

Equation 5.5 contains the contribution of only one spectral line. To include all species i,
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simply sum over i and substitute M /v = 4drrlpAr:

L 1 L, dv y;

Jlines = 7 Arr2pAr — L dr c

L v dv L,y
*EMEZ_L

L v dv

SRS .
AN dr (5.7)

where Neg represents the number of effective optically thick absorbing lines (dimension-
less). Now the total acceleration of the radiative force can be determined by combining

the three acceleration components; line, continuum and gravity:

Jtot = Glines T YJeont — YJgrav

0oL GM
= Gin - —, 5.8
Gtines + dmrc 72 (5:8)

and substituting the Eddington parameter I'cGM = Z;ﬁ ,
GMT, GM
Gtot = Glines T 5 T T3
r r
GM

= Jlines — ?(1 - Fe)- (59)

Defining the effective mass Mg as the stellar mass with the electron scattering correction

e as Meg = M (1 — Te),

GMeg

r2

Jtot = Ylines — (510)

After a simple algebraic rearranging, the expression for the radiative acceleration required
to generate a stellar wind is given by

GMeff
7,2

Qlines >

L v dv GMg

2 el v g > 2 (5.11)

It can be shown using the single scattering limit for optically thick lines M ~ Ng L /c2,
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and the typical parameters for massive stars; L ~ 10° L), M=4x 106 Mg yr~!, that

Negr =~ 100’s of spectral lines are required to drive the stellar wind of a massive star.

5.3 Radio Emission from Massive Stars

The winds of massive stars are comprised of hot plasma, mostly in the form of ionised
hydrogen accelerated through radiative line-driving mechanisms explained in the previous
section. This property provides a unique method of detection through the interaction
of wind particles with one another when accelerated to high speeds. This next section
explains the mechanisms where radio flux observations estimate the mass loss rate of
massive stars.

The wind plasma from a massive star is able to produce emission from the interactions
of ionised particles. The majority of these particles are protons and electrons from ionised
hydrogen which makes up the bulk of the material in the wind. When two charged particles
come in close proximity, the trajectory of one is deflected by the other, and the resulting
deceleration causes the slowing particle to lose kinetic energy in the form of a photon.
This is a consequence of the conservation of energy where the photon emitted can be at a
frequency in the radio regime.

The physical mechanism is called bremsstrahlung, or ‘braking radiation’ because of
the deceleration of one of the particles, or free-free radiation because of the interaction
of two free particles. Figure 5.3 shows the Bremsstrahlung mechanism for two oppositely
charged particles, in this instance a proton and electron. In the outer parts of the wind,
the speed of the outflowing material has reached terminal velocity, increasing the incidence
of Bremsstrahlung, assuming the wind is hot, maintaining ionised hydrogen throughout.
With these conditions, the emission arises in the radio regime, where the intrinsically
thermal process (positive spectral index) creates stronger fluxes at higher frequencies.

This is typically observable at frequencies of a few GHz.

5.3.1 Thermal Free-free Radio Emission Spectrum

The free-free radio and IR excess emission spectrum were first derived independently by
Wright and Barlow (1975) and Panagia and Felli (1975). For a full detailed explanation
of this derivation, the reader is asked to consult these papers. A simplified proof is given

here.
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Figure 5.3: Free-free emission (Bremsstrahlung) process with two oppositely charged par-
ticles; one proton and one electron. Some of the emission from the winds of massive stars
arises from the radio frequency part of the electromagnetic spectrum.

The free-free absorption coefficient x,, of an ionised gas with density p (Giidel 2002) is

given by
Ky x VXT3 02, (5.12)

where p? = n.n;, n. and n; are the electron and ion number densities in the wind, v is
the frequency of the excess radiation and T is the temperature of the wind. The equation

of mass continuity (Equation 5.6) is substituted for p in Equation 5.12 giving

Voo

SN2
Ky o V2T 2 <M> 4 (5.13)

where it is assumed the wind has reached terminal velocity v,. To get the optical depth
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T, Equation 5.13 is integrated from r to infinity

[e.9]
T, = / Kydr
T

N
M
x v 2T 2 () 3, (5.14)

2
y 3
r(Ty = Toff) = i <M) ) (5.15)

The luminosity of the wind can be represented as the zero order solution of radiative

transfer in a stellar atmosphere with the Eddington-Barbier relation
L, o r? (1o = Teft) By (T (10 = Test)) - (5.16)

Using the Rayleigh-Jeans approximation to the Planck function B, = Tv? and substituting

Equation 5.15 for r, results in the wind luminosity taking the form

()’ -

The observed radio flux received at Earth S,, is related to the luminosity by L, = 47d?S,
— L, o< d%S,, where d is the distance from Earth to the source. Substituting this relation

into Equation 5.17 and solving for M gives

4
’ 3
d’S, I/§ <M>
Voo

M o v 2d2 S, 1 ve. (5.18)
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This relation requires a couple of modifications to compensate for the over-simplification
of some of the assumptions made. Firstly a quantum mechanical correction called the
Gaunt Factor g,, a function of the electron temperature T, and frequency v (or wave-
length) is introduced with the consequence of flattening the spectrum S, o V3 5 8, x

%6 (Wright and Barlow 1975; Cox 2000):
g, = 138 T " vgy, 0M (5.19)

which is valid for radio wavelengths (but not for mm or IR wavelengths). This spectrum
is characteristic of an isothermal wind with a constant velocity (vs,) and density p oc 72,

The second modification allows a correction for the total gas number density relation
p?> = nen;, which assumes the wind is entirely made up of hydrogen ions. Therefore a
term containing the mean atomic mass of ions in the wind u;, the number of free electrons
per ion 7. (therefore n. = ~en;), and the charge state of the atoms Z. Both corrections

modify Equation 5.18 to

[NIE

. o 2 ,[1,12 % _

M = 0.095 (S, d*)* (Z% > (Vgy)"? Vo, (5.20)
e

where v is in the units of Hz, T is in K, v is in km s71, M is in Mg yr—1, dis in kpc,

and S, is in Jy (10726 W m~2 Hz~!). This relation can be re-arranged to make S, the

subject, as presented in Wright and Barlow (1975) and Panagia and Felli (1975):

1
_3 3 20\ 2
Sy % = 0.005 (d2)? (‘;"4") <Z‘;‘7 > (vgn) 2

S, = 23.2d°2 <M>3 < i >_3 wa)i  [Jyl. (5.21)

Voo 72,

Equation 5.21 is used later in this chapter to estimate the smooth wind radio fluxes of

massive stars (Section 5.5.3).

5.3.2 Radio Emission from Single Massive Stars

It has been described in previous sections that radio emission can arise from the ionised
winds of massive stars through free-free radiation. This process is dependent on the tem-

perature of the wind, which needs to be hot enough to ionise hydrogen which constitutes
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the bulk of the wind. Because of this dependence, free-free radio emission is termed ther-
mal, where the radio spectrum steadily increases with increasing frequency. The relation
between flux and frequency is called the spectral index («) and has been shown for thermal
emission to have a positive index (a ~ 0.6).

The radio flux from Bremsstrahlung is weak with typical O stars located at 1 kpc
having a flux ~ 0.1 mJy (1 to 15 GHz) (Puls et al. 2008), with the stronger emitters on
the order of a few mJy at 5 GHz (6cm) (Abbott et al. 1980; Bieging et al. 1989; Howarth
and Brown 1991). This only allows detectable radio emission from massive stars with
winds which are completely ionised (Drake and Linsky 1989), which includes O stars,
early B supergiants and WR stars.

Some OB stars have displayed non-thermal radio emission (Abbott et al. 1984; Bieging
et al. 1989; Giidel 2002), and WR stars (Giidel 2002 and references therein) with spectral
indexes approaching zero and even negative indexes. White (1985) proposed a mechanism
in single stars where synchrotron emission from electrons accelerated by shocks propagat-
ing through the winds. These shocks are predicted to occur from radiative instabilities
from the line-driving mechanism in the wind of a single star (Owocki and Rybicki 1984;
Chen and White 1994). Some discussions are included at the end of Chen and White
(1994) which reveal illuminating, critical comments concerning the possibility of shocks in

the wind generating non-thermal emission.

5.3.3 Radio Emission from Massive Binaries

There is now considerable doubt as to whether single stars produce any non-thermal radio
emission (Blomme et al. 2010). Observations of seemingly single stars (such as Cyg OB2
No. 8A and No. 9) where modelling of non-thermal processes appeared to explain the
higher mass loss rates by including the non-thermal component, were later shown by other
observations to be binaries (De Becker et al. 2004; Nazé et al. 2008). This is backed up by
theoretical work on non-thermal emission from single stars by van Loo et al. (2006), who
concludes that the non-thermal emission would be absorbed by the opacity of the stellar
wind.

Whatever the origin, it is clear that the production of non-thermal radiation is a
result of synchrotron emission, emitted from relativistic electrons which are accelerated
via the first order Fermi mechanism (Fermi 1949; Bell 1978) occuring in the presence

of hydrodynamical shocks (White 1985; Chen and White 1994; Giidel 2002; van Loo
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et al. 2006; De Becker 2007; Puls et al. 2008 and references therein). In this mechanism,
electrons are bounced across the shock, each time gaining energy from the shock and
accelerating. A fraction of electrons make enough bounces to attain relativistic speeds
(Blomme 2011). The electrons then spiral around magnetic field lines from the massive
stars emitting synchrotron radiation which can be observed in the radio regime.

The currently favoured hypothesis of the origin of non-thermal radiation from massive
stars is from the wind-wind collisions of massive binaries. In this model, the ram pressure
of two radiatively driven winds generates large scale shocks where the two winds collide.
The two shocked regions are divided by a contact discontinuity region and the bow shock

front envelopes around the star with the weaker stellar wind as seen in Figure 5.4.

(2) Fermi acceleration

(1) Contact

discontinuity SQQCK'

R

(3) Synchrotron emission

Figure 5.4: Massive star wind-wind collision region depicting the creation of non-thermal
radiation from synchrotron emission. Two shock regions created from the collision of two
radiatively driven winds, provide the nursing ground for electrons to be accelerated to
relativistic speeds via the Fermi mechanism. Figure taken from Blomme (2011).

There is theoretical evidence supporting the physics behind the generation of non-
thermal radiation from the wind-wind collision of massive binaries (Stevens et al. 1992;
Eichler and Usov 1993; Dougherty et al. 2005; Pittard and Dougherty 2006). These
include considerations such as: inverse Compton (IC) cooling, the process where the scat-

tering of low energy photons by relativistic electrons transfers energy to photons from
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the electrons i.e. electrons lose energy. IC cooling occurs at the high end of the energy
spectrum. Coulomb cooling, the collisions of electrons results in a loss of energy for the
electrons. Coulomb cooling occurs at the low end of the energy spectrum. Synchrotron
self-absorption, where at low frequencies the synchrotron electrons are optically thick for
the synchrotron radiation cause them to scatter of the electrons. Free-free absorption, as
described in Section 5.3. The Razin effect, when relativistic particles are in the presence
of a plasma, the beaming effects of synchrotron radiation are supressed (7). Clumping,
see Section 5.4 for details.

The inclusion of IC cooling particularly leads to a greater understanding of the electron
spectrum and therefore the spectral index of the synchrotron radiation. Moreover, these
models enable fits to the radio data to determine the spatial distribution of electrons
without knowledge of the magnetic fields within which they lie (De Becker 2007).

There is also mounting evidence from observations that non-thermal radiation arises
from massive binaries. For O stars, there are 16 known non-thermal radio emitters, 11
are confirmed binaries and two more are suspected binaries. For WR stars, there are 17
known non-thermal radio emitters, 12 are confirmed binaries and 2 more are suspected
binaries (De Becker 2007).

Putting these numbers into context, Sana et al. (2008) determined the binary fraction
of massive stars in NGC 6231 as 60% and De Becker et al. (2006) determined that the
binary fraction of IC 1805 should range between 20% to 60%. The main issue with binary
studies is observational bias which splits into two problems. (1) radial velocity observations
typically last a few days with follow-ups on the order of months or years, this leads to
the majority of detected spectroscopic binaries having periods of a few days. (2) the
inclination angle of the orbital system, where radial velocity studies are biased by edge-on
systems and do not include face-on systems.

Despite the high correlation between known binaries and non-thermal emission from
massive stars, detecting a massive star with a negative spectral index (i.e. non-thermal
radiation) requires follow-up observations from radial velocity studies before being ir-

refutably designated a binary system.
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5.4 Clumping in the Winds of Massive Stars

5.4.1 The Effects of Clumping on Mass Loss Diagnostics

There are currently serious discrepancies between the theoretical radiation-driven mass
loss estimations as described by the mass loss recipes of Vink et al. (2001), and a number
of different mass loss diagnostics (Prinja et al. 2005; Fullerton et al. 2006; Puls et al.
2006). The differences between the theoretical models and observational mass loss rates
is probably a consequence of modelling a smooth stellar wind (Vink et al. 2001) whereas
there is observational evidence that the winds are not homogeneous, but contain structure
(Crowther 2007; Puls et al. 2008 and references therein). Moreover, theoretical hydrody-
namical models predict instabilities from the radiation driving mechanism (Owocki and
Rybicki 1984; Dessart and Owocki 2005). In addition, there are discrepancies within dif-
ferent observational methods of mass loss rates, as demonstrated by Figure 5.5, which

shows the difference between UV P4 and Ha / radio (p?) methods.
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Figure 5.5: Discrepancies between two mass loss methods: UV P4t and p? for a range of
O stars. Figure from Fullerton et al. (2006).

The physical mechanisms of UV P4+ and the so called p? methods, provides insight
into why such differences occur. The wind profile of UV resonance lines are insensitive
to micro-clumping (see Section 5.4.2). This is because the analysis of P-Cygni profiles of
any ion species involves the determination of the optical depth or column density of all
the material associated with any particular ion (and are integral quantities), are therefore

not sensitive to the distribution of material along the line of sight (Fullerton et al. 2006).
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This holds true for optically thin clumps but becomes more complicated for optically thick
clumps.

Optically thick clumps (large scale clumping) constitute porous winds, where ‘porosity’
is defined as a wind with localised clumps of increased density and large gaps or channels
of low density material where photons are more readily transmitted (Owocki et al. 2004).
For P Cygni profiles in porous winds, the clumps only cover a fraction of the solid angle
surrounding the star affecting the optical depth of unsaturated UV resonance lines and
thus underestimate the mass loss rate (Massa et al. 2003; Prinja and Massa 2013).

Ho and radio free-free continuum mass loss rates are examples of p? diagnostics. The
emission from these two methods arises from the interaction of two particles (recombina-
tion for Ha, Bremsstrahlung for radio, see Section 5.3 for details). Therefore the increase
in local density will result in emission from these processes to be produced more strongly.
Additional complications for Ha measurements originate from the type of atmospheric
model adopted (Fullerton et al. 2006), as well as the high frequency of variability in Ha
(Markova et al. 2005).

Considering these two methods gives rise to three possibilities. Either mass loss rates
from UV P**t resonance lines are systematically underestimated; mass loss rates from p?
methods (Ha and radio free-free processes) are systematically overestimated; or a combi-
nation of the two is affecting both measurements by different amounts. The last scenario is
possible due to the fact that there are further discrepancies in the mass loss rates between
Ha and radio free-free emission (Blomme et al. 2003; Fullerton et al. 2006; Puls et al.
2006).

The combination of both scenarios is further explained by investigating the optical
depth for free-free emission as a function of wavelengths. The dependence is proportional
to A? and results in observations at different wavelengths probing different regions of the
stellar wind. Approximately, for an O star this equates to: Ha within 1.5 R, IR up to a
few R., millimetre from ~ 10 R, and radio (cm) ~ 100 R,. This dependence is illustrated
in Figure 5.6.

It is unlikely that the amount of clumping is constant throughout the wind, but that
a variable clumping gradient exists (Puls et al. 2006; Blomme 2011), which would explain
the observed discrepancies in mass loss rates. Evidence for this gradient can be seen from
flux observations of € Ori from optical to radio wavelengths in Figure 5.7. There are

deviations from the smooth model (dashed line in Figure 5.7) in the Ha/ IR regions which
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100 R,

Figure 5.6: The formation regions of density squared free-free emission processes, for a
typical O star. Figure taken from Blomme et al. (2002).

increases dramatically going into the millimetre regions and then declines into the radio

cm wavelength region.
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Figure 5.7: Visual to radio fluxes for € Ori normalised to the expected fluxes with a smooth
wind model. The greater flux excess, particularly at millimetre wavelengths indicates a
higher amount of clumping in the region. Figure taken from Blomme (2011).

It is clear that clumping in the winds of all massive stars is present and that “stochastic

wind clumping is a universal phenomenon in the radiation-driven, hot winds from all

massive stars” (Lépine and Moffat 2008; Puls et al. 2008), and it significantly affects the

mass loss rates of p? methods by varying degrees.
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5.4.2 The Clumping Factor

One approach to quantifying the amount of clumping in the wind involves using a clumping
factor fq, which may differ for different radii. A simple interpretation of the clumping
scenario is to assume that the wind has two constitutent parts; dense optically thin clumps
and rarified (empty) interclump material (Puls et al. 2006; Blomme 2007; Puls et al. 2008).
This definition gives rise to

(r*)

fcl = Wa (5‘22)

where p is the mass density in the wind and the () brackets denote an average over some
small wind volume. The clumping factor is sometimes referred to as a volume filling factor

f in the literature and has the relation

1

=

(5.23)

The clumping regime described above is also referred to as micro-clumping, due to the
optically thin nature of the clumps at all wavelengths. In the scenario that the clumps
are optically thick (clumping on large scales), or macro-clumping, the effects of porosity
are somewhat different. The physical difference between the two regimes is the mean free
path of interacting photons. Optically thin clumps are defined as clumps with sizes smaller
than the photon mean free path of the matter-light interaction i.e. only interacting once
before being scattered, whereas for optically thick clumps, photons interact many times
before being destroyed or scattered into the interclump material (Puls et al. 2008).

Photons are able to pass through gaps in the wind unattenuated, and optically thick
clumps can result in other material which lies behind these clumps becoming unimportant
to the radiative transfer procedure, because they are hidden from incident photons (Austin
2011). The optical depth of spectral lines differs between species and therefore spatial
porosity affects some lines by different amounts. Models including macro-clumping can
match observed UV P*t profiles without lowering the mass loss rate, whereas models
without macro-clumping empirically underestimate mass loss rates (Oskinova et al. 2007).
Macro-clumping does not affect Ha empirical mass loss measurements where the line is
optically thin.

In summary, micro-clumping reduces the empirical mass loss rates from p? diagnostics,
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counteracting the overestimated rates from those methods. Macro-clumping increases
the empirical mass loss rates from UV resonance lines (such as P**) counteracting the
underestimated rates. A combination of micro- and macro-clumping can also resolve the
discrepancies between resonance lines and p? methods (Oskinova et al. 2007; Hamann

et al. 2008).

5.4.3 Radio Free-Free Emission with the Clumping Factor

The clumping factor f, modifies the mass loss rate M by

Mclumped = M V fc ’ (524)

for p? processes. For smooth winds (no clumping) fq = 1 and for clumped winds f, >1,
where larger clumping factors increases the emission for a given mass loss rate. Substitut-

ing Equation 5.24 into the radio free-free emission relation (Equation 5.21) gives

S = 232472 (M\/ﬂ>3 < L >_3 (vg,)s [Tyl (5.25)

Voo Z2 5,

win

5.5 Predicted Smooth Mass Loss Rates and Radio Fluxes
of Massive Stars in Cyg OB2

This section provides the ground work for predicting the radio fluxes (at L-band and C-
band) of the massive stars in Cyg OB2. These fluxes are generated from models assuming

a smooth wind, with the effects from different clumping factors presented in Section 5.6.

5.5.1 Theoretical Mass Loss Relationships

A grid of theoretical mass loss rates for Galactic OB stars was created by Vink et al. (2000),
considering the effects of multiple scatterings, where a photon is able to be scattered more
than once, in radiative line-driven winds. The authors generate mass loss formulae as a
function of five stellar parameters; stellar mass, luminosity, effective temperature, terminal
velocity and escape velocity, from the interpolation of multiple linear regression fits. They
derive formulae for effective temperature ranges between 50,000 and 12,500 K with two

distinct temperature groups; 50,000 to 27,500 K and 22,500 to 12,500 K.
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For effective temperatures between these two regions (22,500 to 27,500 K) the authors
state that either relation can be used. This region is where the bi-stability jump is located,
where mass loss increases dramatically with decreasing effective temperature (Vink et al.
2000). This is a consequence of the ionisation balance of iron which dominates the line-
driving at the base of the wind (Vink et al. 1999). For effective temperatures below 25,000
K, Fe3T recombines to Fe?t which is more efficient in accelerating the wind. This has
been seen in UV observations of OB stars (Lamers et al. 1995).

An additional parameter considering the metallicity Z was introduced into the mass
loss formulae by Vink et al. (2001) resulting in a total of six stellar parameters describing
the mass loss rate. This last parameter Z is assumed to equal solar metallicity in the
present work because many of the stellar parameters described below are assumed to be
in solar units.

The mass loss rate for the effective temperature range 27,500 < T < 50,000 K, given
by Vink et al. (2000) is:

logM = — 6.697 (£0.061)
+2.194 (£0.021) log (L. /10°)

— 1.313 (£0.046) log (M, /30)

—1.226 (£0.037) log (““’53“)

+0.933 (£0.064) log (Teg/40000)
—10.92 (£0.90) {log (Teg/40000)}>

+0.85 (£0.10) log (Z/Z5) , (5.26)

where M is in units of Mg yr_l, L, is in solar units, M, is the stellar mass without electron
scattering correction also in solar units, and Teg is in Kelvin K.

The mass loss rate for the effective temperature range 12,500 < T.g < 22,500 K, given
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by Vink et al. (2000) is:

logM = — 6.688 (£0.080)
+2.210 (£0.031) log (L. /10°)

— 1.339 (40.068) log (M., /30)

~1.601 (£0.055) log (W)

+1.07 (£0.10) log (Teg/20000)

+0.85 (£0.10) log (Z/Z5) (5.27)

where the units are the same as for Equation 5.26.

For this study the mass loss rates for O and B0 stars are determined by the hotter
relation (Equation 5.26), and stars with spectral types B0.2 - B5 are determined by the
cooler relation (Equation 5.27). This rule designates a relation for all stars, including
those whose effective temperature is approximately around where the bi-stability jump

occurs.

5.5.2 Theoretical Stellar Parameters for Massive Stars

The five stellar parameters (My, L., Teff, Voo and vege) in Equations 5.26 and 5.27 are
selected according to the spectral classification of the star. Theoretical values for each are
taken from a number of studies in the literature.

For O stars, Martins et al. (2005) provide the M,, L., Teg, R stellar parameters
for supergiants, giants and dwarf luminosity classes (I, III, V). The authors compile a
theoretical table of parameters from interpolating in a grid of non-local thermodynamic
equilibrium (LTE) spherically extended line-blanketed models computed with the code
CMFGEN (Hillier and Miller 1998). There are no parameters for bright giants (II) and
sub giants (IV), therefore the calculations for bright-giants assume the parameters of
supergiants and the sub-giants assume the parameters of giants. In addition, the stellar
radius R is also provided for the determination of the escape velocity (vesc; see below).

Table 5.1 shows the stellar parameters for O stars from Martins et al. (2005).
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The authors compare their results with a previous study by Vacca et al. (1996) and
found that the effective temperature of all luminosity classes studied are cooler by 2000
to 8000 K, and luminosities for all luminosity classes are also reduced.

For the B supergiants (Ia, Ib), Searle et al. (2008) also utilise CMFGEN (Hillier and
Miller 1998) and results from Crowther et al. (2006) to generate the fundamental stellar
parameters (M,, L., Teg, R) for classes BO to B5. They also find reduced luminosities
compared to previous studies. Table 5.2 shows the stellar parameters for B supergiants

from Searle et al. (2008).

Table 5.2: Stellar Parameters for B Super-
giants from Searle et al. (2008)

Spectral Type Teg logL R M,
K Lo Rs Mg

B0 Ia 28.1 5.60 269 25
BO Ib 29.7 5.66 23.8 37
B0.2 Ia 26.7 5.62 304 36
B0.2 Ib 285 5.656 27.8 49
B0.5 Ia 24.7 558 338 33
B0.5 Ib 254 558 322 47
B0.7 Ia 23.6 553 351 23
B0.7 Ib 244 551 339 37
Bl Ia 220 544 365 12
Bl Ib 21.7 538 349 22
B1l.5 Ia 19.9 544 445 18
B1.5Ib 19.3 529 397 19
B2 Ja 18.3 541 51.0 19
B2 Ib 18.1 527 444 21
B2.5 Ia 172 539 565 19
B2.5Ib 17.6 525 46.2 22
B3 Ia 164 537 604 19
B3 Ib 175 523 455 19
B4 Ia 15.8 534 635 16
B4 Ib 174 518 432 13
B5 Ia 15.7 533 63.0 15
B5 Ib 15.2 5.09 51.7v 13

Notes. M. is the spectroscopic mass adopted
from Searle et al. (2008). This table is an ex-
cerpt of their table 5.
The terminal velocities (v) of O stars and B supergiants are given by Prinja et al.

(1990). The authors characterised 181 O stars, 70 early B supergiants and 35 WR stars

using the central velocity of narrow absorption features and the violet limit of zero residual
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intensity in saturated UV P Cygni profiles. They then generate the mean and range of
Voo for O stars with luminosity classes I, III and V and BI. They ignore “f” qualifiers
and extreme BIT supergiants. Table 5.3 shows the terminal velocities for O stars and B

supergiants from Prinja et al. (1990).

Table 5.3: Terminal Velocities for O stars and B Super-
giants from Prinja et al. (1990)

Spectral Voo (km s™1)

Type Supergiants (I) Giants (III) Dwarfs (V)
03 3150 31507 3190
04 2325 2810¢ 2950
05 1885 2810 2875
05.5 1885 2810¢ 1960
06 2300 2560 2570
06.5 2180 2545 2455
o7 2055 2600 2295
7.5 1980 2175 1975
o8 1530 2125 1755
08.5 1955 2255 1970
09 1990 1875 1500
09.5 1765 1505 1500¢
09.7 1735 1505¢ 1500¢
BO 1535

B0.2 1215

B0.5 1405

BO.7 1155

B1 1065

B1.5 750

B2 790

B2.5 490

B3 590

Notes. Superscripts denote no value in original table.
adopted O5I voo; ° adopted 031 veo; © adopted OS5I voo; ¢
adopted 09.5111 voo; © adopted O9V veo.

For stellar classifications where no velocities are present, the nearest similar class ve-
locity is chosen and shown in Table 5.3. For the bright-giant and sub-giant (II, IV) classes
for O stars, supergiant and giant (I, III) velocities are used respectively. For B4 and B5
supergiants, the terminal velocity for B3 is adopted.

The final parameter required for the Vink et al. (2000) mass loss recipes (Equations
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5.26 and 5.27) is the escape velocity, defined as

Vese = \/ 26M. (1~ Te) (5.28)

r

where T’ is described by Equation 5.3, which reduces to:

L\ (M
[, = 7.66 x 107 o <L®> <M®> (5.29)

0e is the electron scattering coefficient and depends on the degree of ionisation and on

the abundance of helium near the base of the wind (Lamers and Leitherer 1993). This is

broken down into three regimes (in cgs units):

oo = 0.34cm?g™! if Teg > 35,000 K,
oo = 0.32cm?g! if 30,000 K < Teg < 35,000 K,

oo = 0.31cm?g™! if Teg < 30,000 K. (5.30)

As part of the catalogue building script in Chapter 4, Jython routines are made to
calculate these five stellar parameters for each star depending on their spectral types from

the known OB catalogue.

5.5.3 Smooth Mass Loss Rates and Radio Fluxes

The rest of the Jython script calculates the mass loss rates using Equations 5.26 and 5.27.
To determine the smooth wind radio fluxes at 1.5 GHz and 5 GHz, Equation 5.21 is used
with the following values for variables; M from Equations 5.26 and 5.27 (Vink et al. 2000),
Voo from Table 5.3 (Prinja et al. 1990), the distance d as 1.4 kpc (Rygl et al. 2012), the
mean atomic mass p; = 1.3 (90% hydrogen and 10% helium; Scuderi et al. 1998), number
of free electrons 7, = 1.1 (assuming both species completely ionised: 0.9(1/1) + 0.1(2/1)),
the charge state of atoms Z = 1.13, electron temperature T, = 0.85 X Teg (Scuderi et al.
1998), and v is the central bandwidth frequency of the observation.

Figure 5.8 shows the 1.5 GHz and 5 GHz fluxes as a function of Teg. Each luminosity
class is identifiable with different symbols, with the O stars in red and B supergiants in
blue.

These fluxes, as with the mass loss rates calculated above, are predictions from a
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Figure 5.8: Smooth 1.5 GHz and 5 GHz (20 cm and 6 cm) fluxes of O stars and early B
Supergiants. O stars are in red; circles (supergiants I), squares (giants III) and triangles
(dwarfs V) and B supergiants are in blue; crosses (Ia) and stars (Ib).



5.5. PREDICTED SMOOTH MASS L0ssS RATES AND RADIO FLUXES 203

smooth wind model. If clumping is present in the radio-opacity region of the winds, it is
expected that the observed radio fluxes at these frequencies will be higher than the fluxes
determined here. Furthermore, it is expected that the observed 5 GHz fluxes will be larger
than the observed 1.5 GHz fluxes because of the thermal spectral index of massive star
winds.

It is important to note that these fluxes are predictions for the wind component of single
stars, and do not consider any influence from binary effects. Binaries emit both thermal
radiation from the winds of the single star components, and non-thermal radiation from
the interaction region between both stars. Depending on the line of sight and inclination of
the binary, the amount of thermal radiation (which is calculated here) will change as parts
of the wind may become obscured by the interaction region (and vice versa). Moreover,
the nature of the interaction region will have a significant effect on the thermal emission.
For example, the interaction region of two colliding clumpy winds, destroys the clumps
which smooths out the structure in the interaction region (Pittard 2007). Therefore whilst
it is possible to compare these fluxes with thermal fluxes from known binaries, the results
must be interpreted with caution.

The predicted fluxes indicate that most OI and BI, half of the OIII and early OV are
expected to be seen in 1.5 GHz COBRaS maps, assuming an image rms ~ 11 pJy (for
~ 5 hours on each target field). This increases for 5 GHz where the thermal nature of
the winds increases the fluxes. For the 5 GHz maps roughly all of the OI, OIII, and BI
stars and early OV stars are expected to be visible with an image rms ~ 5 pJy (for ~ 5
hours on each target field). These results are subject to large errors arising from the large
uncertainties on some of the individual stellar parameters (e.g. AM = 50%; Martins et al.
2005) which dramatically changes the predicted flux.

Tables 5.4, 5.5, and 5.6 give the full set of parameters used to determine the 1.5
GHz and 5 GHz radio fluxes for O supergiants and giants, O dwarfs, and B supergiants

respectively.
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Both the mass loss rates and fluxes have associated errors, propagated from the errors
on the individual stellar parameters from their respective studies (Prinja et al. 1990; Vink
et al. 2000; Martins et al. 2005; Searle et al. 2008). Full details on these errors is given in

Appendix B.

5.5.4 Comparison of Smooth Mass Loss Rates and Fluxes with the Lit-

erature

The work on the smooth mass loss rate and flux predictions was completed in late 2010.
Since that time, Muijres et al. (2012) have published similar studies on the predictions of
mass loss rates and wind velocities of O stars (I, IIT and V luminosity classes). They also
use stellar parameters from Martins et al. (2005) and compare the velocities of massive
stars with those from Prinja et al. (1990). However, this thesis study differs from Muijres
et al. (2012) in a number of ways. This investigation also includes early B supergiants
with stellar parameters from Searle et al. (2008), and goes one step further by using the
calculated mass loss rates from the Vink et al. (2000) recipes to predict the radio flux at
6 cm and 20 cm (5 GHz and 1.5 GHz respectively). This is then applied to known OB
stars in Cyg OB2 derived from the catalogues created in Chapter 4.

Muijres et al. (2012) generate mass loss rates with two different methods. The first
termed “best-3 solution”, uses a line force representation of the radiative acceleration of
lines (their Equation 6) to analytically find the best solution for the velocity law in the
outer part of the wind. The second method is a hydrodynamical solution which calculates
a numerical solution of the equation of motion (their Equation 11) which assesses whether
the wind is isothermal and the electron scattering I'e is constant through the wind. These
are used to estimate the terminal velocities and the vo,/Vese ratio of each O star.

These methods differ from this study where the vo/Vese ratio is determined from
observations in Prinja et al. (1990) and Equation 5.28. Vink et al. (2000) also differs by
estimating the ratio as a step function. Stars which qualify for the hot regime (Equation
5.26) the ratio ~ 2.6 and for the cool regime (Equation 5.27) the ratio ~ 1.3 (Lamers
et al. 1995). Note, the method of Lamers et al. (1995) and Vink et al. (2000) also uses the
terminal velocities of Prinja et al. (1990) to determine the step function.

Figure 5.9 shows the comparison of the O star mass loss rates from this thesis study and
that of Muijres et al. (2012) (method A; (a), method B; (b)). There is a clear systematic

discrepancy between the two studies for both methods A and B, whereby the mass loss



5.6. CLUMPED WIND RADIO FLUXES FOR MASSIVE STARS IN CyG OB2 208

rates of Muijres et al. (2012) are underestimated relative to this study. Furthermore, the
rates for late O dwarfs also appear to deviate from the general trend. This is because the
terminal velocities and mass loss rates are overestimated for the weak wind cases of late
O dwarfs.

The cause of these discrepancies can be explained as follows. The systematic difference
in mass loss rates is explained by the aforementioned difference in calculation involving
the Voo /Vesc ratio. The resulting ratio from methods A and B are all larger than those
from observations, and therefore, because of the inverse proportionality, underestimates
the mass loss. When the same velocity ratio is used for their methods and the method of
Vink et al. (2000), the mass loss rates are comparable. Muijres et al. (2012) also state that
the uncertainty of terminal velocities is widely quoted as 20%, but should realistically be
increased to 30-40% for empirical values, due to the uncertainties in the measurement of
Voo from UV resonance lines.

The trend of the late O dwarf mass loss rates is due to the ionisation of iron, particularly
Fe?t. Similar behaviour of Fe3T and Fe?T ions was mentioned in Section 5.5.1 with the
bi-stability jump around B0 to B1 stars. In this case, Fe** is more efficient in absorbing
stellar flux (and therefore accelerating the wind) than Fe?*. This leads to the methods of
Muijres et al. (2012) to not find physical solutions for method B, and method A mass loss
rates heavily caveated for late O dwarfs. They further state that supergiants and giants
(other than OTIII) do not suffer from this problem. The authors conclude that another,
unknown mechanism is contributing to the acceleration at the base of the wind for late O

dwarfs, suggesting magnetic pressure, turbulence or pulsations as possible explanations.

5.6 Clumped Wind Radio Fluxes for Massive Stars in Cyg
OB2

Clumping is likely differential in the winds of massive stars (see Figure 5.7) resulting in
different clumping factors throughout the wind. This directly results in different clumping
factors associated with different wavelength mass loss diagnostics such as Ha, mm/ sub-
mm and radio (cm) observations. Hydrodynamical simulations have shown the amount of
clumping rises in the inner region as the clumps are formed by line-driven instabilities and
peaks in the mm ~ 20 R,, where the line driving force no longer maintains the clumps

which can survive to large distances ~ 100 R, (Runacres and Owocki 2002).
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Figure 5.9: Mass loss rates comparison with Muijres et al. (2012) methods A and B for O
stars with luminosity classes I, I1I, and V. Against both methods a systematic discrepancy
exists, whereby Muijres et al. (2012) mass loss rates are underestimated in comparison to
this study. This is particularly evident for late O dwarfs, where their solutions for 06.5V

and later are considered non-physical solutions. This is explained further in the text.
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Simpler models of clumping stratification using piece-wise linear curves throughout
the wind were investigated by Blomme et al. (2002). Two models were made to fit the
observations of ¢ Ori, one assumed no wind clumping in the radio regime and fits the fluxes
in the mm regime well, and the other assumed clumping in the radio regime to coincide
with results from Runacres and Owocki (2002). This second model required the mass loss
rate to be decreased by a factor of two in order to fit the fluxes, but resulted in a clumping
factor of 4 for the radio fluxes which is also consistent with those from hydrodynamical
simulations (Runacres and Owocki 2002).

Other studies have investigated the clumping factors from Ha diagnostics, whose mass
loss rates are similar to those determined from radio excess (Figure 5.5). Repolust et al.
(2004) detect an excess in mass loss rates from Ha observations including two Cyg OB2
stars (No. 7 and No. 11), resulting in a clumping factor of 5.2 necessary to reduce the mass
loss rate to match the wind luminosity relation (WLR). More Ha studies find clumping
factors of 5.7 (Puls et al. 2003), 10 (Hillier et al. 2003), 4.3 (Markova et al. 2004) and
4.1 £ 1.4 (Puls et al. 2006). Furthermore, Markova et al. (2004) found that for strong
winds where the Ha profile is in emission, the mass loss rates from Ha is larger than
radio determined rates by a factor of two, but for weaker winds where the Ha profile is in
absorption, the reverse is true or the rates are similar. This would suggest that the amount
of clumping in the region close to the star (He) is more clumped than in the outer regions
where radio emission occurs. However, further uncertainties exist from determining mass
loss rates from Ha absorption profiles for weak winds, meaning interpretation of these
results should be met with caution.

The amount of predicted clumping from simulations of the Ha and radio regions is sim-
ilar (Runacres and Owocki 2002), and independent observations of Ha and radio clumping
factors also show similar factors (see references above). Whilst this is not always true for
any given star, it is reasonable to assume for a first-order model that the clumping factors
for Ha and radio diagnostics are equivalent. A small grid of clumping factors can be
drawn to encompass the common clumping factor of 5 from the majority of Ha observa-
tions, with an upper limit of f.,; = 10 for highly clumped winds, and a lower limit of f, =
2 for slightly clumped winds. A clumped wind (f; > 1) emits more radio flux than a
smooth wind (fg = 1) and the smooth wind fluxes are also included for reference and are
equal to the radio fluxes determined in Section 5.5.3.

The 1.6 GHz (20 cm) and 5 GHz (6 cm) clumped radio fluxes determined by Equation
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5.25 for the subset of clumping factors fq = {1, 2, 5, 10} are shown in Tables 5.7, 5.8 and
5.9 for O supergiants and giants, O dwarfs, and B supergiants respectively. The errors on
the clumped fluxes are determined by the errors on the smooth wind fluxes (AS,, for fo =
1) multiplied by fa?/3.

Bieging et al. (1989) conducted a VLA radio study on some OB stars in Cyg OB2 at
1.5 GHz and 5 GHz. Comparing these fluxes with the predicted radio fluxes with varying
clumping factors provides early insight into whether these fluxes show signs of clumping.
Figure 5.10 shows Cyg OB2 members (thermal components where possible) selected from
Bieging et al. (1989), compared with the predicted fluxes of the same stars from the OB

Catalogue. The dashed lines show the fluxes expected with different clumping factors.
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Figure 5.10: 1.5 GHz (red) and 5 GHz (black) radio flux comparisons between the observed
flux from the VLA (Bieging et al. 1989), and the predicted fluxes determined in this
chapter. The dashed lines show the expected fluxes for the clumping factors foq =1, 2, 5,
10.
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A brief description of the observation of each star from the Bieging et al. (1989) study
is now given. Cyg OB2 No. 9 has multiple observations with radio fluxes ranging from
0.7 to 8.1 mJy at 5 GHz and 1.0 to 6.3 mJy at 1.5 GHz. However, the spectral index
is either not known or negative for these observations, indicating a probable non-thermal
origin. One observation did herald a positive spectral index (0.6 £ 0.3) at both 1.5 GHz
and 5 GHz, and these fluxes are those displayed in Figure 5.10. The 1.5 GHz flux is only
an upper limit value but the 5 GHz flux has a thermal spectral index and resides ontop
of the fo = 2 line.

Cyg OB2 No. 8A also has a number of flux values, but half of these have a negative
spectral index and others have none. The fluxes of 0.4 + 0.1 mJy and 1.0 & 0.2 mJy both
at 5 GHz in Figure 5.10 should be treated with caution.

Cyg OB2 No. 7 has one observation deemed ‘probable free-free emission’ by Bieging
et al. (1989), but with no quoted spectral index. The observed flux of 0.4 mJy at 5 GHz
corresponds to a predicted flux with a clumping factor of f, = 2, although the large
observed errors also encompasses predicted fluxes with fo = 1.

Cyg OB2 No. 12 has a few observations and these are shown to also be thermal
emissions; 3.4 + 0.2 mJy (o« = 4+ 0.5 &£ 0.3) and 2.2 £ 0.2 mJy (o = + 0.1 £ 0.1) at
5 GHz, with an increase in observed fluxes with higher frequencies (6.0 + 2.0 mJy at 15
GHz with o = + 0.5 £ 0.3). There is also a 1.5 GHz flux of 2.0 £ 0.2 mJy (o = +0.1 £
0.1). Furthermore, Bieging et al. (1989) label the flux from this star as ‘definitely’ free-
free emission. The observed fluxes at both 1.5 GHz and 5 GHz are substantially larger
than the predicted fluxes with f. = 10, signifying a significant amount of clumping. This
star is classified as a B8Ia by Bieging et al. (1989), although the COBRaS OB catalogue
(originally classified by Skiff (2010)), Massey and Thompson (1991) and Klochkova and
Chentsov (2004) all define it as a B5Ia. For a mid B supergiant this is an extremely high
radio flux at these frequencies, and Klochkova and Chentsov (2004) note that the wind is
time variable.

Cyg OB2 No. 22AB has one radio flux with an upper limit which is consistent with
free-free emission (Bieging et al. (1989)). The flux value of < 0.3 mJy at 5 GHz is situated
on the f. = 2 line and only further radio observations from COBRaS will be able to
constrain this value to confirm the amount of clumping from this star.

Cyg OB2 No. 8B has one radio flux with an upper limit which is consistent with free-
free emission (Bieging et al. (1989)). The flux value of < 0.2 mJy at 5 GHz is situated just
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above the fi = 10 line. However, being so close to the origin (at 0 mJy) and only being
an upper limit, there is still some uncertainty to the amount of clumping in the wind of
this star.

Cyg OB2 No. 8C has one radio flux with an upper limit which is consistent with
free-free emission (Bieging et al. (1989)). The flux value of < 0.2 mJy at 5 GHz is situated
just above the f, = 1 line. The upper limit means no clear conclusions can be made with
respect to clumping.

Cyg OB2 No. 11 has one radio flux with an upper limit which is consistent with free-
free emission (Bieging et al. (1989)). The flux value of < 0.4 mJy at 5 GHz lies below
but within the large errors of the f, = 1 line. This result would suggest that no clumping
exists in the outer winds of this star.

Cyg OB2 No. 5 has one radio observation in the Bieging et al. (1989) survey of 1.8 +
0.3 mJy at 5 GHz but with an unknown spectral index. Other observations of Cyg OB2
No. 5 were made by Persi et al. (1985) with 5 GHz fluxes of 5.8 + 0.7 mJy and 6.3 £ 0.3
mJy with a spectral index of a = 0.2 + 0.1 for the latter observation. Additional radio
observations of Cyg OB2 No. 5 were made by Ortiz-Ledn et al. (2012) with the VLA
and found flux values of 7.9 £+ 0.2 mJy at 5 GHz and 6.8 + 0.4 mJy at 1.5 GHz with a
spectral index oo = 4+ 0.12 + 0.05. Cyg OB2 No. 5 is a quadruple system (Kennedy et al.
2010) with reported periods of 6.6 days (Persi et al. 1985; Rauw et al. 1999; this thesis,
see Section 6.6.3) and 6.7 years (Kennedy et al. 2010; Cazorla et al. 2014). The known
multiple components, variable flux and flat spectrum all point towards a non-thermal
contribution to the flux and therefore the apparent heightened flux consistent with f. >
10 is not a result of clumping in the wind but of non-thermal emission associated with a
multiple component system.

Considering all of the above, there is evidence of deviation from predicted fluxes with
fa = 1 after including uncertainties with some of the spectral indexes, and more signif-
icantly the errors on the predicted fluxes. However, what is required is a statistically
viable sample of stars to demonstrate differences between observed and theoretical fluxes
and thus mass loss rates. COBRaS will ultimately provide an unbiased sample of massive
stars in Cyg OB2, with the sensitivity to robustly examine the ratio between observed and

predicted fluxes with a high level of accuracy.
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5.7 Current COBRaS L-band and C-band Maps

The COBRaS C-band Legacy data observations will commence from mid 2014 to 2015,
when the e-MERLIN C-band receivers have been upgraded to the full 2 GHz bandwidth.
The C-band pointings will detect more of the massive star population than L-band will,
due to the thermal nature of the stellar winds. Only when the C-band Legacy datasets are
delivered, can the extensive radio clumping investigation begin. This Section contains only
fragmented datasets from the commissioning period of e-MERLIN and the first fraction
of L-band Legacy data.

At the time of writing this thesis (April 2014) the COBRaS dataset includes one usable
C-band 18" July 2012 commissioning (512 MHz bandwidth) pointing, 8 hours on target,
and one run through all of the L-band 4** May 2013 pointings with ~ 1.4 hours on each
pointing with full 512 MHz bandwidth (see Table 3.1 in Chapter 3). Due to only having
roughly a quarter of the required time on each target field for L-band, the expected RMS
level of each map will be significantly higher than with the full allocated Legacy time.
Using Equation 1.13 with the typical values as stated in Section 1.1.2, the expected RMS
noise level for the C-band commissioning pointing is 17 puJy and for L-band pointings is

22 pJy (but this value is assuming no RFI is present).

5.7.1 COBRaS C-band Commissioning Maps

The map of the C-band commissioning pointing is noise dominated and the RMS level
from the image histogram is 54 pJy, which is higher than the expected RMS. However,
due to the commissioning nature of the observation, there may be additional system noise
from the electronics which has not been considered in the calculation, or perhaps residual
errors from phase calibration.

Running the source detection algorithm from Chapter 4, yields two sources over the
5 o detection limit. Neither of the two sources are found to correlate with any positions
of known stars in the OB catalogue, COBRaS catalogue or 2MASS catalogue. The first
source is shown in Figure 5.11 as the central contours in the field. JMFIT returns a flux of
343 £ 98 puJy and the PP method gives a flux of 327 £ 35 uJy resulting in a 6 o detection
at the noise level of 54 uJy. The second source lies at the edge of the map where the noise
is higher and is therefore not considered further.

Due to the source not correlating with any known source in the catalogues (and the
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Figure 5.11: A contour map of a ~ 300 uJy source found in the C-band 18" July 2012
commissioning data at 20" 32™ 46.335% +41° 12/ 51.070”. Contour levels are -1, 1, 2, 3,
4,5 x 90 pJy. The synthesised beam is given in the bottom left corner.

NASA/IPAC Extragalactic Database), it is impossible to classify any further. This source
will be sought after with the full C-band Legacy dataset where the noise levels should
be considerably lower than the C-band commissioning data, enabling maps with higher
dynamic ranges. These future datasets will definitively show whether this source is real

or not.

5.7.2 COBRaS L-band Legacy Maps

Wide-field maps for the L-band pointings C and D (see Table 3.1 for details) are created
and have a RMS noise level of 113 pJy and 111 pJy respectively. These are the most
sensitive L-band maps to date from COBRaS and only contain a fraction of the total

allocated time. Despite this, sources have been found in both maps.
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The first source is shown in Figure 5.12, and has a flux of 1.8 + 0.2 mJy (from JMFIT).
This source is coincident with a source in Setia Gunawan et al. (2003) and is within the
positional errors of that study. Moreover, the flux at 1.4 GHz from that study is given as
2.2 + 0.3 mJy with the authors stating that their amplitude calibration uncertainty reaches
10 - 20% for their 350 MHz observations (nothing stated for their 1.4 GHz observations).

Given the proximity and similar fluxes, it is reasonable to infer that these sources are the

same.
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Figure 5.12: Contour map of 1.8 mJy source in the L-band pointing C field at 20" 33™
58.31452°% +41° 09’ 14.5002”. Contour levels are -1, 1, 2, 3, 4, 5, 6 x 0.25 mJy. The
synthesised beam is given in the bottom left corner. This source coincides with a source
from Setia Gunawan et al. (2003).

Furthermore, Setia Gunawan et al. (2003) cite a spectral index of >+ 0.37, suggesting
thermal emission. Therefore this source should be even brighter in the COBRaS C-band

Legacy observations. This does however raise doubts on whether this source is a massive
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star. It is around the brightness level expected of a massive binary at L-band frequencies,
but does not show non-thermal emission according to the spectral index cited by Setia
Gunawan et al. (2003). If it is indeed a massive star, the clumping factor for even the
brightest O or B supergiant would be around f.; > 10. Definitive classification can only
occur with COBRaS determined spectral indices with the completion of the C-band Legacy
dataset.

Cyg OB2 No. 9 is detected (confirmed by cross correlation with the OB catalogue)
in the L-band pointing D and is shown in Figure 5.13. The detected flux is 3.8 + 0.2
mJy (from JMFIT) which falls between the 1.0 - 6.3 mJy fluxes determined by previous
observations (Bieging et al. 1989; Setia Gunawan et al. 2003 and references therein). Cyg
OB2 No. 9 is a known binary system and the strong 1.5 GHz flux would strongly suggest
that non-thermal emission is detected here, although 5 GHz fluxes from COBRaS are
required to confirm this.

It may be possible to obtain fluxes from individual IFs from this incomplete dataset
due to the strong flux from Cyg OB2 No. 9 to determine the spectral index. Furthermore
this may be necessary because of the variable flux (from binary motion) and because
the C-band Legacy data has not been observed at the same time. This will affect any
obtained spectral index from comparing fluxes at two different frequencies, observed at
different epochs.

Pointing D reveals another strong source. Figure 5.14 shows a source with a flux of
7.3 £ 0.2 mJy (JMFIT) located at 20" 32™ 56.795° +41° 08’ 53.487". The position of the
bright source correlates to a known source in the COBRaS catalogue, matching a 14.7 +
0.8 mJy source from Setia Gunawan et al. (2003) and a 12.99 £+ 1.9 mJy source from the
Radio Master catalogue, originally from the VLA study by White et al. (2005).

The flux from the COBRaS L-band Legacy map differs drastically from the previous
surveys of Setia Gunawan et al. (2003) and White et al. (2005). Setia Gunawan et al.
(2003) determined the spectral index of the source to be a = - 0.77, indicating a steep
spectrum non-thermal emission.

The image containing the source in Figure 5.14 was created to be a wide-field map to
image across the primary beam. A higher resolution map (220 milli arcseconds) is created
of the same source as is shown in Figure 5.15. A similar flux of 7.1 £ 0.3 mJy (JMFIT)
is obtained, however, the PP method returns a slightly higher flux of 8.09 4+ 0.01 mJy

(although the uncertainty on the amplitude calibration will be significantly larger than
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Figure 5.13: Contour map of Cyg OB2 No. 9 in the L-band pointing D field at 20" 33™
10.735°% +41° 15’ 08.353”. Contour levels are -1, 1, 2, 3, 4, 5,6, 7, 8,9, 10 x 0.3 mJy. The
synthesised beam is given in the bottom left corner.

this value). This is because JMFIT attempted to fit the resolved source with one Gaussian,
whereas the PP method determines the flux independent of source structure. Although it
is unknown why the PP flux for the resolved source is higher than the unresolved source.

The noise RMS of the high resolution map is 55 uJy.

5.7.3 Summary of Sources in COBRaS Maps

All the contour maps presented in this section are created using the AIPS task KNTR.

Table 5.10 contains the sources found in the COBRaS early science maps.
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Figure 5.14: Contour map of a strong source in the L-band pointing D field centred at
201 32™ 56.795° +41° 08’ 53.487”. Contour levels are -1, 1, 2, 3, 4, 5, 10, 15, 20 x 0.25
mJy. The source has a flux of 7.3 + 0.2 mJy (JMFIT) and an image rms ~ 91 pJy. The
synthesised beam is given in the bottom left corner.

Table 5.10: Sources in the COBRaS Maps

Right Declination® Map Flux / pJy Known
Ascension® JMFIT PP Source*
20 32 46.335 41 1251.070 C-band 18" July 2012 343 £+ 98 327 £ 35 No
20 32 56.795 41 08 53.487% L-band Pointing D 7325 + 184 7299 + 39 Yes
20 33 10.735 41 15 08.353 L-band Pointing D 3772 + 234 3814 £ 55 Yes
20 33 58.315 41 09 14.500 L-band Pointing C 1790 &£ 240 1690 + 60 Yes

& Right Ascension in units of hours minutes and seconds and Declination is in units of
degrees arcminutes and arcseconds.

* i.e. in one of the catalogues created in Chapter 4.

t Information from the unresolved source.
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Figure 5.15: High resolution contour map of a strong source in the L-band pointing D
field centred at 20" 32™ 56.798% +41° 08’ 53.392”. Contour levels are -1, 1, 2, 3, 4, 5, 6, 7
x 0.2 mJy. The source has a flux of 7.3 + 0.2 mJy (JMFIT) and an image rms ~ 55 uJy.
The synthesised beam is given in the bottom left corner.

5.8 Conclusions and Discussions

This Chapter contains an introduction to the winds from massive stars, radio emission
from massive stars and massive binaries, as well as mass loss rates and the role of clumping
in the winds. Using the mass loss recipes as described by Vink et al. (2000) and Vink
et al. (2001) with the fundamental parameters for O stars (Martins et al. 2005), early
B supergiants (Searle et al. 2008) and terminal velocities (Prinja et al. 1990), a grid of
predicted smooth wind mass loss rates have been created. Applying this mass loss rate to
the relation of excess free-free emission (Equation 5.21), the radio fluxes at 1.5 and 5 GHz

for O stars and early B supergiants are determined. Quantifying the amount of clumping
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using a clumping factor (Equation 5.22), adjustments to the radio fluxes from massive stars
is made with a range of clumping factors fi = {1, 2, 5, 10}, consistent with those from
the literature for Ha emission and radio mass loss rates (see Section 5.6). Comparisons of
the observed radio fluxes of Cyg OB2 stars from previous surveys is made with the grid of
clumped radio fluxes to give an initial impression of the amount of clumping in the winds
of Cyg OB2 massive stars. Finally, the first radio maps from the COBRaS project are
presented with source and flux lists.

Some of the errors on the predicted radio fluxes are large due to the large uncertainties
on some of the fundamental parameters. This also includes adopting one fundamental
parameter for each spectral class when in reality these will vary for different stars of the
same class. The terminal velocity is one parameter which varies considerably within a
spectral class and also has a significant effect on the radio flux. Some spectral classes only
had one reference star to determine the terminal velocity, thereby skewing the predicted
flux trend. For example, the brightest predicted flux for an O supergiant from Table 5.7
is from an OBl star, not an O3I star. The terminal velocity for O5I is significantly lower
than the neighbouring classes. Investigating in greater detail reveals that the terminal
velocities for O3I and O5I stars from Prinja et al. (1990) only had one example for each
class. Furthermore, the terminal velocity for O4l came from three stars with a range
of Voo = 1880 - 2605 km s~!, demonstrating the fallacy of adopting a ‘one size fits all’
parameterisation from a limited sample. It should be noted that the rarity of early O
supergiants does makes this task difficult.

Moreover, once COBRaS has identified and obtained radio fluxes for massive stars and
candidates, follow-up multi-wavelength surveys will help with obtaining unique fundamen-
tal parameters for each target, thereby enabling precise determination of predicted radio
fluxes. This is necessary for definitive analysis on clumping in the winds of massive stars,
and this thesis provides the foundation for that analysis.

The source detection algorithm has been tested on real maps from COBRaS for the
first time as opposed to idealised simulations and the 5 ¢ seed threshold run finds a
possible candidate source at C-band and more known sources at L-band. Additional runs
with lower seed thresholds were made finding a large number of potential sources. Any
faint sources from these searches will require cross correlation with catalogues to have any
confidence of a source detection over an image artefact.

One test of realism on whether the C-band source is real is to determine the probability
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that one pixel in an image of over 16 million pixels will randomly have a flux over 5 o.
Then, what is the probability that two pixels situated next to one another have a flux
over 5 0?7 The source in Figure 5.11 has four pixels at the third contour level (6 o) which
strengthens the possibility that it is indeed a real source and not a random noise feature.

The expected noise level for the C-band commissioning map is lower than the one ob-
tained from the calibration pipeline. The pipeline may be the limiting factor in sensitivity
of the maps, however, due to the commissioning state the assumed system temperature of
50 K may be incorrect or more likely additional noise from the unsettled system electronics
may cause the actual RMS level to be higher than the expected level.

The L-band legacy pointings C and D, contain a number of interesting sources. The
most relevant to this thesis is the strong detection of Cyg OB2 No. 9, a massive binary, and
the first confirmed detection of a massive star from COBRaS. In creating the map of Cyg
OB2 No. 9, all of the software presented in this thesis was required; SERPent to flag the
RFI, the pipeline to calibrate the data, the source detection algorithm to find the source
and determine the flux, and the catalogues and cross correlation scripts to identify the
source. This result demonstrates the effectiveness and the importance of these programs
when searching for sources. There are other interesting sources found in the L-band Legacy
pointings, with two sources previously detected by Setia Gunawan et al. (2003) shown in
Figures 5.12, and 5.14 and 5.15.

An important note to make here is the final noise RMS level of the wide-field L-band
Legacy maps, pointings C and D have a noise RMS level of 113 and 111 uJy respectively.
This only includes a fraction of the total allocated time for each field. However, even with
5 hours on target, this will not reduce the noise RMS to the expected RMS of 11 puJy at
L-band for e-MERLIN. This is due to the amount of data removed, because RFI is fairly
substantial at L-band, meaning the realistic noise RMS level for any COBRaS L-band field
may be up to a few factors higher than expected. Moreover, IFs 1 and 2 were removed for
imaging due to the substantial RFI in these IF's for this observation. Future e-MERLIN
sensitivity focused projects at L-band and low declinations, may have to consider the final
noise levels from COBRaS maps when planning observations.

Furthermore, the second Setia Gunawan et al. (2003) source was located near the
edge of the wide-field pointing D map. The original source contained phase errors around
this source, and therefore was re-imaged with a RA and Declination shift to the source’s

location. This solved the abberation problem from the wide-field imaging, and further
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emphasises a point made in Chapter 3 about the possibility of imaging the primary beam
as a number of facets to reduce wide-field effects. Moreover, the noise RMS level for this
shifted map was 91 pJy for the low resolution (900 milli arcseconds) map (Figure 5.14)
and 55 pJy for the high resolution (220 milli arcseconds) map (Figure 5.15). Therefore,
in order to achieve the expected image RMS, mosaicing within individual primary beams

may be necessary.

5.9 Future Work with COBRaS

COBRaS Legacy data has only just started to arrive, and it is expected that the remaining
L-band data will be received throughout 2014. This will increase the sensitivity of the
current pointings, enabling more than just a ‘first look’ at the core of Cyg OB2 at low
frequencies. The expectation is that these maps will include a number of background radio
galaxies, weak T-Tauri stars, massive-binary interaction regions and other non-thermal
emitters, whilst including some of the thermal emission from massive stars. Only when
the extensive C-band Legacy observations start, can the real census of massive stars in
Cyg OB2 begin. A large sample of radio fluxes and radio mass loss rates can answer the
question, ‘is there clumping in the outer winds of massive stars, from radio observations?’,

the implications of which have already been discussed.



Chapter 6

X-ray Variability of Massive stars
in Cyg OB2

Lies, damned lies, and statistics.

Benjamin Disraeli

One of the key science goals of COBRAS is synergy with other wavelength surveys, pro-
viding a full spectral window to the stellar population of Cyg OB2. One of these surveys
is the Chandra Cygnus OB2 Legacy survey, observing the same core region of Cyg OB2
as COBRaS, and also the region around the TeV source (J2032+4130), in X-rays.

X-rays trace high-energy phenomena, which in the context of COBRaS, applies to
flaring pre-main sequence stars and therefore star formation, and the collision region be-
tween two massive binaries. The former results in a dramatic increase in X-ray photon
counts on a short timescale (~ hours) in comparison to the non-flaring X-ray continuum
level, whereas the latter exhibits a gradual X-ray variability over a longer period (days to
weeks).

This chapter focuses on the X-ray variability from massive stars, with particular em-
phasis on known and potential massive binaries. This will contribute towards better
determination of the binary fraction of massive stars within young stellar associations,

which is one of the key science goals of COBRaS.
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Firstly, an introduction to X-ray emission from massive stars is given, followed by an
introduction to the Chandra Cyg OB2 Legacy survey and the Chandra X-ray observatory.
Then, an introduction to the statistical methods used in X-ray astronomy is given. Finally,
the X-ray variability study of the O-type and WR stars in the Chandra Cyg OB2 Legacy

survey is presented.

6.1 X-ray Emission from Massive Stars

Theories on the origins of X-rays from single O-type stars are confined to the stellar winds
of these objects. One explanation generally attributed for this emission from single O-type
stars is the presence of many small hydrodynamic shocks arising from instabilities intrinsic
to the radiatively-driven wind associated with massive stars (Feldmeier et al. 1997). These
Line Deshadowing Instabilities (LDI) average out over the emitting volume, resulting in
an X-ray flux which is similar to the observed fluxes. The authors used fundamental stellar
parameters similar to those of the O supergiant ¢ Ori for their simulations.

Another model applies to stars with strong magnetic fields, where in the presence of a
strong dipole magnetic field, the radiatively-driven wind is channeled along the magnetic
field lines from each hemisphere, meeting at the magnetic equator (Babel and Montmerle
1997; ud-Doula and Owocki 2002; Gagné et al. 2005). The collision between the two
streams at high velocity produces very high shocked temperatures which emit harder X-
rays than those expected from LDIs.

In the case of massive binaries, an additional source of X-rays can be found from the
large shocks at the centre of the interaction region of the stellar winds (Stevens et al. 1992).
As the winds meet, a contact discontinuity separates two shocks in the interaction region,
assuming the winds have achieved terminal velocity. The shocks will produce X-rays and
because the wind is at terminal velocity in these systems as opposed to an accelerating
wind in the situation of LDIs, the spectrum is expected to be harder than the X-rays

produced in the individual stellar winds.

6.1.1 X-ray Variability from Massive Binaries

The X-ray emission from massive binaries is expected to demonstrate similar variable
behaviour to the non-thermal radio emission also associated with massive binaries, because

of the origins of these emissions. Non-thermal radio emission arises from the electrons
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spiralling along the magnetic field lines emitting synchrotron emission, initially accelerated
by the shocks in the interaction region, whereas the X-rays arise directly from the shocks.
Therefore the orientation of the binary can affect the amount of emission which is seen
by the observer. This translates into a variable non-thermal radio and X-ray emission
over time, as the two stars orbit one another, changing the line of sight to the shocked
region. The subsequent X-ray variability should be modulated on the orbital period if the

emission arises from the interaction region.

6.1.2 Luminosity relations for O Stars in Cyg OB2

From the very first observations of X-rays from massive stars, a distinct relation between
the X-ray luminosity and the bolometric luminosity Lx /Lpo ~ 10~7 has been observed
from a number of studies on a handful of O-stars (see Feldmeier et al. 1997 and references
therein). Larger surveys with ROSAT (Berghoefer et al. 1997) and XMM-Newton (Nazé
2009) have confirmed this relation for O-type stars. Interestingly, the same relation does
not exist for Wolf-Rayet (WR) stars (Wessolowski 1996), and only the very earliest B-stars
appear on the end of this luminosity relation.

The X-ray luminosities can be derived for a source of known distance (see Section
6.4.3). The distance to the Cygnus OB2 massive star association has historically been
somewhat uncertain with values ranging from no less than 1.2 kpc (Hanson 2003) to 2.1
kpc (Reddish et al. 1966). However, recent parallax observations of 6.7 GHz methanol and
22 GHz water masers determine the distance of the whole Cygnus X complex to be 1.40
+ 0.08 kpc with the distances to the constituent HII regions consistent with this value
(Rygl et al. 2012; Wright et al. in prep.).

Rauw et al. (2014) derives the relation (Equation 6.1) between the X-ray luminosity
and bolometric luminosity by using the X-ray fluxes and bolometric fluxes which are inde-
pendent of the distance of Cyg OB2. The authors compute the X-ray fluxes from the ACIS
spectra and correct for interstellar absorption only. The bolometric fluxes are calculated
from V magnitudes assuming visual extinction Ry = 3.1 and adopting the bolometric
corrections of Martins and Plez (2006). If no B or V magnitudes are available, the au-
thors relied on near-IR photometry of Negueruela et al. (2008) for bolometric corrections.
This reveals the interstellar absorption corrected relation between the X-ray luminosity
and bolometric luminosity, where the fluxes are evaluated between the 0.5 - 8 keV energy

range.
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Rauw et al. (2014) then discuss whether to adopt a scaling-law or a power-law between
the X-ray flux and bolometric flux, and conclude that both methods are consistent within

2 ¢. This results in the following X-ray luminosity and bolometric luminosity relation:
log Lx/Lye = —7.21 +0.24 (6.1)

which is in agreement with the scaling relation found by Nazé et al. (2011) for the O stars

in the Chandra Carina Complex Project.

6.2 The Chandra Cygnus OB2 Legacy Survey

The Chandra Cygnus OB2 Legacy survey is a 1.08 Ms, one square degree survey with
Chandra centred on the core of the Cygnus OB2 massive star association (Drake et al. in
prep.). The uniform deep exposure study detects stars down to the lower mass limit of
1 solar mass, providing the most comprehensive study of a massive, young star cluster in
the X-ray regime. The survey took place between the dates of 25" January - 10" March
2010 using the ACIS-I camera on Chandra. Figure 6.1 shows the mosiac of 36 pointings
of the Chandra survey from the design phase of the project (left) and the executed phase
(right).

250

0

Figure 6.1: The Chandra Cygnus OB2 survey’s deep mosaic coverage of the Cygnus OB2
region with a total of 36-pointings each with 30 ks integration time. The left image is the
“designed” coverage and the right the “executed” coverage. The survey extends to one
square degrees, centred on the core region of Cyg OB2, which is the green tiling in the
middle of the right figure. This has a exposure time of ~ 214 ks and is also the survey
region for COBRaS. This figure is taken from Wright et al. (in prep.).
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The mosaic strategy employed in the survey was to observe the central 0.5 square
degrees to an effective exposure of 120 ks, the outer 0.4 square degrees to 60 ks, and
an extra 100 ks observation for the core of Cyg OB2 (reaching 220 ks total integration).
This observed region is to be complemented with other surveys including COBRaS with
e-MERLIN, VLA (radio), Spitzer and Herschel (IR), XMM-Newton and INTEGRAL (X-
ray) to produce a multi-wavelength study.

Chandra detected in total, 8352 point sources, and Figure 6.2 displays the distribution
of sources within the Chandra survey field of view, with the applied methods of detection

(see Wright et al. in prep. for details).
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Figure 6.2: X-ray source distribution over the field of view of the Chandra Cyg OB2
Legacy survey. In total 8352 sources were detected by various methods. This figure is
taken from Wright et al. (in prep.).

There are a number of scientific objectives for the Chandra Cyg OB2 Legacy survey,
including the assessment on the size, mass and structure of the association, and the for-

mation, evolution and dynamics of a massive star cluster. Investigations into the X-ray
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properties of massive stars, intermediate stars and the nature of protoplanetary disks in
a cluster environment are also objectives. Studies on Cygnus X-3 an X-ray binary is also
a key objective. In relation to COBRaS, the X-ray variability of massive stars is impor-
tant to characterise, confirm and detect massive binary systems, the analysis of which will
contribute towards the effort of determining the binary fractions of massive stars in young
stellar clusters.

The field of view of the Chandra survey detected a rich population of massive stars
in Cyg OB2 with 100 B stars, 49 O stars and 3 WR stars (Wright et al. in prep.). The
spectral types and luminosity classes range from O3l to 09.5V, with the most frequent

spectral type being O8V (Rauw et al. 2014).

6.3 Introduction to Chandra

Satellite technology has revolutionised studies in the Ultra-violet (UV), X-ray and Gamma-
ray regions of the electromagnetic spectrum. The Earth’s atmosphere is opaque to radi-
ation of these wavelengths, rendering observations in these bands impossible. Early at-
tempts to circumvent these problems were made in 1948, adapting German V-2 rockets
to launch detectors beyond the majority of Earth’s atmosphere to detect the first astro-
nomical X-rays emanating from the Sun (Keller 1995). Other methods included using a
scintillation counter mounted on a hot-air balloon (Clark 1965), and combining hot air
balloons and rockets (Kundu 1961).

The 1960s saw the launch of the first orbiting X-ray satellite SOLar RADiation satellite
program (SOLRAD) amongst many Orbiting Geophysical Observatories (OGOs), and the
first X-ray imaging telescope Einstein Observatory (HEAO-2) at the end of the 1970s.
The Einstein Observatory adopted a near-circular orbit at an initial altitude of 500 km
and operated in the energy range of 0.2 - 20 keV.

Around the same time, the Advanced X-ray Astrophysics Facility (AXAF; later re-
named the Chandra X-ray Observatory) was first proposed. Throughout the years, many
designs and changes were made until its final launch in 1999. These changes included
reducing the number of mirrors (from 12 to 8) and only 4 of the initial 6 scientific in-
struments would be utilised. The orbit of Chandra was also reconsidered and an elliptical
orbit reaching ~ 140,000km apogee and ~ 10,000km perigee was chosen as the majority
(70%) of the orbit is above the Van Allen radiation belts (Weisskopf et al. 2000).
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Figure 6.3 shows an illustration of the Chandra X-ray Observatory with the constituent
parts of the spacecraft. Since the first light image of the supernova remnant Cassopiea
A, which revealed a compact object at the centre (Pavlov et al. 2000), Chandra has
made a host of scientific discoveries in a range of fields within astronomy. Chandra’s
superior sensitivity and angular resolution to any previous X-ray telescope has advanced

the understanding of X-rays from astronomical sources.
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Figure 6.3: Image of the Chandra X-ray Observatory. Labelled are the main components
of the spacecraft including the location of the X-ray subsystems.

6.4 Chandra ACIS Data Analysis and Calibration

The calibration procedure for Chandra is extensive and not in the scope of this thesis
to describe in detail. The observations presented here are all taken with the ACIS CCD
and are reduced via the method described by Broos et al. (2010)!. The following sections
(6.4.1, 6.4.2, 6.4.3) will describe ACIS specific considerations and procedures in the data

analysis.

"http://www2.astro.psu.edu/xray /acis/acis_analysis.htm]
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6.4.1 ACIS Photon Pileup

The ACIS CCD is sensitive to X-ray photons and therefore behaves differently to optical
CCDs. Optical CCDs work by releasing an electron into a potential well every time an
optical photon hits a photoactive silicon layer. This charge builds up until it is read out
by transfering the charge along the chip rows to the reader. However, the ACIS CCD only
behaves as a photon counter, with a full-frame readout time of 3 seconds. If a photon is
detected during this time window the CCD records the photon as an ‘event’ or ‘count’.
If a compact bright X-ray source is observed, more than one photon may arrive at the
same or neighbouring pixels during the 3 second readout time, but only one event will be
recorded. This is known as ‘pileup’ as the X-ray photons pileup before readout.

For a count rate of 0.2 photons per pixel per frame, there is a significant pileup of ~

10% based on Poisson statistics?

. That is, every 1 in 10 events will actually correspond
to two or more photons. This will lead to an underestimation of the peak flux in the
observed spectrum compared to the ‘true’ spectrum. Another effect is a shift to higher
energies for any pileup-affected events, producing a high energy tail in the spectrum. To
mitigate this effect, when observing a bright compact source, a short integration time is

needed for each event. However, the total overhead to readout the entire frame is limited

to 3 seconds, regardless of the integration time.

6.4.2 Chandra Observatory Response

The effective area of the Chandra observatory is a strong function of energy and there-
fore a point spread function (PSF) model is required. This model accounts for the point
source light which falls outside of the aperture. This is necessary because the Chandra
data assumes an infinitely large detector and extraction aperture (Broos et al. 2010). The
fraction of power of the PSF that falls within the aperture is calculated at five monochro-
matic energies. Interpolations between these five energies are made to estimate the PSF
fraction at every energy.

The quantum efficiency is the fraction of photons registered by the detector. An ideal
detector would have a quantum efficiency of 100%. However, realistically this percentage
is lower and varies as a function of energy and affects both the ACIS and HRC detectors.

The quantum efficiency also deviates as a function of the position on the CCD.

2http://cxc.harvard.edu/newsletters /news_05/nodel12.html
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All of these factors along with off-axis vignetting (where the edge of detector is less
responsive compared to the centre), and the diffraction grating efficiency (also a function
of energy) are tied up in an Auxiliary Response File (ARF). The ARF represents the
effective area of the observatory and needs to be convolved with the observed spectrum

to derive physical properties such as fluxes or luminosities.

6.4.3 Photometry with ACIS

To obtain fluxes and luminosities from standard aperture photometry, the calibration
procedure begins by computing the counts for a range of energy bands, S(E). A scaled
background level is subtracted by calculating the counts in the neighbouring region to the
source, using various masking techniques depending on the level of crowding, as explained

in detail by Broos et al. (2010) (Section 5.4). The net counts, S(E), is given by
$(E) = C*(E) - (A°/A") C* (B) (6.2)

where C*(FE) is the number of counts in the source aperture for energy E, and C*(E) is
the number of counts in the backround aperture for energy band E. A* and A’ are the
source and background areas and are derived by integrating exposure maps (Broos et al.
2010). In this study, however, the background is not subtracted but monitored, and any
observations with significant backgrounds are ignored. This is to simpify the calibration
process. The observatory response (a function of multiple variables all tied up in the ARF)
has not yet been considered in the calibration.

There are two methods to calculate the incident photon flux from the standard net
counts, designated F* and F#, both in units of photon cm~2 s~!. The first flux estimate
(F*) is determined by dividing the net counts, S(E), by the observatory response (ARF)

for every discrete energy band E, and then summed over a chosen energy range (FEpin and

Emax):

-3 T
< EXPOSURE x ARF (E)

min

;hoton (Emin < E < Enmax (6.3)
where S(E) is the net counts (given by Equation 6.2), ARF(E) is the observatory response
at energy E, and EXPOSURE is the exposure time of the source. The energy range limits
for Chandra are Fni, = 0.5 keV and Enax = 8 keV, with two commonly used bands being:
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Frnin = 0.5 keV and Enax = 2 keV for Chandra ‘soft band’ and Ein = 2 keV and Eiax
= 8 keV for Chandra ‘hard band’.

The second method in estimating the incident photon flux (F7#) sums the net counts,
S(E), and the observatory response, ARF(E), for the given energy range Fiin t0 Enax,
before averaging. This gives the photon flux F# as
> S (E)

(Emin <FE< Emax) - i

F* .
EXPOSURE x Y j™> ARF (E)

photon

(6.4)

The F* estimator has limitations when the ARF has a small value because the corre-
sponding source or background events have a large influence on the estimator. This leads
to large Poisson errors and is therefore not recommended for weak sources (Broos et al.
2010). The F# estimator averages across the observatory response (ARF) for all energies,
which is only applicable for a flat incident spectrum.

Equations 6.3 and 6.4 refer to the photon flux, which has units of photons cm™2 s1.
This can be converted to an energy flux with units of erg cm™2 s~!, by multiplying by a
conversion factor of 1.6 x 1079 ergs/ 1 keV.

If information on the spectral shape and distance d to the target is known, it is possible

to determine the apparent X-ray luminosity L, for a broad energy band with either flux

estimator and the background median corrected energy (Fpedian):
Ly = 4wd?[F*or F] Epedian- (6.5)

The accuracy of Equation 6.5 for bright and faint sources is tested by Getman et al.
(2010) who also use Epeqian to scale the observed luminosity (Equation 6.5) to the intrinsic
luminosity corrected for absorption. Errors are larger for absorption-corrected luminosities
and very large for heavily absorbed luminosities for the soft band regime (Broos et al.
2010). The authors conclude that for faint sources the flux estimator F# is preferred and
the absorption-corrected luminosity for the hard band (2 - 8 keV) over the luminosities in

the whole Chandra band (0.5 - 8 keV).

6.5 Statistics and Variability Methods for X-ray Astronomy

Due to the limited number of photon counts from any observation, X-ray astronomy

resides in the Poisson statistical regime. Traditional methods involving x? or data obeying
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Gaussian statistics are not applicable for these X-ray datasets, where sampling is often
uneven with few counts per bin. Therefore a range of alternative statistics and methods

are required to search for variability in the Chandra Legacy datasets.

6.5.1 Null Hypothesis

In statistics, the null hypothesis tests whether a relationship between two measured vari-
ables exists. It can only be disproved or rejected if the data or distribution reaches a
set significance level, but can never be ‘proven’. Ronald Fisher first coined the term null
hypothesis in The Design of Experiments (Fisher 1966) as an explanation to how a hy-
pothesis could be disproven by a single experiment, but no finite number of experiments
can prove it.

There are two types of null hypothesis; extrinsic null hypothesis, where the number
of outcomes (n) predicted by the null hypothesis is known, and intrinsic null hypothesis,
where estimations of one or more parameters from the data are made to test the hypothesis.

The number of degrees of freedom can be determined for the extrinsic null hypothesis
as the number of final outcomes n of the variable, minus one. For the intrinsic null
hypothesis, the number of degrees of freedom is expressed as the number of final outcomes
n minus the number of estimation parameters, minus one.

As stated previously, the null hypothesis is rejected if the distribution meets a signifi-
cance requirement (commonly denoted as p, or the p-value). The conventional criterion for
statistical significance is set at the 5% level (0.05), or that the null hypothesis is rejected
at the p = 0.05 level. In the case of Chandra, the significance levels of a source varying
are described as possibly variable at p = 0.05, and definitely variable at the p = 0.005

level.

6.5.2 Chi-Squared Test

The Pearson’s chi-squared (x?) test assesses whether an observed frequency differs from an
expected or theoretical frequency. It calculates the summed normalisations of the squared
differences between observed and expected frequencies. Therefore the larger the difference

between the observed and expected distributions, the larger the test statistic becomes.
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Equation 6.6 shows the value of the test statistic y?

n 2
2= Z (O ;@El) (6.6)
i=1
where O; is the observed frequency, E; is the expected or theoretical frequency, and n is
the number of cells or number of final outcomes. The x? test follows a discrete uniform
distribution, where the possible results are finite and have an equal probability of being
observed. The expected frequency therefore acts as a normalisation factor such as a mean.
It is often equal to the total observed frequencies Nigia divided by the number of outcomes
n, i.e. E; = Niyotal/n.
This test statistic is not a level of significance, moreover it needs to be compared with
a x2 distribution value table which contains the number of degrees of freedom and the
related p-values. The p-value can be extrapolated from such a table (or calculated) to
give the statistical significance of the distribution and whether the null hypothesis can be
rejected.
Alternatively the x? of two distributions can be compared using the difference in x?
values §x? and the difference in degrees of freedom ddof. If 6x? rejects the null hypothesis

at a certain p-value, then the model with the lowest x? is deemed to be the better test fit.

6.5.3 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test assesses the difference between the empirical distribu-
tion function of a uni-variate sample and an expected or theoretical cumulative distribution
function (for a one-sided KS test). It works on cumulative distributions and can be utilised
as a goodness-of-fit test. The fit calculates the observed maximum absolute deviation from
the theoretical cumulative distribution. A cumulative distribution function Fy(x) with N

ordered events can be described by

1
N 4
=1

Fy (z) = I[X; < z] (6.7)
where I[X; < z] is an indicator function which sums all of the values X; which lie below
a given value x for N events. For an entire observation the test value z is the last event.

Therefore, the one-sample K-S statistic of two different cumulative distribution functions
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Fni(x) (observed) and Fyo(x) (expected) is given by
D = VN sup |Fyy (z) — Fy (2)| (6.8)

where sup is the supremum, described as the least upper bound value of a set of real
numbers (or simply the maximum), of the absolute differences of the two cumulative
distributions. This generates a p-value which can be tested against any given significance

level to determine whether the null hypothesis can be rejected.
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Figure 6.4: A cumulative distribution plot of the individual photon events from the ob-
servation of MT91 534, epoch 10960. The black data points refer to the individual photon
events and correspond to the energy vertical axis. The green and red curves are the cu-
mulative distribution functions of a constant source model and that of the real Chandra
observation of MT91 534. The KS statistic is calculated as the biggest deviation between
the real data curve and the model curve.

Figure 6.4 demonstrates the KS statistic (the biggest deviation between the two cumu-
lative distributions) with the example star MT91 534. The maximum difference between
the constant model (green curve) and Chandra data (red curve) occurs around 4.5 hours.

This equates to a p-value of 1.8 x 1075 which is highly significant.
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6.5.4 Kuiper’s Test

Kuiper’s test (Kuiper 1960) is similar to the KS test as it evaluates the differences between
two cumulative distributions using the same KS statistic as in Equation 6.8. Kuiper’s
statistic V, assesses the most positive (D1) and most negative (D~) deviations between

the distributions
V =Dt 4+ D™ =+VN sup |Fyi1(z) — Fy2 (2)| + VN sup |Fna (x) — Fy1 ()| (6.9)

Because Kuiper’s statistic, V in Equation 6.9, is the sum of D™ and D™, it is invariant
to any change in the starting point of either distribution. It is as sensitive to the tails
of the distribution as it is around the median, whereas the KS statistic is only sensitive
around the median. In physical terms, the KS statistic is insensitive to variations at the
start and end points of an observation (Broos et al. 2010). Furthermore, the KS statistic is
good at finding shifts in a distribution and Kuiper’s statistic is powerful at finding spreads
in a probability distribution.

For applications to Chandra X-ray datasets, the test of variance needs to access the
uniformity of continuous distributions of a single variable which may contain a small
number of samples. As with the KS test, the Kuiper test uses a uniform distribution
which resembles a constant source as one of the distributions. Any deviations from this
constant cumulative distribution at the statistical significance level will indicate a variable
source candidate.

The Kuiper test has been used by Paltani (2004) to search for periodic behaviour in
Rontgensatellit (ROSAT) X-ray data and the KS and Kuiper statistics are employed in
the Chandra Legacy survey for their ability to determine these variations in the X-ray

data.

6.5.5 Cash Statistic

The traditional x? maximum likelihood analysis assumes the data is binned, Gaussian and
contains at least 5 events per bin. In practical X-ray astronomy, none of these criteria are

met and therefore another statistic is needed. Cash (1979) derived a likelihood function
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from Poisson distributions by using the product of individual probabilities for each bin ¢

D;

M-
EzH DZi! exp (—M;) (6.10)

where M; is the sum of the source and background model amplitudes, and D; is the
observed counts. Taking the logarithm of L, inverting the signs, dropping the factorial
term and multipling by two, converts the maximum likelihood function into the Cash

statistic (Sherpa Documentation for Chandra®):
C=2Y (M;— D; log M;) (6.11)

The factor of two arises so that when two distributions are compared, §C approximately
scales with dx? when the number of counts in each bin exceeds 5. The §C can be used in

comparison tests but does not evaluate a goodness-of-fit.

6.5.6 Lomb-Scargle Periodograms

One of the most commonly used techniques to find periodic signals in astronomical data
is the periodogram (Scargle 1982). The classical periodogram takes a time series {t;, j =
1, 2, ... N} of a variable e.g. flux; F(t) and transforms the series into frequency via a

discrete Fourier transform:

N
Fr(w) = Z F (tj) exp (—iwt;). (6.12)

The periodogram P of frequency w, takes the modulus—squared of the Fourier trans-

form:

P W)= & 1Fr @)

N
1 .
=~ ZF(tj) exp (—iwt;)
7j=1
2 2
1
=¥ D Fj cos(wty) |+ | D Fj sin(wt) (6.13)
j j

as defined in the literature (Scargle 1982 and references therein). The periodogram

3http://cxc.harvard.edu/sherpad.4/statistics /index. html#cash
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works when the variable F contains a sinusodial component of frequency wg, which will
maximise the summation in Equation 6.13 because the components will be in phase. At
other frequencies the components will be randomly positive and negative making the
summation relatively small. If the time sampling is evenly distributed, Equation 6.13

translates to

2

1 N
Pr(w) = + > Fj exp (—iwy) (6.14)
j=1

where t; = j and F(t;) = Fj.

The similarity of periodograms and least squares analysis of sine waves to the data
was noted by Lomb (1976), who investigated least squares analysis on uneven sampled
data convolved in the frequency domain. Scargle (1982) “slightly modified” the classic
periodogram so the new periodogram could perform analysis on unevenly sampled data,
be equivalent to least squares analysis of sine waves and would reduce to the classic
periodogram when the time samples are even. The new periodogram, which is referred to
as the Lomb-Scargle (LS) periodogram because of the influence of both authors’ work on

the subject, is defined as

PF (w) =

Ll (6.15)
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where 7 is defined as

T=— arctan | —/——
2w Z cos 2wt;

(6.16)
The periodogram produces a number of peaks of varying power. To determine the sig-
nificance of any peak, a certain power level must be exceeded. The false alarm probability

(FAP) po is a small number, typically the nominated p-value for any investigation. The
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power level (zp) of a peak is related to the FAP pg by
2 =—In 1—(1—p0)1/N]. (6.17)

N represents the number of frequencies searched for in LS periodogram. For example:
with N = 30 and pg = 0.05, a peak must have a LS power level greater than 6.37 to have
a significance of 95%.

Scargle (1982) commented that when the periodogram is used on noisy data, “sur-
prisingly large spurious spectral peaks can occur and be erroneously taken to indicate the
presence of a periodic signal. Hence it is important to critically analyse the statistical sig-
nificance of a suspected spectral feature, by answering the question: what is the probability
that this feature could have arisen from chance (noise) fluctuations?”. In order to answer
this question, Monte Carlo (MC) simulations can be performed to add random noise to
the data and then evaluate whether the LS periodogram detects the same periods with
the added noise. This method has been used by Hoffman et al. (2012) on XMM-Newton

targets to search for coronal X-ray cycles. The simulations modify the data simply by
Fuc (t) = F + X, (6.18)

where Fj is the flux observed at time j, and X; is a random variable from a Gaussian
distribution sampled with a zero mean and a standard deviation equal to the uncertainity
of the flux value (taken as one standard deviation of the total pointing sample). The LS
periodogram is then performed on the MC simulated data and the FAP for each MC run
is recorded. Over a large number of MC runs (1000 were used by Hoffman et al. 2012,
10,000 are used in this thesis study), if 68% of the MC runs have a FAP < 0.30 for a
given period, then the dataset is said to be periodic (or warrants further investigation)
(Hoffman et al. 2012).

In the context of this thesis study and the inter-pointing variability investigations, only
targets with known periods will be tested. This eliminates any problems with aliasing
frequencies from the LS periodogram, as spurious peaks are ignored and only significant
peaks around the quoted period are of interest. Searches for peaks from LS periodogram
studies of the MC simulations are conducted around the period + 5% (a small error in
the period value). The frequency with the lowest FAP within this small period window is

deemed to be the true period of the MC simulation found by the LS periodogram. This
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is because of the nature of the unevenly sampled dataset, not necessarily representing the
quoted period, which was most likely determined by other methods in other wavelength

regimes.

6.6 Chandra X-ray variability of the O star population of
Cyg OB2

6.6.1 Variability in Previous Chandra Studies

A previous 97 ks-long, 17" x 17" Chandra Cyg OB2 study by Albacete Colombo et al.
(2007a), investigated the variability of 135 of the 1003 detected sources. The authors
found 85 X-ray sources (=~ 8.5% of the total) to have a KS p-value (Pxg) < 0.001 and 49
sources with 0.001 < Pkg < 0.01. In the context of OB stars, 26 were detected in the
study, 20 O stars and 6 B stars, with only two stars (both B-types) having a Pxs < 0.01.

Among the 20 detected O stars, two were discussed by the authors in detail. Cygnus
OB2 No. 8 is an O6If + O5.5III(f) binary with an orbital period of 21.9 days and evi-
dence of phase-locked X-ray variability (De Becker and Rauw 2005). The observations of
Albacete Colombo et al. (2007) only covered 5% of the orbital period and therefore did
not detect any X-ray variability.

Cygnus OB2 No. 9 is an O5I+03.5I1I binary with an orbital period of 2.355 years
(Nazé et al. 2010). Other studies have shown Cyg OB2 No. 9 to be the strongest and most
variable non-thermal radio emitter in the Cyg OB2 association (Van Loo 2005). There
is no reported X-ray variability from any previous studies using older X-ray observatories

(Albacete Colombo et al. 2007a).

6.6.2 Overview of Variable Candidates in the Chandra dataset

The O star dataset from the Chandra Cyg OB2 Legacy survey contains 49 O-type and 3
Wolf-Rayet stars within the Chandra field of view. Twelve sources are found to have a KS
statistic (either inter-pointing or intra-pointing KS) below the ‘definitely variable’ condi-
tion of Pks < 0.005 and an additional 5 sources which do not meet this requirement but
have a binary spectral classification and hence the possibility of inter-pointing variability.

The 17 X-ray variable candidates found are listed in Table 6.1. Of these 17 candidates,

Schulte 27 and A38 are not included in any further analysis because the background photon
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count is equal or greater than any substantial source X-ray photon count for all observed

epochs. The rest are split into inter-pointing and intra-pointing variability studies.
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6.6.3 Inter-pointing X-ray Variability

Of the 15 O-type and WR stars which qualified as X-ray variable candidates, 13 show
possibilities of variance over inter-pointing observations from either their spectral class
and / or KS statistic over multiple epochs. Nine sources have the spectral classification
of binaries and four of single stars. LS periodograms complemented with MC simulations
are performed on each target to determine whether any significant periods are present. In
the case of an established period from the LS periodogram and MC simulations, the light
curves are folded on the determined period.

Table 6.2 shows the timescales between the first and last observations and the number
of epochs available for those timescales. Early epochs are not included because of the large

difference in time (~ 6 years) compared to the Chandra Cyg OB2 Legacy observations.

Table 6.2: Table of Epoch Timescales for Variable Candidates

Chandra Name Common Catalogue Timescale of  Number of
Designation Epochs (days) Epochs
203137.50+411321.1 Schulte 3 27.51 6
203213.84+412711.4 Schulte 4 21.55 4
203222.42+411819.0 Schulte 5 11.43 6
203231.54+411408.1 MT91 267 21.88 5
203308.77+411318.7 Schulte 22 12.69 8
203310.73+411508.2  Schulte 9 (MT91 431) 2.61 4
203315.07+411850.5 Schulte 8A (MT91 465) 2.61 4
203323.48+410912.6 MT91 516 7.88 4
203359.56+411735.5 Schulte 27 10.73 4
203408.52+413659.3  Schulte 11 (MT91 734) 26.63 5
203409.51+413413.9 Schulte 75 25.36 4
203421.95+411701.5 Schulte 73 10.73 4
203429.60+413145.3 MT91 771 25.36 4
203547.08+412244.7 WR 146 13.91 hours 2
203206.26+404829.6 WR 145 8.72 hours 1
203326.74+411059.4 MT91 534 7.88 4

Note. Timescales and number of epochs do not include early epochs: 4358, 4501, 4511,
7426, which are generally six years earlier than the Chandra Cyg OB2 Legacy observations.

The inter-pointing, long term variability results for each of the O-type and WR stars

are now presented.
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203137.50+411321.1 - Schulte 3

Schulte 3 is an O6IV+QO9III binary of type SB2/EB with an orbital period of 4.7464 days
(Kiminki et al. 2012b). Figure 6.5 shows the binned Chandra pointings adjacent to one
another, with relatively constant fluxes over all the pointings. This is consistent with the
KS statistic of 4.223E-01, i.e. not significant (see Table 6.1). The reported pile-up rate
for Schulte 3 is ~ 3% with errors on the fluxes of individual pointings between 6 and
15% (Rauw et al. 2014). There are hints of intra-pointing variability in the form of a few
‘spikes’ in the fluxes in the epoch 10953, which are discussed later (Section 6.6.4, page
270). The extreme peaks in epoch 10962 are most likely calibration errors.

203137.50+411321.1
40 10940, 10941, 10942, 10952, 10953, 10962
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Figure 6.5: Binned light curve of Schulte 3 with the observed epochs: 10940, 10941, 10942,
10952, 10953, 10962. The y-axis is the energy flux in 107! erg cm™2 s~! and the x-axis
is the binned time in ks. The green dashed lines mark the different pointings. The fluxes
are relatively constant for all epochs, with a few spikes in epochs 10953 and 10962.

The LS periodogram deployed on the dataset found a singular significant peak around
4.5 pHz (2.57 days), with the closest peak to the reported period still well below the FAP
line.

Results show that only 1.77% of the MC simulations around the reported period (£
5%) have a FAP < 0.30, ruling out the possibility of detecting the orbital period through

the variability of this Chandra dataset. Therefore, there is no evidence of inter-pointing
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X-ray variability arising from the orbital motion of Schulte 3.

203213.84+412711.4 - Schulte 4

Schulte 4 is a single OT7III star (Chandra catalogue classification), included in this study
because of a KS statistic of 6.781E-07. Figure 6.6 shows the binned Chandra pointings
adjacent to one another, with the majority of the points lying close to 0.00 - 0.01 x 10713
erg cm~2 s~'. Epoch 10962 is not included here because of the high background photon
counts for that observation. The significant KS statistic for inter-pointing variability is a
result of the background counts in epoch 10962, with the single epoch Pxg = 3.211E-02
(‘possibly variable’). The single epoch Pxg for 4501 is 8.495E-01, suggesting that the
prominent spike residing in that epoch is an erroneous calibration error.

203213.84+412711.4
4358, 4501, 10944, 10945, 10951
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Figure 6.6: Binned light curve of Schulte 4 with the observed epochs: 4358, 4501, 10944,
10945, 10951. Epoch 10962 is not shown here because of high background noise. The
y-axis is the flux in 10713 erg ecm™2 s™! and the x-axis is the binned time in ks. The green
dashed lines mark the different pointings. The fluxes are relatively constant for all epochs,
with a few spikes in epochs 4501 and 10944. The prominent spike in epoch 4501 is most
likely an error in the calibration.

As a single star with no known associated period of any origin, showing constant inter-
pointing fluxes as can be seen in Figure 6.6 lead to the conclusion that Schulte 4 is not

variable on the inter-pointing timescale.
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203222.42+411819.0 - Schulte 5

Schulte 5 is an O7I+Ofpe/WNO binary with a period of 6.6 days (Rauw et al. 1999). Figure
6.7 shows the binned Chandra pointings adjacent to one another. Schulte 5 suffers from a
high pile-up percentage of ~ 34% (Rauw et al. 2014) which affects the flux significantly.
Moreover, it can account for much of the variability seen in Figure 6.7. Epoch 10956 has

2

the highest mean flux value of around 0.90 1072 erg cm™2 s~! which corresponds to an

2 571 at the 34% level. Epoch 10952 has a lower mean value

error of 0.30 10~ '3 erg cm™
(0.50 10713 erg cm™2 s7!) beyond these errors, suggesting the possibility of some of the
variability being real. Epochs 10951 and 10953 are omitted due to extreme scattering,

possibly as a result of pile-up.
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Figure 6.7: Binned light curve of Schulte 5 with the observed epochs: 10952, 10956, 10958
and 10962. The y-axis is the flux in 107! erg cm™2 s~! and the x-axis is the binned time
in ks. The green dashed lines mark the different pointings. Clear variability can be seen
over all epochs, however, with the high pile-up of ~ 34%, most of this can be accounted
for by the pile-up.

LS periodograms are again used to detect the cited period of 6.6 days (Rauw et al.
1999). Figure 6.8 shows the LS periodogram of the Schulte 5 Chandra dataset. The
blue line traces the period of 6.6 days and the red dashed line shows the FAP = 0.005
confidence level. The strongest peak is only slightly offset from the true period line and is

very significant with a Lomb power value of over 40. The other peaks of similar strength
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are most likely aliases of the period peak, as the flux variability seen in Figure 6.7 is quite
pronounced. The peak profile shapes are also similar leading to the same conclusion.
Because of the poor phase coverage of the Chandra pointings, the flux values (y-axis)
are randomly shuffled and then a LS periodogram is deployed once more to determine
whether the ‘aliases’ are due to sampling effects, purely related to the x-axis values. The
resulting periodograms did not reveal peaks of similar strength or positions of the aliases

seen in Figure 6.8, ruling out data sampling aliases.

5 203222.42+411819.0

Lomb-Scargle Power Values

-10
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Frequency (1E-6) Hz

Figure 6.8: Lomb-Scargle periodogram of Schulte 5. The y-axis represents the Lomb power
value (z9) and the x-axis is the frequency in gHz. The blue line denotes the reported orbital
period of 6.6 days, and the red dashed line shows the FAP = 0.005. The peak near the
true period is the strongest in the periodogram and is above the FAP threshold.

MC simulations are conducted seeking out the highest Lomb power value between
the reported period £+ 5% and the resulting histograms are presented in Figure 6.9. The
strength of the peaks in the LS periodogram (Figure 6.8) are also obvious in the histogram
with 99.80% of MC runs having a FAP < 0.05, and 99.96% having a FAP < 0.30 around
the reported period of 6.6 days (Rauw et al. 1999).

There are a finite number of frequencies which the LS periodogram searches for, and
because this study limited the MC simulations to search between the reported period +
5%, the most frequent period within these limits can be extracted from the MC runs.

Figure 6.10 shows a histogram of the most significant peaks from each MC run around
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Figure 6.9: Cumulative histogram of the MC simulations for Schulte 5. The y-axis shows
the fraction of the total (10,000) MC simulations and the x-axis shows the FAP. The x-axis
is binned to 0.05 FAP per bin. The red box in the top left corner represents the area when
68% of the MC simulations have an FAP < 0.30, i.e. a positive result. The cumulative
histogram of the MC runs breaks the red box marker for a positive result for variability
for Schulte 5.

the cited period of 6.6 days. The majority of the MC runs (44%) are most significant at
a period of 6.87 days.

However, Figure 6.10 only shows the fraction of MC simulations that occured at each
frequency, and does not account for the relative strength or corresponding FAP of each
MC run. Almost all (99.80%) of the MC runs have a FAP < 0.05. Therefore, a weighted
mean can still produce a truer representation of the period found by the LS periodograms
and MC simulations, utilising the exact FAP found from each MC run (however small).
The weighted mean is found to be 6.64 days, which is in agreement with the value for the
period found by Rauw et al. (1999). The errors on this period are defined by the search
window for the MC runs of & 5%.

Finally, the light curve folded on the found period of 6.64 days is shown in Figure
6.11. Visually, the variability is clearly modulated on the period found by this study, with
the major argument against being the high pile-up fraction quoted by Rauw et al. (2014).
However, this pile-up fraction is for on-axis sources, and most if not all massive stars

are observed off-axis, leading to lower pile-up estimations (Facundo Albacete-Colombo;
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Figure 6.10: Histogram of the strongest periods found from each MC simulation for Schulte
5. The y-axis shows the fraction of the total (10,000) MC simulations and the x-axis shows
the strongest frequencies as periods (units of days). The largest histogram bar is at 6.87
days.

private communication). The seemingly spurious epochs of 10951 and 10953 which are
omitted from the periodic study may be a result of pile-up. However, the LS periodogram,
MC simulations and visual folded light curve offer strong evidence that Schulte 5 shows

signs of inter-pointing X-ray variability beyond the pile-up issues, and evidence that this

is locked on the orbital phase of the binary.
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Figure 6.11: Light curve of Schulte 5 folded onto the period found by this study of 6.64
days.
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203231.54+411408.1 - MT91 267

MT267 has a spectral classification of O7.5III (from the Chandra catalogue), but has a
recently discovered period of 15.511 days (Kobulnicky et al. 2012). Figure 6.12 shows
the binned Chandra pointings adjacent to one another, with variability on long and short
timescales visible. The later epochs 10956 and 10958 have a lower mean flux than that of
the earlier epochs. Spikes are seen in most epochs, the most significant of which occurs
in the 4511 epoch around 60 ks. This peak lasts for 5 ks above the neighbouring flux
levels, strengthening the argument that it is not an anomaly. This possible intra-pointing
variability will be discussed later (Section 6.6.4).

203231.34+411408.1
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Figure 6.12: Binned light curve of MT91 267 with the observed epochs: 4511, 10940,
10952, 10953, 10956 and 10958. The y-axis is the flux in 107! erg cm™2 s™! and the
x-axis is the binned time in ks. The green dashed lines mark the different pointings.
Variability can be seen on both long and short timescales. Epochs 10956 and 10958 show
a lower general flux and a number of spikes are present in many epochs, notably in epoch
4511.

Periodical analysis using the LS periodograms is used to investigate whether the cited
period can be recovered by Fourier techniques. Figure 6.13 shows the LS periodogram of
MT91 267 with the blue line representing the period of 15.511 days and the red dashed line
showing the FAP = 0.005 confidence level. The reported period of 15.511 days (Kobulnicky

et al. 2012) lies between two local maxima, both above the FAP line, with the longer period
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being closer to the period. Once again as with Schulte 5, many aliases of similar strength
are present. A couple of aliases have the same morphology as the peak near the cited
period, with a distinct double peak profile.

20 203231.54+411408.1

Lomb-Scargle Power Values
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Figure 6.13: Lomb-Scargle periodogram of MT91 267. The y-axis represents the Lomb
power value (z) and the x-axis is the frequency in pHz. The blue line denotes the reported
period of 15.511 days, and the red dashed line shows the FAP = 0.005. This period liews
between two local maxima with the longer period (smaller frequency) being more preferred
due to proximity.

The results from the MC simulations are displayed in Figure 6.14. For MT91 267,
79.91% of the simulations have a FAP < 0.30, indictating a positive result for the period
of 15.511 days + 5% error.

In order to determine the most frequent period found by the MC studies, the strongest
peak from each MC run is recorded in a histogram (Figure 6.15). The largest fraction of the
total number of MC runs is clearly around 15.9 days with around 93% of the simulations.
The weighted mean, with the FAP values for each run representing the weights gives the
period to be at 15.95 days which is slightly larger than the value of 15.511 days found by
Kobulnicky et al. (2012), but within the error of this investigation of + 5% (defined by
the search window for the MC simulations).

The pile-up fraction for MT91 267 is considered to be < 8% (Rauw et al. 2014), ruling

out pile-up as a possible cause for the variability. The LS periodogram and MC analysis
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Figure 6.14: Cumulative histogram of the MC simulations for MT91 267. The y-axis
shows the fraction of the total (10,000) MC simulations and the x-axis shows the FAP.
The x-axis is binned to 0.05 FAP per bin. The red box in the top left corner represents
the area when 68% of the MC simulations have an FAP < 0.30, i.e. a positive result. The
cumulative histogram of the MC runs breaks the red box marker for a positive result for
variability for MT91 267.

provide strong evidence that the variability arises from the orbital motion of the binary
MT91 267. The light curve folded on the period found by this investigation is shown in
Figure 6.16
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Figure 6.15: Histogram of the strongest periods found from each MC simulation for MT91
267. The y-axis shows the fraction of the total (10,000) MC simulations and the x-axis
shows the strongest frequencies as periods (units of days). The largest histogram bar is
at 15.9 days.

203231.54+411408.1
10940, 10952, 10953, 10956, 10958

0.25
0.20f ° L .
w0 o 3
o~ .
£
€0.15F » o 1
2 [ . s :
s M- A
2 o o: . M o.'. .
T o100 3 <. o2 <. 1
m TRE 3. e o
¥ < S = o S -
S Ay E LN
: ¥ ) : ¥
0.05¢ LAY LN -
0-00,75 —0.5 0.0 0.5 1.0
Phase

Figure 6.16: Light curve of MT91 267 folded onto the period found by this study of 15.95
days.
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203308.77+411318.7 - Schulte 22

Schulte 22 is a massive binary of spectral type: O3If+06V, with a period of 4.61 days
quoted by Rauw et al. (2014), which combined the Chandra and XMM-Newton datasets.
The Chandra data set contains initially nine observed pointings, however, two of these
epochs (10957/58) suffer from high background counts and are excluded from further
analysis. Figure 6.17 shows the binned Chandra pointings adjacent to one another. Small
variations can be seen between pointings, particularly in epoch 10953 and 10955. A small
4 ks spike is noted around the 80 ks mark in epoch 4511, which has a single epoch Pxg =
0.015 (possibly variable) and will be discussed later (Section 6.6.4).

203308.77+411318.7
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Figure 6.17: Binned light curve of Schulte 22 with the observed epochs: 4511, 10953,
10955, 10956, 10960, 10961 and 10964. The y-axis is the flux in 107 erg cm™2 s~ and
the x-axis is the binned time in ks. The green dashed lines mark the different pointings.
Along with a few spikes in flux, some small variations are apparent between epochs.

Excluding epochs 4511 for the high number of period cycles elasped between then and
the Legacy observations, and 10957/58 for the high background counts, LS periodogram
analysis on Schulte 22 is presented in Figure 6.18. The strongest peak in the periodogram
coincides with the period of 4.61 days and is above the FAP = 0.005 significance line.

The MC analysis for Schulte 22 is shown in Figure 6.19, with 23.77% of the simulations

having a FAP < 0.30. This does not meet the requirements imposed by this study, and
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Figure 6.18: Lomb-Scargle periodogram of Schulte 22. The y-axis represents the Lomb
power value (zp) and the x-axis is the frequency in gHz. The blue line denotes the reported
period of 4.61 days, and the red dashed line shows the FAP = 0.005. The strongest peak
in the periodogram is only slightly offset from the reported period of 4.61 days.

therefore indicates a negative result. The weighted average from the MC analysis finds
the period to be 4.72 days.

Despite the negative result from the MC analysis, the LS periodogram did suggest
that the strongest frequency for periodicity is the reported period, with a high significance.
Additional observations (with Chandra or XMM-Newton) are required to confirm whether
this X-ray variability is modulated on the quoted period. Rauw et al. (2014) argue that
this can not be the orbital period as it does not correlate with the visual components of
the system. Instead they propose that Schulte 22 is an oblique magnetic rotator like 6!
Ori C, but without the hard X-ray emission component (2 - 8 KeV). They calculate the
rotation period to lie between 3.3 and 9.21 days.

The light curve from the Chandra data is folded onto the reported period of 4.61 days
and shown in Figure 6.20. The conclusion here is that Schulte 22 shows small inter-pointing
variability, with suggestions that this is fixed on the cited period with the possibility that

this is the rotation period, but without statistical confirmation.
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Figure 6.19: Cumulative histogram of the MC simulations for Schulte 22. The y-axis
shows the fraction of the total (10,000) MC simulations and the x-axis shows the FAP.
The x-axis is binned to 0.05 FAP per bin. The red box in the top left corner represents
the area when 68% of the MC simulations have an FAP < 0.30, i.e. a positive result. The
cumulative histogram of the MC runs does not break the red box required by this study.
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Figure 6.20: Light curve of Schulte 22 folded onto the reported period of 4.61 days.



6.6. CHANDRA X-RAY VARIABILITY OF THE O STAR POPULATION OF CyG OB2 262

203310.73+411508.2 - Schulte 9

Schulte 9 is an O5I+03.5111 binary with an orbital period of 2.355 years (Nazé et al.
2010). However, a previous study by Pigulski and Kotaczkowski (1998) found variability
associated with two different periods of 1.22 and 5.6 days, the origins of which are unknown.
Figure 6.21 shows the binned light curve for five epochs. The latter four epochs all have

a smaller flux than the 4511 epoch which has an average flux of ~ 5 x 107!3 erg cm™2

s~1 across the epoch. Rauw et al. (2014) report a pile-up fraction for Schulte 9 of ~ 18%,
which is large and can account for much of the variability seen in Figure 6.21. Although
as previously stated these fractions are for on-axis sources, whereas most of the massive
stars are off-axis.

The number of observed epochs are too few to provide enough phase coverage to
conduct searches for the orbital period of 2.355 years, but these suggested variable periods
of 1.22 and 5.6 days can be investigated. The early epoch 4511 is excluded as to not to

contaminate the light curves due to the many phase cycles between the two groups of

pointings.
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Figure 6.21: Binned light curve of Schulte 9 with the observed epochs: 4511, 10955, 10956,
10957, 10958. The y-axis is the flux in 107! erg cm~2 s~! and the x-axis is the binned
time in ks. The green dashed lines mark the different pointings. Some variability is seen
between epochs, but is most likely due to pile-up.
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LS periodograms are performed on both of the suspected periods and the MC analysis
for both periods demonstrates the non-detection of variability on these periods, with 0.01%
of the MC runs having a FAP < 0.30 for 1.22 days and 0.02% of the MC runs having a
FAP < 0.30 for 5.6 days.

Given the high pile-up fraction and the very negative results from the LS periodogram
and MC analysis, the conclusion is that Schulte 9 does not demonstrate X-ray variability

on the timescale of days.

203315.074+411850.5 - Schulte 8A

Schulte 8A is an O614-05.5I11 binary with a period of 21.908 days (De Becker et al. 2004).
This is a very bright X-ray source where all of the epochs average over 9.0 x 10713 erg

2 —1

em~2 57!, reaching an average of 14.0 x 107! erg cm™2

s~! in epoch 10958. Because
Schulte 8A is on of the brightest X-ray sources in this survey, the pile-up fraction is very
high with Rauw et al. (2014) citing 60% pile-up. This amount of pile-up can easily account
for all of the variability in the binned light curve (Figure 6.22).
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Figure 6.22: Binned light curve of Schulte 8A with the observed epochs: 4511, 10955,
10956, 10957, 10958. The y-axis is the flux in 107!3 erg cm™2 s~! and the x-axis is the
binned time in ks. The green dashed lines mark the different pointings. Some variability
is seen between epochs, but is most likely due to pile-up.

Omitting the early epoch 4511, LS periodograms are performed on Schulte 8A in an
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attempt to see through the pile-up and detect the period. However, given the long period
of 21.908 days (De Becker et al. 2004), the periodogram does not find any periods in the
region of 21 days.

The MC analysis also shows no detection of the long period, with 0.00% of the MC runs
having a FAP < 0.30. This leads to the conclusion that Schulte 8 A shows no evidence of
variability on the period of 21.908 days, with the variability seen in Figure 6.22 probably

a result of pile-up.

203323.484-410912.6 - MT91 516

MT516 has the spectral classification of a single star (0O5.5V), but has new evidence that
it may possibly be part of a binary system with a period of a few weeks (Rauw et al.
2014). However, a radial velocity study by Kiminki et al. (2007) states that there is only
an 11.5% chance of MT91 516 being a binary. The binned light curve of MT91 516 is given
in Figure 6.23 with small amounts of variability present. With ‘only a moderate pile-up’

(Rauw et al. 2014), this variability could be real fluctuations.

un
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Figure 6.23: Binned light curve of MT91 516 with the observed epochs: 4511, 10955,
10956, 10960, 10961. The y-axis is the flux in 10713 erg cm™2 s~! and the x-axis is the
binned time in ks. The green dashed lines mark the different pointings. Small amounts of
variability is seen between epochs.

As the proposed period is on the order of a few weeks with a large possible range,
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no further periodic studies are performed. This is because the many aliases produced by
the LS periodogram, make searching for an unknown period difficult. The conclusion for
MT91 516 is that small variability is seen, which is unusual for a main sequence O-type

star.

203408.52+413659.3 - Schulte 11

Schulte 11 is an O5If+BO0V binary with a period of 72.4 days (Kobulnicky et al. 2012).
Figure 6.24 shows all the epochs stacked against one another, with a moderate amount of
variability present. The first epoch, 10947, shows a large amount of scatter as does epoch
10966. Epoch 10949 shows a 3 ks and 4 ks profile at the beginning of the epoch which will
be investigated later (Section 6.6.4).
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Figure 6.24: Binned light curve of Schulte 11 with the observed epochs: 4511, 10955,
10956, 10960, 10961. The y-axis is the flux in 107! erg cm™2 s™! and the x-axis is the
binned time in ks. The green dashed lines mark the different pointings.

As almost half of the phase is covered by the Chandra observations, LSS periodograms
are deployed to determine if the orbital period can be found. The only noticable peak
does not correspond to the quoted period and is well below the FAP = 0.005 line.

The non-detection of the period of 72.4 days by the LS periodogram may be because
of the long period and the poor phase coverage for almost half the period. The MC
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simulations also show no detection, with only 0.12% of MC runs having a FAP < 0.30
around the given period.

Therefore, the conclusion for Schulte 11 is that variability is present in the Chandra
dataset. However, this study can not confirm that the variability is phase-locked on the

orbital period, but suggests that Schulte 11 is a good candidate for further studies.

203409.51+413413.9 - Schulte 75

Schulte 75 is classified in the Chandra catalogue as a single O9V star, but qualifies for
investigation due to the significant KS p-value of 4.946E-17. However, with epochs 10949,
10959 and 10966 suffering from high background counts, only epoch 10965 has a source
flux greater than the background level. Despite the high background level in three out of
four epochs, epoch 10965 is noticeably more active than these epochs and is what the KS
statistic indicates. Figure 6.25 shows the binned light curve only for epoch 10965. There
appears to be a 2 ks peak around 15 ks.
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Figure 6.25: Binned light curve of Schulte 75 with the observed epoch: 10965. The y-axis
is the flux in 10712 erg cm ™2 s™! and the x-axis is the binned time in ks. The green dashed
lines mark the different pointings. A small 2 ks long peak is seen around 15 ks.

As only one epoch is available, it is difficult to suggest any hint of inter-pointing

variability within this Chandra dataset for Schulte 75.
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203421.95+411701.5 - Schulte 73

Schulte 73 is classified in the Chandra catalogue as an O8III 4 OS8III binary, but with no
associated period and a KS p-value of 9.041E-5. Epochs 10955 and 10960 suffer from high
background counts, while the epochs 10954 and 10963 show small detectability. Figure
6.26 shows the binned light curve with a large amount of non-detections in the early 10954
epoch. The later epoch (10963) is seemingly slightly stronger with a peak around 36 ks.
The narrow profile of this peak, causes difficultly in determining whether this is a real

feature or an erronous point.
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Figure 6.26: Binned light curve of Schulte 73 with the observed epochs: 10954, 10963.
The y-axis is the flux in 107! erg cm™2 s~! and the x-axis is the binned time in ks. The
green dashed lines mark the different pointings. The fluxes appear to be stronger in the
later epoch, with the early epoch containing non-detections.

The X-ray flux levels for Schulte 73 are very low for both detectable epochs, with the
later seemingly stronger. There does not appear to be much, if any, evidence of variability

from the Chandra dataset.

203429.60+413145.3 - MT91 771

MT771 is an O7V+09V binary with a period of 2.8635 days (Kiminki et al. 2012b). The

binned light curve with all epochs shown adjacent to one another is presented in Figure
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6.27. Despite some scattering within each epoch, the average flux values are fairly constant
across all epochs. Pile-up is not expected to be a problem for MT91 771 with any pile-up

fraction being < 3%.
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Figure 6.27: Binned light curve of MT91 771 with the observed epochs: 10949, 10959,
10965, 10966. The y-axis is the flux in 107!3 erg cm™2 s~! and the x-axis is the binned
time in ks. The green dashed lines mark the different pointings. The fluxes across the
epochs appear fairly constant.

The LS periodogram result showed a peak slightly offset from the cited period but
below the FAP = 0.005 confidence line. MC simulations around this peak only found
9.45% of MC runs have a FAP < 0.30, which indicates that the period was not determined
by this study.

Thus there is no evidence of X-ray variability from this Chandra dataset, on the asso-

ciated period or otherwise for MT91 771.

203547.08+412244.7 - WR 146

WR 146 is a Wolf-Rayet star with an OS8III companion (classification: WC6 + OS8III),
with a singular period estimation from a multi-frequency study by Dougherty et al. (1996),
stating a period of ~ 300 years. The KS test produced a p-value of 2.733E-2, which signifies
a ‘possibly’ variable object, but with a period on the order of 100’s of years, any variability

will not arise from the orbital motion of the binary. Figure 6.28 displays the binned light
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curve of WR 146 with the three epochs of 7426, 10967, 10968. Other than a few spikes, the
general flux level is constant across all three epochs which represents a constant baseline
flux over a number of years. The Chandra datasets do not demonstrate any periodic

behaviour in the X-rays from WR 146.
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Figure 6.28: Binned light curve of WR, 146 with the observed epochs: 7426, 10967, 10968.
The y-axis is the flux in 10713 erg cm™2 s™! and the x-axis is the binned time in ks. The
green dashed lines mark the different pointings. The general flux trend across the epochs
appears fairly constant, with a few spikes in the latter two epochs (10967, 10968).

6.6.4 Intra-pointing X-ray Variability

To qualify for further investigation into intra-pointing variability, a star has to demonstrate
either a significant KS p-value < 0.005 for a certain epoch, or have a significant feature
profile (see below for description) after visual inspection of the light curves in Section 6.6.3,
lasting at least 3 ks. This amount of prolonged, heightened flux suggests the increase is
physically connected with each data point and not just a spurious point. Such spurious
points are defined as extreme flux outliers which last for 1 or 2 ks i.e. 1 or 2 seemingly
extreme data points. Events containing heightened flux profiles lasting for less than 5 ks
are deemed ‘mini-flares’, and events lasting longer than 5 ks are deemed as flares.

To further constrain the criteria for a flare or mini-flare, the peak flux must be greater

than 3 standard deviations of the median (used instead of the mean to nullify any outliers)
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of the tested sample. This is equivalent to the p-value of 0.005 which has also been referred

to as ‘definitely variable’.

203137.50+411321.1 - Schulte 3

The binned light curve (Figure 6.5) shows two possible ‘mini-flares’ in epochs 10940 and
10953. The flux of the feature in epoch 10940 is not significantly greater than the average
flux level, but the profile is broad. Considering the other flux points in the same epoch,

they are of similar strength and therefore this possible mini-flare is probably just stocastic

variations.
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Figure 6.29: Binned light curve of Schulte 3 with the observed epochs: 10940, 10941,
10942, 10952, 10953. The y-axis is the flux in 107'3 erg cm™2 s7! and the x-axis is
the binned time in ks. The green dashed lines mark the different pointings. The blue
line represents the median flux of all epochs, and thred dashed lines represent increasing
standard deviations from the median. A mini-flare is seen at around 125 ks.

However, the mini-flare in epoch 10953 lasting for 3 ks with the peak flux reaching 3.6
sigma may resemble a real feature. Figure 6.29 shows a light curve with the median and
standard deviations plotted in blue and red lines respectively. Epoch 10962 is omitted
because of the spurious points which reside in that epoch. Another peak > 3 sigma is also
present in the same epoch, but only lasts for 1 ks at a significant flux level and is therefore

not considered as a mini-flare event.
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203231.54+411408.1 - MT91 267

The most prominent possibility for intra-pointing variability for MT91 267 comes from
the 4-5 ks mini-flare in epoch 4511. Figure 6.30 shows the epoch 4511 binned light curve
with the mean and standard deviations plotted in blue and red lines respectively. The
mini-flare occurs around 56 ks in Figure 6.30, with the peak flux reaching the 3.3 sigma
level.
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Figure 6.30: Binned light curve of MT91 267 with the observed epoch: 4511. The y-axis
is the flux in 107!% erg em™2 s~! and the x-axis is the binned time in ks. The green
dashed lines mark the different pointings. The blue line represents the median flux of all
epochs, and thred dashed lines represent increasing standard deviations from the median.
A mini-flare is seen at around 56 ks.

Another mini-flare candidate lies around 19 ks, and reaches the 3.7 sigma level, the
highest flux in the epoch. However, this mini-flare candidate only lasts for 2 ks, and

therefore does not qualify as a mini-flare.

203308.774+411318.7 - Schulte 22

The binned light curve for Schulte 22 (Figure 6.17) suggests the most promising mini-flare
candidates lie in epoch 4511 and 10964. However, the peak strengths of these mini-flare

candidates do not reach the required 3 sigma significance level but only 2.1 and 2.7 sigmas
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for events in epochs 4511 and 10964 respectively. Therefore there is no evidence for intra-

pointing variability from Schulte 22.

203408.52+413659.3 - Schulte 11

The binned light curve for Schulte 11 (Figure 6.24) demonstrates large amounts of scatter
within each epoch. The most promising mini-flare candidate lies in epoch 10949. How-
ever, the peak strength of this mini-flare candidate does not reach the required 3 sigma
significance level but only 1.9 sigma. Therefore there is no evidence for intra-pointing

variability from Schulte 11.

203206.26+404829.6 - WR 145

WR 145 is a binary with the Chandra survey spectral classification of WN70/CE4O7V((f))
and a known period of 22.54977 days (Muntean et al. 2009). The intra-pointing KS test
revealed a p-value of 5.754E-7 significance, warranting an investigation for variable activ-
ity from WR 145. Figure 6.31 shows the binned light curve for the sole epoch 10969. A
general increase is visible from the beginning and end of the epoch.
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Figure 6.31: Binned light curve of WR 145 with the observed epoch: 10969. The y-axis is

the flux in 107% erg cm 2 s~! and the x-axis is the binned time in ks. The green dashed

lines mark the different pointings. A general increase in flux is noticeable across the epoch.
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Regressional analysis finds this positive correlation to have an r? value of 0.17. As
such, when determining the significance of any peaks, the standard deviation should be
taken from the regression fit rather than the median of the epoch. Figure 6.32 shows that

with this fit, the largest peak reaches 2.5 sigma.
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Figure 6.32: Binned light curve of WR, 145 with the observed epoch: 10969. The y-axis is
the flux in 107! erg cm~2 s~! and the x-axis is the binned time in ks. The green dashed
lines mark the different pointings. The blue line is the regressional fit applied to the data,
and the red dashed lines are multiples of the standard deviations from the fit.

This does not fulfil the criteria of a mini-flare and therefore, the conclusion is that there
is no evidence for any flaring activity, but the regressional analysis and KS test p-value
does suggest that there is variability in the X-ray flux from WR 145. The nature of this
variability is gradual, and because of the lack of observations, it is impossible to correlate

this to the orbital period of 22.5 days.

203326.74+411059.4 - MT91 534

MT91 534 is a main sequence O-type star with the spectral classification of O7.5V. The KS
test produced a p-value of 1.803E-65, which is a phenomenally significant value. Figure
6.33 shows the binned light curve of MT91 534, with the flare clearly visible in epoch
10960. The flare occurs in the middle of the observation and continues to the end of the

epoch, making it unclear as to when the flaring activity stops. A minimum flare time of
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16 ks can be deduced from the figure. The following epoch 10961 is observed only a few
hours after epoch 10960 and has returned to the pre-flare flux level.
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Figure 6.33: Binned light curve of MT91 534 with the observed epoch: 10969. The y-axis
is the flux in 10713 erg ecm ™2 s~! and the x-axis is the binned time in ks. The green dashed

lines mark the different pointings. A flare can be seen at around 170 ks lasting at least 16
ks.

The strength of the flare is roughly 20 times greater in flux than the continuum level
with the peak of the flare reaching 7.4 sigma of the median flux for all epochs. The sigma
levels are plotted in Figure 6.34.

The nature of this flare is similar to a number of flaring events seen in a previous
Chandra study (Albacete Colombo et al. 2007a; Albacete Colombo et al. 2007b) from low
mass members of Cyg OB2, where the authors suggest that the X-ray flares are a result of
magnetic reconnection events (Favata and Micela 2003). Figure 6.35 is a plot taken from
Albacete Colombo et al. (2007a) of 20 sources, 14 of which show flaring activity.

Only two OB stars in the 97 ks Chandra study (both B-type stars, one a binary system),
demonstrated gradual variability, which Albacete Colombo et al. (2007a) attributed to
magnetically confined wind shocks, possibly like the oblique magnetic rotator §' Orionis
C (Gagné et al. 2005).

None of the OB stars in the Albacete Colombo et al. (2007a) study revealed flare-

like activity, and none are expected to show the features of the flare seen in Figure 6.33.
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Figure 6.34: Binned light curve of MT91 534 with the observed epoch: 10969. The y-axis
is the flux in 10713 erg cm ™2 s™! and the x-axis is the binned time in ks. The green dashed
lines mark the different pointings. The blue line is the median flux of all the epochs and
the red dashed lines are the subsequent sigma levels. A flare can be seen reaching 7.4
sigmas at around 170 ks lasting at least 16 ks.

Moreover, the flaring activity of MT91 534 portrays the same morphology as the flares
from many low mass stars in the Albacete Colombo et al. (2007a) study (Figure 6.35).
Therefore the conclusion for MT91 534 is that the X-ray flare of this nature could not

arise from the O7.5V star, and that a hidden low mass companion is present exhibiting a

coronal magnetic reconnection event.

6.6.5 Summary of X-ray Variability

A summary of the X-ray variability of massive stars found in this study is presented
here for the inter-pointing and intra-pointing variability. Table 6.3 shows all the sources
investigated with notes on whether the variability was in the form of a positive KS statistic
result, greater than 3 o flaring activity (intra-pointing) or gradual flux increase, or periodic

variability determined by the LS periodograms and MC simulations (inter-pointing).
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Figure 6.35: 600s binned light curves for 20 sources from the Albacete Colombo et al.

(2007a

97 ks Chandra survey. Source classified as flares are denoted with an “f” in the

)

top right corner of each plot. This figure is taken from Albacete Colombo et al. (2007a)

(Figure 6).
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Table 6.3: Summary of the X-ray Variability in this Study

Chandra Name

Common Catalogue

KS Statistic

Intra-pointing

Inter-pointing

Designation Pxs < 0.005 Variability Variability
203137.50+411321.1 Schulte 3 No Yes No
203213.84+412711.4 Schulte 4 Yes No No
203222.424+-411819.0 Schulte 5 Yes No Yes
203231.544+411408.1 MT91 267 Yes Yes Yes
203234.87+405617.0 A38 Yes No No
203308.77+411318.7 Schulte 22 No No No
203310.73+411508.2 Schulte 9 (MT91 431) Yes No No
203315.07+411850.5  Schulte 8A (MT91 465) N/A No No
203323.48+410912.6 MT9I1 516 Yes No No
203359.56+411735.5 Schulte 27 No No No
203408.52+413659.3  Schulte 11 (MT91 734) Yes No No
203409.51+413413.9 Schulte 75 Yes No No
203421.95+411701.5 Schulte 73 Yes No No
203429.60+413145.3 MTI1 771 No No No
203547.08+412244.7 WR 146 Yes No No
203206.26+404829.6 WR 145 Yes® Yes No
203326.74+411059.4 MT9I1 534 Yes® Yes No

All KS statistics are ‘MERGED’ KS statistics (inter-pointing) unless otherwise stated. * KS
statistics from the single epoch (intra-pointing).

6.7 Conclusions and Discussions

This variability study of O-type and WR stars from the Chandra Cyg OB2 Legacy dataset
has found 5 out of the final 15 candidates to be variable or possibly variable on the inter-
pointing timescale. Two stars; Schulte 5 and MT91 267, reveal periodic variability on
known periods corresponding to the orbital motions of the binaries which were statistically
verified. The Schulte 22 analysis offered suggestive evidence for periodic behaviour based
on 23% of the MC simulations fulfilling the FAP < 0.3 criteria imposed by Hoffman et al.
(2012). MT91 516 showed small variations in the Chandra dataset, but this remains
speculative.

For the intra-pointing variability, 4 out of the 15 candidates demonstrated a variety
of variable behaviour, inlcuding mini-flares and flares (see Section 6.6.4 for a description),
and gradual flux increases. Schulte 3 and MT91 267 revealed possible ‘mini-flares’ lasting
for 3 and 4-5 ks respectively at the 3 o significance level. MT91 534 displayed a strong
flare lasting for > 16 ks at the 7 o significance level. The single epoch of WR 145 showed
a gentle increase in flux values over the observation, the origin of which could not be
identified.

All of the stars investigated, demonstrated flux scattering within the epochs of obser-
vations. For some of the sources, pile-up may affect the variability profile but this effect

does not make a constant source appear variable. However, many of the stars have low or
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negligible pile-up fractions. This leads to the discussion on where this scatter originates
from. The LS periodograms for many stars did reveal many strong peaks at a number
of frequencies which do not correspond to known periods. These are most likely due
to aliases, and therefore searching for high frequency (short time periodicities) would be
difficult because of data sampling effects in the periodogram. A robust study of these
scattering effects and whether they are a result of stocastic or short timescale periodic
variability would be difficult, not only for these reasons, but also because the expected
variable population from OB star wind instabilities on timescales such as these (hours) is
very small, less than 1% (Nazé 2009; Massa et al. 2014; in press).

Similar short timescale X-ray studies on the O star ( Pup were conducted by Nazé
et al. (2013), who did not find any flare-like activity, or short timescale (< 1 day) variations
whose optical counterparts are attributed to stellar pulsations (Reid and Howarth 1996).
Nazé et al. (2013) do not rule out the existance of such short timescale X-ray variability,
however, state that their observations are the most extensive and sensitive data on a
specific target to that date. They further emphasise that more sensitive observations may
detect variable features as described above.

From the Chandra catalogue and this variability study, there are 49 O stars and 3 WR
stars in total with 106 known OB stars in Cyg OB2 (Albacete Colombo et al. (2007a)).
Of the 49 O-type stars, 12 are known, or thought to be in binaries, making up 24% of
the X-ray population of Cyg OB2. Eleven of these (22%) are massive binaries (made up
of O and/ or B stars) and one O star - low mass star binary to account for the flaring
activity seen in MT91 534. Two of the 11 massive binaries have been recently confirmed;
MT91 267 (Kobulnicky et al. 2012), MT91 516 (Rauw et al. 2014), implying that this
binary fraction of Cyg OB2 is far from complete with new binary confirmations being
made every year. Moreover, the O-type star population of Cyg OB2 is not complete, with
more discoveries and confirmations expected with the completion of the COBRaS Legacy
survey.

The binary fractions of massive stars in young open clusters and OB associations are
uncertain. Sana et al. (2013) (and references therein); summarises a large number of
studies on a number of clusters, with the binary fraction ranging between 30% and 60%.
These differences are accountable to random fluctuations expected from the sample sizes.
Knowing the binary fraction is very important in order to understand the formation and

evolution of massive stars. Sana et al. (2013) estimate that 53% of all stars born as O-type
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belong to a binary system with a period < 1500 days. They go on to say; 18% of the O
stars will merge with a companion, 27% will be stripped from their envelope and 8% are
expected to be spun up. This clearly indicates the significance of binarity on evolution
which makes up for over half of the population of O stars (assuming longer period binaries
> 1500 days, do not have the same level of interaction due to the greater orbital distance).

The age of the cluster (and therefore of the member stars) must also be considered,
because 5% of the O star population is running away either a result of binary interaction
or supernova kicks, leading to the conclusion that a fraction of the O star population has
undergone dynamical or evolutionary interaction (Sana et al. 2013). This suggests that
clusters or associations with different ages, may have a slightly different binary fraction
due to the evolutionary history of the population.

In light of the evidence that MT91 534, an O-type main sequence star, may have a low
mass companion discovered from a ‘chance’ observation of an X-ray flare, more seemingly
single O-type stars could host hidden lower mass companions. This could have significant
repercussions for the perceived evolution of massive stars, by hiding the true nature and
reason for an O star’s particular evolutionary path and biasing the frequency of binaries.

More extensive surveys may find more flaring events from massive stars which could
be attributed to an unseen lower mass star. However, because of the serendipitous nature
of the detecting event (the flare) it may be unlikely to realistically discover all of the lower
mass companions via this method, but it may also be the only way of detecting late-type
companions around O-type stars.

A number of methods are needed to discover all the massive binaries in clusters and
associations, due to the orbital period/ distance, inclination of the systems, and the mass
ratios all result in different physical scenarios. Spectroscopic techniques (Ha studies) are
better suited to determining short period binaries (< 1 year), but only if the system is not
face-on (i.e. low inclination, ~ 0°). Whereas intermediate period binaries (1 - 100 years)
are more likely to be detected by non-thermal radio emission from wind-wind collision
regions or by X-rays from the collision shocks. Longer periods (> 100 years) will only be
visible to astrometry studies.

Therefore, COBRaS non-thermal radio and Chandra X-ray observations cover the
large range of intermediate period binaries and are essential studies to robustly detect
all of the binaries possible by the physical dependencies imposed by the binary systems

(such as orientation during the observations). This further states the importance of multi-
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wavelength surveys on Cyg OB2 and other clusters and associations to reveal the entire
picture and nature of the population within.

While the X-ray variability fixed on the orbital period is a physical consequence of large
shocks from wind-wind interactions (Stevens et al. 1992; Rauw et al. 2014), other origins
for X-ray variability arise from Co-rotating Interaction Regions (CIRs, Mullan 1986). As
a star rotates emitting its wind in a non-circularly symmetric with respect to the rotation
axis, fast wind emitted along a certain direction will catch up to a slower wind emitted
in the same direction at an earlier interval. If the disparity in velocities is great enough
(on order of the local sound speed) a shock forms between the two wind regions (Mullan
1986). The interaction region rotates with the rotation period of the star, leading to the
name CIR.

The timescale of the X-ray variability from CIRs should be comparable to the stellar
rotation period and should also correlate with Ultra-Violet (UV) wind line variability
(Massa et al. 2014; in press). Studies on the O star ¢ Oph has shown rotation modulation
of X-rays in conjunction with UV discrete absorption components (Oskinova et al. 2001).
Other possible evidence for CIRs comes from ¢ Pup, although additional data is required
to sample the full rotation period to refine the origin of the variability (Nazé et al. 2013).

From this study, Schulte 22 showed tentative evidence that variability was present
between the calculated timescale limits of the star’s rotation period (3.3 and 9.2 days,
Rauw et al. 2014). This could indicate that if the variability is significant, a possible
origin of this variability could be from the CIR around Schulte 22, although further X-ray
and additional UV observations are necessary to confirm these assertions.

Another method of detecting periodicities in X-ray datasets is to apply the Kuiper test
(Kuiper 1960). Paltani (2004) searched the ROSAT archive with the Kuiper’s test over a
range of frequencies which the data is then folded on. The authors comment on problems
with extrinsic contamination and note that firm confirmation depends on detection in
independent datasets.

The Kuiper test was attempted in this investigation, with cumulative plots and rel-
evant statistics determined. Despite visual cumulative plots appearing to show periodic
behaviour, this was not statistically confirmed. The amplitude of the cumulative data to a
constant model for the number of data points present, was not profound enough to trigger
a Kuiper p-value of the necessary significance. Arbitrarily increasing the number of events

used in calculating the significance but using the same dataset, yielded a drastic change
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in the p-values. It appears that when there are a few number of events in the cumulative
histogram, the amplitudes need to be quite large to reach the required significance.

The LS periodogram utilised in this study, is equivalent to a non-linear least squares
model fit to the data (Scargle 1982). Such fits were made to the datasets for stars with
known periods using the Levenberg-Marquardt method of minimisation (Levenberg 1944;
Marquardt 1963), which uses the x? statistic as the minimisation function. This method
locates the nearest local minimum which may not be the global minimum and is not
therefore robust. This is evident when the fit function is trigonometric where identical
values occur for every 2nmw. Therefore, in some cases an initial estimate of the input
variables for the function used in the fit may be needed to help the algorithm.

An improvement to this fitting process could be to use the Cash statistic (Cash 1979)
as the minimisation function, as this works well when the number of counts per bin is
low. This may result in a better fit to the dataset, although the uneven sampling may still
affect the fit. However, the main issue with using the fit is finding a goodness-of-fit statistic
which is reliable. The Cash statistic does not offer this, strengthening the argument for
other methods which give statistical verification to any fit, such as those deployed in this

thesis (LS periodograms and MC simulations).

6.8 Future Work

Future X-ray variability work can be conducted on the larger available B star sample
from the Chandra Cyg OB2 Legacy survey. This can consist of similar studies presented
here, with the LS periodograms and MC methods offering strong arguments for statistical
verification (discussed above) for known or candidate variable periods. Alternative avenues
of investigation into time series analysis with the Cash statistic are also possible, although
the limitations of these methods have also been discussed above.

The larger sample may reveal more candidates and evidence for short timescale (~
hours) variability. Any well observed stars including fundamental stellar parameters such
as the stellar rotation period, may offer more evidence for CIRs and modulated variability

on the rotation period.



Chapter 7

Summary, Conclusions and Future

Work

Knowledge speaks, but wisdom listens.

Jimi Hendrix

This chapter contains a summary of the technical and science work completed in this thesis
and thus providing the basis for the ultimate goals of the COBRaS project. Future work
with COBRaS Legacy datasets is reviewed. The final section discusses the wider context
of software development, engineering and applications to future major projects such as

the SKA.

7.1 Summary of Thesis

Chapter 1 introduces the theory of radio interferometry including the different aspects of
the interferometric heterodyne system and aperture synthesis algorithms. The chapter also
contains a description of e-MERLIN and the technical capabilities as a fully operational
telescope. Lastly, an introduction to COBRaS includes the technical and science goals of
the Legacy project.

Chapter 2 presents the SERPent algorithm to reduce and flag radio interferometric

datasets from e-MERLIN. SERPent contains three reduction passages: the Lovell station-
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ary scan removal, zero-level amplitude removal and RFI-mitigation. SERPent interacts
with AIPS to read in visibilities for sources and appends a flag (FG) table to the data in
ATPS. SERPent has been tested on a large number of datasets and is currently used by a
number of international institutions and is included in the e-MERLIN calibration pipeline.

Chapter 3 describes the COBRaS calibration pipeline, including delay and phase cal-
ibration, flux and amplitude calibration, spectral fitting and bandpass calibration, and
self-calibration of the phase calibrator J200744029. The automated algorithm includes
passages which conduct otherwise manual tasks such as setting the delay window for delay
calibration on a suitable section of data, bootstrapping the fluxes from 3C286 onto OQ208
(if that option in the pipeline is chosen), automated spectral fitting unbaised by obvious
outliers, and selecting a CLEAN box around the phase calibrator for self-calibration. The
pipeline has been tested on a L-band Legacy dataset and a commissioning C-band dataset.
Parts of the COBRaS pipeline have been adopted in the general e-MERLIN calibration
pipeline (Megan Argo, University of Manchester, UK).

Chapter 4 includes a number of programs to detect, extract and classify sources.
Firstly, a catalogue amalgamation script cross-correlates a number of previous studies
on the Cyg OB2 region into one definitive catalogue. Subsequent specific catalogues are
compiled from this one catalogue to create an OB star catalogue and candidate catalogue.
The next part of the chapter presents a source detection and flux extraction program
which determines the fluxes of point sources and resolved sources in a pixel-by-pixel (PP)
manner. This method does not assume any particular source structure (such as Gaussian)
and performs better or equivalent flux extraction compared to existing methods in AIPS
(JMFIT) on simulated data. The last part of this chapter contains a cross referencing
algorithm to match sources in a map with those in a catalogue. Using Bayes’ Theorem, a
source significance boosting module is also presented which can statistically increase the
detection significance of faint sources.

Chapter 5 introduces mass loss and the winds of massive stars, the radio emission
from massive stars and the effects of clumping on the radio fluxes. The chapter presents
predicted smooth mass loss rates and radio fluxes based on the predicted fundamental
stellar properties of massive stars from their spectral type. Building on these smooth wind
predictions, a study on how a varying clumping factor affects the radio fluxes is included,
comparing these clumped radio fluxes with previously published radio observations of

massive stars in Cyg OB2. Finally, the first radio maps from COBRaS are presented with
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source and flux lists and some initial analysis.

Chapter 6 contains an introduction to X-rays from massive stars, the Chandra Cyg
OB2 Legacy survey and the Chandra space observatory. A background description of
the statistical methods used in characterising variable sources in X-ray astronomy is also
given. A study on X-ray variability in O-type stars and WR stars is presented. Long
term variability of inter-pointing observations is investigated with the Lomb-Scargle peri-
odograms and Monte Carlo simulations, and short term intra-pointing variability in the

form of flaring events and continuum increases.

7.2 Thesis in the Context of COBRaS

In Section 1.3.4, a number of technical requirements were stated as part of the COBRaS
project. These include: data processing, calibration, imaging, analysis and data archiving.
This thesis addresses the data processing with SERPent (Chapter 2), calibration with the
COBRaS calibration pipeline (Chapter 3), source analysis with the source and flux extrac-
tion program (Chapter 4) and the foundations of the data archiving with the catalogue
scripts (Chapter 4). Therefore, this thesis provides a substantial amount of the technical
ground work for COBRaS, with imaging and mosaicing the only major technical aspects
still to be addressed.

In Section 1.3.3, a number of astrophysical themes and goals are described. These
include: mass loss rates from massive stars, massive binary fractions and the incidence of
non-thermal radiation, and on-going and triggered star formation. This thesis contains the
predicted smooth radio fluxes and clumped radio fluxes for O stars and early B supergiants
and a first analysis of the radio maps is given with potential sources (Chapter 5). The
topic of mass loss rates and how clumping affects the radio fluxes and mass loss rates
determined from radio observations is a key area of COBRaS, and is led by UCL.

Another application of COBRaS is the synergy with other Cyg OB2 datasets, observed
at other wavelengths. Surveys such as the Chandra Cyg OB2 Legacy survey, can provide
additional insight into the science goals of COBRaS by studying different phenomena
associated with the population of Cyg OB2. The variable X-ray emission from massive
stars traces behaviour such as binarity, CIRs and flares. This thesis contains studies on
the variability of O stars and WR stars (Chapter 6) whilst demonstrating the importance

of multi-wavelength studies of the same region.
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The scientific output from COBRaS is only just beginning, with the first radio maps
now being created (April 2014). In the coming year, the rest of the L-band Legacy dataset
will be observed allowing for investigations into low frequency, non-thermal phenomena.
This includes the search for known massive binaries with cross correlations with the ra-
dial velocity studies (Kiminki et al. 2007), and also unknown or candidate binaries with
comparisons with the catalogues created in Chapter 4. Other non-thermal emitters will
consist of weak T-Tauri stars, tracing star formation in the Cyg OB2 region, and the
active galactic nuclei (AGN) of any background galaxies. Whilst the AGNs are out of the
context of COBRaS which focuses on Galactic stellar objects, these are still interesting
objects for the extra-galactic astronomy community.

The second phase of COBRaS (2015) will consist of the significantly larger C-band
dataset of 42 pointings with a total integration time of 252 hours. Despite the larger
amount of data, the C-band should have considerably less RFI than the L-band obser-
vations, resulting in a smoother passage through the calibration pipeline. The data can
therefore be reduced and calibrated by SERPent and the calibration pipeline with no man-
ual intervention or checks with a higher confidence of good results. This is vital because
of the large data volume (tens of TBs).

The C-band dataset will exploit the full 2 GHz bandwidth producing sensitive mosaic
maps of thermal sources with spectral indices (in conjunction with the L-band maps),
allowing the detection of a large number of massive stars. This will produce a statistical
sample of massive star radio fluxes, from which constraints on the clumping factor and mass
loss rates can be determined. COBRaS will conclusively demonstrate whether clumping
exists in the outer winds of massive stars and will play a major role in future studies of
clumping at other wavelength ranges. The technical and scientific ground work conducted
in this thesis will be pivotal in helping COBRaS achieve this and the other science goals.

To add to the investigation of clumping in the winds of massive stars, a recent ALMA
cycle 2 proposal was accepted (P.I. Dr Danielle Fenech) to observe Westerlund 1, the most
massive stellar cluster in the Galaxy, located in the Southern hemisphere. This will obtain
a number of millimetre fluxes for massive stars and will refine the amount of clumping in
the middle part of the wind, where it is predicted from hydrodynamic simulations that
the peak amount of clumping occurs (Runacres and Owocki 2002). This ALMA dataset
along with the e-MERLIN COBRaS dataset will provide the most extensive investigation

of clumping in the middle and outer winds of massive stars.
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7.3 Thesis in the Wider Context of Software Engineering

This thesis includes three major pieces of software: SERPent, the COBRaS calibration
pipeline, and the PP source and flux extraction program. All three were created from
scratch, each with a specific technical goal to accomplish. There are many conclusions
gleaned from developing these programs, which are now discussed.

All of these programs are automated, requiring minimal or no manual interaction,
but each has its own breakdown limit. SERPent incorporates robust statistical variance
estimators, but will breakdown if the amount of RFI for any given sample (total integration
time on-source versus channels in an IF) approaches ~ 50%. SERPent can remove a
number of errors in the dataset, but there are no guarantees it will successfully remove
any new future problems. The calibration pipeline is particularly vulnerable to any bad
data remaining in the datasets, because of the high number of variables in the pipeline and
therefore potential errors which can propagate through the system. Including fail-safes for
every conceivable eventuality is not possible. The PP extraction performance is in many
cases limited by the noise distribution, not just for low SNR, sources but also from errors
which may arise during deconvolution. Therefore automated programs require a certain
level of data quality in order to be effective or even successful in their operations.

The testing and development of software can be broken down into four general stages:

1. Creation of the algorithm which performs a specific task.

2. Making the algorithm robust by testing it on multiple datasets, editing the software
if required so that it completes the tasks on all of the datasets to a sufficient level

every time. This is known as test-driven development.

3. Optimisation of the algorithm performance both in output results and perhaps exe-

cution time.

4. Maintaining the algorithm, including updates of any new modules or ideas in the

field.

SERPent is currently the most developed piece of software presented in this thesis, and
is at the stage of requiring optimisation in its flagging and computational performances
(see discussions in Section 2.5). The calibration pipeline now requires the rest of the L-

band Legacy observations to tune each calibration passage and become more robust and
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ready for the C-band observations. After running the pipeline on L-band and C-band data,
it appears the calibration performance is limited to the amount of RFT still remaining in
the data. The exact break down point (i.e. how much RFT still exists in the dataset, and
the morphology of that RFI) is not known, but can be tested with the rest of the L-band
Legacy data. The PP flux extraction algorithm has been robustly tested on simulated
data, and now requires more real maps from COBRaS to push further development.
This last point also raises the consideration of simulated data in testing the perfor-
mance of software. Simulated data is incredibly useful in creating and testing the per-
formance of certain software as is seen in Chapter 4, as the inputs are known. However,
simulated data does not include many unknowns which can occur in real data. For soft-
ware which acts upon real outputs from real instruments, performance testing on real data
has obvious merits, as the real data is itself the final and ultimate performance test.
These considerations are important when planning to develop the next generation of
software for future projects such as the SKA. Such endeavours will rely upon previous
knowledge and experience from precursor projects such as e-MERLIN and MeerKat, to
allow for the construction and implementation of hardware and software to be successful.
The SKA will benefit from these pathfinders as well as the vast amount of infrastructure
surrounding the project to aid its development, which is sometimes unavailable to smaller
projects. With technology becoming more sophisticated and aquiring massive amounts of
data, there is an increased importance on software engineering, particularly automated
programs to process this data. Software development for the SKA will play an essential
part for the project and will become one of the most important aspects of processing and

analysing future astronomical surveys.



Appendix A

AIPS Nomenclature

This thesis contains many abbreviated tasks and commands from the Astronomical Image
Processing System (AIPS), where a priori knowledge is assumed in the main body of
the thesis. A detailed list of all of the tasks and commands (also known as ‘verbs’ and

‘adverbs’) referred to in this thesis is given here for clarity.

AIPS - A reduction, calibration, imaging and analysis package for interferometric
data. Originally created for the VLA, it has been widely used since the 1970s as the
processing program for other arrays such as MERLIN and e-MERLIN. It contains
a large range of algorithms, tasks and commands to manually manipulate datasets

and images.

BPASS - Bandpass calibration task. BPASS determines the antenna based complex
gain variations as a function of frequency, flattening the bandpass response across
the bandwidth. An option to include spectral fitting is available with the SPECINDX
and SPECURVE abverbs.

CALIB - Complex gain calibration task. CALIB uses the Fourier transform and a
least squares algorithm to find the best solutions for the electronic gains. It therefore
requires an input model to help the least squares algorithm converge onto a solution.
No input models are currently available for the calibration sources from e-MERLIN,

therefore a point source model is assumed.
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CLCAL - Task which applies the solutions determined from calibration tasks (such
as FRING and CALIB) and applies them to the individual sources (within a multi-
source file) to create calibration tables (CL). These CL tables can then be applied

to the sources to calibrate the data “on the fly”.
COMB - A task to combine two overlapping images.

DBCON - A task which concatenates two visibility datasets together, and copies the

extension tables over from each dataset.

FLATN - A task which interpolates a series of images created with IMAGR into a

single image.

FRING - Delay, rates and phase calibration task. FRING, as with CALIB, uses
a least squares algorithm and Fourier Transform to determine the antenna based
components of the fringe rate and delays. Therefore a point source calibrator is
required for the delays and rates, and a strong point source phase calibrator in the
vicinity of the target field is required for the full fringe fitting algorithm. FRING
outputs a solution (SN) table which can be converted into a calibration (CL) table

to be applied to the visibility data.

GETJY - Task which interpolates flux densities from a primary flux calibrator onto
the other sources. GETJY is used in conjunction with SETJY which determines the
fluxes for the primary calibrator. GETJY modifies the source (SU) table fluxes for
each IF and I, U, V and Q polarisations.

IMAGR - The wide-field imaging task for AIPS. IMAGR contains the Cotton-Schwab
(Schwab 1984) version of the CLEAN algorithm which is described in Section 1.1.5.
IMAGR is a visibility based CLEAN task which contains a large range of imaging

options, including gridding and visibility weightings.

IMAGRPRM - An adverb within the task IMAGR. This adverb performs additional
corrections and enhancements to the CLEAN algorithm, notably IMAGRPRM(1)
which makes a frequency dependent primary beam correction, where the input is

the antenna diameter.

IMEAN - A task to perform statistics on an image. IMEAN determines the mean

and RMS brightness of the image or a specified portion of the image. It also creates
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a histogram of the image and calculates the noise part of the signal from the peak

and RMS of the histogram.

JMFIT - A task to fit Gaussian models to sources in an image via a least squares
algorithm. Can fit up to four Gaussians per portion of an image, with or without
constraints on the model. It requires an initial guess on the peak position and search

area for the least squares algorithm.

KNTR - A task to create contour plots and greyscale plots. KNTR uses a contour

tracing algorithm with inputs on the base contour level and sequential levels.

PBCOR - A task to apply the primary beam correction. PBCOR is to be used after

the final image has been made to apply the corrections.

POSSM - A plotting task to show complex gains (phases and amplitudes) as a
function of frequency. POSSM uses scalar or vector averaging of data and is useful
for showing the effects of calibration (CL) tables or bandpass calibration (BP) tables

on the visibility dataset.

QUACK - A task to flag beginning or end parts of a scan. The user has to input

the length to be removed and the whereabouts in a scan.

REFLG - A task to condense the number of rows in the FG extension table and to

flag visibility data. The task is controlled by a number of parameters.

SETJY - A task to set the flux densities of one or more sources. SETJY modifies

the flux densities in the source (SU) table for individual IFs and polarisations.

SNEDT - A task which allows manual editing of solution (SN) and calibration (CL)
tables. The task plots the solutions or calibration for phases, delays, rates and

amplitudes as a function of time for each baseline, IF and polarisation.

SOLINT - The solution interval. An adverb for a number of tasks such as FRING,
CALIB etc. and is used to determine how often a solution is made, or how frequently

to average the data.

SOUSP - A task to determine the spectral index and/or curvature of a source. Fits a
polynominal (up to third order) to a spectrum and outputs the orders to the adverbs

SPECINDX and SPECURVE.
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SPECINDX - The zeroth order coefficient of the spectral fit.
SPECURVE - The first to third order coefficient of the spectral fit.

SPLAT - A task to split out individual sources from a multi-source file. Calibration
(CL), bandpass calibration (BP) and flags (FG) tables may be applied during the
splitting process. SPLAT differs from SPLIT by also providing a source (SU) table

to the individual source and copies any unapplied tables to the new source file.

SPLIT - A task to split out individual sources from a multi-source file. Calibration
(CL), bandpass calibration (BP) and flags (FG) tables may be applied during the

splitting process.

UVCON - A task to generate visibility datasets. UVCON generates a simulated
visibility dataset for a given array model with antenna positions, sizes etc. Simple
models of point sources and resolved sources can be simulated, and system noise can

be added in an attempt to replicate a real interferometric system.
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Appendix B

Derivations

This appendix includes the derivations of some of the equations which were not explictly

given in the chapters.

B.1 Derivation of Equation 1.8

Equation 1.4 defines the correlator output for the even part of the sky and equation 1.7
for the odd part of the sky. These are reproduced here

re (Tg) = wivj cos (2mvTy)

rs (14) = vivy sin (2mvTy).

These equations are modified by equation 1.3 for the time delay 7, and combined to

produce the complex correlator output:

r@)_-!‘B() ( - )dQ

_ (27vb-s
——!nB@)$n<C>dQ

Defining the visibilities as a complex function with the form V = r. —ir; and using

Euler’s Formula e® = cos ¢ + i sin ¢ where ¢ = 27v (b -s/c), updates the correlator
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function to

The coordinate system for the baseline vector b is defined by (u, v, w), and the

corresponding sky distribution vector s coordinate system is defined by (1, m, n). Therefore

vb-s

= ul + vm + wn,
c

and the solid angle of the sky surface df2 is given by

JQ — dldm.
n

Substituting these into the correlator function gives the visibility function or measure-

ment equation:

n

V (u,v,w) = / / / B(l,m,n) ¢~2miCuttomtwn) M (B.1)
I m n

quod erat demonstrandum.

B.2 Error Propagation Laws

The error propagation laws are given for reference.

Multiplication and Division: Z = A - Bor Z = A/B:

- [ G

(B.2)
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Products of powers: Z = AX . BY:

(AZZ)Z _ [(X)2 <A/;4>2 + () <A;)2 b (B.3)
Logarithmic: 7 — logiy A:
(AZZ)2 = [0.434 (%)2 + ... (B.4)

B.3 Derivation of Mass Loss Rate Errors (AM)

The individual errors on the O star parameters (Mgpec, Tesr, R and L) are given by Martins
et al. (2005) to be: AM = 35 to 50%, ATz £ 1000 to 2000 K, AR = 10 to 20% and L,
= 17, 10 and 15% for I, III, and V respectively.

The individual errors on the B Supergiant parameters (Mgpec, Tet, R and L) are given
by Searle et al. (2008) to be: AM =+ 14.52, AT.g = 2000 K, AR = 10% and L, = 57%.

The errors on v, is taken as the average range of v, for each luminosity class from
Prinja et al. (1990); OI Avy, = 750 km s~!, OIII Av,, = 680 km s~%, OV Av,, = 750 km
s7!, BI Avy, = 725 km s~!. These values are roughly equal and are therefore generalised
into one error for all stars to be Avs £ 360 km s~ .

The final parameter veg is a function of M, R, and Iy which is also a function of L

and M.

The errors on I', follow Equation B.2:

(3 -[- @9]

This is then substituted into the error equation for ves. (also following Equation B.2

and B.4):
G e

Avesc 2 o 1 2
Vesc S \2

All of these are propagated to define the error on the mass loss rate AM for stars
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earlier than and including BO:
AM 2 = 034 [ (2001}, 1 [002 2 1 Loz (BF 2
M - 6.697 2.194 ‘ L
AMN\?
434 | ——
o (57)}]
4 <AVoo/Vesc> }2]
Voo/Vesc
ATeg 2
434
s ()]
2 2
AT
+ (2) {0.434 < ff)} ]
Teff
) -

<Al\'iﬂ>2 ) (?-434 ([ggg;] + {(2)(1)3111}2 + {0.434 (ALL>}2]
; } + {o (Aﬂy)}]
+ {(1)(2)37}2 + {0.434 (AV:?/VV) }2]
o (352)]
)

Equation 5.21 contains four parameters with significant uncertainty, M, Voo, d, and 2.
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B.4 Derivation of Flux Errors

AM and Av are given above, the error on the distance Ad is & 0.08 kpc (Rygl et al. 2012)
and the error on the Gaunt factor Ag, is defined as the difference in the cited electron
temperature coefficient 0.85 (Scuderi et al. 1998) defined in Section 5.5 from other values

in the literature ranging from 0.5 to 1. Therefore Ag,/ g, ~ 0.35.
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The error on the predicted flux AS, is given by:

() = GV (3) () () () (o) e ()

(B.9)
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“The world is a thing of utter inordinate complexity and richness and strangeness
that is absolutely awesome. I mean the idea that such complexity can arise not only
out of such simplicity, but probably out of nothing, is the most fabulous
extraordinary idea. And once you get some kind of inkling of how that might have
happened, it’s just wonderful. And ...the opportunity to spend 70 or 80 years of

your life in such a universe is time well spent as far as I am concerned.”

Douglas Adams



