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Abstract
We review the scientific history of random close packing (RCP) of equal spheres, advocated by
J D Bernal as a more plausible alternative to the non-ideal gas or imperfect crystal as a
structural model of simple liquids. After decades of neglect, computer experiments are
revealing a central role for RCP in the theory of liquids. These demonstrate that the RCP
amorphous state of hard spheres can be well defined, is reproducible, and has the
thermodynamic status of a metastable ground state. Further evidence from simulations of
square-well model liquids indicates an extended role of RCP as an amorphous ground state that
terminates a supercooled liquid coexistence line, suggesting likewise for real liquids. A phase
diagram involving percolation boundaries has been proposed in which there is no merging of
liquid and gas phases, and no critical singularity as assumed by van der Waals. Rather, the
liquid phase continuously spans all temperatures, but above a critical dividing line on the Gibbs
density surface, it is bounded by a percolation transition and separated from the gas phase by a
colloidal supercritical mesophase. The colloidal-like inversion in the mesophase as it changes
from gas-in-liquid to liquid-in-gas can be identified with the hypercritical line of Bernal. We
therefore argue that the statistical theory of simple liquids should start from the RCP reference
state rather than the ideal gas. Future experimental priorities are to (i) find evidence for an
amorphous ground state in real supercooled liquids, (ii) explore the microscopic structures of
the supercritical mesophase, and (iii) determine how these change from gas to liquid,
especially across Bernal’s hypercritical line. The theoretical priority is a statistical geometrical
theory of RCP. Only then might we explain the coincident values of the RCP packing fraction
with Buffon’s constant, and the RCP residual entropy with Boltzmann’s ideal gas constant.
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1. Introduction

A hitherto unattained objective of liquid-state theory is
the development of a formalism that can predict the
thermodynamic state functions and liquid phase bounds from
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a model Hamiltonian defined by intermolecular potentials. In
essence, the problem is one of predicting the relative positions
of molecules of a given liquid at a given (p,T ) state point in a
way that enables thermodynamic properties that depend upon
this structure to be described and computed analytically.

In an ideal crystal, the positions of molecules in a
unit cell can be specified precisely, and the structure of the
extended crystal reproduced simply by repeating that unit cell
in three dimensions. The structure of a real crystal can be
approached through perturbations from this ideal, for example
thermal motions and the presence of structural defects such
as vacancies and dislocations. The underlying periodicity
simplifies the calculation of the crystal properties from known
molecular parameters.

An ideal gas is in the opposite extreme; the instantaneous
positions of the constituent molecules are totally random. Just
as we approach a real crystal by perturbing the regularity of
the ideal lattice, we approach the non-ideal gas by describing
the spatial correlations, i.e. by increasing the order. When the
molecules are given finite size and intermolecular interactions,
there is a departure from the perfect randomness of the structure
as pairs of molecules interact. A well-known approximation
is the van der Waals equation [1]. As the density of the gas
is increased further, we need to consider the effects of higher-
order (triplet, quadruplet, . . . etc) correlations, but so long as
the density remains reasonably low, a non-ideal gas cluster
expansion predicts to good approximation the structure and
properties of a simple gas, e.g. argon, composed of weakly
interacting atoms [2].

It is not surprising, therefore, that the early theoretical
attempts to develop a theory of liquids approached the problem
from both of the above extremes: by considering the liquid
to be either a highly disordered crystal [3] or a high-density
gas [4]. Noting that a simple liquid close to its melting
point has a density of the order 90% of its corresponding
crystal, it seems reasonable that a theory based on a disordered
crystal can reproduce liquid properties such as the density
and energy. Likewise, treating a liquid as a dense gas
can give reasonable predictions of its entropy. But the gas
approach fails where the crystal approach succeeds—and vice
versa. Crystal-based models, because of the regularity of the
underlying crystal lattice, have far too little entropy. And
cluster expansions [2], which describe non-ideal gases, fail to
converge as they approach the density of the liquid and cannot
therefore successfully describe dense liquids [5].

J D Bernal, one of the great polymaths of the 20th century,
who was responsible for much of the early development of
crystallography, had a core interest in the biological role of
water. He argued that if he was to understand how water was
relevant in biological processes he needed to understand the
structure of water. Together with R A Fowler in 1933, Bernal
published an extensive paper on the structure of water and
aqueous solutions [6]. Realizing, however, that water was
a difficult problem, he subsequently commented [7]: ‘It is
not worth tackling complicated liquids until we understand
simple ones’.

Bernal therefore shifted his focus to simple liquids
exemplified by liquid argon. The first of two attempts [7, 8]

he made at the problem in the 1930s [8] was based on
an analogy made by Zernike and Prins [9], who pointed
out that there was similarity between the x-ray scattering
pattern of a liquid (smooth but with broad peaks) and that
of a crystalline solid (sharp peaks). Bernal interpreted this
analogy [8] as ‘the peaks of the first, second and third co-
ordination spheres corresponding to the reflexions from planes
of the same intermolecular distances as in a crystal’. Bernal
found this to be a delusive approach because it overestimated
the degree of long-range order. In his second approach,
published in 1937 [7, 10], he tried to describe a liquid
in terms of the average co-ordination of the atoms. In
retrospect [8], once he realized that the values required could
not be calculated theoretically, he recognized this as a ‘highly
artificial’ unquantifiable description.

After a gap of about two decades, in the 1950s Bernal
returned again to the problem. After hearing a lecture by F
C Frank on atomic packings in complex metal alloys [11],
he began to develop his concept of liquids as ‘homogeneous,
coherent and essentially irregular assemblages of molecules
containing no crystalline regions nor, in their low temperature
form, holes large enough to admit another molecule’ [7, 8]. As
will be described below, this concept was ultimately physically
realized as the random close packing (RCP) of equal spheres.

This last statement of Bernal is especially pertinent to
our current understanding of liquids, which we describe in
later sections. The probability of finding ‘holes’ in a liquid
is in fact a property of central theoretical importance. It is its
chemical potential which determines the thermodynamic state
of existence [12–14]. We will argue that the liquid phase ranges
from a metastable RCP state at 0 K, or infinite pressure for hard
spheres, with zero holes, to a percolation transition at a lower
density whereupon holes coalesce to become one large hole,
or ‘nano-bubble of gas’ that marks the end of the liquid phase.
Moreover, we will see towards the end of this review that as a
liquid approaches its triple point, even at equilibrium there is
evidence of fluctuating heterogeneities or ‘nucleites’ that were
postulated over half a century ago. Not even Bernal could
foresee the heterophase fluctuations, resembling incipient gas
and molecular microaggregates, that now appear essential
aspects of liquids, especially in the vicinity of phase bounds.

2. Early models of RCP

The earliest attempt to realize a random packing model was that
of Westman and Hugill [15] in relation to ceramics, followed
by Prins [16] in relation to liquids. Prins dropped seeds onto
a glass plate, photographed them and by counting the number
of seeds in concentric rings from central seeds constructed a
radial distribution function (RDF). This is the quantity that
is primarily used to describe the structure of a liquid, and is
defined as the probability of an atom being at a given distance
from a central atom. Although limited to two dimensions,
the RDF obtained resembled the experimental result for liquid
mercury. Menke performed similar 2D experiments using steel
spheres [17], and obtained an RDF similar to that that he had
measured for liquid mercury. Morrell and Hildebrand were
perhaps the first to tackle the problem in three dimensions
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[18], when they used coloured gelatin spheres to represent
atoms, cleverly counteracting the influence of gravity by using
a gelatin solution as the surrounding medium.

None of these early experimentally produced packings
achieved densities close to today’s generally accepted packing
density of RCP close to 0.64. Later work by O K Rice [19]
obtained the density of a RCP state through measuring the
volume of water required to fill the interstices of a packed bed
of glass spheres. After making corrections for the perturbing
effects of the container, he concluded that his random packing
had a volume some 15(±3)% greater than that of crystalline
cubic close packing. This value matched the expected density
change on melting of an inert gas crystal.

By the 1960s computers had begun to make simulation of
random packings possible, although limited by the available
computational power to relatively small systems. In 1955
Alder et al [20] performed Monte Carlo (MC) calculations
on periodic systems of 80–100 hard spheres. Although he had
no direct experience of using digital computing, Bernal was,
however, able to see the possibilities of computer simulations.
He founded a computing laboratory and used its capabilities
to simulate the procedure by which he had built a realization
of his concept of a random packing in the laboratory [21].
The co-ordinates of points were chosen randomly; those that
were greater than a specified distance from the points already
chosen were retained [7]. Bernal noted that as the method
proceeded, it became very inefficient—hundreds of points had
to be chosen in order for one to be accepted. The result of
this process is what we now call ‘maximum random parking’
[22]. This non-equilibrium state of hard-spheres becomes, de
facto, a reference point for non-crystalline close-packed states
[23], a range of states of which Bernal’s RCP is now seen to be
the limiting equilibrium state, albeit metastable with respect to
crystal phases.

3. Laboratory and computer realizations of RCP

Bernal’s initial attempt to construct RCP shook together
several thousand 1/4′′ ball bearings. This assembly was
further densified by winding thick rubber bands around it
and then kneading the mass [24]. In addition to obtaining
the density of maximum RCP, he also characterized a lower
density state, obtained without shaking and compressing,
which he termed ‘random loose packing’. From these
assemblies Bernal obtained information on local coordination
geometries, noting in particular that the distribution in
number of contacts was distinct from that of either of the
regular close-packed crystalline arrangements (face-centred
and hexagonal cubic close packings), where every ball has
twelve contacts. Variation of contact numbers was found to
be a significant feature of the irregular random-packed non-
crystalline arrangement.

Bernal made comparisons between the properties of his
conceptually simple model and those of liquid argon [24]. If
the RCP structure really was a plausible model of the structure
of the liquid at its melting point, the volume increase on melting
should be consistent with experimental data on argon. It was.
From these early results, he also estimated the latent heat of

Figure 1. The first comparison between the RDF of a real liquid
from neutron scattering and the RDFs obtained independently by
Scott and Bernal from RCPs of about 1000 equal spheres
(reproduced from [90] (figure 14)).

melting to be between 1/4 and 1/6 of the energy of evaporation;
the observed ratio is actually 2/11. Considering random
loose packing as a model of an inert gas liquid at a higher
temperature, his calculation of the difference in configurational
energy between the liquid at its melting and critical points was
within about 12% of the experimental value.

Experimental random packings depend on container size
and shape; structures are more ordered in the vicinity of the
bounding surfaces. G D Scott, who also became involved
in random packing studies in the 1960s, solved this problem
[25] by taking density measurements of packings in vessels of
different sizes; by extrapolating to infinite size he concluded
that RCP had an upper density limit of 0.637, while ‘random
loose packing’ had a lower stability limit of 0.601. Later work
on larger packings from both laboratories confirmed this upper
density limit as 0.6366 ± 0.0004 [26, 27] or ±0.0008 [28]). It
was observed that this value is tantalizingly close to Buffon’s
constant 2/π (0.6366192) [29], a constant that occurs naturally
in solutions to problems in statistical geometry.

Bernal and Scott [30] collaborated in calculating RDFs of
their models using both sets of data. The earliest comparison
they made between RCP and experimental results from neutron
scattering for liquid argon is reproduced in figure 1. The
agreement, both between the two independently constructed
laboratory models and with the experimental data, was quite
striking at the time.

This comparison demonstrated that Bernal’s hypothe-
sis of ‘homogeneous, coherent and essentially irregular as-
semblages’ was indeed consistent with experiment, and so
answered his foremost question: ‘what is the essential struc-
ture of a simple liquid?’.

When numerical coordinate data were measured in subse-
quent work, not only could more quantitative comparisons be
made with experiment, but also the influence of the softness of
the potential functions between ‘real’ atoms could be explored.
For example, by assigning appropriate Lennard-Jones poten-
tials to the innermost spheres of Scott’s model, Bernal and
Finney obtained good estimates of not only the volume changes
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Figure 2. The RDF of the large Bernal RCP model plotted at two
different resolutions. Reproduced from figure 5 of [27].

on melting but also the heats of fusion of neon, argon, krypton
and xenon at pressures up to 6000 atmospheres [31, 32].

In order to obtain better statistics for the RCP structure,
Bernal wanted a larger sphere assembly with more-precisely
measured coordinates. This was realized in the ‘final’ large
(7934 sphere) random close-packed model that was built
in Bernal’s laboratory [26, 27, 33]. The most important
conclusions drawn from that model were [26, 27] (a) its
density (0.6366 ± 0.0004 mentioned above); (b) its RDF and
(c) its statistical geometrical structure. The RDF (figure 2)
clearly shows a split second peak, a feature that earlier ‘low
resolution’ models were unable to show. This splitting is not
observed in real liquids as it is smoothed out by the softness of
their intermolecular potentials—though it is observed in many
metallic alloy glasses.

This large model provided the data for developing a
statistical geometrical characterization of random packing in
terms of the topologies of the equivalent Voronoi polyhedron
assembly3. Properties that were characterized included the
average and distribution of number of faces per polyhedron
and the average and distribution of edges per polyhedron face.
At a more detailed level, polyhedron types Fn were defined
by the number F of faces of n sides, or [F3,F4,F5,F6,F7,].
Using this descriptor, polyhedron type distributions for the
Scott model were found to be similar to those of Bernal’s
large model [27], implying that the two models had the
same structure. The Voronoi characterization has also been
useful in demonstrating differences between the structures of
differently constructed computer models [34]. Estimates of

3 The Voronoi polyhedron associated with a point is formed by the bisecting
planes of lines connecting that point to its neighbours. This polyhedron
contains all points closer to the central point than to any other, and the total
assembly of Voronoi polyhedra fills the occupied space.

the configurational entropy of RCP using polyhedral type as
a state definition were only 3% lower than the experimental
value for liquid argon [35].

This work on laboratory-built models was performed
largely in the early to mid-1960s when computer resources
were insufficient to construct dense packing models by
simulation. The computational resource needed to
accommodate the large number of local, co-operative structural
rearrangements that would simulate the physical shaking or
compression that is relatively easy for physical packings was
not then possible. It was, however, feasible to construct
models by sequential deposition of spheres. One of the earliest
to explore such techniques was Bennett [36] who obtained
RDFs similar to those of Bernal’s large laboratory model.
Moreover, although computational limitations restricted them
to constructing finite clusters only, Mason [37] and
Finney [38] independently implemented a hard-sphere gas
compression procedure that resulted in models with RDFs that
were consistent with that of the large laboratory model.

With increased computer power, it became feasible
to simulate the construction of dense packings using MC
and molecular dynamics (MD) methods of computational
statistical mechanics. The earliest computer simulation of
RCP using periodic boundary conditions, a device that is
not available to the laboratory modeller, generated a space-
filling packing of density 0.6372 ± 0.008, within estimated
uncertainty indistinguishable from the 0.6366 ± 0.0004 of the
large laboratory model [39, 40]. The RDF was also consistent
with that of the large laboratory model, showing no peak at

√
2

diameters (a characteristic distance in a close-packed crystal)
and, in particular, the splitting of the second peak into two
peaks close to

√
3 and 2.

4. Liquid state theory and RCP

The construction and characterization of the large laboratory
model took place just as the computer simulation of simple
liquids was becoming well-established technology. The
detailed microstructure of any model Hamiltonian of a simple
liquid could then in principle be obtained and analysed.
Using the Voronoi characterization tools, the local structure
of the RCP state could now be compared with that of
a computer simulation of a simple liquid. Additionally,
the structural consequences of the impenetrability of the
hard-sphere potential of the RCP model could be explored.
Consequently, simulations were undertaken of liquid argon just
above and below its melting temperature, together with other
computations using potentials with increasingly hard repulsive
cores [41]. The results of these calculations indicated an RCP
origin of the liquid phase structures.

In figure 3 we show a present-day comparison of the
RDF of a high-resolution computer-generated RCP state
[42], and compare both with the RDF of the Lennard-
Jones model of liquid argon at its triple point. The first
observation is the similarity of the computer-generated RDF
with the RDF of Bernal’s model shown in figure 2. The
RCP state is characterized by a complete absence of a peak at
r/ro = √

2 (a characteristic close-packed crystal distance) and
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Figure 3. The RDFs of a computer-generated RCP state of hard
spheres (packing density y = 0.636: black points) compared with
the equilibrium Lennard-Jones liquid at the triple point (thin red
line), and a corresponding instantaneous quenched glass at the same
density (T ∗ = 0.05: thick blue line).

the existence of peaks close to
√

3 and 2. In the equilibrium
triple-point liquid there is just a single second peak, but on
quenching the liquid to a glass at almost 0 K (T ∗ = kBT/ε =
0.05) and then annealing, the second peak splits as seen in
the RCP state. The two states belong to the same ‘liquid
phase’. This modern comparison of Bernal’s RCP with simple
liquids vindicates his original contention. We will show in
the following sections that the RCP of hard spheres is indeed
the appropriate reference state for a modern theory of simple
liquids.

In his treatise on the physics of disorder [43],
distinguished theoretical physicist John Ziman states ‘This
simple idea is now seen to be the key to any qualitative
or quantitative understanding of the physics of liquids’. A
complementary observation was made in 1970 by Rowlinson
in his introductory Faraday Discussion lecture [44]: ‘It
has therefore been hard to admit that the form, or even the
existence, of the attractive forces has little direct effect on
the structure of a liquid... The recent realization of this
truth has followed the extensive studies . . . of the properties
of assemblies of hard spheres without attractive forces’.
Subsequent successful perturbation theories [4, 45] further
underline the veracity of Rowlinson’s comment.

All of the above historical observations raised the hitherto
neglected question: what is the thermodynamic4 status, if any,
of RCP? Furthermore, what is the significance of ‘random
loose packing’ and of ‘maximum jammed states?’ Recent
computational research indicates that the state of RCP has in
fact a well-defined thermodynamic status. This has profound
implications in the general theory of liquids and glasses. It is to
this issue we now turn; we will argue that all other ‘jammed’

4 Throughout this review we use the adjective ‘thermodynamic’ to describe
the state of a molecular system, or model Hamiltonian, that is thermally
equilibrated and can be represented as a state-functional point on a Gibbs T , p
surface, e.g. of density or entropy. This implies that there can be no gradients
of T , p or ρ, and that the system is in a state of equilibrium or metastable
(local) equilibrium whereupon its Gibbs energy GT,p is a minimum, and for
any process of change to any other local state of the system dGT,p > 0.

states, excepting crystalline structures, by contrast, have no
thermodynamic status.

5. The hard-sphere fluid

5.1. Excluded and accessible volume

The simplest imaginable model fluid of rigid elastic spheres has
played a central role in the development of liquid state theory
since the pioneering work of van der Waals [1]. He obtained
an equation-of-state resembling that of real fluids by simply
adding an attractive potential to a hard-sphere fluid equation
which he obtained by simply assuming an ideal gas volume
could be replaced by the excluded volume on collision of two
spheres:

Zvw = V

(V − Nb2)
=

∞∑
n=0

(b2 ρ)n, (1)

where Z is pV/(NkBT ), ρ is the number density Nσ 3/V
and b2 = 2πσ 3/3. b2 is the excluded volume (Ve/N) and
is the second virial coefficient of the hard-sphere fluid. The
complement of Ve is the available volume (V –Nb2). When
this equation is expanded in powers of density, all the virial
coefficients take the value b2 (equation (1)). However, a
formally exact virial expansion of gases obtained from the
cluster theory of Mayer [2]:

Z =
∞∑

n=1

bn ρ(n−1) (2)

shows that only the first two terms of equation (1) are
correct. In fact, equation (1) is inadequate except at low gas
densities. Virial coefficients beyond n = 2 can be computed
by integrating the many-body excluded volumes of clusters
of n spheres over all space. Implicit in current mainstream
theories of simple liquids [4], moreover, is the assumption
that equation (2), given all the virial coefficients, represents
the hard-sphere fluid thermodynamic pressure in the density
range of real liquids up to freezing.

An alternative expression for the accessible (or excluded)
volume of equilibrium hard-core fluids that relates directly to
the chemical potential was derived by Hoover and Poirier [12].
In the thermodynamic limit of a very large system, Va can be
defined as the volume accessible for the relocation of any one
sphere. This is exactly related to the excess chemical potential
(µ) by the equation of Hoover and Poirier [12], which also
relates to the Mayer cluster expansion of the chemical potential
in powers of density:

− µ

kBT
= loge

〈V a〉
V

=Lt.ρ−>0

∞∑
n=1

(n + 1)

n
b(n+1)ρ

n. (3)

The summation in equation (3) is only known to be exact for the
hard-sphere fluid pressure in the low density limit [2]. Modern
treatises of the theory of simple liquids, however, invariably
begin with the assumption that equation (3) represents the hard-
sphere reference fluid up to high densities that correspond to
the densities of real simple liquids [4]; this assumption is now
seen to be invalid.
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5.2. Percolation and percolation transitions

If we continuously reduce the volume occupied by a number
of entities—for example molecules of a gas—there comes a
point at which sufficient contacts between the entities have
been made for a continuous path between the entities to span
the system. This system is then said to percolate, and the state
point at which this path appears is a percolation transition. The
physics of percolation transitions is much simpler and easier
to access for discs than for spheres

For 25 years there have been postulates of thermodynamic
discontinuities at percolation transitions [46–48] but the formal
investigation of these properties for hard-sphere fluids is
relatively recent [49, 50]. The first evidence for identifying a
percolation transition with a thermodynamic phase transition
was obtained from an MD study of hard parallel cubes [47].
The available-volume percolation transition—the point at
which a continuous path exists through the available volume—
was found to coincide with a weak discontinuity in transport
coefficients as functions of state, and a deviation of the virial
equation-of-state from the thermodynamic pressure. Using
scaling arguments, Kratky [48] was able to make rough
estimates of hard-sphere percolation transitions. These he
discussed in a paper with the searching title ‘Is the percolation
transition of hard spheres a thermodynamic phase transition?’.

Values for the densities of the available-volume (Va)

and of the excluded-volume (Ve) percolation transitions have
been reported for the hard-sphere fluid [48, 50]. Va is
the volume available for insertion of a sphere whereas the
excluded volume Ve = V −Va, i.e. the volume of an excluded
zone of radius 1σ from each sphere centre. This is simply
illustrated for hard discs in figure 4. In two-dimensional
fluids, the percolation transition density of Ve coincides with
the percolation transition density of Va. Thus the excluded
volume and available volume percolation densities ype and ypa

are equal, i.e. for D = 2, ype = ypa = 0.31 [48]. This is
not the case in three dimensions where the two percolation
transitions in the hard-sphere fluid occur at different packing
densities ype = 0.046 and ypa = 0.281 [50].

The breakthrough towards answering Kratky’s question
[48] for the hard-sphere fluid came with the application of

high-performance computing to determine virial coefficients
b8 to b10 of equation (3) by Clisby and McCoy in 2006 [51].
This has enabled the hard-sphere equation, for both discs and
spheres [52], to be written in closed form with very high
precision [50]:

Z = 1 +
m∑

n=2

Bnρ
∗n−1

+ Bm

ρ∗m

(1 − ρ∗)
− ρ∗m

√
2(1 − ρ∗)2

, (4)

where Z = pV/NkT and ρ∗ = ρ/ρ0. The constant
√

2(=
Vo/Nσ 3) is empirical to within four figures. Equation (4)
with m = 8 reproduces the Padé approximant to the full virial
series [51] over the full density range. However, it reproduces
the thermodynamic pressure only up to the density of the
available volume percolation transition (ypa = 0.281) with
6-figure accuracy. This observation has profound implications
for the development of a general theory of liquids.

These highly accurate virial equations have stimulated
the calculation of equally accurate, essentially 6-figure

Figure 4. Two-dimensional illustration, after Speedy, of the
definitions of available volume Va (hatched area) and excluded
volume Ve (outer-circle open area): the left hand side shows a
high-density liquid-like region above the percolation threshold
density; the right hand region is gas-like below the percolation
threshold density. Reproduced from [91] with permission of The
Royal Society of Chemistry.

Figure 5. Density of the hard-sphere fluid as a thermodynamic state
function of the reduced temperature at any constant pressure (p); the
dashed line is the gas-like phase up to the excluded volume
percolation threshold (open circle). This line continues (we will
argue later through an intermediate mesophase) and then bifurcates
at the available volume percolation threshold (solid circle) from a
thermodynamic density line which describes the fluid from ypa to
RCP. The fcc freezing transition is indicated by arrows.

precision, thermodynamic data by MD computation. Using
the high-performance hard-sphere program DYNAMO [53] a
bifurcation of the pressure given by the Mayer virial equation
and the thermodynamic pressure has been observed. When
the virial pressure is compared with the thermodynamic
pressure, a deviation is discernable near to the available volume
percolation transition (PA) [54]. In figure 5 we show the
virial equation-of-state and the Bannerman DYNAMO data
up to freezing density. The virial expansion is essentially
exact, albeit numerical, with 6-figure accuracy at low density.
Convergence up to the reduced density ρσ 3 = 0.025 has been
rigorously proven [55]. Thus, when the thermodynamic MD
pressure deviates from the virial equation, there must be a
thermodynamic phase transition because the virial series is
mathematically continuous up to a pole at crystal packing
(equation (4)). Figure 5 shows that there is a bifurcation at
a density no greater than ypa.
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Given that there is a thermodynamic discontinuity at
a density well below fluid freezing, how does this relate
to liquid-state theory reference states? Historically [1–4],
from van der Waals to modern mean-field theories, and also
including integral equation approaches such as Percus Yevick
and CHNC [4], there has always been a central hypothesis:
these theories all assume that the virial expansion is continuous
to liquid densities. Figure 5 shows that this assumption is
not valid; the virial equation of gases fails to converge on to
the thermodynamic equation-of-state at the available volume
percolation transition density (ypa). Beyond this point an
alternative approach to the equation-of-state of the dense hard-
sphere fluid, and hence to the liquid state also, is required.

It is a property of thermodynamic state functions on a
Gibbs density surface, such as figure 5, that the density will
be a continuous state function in all its derivatives. Moreover,
the freezing transition is a first-order thermodynamic phase
transition and as such, each coexisting phase has a theoretical
extrapolated existence on either side of the phase transition.
These metastable thermodynamic states exist, but may not be
accessible experimentally. Nevertheless, we can deduce that
a continuous state of the hard-sphere fluid, from equilibrium
liquid-like structure for densities above the percolation
transition, to metastable states beyond the equilibrium freezing
transition, to an RCP ground state at T ∗ → 0, belongs to
the same thermodynamic phase—and hence same continuous
equation-of-state—as the liquid-like region of the hard-sphere
fluid as shown in figure 5.

Consequently, there exists an idealized reference state
for the development of the theory of liquids and the
thermodynamic equation-of-state of liquids. This RCP state
is the liquid-state analogue of the ideal gas and the perfect
crystal, which themselves are idealized states for theories
of the gaseous and crystalline phases respectively. There is
thermodynamic continuity of the gas phase up to the density of
the percolation transition that bounds its existence. So likewise
for the crystal phase with continuity from the perfect lattice
up to a melting line. A consequence of the thermodynamic
continuity, from equilibrium dense fluid to metastable RCP, is
that the starting point for theories of simple liquids is not the
ideal gas, as has hitherto been generally assumed [1, 2]: it is
an ‘ideal glass’.

Next, we investigate the evidence that this limiting
metastable amorphous ground state of the hard-sphere fluid is
indeed the same RCP structure that was originally investigated
by Bernal.

6. Processes leading to RCP

We have seen from the introductory sections and figures 1–3
that RCP has long since been well characterized, but is it well
defined? If so, what is its thermodynamic status? Any state of
matter not in thermodynamic equilibrium can only be as well
defined as the process that produces it. To ascertain the answer
to this question, we examine in the following section specific
processes, both irreversible and reversible, that lead to RCP
structures.

6.1. Irreversible

There is an extensive literature describing various geometrical
constructions of random close-packed structures by both
analytical and numerical mathematical methods [56, 57].
None of these mathematical procedures, however, contain
evidence of thermodynamic status. Such evidence would
be proof of a local density or entropy maximum. Non-
equilibrium, or metastable, solid states can be defined as
thermodynamic states only by fixing two macroscopic state
variables, and one or more process constants. For a phase
in equilibrium, temperature and pressure are usually used
to define the state. The thermodynamic properties such as
enthalpy or entropy are state functions with a unique value.
Most composites such as alloys, polymers, ceramics, etc.,
appear to be thermodynamically stable, but they will however
have thermodynamic properties that depend on the process of
production, and in many cases on the timescale of the process.
Non-equilibrium solid states can only be well defined if the
compaction or cooling process is itself well defined. Moreover,
the initial states from which a compaction or cooling process
begins must also be thermodynamic, i.e. well defined.

The earliest compaction computer algorithm [39, 40]
simply modified the MD equation-of-motion for hard spheres
by fixing the rate at which the volume (V ) containing N

spheres decreased by specifying an equivalent rate increase
in (dσ 3/dt)T where sigma is a dynamical sphere diameter at
constant total volume and temperature (T ). Jodrey and Tory
[58] devised a similar well-defined algorithm by a single rate
constant, albeit athermal, starting from a dilute hard-sphere
gas. Unfortunately, the scope of compression rates accessible
at the time restricted their observation range of maximum
packing densities from 0.64 to 0.65. An inspection of figure 6
of the paper by Jodrey and Tory suggests a slightly faster rate
would have resulted in a ‘thermodynamic’ RCP state accessible
as found previously [39, 40] with this type of algorithm.

In many compaction processes, the rate of change of
volume (dV/dt)T is kept constant. Such a process can be
said to be zeroth order in ‘free volume’, whereupon the
relaxation processes allow equilibration at low density, but
rapidly freeze at high density. Whilst prohibiting crystal
nucleation, such a process also misses the ‘window’ of
re-equilibration to access RCP. There is a growing literature
[58–60] of similar such processes. Some of these ‘simulation’
phenomena may have no experimental counterpart, and exist
only within a computer. These algorithms result in close-
packed structures that have been called ‘maximum jammed
states’. Here, the compaction rate is too fast to avoid
nucleation; it is also too fast for re-equilibration onto the RCP
state, and homogeneous amorphous ‘maximum jammed states’
for packing densities y > yRCP are obtained. Thus, this area
of science may only exist in the computer algorithms without
any obvious relevance to any real molecular level counterpart,
although the jammed states can be identified with experimental
properties of granular media [61, 62]. If the compression
rate is not high enough to avoid incipient nucleation, a glass
transition may occur whereupon a range of heterogeneous
glassy states is obtained. These processes resemble glass
transition phenomena of real liquids [40].
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Figure 6. The dependence of a limiting close-packed density of amorphous hard-sphere configurations on a first-order rate of compaction
constant as defined in equation (5).

We can define an isothermal compaction process by a rate
law that is first-order in free volume [42]:

dV/dt = −k1 (V (t) − V∞) , (5)

where V is the sphere-containing cube volume that is subject
to periodic boundary conditions. V∞ is the close-packed state
atkT/pσ 3 = 0. Though V∞ is a priori unknown, at any point
in time of the compaction process it is accurately predictable
from the temporal pressure using a self-consistent free-volume
equation of state which is very accurate at high density, and
exact near the close-packed limit:

V∞ = 〈V (�t)〉[1 − 1/〈Z(�t)〉]3, (6)

where Z = pV/NkBT . The angular brackets denote a short-
time (�t) average. At constant total volume, the spheres are
expanded at a constant rate dσ/dt , which is obtained from V (t)

and V∞ by

dσ/dt = k1σ (1 − V∞/V (t)) /3. (7)

This process of compaction is a simple modification of the
collision-predictor algorithm for classical motion [40, 42]; the
quadratic equation for a time t to next collision becomes

[
(dσ/dt)2 − v2

ij

]
t2 + (dσ/dt − 2rijvij )t + σ 2 = 0. (8)

Equations (5)–(8) describe a well-defined compaction process;
the final compacted state is thus defined by the first-
order compaction rate constant k1 that defines (dσ/dt) in
equation (7). The final state may require ensemble averaging
of the starting state for small systems. For sufficiently
large systems a single compaction of an equilibrium starting
configuration suffices.

Typical results [63] for the dependence of the limiting
maximum density on compaction rates (log k1) ranging
from −6 to +2 are shown in figure 6. Limiting packing
densities were determined for each compression simulation by
extrapolating to Z = ∞ using equation (6). At very low k1 the
system can crystallize to the perfect face-centred cubic crystal

for small periodic systems, where for the close-packed crystal
density y0 = 21/2πNσ 3/6 (0.7405). As k1 increases we obtain
defective crystalline states with reduced densities. There
follows a range of steeply decreasing density, which probably
denote heterogeneous—probably glassy—states with small
crystal nuclei. Eventually an RCP plateau is observed over
a limited range of k1. When correction was made for finite
size, a value of 0.636 ± 0.002 was reported for the packing
fraction of the RCP plateau, consistent with the accepted value
for RCP.

Because the 1st order isotropic compaction process
is completely homogeneous all configurations are ‘force
balanced’, but in the non-equilibrium states there is
‘mechanical instability’ with respect to decrease in the
configurational pressure. All the state points in figure 6
are, in a sense, ‘jammed’, simply by definition of infinite
pV/NkT or zero T , i.e. approaching 0 K they become thermally
static. For the low-density structures the rate of compaction
is so fast that there is no time for reorganization. These
structures are mechanically unstable with respect to relaxation
when the compaction process is suddenly stopped. For
higher values of k1, (order) 10–100, ‘jammed’ loose-packed
amorphous states can be obtained. Such structures resulting
from essentially athermal processes have no thermodynamic
description. Moreover, they may not meet the same criteria
for ‘jammed’ states, as defined by different compaction
processes [58–62]. Beyond around k1 = 100 the algorithm
equations (5)–(8) becomes unstable near close packing when
many collision times in equation (8) become less than the
smallest precision of the compiler.

6.2. Reversible

It has also been demonstrated that an RCP state of the hard-
sphere fluid which is essentially the same as that obtained
by irreversible compaction can be produced reversibly. This
thermodynamic route to avoid crystallization makes use of a
single-occupancy (SO) constraint that was originally devised
by Hoover and Ree [64] to achieve just the opposite: the
maintenance of a crystalline order in their computation of the
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Figure 7. Thermodynamic equation-of-state of the simple-cubic
single-occupancy (SCSO) model fluid compared with the known
equations-of-state of the hard-sphere fluid; red and blue lines denote
the equations respectively above and below the percolation
transition (open circle). SCSO data points from MD simulation
(N = 8000) are shown as solid black circles.

freezing transition of hard spheres. The centre of each sphere
is confined within the fcc primary Voronoi polyhedra.

A similar constraint (simple-cubic single-occupancy
(SCSO)) has also been found to lead from a low-density
constrained gas to an RCP state [63]. The hard-sphere
simple-cubic (SC) crystal structure is thermodynamically
unstable with respect to other crystal structures and also
mechanically unstable with respect to slip into local more
random arrangements. The SCSO fluid compacts reversibly
from the SO-ideal gas at y = 0 to an RCP structure at
y = 0.637, as shown in figure 7 All the data points in
figure 7 are in thermodynamic equilibrium, though there
is the possibility of more ordered structures that are not
accessible in the MD computations. The SCSO equation of
state is everywhere very close to the hard-sphere fluid, being
essentially the same in the limits of both low density, where it
obeys the ideal gas equation, and high density, where it follows
the RCP free volume equation. Beginning with a low density,
a repeated sequence of compression and re-equilibration leads
to stable pressures for millions of collisions per sphere.

An important property of SO systems is the particle–
wall to particle–particle collision frequency ratio. At RCP
it approaches a constant value of about 0.03. The total
number of particle–particle collisions per unit time diverges
with the pressure, but the ratio of particle–particle to particle–
wall collisions stays constant. It appears that the RCP state
is being stabilized in the vicinity of close packing. On
removal of the SO constraint in the immediate vicinity of
close packing, there is an initial relaxation to a slightly lower
pressure and consequently a slightly higher limiting RCP
density is obtained. For a system of 64 000 spheres, a value of
yRCP = 0.6365 ± 0.001 was reported [42, 63], again the same

as previous experimental RCP packing fractions from various
sources.

7. Thermodynamic properties of RCP

7.1. RCP density and Buffon’s constant

Some papers on RCP have asked, rather than answered, a
number of questions about the definition and characterization
of RCP [65–67]. To address the first of these questions: ‘What
is RCP [65]?’, we first rephrase it as ‘does RCP have a
thermodynamic status?’ From the previous section, we can
say yes.

In response to ‘Is RCP well-defined [66]?’, we can also
say yes. The RCP ground state of the hard-sphere fluid appears
to be unique, but proof of such thermodynamic metastable
status remains elusive, as also does any statistical theory of
its structure. However, we do now, in principle, have another
thermodynamic definition given by a limiting constant in a
free-volume or cell-cluster expansion equation-of-state of the
equilibrium hard-sphere fluid. We can in principle obtain it to
any requisite accuracy in the amorphous high-density region
and it connects apparently continuously to a RCP amorphous
ground state.

We can now also address the question whether RCP
produced in the above processes is a maximum or minimum
in density and entropy. The definition of thermodynamic
equilibrium, or metastable equilibrium, implies that all other
possible states in the vicinity of RCP must increase the
Helmoltz energy:

dA = −T dS + pdV � 0. (9)

RCP therefore represents a local minimum in free energy,
which from equation (9) requires a local entropy and/or density
maxima at constant temperature.

This thermodynamic analysis can answer the third
question: ‘Why is RCP reproducible?’ [67]. All thermal
systems not in a state of equilibrium will tend towards the
nearest local equilibrium. If there is a mechanism and provided
the timescale for nucleation is avoided, any systems of spheres
given some kinetic energy and time, will ‘gravitate’ towards the
maximum in density and entropy. In any well-defined process
however, with equipartition of energy prevailing, RCP may
only be obtained if crystal nucleation is completely avoided.

A further unsolved query is the closeness of the value
of RCP density of 0.6366 ± 0.001 to Buffon’s constant 2/π

(=0.6366192), which often crops up in analytical solutions
of simpler solvable problems in the general field of statistical
geometry [29].

This suggestion of a possible relationship to Buffon’s
constant arose from the earliest sphere packing experiments
of Bernal and Mason [24] and Scott [25]. Experimenting
with 20 000 steel balls contained within copper cylinders, Scott
obtained a maximum density value of 0.634. This was later
refined by Scott and Kilgour [28] to 0.6366, a result essentially
identical to that obtained earlier from the large hard sphere
model by Finney [26, 27]. Another three values from more
recent analyses have been added to the list. Using more recent
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MD pressure data, Le Fevre’s interpolation to 1/Z = 0 gives
yRCP = 0.6375 [63, 68]. The first-order compaction process
estimated for N → ∞ as discussed in section 6.1 gives
yRCP = 0.6360 [63] (figure 6). Finally, a value of 0.6365
is produced by relaxation of RCP-SCSO to an unconstrained
RCP state (figure 7).

There are many other ‘RCP’ computer-generated values
in the literature. Using a wide range of algorithms, various
jammed RCP states with packing densities from y = 0.60
to 0.66 have been obtained. Such states, however, are ill
defined in a thermodynamic sense. In contrast, as we have
seen, the thermodynamic RCP amorphous ground state is well
characterized. It can be also well defined. However, there
is at present no analytic theory of RCP. A consensus packing
density from all sources suggests a value of 0.6366 ± 0.0005.
Within the numerical uncertainties, this is essentially Buffon’s
constant. In the absence of any analytical theory of RCP, we
wonder if it might be possible to construct RCP mathematically
in such a way as to obtain yRCP = 2/π .

7.2. RCP entropy and Boltzmann’s constant

A difference in entropy between a SO cellular constrained
fluid and a free fluid at the same temperature and volume
(�ST,V ) defines a ‘communal entropy’. At low density the
communal entropy �ST,V is exactly Nk. Thus, we have a
check on the reversibility of the SCSO pathway to RCP. If
both the equilibrium SCSO state and metastable hard-sphere
glass at RCP are indeed identical, the communal entropy must
integrate to zero between y = 0 and and y = yRCP in figure 7.
This thermodynamic integration is expressed as

�Scom/Nk =
∫ [

(p/T )HS − (p/T )SO

]
dV = 1 (10)

whereupon an estimate of the residual entropy of RCP relative
to fcc can be obtained from the difference between the SCSO
and fccSO p(V )T equations-of-state.

The enthalpy change for any system of hard spheres with
no attractions is simply dH = pdV ; because dG = dH−T dS,
the entropy difference is obtainable from

�ST,p = (p/T ) �VT,p −
∫

�VT,pdp/T . (11)

From figure 8 we see that the two equations-of-state are
essentially the same at lower densities. They are also close for
all pressures below ∼8.5(σ 3/kT), i.e. near the cusp of the fccSO
plot [63]. Figure 8 shows also that for pressures higher than
about 15(σ 3/kT) the residual volume of the SCSO equation-
of-state is near constant with any further increase in pressure.
At all higher pressures there is effectively a cancellation of the
two terms in equation (11). Thus, both the fccSO and SCSO
systems have the same compressibilities (or heat capacities) at
high pressures.

The RCP entropy, relative to fcc at same state point,
is obtained by matching numerically the areas as shown in
figure 8; when A3 = A2, the residual entropy �S0 = A1.

The value �S0 = 1.0 ± 0.1 Nk could be sharpened up with
more accurate equation-of-state data. Nevertheless, this value

Figure 8. Volumetric equations-of-state of the fcc SO model
(fccSO) and the SCSO model of the hard-sphere fluid from MD
simulations; for pressures above about 15 the residual volume
becomes constant. The residual Helmholtz energy (hence also the
entropy) of RCP (shaded area) is determined simply by matching
the areas A2 = A3 according to equation (11).

agrees with earlier estimates obtained by integrating the heat
capacity Cp from an equation-of-state for a rapidly quenched
glass [40].

8. Equations-of-state

8.1. Kauzmann’s point

It is now more than 30 years since fundamental questions
about glass transition phenomenology of hard-sphere fluids
were first investigated [40]. At that time, only the virial
coefficients up to B7 were known, and nothing was known
about percolation transitions in the hard-sphere fluid. Here,
we revisit the hard-sphere metastable fluid region in the
light of our new knowledge of higher virial coefficients and
the closed-virial equation, the bifurcation at the percolation
transition (section 5.2 and figure 5) and a new thermodynamic
equation-of-state for the high-density fluid [50]. Using this
updated information, we can recalculate the heat capacities
of the equilibrium hard-sphere fluid and crystal phases near
the freezing transition, and reassess the Kauzmann paradox
for hard spheres [69]. This paradox involves the Kauzmann
state point, which is defined as the temperature below which a
supercooled metastable fluid would have an entropy less than
the equilibrium crystal at the same T and p, were it not for the
intervention of a glass transition whereupon the heat capacity
Cp of the supercooled liquid drops suddenly to a value of the
crystal.

The HS fcc crystal equation-of-state of Speedy takes free
volume form but obeys the self-consistent free volume (SCFV)
form [40]

Z = 3/αo − a(αo − b)/(αo − c), (12)

where Z = pV/NkT , ‘free volume’ parameter αo =
(1 − Vo/V ) and Vo is the fcc close-packed volume. Speedy’s
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Figure 9. SCFV form of equations-of-state showing the closed
virial equation (4) up to the percolation transition (filled red circle),
a high-density free-volume equation-of-state with a pole at RCP
(equation (13)), and the crystal equation-of state of Speedy
(equation (12)). The high-precision MD pressures of
Bannerman [53, 54] are shown as open circles. On the top axis for
y < yRCP there are ‘maximum jammed states’ and for y > yRCP a
range of hard-sphere ‘glassy’ states containing frozen crystal-like
nucleites.

original values of a, b and c have been sharpened up with the
6-figure accurate MD data of Bannerman [54].

In order to obtain a value for the excess heat capacities
of the hard-sphere fluid liquid-like branch for densities above
the (available volume) PA percolation threshold we need
an equation-of-state. At present, we do not have a high-
precision equation comparable to equation (12). For the
present purposes, however, an equation-of-state has been found
which has a positive pole at the density of Bernal’s RCP volume
with the form of a remarkably simple free volume equation (no
adjustable parameters!):

Z = 3(α−1
B − αB), (13)

where ‘free volume’ parameter αB = (1 − VB/V ) and VB

is the RCP volume which we obtain from Buffon’s constant
value (VB = π2 Nσ 3/12). The virial expansion equation (4)
for the gas-like region, and approximate equation (13) have
identical pressures at the percolation transition point ypa =
0.281 [50], and equation (13) reproduces the simulation data
in the equilibrium fluid region and metastable fluid region
everywhere to within 1% accuracy. Equation (12) gives
both the same pressure and heat capacity as the closed virial
equation (4) at the accessible volume percolation transition
state point

The three equations-of-state for hard spheres; gas-like,
liquid-like and (fcc) crystal, are shown in the SCFV form in
figure 9 for clarity. The equations-of-state (12) and (13) can be
used to calculate the heat capacities of the three thermodynamic
regions of the hard-sphere model at constant pressure from the
exact relationship [40]

Cp/Nk = 3/2 + Z2/(Z − V Z′), (14)

Figure 10. Excess heat capacities (relative to an ideal gas at the
same density and temperature) of the three branches of the
hard-sphere fluid and crystal from equations-of-state by
equation (14). The solid black line (top left to bottom right) is the
virial equation (4); the blue line (near-horizontal) is the crystal
phase from the freezing temperature Tf to fcc close packing
(equation (12)); the red line is the liquid-like region from the
percolation temperature TPA to RCP (equation (13)). TK is the
Kauzmann point, predicted using the extrapolated virial equation.

where Z′ is the volume derivative of Z, i.e. (dZ/dV )p,T . The
results are shown in figure 10.

The first observation that we make from figure 10 is
that when the Kauzmann point is recalculated, now using 6-
figure precision crystal data and closed virial equations-of-
state, a result obtained 30 years ago is confirmed unchanged.
The resultant, zero entropy difference, Kauzmann point is
NkT(K)/pσ 3 = 0.0236 and the corresponding Kauzmann
density is y(K) = 0.6362. This reaffirms the coincidence
of the RCP density and Kauzmann density noted previously
in [40]. Since we do not at present know what if any is
the thermodynamic status of the virial equation of state for
densities above yPA, this is yet another interesting coincidence
to explain.

We can see from the Kauzmann plot in figure 10 that at
the freezing transition there is so little difference between the
heat capacities of the equilibrium fluid and the crystal that
the entropy of fusion, approximately Nk, becomes the residual
entropy of the RCP close-packed state relative to the fcc crystal
at the same pressure and temperature. This longstanding
result is consistent with the residual entropy obtained from
figure 8. Thus, we are drawn to a revised conclusion that
could not be foreseen 30 years ago [40]: unlike most real
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liquids, the equilibrium and metastable hard-sphere fluid, as
approximately described by equation (13), is continuous in
all its derivatives from PA (the available volume percolation
transition) to RCP, and shows no Kauzmann catastrophe point.

Nonetheless there remains a question mark about the
thermodynamic significance, if any, of the virial equation for
densities above the percolation threshold; it is still a very
accurate representation for densities up to and, to a small
extent, beyond the freezing transition. We know from the
form and constants that it contains information about nucleate
clusters, and indeed also maximum crystal close packing. To
try to resolve this conundrum we look again at ideas that date
back 70 years to the Russian scientist Frenkel [70] which
suggest that all real systems, especially in the vicinity of phase
transitions, will not obey the equations-of-state of the idealized
thermodynamic states as set out by J W Gibbs [71]. Rather,
the experimental thermodynamic properties can be a hybrid
combination of two state functions of competing phases.

8.2. Heterophase fluctuations

Frenkel [70] assumed that, in contradiction to the classical
thermodynamic treatment of Gibbs, even in the region of
thermodynamic stability of a phase A (here the fluid between
percolation and freezing), and within the vicinity of phase
transitions, the experimental phase is heterogeneous due to
the presence of heterophase fluctuations of small nucleates of
phase B (here ‘solid-like’, possibly microcrystalline). These
heterophase fluctuations will show up in both simulations
and real experiments on finite real systems with surfaces,
but not in the general thermodynamic theory of infinite pure,
homogeneous single phases in the idealized ‘thermodynamic
limit’ of Gibbs.

These heterophase fluctuations can contribute to anoma-
lous increases in heat capacity in the vicinity of first-order
phase transitions: these are well-known experimental and
computational phenomena. Both the crystal equation (12) and
the virial equation (4) do show abrupt increases in Cp at the
point of the phase transition for hard spheres. This behaviour
may be explained in the case of the virial expansion: we know
that it contains information about all clusters in the general
configurational integral, but would not show up in the parti-
tion function of a thermodynamically ideal pure fluid phase
by virtue of the ‘maximum term principle’ of statistical ther-
modynamics. The thermodynamic measured average over the
probabilities of different phases is equal to the most probable in
the limit of an infinite system. Hence we might expect a second
bifurcation of the metastable thermodynamic equation-of-state
and the virial equation in the vicinity of the freezing transition.
Such an anomaly has indeed been suggested by Speedy [72]
and Kolafa [73] and observed both in recent simulations [54],
and by van Megen and coworkers in real experiments on col-
loidal hard-sphere suspensions [74–76].

9. Square-well liquids

We have so far focussed entirely on the hard-sphere system,
and reviewed compelling evidence that Bernal’s RCP is well-
characterized, well-defined, has a thermodynamic status, and

is an appropriate starting point for a theory of the hard-
sphere ‘liquid’ branch. In these final three sections, we
move on from the hard-sphere system to explore the published
evidence relating to its possible significance in understanding
the structures of real liquids—i.e. we address how the
situation might be changed when we consider the effects of
intermolecular attractive forces. Remembering Rowlinson’s
comment quoted earlier [44] that the attractive forces have
‘little direct effect on the structure of a simple liquid’, we
will not be surprised to conclude that the evidence points to
there being indeed a central role for RCP in understanding the
structures of real liquids.

When we consider attractive forces, however, any fully
successful model of liquids must also be able eventually to
explain criticality and critical condensation. In this context it
has long since been conjectured [46–50] that the hard-sphere
available-volume percolation transition might also be related to
the origin of criticality and vapour–liquid coexistence when an
attractive perturbation is added. Recent related developments
that we discuss below concerning criticality do not conform
with the long-held van der Waals hypothesis of continuity of
liquid and gas. As these developments offer new insights into
longstanding controversies regarding criticality, we proceed to
discuss them below within the context of RCP-related concepts
originally proposed by Bernal over 50 years ago.

9.1. Liquid–vapour coexistence

It follows that if the RCP state of hard spheres has a ther-
modynamic status that connects it to the hard-sphere fluid at
densities above percolation and through the freezing transition
in the metastable region, the same must also apply to square-
well liquids. In this section, we see that the evidence that this is
indeed the case is already out there in the computer simulation
literature of investigations into liquid–gas coexistence.

The square-well potential is a model pair potential
between two spheres that can attract each other through a
constant potential well depth within a fixed range. For two
molecules i and j with hard-core diameter σ , the square-well
interaction between them at a separation r is φij (r) = 0 for
rij > λσ ; −ε for σ > rij > λσ ; ∞ for rij < σ , where ε is
the depth of the attractive well and λσ is its range.

The thermodynamic liquid–vapour coexistence data and
critical points of square-well model fluids were first obtained
by Vega et al [77] from Gibbs ensemble MC calculations
for several values of the square-well width (λ) in the range
λ = 1.25σ to 2.0σ . They found that square-well liquids in the
coexistence range of temperatures obey the law of rectilinear
diameters (LRDs)5 [78]. They fitted the density curves of
the coexisting phases to the following equations which imply
obedience to LRD:

ρ(liquid) = ρc + C2 (1 − T/Tc) +
1

2
Bo (1 − T/Tc)

β (15)

ρ(vapour) = ρc + C2 (1 − T/Tc) − 1

2
Bo (1 − T/Tc)

β , (16)

5 This is a procedure with a long history (see [77]) of predicting critical density
by extrapolating the mean ρm of two coexisting densities ρl and ρv of liquid
and vapour respectively. A graphical example of its use is seen in figure 12.
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where ρc is a ‘critical density’ in the van der Waals hypothesis
and Tc the critical temperature. From simulation studies over
a range of λ, Vega et al [77] reported results for the critical
density for the three constants C2, B0 and β. Setting T = 0 K,
the constant mean density in the LRD (ρm) is simply

ρm = ρc + C2 = Bo/2, (17)

where Bo now becomes the density of the coexisting ‘liquid
phase’ at absolute zero. It has been observed [63] that the
mean value of Bo from the literature data averaged over all λ

values for which there is data available is 0.60 ± 0.04, and the
average value of ρm = ρc + C2 is 0.35 ± 0.1. The within-error
equalities of the RCP packing density with the mean value of
B0, and of half the RCP density (0.318) with the LRD mean
density constant ρm, are thus consistent with the RCP state
of the hard-sphere fluid as the metastable amorphous ground
state, not only of the hard-sphere fluid, but also of square-well
liquids. To echo Rowlinson again [44]: the existence of the
attractive forces indeed does have little direct effect on the
essential structure of a simple liquid.

9.2. The critical region

Though the van der Waals theory of a critical point has been
accepted for well over a century as the description of liquid–
gas criticality, it is worth noting that van der Waals himself
recognized in his Nobel lecture [2] that the concept of a critical
volume was a weak part in his theory. It should therefore
perhaps come as no surprise that an increasing amount of
recent published work [63, 79, 80] presents evidence that the
van der Waals hypothetical critical point does not exist on the
Gibbs density surface. Building on the extensive calculations
of Vega et al [77], a revised phase diagram, consistent
with these recent findings, is illustrated in figure 11 for the
square-well model fluid (λ = 2). To within the simulation
uncertainties, the limiting amorphous ground state of square-
well liquids is the RCP state of hard-spheres as illustrated
in figure 5. It can also be observed that, insofar as the
simulations permit, the liquid coexistence lines terminate at
limiting coexisting maximum liquid density around the region
of a percolation transition density. The density of the available
volume percolation transition appears to be increased slightly
above the unperturbed hard-sphere fluid value (ypa = 0.281)

by the attractive-well perturbation.
In addition to one available-volume percolation transition

PA, square-well fluids have two excluded-volume percolation
transitions. The first is that defined by the hard-sphere
excluded volume at the exclusion range 2σ . In addition, the
square-well width λ defines a cluster if two or more spheres
are linked together within this distance. This leads us to the
definition of the ‘bonded cluster’ percolation transition (PB);
it occurs in square-well fluids at a density at which a cluster
of bonded atoms first becomes of the same order as system
size, i.e. becomes liquid-like. The locus of the bonded cluster
percolation transition on the Gibbs density surface has been
designated PB. For all square-well fluids with λ < 2σ , which
relate to real atomic or molecular fluids, PB occurs at a higher
pressure and density than the excluded volume percolation.

Figure 11. A phase diagram of a square-well fluid: this example
(λ = 2) is plotted from parameterized computer simulation data [77]
to within the uncertainties quoted by Vega et al, retaining their
critical exponent (β) values but using the present known value of
RCP packing fraction i.e. yRCP = 0.6366, and approximate
percolation loci [63]. The thin dashed lines are the critical and triple
point isobars; solid lines are the gas and liquid coexistence curves.
Liquid (blue) bound PA and gas (red) bound PB are the ‘available
volume’ and ‘bonded cluster’ percolation loci that bound the
supercritical liquid and gas phases respectively (thick dashed lines).

This transition will first intersect with the PA pressure ppa(T ),
and trigger the transition to two coexisting phases of gas and
liquid at the critical temperature Tc. For the special case
of a square-well fluid defined by λ = 2σ , the hard sphere
excluded volume and bonded cluster percolation loci become
the same. The calculations indicate (see figure 5) that the
maximum coexisting gas density coincides with the bonded
cluster percolation transition PB at around a packing fraction
ypb = 0.05 [49, 50].

Figures 5 and 11 indicate that there is no ‘continuity of
liquid and gas’, as hypothesized by van der Waals [1], and
parameterized in his legendary equation (1). Rather, a liquid
phase spans all temperatures from the metastable amorphous
ground state, to supercritical temperatures where it is bounded
from a supercritical mesophase by the loci of a percolation
transition of the available volume (PA) [78]. Another ‘bonded
cluster’ percolation transition (PB) [63, 78] bounds the gas
phase. A revision of the properties of liquid argon has revealed
a connection between the percolation loci and the metastable
spinodals (lines defining a stability limit of a phase). Both
PA and PB continue into the two-phase region to define the
limits of existence of the metastable liquid and gas phases,
respectively. In effect, the spinodals are the extensions of
the percolation loci into the liquid and vapour coexistence
region [80].

It is evident, therefore, that the RCP state is not just a
starting point for the hard-sphere fluid at high density, but
also for all model liquids that can be treated theoretically as
perturbations of the hard-sphere fluid [4]. The RCP density
state bounds the liquid phase diagram, from metastable T ∗ = 0
to equilibrium liquid and beyond T ∗

c all the way to T ∗ = ∞,
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if crystallization is excluded. Here we have only presented
the special case of λ = 2, but the experiment and simulation
results [78, 79] and theoretical considerations [80] suggests
that the Bernal RCP state is the amorphous ground state for all
square-well fluids from sticky spheres (λ → σ) to the limiting
mean-field model (λ → ∞).

The existence of a limiting thermodynamic amorphous
ground-state cannot be confined to simple model Hamiltonians
of hard-sphere and square-well fluids. Next, we consider the
relevance to real liquids.

10. Real liquids

10.1. Liquid argon

In section 9 we brought together evidence to show that model
square-well liquids have an amorphous ground state at 0 K
defined by the extrapolated equation-of-state of the hard-
sphere fluid. It follows therefore, that if the liquid of a model
Hamiltonian has an amorphous ground state, then so also will
any real liquid that can be described by a classical Hamiltonian,
for example liquid argon. In order to test whether the present
experimental data on liquid argon in the equilibrium region
is consistent with an extrapolation into the metastable region
and a LRD constant consistent with an RCP ground state
(see section 9), we can convert it provided we know what
the effective hard-sphere diameter of amorphous argon at 0 K
is. Clearly, we have no theoretical prescription at present
for determining this effective hard-sphere diameter. It seems
reasonable to assume, however, that it must lie between the
distances of zero attractive potential (σ) and of the point of
zero force (ro), in accord with the various perturbation theories
[45]. Note also that for the Lennard-Jones pair potential

ro = 2(1/6)σ .
The experimental equation-of-state data for liquid argon

along the coexistence line is shown in figure 12. Liquid and gas
densities, together with coexistence pressures, were reported
with 6-figure precision by Gilgen et al [83]. The Gilgen
experimental data is here re-plotted in a reduced RCP form.
In order to show that the experimental density data of liquid
argon is not inconsistent with the idea of an amorphous RCP
ground state, a reduced density is calculated as follows. We
take the density constant in the LRD obtained by Gilgen et al
in SI units of kg m−3; defining the mean density at a given T ,
p as ρm = (ρl + ρv)/2 they obtained for the LRD

(ρm/ρc) − 1 = 0.735004 (1 − T/Tc) , (18)

giving Tc = 150.687 K and ρc = 535.6 kg m−3. They found
that equation (18) corresponds to a straight line through the
critical density and the densityρtr at the triple point temperature
(84 K). Setting T = 0 we obtain for the limiting value of ρm

(at T = 0 K) 1.735 × 535.6 = 929.27 kg m−3. Given the
atomic weight and molar volume of atomic argon, we equate
this limiting density of Gilgen et al with the RCP packing
fraction to see if the resultant effective hard-sphere diameter
one obtains is sensibly in the right region of the interatomic
pair potential. We obtain a value for this effective argon–argon
hard-sphere diameter of σ(eff) = 35.21 nm. This is close to the

Figure 12. Coexistence densities and the LRDs for liquid argon
recalculated (see text) using an effective hard-sphere diameter from
the experimental mass density values published by Gilgen et al [81].
Solid circles: liquid density; open circles: vapour density.
Percolation loci ypa = 0.207 (blue: upper horizontal line right) and
ypb = 0.141 (green: lower horizontal line right) are those
determined in [80].

mean of the values given by White [82] for σ (33.45) and ro

(37.54), i.e. just about where we would expect it to be if the
equation-of-state of liquid argon can be described with a RCP
amorphous ground state starting point.

10.2. The nature of the liquid mesophase

Next, we turn to experimental measurements of the p–V –T

properties of liquid argon (figure 13) not directly in coexistence
with the vapour [83].

First we observe that the supercritical region can be
divided into three, rather than the classical two, regions
as illustrated by the red trapezoid. A gas phase at low
density is characterized by a negative rigidity derivative with
(d2p/dρ2)T < 0; the liquid state by contrast is characterized
by a positive rigidity derivative with (d2p/dρ2)T > 0.
In between the gas and liquid is the proposed mesophase
discussed at the end of the previous section 9; we envisage
this as a colloidal mixture of gas and liquid with a linear
combination rule as a consequence of which (d2p/dρ2)T = 0.

A second observation from the experimental isotherms
in figure 13 is that it appears to be inconsistent with the
coexistence data in figure 12 in the vicinity of the triple
point temperature (within the circle at the bottom right of
figure 13). This is likely to be a consequence of heterophase
fluctuations, in which different experimental conditions can
yield different results for the same thermodynamic equilibrium
property in the vicinity of phase transitions (see also the
discussion on Frenkel’s ideas in section 8.2). The isotherms
in the vicinity of coexistence of the liquid at low temperature
have a slightly higher density than would be expected by the
LRDs. Thus we appear to have here an example of the effect
of heterophase fluctuations, i.e. ‘nucleate clusters’ of higher
density, which would frustrate any attempt to extrapolate the
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Figure 13. Experimental isobars for argon from Gilgen et al [83]; the trapezoid shows the region occupied by the proposed supercritical
mesophase. The law of rectilinear diameters (red arrow) is heading for a density of RCP/2 but the coexistence liquid density takes a
pre-freezing twist near the triple point (within the red circle). The proposed mesophase is bounded by (on the gas side) the bonded cluster
percolation transition PB and (on the liquid side) the available volume percolation transition PA. Reprinted from [83] with permission from
Elsevier.

LRD in the region of the freezing temperature to an amorphous
ground state. It appears that there is a bifurcation of the
experimental liquid y(p, T ) equation-of-state causing a pre-
freezing compressibility and also heat capacity anomaly that
will vitiate the extrapolation. Indeed this non-equilibrium non-
analytic equation of state might be expected to extrapolate
not to an amorphous ground state or RCP, but to a crystalline
density fcc or hcp.

11. Bernal’s hypercritical line

In his Bakerian lecture to the Royal Society of London in
1962 [7], Bernal made some quite remarkable observations
that appear to have anticipated by half a century these
developing ideas of criticality discussed above and the
proposed supercritical mesophase. Jones and Walker [84] first
reported measurements of the specific heat of supercritical fluid
argon above the critical temperature. They observed a line
of maximum values along an extension of the liquid/vapour

line (see figure 14(a) from [84]), and commented on ‘how
sharply the extrapolated vapourization curve divides the fluid
part of the field into liquid-like and vapour-like regions’. In
looking for a structural interpretation of this mysterious new
line, Bernal commented that it implied there remains a sharp
distinction between liquid and gas well above the critical point,
and that the critical point itself is only one point on this line
which he named the ‘hypercritical line’.

We can now re-examine Bernal’s hypercritical line and
see how it might relate to the concept of the supercritical
mesophase bounded by the percolation loci PA and PB, which
have been superimposed on the ‘parallel’ (p, T ) plot of
figure 14(b). The critical point occurs where the PA and PB
loci coincide while the hypercritical line continues into the
mesophase region between PA and PB at higher temperatures
and pressures.

With quite remarkable insight, Bernal described
graphically (figure 15) the change in structure of a fluid
in going from ‘liquid to gas’ in the supercritical region
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Figure 14. Reproductions of liquid argon boiling point curves showing supercritical lines. (a) Replotted with permission from [84]. In his
Bakerian lecture [7] Bernal named the line of maximum heat capacity (Cp) that extends beyond the critical point, as the ‘hypercritical line’.
(b) p–T projection of the liquid–gas coexistence line from measurements of Gilgen et al [81] on which has been superimposed the
percolation loci PA and PB [80]. The intersection of PA and PB defines the critical ‘divide’ at Tc, pc whereupon two phases coexist.

Figure 15. Bernal’s diagram of 1962 [7] showing his supercritical
ideas of the transition of molecular arrangements passing from
‘expanded’ liquid to ‘associated gas’ through the hypercritical line
(dashed). Reproduced from [7] with permission of the Royal
Society.

when crossing the hypercritical line at constant temperature.
The simple observation he made was that coherence in a
liquid was sensitive to volume and not temperature, which
is now a well-known phenomenon, whereas a gas has no
coherence. His simple explanatory diagram (figure 15) shows
not two regions of liquid and gas, but four, with a distinction
between coherent ‘close packed’ and ‘expanded’ liquid, and
the incoherent ‘free’ and ‘associated’ gas. The hypercritical
line is crossed as the system changes from being ‘expanded’
liquid to ‘associated gas’.

We do not at this stage have detailed structures for the
supercritical mesophases of real macroscopic liquids, such as
argon, but there can be little doubt that the mesophase is of
a colloidal nature [80]. This implies that it must divide into

two regions. On the gas side, bounded by the bonded cluster
percolation transition loci PB, the colloidal nature will be a
dispersed phase of liquid ‘microdroplets’ and a continuous
phase of gas, i.e. a mist. On the liquid side the dispersed
phase and continuous phase will be reversed: gas bubbles
in continuous liquid, i.e. a foam. At a density (or pressure)
intermediate between the percolation loci PA and PB there
must therefore be a colloidal inversion from mist to foam. This
would involve a greater degree of fluctuations in energy and
density, which being exactly related to the heat capacity Cp,
would result in maximum value loci as seen in figure 14(a).
Thus, Bernal’s ‘hypercritical line’ extending the boiling
point [7] is also consistent with the new thermodynamic
description of criticality that is emerging from recent
investigations [79, 80, 85].

12. Conclusions

The first part of this topical review explored the light
that has been thrown by the recent published literature on
the significance for liquid structure of Bernal’s inherently
simple concept of RCP. Focussing initially on the hard-
sphere fluid, the evidence points strongly to RCP being not
only well-characterized and well-defined, but also having
the thermodynamic status of a metastable amorphous ground
state.

Whereas the gas phase is described by one equation-
of-state, i.e. a virial expansion, the liquid state will be
described by another that is not in any way connected to
the gas equation, and which could be a free volume or
cell-cluster expansion. The liquid phase spans the whole
pressure and temperature range from an amorphous ground
state at zero K, to the supercritical region and beyond.
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The evidence we review here suggests that the starting
point for the equation-of-state of the hard-sphere fluid in
the liquid-like density range is not Mayer’s low-density
gas virial expansion, nor the fcc crystal, but Bernal’s state
of RCP.

The relevance of RCP is not, however, limited to the hard
sphere or square-well liquids. We can infer that if a model
fluid has a reversible path to a metastable amorphous ground
state, which is RCP in the case of the square-well model, then
real liquids should behave likewise. It seems that there will
exist an amorphous ground state approaching absolute zero
that terminates a metastable liquid at low temperatures, and
that this ground state is defined by extrapolation of the liquid
coexistence line to low temperatures, i.e. below the triple
point.

It should be possible to obtain an experimental estimate
of the residual properties of the amorphous ground state of
any liquid from the constants in the LRDs in the equilibrium
coexistence region. For simple liquids, whence the linear
law is an accurate representation, the limiting density on the
metastable coexistence line is 2ym, where ym is the density
constant in the LRDs. LRD has a long history [78] in the
determination of van der Waals hypothetical ‘critical density’,
which the recent work we have discussed argues does not exist
as such [79, 80]. The significance of the limiting density
constant, however, in its relation to an amorphous ground
state with a thermodynamic status, has, until recently, been
overlooked [85].

Although the van der Waals picture is widely accepted
as an approximate description of the behaviour of real fluids,
many have questioned its applicability in the critical region.
For example, a review by Levelt-Sengers [86], states ‘in
a narrow range around the critical point, Van der Waals’
equation is fundamentally inadequate’. Moreover it reveals
that many early scientists expressed alternative descriptions
or reservations of the van der Waals ‘continuity of liquid
and gas’ hypothesis, including such distinguished names as
Faraday, Mendeleev, Ramsay, Gouy, Mathias and Cailletet.
Moreover, notwithstanding extensive work on the theory of
liquid–gas continuity and critical point on the Gibbs density
surface [87, 88], van der Waals’ ‘critical point’ does not obey
the Gibbs phase rule and has no thermodynamic definition.
These are serious defects for a concept that is argued to be
fundamental to our understanding of liquids, and for 140 years,
its existence has remained an unsubstantiated hypothesis.

Looking in detail at the results of extensive calculations
on model square-well fluids, radical alternative interpretations
have been proposed that suggest a resolution of the conceptual
problem of liquid–gas continuity above a ‘critical point’ of
van der Waals. From these ideas emerges a description of the
liquid state that is not consistent with the van der Waals idea
of continuity of liquid and gas. In contrast to that picture,
the reinterpretation discussed above argues rather that the gas
and liquid phases in the supercritical region are bounded by
percolation transition loci and are well-separated by a colloidal
mesophase [63, 79, 80]. The existence and structure of this
mesophase was envisaged by Bernal some 50 years or so
ago [7], albeit without knowledge of the thermodynamic
implications of percolation phenomena.

The revised phase diagram of simple fluids [79, 80, 85],
based upon percolation transition loci that are determined
both from simulations and from experimental density–pressure
isotherms of argon in the literature, shows three fluid phases.
The supercritical mesophase of a colloidal nature occurs
between two percolation transition loci, PA and PB, loci
that bound the existences of the liquid and gas phase,
respectively. When two percolation transitions have the same
pressure, i.e. on intersection of the loci in the p–T plane
(e.g. see figure 14(b)), an equilibrium dividing line between
the supercritical mesophase and two-phase coexistence is
thermodynamically defined. Percolation loci, for T < Tc,
extend into the gas–liquid coexistence region to become the
spinodal lines that limit the existence of metastable gas and
liquid phases. These newly proposed liquid-state limits
[79, 80] now require an equation-of-state for the high-density
liquid and supercooled liquid phase that is independent of the
gas phase.

Regarding future objectives, we still need to find a theory
for the RCP state based upon the statistical geometry that
Bernal repeatedly called for over half a century ago; such a
theory would likely resolve the puzzling coincidence of the
RCP packing fraction with Buffon’s constant. There also needs
to be a more formal explanation of the RCP residual entropy
(relative to fcc) which is close to the ideal gas constant. Further
application of high-performance computing is also needed to
determine accurately the entire equations-of-state and phase
diagrams of all square-well fluids, not least to consolidate these
recent findings. Perhaps experiment will be able to verify, and
explore the detailed microscopic structures of the ‘mist’ and
‘foam’ regions of the mesophase, and the transition between
them across the hypercritical line. Moreover, it has not passed
our notice that these ideas are also potentially relevant to a
huge class of colloidal systems, some of which have important
biological relevance: an example might be the coagulation of
proteins that are modelled by sticky spheres with a square-well
potential [89].

There are various experimental obstacles preventing the
determination of the existence and nature of an amorphous
ground state. For the likes of liquid argon the problem is
spontaneous nucleation and crystallization. In more complex
liquids, on supercooling to temperatures well below freezing
there is the intervention of a glass transition accompanied
by a sudden drop in heat capacity. In these cases, the
residual entropies and volumes can be quite small, and it
can be difficult to distinguish various degrees of order in
predominantly amorphous assemblies. We have also seen that
the law of rectilinear diameters as a tool for extrapolating to
estimate the density of an amorphous ground state, can be
misleading as it fails when there are heterophase fluctuations,
as highlighted in the case of argon, for example, in figure 15.
There may even be non-analytic behaviour of thermodynamic
state functions in the equilibrium liquid close to freezing, as
fluctuations that may involve incipient nucleation begin to
appear.

This review of the recent science of liquid-state
boundaries, whilst resolving queries about the inadequacy
of van der Waals hypothesis, also raises more questions and
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challenges. What now seems clear, however, is that the two
original concepts of Bernal, the RCP state of hard spheres, and
the ‘hypercritical line’, will play a significant future role in the
theory of liquids.
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