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Abstract

The realization problem asks: When does an algebraic complex arise, up to homotopy,
from a geometric complex? In the case of 2- dimensional algebraic complexes, this is equiv-
alent to the D2 problem, which asks when homological methods can distinguish between

2 and 3 dimensional complexes.

We approach the realization problem (and hence the D2 problem) by classifying all pos-
sible algebraic 2- complexes and showing that they are realized. We show that if a dihedral
group has order 27, then the algebraic complexes over it are parametrized by their second
homology groups, which we refer to as algebraic second homotopy groups. A cancellation

theorem of Swan ([11]), then allows us to solve the realization problem for the group Dy.

Let X be a finite geometric 2- complex. Standard isomorphisms give m3(X) = H 2(X i Z),
as modules over 7;(X). Schanuel’s lemma may then be used to show that the stable class
of m2(X) is determined by 7, (.X'). We show how 73(.X) may be calculated similarly. Specif-
ically, we show that as a module over the fundamental group, 73(X) = S%(m2(X)), where
S%(m2(X)) denotes the symmetric part of the module 72 (X) ®z m2(X). As a consequence,
we are able to show that when the order of 7;(X) is odd, the stable class of m3(X) is also

determined by 7, (X).

Given a closed, connected, orientable 5- dimensional manifold, with finite fundamen-
tal group, we may represent it, up to homotopy equivalence, by an algebraic complex.
Poincare duality induces a homotopy equivalence between this algebraic complex and its
dual. We consider how similar this homotopy equivalence may be made to the identity,
(through appropriate choice of algebraic complex). We show that it can be taken to be the
identity on 1 of the 6 terms of the chain complex. However, by finding a homological ob-
struction, we show that in general the homotopy equivalence may not be written as the

identity.
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Introduction



There are three main theorems in Chapter One. Theorem 1.1.1 states that any two
projective resolutions, of a module, having equal finite length, may be stabilized
to the same homotopy type. This is stronger than Schanuel’s lemma, which states
that they have the same final homology group.

Theorem 1.4.11 states that the only groups of period 2 are cyclic. This result is
well known though an explicit proof is hard to find in the literature. Swan makes
a comment outlining an argument in [9]. We give a more direct proof which is
elementary and avoids the technical difficulties of Swan’s argument.

Theorem 1.5.1 says that an initial segment of a partial free resolution of a module
may be changed without altering homotopy type, possibly at the cost of introduc-
ing a stably free module to the resolution. This will allow us to parametrize certain
algebraic complexes by the last map in their sequence.

The question of when an n + 1- dimensional CW- complex is homotopic to an n
dimensional one has been addressed by C.T.C. Wall [14]. He showed that for n # 2,
the vanishing of n + 1!* cohomology over all coefficient bundles is sufficient.

Wall’s methods are not effective for the case n = 2, which is called the D(2) prob-
lem. The problem is parametrized by the fundamental group of the CW- complex
in question.

Chapter Two is concerned with the D(2) property for dihedral groups. In [3]
(62.3) it is shown that the dihedral groups Dj, 2 satisfy the D(2) property. The
smallest dihedral group not covered by this is Dg. Theorem 2.3.4 states that the
D(2) property does hold for Ds.

More generally, for dihedral groups of order 4n, we show that a minimal ele-
ment of 3(Z) is realized as the 73 of a presentation (proposition 2.3.2). In §2.4 we
parametrize all possible minimal elements of 23(Z) by a finite group.

In the case of dihedral groups of order 2", n € Z, we are further able to show that
up to chain homotopy equivalence there is a unique algebraic 2- complex with a

“standard” my (theorem 2.2.11).



In Chapter Three, theorem 3A states that given a geometric 2- complex, X, with
finite fundamental group G, we have 73(X) & S2%(J), where J = mp(X). We will
define a module over Z[G], Vi and show that m3(X) is determined by G, up to
stabilization by copies of Z[G] and copies of Vi (theorem 3.5.5). Rationally, we
show that m3(X) ® Q = Q[G]® @ (Vg ® Q)° for integers a, b (theorem 3.6.5).

In the case where G is a group of odd order, we have V; = 0. Hence in this case,
the stable class of m3(X) is determined by G, and 73(X) is rationally free (corollaries
3.5.6 and 3.6.6).

Let Af be a closed, connected, orientable 5- dimensional manifold, with finite fun-
damental group G (we assume manifolds to be without boundary). In chapter four
we consider algebraic complexes C,(Jfl’), where A’ is a finite CW- complex, with
M ~ M'. C.(M’) must satisfy Poincare duality. We use this to show that up to
chain homotopy equivalence, we may represent it by an algebraic 2- complex, A,
connected to its dual via a G- invariant bilinear form, 3, on (m2(.A))*. We denote
the resulting algebraic 5- complex (A, 3).

We next consider the homotopy equivalence induced by Poincare Duality. In par-
ticular we are interested in how similar it can be made to the identity. We show that
it can be taken as the identity on 4 of the 6 terms of the chain complex. However,
we find a homological obstruction to this homotopy equivalence actually being the
identity. In particular, certain manifolds described in [1] do not satisfy the homo-
logical condition necessary, for being able to write the homotopy equivalence as
the identity.

We now make some notational points:

All rings are assumed to contain a multiplicative identity. Modules are assumed
to be right modules over the relevant ring. A map between modules is assumed to
be linear over the relevant ring, unless we describe it as a map of sets.

Suppose A and B are modules. If a : A — B is a map, and B is a summand of a

third module €', then a : A — C will denote a : A — B composed with inclusion
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of the summand B, in C.

Again, let A, B, C be modules. If f : A — C and g : B — C are maps, then
f@g:A® B — Cisdefined by (f © g)(a®b) = f(a) + g(b).

The abbreviation f.g. will be used to denote finitely generated, whether in the
context of a module or a ring.

Contrary to some conventions, the subscript on a group will denote its order.
Hence D, will denote the dihedral group of order n, S, will denote the symmetric
group of order n and A,, will denote the alternating group of order n.

Let R be a ring and G a group. R[G] denotes the free R- module with group
elements as basis. Itis a ring, with product structure given by group multiplication,
for the basis elements, and extended linearly over R, for the remaining elements.
The “group ring” of a group G, will refer to Z[G].

In the context of a Z[G]- module, Z will denote the Z[G]- module whose underly-
ing Abelian group is Z, and on which the action of G is trivial.

The map sending Y~ \igi to >_ A, for A\; € Z, g; € G will be referred to as aug-
mentation, and will usually be denoted e. Its kernel, denoted IG will be called “the
augmentation ideal”.

The dual of a module, M, denoted A* is the set of Z- linear maps M — Z. AM*
has the structure of an Abelian group with respect to point-wise addition. In fact,
it is a module over Z[G], with G action given by ag(m) = a(mg™!) for all m € M,
a € M* and g € G. Similarly we define the dual of a map, f, to be precomposition
with f. The dual of a map, f, will be denoted by f*.

As we work over finite groups, this definition is consistent with the one where
A is defined as the set of Z[G]- linear maps Al — Z[G].

If 3: M x M — Zis a G- invariant bilinear form on a module A/, it will also be
regarded as a map M — A *, which sends r € M to the element of A/* defined by

J(r)(y) = 3(x.y), forall y € M.
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Chapter 1

Algebraic methods

There are three main theorems in this chapter. Theorem 1.1.1 states that any two
projective resolutions of a module, having equal finite length, may be stabilized
to the same homotopy type. Theorem 1.4.11 states that the only groups of period
2 are cyclic. Although this result is well known, the proof is technically simpler
than any in publication. Theorem 1.5.1 says that an initial segment of a partial free
resolution of a module may be changed without altering homotopy type, possibly
at the cost of introducing a stably free module to the resolution. This will allow us

to parametrize certain algebraic complexes by the last map in their sequence.

§1.1 Schanuel’s Lemma

Schanuel’s lemma plays a key role in our algebraic study of homotopy. We adapt
the proof to give us a stronger result; any two projective resolutions of a module
may be stabilized to the same homotopy type.

Let R be a ring. An algebraic complex over R consists of a sequence of modules
C; and maps ¢; : C; — Ci_1, such that §;0,_; = 0 for each i. It may be denoted
(Ci. 6)).

A chain map f : (Ci, §;) — (D;, 0;), consists of a sequence of maps f; : C; — D;

such that for each i, f; 14; = 0, f;.

12



CHAPTER 1. ALGEBRAIC METHODS 13

A chain homotopy, I, between two chain maps f : (C;, d;) — (D;, 9;) and
g : (Ci, ;) — (Dy, 0;) consists of a sequence of maps I; : C; — D, such that for
each i, 0i411; + I;i-16; = fi — gi.

A chain homotopy equivalence, f : (C;, ;) — (D;, 9;), is a chain map for which
there exists a chain map g : (D;, 8;) — (Cj, 6;) and a chain homotopy, I, between
the identity and fg, and a chain homotopy J, between the identity and ¢gf. Two
algebraic complexes, (C;, é;) and (D;, 0;) are said to be homotopy equivalent pre-
cisely when there exists a homotopy equivalence between them. In this case, we
may write (C;, 6;) ~ (D;, ;).

An important notational point is that whenever we write down an algebraic chain
complex, any maps denoted by dotted arrows or modules connected to the complex

by such arrows, are not part of the complex.

Let A be a left module over R and let C, = (C}, d;) be an algebraic complex (of
right modules as usual). Let (C; ®r A, d;,) denote the tensor product of (C;, ¢;)
with A over R. Then H;(C,; A) denotes the kernel of 4;, quotiented by the image of
Jit1,-

Let A be a right module over R and let C, = (Cj, 6;) be an algebraic complex
(of right modules as usual). Let (Homp(Cj, A), §;) denote the functor Hompg(-. A)
applied to (Ci, &;). Then H'(C,: A) denotes the kernel of §7,, quotiented by the
image of 47 .

This notation for homology and cohomology is slightly non-standard.

We say a sequence of modules and maps is exact when the image of each map is
the kernel of the next.

In this section, we work over a fixed ring R, with unit. All maps, modules, alge-
braic chain complexes and chain homotopies will be assumed to be over R. Mod-

ules denoted by “P,” and “Q;” may be assumed to be projective.

Suppose we have an algebraic complex
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. 3n+l Fn 3n an—l

(1)

Replacing it with the complex

On »
L S I AL NN )

(2)
is called a simple homotopy equivalence. We may define a chain map i from (1)
to (2) which is the identity on F;, for r # n,n — 1 and the natural inclusion for
r = n.n — 1. Similarly we may define a chain map j from (2) to (1) which is the
identity on F}, for r # n,n — 1 and the natural projection for r = n,n — 1. Then ji
is the identity and i; differs from the identity by 0 on the F; and the identity on the

copies of F.

LetlI, : F, —» F,, ,beOforr # n—1landletl, : F,_, & F — F,_,® Fbe0
on F,_; and the identity on F. Then we have 1 — ij = '] + 19’ where 0’ agrees
with 9, for r # n, and is the map 8, ® 1 on F,, @ F. From this we see that a simple

homotopy equivalence is indeed a homotopy equivalence.

Let

O, P O Py Ao 0

and

o o, o,
Qn — - —> Q1 — Qo M -0

be exact sequences.
Let Ry = Py and Sy = Qo. Define R;, S;, fori =1,...n by

Ri=S85..&PF
Si=Ri_1®Q;
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Note R; and S; are projective, as they are constructed as direct sums of projective

modules.

Theorem 1.1.1 The complexes

On—
Pneasnan_@P n—l_}"‘&’Plﬁ’PO (1)
and
8., ®0 a_ & 174
Qnéan_’Qn—l_:""—z*Ql'_L’QO (2)

are chain homotopy equivalent.

Chain homotopies induce isomorphisms on homology groups. In particular, a
chain homotopy between (1) and (2) will induce an isomorphism between Ker(9, ®

0) and Ker(8;, @ 0), so we have the following corollary:

Corollary 1.1.2 (Schanuel)Kerd, © S, = Kerd, @ R,

Proof of theorem: We perform a series of simple homotopy equivalences, u; on

(1), fori =1,...,n. Recall Ry = F. Define u, to consist of replacing
P,p 2L Ry - M
with
'92—’1)1@50—(-5—1-)}20@5056—921\[ (3)

where 4, is defined by
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Note R; = P; @ Sp, so we can write (3) as,

2 R R e S, B M

Define u; to consist of replacing

0, i 8iz
141 1:)1 a; Ri_l i—1

with

8, é 8;—120
S P®Si1 5 R ®Sio =

where §; is defined by

Note R; = P, © S;_1, so we can write (4) as,

Oi 8; 6i—1®0
U R -5 R_1©S —

Finally, note that u, replaces

8,80 b
P,®S, 2 R, 25

with

60, B0

8180
R, @S, — Rn1 @ Sn s

Hence applying u;, .. .. un to (1) gives

R1®51@R0®50

6 &0

67)—1@0 (52@0
R,®S, — Rn—lesnﬁl - ... T

16
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Similarly we perform a series of simple homotopy equivalences v; on (2), where

v; consists of replacing
8:+1 az, 6:—1
Qi 8y

with

o, s 8 _,®0
S Qi®Ri-1 5 Sisi®Ri- (6)

& 0
5=

Note S; = Qi & Ri_1, so we can write (6) as,

where ¢; is defined by

o’ 8 8 _ .60
58 5SS @R

Also v, replaces
9,50 ony
Qn®R, — Sp1 —

with

8,60 8, _ 180
S, OR, — Sn1® Ry —

Hence applying vy, . .., v to (2) gives

6,30 6,180 5,0 6120
Sy ®Rp — Spo1 @Ry — 'Z_’Sl@Rll_’So@RO (7)

Recall R;, S; are projective. As (5) and (7) are chain homotopy equivalent to (1)

and (2) respectively, they are both exact. Further, they extend to exact sequences
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b
Ri®S, 22 R, @8, "2 ... 2R 05 20 Ri@S, B M50 (8)
and
8 8, _,®0 85,0 5 @0 ¢
Sh@® R, —@Sn—l@Rn—l = —22516931 ﬁisot’BRo M0 9)

We complete the proof of theorem 1.1.1 by constructing a pair of inverse chain

isomorphisms, h, k, between (8) and (9).

As Ry, Sy are projective, we may pick fo, go so that the following diagrams com-

mute:

Ry = M Ry = M
lfo 11 Tgo T1
So = M So - M

(10)
Deﬁneho:R()@S()—*S()@Roandko:So@Ro—'Ro@Soby

hy = fo 1= fogo ko = g0 1-gofo
1 —90 1 —fo
Direct calculation shows that hgkg = 1 and kgho = 1.

Also from commutativity of (10), we deduce

1_
(€ 0) ( fo Jogo ) =(efo €(1— fogo)) = (e 0)
1 =90

and
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l_
(e 0)(90 g°f°)=<ego e(1 - gofo)) = (¢ 0)
1 —fo

Hence the following diagrams commute:

Ro® So <25 Ar Ro ® So 2% Ar
L ho 11 T ko 11
So@RoCI—QQAI So@RO(I—G}QA[

Now suppose that for some i < n, we have defined h; : R; ® S; — S; ® R; and

kj:S;®R; = R; & S;forj=0,...,i—1,so that for each j, we have hjk; = 1 and

k;h; = 1. We proceed by induction.

As before, pick f;, gi so that the following diagrams commute:

R 2R, ®S, R 2SR, 0S8,

L fi Lhicy T4 T ki
6/ 6/

Si — Sis1© Riy Si — Si 19 Ri

(11)

Definehi:Ri&\SiaSiGBRiandk,-:SiGBRi—vRiGBS,-by

h = fi 1- figi b — 9 1—gif;
1 —gi 1 ~fi
Direct calculation shows that h;k; = 1 and k;h; = 1.

Recall h;_1k;—; = 1 and k;—1h;—; = 1. From commutativity of (11) we deduce
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i 11— figi
(6; 0) ( j; fig ) = (8 fi 0;(1 - figi)) = hi-1(6; 0)
—Gi

and

i 1—gifi
(6; 0) ( "(i jf ) = (0:i9i 0i(1—gifi)) = kio1(8] 0)

Hence the following diagrams commute:

Ri®5i6'—@2Rz‘—1®5i—1 RiEDSiJL{z(’JRi-—l@Si—I

L hi Lhioy Tk Thica
50 5,30

Si®R; — Si-1® Rin Si®R; ~— S;_1® R

Together with the identity on M, the h;, k; are therefore a pair of mutually inverse
chain maps, between (8) and (9). Hence (1) is chain chain homotopy equivalent
to (5), which is chain isomorphic to (7) which in turn is chain chain homotopy

equivalent to (2). d

If the modules P, and Q; are finitely generated and free, then R, and $, are also
finitely generated and free. Let Free, (M) denote the set of homotopy types of f.g.
free n- term resolutions, of a module M. We may give Free, (Af) the structure of a
tree, by placing an edge between the homotopy types of any pair of resolutions of

the form

QNI AR TSR Ny AN/ I S RN ¥

and

FLaR2NE &, % p %o s

where R is regarded as a module over itself. From theorem 1.1.1, we may conclude
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Theorem 1.1.3 Free, (M) is a connected tree.
Another tree of interest is the stable tree of a module.

Definition 1.1.4 Stable equivalence Two modules over R, L and N, are stably
equivalent if there is an isomorphism L @ R* - N & RY, for integers a and b.

The stable class of a module K is the set of modules stably equivalent to K. We
may give this the structure of a tree, by assigning an edge to any pair of modules
L, N, where N is isomorphic to L & R.

From corollary 1.1.2, we know that if (A4;, ;) and (B;, 9;) are elements of Free, (M),
then ker(4,,) and ker(3y) are in the same stable class. We denote this class 2,11 (A]).

We may conclude that we have a map of trees Free, (M) — Q,,11 (M), which sends

an element of Free, (M), (A;, di), to ker(dy,).

§1.2 The Derived Category

The previous section provides some motivation for considering a category where
stably equivalent modules are isomorphic objects. We follow Johnson[4], in con-
structing such a category. All the results of this section are explained in greater
detail in [4], §19. We provide a summary, for narrative purposes.

Modules over the group ring, Z[G], of a group form the objects of a category,

whose morphisms are Z[G]- linear maps.

A map f: X — Y is said to factor through a projective if there exists a projective

module P and maps a, b such the following diagram commutes:

x-L.y

%

P

Lemma 1.2.1 A map factors through a projective module if and only if it factors through a
free module.
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Proof: Suppose f = ba as before. We have some projective module @ such that
P& Qisfree. Leti: P — P @ Q be the natural inclusionand p : P& Q — P be the

natural projection. Then pi = 1. Hence f = ba = (bp)(ia)

For any pair of modules, M and N, define an equivalence relation ~ on Homgzg)(Af, N)
given by f ~ g if and only if f — g factors through a projective module. To see this
is transitive, note that if f — g factors through P and g — h factors through Q then
both f — g and g — h factor through P® Q@ so f — h = (f — g) + (g — h) factors
through P & Q.

If f factors through a projective then clearly any map composed with f also does.
By linearity of composition we therefore have that composition of maps under ~ is

well defined.

Hence we can define the derived category of the category of Z[G]- modules, Der(Z[G]),
to be the category whose objects are (left) Z[G]- modules and whose morphisms are

Z|G|]-linear homomorphisms under the relation ~.
Lemma 1.2.2 In the derived category, 0 = P for all P projective.

Proof: We have unique maps::0 — P and p: P — 0. pi is the identity on 0 and

ip — 1 factors through1: P — P.

Lemma 1.2.3 In the derived category M = M & P for P projective.

Proof: Leti: M — M & P,p: M & P — P be the natural inclusion, and natural

projection between Al and Al @ P respectively. Clearly pi = 1. Also 1 — ip restricts
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to 0 on the summand M and 1 : P — P, so 1 — ip factors through projection onto

P.

Proposition 1.2.4 Suppose we have an exact sequence of modules over Z[G), G a finite
group:
0 A Fo Fni - Fy M o Where the F; are free.

Then Endper(A) = Endpe, (M).

Proof: See [3]. The isomorphism is given by taking taking any endomorphism

f : M — M and using projectivity of the F; to extend to a commutative diagram

such as

0 A F, F, ce Fy M 0
lD(f) l l 1 J lf

0 A E, Fr e Fy M 0

Then if f’ is equivalent in the derived category to f, any choice of D(f) will be
equivalent in the derived category to any choice of D(f’).
The inverse is constructed dually, using the relative injectivity of the F;. See [3]

for details of the diagram chases.

Definition 1.2.5 Algebraic n- complex An algebraic n- complex is an algebraic com-

plex (Fi.9;), i =1,--- ,n, over Z[G)], satisfying:
i)F; is free and finitely generated, i = 1,--- , n.

ii)coker(0;) = Z.
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iii)ker(8;) =im(8,).

Let G be a finite group of order n and let J = H,(X;Z[G]) for some algebraic
2-complex, X, over Z[G|.

Definition 1.2.6 k- invariant We define a map k : End(J) — Z,. Given any map
a:J — J, one may extend it to a chain map, X — X. The chain map will induce a
map on the last cokernel, Z. This map will be multiplication by m, for some integer
m. A map Z — Z factors through a projective module if and only if it factors
through a free module, hence if and only if it is some sum of maps which factor
through Z[G]. As any such map will be multiplication by a number divisible by n,
the number m is determined up to congruence modulo n. The k- invariant of «,

k(a), is then defined to be the congruence of m in Z,.
If a is an automorphism, J — J, then k(a) will be a unit, modulo n.

Definition 1.2.7 Swan Map The Swan map, Aut(J) — Z;, sends an automor-
phism, q, to its k- invariant, k(a).

Note that Z,, is being identified here with Endpe.(J). Hence if the Swan map was
defined with respect to a different algebraic 2- complex, it would be the same map,

as the only ring isomorphism Z,, — Z, is the identity.

Theorem 1.2.8 If the Swan map, Aut(J) — Zj, is surjective, then any algebraic 2-
complex, Y, with Ho(Y; Z|G]) = J satisfies X ~ Y.

Proof: Any element of Aut(J) will induce a chain map X to Y. Let k& be the mul-
tiplication induced on Z. Now suppose that the Swan map is surjective, restricted
to a map from Autzg(J) — Autper(J). Then we have a chain map X — X with
k-invariant the inverse of £ modulo n, and which induces an isomorphism on J.
Composing this chain map with the chain map X — Y gives a chain map which
induces an automorphism on J and has k-invariant 1. We can replace this with a

chain map that induces an automorphism on J and actually induces multiplication
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by 1 on Z. This will necessarily be a homotopy equivalence. Hence X and Y will

be chain homotopy equivalent. See [2] for details of the diagram chases. a

If the Swan map is surjective for a module J, then it is also surjective for J & Z[G],
as if @ € Aut(J) then we have an automorphism J & Z[G] — J & Z[G] with the

same k- invariant, given by the matrix:

Definition 1.2.9 Minimal module A module is minimal in its stable tree if it does
not contain a summand isomorphic to Z[G].

We may conclude that it is sufficient to check that this property holds for all
minimal modules in the stable class of J, in order to deduce that it holds for all

modules in that stable class. Again see [2] for details of this method.

§1.3 Group Cohomology

A resolution for a module M over a ring is an exact sequence of modules, E;, d;,
such that the cokernel of 9, is M.

When Z is regarded as a module over Z[G] for some group G, we will assume the
trivial action. Let G be a finite group. There exists a resolution of finitely generated

free modules, F;, over Z[G), for Z (see [5]):

J3 &2 o

E Fy F 7

Definition 1.3.1 For aleft Z|G] module A, H,,(G; A) is given by tensoring the resolution
for Z with A and taking the kernel of O, quotiented out by the image of Op 41
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Definition 1.3.2 For aright Z|G] module A, H"(G; A) is given by applying Homgz) (e, A)
to the resolution for Z with A and taking the kernel of 9y, | quotiented out by the image of
oM

We note the following:

Proposition 1.3.3 Let A be a module over Z|G)]. The elements of H?(G; A) parametrize
short exact sequences of groups of the form

l1-A—-E—-G-1,

where the conjugation action of G on A is given by the ZG- action on A.

(See [12])
We may generalize cohomology groups to general rings:

Definition 1.3.4 Given modules M and A, Ext™ (M, A) is the n’th cohomology group of

a resolution of M with coefficient module A.

Proposition 1.3.5 Ext! (M, A) parametrizes short exact sequences of modules of the form
A — X — M, up to chain isomorphism with identities at both ends.
(See [5])

Combining the previous two propositions we see that there is a correspondence

between short exact sequences of the form

1 A-75G—-1

and short exact sequences of modules of the form

0—-A-7—-1IG—0

where /G is the kernel of the map augmentation map ¢ : Z[G] — Z, sending 1 € ZG

to 1 € Z. The kernel of the augmentation map is called the augmentation ideal.

As a result of this, any module, A which occurs in an exact sequence of the form
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0-A—-F—-Z[GS>Z—-0

corresponds to some surjection E — G, for some group FE.

Specifically, given a short exact sequence of groups

l—A—>Eteg—si

we have a Z[G]- module (I E)¢, which is the augmentation ideal of E, quotiented

out by the ideal generated by elements of the form z(e, — e3) where z € IE and
e1, e2 € E both map to the same element of G, via j. The action of an element g € G
on (I E)c is the action of any preimage of g. The choice of preimage does not effect

the action.

The map j induces a map from (I E)¢ — IG. The kernel of this map is isomorphic

to A with G- action given by conjugation, as before.

Conversely, we may construct an inverse to this operation: Given any short exact

sequence of modules
0—A—t> M 2> G—>0

we let Ey; denote the subset of A/ which maps to an element of the formg—1,g €

G, via j. We define a product on Ejs by setting for each ey, e, € Eyy, the product
e1 o ez is equal to e1g + e2, where ez maps to g — 1. We have a map Ej; — G given
by sending e; to g where j sends e; to g — 1. The kernel of this map is A4, so we have

a short exact sequence of groups

1 A iEM G 1

For any group G, we may denote by Fg the free group generated by the underly-
ing set of G. There is a natural surjection Fz — G. Let K¢ denote the kernel of this
surjection, and let K; denote the commutator subgroup of K. We have a short

exact sequence:

11— K¢/Kg — Fo/Kg — G —1
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(1)

Proposition 1.3.6 This sequence splits on the right, if and only if H?(G; A) vanishes for

all coefficient modules A.

Proof: K¢/K is a Z[G]- module, with G action given by conjugation as before.

If H*(G; K¢/ K{;) = 0 then by proposition 1.3.3 (1) must split on the right.

Conversely, suppose (1) splits on the right, with k : G — F¢ /K, as the splitting
map and we have any short exact sequence

Bl —1

1 A
(2)

with A4 abelian. We may construct maps fa : Fg/K;; — E and f) : Kg/Kg — Ato

make the following diagram commute:

Kg/Ki — Fg/Ki — G
lﬁ lfz ll
A : E——>¢G

This is done by sending each generator of F; to some element of E which lies in
the preimage of the corresponding element of G. This is well defined as K¢ maps

into A and A is abelian.

We have jo (fao k) = (jo f2) ok = 1. Hence (2) splits. But A, together with
the conjugation action of G on it,was chosen arbitrarily, hence H 2(G; A) = 0, for all

coefficient modules A.

§1.4 Periodicity
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The main result of this section is well known to those working in the field, though
an explicit proof is hard to find in the literature. The result states that the only
groups which are (homologically) of period 2 are cyclic. Swan makes a comment
outlining an argument in [9]. We give a more direct proof which is elementary and
avoids the technical difficulties of Swan’s argument. This result will be used in the

next section.

We say a finite group, G, has period 2 if and only if there exists an exact sequence

of Z[G] modules

0—-Z-P—-PFPh—-2Z—0

with Py, P finitely generated projective. (We will assume the G - action on Z to be

trivial throughout).
e will denote the augmentation map Z[G] — Z which takes 1 € Z[G] to 1 € Z. €*

will denote its dual, whichsends 1 € Zto 3_ . 9 € Z[G].

Proposition 1.4.1 Let G be a finite group which has period 2. Then there exists an exact

sequence

0—Z—S-—ZG-—>2Z—0

where S is projective.

Proof: If G has period 2 then there exists an exact sequence

0—-Z—-P—-P—-72Z—-0

with Py, P finitely generated and projective. Choosing @ such that Q ® Py = Z[G]"

for some n, and performing a simple congruence, we get the exact sequence
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0—-z%Pdzler 520 (1)

where P = P, ® Q and is finitely generated, projective.

Let a Z[G]- basis be chosen, < ey,...,e, >, for Z[G]". As c is a surjection, and
c(eig) = c(e;) for all g and 7, some Z- linear combination of the c(e;), i =1,..,n,
must equal 1. Let E denote the Z- linear span of thee;, i = 1,...,n. It follows that

c restricts to a surjection of Abelian groups E — Z.

Clearly Z is a free Abelian group, so this surjection splits, as a map of Abelian
groups. Therefore a Z- basis of E, f;, ¢ =1,...,n may be chosen, such that ¢(f,) =
land ¢(fi) =0, i=2,..,n.

Lemma 1.4.2 The f;, i=1,...,narea Z[G]- basis for Z|G]".
Proof of lemma: Any element z € Z[G]" can be uniquely written as 3 .- 749
with ry € E. Each 24 may be uniquely written as a Z- linear combination of the f;.

Therefore x may be written uniquely as a Z[G]- linear combination of the f;.

(Proof of Proposition continued)
The module, Z[G]" splits as the direct sum of the Z[G]- linear span of f; and the

Z[G])- linear span of f;, i =2,...,n. Hence (1) may be rewritten as

0—2z-% P2 71610 z[6) 252 —0 (2)

By exactness, b; must surject onto Z[G]"~!, hence b; splits. (Note Z[G]"~! projec-
tive). So P = S @ Z[G)"! where S is the kernel of b;. S is a summand of P, hence

projective.

By exactness, a maps Z into S. Also b, restricts to a map 3 from S into the kernel

of € in Z[G]. The following sequence is obtained:
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0—2-%52.216] 2 —0 (3)

Lemma 1.4.3 This sequence is exact.

Proof of lemma: The image of 3 must equal the kernel of ¢, as for any x € ker(e),
by @ by must map some element of P to (0, z) € Z[G|"~! ® Z[G)]. This element of P
must lie in S. (Note S was defined as the kernel of b,).

The kernel of 3 in S is by definition the intersection of the kernels of b) and b, in
P. This equals the kernel of b; @ by in P, and hence is equal to the image of a in S.

Therefore (3) is exact.

This completes the proof of the proposition.

Lemma 1.4.4 All modules and cokernels in (3) are torsion free and of finite Z- rank.
Proof: Z and Z|G] are torsion free and of finite Z- rank. S is finitely generated and

projective, hence torsion free and of finite Z- rank. By exactness, the cokernels are

submodules of torsion free modules of finite Z- rank, hence themselves torsion free

and of finite Z- rank.

O
Corollary 1.4.5 The sequence (3) may be dualized to get the exact sequence
0—z-5zi6) 1572 —0 (4)

where T is the dual of S.

T is projective, as dualizing commutes with taking direct sums.

Lemma 1.4.6 There is no surjective homomorphism from T to Z & Z.
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Proof: Tensoring (4) with Q, the rationals, yields

This is an exact sequence of finitely generated modules over Q[G]. As Q[G] is

semi-simple, the "Whitehead trick’ may be performed: T Q ¢ Q = Q[G] & Q.
Cancellation gives: T ® Q = Q[G].

Suppose f was a surjection T — Z @ Z. Tensoring f with Q would yield a Q[G]-
linear surjection Q[G] - Q @ Q. This is impossible because surjections between
finitely generated Q[G] modules split and Q[G] does not contain a copy of Q @ Q.

(]

For any Z[G] module, M, let M¢ denote the module resulting from quotienting
A by the submodule generated by elements of the form

m(l—g), me M, geG.

Letp : T — T denote the natural surjection. For some Z[G] module W, T W =
Z[GY)', for some integer I. So Tc @ W = (T © W) = (Z[G))e = Z-
Therefore, T = 7/ for some j < l. But as p surjects onto it, T must equal Z or 0,

by lemma 1.4.6.

Any map from T to a Z|G] module with trivial G-action must factor through p.

So a* in (4) factors through p.

Ta

/g

0—z-zi6) LTz —o
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a* is a surjection, so Tg # 0, hence Tg = Z. q is a surjection Z — Z. Hence ¢ must
be an isomorphism and ker(a*) = ker(p). Consequently, the following sequence is

exact

0—z-5z60 STz —0 (5)

Lemma 1.4.7 Let G be a finite group, of order k, having period 2. For any Z|G)- module
A, with trivial G-action, H'(G; A) = ker(xk : A — A), the kernel of multiplication by
k.

Proof: Combining (3) and (5) over Z gives the first few terms of a resolution for Z

over Z[G):

......... stz <szie Lriz
eN, €
Z

(6)

A map from Z[G] to A is determined by the element of A to which the identity is
sent. Hence Homz(Z[G), A) may be identified with A.
e*oesends 1 € Z[G] to 3 .9 € Z[G]. Soif f : Z[G] — Asends 1 € Z[G] to

a € A, then

feoc) =13 9)= ()Y g =ak

9€G geG

Suppose f is a map from T to A. As the G- action on A is trivial, f must factor

through p, hence f3* = 0.
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......... s Lzie1¢szi60 Stz
fl 7
A

Hence the cochain obtained by applying Hom(e, A) to (6) begins

...... co— A AL Homzg(T, A)

where k is the order of G. From this we see that H!(G; A) is the kernel of multipli-

cation by k on A.

The following is a standard result:

Proposition 1.4.8 Let G be a finite group and A an Abelian group. Regarding A as a
Z[G)-module with trivial G-action H'(G; A) = Hom(G, A).

Proposition 1.4.9 Let G be a finite group and A an Abelian group. Let G’ denote the
commutator subgroup of G. Then Hom(G, A) = Hom(G/G', A).

Proof: Given a homomorphism from G to A, G’ must lie in its kernel. Hence
any homomorphism from G to A factors uniquely through a homomorphism from
G/G'to A.

O

Let C* denote the Abelian group, consisting of unit complex numbers, with ad-

dition given by complex multiplication.

Proposition 1.4.10 If B is a finite Abelian group then Hom(B,C*) = B
Proof: Let Z, denote the cyclic group of order r and let b be a generator of it.

A map Z, — C* is determined by which r* root of unity b is mapped to. So
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Hom(Z,, C*) is generated by any map sending b to a primitive r** root of unity.
Hence Hom(Z,,C*) = Z,
Now any finite Abelian group B is the product of finite cyclic groups: B =

@:tl—‘l ZT;
So

m m m
Hom(B,C*) = Hom(EP Z.,,C") = P Hom(z,,,C") = P Z,, = B
i=1 i=1 1=1

O

C* can be regarded as a Z[G]- module, assuming the trivial action of G on C*.
Note that the kernel of multiplication by an integer, & on C*, is the cyclic group of

k'R roots of unity.

Theorem 1.4.11 Let G be a finite group having period 2. Then G is cyclic.
Proof: Given a finite group, G, which has period 2, let k denote the order of G

and let G’ denote its commutator subgroup.

G/G' = Hom(G/G',C*) = Hom(G,C*) = H'(G,C*) = Z;

(by propositions 1.4.10, 1.4.9, 1.4.8, and lemma 1.4.7)

As Z; has the same order as G,

G=G/G =7

The converse is also true:

Proposition 1.4.12 If a finite group G is cyclic, then it has period 2.
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Proof: Let t be a generator of G and let n be the order of ¢t. IG is the submodule
of Z[G] consisting of elements of the form Z;:ol t'\; with \; € Z, Z;:ol A = 0. Itis

generated by the element ¢ — 1.
Let o denote 37 t'.

(t —1)o = 0. If (t — 1) = 0 where u = 37 u;t’, then equating coefficients gives
(i = pit+1. Hence o divides u. Therefore IG = Z[G]/0Z[G).

There exist exact sequences

0—IG—Z[G)]—>Z—0 (7)
and
0— Z <5 Z[G] — IG* — 0 (8)

where (8) is the dual of (7).
As €*(1) = o, from (8) it is observed that IG* is isomorphic to Z[G|/0Z[G], which

is isomorphic to /G. Combining (8) and (7) over the isomorphism IG = IG* gives

0—2-52Z[G) — Z[G) = Z—0

N /
IG*=1G

This is exact

So a finite group is cyclic if and only if it has period 2.

If G is a finite group which is not cyclic, there can be no isomorphism between IG

and I/G*. In fact they cannot be stably equivalent, as if they were, we would have
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IG © Z[G]" = IG* ® Z[G]™, for some n, m. It would then be possible to construct

the following exact sequence:

e, 0

0— 22 Z[GDZG™ — Z[G|PZG* 252 —0

N\ /
IG* D ZG™ = IG ® Z[G)"

contradicting theorem 3.1.11.

Note that no infinite group can have period 2 in the sense that

Proposition 1.4.13 Let H be any infinite group. Let f : Z — P be a map for some
projective Z[H|- module, P. Then f=0.

Proof: Suppose we have a non- zero map f : Z — P. A module Q may be chosen,
such that P © Q is free. Then f ©0: Z — P @ QQ may be composed with projection
onto a copy of Z[H], to yield a non-zero map g : Z — Z[H]. Letz = g(1). By
Z[H]- linearity, we know that th = z for all h € H. However, as z is non-zero, it
is expressible as a finite sum }_, g;\;, with ); integers and ); non-zero for some j.
Then, choosing h such that g;h # g for any k, we have zh # z, giving the desired

contradiction. O
Proposition 1.4.14 If a finite group G acts freely, on a circle, then it is cyclic.

Proof: By lifting the cells of the quotient manifold to the circle, we would get a

cellular resolution of the circle:

Z F E Z

Any fixed point free map, f, on a circle is homotopic to the antipodal map, as for
each r € S!, we can choose a unique shortest arc between f(x) and —z. f must

therefore preserve orientation.
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The group action on the left hand copy of the integers is therefore trivial. F; and
Fy are clearly finitely generated and free, so G has period 2 and is cyclic.

O

Finally, in this section, we apply theorem 1.4.11 to obtain a lemma which we use

in the following section.
Let G be a finite group.

Definition 1.4.15 Quaternionic We say a real representation of G is quaternionic if
its endomorphism ring is H, the quaternions.
Let V1, -, Vi be the irreducible real representation of G. Given a Z[G]- module,

M, of finite rank, we have the decomposition:

k
MeR=V™
i=1
Definition 1.4.16 Eichler M satisfies the Eichler condition precisely when V; quater-

nionic implies thatn; # 1,fori =1,--- k.

Theorem 1.4.17 (Swan-Jacobinski) Let M be a torsion free Z[G)- module of finite Z-
rank. Suppose M @ Z[G) satisfies the Eichler condition. Let L be a Z[G]- module with
rkz (L) > rkz(M @ Z[G)), and L stably equivalent to M. Then we have L = M & Z[G]"
for some r > 1. (See [3] §15)

In particular, note that for any finite group, Z[G]? ® R will contain more than one
copy of any irreducible module. Hence Z[G)? satisfies the Eichler condition and has
the form Z[G] @ Z|G]. Therefore any stably free module of Z[G] -rank greater than
1, must be free.

Note also that if G is cyclic, G does not have any irreducible real representations
with endomorphism ring H so 0&Z[G] satisfies the Eichler condition and all finitely

generated stably free modules are free.
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Lemma 1.4.18 Let G be a finite group. Suppose there exists an exact sequence over Z|G)|

SF2, 72[G]* —Z —0

where SF is a finitely generated stably free module. Then SF is free.

Proof: If the Z(G]- rank of SF is greater than 1, the result would follow from
the Swan-Jacobinski Theorem. Suppose the Z[G]- rank of SF is 1. It is sufficient
to prove that G is cyclic as then all finitely generated stably free modules over it
would be free. We will show that G has period 2, as then it must be cyclic, by
theorem 1.4.11.

Exactness and consideration of Z- rank imply that the kernel of ;, K, must have
Z- rank congruent to 1 modulo the order of the group. The Z- rank of K must be
less than that of SF. Hence if SF has Z[G]- rank 1, then K, must have Z- rank 1.
By the "Whitehead Trick’, K ® Q = Q as Q[G]- modules. Hence the G- action on K

is trivial and we have an exact sequence:

0—2Z—SF2 721G —2Z—0

]

Lemma 1.4.19 Let G be a finite group. Suppose there exists an exact sequence over Z[G)

SF 2,716 2L zi6)]* — Z — 0

where SF is a finitely generated stably free module. Then SF is free.
Proof: If the Z[G]- rank of SF is greater than 1, the result would follow from
the Swan-Jacobinski Theorem. Suppose the Z[G]- rank of SF is 1. It is sufficient

to prove that G is cyclic as then all finitely generated stably free modules over it



CHAPTER 1. ALGEBRAIC METHODS 40

would be free. We will show that G has period 2, as then it must be cyclic, by
theorem 1.4.11.

Exactness and consideration of Z- rank imply that the kernel of 9;, K’, must have
Z- rank congruent to 1 modulo the order of the group. The Z- rank of K’ must be
less than that of SF. Hence if SF has Z[G]- rank 1, then K’, must have Z- rank 1.
By the "Whitehead Trick’, K ® Q = Q as Q[G]- modules. Hence the G- action on K’

is trivial and we have an exact sequence:

0 — 2—2Z[G] 2 2[G]* —Z —0

§1.5 Free Resolutions

The main theorem of this section, theorem 1.5.1, essentially shows that the homo-
topy type of any resolution may be represented by a resolution with a prespecified

initial segment:



CHAPTER 1. ALGEBRAIC METHODS 41

Theorem 1.5.1 Let

Fn 2o B O2m0h Fi1 2 Fy-aM -5 0 1]
and
& 6;1_ A
Gpn - Gno1 25 ... G, — Gg--+M --5 0

be exact sequences, over a ring R with n < m and the F;, G, finitely generated free mod-

ules. Then there exists an exact sequence over R:

Om Bn— n o, 4
Fn 2 Frooy =5 I8 F9g—SF — G = . G1 — Go--+M -+ 0

which is chain homotopy equivalent to [1] with SF finitely generated, stably free.
Proof: By Schanuel’s Lemma, there exist finitely generated free modules K, L,

such that

On—
FooLl2®p,_ 22 A2 R 2]

is chain homotopy equivalent to

o 8:1- o
GroK 22 Gy 220 L G, 2L Gy 3]

Let f denote a chain homotopy equivalence from [2] to (3] and let g denote a chain
homotopy inverse to f, from (3] to [2]. Let I denote a chain homotopy from 1) to g f
and let J denote a chain homotopy from 13 to fg. So I, .10, + Or411r = gr fr — 19
and J, 10, + 0, Jr = frgr — 13-

[1] is chain homotopy equivalent to
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om Om_1  Oni2 Bn+1®1 B @O 8 8
Fp = Fpy =5 . 2B Bl "S5 Fy,oL &5 n® e B Ry F1 F,

[4]

Proposition 1.5.2 The following sequence is exact:

1 Ony2

m f"o(a @lL a b0 9,
Frn—.—)Fnl_)..._) n+1®L n_H') ) n—1

Gook 22 G 22 6y 2 G,
(5]
Proof of Proposition: The image of 0,41 ® 1 is the kernel of 9, ®0 and f, restricts
to an isomorphism from the kernel of 9, @ 0 to the kernel of d;, ® 0, because it is the
last term in a chain homotopy. Hence the image of fx o (0,41 ® 1.) is the kernel of

9, © 0 and the kernel of fx o (Op+1 ® 1) is the kernel of Op41 @ 1. a

Let f, = f.forr < nand f, = 1forr > n. Let §, = g, forr < nand §, = 1 for

T >n.

Proposition 1.5.3 f is a chain map [4] to [5] and § is a chain map [5] to [4].

Proof of Proposition: For commutativity, it is sufficient to check that g, f,0, = On:

gnfnan =8n+ln—lan—lan =an a

Proposition 1.5.4 f and g are homotopy inverse to each other.
Proof of Proposition: Let I, =1I.forr <n-1and I.=0forr >n—1.LetJ, = J,
forr<n-1landJ, =0forr >n—1. Thenfisahomotopyfromgftoland Jis

a homotopy from fgtol. a

So [1] is chain homotopy equivalent to [4] which is chain homotopy equivalent to

[5].
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K is in the kernel of 9;, @ 0 so it is in the image of f, 0 (0,41 ® 1.). Therefore
composing f, o (On+1 @ 11) with projection onto K gives a surjection. Let SF de-
note the kernel of this surjection. As K is free, this surjection splits. Hence [5] can

be written as

m— n a' 6I
Fpn2mp, 22 "™ srek G,k G, 22 G 2L G

(6]
Note SF® K = F,41 © L, so SF is finitely generated, stably free. With respect to

the above decompositions, let D be represented by

d
D= ¢
0 1x
The image of 0,2 is contained in the kernel of D, hence in SF. We have a sequence

o o, a/ a/
F, o p O On2ep do g Tel G1 =5 Gy 7]

Proposition 1.5.5 [7] is exact.
Proof of Proposition: If an element of SF is in the kernel of d it is in the kernel of
D, hence the image of 9,42. If an element of G, is in the kernel of &/, then it is in

the image of D. However if Dxr € G, then x € SF and Dzx = dx. a

[7] is chain homotopy equivalent to

drn am - an D 4 a:l 8:,, - 6 Y
F, & Fpp 250 2R SFeK 5 GadK = Gy =5 G, =5 Gy

d 0
where D' is represented by D =
0 1k

So to prove the theorem, it is sufficient to show that [6] is chain isomorphic to [8].
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The image of ¢ is contained in the image of d and K is free, so there exists a map

¥ which makes the following diagram commute:

K
lvy N ¢
srFr 4 q,

Define a chain map h from [6] to [8] by & is the identity on all terms except SF ® K,

where it is represented by the matrix

Isp @
0 1k

Define a chain map k from [8] to [6] by & is the identity on all terms except SF @ K,

where it is represented by the matrix
lsp -9
0 1k
Then hk = 1jgy and kh = 1.

This completes the proof of Theorem 1.5.1. O
Let G be a finite group. We present two corollaries to theorem 1.5.1, lemma 1.4.18,

and lemma 1.4.19.
Corollary 1.5.6 Suppose we have an exact sequence
0— K —Z|G) -2 z[6]* —Z —0
Then we have a short exact sequence of the form
0—K—z[c 2zie) -2 —0

such that

zGt 2, z(G)°
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is chain homotopy equivalent to

zic) 2. zq)

Corollary 1.5.7 Suppose we have exact sequences
0— J—2Z[G] & z[6) 2L z[6) —Z — 0

and
I ¢
0— K —2Z[GY L Z[G] =Z—0
Then we have a short exact sequence of the form
y &

0—J—zaf 2z Lz -~z —0

such that
z|G)* 2 z[Gp 2 z[G)e

is chain homotopy equivalent to
2l 2 761 24 z/q)

In particular, one may fix an exact sequence

0— K —2[G) 2 z(6] 2 —0

with K a minimal element of its stable class, so that any algebraic 2-complex is

chain homotopy equivalent to one of the form

Z|G)F 2 z[a) 2L z(G)

So we may parametrize algebraic 2-complexes, by maps from finitely generated

free modules to K.



Chapter 2

The D2 problem for Dihedral

groups

This chapter will be concerned with the D(2)- problem for dihedral groups of
order 4n. In the first section we state and briefly discuss the general D(n)- problem,
before focusing on the D(2) problem.

In §2.2 we show that for dihedral groups whose order is a power of 2, the Swan
map (definition 1.2.7) is surjective. In §2.3 we use this result to show that Dy satis-
fies the D2 property.

In §2.4 we give an exhaustive list of candidates for minimal elements of 3(2),
over any dihedral group of order 4n. Finally, in §2.5 we note that whilst not periodic

over Z, the dihedral groups of order 8n + 4 are periodic over Z[3].

§2.1 The D(n) problem

In this section we introduce the D(n) problem by outlining some of the content of

[3].

We work in the category of CW- complexes and continuous maps. (See [15], chap-
ter II). In particular, geometric complex will refer to a connected finite dimensional,

finite, CW complex, and geometric n- complex will refer to an n dimensional ge-

46
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ometric complex. If geometric complexes X and Y are homotopy equivalent, we

write X ~ Y.

Following the standard convention, we regard elements of X as equivalence
classes of paths in X, based at b. Let p : X — X denote the covering map, which

sends a path to its endpoint. .

If X is a geometric complex, with base point b, then we may give X the structure
of a geometric complex in the following way. For each cell, D, of X, select a point

xrp € Int(D) and let ¢p : D — X denote the natural insertion.

Then for each y € X such that p(y) = ¢p(zp), we may define a cell of X which
we denote D,. As a closed ball we identify its points with those of D. We define a
map ¢, : D, — X which sends t € D, to the path y o ¢p(z), where z is a path in D,

connecting zp to t. We say D, lies above D.

To reconstruct X as a geometric complex, we need the cells D, together with
attaching maps. If the n — 1 skeleton has been constructed, then ¢,|, p, may be re-
garded as the attaching map for D, for each n- cell D, once we have shown ¢, (D)
is contained in the n — 1 skeleton of X. To see this, note that it is contained in
the universal cover of the n — 1 skeleton of X. Let ¢ be an element of this. Then
p(q) = ¢p(s) for some n — 1 cell, D. Let z be a path in D, from s to zp. Then let

y=qo¢p(z). Then gisinthen — 1 cell ljy.

We denote the corresponding complex of abelian groups C.(X). Let G = m(X).
Then G acts transitively on the cells which lie above D, for each cell D of X. Hence
the abelian groups in C.(X) have the structure of Z[G] modules. These modules
are free, as no non-trivial element of 7,(X) fixes any cell. The boundary maps are

linear with respect to Z[G]. Hence C.(X) is an algebraic complex over Z[G], which

we will refer to as the associated algebraic complex of X.
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If B™ denotes an n- dimensional ball, then C*(X/\/\E") is given by applying a
simple homotopy equivalence to C,(X), whereby a copy of Z|G] is added to C;,(X)
and Cp,_1(X).

From our definition, any geometric n- complex X is connected. Hence X is nec-
essarily connected and simply connected. As a result C,(X) is exact at C; and the

cokernel of the last boundary map 0, is Z. Hence C.(X) is an algebraic n- complex.

Given a geometric complex X and a module, 4, over 7 (X ), we define H*(X; A) =
H"((C.X,8,); A) and H,(X; A) = H,((C.X,d,); A). When a module is used in
this context, we refer to it as a coefficient bundle. Note that to avoid ambiguity, we
must specify whether A is an abelian group (in which case we are referring to the
(co)homology of C«(X)), or a module over the fundamental group. Unless other-
wise stated, in the context of coefficients for a (co)homology group,Z will denote

the abelian group, rather than the module with trivial group action.

The D(n) problem asks when a geometric n + 1- complex, X, is homotopy equiv-
alent to a geometric n complex. C.T.C.Wall has shown that for n > 3, a necessary
and sufficient condition is that H"*1(X; A) = 0 for all coefficient bundles (see [14]).
Note that this condition is equivalent to saying that (C, X, d,) is chain homotopy
equivalent to an algebraic n- complex, as if H"*!(X; Cr ) (X)) = 0 then the follow-

ing diagram commutes:

arH—l

Cn+1()—() - Cn().()

P

Cn+1()-()

for some map f. Hence 9,4 splits and C,,,1(X) has some stably free complement

S in C,,(X). Finally note a simple homotopy equivalence connects the complexes

071+l

- - On ) -
Crs1(X) —> Cos1 (X) ® S =— - — Co(X)



CHAPTER 2. THE D2 PROBLEM FOR DIHEDRAL GROUPS 49

and

If n > 0, then in fact this complex will be chain homotopy equivalent to

S On® - . N .
S® Cr1(X) —> Cp—1(X) ® Cpy1 (X) — - —> Co(X)

This is a complex containing only free modules.

An example of why the weaker condition, H2(X;Z) = 0 is not sufficient is the
Klein bottle, K. It is constructed by identifying the ends of an oriented cylinder,
so that the induced orientations on the ends agree. Whilst Hy(K;Z) = 0, it is not

homotopy equivalent to a geometric 1- complex, because H%(K; Z) = Z,.

Lemma 2.1.1 Let X be a geometric 1- complex and suppose H'(X; A) = 0 for all coeffi-

cient bundles A. Then X is homotopy equivalent to a set of points.

Proof: We know that the associated algebraic complex of X is chain homotopy

equivalent to a 0- algebraic complex. Hence we have a short exact sequence:

0-F—-Z

where F is free over 71 (X). Hence the augmentation ideal of 7;(X) must be 0. We
may conclude that 7, (X) is trivial. Hence X must be a geometric 1- complex with

no cycles. It is therefore a set of trees, each of which is contractible to a point.

Now suppose that X is a geometric 2- complex and suppose H2(X; A) = 0 for all
coefficient bundles A. Then the associated algebraic complex of X is an algebraic

2- complex. In particular H>(X;Z) = 0, so the associated algebraic complex of X is
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exact. Consequently X is homotopy equivalent to k(71 (X), 1). If 71 (X)) is free, then
k(m1(X), 1) must be homotopy equivalent to a wedge of circles which is a geometric

1- complex.
In fact 71 (X)) must be free as the following theorem implies:

Theorem 2.1.2 (Stallings-Swan) Suppose that we have an exact sequence over Z|G), for

some group G, of the form:

0—-P>PFP—-7Z—0

where Py and Py are projective. Then G is free

We know that 7;(X) satisfies the hypothesis of this theorem, as the associated

algebraic complex of X is chain homotopy equivalent to an algebraic 1- complex.

Note also, that the theorem may be stated group theoretically. The existence of

the exact sequence

0—-P->FP—-2Z-0

is equivalent to H?(G; A) vanishing for all coefficient bundles A. By proposition
1.3.3, this in turn is equivalent to saying that every group surjection, j : £ — G,

with ker(j) abelian, will split. So the theorem could be stated

Theorem 2.1.3 If every group surjection, with abelian kernel, to a group G, splits, then G
is free.

We may conclude that the D(0), D(1), and D(n), n > 3 problems all have the
same solution. In each case, a geometric complex is homotopy equivalent to one

of dimension 1 less than it, precisely if its top cohomology group vanishes with
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respect to all coefficient bundles. We now discuss the extent to which this is known
to hold for D(2).

Due to the relationship between 2- complexes and presentations of fundamental
groups, it is natural to parametrize the D(2) problem over the fundamental group.

So for a finite group G, the D(2) problem is:

Let X be a finite geometric 3- complex, with fundamental group G, and with
vanishing third cohomology group for every coefficient bundle. Must X be ho-

motopy equivalent to a finite geometric 2- complex?
If the answer is yes, then we say G satisfies the D(2) property.

We now outline some of the arguments in [3] which show that for each finite group
G, the D(2) property for G is equivalent to every algebraic 2- complex over Z[G]

being realized by a geometric 2- complex.

If X satisfies the hypothesis of the D(2) problem, then Cy(X) ~ Y for some al-
gebraic 2- complex, Y. Suppose every such algebraic 2- complex, was chain homo-
topy equivalent to C.(Z), for some geometric 2- complex, Z. Then we would have
Cv(X) ~ C.(Z). From [3], theorem 59.4, we would then have X ~ Y would then

have.

Conversely, let (F.,d.) be an algebraic 2- complex of free modules, over Z[G],
which is not realizable up to homotopy as a geometric 2- complex. Take any finite
presentation of G and let Y denote its Cayley complex. By theorem 1.1.1 there exists
a free finitely generated module F and a number n, such that Y v \/T_, S?, is chain
homotopy equivalent to

ReFER R4 F

Let f denote the homotopy equivalence between this complex and C. (Y'). Let the

e; be a basis for F. As F lies in the kernel of d; 0 and f; restricts to a map between
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second homology groups, for each i, fa(e;) is an element of 75(Y”). Starting with
Y’, attach one 3- cell, B; for each i, where the attaching map from 0B;, is given
by f2(e;), the element of 7o(Y’). Let Z denote the resulting geometric 3- complex.
Note that C3(Z) = F and C;(Z) = C;(Y') fori = 0,1, 2.

The algebraic complex (Fy, d,) is related, via a simple homotopy equivalence to

FO R aFre®p 4 g

This is in turn chain homotopy equivalent to C,(Z) via the following homotopy

equivalence:

0,1
F (0,1) FQ@F d290 Fy dy FO

|

Cs(2) 2 Cy(2) 2> 1 (2) 2> 0y(2)

where the 0; are the boundary maps for Y.

Z cannot be homotopy equivalent to a geometric 2- complex, as the associated al-
gebraic complex of such a complex would be chain homotopy equivalent to (F,, d.),
contradicting the hypotheses that (F, d.) is not realizable up to homotopy as a ge-
ometric 2- complex. However, Z clearly satisfies the hypotheses of the general
D(2) problem as its associated algebraic complex is chain homotopy equivalent to

(Fi,d,).

Hence a finite group G satisfies the D(2) property if and only if every algebraic 2-

complex is realizable up to homotopy, as a geometric 2- complex.

If G is a finite group then we also have the following characterization of homo-

logically 2 dimensional complexes.

Lemma 2.1.4 Over Z[G] an algebraic 3- complex, (F;, d;) is chain homotopy equivalent to
an algebraic 2- complex if and only if Ho((F;, d;), Z) is torsion free and Hs((Fi, di), Z) =
0.
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Proof: As F3 is projective, dj has a right inverse. d3 = d3* because the cokernel

of dj is torsion free. Hence dj is the inclusion of a free summand into F5.

A finite geometric 2- complex will always be homotopy equivalent to the Cayley
complex of a finite presentation. Hence our problem reduces to a purely algebraic
one. Following Fox, we may define an algorithm for constructing the associated
algebraic complex of a finite Cayley complex directly from the finite presentation,

and our question becomes:

Is every algebraic 2- complex chain homotopy equivalent to one constructed from

a finite presentation?

Let F5 % I3 2\ Fy be an algebraic 2- complex. The kernel of 9, will be referred
to as mp of the algebraic 2- complex. As the kernel of 9, is equal to the image
of 8, and the cokernel of 9; is isomorphic to the Z[G]- module Z, we have that
mo(Fy, 0x) € Q3(Z).

Proposition 2.1.5 Let X be a geometric 2- complex, with 71(X) = G, for some finite
group G. Then mo(C, (X)) = mo(X ) as modules over Z[G).

Proof: We first define an isomorphism of abelian groups, and then show that it is
Z|G)- linear. From the definition, we have a natural identification of Hz(X;Z) with
m(Cu(X)). As X is simply connected, the Hurewicz isomorphism theorem tells us
that the Hurewicz homomorphism induces an isomorphism h : w3 (X) — Hao(X;Z).
The covering map p : X — X induces an isomorphism p, : mo(X) — ma(X).

Hence we have an isomorphism of Abelian groups hp;! : m2(X) — T (Cu(X)),
which lifts any element of 72 (X ) to X and then applies the resulting map H(S?; Z) —
Hy(X;Z) to the positive generator of H2(S?%;Z). We must check that this isomor-

phism respects the action of G.
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Given g € G, and a € m(X), by construction, we have that ag lifts to (p; la)g, at-
tached to the base point of X via a lift of g. Hence the element of Hy(X;Z) which it
sends the positive generator of H2(S5?; Z) to, is (hp; 1a)g. So hp; ! (ag) = (hp; la)g.

O

Definition 2.1.6 The Euler characteristic of an algebraic complex of free modules is the

alternating sum of the dimensions of its modules.

Our principal method of showing that a finite group, G, satisfies the D(2) prop-
erty will be to show that any algebraic 2- complex over G, is determined up to
chain homotopy equivalence by its Euler characteristic. Once that is done, it is only
necessary to show that the algebraic complex with minimal Euler characteristic is
chain homotopy equivalent to one arising from a presentation. Then all the oth-
ers will necessarily be chain homotopy equivalent to the algebraic complex arising
from the presentation, together with the appropriate number of trivial relations,

"e = e” added.

A necessary precursor to implementing this method is to show that (X)) for
any algebraic two-complex, X, over a finite group G, is determined by its Z- rank.

Clearly, the Swan - Jacobinski theorem is a useful tool in this endeavor.

Given an algebraic 2- complex X, we may tensor it with R. Then the “Whitehead
trick” together with semi-simplicity of R[G] tell us that R ®z m2(X) = R®z IG &
R[G]k for some integer k. Hence given a minimal element, J € Q3(Z), we know
that J @ Z|[G] satisfies the Eichler condition. Any non-minimal element of Q3(Z) is
therefore equal to J & Z[G]" for some integer r. The remaining problem is to prove

that J is the unique minimal element of 23(Z).

If for some group it is shown that there is a unique potential 7, for each Euler

characteristic, it remains to show that the 7, determines the algebraic 2- complex.
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From theorem 1.2.8, we know that the surjectivity of the Swan map is sufficient to

show this.
We end this section with an example of a group satisfying the D(2) property.

Lemma 2.1.7 The group {e} satisfies the D(2) property.

Proof: Over Z, any finitely generated torsion free module is isomorphic to Z* for
some k. Also Z is a Noetherian ring. Consequently, any torsion free map Z* — Z°,
is the composition of projection onto a free summand of Z?, with inclusion into a
free summand of Z°.

Hence any algebraic 2- complex over Z, is related through simple homotopy
equivalences to
ZF—-0-12

for some k. This is realized geometrically as the wedge of k copies of S2.

§2.2 Surjectivity of the Swan map.

The D(2) property has been verified for dihedral groups of order 4n + 2 in [3]. The
remainder of this chapter is concerned with the D(2) property for dihedral groups
of order 4n. In the next section we prove that Dy satisfies the D(2) property. We

begin with more general considerations.

Let Dy, be the group given by the presentation, < a,b |a*" = b? = e, aba = b >.
¥ will denote 5", ! a'. This presentation has a Cayley complex, which in turn has

an associated algebraic complex. This is an exact sequence over Z[Dy]:

J o ZDsn]® 2 Z[Dyn]? 25 ZDan) - Z (1)

¢ is determined by mapping 1 € Z[D4,| to 1 € Z. J is the kernel of J;. Let e, €3

denote basis elements of Z[D4,]?>. Then d1e; =a — 1, d1ey = b — 1.
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Let Ey, E,, Ej be basis elements of Z[Dj,]3, which correspond to the relations in

the presentation so that:

BQEI = 612
02Ey = e3(1 + b)
hE) =e +ea+eba—er =e(l+ba)+e(a—1)

With respect to the basis {1, E2, E3} and the basis {el, €2}, d; is given by ;

b)) 0 1+ ba
0 1+b a-1

Let
a0=1+a+b
l+a—ba b-1
a; =
i 0 1
l4a—-ba 0 O
Qo = 0 1 0
0 01

It is easily verified that:
Proposition 2.2.1 The following diagram commutes:
o
J = 2Dy ]* 25 ZDy 2 Z[Din) > 7
16 Lo lag | ag 13

J = Z[Din]® 25 Z[Dn)? 2 Z[Dyn] > Z

where § is the restriction of a.
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For the remainder we will assume 3 coprime to n. Note that if we regard the
above diagram as a diagram of commutative Z- modules and Z- linear maps, there
are well defined integer determinants for all the maps in the chain map. A map is
an isomorphism if and only if it has determinant +1. (As the property of being an
isomorphism is dependent only on surjectivity and injectivity, it does not depend
on whether we are regarding modules as being over Z[D4,], or Z).

Note also that over Z, all the maps in the exact sequences above are quotienting
of a summand, followed by inclusion of a summand. Consequently, the following

proposition holds;

Proposition 2.2.2 3Det(#)Det(a;) = Det(az)Det(ap)
Proof: Let u be the restriction of a; to the kernel of 9; and let v be the restriction

of ag to the kernel of €. Then by the previous discussion, we have

3Det(0)Det(a;) = Det(6)Det(u)Det(v)3 = Det(asz)Det(ay)

Proposition 2.2.3 Det(1+a+b) = -3

Proof: Let A be the matrix for left multiplication by 1 + a + b in the regular rep-
resentation, with basis {a**~!,a?""2 ... a,1,ba*""!,ba®""2%,.-.  ab,b}. Then the
upper right quadrant of A and the lower left quadrant of A are copies of the iden-
tity matrix. The upper left quadrant has 1’s along the diagonal and immediately
above as well as a 1 in the bottom left corner. The lower right quadrant has 1’s
along the diagonal and immediately below, as well as a 1 in the top right corner.

All the other entries in A are 0.
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For example, if n were equal to 4, the matrix A would be

V4n. We will perform row operations.

Label the rows of A, v, vs....

— von—1. Now let v}, = vy4y, and v}, = v5,,. Let

First let v5,, = von, — v1 + v — v3....

v;. This swap causes a change of sign in the determinant, so the

/"
t

the remaining v;

matrix with rows v/’ has determinant -DetA. In the case n = 4, this matrix is

" 1
i+1 — Yi—2n-

=v'+v

"

, let v/

1

Foreach2n+1<i<4n-2

V2n—-1

'z
dn—1 1T Vop —

"

=

-1 —

./
Let vy},

o
—v,"‘

"

Fori < 2n let v/

1
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When n = 4, the matrix with rows v/” is

[ 1 1 0 0 0 4] 0 o 1 0 0 0] 0 b} 0 0 b
0 1 1 0 0 [¢] 0 0 0 1 (1] [1] 0 (1] 0 0
0 0 1 1 0 0 V] 0 0 0 1 [1] 0] [} (0] 0
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1] 1 1 0 0 4] 0 0 0 1 0 o] 0
0 0 1] 0 0] 1 1 0 () 0 o (1) 0 1 0 0
o] 0 0 0 0 [¢] 1 1 0 0 0 0 0 4] 1 [1]
o] 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1
0 4] 0 0 1] 0 0 ] 1 1 0 0 0 0] 4] 1
0 0 1] 0 (1] (1] 3] 0 1 1 1 0 0 (4] 0 o]
0 0 (1] 0 0 [ 0 o 0 1 1 1 0 0 0 0
o (0] 0 0 (1] 0 0 0 0 0 1 1 1 0 1] 1]
o 1] 1] 0 0 4] 0 0 4] 0 0 1 1 1 0 0
0 0 0 0 o 0 0 0 (4] 0 [¢] 0 1 1 1 0
[h] 4] (4] 0 0 4] 0 0 4] 0 0] 0 Q 1 1 1

L 0 0 0 0 0 4] 0 0 —1 1 -1 1 -1 1 -1 1 |

In general, the matrix with rows v” has an upper triangular top left quadrant,
with 1’s along the diagonal and a lower left quadrant with no non-zero entries. Let
B denote the lower right quadrant. Then Det(1 + a + b) = —Det(B).

Cycle the top 2n — 1 rows of B upwards to get the matrix B’. As this is a cycle of

odd length, Det(B’) = Det(B). Whenn = 4, B’ is

- O O © O © =
(== = -
O O = = = O ©
C = = O © © ©

=T R = T = Y ]
- = - O 0 © O ©

[ - - -
- O © O = = = O

Label the rows of B’ as wy, ..., way. Set u; = w;—w;4, fori =1,2,--- ,2n—3. Let B”
denote the matrix with rows u;. After these row operations, we have Det(1+a+b) =

—Det(B")
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Whenn =4, B" is

1 0 0 -1 0 0 0 0
0 1 0 0 -1 0 0 0
0 0 1 0 0 -1 (] 0
0 0 0 1 0 0 -1 0
0 0 0 0 1 0 0 -1
0 0 0 0 [ 1 1 1
1 1 ] 0 0 0 0 1
L —1 1 -1 1 -1 1 -1 1

We must consider two cases: n congruent to 1 modulo 3 and n congruent to 2
modulo 3.
If n = 1 modulo 3 then replace uj,_; with
U2p—] — U] — U2 — UG — U5 — U7 — Ug "+ — U2p-3-
Also, replace uz, with
ugn + (w1 — u2 +uz) + (u7 — ug +ug) + (w13 — U4 + w15)... + (Uzn—7 = U2n—6 + U2n—5)-
We are left with a matrix with 1’s along the diagonal and 0’s below, except in the

last four columns. The 4 by 4 matrix in the bottom right corner is

—l 0 O —1-

01 1 1

0 0 1 2

hO 0 -1 1_
—10 0 ——l- PlOO—l—

Det(1+ a+b) = —Det ot = —Det ot = -3

00 1 2 0 01 2
_00—1 l_ _000 3_

If n = 2 modulo 3 then replace uy,_; with
Uop—1 — U] —UQ2 — U4 — U5 — U7 — UR.... =~ UQn—5.
Also, replace us, with

Uon + (uy — ug +uz) + (u7 — ug + ug) + (u1z — 14 + U1s)... + (U2n—9 — U2n—g + U2n_7).
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We are left with a matrix with 1’s along the diagonal and 0’s below, except in the

last four columns. The 4 by 4 matrix in the bottom right corner is

1 0 0 -1
0 1 1 1
1 1 0 1
-1 1 -1 1
1 0 0 -1 1 0 0 -1
0 1 1 1 01 1 1
Det(1 +a+ b) = —Det = —Det
1 0 1 0 o 2
-1 -1 1 0 -1 0
1 0 -1 10 0 -1
0 1 1 01 1 1
= —Det = —Det =-3
0 -1 1 00 -1 1
0 -2 -1 0 0 0 -3

Proposition 2.2.4 Det(2 — b) = 3%®

Proof: Let A be the matrix for 2 — b in the regular representation, with basis

{1,b,a.ba, a®, ba?

the form

along the diagonal. Hence Det(A) = 3%®

a?™~1 ba?""1} . Then A consists of 2n two by two blocks of
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Proposition 2.2.5 Det(1 +a — ba) # 0

2-6 0 0
Proof: Let ofy, = 0 10
0 01

The following diagram commutes:

J = Z[Dgn]® 2 Z[D4)? 25 Z[Dyn) > Z
ln  1ad lag lag 13

J = Z[Dsn]* 2 2Dy )? 25 2[Dyy]) S Z
where 7 is the restriction of o,
Therefore 3Det(n)Det(a;) = Det(aj)Det(ag)
So 3 * Det(n)Det(1 + a — ba) = —3 * 32™. Hence Det(1 + a — ba) cannot be 0. O
Proposition 2.2.6 6 is an isomorphism
Proof: 3Det(0)Det(a;) = Det(az)Det(ag)

Therefore 3Det(6)Det(1 + a — ba) = —3Det(1 + a — ba). As Det(1 + a — ba) is

non-zero, we can conclude that
Det(0) = —-1.

Hence § is an isomorphism.

Recall the definition of the Swan map (Definition 1.2.7).

Corollary 2.2.7 If 3 € (Z4,,)* then 3 is in the image of the Swan Map Aut(J) — (Z,)*
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Let us now consider dihedral groups of order 2™ for m > 2. Clearly 2™ is divisible

by 4 and coprime to 3. Hence we know that 3 is in the image of the Swan Map.

Lemma 2.2.8 2™ divides 32" ° — 1 + 2m1 form > 4.
Proof: We proceed by induction. 32'™° — 1 4 24=1 = 16. So the proposition holds
for m = 4. Now suppose it holds for some m. Then 2™z = 32"7° — 1 4 2™~! for

some 2. Rearranging gives

32m+1—3 — (32'"_3)2 — (2m2 +1- 2771—1)2

So
32m+1—3 1+ 21n+l—l — (27712 +1- 2m—l)2 —1+ om
— 22mz2 + 22771—2 + 2m+12 _ 22mz — 2m+1(2m—1(22 _ Z) + 2711—3 + Z)
So the proposition holds for m + 1. Hence by induction it holds for all m. d

Proposition 2.2.9 The elements 3, —3 generate (Z/2™)* for m > 2.
Proof: The order of (Z/2™)* is 2™~ . (Z/4)* = {1,3} and (Z/8)* = {1,-1,3, -3},
so only the case m > 4 remains. We know that the order of 3 in (Z/2™)" is a power

of 2. The previous lemma shows us that for m > 4 it is at least 2m=2 as
32"7% =1+ 2m~! Mod 2™.

It remains to show that —1 is not a power of 3, as then the +3* give us all 2™~}
elements of (Z/2™)*.

Suppose 3 = —1 Mod 2™ for some m > 4. Then 3* = —1 Mod 8 which is
impossible as 3* only takes the values 1 and 3 modulo 8.

O
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Combining this result with corollary 2.2.7 we obtain

Corollary 2.2.10 The Swan Map Aut(J) — (Zym)* is surjective for all m > 2.

From theorem 1.2.8 we may conclude

Theorem 2.2.11 An algebraic 2- complex, X, over Z[Dam), with mo(X) = J @ Z[G)*, is

uniquely determined up to chain homotopy equivalence.

§2.3 The D(2) property for Z[Dy]

Let F; denote the two element module over Z[Dy,], on which the action of Z[D,;,]

is trivial.

Proposition 2.3.1 (i))H%(Dy,, F3) = F;
(i) H' (Dap, Fo) = F3
(iii)H?(Dan, Fy) = F3

Proof: We have the following resolution for Z over Z[D,]:

93 02 0

C

C, Co Z 0

Cs

where () is the free module generated by ; C; is the free module generated by
e1.ez; Cy is the free module generated by Ei, E», E3, and Cj3 is the free module
generated by Dy, Da, D3, Dy.

The maps 01, 01, 03 are given by

8161 = *(a - 1)
Orea = x(b—1)
(9‘_)E1 = 612

MEy =e3(b+1)

hE; = (31(1 + b(l) + 6’2((1 - 1)
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8Dy = Ey(a — 1)
83D2 = Ea(b—1)

83D3 = Ey(b+ 1) — E3%

83Dy = Ea(a — 1) — E3(1 — ba)

As all the coefficients above have even augmentation, applying Homy(p, (e, F2)

to this resolution gives:

0 0

F} B 5

from which we deduce (i), (ii) and (iii) immediately.

Recall the sequence(1), from §2.2.

Proposition 2.3.2 J has minimal Z- rank in its stable class.

Proof: Given any finite algebraic 2-complex, consider the cochain obtained by

applying Homyp, (e, F2):

dy V2 d; V1 do
Fy,? & F,' «— F)

where dy, d), da, are the Z[Dy,] ranks of the zeroth, first and second modules in
the complex. As H%(Dyn, F2) = F», the kernel of v; has F>- rank 1. Consequently,
the image of v; has F-rank do — 1. H!(Dy,, F2) = F} so vs has kernel of F- rank
2+dg—1 = do+1. The image of v, is then seen to have rank di —dg—1. H*(Dyn, F>) =
F23 so we know that d; > 3+ d, — dp — 1. Rearranging gives d; — d; + do > 2.
Exactness implies that the Z- rank of the algebraic 7 of the algebraic complex
must be 4n(ds — d; + do) — 1. Hence our inequality implies that this is at least 8n — 1,

which is the Z- rank of J.
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We now restrict to the case n = 2.

Proposition 2.3.3 The only elements in the stable class of J are modules of the form
J ® Z|Ds)*.

Proof: We refer to [11], Theorem 6.1. This states that over Z[Ds], A C = B& C
implies A = B for torsion free, finitely generated modules A, B, C.

If a module M is in the stable class of J then M @ Z[Dg|" = J @ Z[D3)*. From
proposition 2.3.2 we have s > r. From the theorem, we deduce that M = J @
Z[Dg)* .

a

The only modules that can turn up as the second homology group of an algebraic
2-complex over Z[Ds] are ones of the form J&Z[Ds]* for some k > 0. From corollary
2.2.10 we know that for these modules, the Swan map is surjective. Hence theorem
1.2.8 implies that for each k, up to chain homotopy, there is a unique algebraic 2-
complex with second homology group J&Z[Ds]*. Given any k, the homotopy class

of this algebraic 2-complex is realized by the Cayley complex of the presentation

<a.b|a2"=b2=e, aba=b, ri=e,ro=¢€,...Tp, =€ >

wherer; = efori =1,...,k. We conclude

Theorem 2.3.4 The group Dy satisfies the D(2) property.

In the next section we examine minimal elements of the stable class 23(Z) for gen-
eral groups D, where we cannot immediately apply the torsion free cancellation

which we used to prove proposition 2.3.3.

§2.4 Minimal elements of Q3(Z)
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As before, we work over the group ring Z[D4,]. Consider the resolution (1), in

§2.2:

J = ZDgnl* 2 Z[Dan]? 25 Z{D4n) > Z 1)
From the proposition 3.3.2 we know that J has minimal Z- rank in its stable class.
From the Swan - Jacobinski Theorem, we know that the only non-minimal modules
in the stable class of J are ones of the form J & Z[D4n]k . It remains to investigate
those modules, stably equivalent to J and of the same Z- rank.
In this section, we take an arbitrary minimal element of Q3(Z) and show that it
must be isomorphic to one of a finite set of modules, which we parametrize by the
group Zo," & Zy*.

Let W, denote the image of d,. We have a short exact sequence:
J — Z[Dgp)? - Ws

Suppose K is stably equivalent to J and of the same Z- rank. Then we have a

short exact sequence:
K& F - Z D)o F - W,

where F and F” are free module of the same rank. (Z[Dy,]* ® F')/F is stably free
and of the same Z- rank as Z[Dy,]3. In fact it is Z[D4n)?, as dihedral groups satisfy

the Eichler condition, hence stably free modules over them are free.
Hence we have the following short exact sequence:
K -5 Z[DyP L W,

As W, is the image of dy, it is the submodule of Z[D4n)?, generated by
€} b))
(’2(1 +b)

e1(l1+ba)+ex(a—1)
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where, as before, e}, e, are a basis of Z[Dy,]?.

Define p : Wo — Z[D4y| by projection onto the factor generated by e,. Let W

denote the image of the map. Clearly, W is generated by ez(1 + b) and ez(a — 1).
Lemma 2.4.1 The kernel of p is generated by e, Z.

Proof: Clearly e, X is in the kernel of p. Its span has Z- rank 2. W; has Z- rank
4n +1 by exactness of (1). Also W has Z- rank 4n — 1, as it is generated by e2(1+b)
and e;(a — 1). Hence the Z- rank of the kernel of p is 2.

Therefore, given any element, « in the kernel of p, there exists some integer, r,

such that ar is in the span of e, X. Hence « itself must be in the span of e; X.

The kernel of p will be denoted by by ZC>.

Let f1. f2 be a basis for a module isomorphic to Z[D4,)?. Let W be the submod-

ule generated by
HE
f(1-0)

fi(1 = ba) = f2(a—1)

Let s denote the natural inclusion of W in Z[Dy,)?, and let t : Z[Dy,)? — W{ be

the map which sends f to e2(a — 1) and fa to ea(1 + b).

Lemma 2.4.2 We have a short exact sequence:

Wl -5 Z[Dan)? -5 WT

Let Al denote the kernel of p o j.
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Lemma 2.4.3 M is isomorphic to W] & Z[Day).

Proof: We have short exact sequences:
M — Z|Dg? 22 w7
and
W © Z[Dan) 25 Z[Dyy]® 25 W

Hence M is stably equivalent to W] @ Z[Dy,], by Schanuel’s Lemma. Dihedral
groups satisfy the Eichler condition and clearly W @& Z[Ds,] contains a free copy
of the group ring as a summand, so by the Swan-Jacobinski theorem, M must be

isomorphic to W @ Z[D4p).

K includes in M and the cokernel of this inclusion is the kernel of p, ZC,. As K
was chosen arbitrarily, we may conclude that any module, stably equivalent to J

and of the same Z- rank, occurs as the kernel of some surjection M — ZC5.

As the action of a on Z(3 is trivial, the kernel of any map A — Z(C, must contain

A[((l — 1)

Let ZT denote the Z[D,,) module whose underlying Abelian group is isomorphic

to the integers, and on which a acts trivially and b acts as multiplication by —1.
Lemma 2.4.4 WT /W] (a - 1) has Z- rank 3.

Proof: (Wl /Wf(a-1))®Q = (W] @ Q)/(W{ ® Q)(a — 1). It is sufficient to

show that this has dimension 3 over Q.
We have an exact sequence:
0 — W{ =5 Z[Dyn)* -5 Z[Dyy) - 27 — 0

Tensoring this sequence with Q and applying “Whitehead’s trick”, yields W] @
Q ® Q[D4n) = Q[D4,)? ® QT, where QT is the Q- rank - 1 module on which a acts
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trivially and b acts as multiplication by -1. Hence WY ® Q = Q[Dy,] ® Q7.

So (W' ®Q)/(W] ®Q) = Q[Din]/Q[Din)(a—1)®Q7T/QT (a~1) = ZC,0Qa QT
which has Q rank 3.

Lemma 2.4.5 The cokernel of the natural inclusion
M(a—1)— M
sZaZT 2T @ ZC,

Proof: M is isomorphic to W] & Z[Dy,). We first observe that
Z[D4s)/Z[D4n)(a — 1) = ZCs.
W is generated by
HE
f2(1-b)
Hi(1 = ba) = fala—1)
Let wy, we, w3 denote the images of /1 X, fo(1-b), f1(1—ba)— f2(a—1) respectively,
under quotienting by W (a — 1). w, generates a copy of ZC> and w, generates a

copy of ZT.

Note that w32n = w3¥ = w;(1 — b). Hence w1b = (w; — wzn) — wzn. Also
wy = (w) — wsn) + wzn. So WQT/WQT(a — 1) is generated over Z by w., w3, w3b and
wp — wan.

We will show that wsb=—w3 and hence that W] /W] (a — 1) is generated over Z
by w, w3, and w; — wan:
w3(1+4b) is equal to the image of fi(1—-ba)(1+b)— fa(a—1)(1+b) under quotienting
by W]l (a - 1). But
N1 =ba)(1+b) — fala = 1)(1+b) = (f2(b — 1) = (fi(1 = ba) — fa(a — 1))b)(a — 1)
which is in W] (a — 1). Hence w3(1 + b) = 0.
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The elements w,, w3, and w) — w3n must be Z- linearly independent, in order for

their span to have Z- rank 3.

Hence we know that WJ /W (a — 1) is torsion free. We know that (w3)(1 +
b)2n = 0 and (w; — w3n)(1 — b)2 = 0, and are able to conclude that w3b = —w3 and

(wl - ‘lUgn)b = (wl - w3n).

Hence w — w3n, wy and w; generate Z & ZT ® ZT and M/M(a - 1) = Z 0 2T ©
T © ZC,.

Any surjection M — ZC, must therefore factor through Z @ Z7 @ Z7 & ZC».
Hence we have a surjection
0:ZSLTOLT & ZCy — ZCy
and the cokernel of the natural inclusion of M (a — 1) in K, is naturally identified

with the kernel of ¢.
Lemma 2.4.6 The kernel of ¢ is isomorphic to Z & ZT & ZT.

Proof: Let uy, ua, u3, uy generate copies of Z, ZT, ZT and ZC,, respectively in the

direct sum Z ® ZT @ ZT @ ZC». v will generate the image of ¢.

o(uy) is an integer multiple of v(1 + b) and ¢(u2), ¢(u3) are integer multiples of
v(1—b). Consequently ¢(uy) = v(x +yb), where x and y are integers with odd sum,

as otherwise ¢ would not be surjective.

If some linear combination of the u; is in the kernel of ¢, the coefficient on u4
must have even augmentation, as the augmentation multiplied by z 4+ y must be
even. Hence the kernel of ¢ is contained in the Z- linear span of u;, ug, u3, us(1+0),
us(1 — b. Also the image of this span under ¢ must be the whole of the span of

v(1+0b), v(1 —-b),asx+ yisodd.
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¢ restricts to a surjection from the span of u;, us(1 + b) to the span of v(1+b). The

kernel of a surjection Z? — Z must be isomorphic to Z.

¢ restricts to a surjection from the span of uy, uz, u4(1 — b) to the span of v(1 — b).

The kernel of a surjection (Z7)* — ZT must be isomorphic to ZT @ ZT.

Hence the kernel of ¢ is Z ® ZT & ZT

Hence we know that K occurs in a short exact sequence of the form:

M@a@-1)—-K-Zaz  az"

Hence all candidates for minimal elements of 23(Z), are parametrized by the

group

In order to calculate this extension group, we will require a better description of

WY (a — 1). We know that W{ is generated by

HE
f2(1=b)
fi(l = ba) — fa(a—1)

Lemma 2.4.7 If fix € W then T divides z.

Proof: Suppose fix = fiXu1 + fo(1 — b)puo + (f1(1 — ba) — fa(a — 1)) 3. We could
replaceuz with a polynomial in @, which must be divisible by (a-1). We will denote
the polynomial (a — 1)p where p is a polynomial in a. So
fre = fiXp + f2(1 = b)(a — Dp+ (fi(1 = ba) — fala — 1))uz =
= fiXur + fala = 1)(1 4+ ba)p + (f1(1 — ba) — fa(a — 1)) ps
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= fiZp1 + (f1(1 = ba) — fa(a — 1))(u3 — (1 + ba)p)
As (a — 1))(u3 — (1 + ba)p) = 0, we know that (u3 — (1 + ba)p) = Zy, for some
element y of Z[Dy4y,). So z = Ty + (1 — b)y.

Let W) denote the augmentation ideal of Z[Dy,).
Lemma2.4.8 W] (a—1) = Wi(a-1)

Proof: We have a surjective homomorphism W) (a — 1) - W)(a — 1) given by
projection onto the f> component. It is sufficient to show that it has 0 kernel.
Suppose fiz is in WY (a — 1), for some z € Z[Dyy). Clearly (a — 1) divides z. By

the previous lemma, ¥ also divides z. Hence z = 0.

Recall we defined ZC; to be the quotient Z{D4,,]/Z[D4y](a — 1). Let L denote the
quotient Z[Dyy,]/ID(a — 1).

Extyp, | (ZOZT @ Z7, M(a - 1))

=~ Hompe (W) ® WT @ WT, WT (a — 1) ® Z[Dan)(a — 1))

By dimension shifting, we have that this is equal to
Hompe (Z®ZT @ Z7, L & ZC»).
=~ Homper(Z, ZCy) ® Homper(ZT, ZC3)? ® Homper(Z, L) ® Hompe (ZT, L)?

The module ZC; is generated freely over Z by the images of 1 and b. 1b = b and
bb = 1. The action of a is trivial. A map from Z to ZC, is determined by where
1 € Zis sent to. It must go to an element which is fixed by the action of b. Hence it

must go to some multiple of the image of (1 + b).
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Any map from Z to ZC, which factors through a projective will send 1 € Z to
zX(1 + b) for some element + € ZC,. Thus 1 € Z will go to some multiple of
(1 + b)2n. So Homper(Z, ZC3) = Zap.

Similarly, a map from ZT to ZC, is determined by where 1 € ZT is sent to. It must
go to an element which is sent to its negative by the action of b. Hence it must go

to some multiple of the image of (1 — b).

Any map from Z7 to ZC, which factors through a projective will send 1 € Z7
to zX(1 — b) for some element z € ZC3. Thus 1 € ZT will go to some multiple of

(1 — b)2-n. So HomDer(ZT, ZCQ) =] Zgn.

Given any element of Z[Dy,], by subtracting an appropriate integral combination
of 1 and b we have a multiple of (a — 1). By further subtracting an appropriate
integral multiple of (a — 1), we have an element of W'(a —1). Hence L is generated
over Z by the images of 1, b, and (a — 1), denoted hereafter by u;, up and u3. Note
u32n is equal to the image of (a — 1) + (2n — X)(a — 1) which equals the image of
(2n — £)(a — 1) which is 0. So u32n = 0.

Now suppose ujr + ups + ust = 0 for integers r,s,t. Clearly r = 0 and s = 0.
Also (a — 1)t = z(a — 1) for some z € W!. Hence ¢ differs from something of
augmentation 0 by some multiple of ¥. Hence 2n divides t. So as Abelian group, L

is isomorphic to Z2 & Zap,.

Next we calculate the group action on L.
a=1+4(a-1)
ba=b+bla-1)=b+(a—-1)+(b-1)(a-1)
(a—la=(a=1)+(a—1)(a—-1)

So
(ujr + u2s + ust)a = wyr + uas + uz(r + s +t)

Also
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1b="b

bb =1
(a—1)b=-baYa-1)=(1-ba)(a-1)-(a—-1)
So

(u1r + ugs + uzt)b = uys + usr — ust

A map from Z to L is determined by where 1 € Z goes. It must go to an element
which is fixed by the action of b. Hence it goes to an element of the form (u;r +
uor + ugnt). This element must also be fixed by the action of a. Hence it has the

form (ujns + ugns + ugnt).

Any such map which factors through a projective must send 1 € Z to an element
of the form
(uir + ups + uzt)(1 + b)) = (w1 (r + s) + ua(r + 5))X =

ur(r + 8)2n + ug(r + $)2n + uz(2(r + s)(2n — 1)n = uy (r + s)2n + uz(r + s)2n

Hence Hompe(Z, L) = Z,2.

A map from ZT to L is determined by where 1 € ZT goes. It must go to an element
which is sent to its negative by fixed by the action of b. Hence it goes to an element
of the form (u;s — u2s + ust). This element will automatically be fixed by the action

of a.

Any such map which factors through a projective must send 1 € Z” to an element
of the form
(urr + ups + ugt)(1 —b)L = (ug(r — s) + ua(s —r) + uz2t)¥ =

up(r — 8)2n + ua(s — r)2n + uzdtn = u (r — s)2n + ua(s — 7)2n
Hence Hompe (ZT, L) = Z,,2.

Hence the extension group is

Homper(Z, ZCs) ® Homper (Z1', ZC2)? @ Homper(Z, L) ® Hompe (ZT, L)?
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S Zon ® Zon? @ Zo? @ Zopy* = 7" @ 752

In conclusion, we have found an exhaustive list of candidates for minimal mod-
ules in the stable class (23(Z). These candidates are parametrized by the elements of
the finite group, Zan” ® Zo2. This gives us an upper bound of 512n7 for the number

of minimal modules in Q3(Z).

Not all of the candidates will be in Q23(Z). If one could show that those which are
in Q3(Z), are all isomorphic, then one would have proved that cancellation of free

modules holds in 23(Z) for dihedral groups of order 4n.

§2.5 Dgny4

The dihedral groups Dy, 42 have balanced presentations and period 4 resolutions
over Z. This makes them easier to work with in certain respects than the dihedral
groups Dj,, which have neither. We show in this section that the groups Dg, 14
have period 4 resolutions if one works over the ground ring Z[z]/< 2z — 1>, which
we denote Z[3]. This raises the possibility that the methods used to prove the D(2)
property for the groups Dy, (see [2] and [3]) may be generalized to the groups

Dgpty.

Lemma 2.5.1 Dy, 4 = Dyyi0 X Co

Proof: Take Dg,4+4 =< a,blaba = a, b* = a*®*? = e >. Then a®"*! is central and
generates a copy of Cy. The elements a%, b generate a copy of Dypq2. As 2n + 1is
odd, any element can be uniquely written as a product of an element in the copy of

(> and an element in the copy of Dyn 2.

We work over the ring, Z(3][Dsn+4], which we will denote R. Let

Vi =(1+a*th/2, Vo = (1-a?"*1)/2
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Then V,, V; are central idempotents, which sum to 1. Consequently, we have
R= RV, x RV,
as rings. Let T denote the ring RV, and S denote the ring RV,.

Regarding a? and b as generators of the subgroup Dyn.2, as before, we have an
isomorphism T = Z[%] [Dan+2). From [3], $41(ii) we obtain a free period 4 resolution
of Z over Z[Dyn 7). This naturally yields a period 4 resolution of Z[3] over T. We

write this resolution in our notation, regarding 7" as a subring of R:
1, e 1
o_,z[i]_f.ﬁfr&,ﬂitr?i:l“-fazpé]ﬁo (1)

Going from left to right, let the basis elements of the free modules in this sequence
be {c}, {f1,f2}, {e1,e2} and {v}. € is the augmentation map, which takes v € T to

1 € Z[%] and €* is its dual.

For any integer k let £, = Y"*7! a?. With these conventions we set:

B3¢ = AiVi(1 + a% — a®™*Y) —b) + f,V1(a® - a¥b)

02 fi = e1V1Xon41 — V(1 4+ b)

82f2 = elvl():n(b — 1) + a2"b) + 62‘71(1 — aQ”)

drey = vVi(a® = 1)

8162 = le(b - 1)

We also have an exact sequence over S:

0—0—8B,65252,62P, 6,00
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Again, going from left to right, let the basis elements of the free modules in this

sequence be {c'}, {f], f3}, {€},e5} and {v'}.

With respect to this basis we set

p=(2) m=(50) m=Coo)

We can take the direct product of these two resolutions, to get a resolution over

the product ring, R:

0—»2[%]"—“3R3&‘33 R2 %2 RQali’i‘R‘—x—‘lZ[%l—»o

Let § denote the augmentation map R — Z[3] sending 1 € Rto 1 € Z[3]. Then
§(V1) = 1and §(V2) = 0. Hence § = € x 0. Note also that §*(1) = 2V¢(1).

Hence, if we let d; = §; x p; we get an exact sequence:

» € 1
o-»Z[%]f—»R-di»RQER?—"LR——»Z[i]—»o (2)

/ /
Letc" =c+d, fi=H+f1, fS=Ffot+fy el =e1+e€)], ef =eat+e), v/ =v+2".

We have
dsc” = f{Vi(1+a® = 2D —b) + f7(Vi(a® — a®"b) + V)

dgf{l = e’l’V122n+1 — 6’2’(V1(1 + b) + Vg)

dafy = €{V1(Zn(b - 1) + a®"b) + 5 V1 (1 — a®")

dye =v"(Vi(a® - 1) + V3)
dyey =v"Vi(b—1)

We have demonstrated a period 4 resolution over Z[%][Ds,,H]. We now consider

how this relates to the D(2) problem for Dy, 4.
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Let J denote the image of 9;. Let « denote its inclusion into T2. The image of d3 is
equal to J x S. Let 15 denote the the inclusion of S into S?, induced by ps.

We have a chain map:

O

11 111110

S5 28250

So given k € Z(3] if there exists an automorphism a, and a chain map

1

5]

la Ima |my [mo | xk
1

J_HT?iT?i.T;z@

J-T1? 22 A g

we have the product chain map

ngﬁng_f’i,R?i.R;z[%]

lax1 lmgx1 lmpx1 lmox1 | xk
Jxs X5 g &g 4o gl

However, even if the m; are chosen to be representable by matrices with coeffi-
cients all in Z[ Dy, 2] C T, the maps m; x 1 may not be. Consequently, we have not
completely reduced the problem of realizing k- invariants via automorphisms over
D3y 44, to the technically simpler problem over Dy, 2 (see [2] and [3]). However,

the above construction does provide a link between the two problems.
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§2.6 Summary of results concerning the D(2) problem for dihedral groups

In [3] (62.3) it is shown that the dihedral groups Dy, satisfy the D(2) property.
The smallest dihedral group not covered by this is Ds. We show that the D(2)
property does hold for Dg (theorem 2.3.4).

More generally, for dihedral groups of order 4n, we show that a minimal element
of Q3(Z) is realized as the 73 of a presentation (proposition 2.3.2). We parametrize
all possible minimal elements of 23(Z) by the group Zon" & Z3? (§2.4).

In the case of dihedral groups of order 2", n € Z, we are further able to show that
up to chain homotopy equivalence, there is a unique algebraic 2- complex with

“standard” algebraic 7 (theorem 2.2.11).



Chapter 3

73 of geometric 2- complexes

Let X be a finite geometric 2- complex with finite fundamental group G. Lemma
2.1.5 implies that ma(X) = Hz(C.(X);Z) as modules over Z[G]. Hence m(X) is
determined by C.(X).

In fact, C,(X) determines the homotopy type of X, (see [3], theorem 49.5) and
hence it determines all the homotopy groups, as modules over Z[G]. In this chapter
we compute 73(X) from C.(X). We also show that if G has even order, then G
determines the stable class of the module 73(X).

Let G be a finite group and let J be a finitely generated, torsion free, module over
it. There is a G- action on J ®z J, given by (a ® b)g = ag ® bg, making it a Z[G]
module. Let ¢ be the Z|G]- linear automorphism of J®z J defined by t(a®b) = b®a.

Definition S?(J) = {r € J ® J|tz = x}

The main theorem of this chapter is now stated.
Theorem 3A Let X be a finite geometric 3- complex, with finite fundamental group G. If
C.(X) ~ A, for some finite algebraic 2- complex A, then m3(X) = S%(J), where
J = Hy(Cu(X); Z|G)).

In particular,
Corollary Let X be any finite geometric 2- complex, with finite fundamental group G. Let
J = m(Cy(X)). Then m3(X) = S2(J).

81
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The claim that 73(X') may be computed directly from J is non - trivial in the sense
that J does not by itself determine the homotopy type of C,(X).

Let A be a finite algebraic 2- complex.
Definition 73(A) = S?(J), where J = my(A).

From the theorem, we see that this definition is consistent, in that if C,(X) ~ A,

for a finite geometric 3- complex X, then 73(A) = 73(X).

§3.1 Higher Covers

We computed 7, of a geometric 2- complex by noting that passing to the universal
cover preserved it, and then applying the Hurewicz isomorphism theorem to com-
pute it from the homology of the algebraic 2- complex. Our first step in computing

73 is to generalize the notion of universal cover.
We say a X space is - connected if m;(X) = 0, fori = 0,1, ..., 7.

Definition 3.1.1 For r > 1, an r- cover of an r — 1- connected space X, is a fibre
bundle map f : Y — X, with fibre k(7,(X),r — 1) and with
or + m(X) — mr—1(k(m(X),r — 1)) an isomorphism. Here §, is the boundary

operator in the long exact sequence associated to the fibre bundle.

Lemma 3.1.2 We have:
‘/Ti(Y) =0, 1 S r
mi(Y) = m(X), i1>r

Proof: X isr — 1- connected, and k(7.(X), r — 1) is an Eilenberg- Mac lane space.

Consequently, the long exact sequence associated to the fibre bundle has the form:
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0
0 ——> mry2(¥) ——> mrp2(X) — >

. O
0 ——> 7, (V) — > 741 (X) ——

(4] &1
0 e (Y) (X)) ———>

A (X) —m w1 (V) 0

9
0 ————» m,_2(Y) 0 —>

SoY is r- connected and we have isomorphisms 7;(Y) — m;(X) fori > r.

Note also that the universal cover of a connected space, together with the associ-

ated covering map, are a 1- cover. In fact all 1- covers have that form.

Suppose we have a connected space X and a tower of maps

f3 f2 h

X1 X

> X,

where for each ¢, f; is an i- cover. Then each Xj is i- connected and by induction on

r, (X)) = 7s(X) aslongass > r.

In particular, 741(X,) = 7,41(X), and X, is r- connected, for r > 1, so by the

Hurewicz isomorphism theorem, we may conclude:

Lemma3.1.3 w1 (X) = H 11 (X Z), r > 1.
We will use this identity in the next section to calculate 73 of a geometric 2- com-

plex.
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Note that the fibre of the map f; is k(7. (X,-1),7 — 1), which is equal to
k(m-(X),r — 1). The inclusion of this fibre in X, induces a map on homology:
Hy 1 (k(mr(X), 7 = 1);Z) — Hr41(Xr; Z).

We already have 7., 1(X) = H,;1(X,;Z), so amap is induced
Hp 1 (k(mr (X), 7 = 1);Z) — mry1(X)
for each r > 1. Both the domain and codomain of this map are invariants of X.

§3.2 The Hopf fibration

Our first example of a 2- cover will be the Hopf fibration. In this section we define
it and look at the map of sets it induces: m2(X) — w3(X). Crucially, for our main
theorem, will show that this map respects the action of 7 (X).

We may regard S° as the set of pairs (z, w) € C?, satisfying zz + ww = 1. Define a

relation ~, by setting (z,w) ~ (zA, w)) whenever \ € C satisfies A\ = 1.

Definition 3.2.1 Hopf fibration The Hopf fibration, h : S* — S? is the natural map
S% — §3/ ~ composed with the topological identifications S3/ ~= CP! = §2,

This map is a fibre bundle map with fibre S*. If for some = € S? we pick a point
y in h~!(z), we may parametrize the elements of h=!(z) as Ay for A € C, satisfying
A =1

Let + = h(0,1) € S% We take + as base point and identify the complement
of + with the interior of a closed disk D?. We have a map I : D? — S2, which
restricts to the identification on the interior, and maps the boundary to +. Then
I:(D2,0D,) — (52, +) represents a generator of m(S?).

I lifts to a map sending D? to {(/(1 — ww),w)jww < 1}. This restricts to a
homeomorphism D% — h~!(+).

Hence the map 7,(5?) — m(S!), associated to the fibre bundle, sends a generator
of m2(S?) to a generator of 7;(S?), and is an isomorphism. Consequently, this map

is a 2- cover, so by lemma 3.1.3, we have m3(S?) = m3(S3) & H3(S3;Z).
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Lemma 3.2.2 H3(S3,Z) = Z

Proof: S may be constructed from a single point and a single 3- cell, with asso-
ciated algebraic complex:

Z—-0—-0—-7

Let X be a topological space with base point . We consider (0, 1) to be the base

point of S3.

Definition 3.2.3 h* : m3(X) — m3(X) is the map which sends an element of 75 (X),
represented by a map a : (S%,+) — (X, ) to the element of 73(X) represented by
aoh.

We will now define a construction, which takes an arbitrary map
a: (D% 0D;) — (X,*)toamap o : (S3,(0,1)) — (X, *).

We may identify D? with the set of complex numbers {w|ww < 3}.

Consider the solid torus in S3, given by, {(z,w) € S*jww < %}. We denote this
torus N. Points in N may be parametrized by the argument of z and the element of
D?, w. Let Ry denote a rotation of D?, about 6 radians anti clockwise.

Given an arbitrary map a : (D?,0D;) — (X, ), the map o : (S3,(0,1)) — (X, *)
is defined as follows:

T

a’ sends the complement of N to the base point.

If (6, w) is an element of N (with respect to the above parametrization), then

al (6, w) = a(Rew)

Pictorially then, a” maps the solid torus N to X by rotating the map « as one goes

round N.
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If a;, t € [0,1] is a homotopy from g to ), then of , t € [0, 1] is a homotopy
from of to of. Hence the map sending a to o may regarded as a map of sets
m2(X) — m3(X). In fact, we will show that h*(a) = af. (We abuse notation by
denoting elements of homotopy groups by maps representing them.)

Let 1 denote the generator of m;(S?) represented by the identity map
Id : (D?,8D?%) — (D?,0D?), composed with the natural collapse

c: (D% 8D?) — (S?,+). We may regard h as a map (S, (0,1)) — (52, +).
Lemma 3.2.4 As elements of m3(S?), we have h = 17,

Proof: We may deform h to h’ by thickening the preimage of the base point and
pushing the other fibers out accordingly. Consider the preimage, under #/, of a
point other than the base point. Following it round a circle in the z - plane, centered
on the origin of the z- plane, takes one round a circle in the w- plane, centered on

the origin of the w- plane. Hence k' is homotopic to 17

Note that a map, a : (D?,0D;) — (X, ), represents an element of m(X), so h*(«a)
is a well defined element of 73(X). Specifically, h*(a) = o’ o h, where

o' : (8%,4) — (X, *) satisfiesa’ oc = a.

Lemma 3.2.5 For any map a : (D?,8D3) — (X, *), we have h*(a) = aT as elements of
m3(S?).

Proof: h*(a) is represented by o’ o h, where o’ o ¢ = a. By the previous lemma
a’ o h is homotopic to o’ o 17. Clearly o’ 0 17 maps the complement of N to *. Given

(6,w) € N we have

o' o 17(6,w) = o’c(Row) = a(Rew) = a7 (8, w)
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Soa'ol1T =aT.

The element 0 € (X)) is represented by the map which sends D? to . Therefore
the map 07 sends every point of S3 to the *, and we have 07 = 0. Hence h*(0) = 0.

Given a : (D?,0D;) — (X, *), we define —a : (D% 0D;) — (X, *), by setting
—a(w) = a(w) for all w € D?. Clearly as elements of m2(X), we have a + (—a) = 0,
so there is no ambiguity in the minus sign.

If welet z = 21 + iz9, w = wy + 1wy for (21,22, w;,w2) € R?, then we may
regard S° as sitting in R*. The base point (0, 1) is (0,0, 1, 0), with respect to this
parametrization. The following matrix represents a rotation of S3, fixing the base

point:

1 0 0 0

0 cos(t) 0O sin(t)
0 0 1 0
0

I —sin(t) 0 cos(t) |

For t € [0, 7], we denote this rotation L;. We now have a homotopy, oTL,, from

aT to aT L,, which keeps the image of the base point fixed.

Lemma 3.2.6 Given a € ma(X) we have h*(—a) = h*(a).

Proof: We will show that as maps, (—a)T = aTL;. The map L, preserves the

solid torus, {(z, w) € S*|ww < 3}, sending (6, w) to (-6, w). Hence
aTL(0,w) = aT (-0, %) = a(R_gw) = a(Ryw) = (—a)T (8, w)

So (—a)T = oT L,, which we know is homotopic to a”. Hence h*(—a) = h*(a).

a
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Lemma 3.2.7 Let g be an element of m\(X) and let o be an element of mo(X). Then
h*(a)g = h*(ag).

Proof: We must show that a”g is homotopic to (ag)”. We regard o’ as a map
from the ball {p € R?| |p| < 1} — X, which maps the boundary to *. We interpret
g asamap I — X, mapping endpoints to x. We regard a”'g as a map from the ball
{p € R3| |p| < 3} — X defined as follows:
aTg(p) = aT(p), if |P| < 1,

a’g(p) = g(2-p),if 1 < |P| <2,
aTg(p) =+, if |P| > 2.

Consider the the cylinder {(a, b,¢c) € R3|a? +b% < 0.3, ~2.5 < ¢ < 2.5}, which we
will denote C. Without loss of generality, we may assume that C passes through
the hole of the solid torus corresponding to N.

By deforming a7 g slightly, to a map f, we get its restriction to C to be given by

f(a7 b, C) = m(c)

where m is the path e - g7!

-e- g -e. Let m; be a homotopy, fixing end points, with
mo(c) = m(c) and m;(c) = *.

We define a homotopy f; as follows:
fi(p) = f(p), forp ¢ C,
fi((a,b,¢)) = my(c), for a® + b% < 0.2,
fi((a,b,¢)) = mygy0.3-a2—12)(c), for 0.3 < a? +b? < 0.2,

Now the solid torus corresponding to NV is contained in a larger solid torus, N’,
with the smaller cylinder C’ = {(a,b,c) € R3|a® + b < 0.2, —2.5 < ¢ < 2.5}, iniits
hole. The map f; sends the complement of N’ to x. The map fi, restricted to the
cross section of N, corresponding to an argument 6, is homotopic to ag o Ry.

Hence as elements of 73(X ), we have h*(a)g = aTg = f = f1 = (ag)T = h*(ag).

a
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§3.3 73 of a 2- complex

In this section we will calculate the Abelian group structure of m3(X) where X
is a finite geometric complex whose universal cover is homotopy equivalent to a

finite wedge of spheres. This was first done by Milnor and Hilton (see [8]).

Let X be a finite geometric 3- complex, satisfying C,(X) ~ A, for some alge-
braic 2- complex A. From the proof of lemma 2.1.7, for some integer k, we have
a homotopy equivalence X ~ W where W = szl Wi, with each W; = S2. Let
{w} = ﬂle Wi. As Abelian groups,

Tn(X) = (W) forn > 1.

We proceed to construct a 2- cover of W. The fibre of a 2- cover of W,will be
k(ma(W),1). We have mo(W) = Ho(W; Z) = ZF, as the associated algebraic complex
of Wis:

zZF—-0-12

Let T* denote the product of k copies of S*.
Lemma 3.3.1 k(my(X),1) = T*

Proof: T* = R¥, which is contractible. Hence m,(T*) = 0 for n > 1. Using the
identity 7 (X x Y) = m(X) x m(Y), we have m (T*) = Z*.

Let S;, i = 1,-- -, k denote 3- spheres. For each i, let h; : S; — W; denote the Hopf
fibration and let C; denote the fibre over w in each fibration.

There is a natural inclusion, ¢ : VikZIW,- — Hle W; which satisfies:
z);=zifreW;
ur)y=wifz ¢ W;

foreachi e 1,--- k.
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Hence we may consider the pullback of the fibration HLI h; along ¢

Y f:l Si

e

k Lok
ViaWs — [[is, Ws

The fibre of []%_, k; (and consequently f)is []_, C; = T*
Proposition 3.3.2 f is a 2-cover.

Proof: The boundary operator m(X) — m(T*) sends a generator of m(X;) to
a generator of 7(C;). Hence it may be represented by the identity matrix and is

certainly an isomorphism.

From the previous section we know that 73(X) = H3(Y'; Z). We proceed to calcu-
late this homology group.

As each S; is a 3- sphere, it may be constructed as a CW- complex from the follow-
ing cells;
the point w,
a 1- cell, e; for C;,
a pair of 2- cells U;*, U~
a pair of 3- cells V,*, V.~

For each i, the boundary maps on these cells are:

061':0
0U+ = €;

1
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1

The product space I_[le S; naturally inherits the structure of a CW- complex with
cells given by tensor products of the cells constituting the S;. The boundary map

of a tensor product is calculated using the identity
HC®D)=08C® D+ (-1)%8" @ oD
(See [13], p120).

Y is a subcomplex of []5_, S;. It is the preimage under [[*_, h; of W c []X_, Si.
Hence (11, - xx) € Hle S; is an element of Y precisely when #{i| z; ¢ C;} < 1.
We enumerate the 3- cells which constitute Y and use the identity above to calculate
the boundary of each.

The generators of C3(Y') are:
eiQe; e, fori < j<l|,

Vitand V7,
e; @ U fori < jand US ®e; for j < i,

ei®U; fori < jand U] ®e; for j <4,

Applying the boundary operator to each of these gives:
0(ei®@e;j@e) =0,

8(ei®Uj+)=-6i®€j, BU;- e =e ey,
3(61®Uj~)=€,‘®€j, BUJ-"®ei=—e,-®ej.

Hence we see that the kernel of the boundary operator is generated by

ei®e; Qe fori < j<l,
AR

ei®U]-++Ui+®e]~f0ri<j,



CHAPTER 3. m3 OF GEOMETRIC 2- COMPLEXES

ei®US +e;@U; fori < j,
Utr®e;+ U ®ejfori<j.

We now enumerate the 4- cells of Y. The generators of C4(Y') are:

eiQe; Qe @enfori<j<li<m,
ei®e; Ut fori < j <,

ei®US ®efori<j<li,

Ut ®e; Qe fori<j<l,
ei®e; QU fori < j <,
ei®Uj"®e,fori<j<l,

U QejQe¢fori<j<li,

e,-®V]-+ fori < j,

Vit ®ejfori < j,

e,~®Vj" fori < j,

V" ®ejfori < j.

Applying the boundary operator gives
Oei®ejQe®@em) =0
Iei®e; QU ) =e;®e; ®ex
d(e; ® Uj+ Pe) =-€;De; e
U ®ej®e) =€ Qe; @ e
0(ei®e; QU )= —e;®e; D e
Oe;@U; ®e) =€ ®ej@ex
U ®ejQe)=—e; Qej Qe
Nei®V)=-e;@US —e;@U;
IV ®e)=U®e; + U ®e;
Nei®@V)=e®US +e; QU
OV, ®e;)=-Ut®e; —U” Qe

92



CHAPTER 3. m3 OF GEOMETRIC 2- COMPLEXES 93

Hence the image of C4(Y’) under the boundary operator is generated by:

ei®e; @e, fori < j<l,
ei®Uj++e,-®Uj'forz'<j,

Ur®ej+U ®ejfori<j.

This leaves:
Vii+vo,

e @ U + U ®e;fori < j,
to generate H3(Y; Z).

Let J denote the algebraic 7 of A. As a Z[G] - module, J is isomorphic to m2(X).

This is isomorphic to 7o (W) as an Abelian group, which in turn is equal to

k
@ 7!'2(“7,‘)
i=1

We regard w as the base point of each W;. For each i, let w; denote the generator
of mo(W;), induced from the identity map W; — S2. The isomorphism
(W) — ma(X) is induced by a homotopy equivalence W — X composed with
the covering map X — X. Let ¢ : W — X denote this composition.

For each i, let a; : S — X denote gow; and let * denote qw. Taking * once and for
all as the base point of X, we may regard «; as representing an element of 72(X).
In particular, a; represents g, w; € m(X).

The a;, 7 € 1,--- ,k are abasis for J over Z. Therefore the o; ® i, 4,5 € 1,--- ,k
are a basis for J ®z J over Z . Hence, any element of S?(J) may be written uniquely
as a Z- linear combination of o; ® a;. However, in any such linear combination, the
coefficient on a; ® a; would have to equal the coefficient on a; ® a;. Consequently,

S%(J)is generated, over Z, by the a; ® o; and the a; ® aj + a; @ i, t # J.
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We may define a Z- linear isomorphism ¢ : m3(X) — S?(J), by sending:
VI+ V7 —a®a,

€i®U]++Ui+®€j — o ®aj+ o Qa;.
The purpose of the next section is to show that ¢ is Z[G]- linear.

§3.4 Realizing elements of 73(X).

We have the following maps of sets:

J —‘L’ us 3X
e
q
S*(J)
whereg:a— a®a, foralla € J.
From lemma 3.2.7, we know that h* respects the action of G. Also g respects the

action of G by construction. In order to prove that ¢ respects the action of G (and

consequentially is a Z[G]- linear isomorphism), we will show the following:

i) h*(J) generates m3(X ) over Z. We obtain this in corollary 3.4.8.
ii)The diagram above commutes. In other words, ¢(h*(a)) = a ® a for all a € J.

We obtain this in lemma 3.4.13.

In the previous section m3(.X') was computed, as an Abelian group. We now real-
ize the elements of this Abelian group as actual maps S° — X.

Consider the identity map, S® — S;, taking w as base point. This map sends the
generator of H. 3(S3;Z) to the element of H3(Y;Z) represented by Vfr + V,”. Hence
the Hurewicz isomorphism takes V;* + V,~ to the element of 73(Y’) represented by
the identity map S* — ;.

The 2- cover, f, restricts to the Hopf fibration S; — W,. So V™ + V,™ is sent to the
element of m3(W), represented by the Hopf fibration S* — W;. This equals h*(w;).

Composing h*(w;) with g gives g o h*(w;) = gow; o h = a; o h = h*(«;). Hence

the isomorphism H3(Y; Z) — m3(X), due to lemma 3.1.3, takes Vi+ +V, to
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h*(a,-) € 7r3(X).
Lemma 3.4.1 Foreachi € 1,--- ,k, we have ¢(aT) = a; ® .

Proof: From the construction of ¢ and the discussion above, we have

¢(h*(a;)) = ai ® ;. Sobylemma3.2.5 ¢(af) = ¢(h* () = ; ®

Once again, we may view S° as {(z,s) € C?|zz + s5 = 1}. It decomposes into
two solid tori, given by s5 < 3 and s5 > 1. Given i < j, we may identify the disk
U;t with the disk s3 < 1 in the complex plane. We may also identify the set of
arguments of z, on the complex plane, with C;.

Similarly we may identify the disk U;" with the disk zz < 3 in the complex plane.
We may also identify the set of arguments of s, on the complex plane, with Cj.

Hence we have a natural identification map I : §° — C; x U UU;" x C;. This

takes a generator of H3(S% Z) toe; ® U]-+ + U;* ® ej. Hence we have

Lemma 3.4.2 The Hurewicz isomorphism, H3(Y;Z) — m3(Y), takes e; @ U + U" ®e;
to the element of w3(Y') represented by 1.

For any a € C; and b € Cj, the map f restricts to w; : (a,U;) — Wj and to
w; : (UF,b) = W;, where w;, w; are now regarded as maps D? — W, which send
the boundary to w.

Fix two simply linked solid tori, A, B, each parametrized S! x D?,in S3. Let Q be

a topological space with base point %. Given «, 8 € m(Q), we construct an element

of 13(Q):

Definition 3.4.3 aV 3:S% — Q is defined by
aVpip) =%forp¢ A B

aV p(0,d) = a(d) for (6,d) € A

aV p(0,d) = 3(d) for (6,d) € B
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By thinning the solid tori, ss < 3 and s§ > %, we have that f,] and w; V w,

|-

represent the same element of 73(W).
Lemma 3.44 gow; V w; = ai V aj.

Proof:
qow; Vw;(8,d) = qow(d) = ai(d) for (6,d) € A.
gow; Vw;(6,d) = qgow;(d) = a;(d) for (8,d) € B.

Hence we have gow; V w; = a; V ;.

So to recap: the Hurewicz isomorphism takes e; ® U + U;f ® ¢; to I € m3(Y).
Composition with f takes this to w; v w;. Composition with ¢ takes this to a; V «;.

We may conclude:

Lemma 3.4.5 As an Abelian group, w3(X) is generated freely by o i € {1,--- ,k} and
o Vaj,i<jE {1,--- ,k}. Also,
olaf)=a;i®a;, i€ {l, -k}

dlaiVaj))=a;®aj+a; ®a;,i<je{l,-- k}

We now describe two homotopies which will be used in the lemmas which follow.

i) Lety € m3(X) agree with aT on the solid torus {(z,s) € S®|ss < 3}, for some

a € m(X). So given a point (8, s) in the solid torus, we have v(0,s) = a(Rs(s)).
Fort € [0, 7], let

v(6,s) = a(s), forf <t.

(0, 5) = a(Rzxe-1(s)), for@ >t.

2r—t

v(p) = ¥(p), for pnotin the solid torus.

Intuitively, v, is v with the “twist” moved round to one side of the torus.
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ii) This homotopy will be referred to as “pinching” the solid torus.

Consider v, as before, and select a cylinder, in S3 which intersects the solid torus
in two disconnected places, on the “untwisted” side, and which does not intersect
any other points which do not map to *, under ~,. Parametrize this cylinder A x I,
where A is a disk of radius 3 about the origin in C, and I is the interval [—1, 1]. Let
A, denote the disk of radius T}? about ¢, in A and A, denote the disk of radius 715
about —17, in A.

By deforming v, to v/, fixing the base point, we may have 7' restricted to the
cylinder giving:

v (a,s) = *, ifa¢ A, A,
v(a,s) = ala—1), ifac€ Ay,
vY(a,s) = a(-a—1), ifa€ A

For each s € I, we have the map 7/(_,s) : A — X representinga —a =0 € m,.
Hence, fixing some s, we have a homotopy
hy: A— X, fort € [0,1], with ho(a) = 7'(a, s), and hi(a) = *.

Let~,, t € [0,1]be defined as follows:

() =7(p), fpgAxI,
vila,s) = he(a), forfs| < &,
v(a, ) = h_ggpi(a), for|s| > 3,
So ~] represents the same element of 75 as ., but it has the “twisted” part of the

solid torus “pinched off” from the untwisted part.
Lemma 3.4.6 Let a,8 € m(X). Thena Vv B = (a+ )T — of - g7.

Proof: Consider the map (a + 8)7 : $3 — X. We may partition the solid torus
{(z,w) € S*lww < 1}, into two linked solid tori, such that altering (a + 3)” to map
one solid tori to * would leave a7, and altering (a + 3)7 to map the other solid tori

to *, would leave 7.
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Hence “pinching off” the “twists” in the two solid tori gives

(a+B) T =a"+8" +avp

O

Note the left hand side of the equality in lemma 3.4.6 is symmetric in « and 3.
Hence we have:

Corollary 34.7 aV 3=V a

Also, as each a V 3 may now be written in terms of (a + 3)7, T and 37, we have:
Corollary 3.4.8 Elements of the form o7, for o € ma(X), span mw3(X) over Z.
Lemma 3.4.9 Let o, 3,7 € ma(X). Then
(a+B+7T=(a+B)"+ B+ +(r+a) —al -7 —9"
Proof: Consider the map (a + 8+ 7)T : S — X. We may partition the solid
torus {(z,w) € S}|lww < 3} into three mutually linked solid tori, A, B, C so that
if the complement of A, B or C was mapped to *, the map would be o, 87, 47

respectively.

Pinching off the twist in each solid torus gives
(@+B8+7) =a" +8T+47 + A

where A is represented by a map S® — X, sending the complement of three linked
tori, A’, B', C’ to *, and projecting each solid tori (= S! x D?) onto D? and mapping
via a, 3, v respectively.

We may pinch each solid torus between its links with the other two, to get

A=aVp+Vy+yVa
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Hence
(a+B+7) T =’ +8T+4T+aVB+BVy+Va

=(@+0T+ B+ T+ (v +a) —a’ - T =47

We now apply this lemma to get:

Lemma 3.4.10 Suppose a, 8,7 € mo(X) satisfy the following:
@) =a®a, ¢BT)=888 ¢(1")=7®",
¢((a+B)T) = (a+P) ® (a+5),
¢((a+m)T) = (a+7)®(a+7),
H((r+8)T)=(r+B)®(v+8),
Then ¢((a+B+7)7) = (@ +B8+7) © (e + B+ 7).
Proof:
s((a+B8+7T) = de+B)T+B+N"+(v+a)T —a -7 —4T)
(by 3.4.9)
=(@+8)8(@+B)+B+7MN@B+N+(r+a)@(Y+a)—a®Ra-08-7®7
(by hypothesis)

=a®a+800+737+a®B+08R3a+837+17B+a®@7+vRa

=(a+08+7)®(a+8+7)

As we have said, the o; form a basis for J over Z.

Definition 3.4.11 Norm Given a = ) ;A\, A; € Z, we define the norm of q,

denoted |a|, by

la] = Z | Al
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Lemma 3.4.12 Let o € J satisfy |a| < 2. Then ¢(aT) = a® a

Proof: The only element of J with norm equal to 0 is 0. We have previously noted
that 07 = 0, so we have ¢(07) = ¢(0) =0 =0®0.

The only elements of J with norm equal to 1 are ones of the form o; or —a;. By
lemma 3.4.5, ¢(al) = a; ® ;. By lemma 3.2.6, we have
p(—al)=¢(al) =i ®ai = —; ® —au.

Elements of J with norm equal to 2 are of the form a; + a;, -ai—¢aj, a;—q;j,
a;2, or —«;2, where ¢ # j. By lemma 3.2.6, it is sufficient to consider a; + a;,
a; —aj, and a;2.

By lemma 3.4.6, for i # j, we have
o((ai+a;)T) = o((ai+ )" —af —af +al +af
=¢(aiVaj)+¢(aiT)+¢(a]T) = Qe+ a;Qu+a;®@ai+a;q;
= (ai + a;) ® (a: + o)
By lemma 3.4.9, we have

a] = (ai + aj "O‘J’)T = (ai“"aj)T'*'(ai _aj)T_a’T_a}é

Hence for i # j, we have
(i — ay)T) = ¢l )2 + ¢(a] )2 ~ ¢((ei + @;)")
= Qu+a;Qa; —a; @ — aj @y
= (@i — o) ® (i — ;)
Again, by lemma 3.4.9, we have

af = (ai+a;i —a)T = (s + ;)T —al'3

So ¢((a:2)T) = ¢(a] )4 = (2 ® )4 = 42 ® ;2.

Hence we have dealt with each element of J, with norm less than or equal to 2. (J
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Lemma 3.4.13 Let o € J. Then ¢(a?) = a ® a.

Proof: Suppose not. Then there exists some minimal number n such that there
exists a € J, with |a| = n and ¢(a”) # a ® a. By lemma 3.4.12, n > 3, so we have
a=dad +a; +a forsomei,je{l,--- k}and || =n -2

The hypothesis’ for lemma 3.4.10 are fulfilled, as 1,2,n — 1,n — 2 < n, so we have
¢la’) = 6((a' £ ai £ ;)")
=(ad'ta;ita;)®(d £a; +aj)
=a®«a

which contradicts ¢(a) # a ® a.

Hence by lemma 3.2.5, we have ¢(h*(a)) = a ® a.

Lemma 3.4.14 The isomorphism ¢ : n3(X) — S%(J) is Z[G]- linear.
Proof: Recall lemma 3.2.7, which states that given g € G, and o € J, we have

h*(ag) = h*(a)g. From lemma 3.4.13 we have

¢(h*(a)g) = ¢(h*(ag)) = ag® ag = (a ® a)g = ¢(h*(a))g

By corollary 3.4.8, given an arbitrary element 3 € m3(X), we may write

8= R (B)A
with 3. € J, A\, € Z.

So
#(Bg) =D o (Br)g)Ar = 3 ¢(h*(B:))gAr = ¢(B)g

From this lemma we may conclude:

Theorem 3A If C.(X) ~ A, for some finite algebraic 2- complex A, then m3(X) = S*(J)
as Z|G]- modules.
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In particular:

Corollary 3.4.15 If X is a geometric 2- complex, and 72(X) = J, then n3(X) = S%(J)
as Z[G]- modules.

§3.5 The effect of stabilizing 2.

Let X be a finite geometric 2- complex with finite fundamental group G. Let X’
be another finite geometric 2- complex with fundamental group G. From corollary

1.1.2 and lemma 2.1.5 we know that there exist integers a, b such that

m2(X) @ Z[G]* = m(X') ® Z[G)°

In this section we investigate the corresponding relationship between 73(X) and
T3 (X ’) .
If welet J = mo(X) and J' = mo(X’), then from the last section we have

73(X) = S?(J) and m3(X’) = S%(J'). We know that

S%(J @ Z|G)*) = S*(J @ Z|G)®)

The next few lemmas give us an expansion of this.

Lemma 3.5.1 Let A;, i = 1,--- ,n be modules over Z|G|, with finitely generated, free
underlying Abelian groups. Then

n

n
SHEP Ai) = P S*(A:) © P Ai ®z 4,
i=1 i=1 i<j

Proof: For each i, let the e; , be a basis over Z for A;. Then S2(@], A;) is freely
generated over Z, by elements of the form:
eireir,
eirPeisteisOei,, 15,
eirejs+ej e, <],

For each i, the Z- linear span of the e; »®e; ,, for all r, and the e; , ®e; s +e; s®e; r,
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r < s, is closed under the group action and is isomorphic over Z[G] to S%(A;).
Similarly, for each pair i, j, with ¢ < j, the Z- linear span of the
eir ®ejs+ejs@e;r, forallrand s, is closed under the group action. Furthermore

we have an isomorphism from it to A; ®z A;, which maps
eirQejstej e re,Qejs

So over Z[G), the module S2(@?, A;) decomposes into the sum

P s*(4) o P Ai ®z 4,
i=1

i<j

Note that for Z[G]- modules A, B, we have a Z[G]- linear isomorphism

A®z B — B®z A, givenby sendinga®b+— b® a.

Lemma 3.5.2 Let A be a Z[G] module whose underlying Abelian group is isomorphic to
Z*. Then A ®z Z[G) = Z[G)*.

Proof: The action of an element g € G on A is a Z- linear isomorphism. Hence, if
e1, -, ek is a Z- linear basis for A4, thensois ey g, - - , exg. Hence AQzZ[G] is freely
generated over Z by elements of the forme;g ® g, forg € Gandi € {1,--- ,k}.

For each ¢, the Z linear span of the e;g ® g, g € G, is closed under the action of
G. Furthermore, we have a Z[G]- linear isomorphism from it to Z[G], which maps
€ig® g g.

Hence,

k
Az Z[G] = Pz[G) = Z[G)F

Let p denote the number of pairs, {g,g7 '} € G, with g # g~ 1.

Also,let T = {g € G|g* = e}.
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Definition 3.5.3 For a finite group G, we set

Ve = P+ 1)Z[G]

teT
Let n denote the order of G.

Lemma 3.5.4 S?(Z[G]) = Z[G]'*? & Vg

Proof: Consider the Z- linear basis for S?(Z[G]) givenby ¢ ® ¢, g € G, and
g®h+h®g, {g9,h} CG.

Wehave<e®e > Z[G)=<g®g| g€ G > Z.

Supposeg # g~ !. Then< g®e+e® g > Z[G] =
<h®l+1®h| hle€ G, hi"! = g > Z. Further, given anelement h® | + | @ h,
satisfying hl~! = g, we may write h® l + [®@ h = (g ® e + e ® g)!. This is the unique
way of writing h ® [ + | ® h as a Z[G]- linear multiple of g ® e + e ® g, because
hRl+1I®h# (9g®e+e® g)h, as gh =1 would imply g = (h™! = (hlI71)71 =g~ 1.

So the Z- linear span of the g ® g and the h ® [ + I ® h, Lh~! # hi~!, is isomorphic
to Z[G)'*P. The remaining elements of the basis are of the form h ® [ + | ® k, with
hi=! =1h7 . Lett = hi"!'. thenh® !+ [®h = (e ®t +t ® e)l. The Z-linear span of
theh®!+1®h, hi~! = [h~}, is therefore equal to

Pleet+tee)zG]
teT

Regarding S?(Z(G]) as a submodule of Z[G] ®z Z[G], we have e ® t + t ® € =

(e ® t)(1 + t). Therefore
Pleot+tee)zG] =V
teT

and

S%(z[G)) = Z[G)" TP @ Vg

Returning to our geometric complexes X and X', we had
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S%(J @ Z[G]*) = S*(J' @ Z[G)®)

By lemma 3.5.1, this expands to:

S*(J) @ S*(Z[G))* @ (J ®z Z[G))* ® (Z[G) ®z Z[G))* @~ V/?
= S%(J") ® SY(Z[G))® @ (J' ®z Z|G))® ® (Z[G] ®7 Z|G])PC-1/2

Let k denote the Z- rank of J, and let £’ denote the Z- rank of J'. By theorem 3A
we have S%(J) = m3(X) and S?(J’) = m3(X’). Applying lemmas 3.5.2 and 3.54 to

the equation above gives:
m3(X) @ (Z[G]'*P @ Vg)® @ Z|G)** @ ZGnale—1/2
= m3(X") ® (Z[G)'F? @ Vi) ® Z|G)F @ ZGnb(e-1/2
Hence
m3(X) @ Z|G)(1H+Prh+na=1/2)a g yoa — o (X7) @ Z[G)(HHPHRnb-1D/2b g b
and we have the following theorem:

Theorem 3.5.5 Let X and X' be finite geometric 2- complexes, with finite fundamental

group G. Then there exist integers p, q, T, s such that:
m3(X) @ Z[GP & V! = m3(X') @ Z[G]” & Vi°

Note that if the order of G is odd, it does not contain any elements of order 2.

Hence Vi = 0 and we have.

Corollary 3.5.6 Let X and X' be finite geometric 2- complexes, with odd finite fundamen-
tal group G. Then m3(X ) and m3(X') are stably equivalent.
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83.6 The case 7y = IG*

In this section we consider the case of a finite geometric 2- complex, X, with finite

fundamental group G and m2(X) = IG*. Recall that we have a short exact sequence

0-2Z—Z[G] 2 IG* -0
We now consider the Z[G]- linear surjection p’ : S?(Z[G]) — S%(IG*), which sends
9®g+p(9) @ p(9)

and g® h+h® g — p(g) ® p(h) + p(h) ® p(g).

Let ¥ denote the sum of the elements of G.
Lemma 3.6.1 The kernel of p' is generated over Z[G], by E®e+e®@ L and EQ X.

Proof: We may take a Z- linear basis for Z[G], given by {g € G|g # e} together
with . We have a Z- linear basis for IG* given by
{p(9)lg € G,g # e}. Hence the kernel of p’ is generated over Z by £ ® £, and
g® L +X®g. Clearly this is contained in the, Z[G] linear span of E® e + e® ¥ and
reL

Let S be a subset of G, containing precisely one of g or g~!, for each pair g,g?,

withg # g7!. Leteg =g®e+e®gforeachg e S. Lete; = t ® e + e ® t for each

t € T. Leteg = e ® e. Then from the proof of lemma 3.5.4 we have:

S*(Z[G)) = eoZ[G) & EP €,Z[G) ® P e Z(G)]

geSs teT
Also,
e®2+2®e2602+Zeg(1+g_1)+26¢
geSs teT
and

. )
SO =(e02+ Y eg(l+g7")+ Zet)a
geS teT
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Let
u = (eg2 + Zeg(l +g7H+ Z et)
geS teT
We have
2
<u,uzm >

The relation u = 0 is equivalent to €02 = —(3_ cs€(1 + g71) + X e €r). Let

M = @ e,Z[G) © P e:Z[G]

geS teT

and letups € M beequalto — (3 cseg(1+97") + X e)
Theorem 3.6.2 If mo X = IG* then m3(X) = M[*1].

Proof: We need to check that Hgl satisfies the relations which ey was subject to:
HL2+ des eg(1+ g+ 2teret=0
(243 cseg(l+971) + Xiere)E/2=0

Example3.6.3 G =C3 =< zr|zd =€ >

If 1(X) = IG* then

(l—l—x)]
2

m3(X) = S2(IG*) = e,2Z[G][(1 + 2)/2] = Z[G][

Example 3.6.4 G = Qg =< x,y|z® = y°, zyz = y >

There is only one element of order two in Qg so if m(X) = IG* we have

m3(X) = SX(IG*) = (€:Z[G] @ ¢, Z[G) ® €2, Z[G) ® eyzz[G])[%l
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where um = —(ex(1 + %) + ey (1 + ¥3) + ez (1 + %) + €,2).
As e,2Z[G] = (1 + y*)Z[G], (see lemma 3.5.4), we have a single relation e 2((1 —
y*) = 0.

We remark that rationally, for some a € Z, m3(X) ® Q = IG* @ Q ® Q[G]*, for any
finite geometric 2- complex X, with finite fundamental group, G. Consequentially,
we have

S2())®Q=5%(J®Q) =S’(IG*DZ[G]*)®Q

From lemma 3.6.1, the kernel of p’ is generated by u and uX /2. Hence the kernel
of P @Q : S3(Q[G]) — S*(IG*)®Q, is generated by u, as uX/2 is in the Q[G]- linear
span of u.

We therefore have a short exact sequence:
0 — Q[G] — S*(Q[G)]) — S*(IG*)®Q — 0

As surjections over Q[G] split and cancellation of finitely generated modules holds

over Q[G], we may write
S*(I1G*) © Q = S*(Q[G))/Q[G]
So from lemmas 3.5.1, 3.5.2 and 3.5.4 we may conclude
Theorem 3.6.5 There exist integers a, b, such that
m3(X)®Q=Q[GI*® (Ve ® Q)
Again, if the order of G is odd, then V; = 0, so

Corollary 3.6.6 If the order of G is odd, then w3(X) is rationally free.

Note that example 3.6.3 is a case in point.

§3.7 Summary

In this chapter we have shown that given a geometric 2- complex, X, with finite

fundamental group G, we have m3(X) = S?(J), where J = m2(X) (theorem 3A).
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We have defined a module over Z[G], Vi and shown that 73(X) is determined by
G, up to stabilization by copies of Z[G] and copies of Vz (theorem 3.5.5). Rationally,
we have shown that m3(X) ®Q = Q[G]*® (Vo ® Q)° for integers a, b (theorem 3.6.5).

In the case where G is a group of odd order, we have V; = 0. Hence in this case,
the stable class of m3(X) is determined and 73(X) is rationally free (corollaries 3.5.6

and 3.6.6).



Chapter 4

Algebraic Poincare 5- complexes

Let M be a closed, connected, orientable 5- dimensional manifold, with finite fun-
damental group G (we assume manifolds to be without boundary). In this chapter
we consider algebraic complexes C*(M "), where M’ is a finite CW- complex, with
M ~ M'. C.(M’) must satisfy Poincare duality. We use this to show that up to
chain homotopy equivalence, we may represent it by an algebraic 2- complex, A,
connected to its dual via a G- invariant bilinear form, 3, on (m2(A))*. We denote
the resulting algebraic 5- complex (A, 3).

In §4.3 we show that the algebraic 2- complex A, is not important in the sense that
any algebraic 2- complex may be stabilized to one which, together with the appro-
priate bilinear form, represents the homotopy type of C,(M’).In §4.4, we describe
chain homotopy equivalences between these algebraic complexes.

We next consider the homotopy equivalence induced by Poincare Duality. In
particular we are interested in how similar it can be made to the identity. In §4.5 we
show that it can be taken as the identity on 4 of the 6 terms of the chain complex.
In §4.6 however, we find a homological obstruction to this homotopy equivalence
actually being the identity. In particular, certain manifolds described in [1] do not
satisfy the homological condition necessary, for being able to write the homotopy

equivalence as the identity.

110
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§4.1 The category TOP>

Fix a finite group G. Let TOP® denote the category of closed connected orientable
five dimensional topological manifolds with base point, with respect to which the
fundamental group is identified with G. The morphisms in this category are con-
tinuous maps which preserve the base point and induce the identity on G.

Given an object of TOP®, we may find a finite CW- complex, which is homotopy
equivalent to it (see [4]). Let the following be the algebraic chain complex of the

universal cover of the CW- complex:

o fs) 15) o 15)
Cs — Cy — C3 = Cy — C1 = C

This is an algebraic complex of free Z[G]- linear modules and Z[G]- linear maps.
It is exact at C; and the cokernel of 0, is Z.
We say that an algebraic complex satisfies Poincare Duality if it is chain homotopy

equivalent to to its dual.

Proposition 4.1.1 (Poincare Duality) The algebraic complex, (C\, O,) satisfies Poincare
Duality.

Note that Poincare duality tells us that the algebraic complex above is chain ho-
motopy equivalent to to its dual. Therefore it is exact at Cy and the kernel of 0 is
Z. As the Euler characteristic of this complex is minus that of its dual, it must be 0.

Let ALG® denote the category of algebraic 5-complexes of finitely generated free
Z|G] modules,

1s) [5) Ps) P) 0
FE=>F 35F 3535 5K

satisfying:
i) Poincare duality.
ii) Exactness at Fy and F;

iii) The cokernel of 0, and the kernel of s, equaling Z.
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The morphisms in this category are homotopy equivalence classes of chain maps.

We may define a functor C : TOP®> — ALG® by choosing a homotopy equiva-

lence, hpr : M — M’ with M’ a finite CW- complex, for each M € TOPS. C(M) is
then defined to be C, (M’).

Given a continuous map, which is a morphism in TOP>, f : My — M,, we may
select a cellular map f’, which is homotopic to (har, o f o hy}) : M] — Mj. Define
C(f) to be the equivalence class of the chain map f : C,.(M{) — C’,,(Mé).

The isomorphism class of C(M) in ALG?® is an invariant of M as by construction,

different choices of M’ must be homotopy equivalent to M and hence each other.

84.2 Dual Form

Given an algebraic two complex, over Z[|G], J* — F» — F; — Fy — Z and a G-

invariant bilinear form 3 on J, we can associate an algebraic 5- complex:

Fg - F - F, — F—>F - F

N/
J—=J

Let DUAL? denote the category whose objects consist of:
(i) An algebraic 2- complex of finitely generated free modules over Z[G],

J¥ --» F, - F} — Fy --+ Z, with exactness at F}.

(ii) A G- invariant bilinear form 3, on J, such that the associated algebraic 5- com-
plex is an element of ALG®.

As before we define the morphisms of DUAL?, to be homotopy equivalence
classes of chain maps between the associated algebraic 5- complexes of objects in
DUAL?. If an element of ALG?® is the associated algebraic 5- complex of an element
of DUAL?, we say it is in “dual form”.

We have a functor i : DUAL? — ALG?® which sends an object to its associated

algebraic 5- complex, and sends a morphism to the class of chain map which it
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represents. This functor is clearly full and faithful. We will show that every object

in ALG? is isomorphic, in the category ALG?, to an object in the image of i.

Theorem 4.2.1 Every element of ALG® is chain homotopy equivalent to an algebraic 5-

complex in dual form.

Proof: We start with an arbitrary element of ALG>:

o Ny N Ny M. N N g . X (1)

We perform three simple homotopy equivalences. Firstly, the complex (1) is chain

homotopy equivalent to to

CoCl 0020 50 B e 2ol (2)

o 0 Jds O
o = ' 05 = °
0 1 0 1

Let Ry = Cy, Rs = Cs,and R} = C; & C2, Ry = C4 @ C§. Then (2) can be written

where

RsoR, 2 R 20 5.0, 2R X Ryo R (3)

Again we perform a pair of simple homotopy equivalences. The complex (3) is

chain homotopy equivalent to to

* 61(90

RsoR, 2 RioR 2 oRrR 2 oer 2 ReorR " RoR (1)

where
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8 0 8,80 0
S=1| sa=1 "
0 1 0 1

Let Ry = C2 @ R}, R3 = C3 & R}. Then (4) can be written

930

ReOR, S Rio R SR 2R, 2 RioR " Ryo R (5)

As all the modules in this complex are free and the Euler characteristic is 0, we

can assume the existence of some isomorphism 6 : R; — R}

We perform a final homotopy equivalence to get

RsOR, S RioR SRR S RoR 2R oR " Ry R, (6)

030 0
03 =
0 0

The algebraic complex (1) is therefore chain homotopy equivalent to to (6). We will

where

show that (6) is chain isomorphic to an algebraic 5-complex in dual form.

Lemma 4.2.2 There exist maps ho, ko, such that the following diagrams commute:

Roo Rt & M Ry & R* ©0 A1

L ho 11 T ko T1

R ® Ry X M R:® Ry <2 A
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Proof: As the R; are projective, we may pick fo, go so that the following diagrams

commute:

Ry - Z Ry —Z
Lo 11 Tgo T1
RSz Rz

Define hg : Ry ® R — R @ Roand ko : R} ® Ry — Ro ® R§ by
hy = fo 1— fogo ko = go 1-—gofo
1 =90 1 —fo
Direct calculation shows that hokg = 1 and kghg = 1.
Also from commutativity of (9), we deduce

1_.
(¢ o>(f° f°g°)=(e'fo ¢(1— fogo)) = (¢ 0)
1 —9o

and
(€ 0)(90 1'g°f°)=<ego e(1 - gofo)) = (¢ 0)
1 —fo

Hence the following diagrams commute:

Roo R 5 M Reo R BB M
| ho 11 T ko T1

R:® Ry B M R ® Ry <20 M
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Lemma 4.2.3 There exist a pair of inverse chain isomorphisms between the exact sequences:

RoR 2R oRrR " @rRioRr Nz-0 (7)
and
810 620 €
RoR“DRor *ZRoR Dz -0 (8)

Proof: We will construct a pair of inverse chain isomorphisms, h, k, between (7)

and (8).

We have already defined h¢ and ky. Now suppose that for i = 0 or 1, we have
defined h; : R; ® R;_; — R;_;® Rjand k; : Ri_;®R; —» R; @ R;_; for j =
0,...,7 — 1, so that for each j, we have h;k; = 1 and kjh; = 1. We proceed by

induction.

As before, pick f;, g; so that the following diagrams commute:

8 ]

Ri — Ri_l &b R:l—i+1 Ri — Ri—l 5> R:l——i+1
L fi L hiy Tgi T ki
e Onoivl ok N MR
Rn—i — Rn_i+] &b Ri—l Rn—i - Rn—i+1 D Ri_l

Define h; : R; © R;—z‘ — R:;—i ® R; and k; : R;_i PR, - R & R:z—i by

B — fi 1— figi b = 9 1—gifi
1 —g; 1 ~fi

Direct calculation shows that h;k; = 1 and k;h; = 1.
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Recall h;_1k;_) = 1 and k;_1h;—; = 1. From commutativity of (10) we deduce

i 1- figi
6 nr m(i fg):4a4ﬂﬂ o= fig) = hia(8s 0)
—3gi

and

i 1—gifi
(6; 0) ( ”(i ;]f ) = (6igi 6:(1 — gifi)) = ki-1(6p—i41 0)

Hence the following diagrams commute:

* 5-’ 0 * * 5;‘ 0 *
RioR,, “B R ®R,_ Ri&R,_, “5 R_®R, .,
L hi L hicy T ki T ki1
6;1_1- @0 * * 61‘1—1’ ®0 *
R, ;&R "5 R, ;,, ®Ri, R, ;®R "5 Ry ;1 ®Ri,

Together with the identity on Z, the h;, k; are therefore a pair of mutually inverse

chain isomorphisms, between (7) and (8).

RoOR "R oR " @RoR 2Nz -0
L ho Lh L ho 11
8,00 50 €0

R;®Ry; — R{®R, > RE®Ry--+Z—0

Let So = Ro ® R5, S1 = R1 ® R}, S2 = R, © R3.
Alsoletd; = 6 @ 0and d2 = 62 @ 0. Let d3 = 3k3.

We complete the proof of the theorem with the following lemma:
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Lemma 4.2.4 The complex (6) is chain isomorphic to

*

d d>
S sy s Bg, g A, (11)

Proof: We have the following chain isomorphism:

Rs®R, 2 RioR S RsoR 2 RoR 2R eRr " R0R:

Lhg LM L k3 11 11 11

di d; * d3 d2 dq

S — S =S S5 = 8% B o5 S5

We need only verify that the central square commutes: dsh} = d3k3hS = 3.

This completes the proof of theorem 4.2.1 O

We may conclude:

Theorem 4.2.5 The functor i : DUAL? — ALG? is full, faithful and surjective up to
isomorphism. Hence i is a natural equivalence.

This means that when using the functor C to provide an invariant of an element
of TOP®, up to isomorphism in ALG5, we may work in the category DUAL?. In
order to parametrize the values this invariant can take, we need only classify the

forms (3 on elements of Q%[BG] (Z), which give rise to elements of ALGS.

§4.3 Polarization

We would prefer to work over a fixed algebraic 2- complex, and and have the
form completely determine the resulting 5- complex. To that end fix any algebraic

2- complex, of finitely generated free modules:

A = oY% E Lz

with exactness at F}. Let
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A" = Rezlr ™R3 F

Let J, denote J @ Z[G]". The following result opens the possibility of classi-
fying algebraic 5- complexes, without in any way having to classify algebraic 2-

complexes.

Theorem 4.3.1 Any element of ALG® is chain homotopic to the associated algebraic 5-
complex of the element of DUAL?, represented by (A", v), for some n and bilinear form, v

on J,.

Proof: Any element of ALG® is chain homotopy equivalent to to an algebraic

complex of the form

A% A
Tp 2Ly 2y A B Ay (12)

for finitely generated free modules S;.

Lemma 4.3.2 For some integer, n, and free module T, we may apply a pair of simple ho-

motopy equivalences to A™ to get

D D
Ly =5 L = Ly

and a pair of simple homotopy equivalences to
ThoT 22T 27
to get

b a
Sy =5 81 — So
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so that we have a chain isomorphism:

5'2&*51—(-9—1-*50
162 |61 |60

D D
Ly 251, 25 1,

Proof: See theorem 1.1.1.

Note that (12) is chain homotopy equivalent to to
* A; * A§ * 3 A280 Ay
TO—)Tl—HTQ@T-—)TQ@T——)Tl—>T0

Az 0
where 43 = ( > ) . This in turn is chain homotopy equivalent to to
0 1

o7 9; 17} g
s; e 2,55 8,5, 25 9 g,

where 03 is induced from As.

Let D3 = 65 0 93 o 5. Let v be the bilinear form induced on J,, by Ds.

We have a chain isomorphism

93
—_—

a7 a5 )
S; 2L sp 2 53 S, 2.5 %5,

Loyt Lot eyt | 6, 16, 16

D3 D3 D D D
2L g B2 gy Bs,op, Dap Dy

120
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Finally note that the algebraic complex

Dy D3 D D D
Rt Ny it N . SN P N SN

is obtained from the algebraic 5- complex associated to (A", v), by performing four
simple homotopy equivalences. Hence (12) is chain homotopy equivalent to to the

algebraic 5- complex associated to (A", 7).

a

It may be convenient to regard all elements of ALG® as being parametrized, up
to homotopy, by forms on the same algebraic 2- complex. To this end, note that
for n < m the associated algebraic complexes of (A", 3) and (A™, v) are chain

homotopy equivalent, where 3 is a bilinear form on J,, and # is the bilinear form

(1)

Hence by identifying 3 with v, we may regard 3 as a form on J,,, with no ambigu-

on J, defined by

ity as to which element (up to isomorphism in the category) of ALG? is associated

to it.

§4.4 Homotopy equivalence in DUAL?

We proceed to give necessary and sufficient conditions for elements of DUAL? to

be chain homotopy equivalent. Let

B = J R34 E
C = K -E%E%E

and let 3, v be G- invariant bilinear forms on B, C respectively.

Proposition 4.4.1 (B, 3) and (C,~) are chain homotopy equivalent if and only if there
exist maps ¢1,vy2 : J* — K*, ¢, 91 : K* — J*, which all augment to +1, and maps
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I:J*— Jand L : K* — K which factor through projective modules, such that the

following diagram commutes:

J—B>J*
NI
K —1> K*
q e
J"i"J*

and

1 —i1¢1 =61,
1 — 3¢5 =18,
1 - ¢y =7L,
1 - ¢3¥; = L.

and vy and ¢, augment to the same value and 12 and ¢ augment to the same value.

Proof: Firstly suppose we have a pair of inverse (up to homotopy) homotopy
equivalences f;,9;,71 =0, 1,2,3,4,5, between (B, ) and (C, v). Then we may induce
¢1, 92 from f>, f3 and induce 71, ¥2 from g1, go. These induced maps all augment to
+1 and make the diagram commute. Also and ¢ and ¢; will augment to the same

value and v, and ¢, will augment to the same value.

We also have maps I;, L; such that1—g; f; = ;0+8'I;_,and 1— f;g; = L;0+30'L;_,
where 9, &’ are the relevant boundary maps in each case and I; and L; are taken to
be 0, for i = —1,5. Let ¢, x denote the inclusions of J* in F,, K* in E respectively.

Then we may construct I, L, by setting I = t* oIy ocrand L = k* o Ly o k.
Clearly I and K factor through projective modules. We know
WBI = (B*) oo = (1 = gafo — Nida)e = ¢ — g2 for = 1(1 — P1¢1)

As . is injective, we have 1 — ¢, ¢; = G1.
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Similarly, we have

kYL = (kyr*)Lak = (1 — fago — L182)k = k — fagok = k(1 — ¢191)

and as « is injective we have 1 — ¢;¢; = vL.

Also
18 = M I(LBe*) = " (1 = g3fz — d3I3) = 1y — t*g3f3 = (1 — Y33)*

As * is surjective, we have 1 — 3¢5 = I(.

Again,

Lyk* = k*La(kyk*) = K*(1 — f3g3 — 65L3) = ke — K*f3g3 = (1 — P393 )k*
and as k" is surjective, we have 1 — ¢35 = L~.
Hence all the required conditions are satisfied.

Conversely, suppose that we have ¢1, ¢2, ¥, ¥2, I, L satisfying the required con-
ditions. We must construct a homotopy equivalence.

We may write B in the form

I -R4%ser®F g0 F

for some free module F, and stably free module S.
Simple homotopy equivalences connect (B, 3) and (B', 3) where

d/
B = J —-FRaoF ¥ R 370

Similarly, we may write C in the form

5/
K- E2TeE" S 7G]0 E

for some free module E, and stably free module T'.
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Simple homotopy equivalences connect (C,y) and (C’, y) where
/ * 62@1E 611
C = K'—-E@®F — E| - Z[G]
From now on we will write B’ as

7 - B4 40
and C’ as

6/ !
k' — E, 3 E 3 7/0)

We may extend v, 3, ¢1, ¢35 so that the following diagram commutes:

124

N— N e— N

d/. dl. - ﬁ . dl dl
z ZG) ——F* — > Fpr 5 J J* Fy —2» F| — 1> Z(G)
:t:tll fs] fql fal 051 ¢1l le fxl fol £1
5’1. . 6’2‘ I w"* vy K ’ 6; y 5'1
Z Z[G) E} E} K K* E; Ef Z[G]
iilJ gsj 941 931 w;l wlj 92l 911 gol +1
dl. d’. L. . dl dl
z Z(G) —> F* 2 5 Fl» J—2 Fy 2 1 "5 7(0)

For some projective module P, there exist mapsa : J* — Pand b : P — J such

that I = ba. As . is torsion free and P is projective, we have maps o’ : F; — P and

b : P — Fj* such thata = a’c and b = *V'. Let I; = b/a’. Then we have

Gl = 1*adi=ba=1
Let d5 = 3t and 65 = kyk*. Then

(1 = gafa — dsI2)dy = (L — gafot — LBL* I50))Be* = (1 — Y1y — BI)B* =0

As Fj is relatively injective, we may conclude that (1 — g2 fo — d4I2) factors through

dy. Hence we have some map I, : F{ — Fj, such that 1 — g fo = djI> + I d5.

We have
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(1-gfi —dyi)dy = dy—gi1fidy —d5y(1 — gafo — d3]>)
=dy— g fidy —dy+ g1 fidy, =0

Again Fj is relatively injective so (1 — g1 fi — d,]1) factors through d}. Hence we

have some maplj : Z[G] — Fj such that 1 — g f; = d51; + Iopd).

Let e : Z[G] — Z denote the augmentation map. From commutativity of the above
diagram, we know that ¢(1 — fogo) = 0. Hence we know that the image of (1 — fogo)
lies in IG C Z|G]. Clearly the image of d}Ij also lies in /G. Hence the image of
(1 — fogo — dyIo) lies in IG.

As before we have,

(1—gofo —dilo)d; = dy—gofod) —d\(1-g1fi —dy1)
= d} - gofod) — dy + gofod; =0

Hence (1 — gofo — d}Io) factors through e. Let W : Z — Z[G] satisfy
(1 - gofo —dyIo) = We.

As ¢ is surjective, the image of W must lie in /G. Butany map Z — | G is neces-

sarily equal to 0. Hence W = 0 and 1 — go fo = d} lo.

We proceed to construct I3, I3 in a dual fashion. We have already shown that
(1 — gafa — djI2)dy = 0. By commutativity of the diagram, we may conclude that
dy(1 — g3fs — Idy) = 0. By projectivity of F;*, we have some map I3 satisfying

1- g3f3 = Ing + d,2*13.
Again,

dy (1 = gafs — Isdy) = dy — g3fsds — (1 — gsfs — Iadj)dy = 0
and by projectivity of F{*, we have a map I : Fi* — Z[G] such that

1 - g4f4 = Igdg“ -+ d/1*14.
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Repeating the method once more, we have

d'(1 = g5 fs — L4dy") = dff — gafady — (1 — gafs — Izds)d* =
so (1 — g5 fs — I4dy’) factors through €*, and we have some map W’ : Z[G] — Z
satisfying 1 — gs f5 = I4d}* + e*W'.

We know that e*W'e* = (1 — gsfs — Lid[*)e* = 0. As ¢* is injective, we may
conclude that W’e* = 0. So W’ factors through Z[G]/e(Z) = IG*. However, any

map I/G* — Z is necessarily equal to 0, so W' = 0 and 1 — g5 f5 = I4d}*.

Collating, we have:

1 - gsfs = Lydy

1 - gafs = Izdy +dy Iy

1 —g3fs = Iady + dy' I3

1 - gafo =d3la + I1d,

1 —g1fi =dydy + Ipd)

1 —gofo=dilo

Hence the I;, for i = 0,1, 2, 3, 4, form a chain homotopy from the identity to g; f;.
Similarly we may construct maps Lo, L1, L2, L3, L4, which form a chain homotopy

between the identity and the fig;, i = 0,1,2,3,4,5.

Hence (B, 3) is chain homotopy equivalent to (B’, 3), which is chain homotopy

equivalent to (C’, v), which is chain homotopy equivalent to (C, v), as required.

d

Note that this proposition does not imply that the underlying algebraic 2- com-
plex is not important in defining the isomorphism class of an object in DUAL#?,
as whether or not a map J* — K* augments to £1, is dependent on the precise

inclusions of J*, K*, in F,, E5 respectively.

Lemma 4.4.2 Let (B, 3), be as before. Suppose we have some homotopy equivalence f.,

from (B, §8) to its dual. Then + f, is chain homotopic to a chain map of the form:
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-

A p G p b, e p 4
eI lil 16 Lo |1 11

»

d
Fg—liF F2—>F2—-+F1 FO

for some maps 6, : Fy — F5, 0, : Fy — F3.

Proof: Consider the chain homotopy equivalence:

d; d’ d
F; — Ff 5 F; = FQ——>F1——>F0

las  lag |az |oaa |1 |ag

d‘ d‘ d‘
Ff — FF > FQ——~>F2——->F1——-—>F0

where the a; are equal to the f; or the — f;, depending on which is necessary to force
the induced action on the cokernel of d; to be the identity.

The kernel of d} and the cokernel of d; are both Z. Hence ap and as must induce
multiplication by £1 on Z. Our choice of sign forces ag to induce multiplication by

1.

J*“—*FQ Fl——>Fo—PZ

1oy lae oy |ag |1

rARE RS Rz
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AN SR Ny AN IR RN

I laj laj Lo |41

PAINY NNy ST S/

Hence we have maps Ip : Fp — Fy and I) : F; — F, such thatd) Iy = 1 — ap, and
Ipdy +dol} =1 — .
Similarly we have maps I4 : F} — Fjand I3 : F — FY,suchthatd,Ij = +1—qaf,

and IZd] + d2]§ ==x1- aZ.

Nextset 0, = az+/I1d2 and 03 = a3+d;13. Then taking I = 0, the [;,7 =0, 1,2, 3,4

form the required chain homotopy.

§4.5 Poincare Duality

Let X be a CW- complex with finite fundamental group G. Let L,(X) denote
C.(X) with coefficients restricted to Z. As G is finite, we may naturally identify
H,(X;Z[G)) with H,(L,(X);Z) and we may identify HP(X; Z[G]) with H?(L.(X); Z).
We make frequent use of these identifications, and hence assume natural maps
HP(X;Z[G)) x Hy(X;Z[G]) — Z. We now make a more specific statement of

Poincare Duality:

Theorem 4.5.1 (Poincare Duality) Let M be an element of TOP® and M’ be homo-
topy equivalent to M. Then, given a generator of Hs(M'; Z[G)), denoted 1, there exists
a chain homotopy equivalence, over Z[G), ¢ : C.(M')* — C.(M’) satisfying the follow-
ing: Given a € HP(M'; Z|G)), we have ¢.(a) = n ™ a. Here ¢, denotes the induced map
HP(M';Z]G)) — Hs_,(M'; Z|G)).

Corollary 4.5.2 Givenp € {0,1,2,3,4,5} and o € HP(M';Z|G]), B € H>P(M'; Z|G))
we have B(p.(a)) = a(d«(0)).
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Proof:

B(6s(a)) = B(n~a) = (a ™ B)n = —1PEP(8 " a)y = —176Pa(n ™ g) = 176 Pa(¢.(8))

As either p or 5 — p must be even, we have 8(¢.(a)) = a(¢.(8))

Suppose now, that we have chain homotopy equivalence f : C,(M’) — A, for
some algebraic 5- complex A. Then we have a homotopy equivalence f o ¢ o f* :
A* — A Let¢' = fogo f*. If achain homotopy equivalence A* — A is chain homo-
topic to one constructed in this way, starting with some generator of H5(J\'~I’; Z|G)),
we say it is a duality equivalence. Note that (up to sign) the maps from cohomol-
ogy to homology, induced by a duality equivalence, are determined by Af (with

respect to the isomorphisms f. and f*).

Lemma 4.5.3 Given p € {0,1,2,3,4,5} and o € HP(A; Z[G]), B € HP(A; Z[G]) we
have 3(¢,(a)) = a(¢,(3)).

Proof: 3(6,(a)) = B(f+¢. () = F*(8)(@-f*(a)) = £*(a)(6.1*(8))
= O(f*¢*f*(3)) = O(Q‘)lx(ﬁ))

By theorem 4.2.1 we may choose A to be of the form (B, 3) for some algebraic 2-
complex B = J* N % B i Fy — Z and bilinear form 3 : J x J — Z. Let

d3 = ¢*3i. The algebraic complex (B, 3) is written:

di d; d: d d
Z-—+F6—I>Ff—2>F5—“>F2—2)F1—l»Fo—--»Z

As F§ is the dual of Fj, we may apply elements of Z (occurring on the left of this

sequence), to Z (occurring on the right of this sequence). We follow the convention
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that the choice of identification of the kernel of d} with Z, forces this application to
be given by multiplication.

Note that the copy of Z occurring on the left of the sequence may be identified with
Hs((B, 8); Z|G)). Similarly, the copy of Z occurring on the right of the sequence may
be identified with Ho((B, 3); Z|G]).

The complex (B, 3)* may be written:

dy a3 d;
Z-+FAFR SR 3R3RnSR-»2

This sequence only differs from (B, 3) in the middle term.

Again, note that the copy of Z occurring on the left of this sequence may be iden-
tified with HO((B, 3); Z[G)). Similarly, the copy of Z occurring on the right of this
sequence may be identified with H>((B, 8); Z[G)).

Leta € H°((B, 3); Z[G)) be represented by the integer a, and let y € Ho((B, 8); Z[G))
be represented by the integer c. Then our conventions imply that application of el-
ements of H%((B, 3); Z[G]) to Ho((B, 3); Z|G)) is given by the application of Z to Z,
which was forced to be multiplication. Hence a(vy) = ac.

Leta € H®((B. 3): Z|G]) be represented by the integer a, and let vy € H5((B, 3); Z[G))
be represented by the integer c¢. Then our conventions imply that the application
of elements of H>((B,3); Z[G)) to Hs((B, 3); Z|G]) is given by evaluation on the
application of elements of Z to Z, which was forced to be multiplication. Hence
a(y) = ca = ac.

Let r. y € Z be chosen so that the following diagram commutes:

ARG S e W N S TR
yl o5l oyl o5l @5l 11 ol !

dj d; d: d d
Z——-)FJ—LF;——%FQ‘—:,%FQ——%FI——IPF()——+Z
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Lemma 4.5.4 x=y
Proof: Let o € H®((B,();Z[G]) be represented by the integer a, and let v €
H®((B, B); Z|G)) be represented by the integer c. By lemma 4.5.3 we know
a(@«(7)) = 7(é«(a)). Hence we have ayc = a(¢.(7)) = v(é«(@)) = cza.
As a and v were picked arbitrarily, we must have z = y.
g
As ¢’ is a homotopy equivalence, we must have z = +1. If z = —1, we can replace

n with —n. Hence without loss of generality we have a duality equivalence:

z2--FRAripipiniy Ly
1] o5l o4l 5] ¢l o1 ol 11

4

2-FRipipapdpndn g

Hence by lemma 4.4.2, for some maps 6, 62 we have a duality equivalence:

d; d3
F(;—“’Fl 2 F2 3 F2 FI_PFO

11 1T 16 16 |1 11

d7 d d-
gy o i R LY S SR LI

A natural question to ask at this stage is, whether or not we can choose (B, 3) such
that the identity map is a duality equivalence. If this is possible for a manifold, we
say that it is self dual. In the next section, we will show that not all manifolds in
TOP? are self dual.

Note that if the identity map is a chain map (B.3)* — (B, 3), then
dj = 1d% = d31 = d3. d3 = (* .

As dy = (* 31, with ¢ injective and (* surjective, we have 3* = 3. So 3 must in this

case be symmetric.
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§4.6 Linking Number

In this section we construct the linking number. We show that if a manifold is self
dual, then its linking number is symmetric. We then use the fact that the linking
number is always antisymmetric, to show that a self dual manifold, M, must satisfy
Tor(Hy(M:Z[G])) = Z,*, for some integer k. Finally we refer to the existence of
manifolds not satisfying this homology condition, which are therefore not self dual.

Let (F;,d;),©1=0,1,2,3,4,5, be a free, finite, algebraic 5- complex over Z|G]. Then
an element of Tor(H3(F;, Z|G])) may be represented by a map F; — Z, of the form
%wdg, for some integer a and w : Fp — Z.

Similarly, an element of Tor( H,(F;, Z[G])) may be represented by an element of F;
of the form %dsl‘, for some integer b and x € F3.

Hence we have a bilinear map Tor(H3(F;, Z[G))) x Tor(H2(F;, Z|G))) — Q/Z, given
by

1 1 1
(;wd;;, Edga:) — E‘w(dga:)

Let Z denote this bilinear map.

Lemma 4.6.1 This bilinear map is well defined.

Proof: Suppose we had made a different choice of representative to wds. Then
the different choice would differ by a map of the form vd3, for some map v : F> — Z.
We have

1 1 1 1
(Ewdg + vds, Edga:) — Ew(dgx) + 'v(gdgx)

with v(3dsz) € Z.

Again, suppose we had made a different choice of representative to }dsz. Then
the different choice would differ by an element of the form d3y, for some y €: F3.
We have

1 1 1 1
(awd;;, Edg:c + dsy) — Ew(d;;l) + ;;wd;;y

i 1‘1 ]
with Swdsy € Z.

Either way, the value of the bilinear map, in Q/Z is unchanged.
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a.
Suppose now we have another free, finite algebraic 5- complex, (E;,4;) and a
homotopy equivalence f : (Fj,di) — (Ei,d;). Let %wdg represent an element of

Tor(H3(E;, Z[G))) and let }d3x represent an element of Tor(Hz(F;, Z[G])). We have:

1 1, 1 1 1
[H(-wds) = = f(wd3) = ~wds f3 = ~w fadz = ~w fod3
a a a a a

and

Ju(Gdsz) = 3 foldst) = 3 fuldsz) = hafaz
Hence:

Z(f*(%w%), %dﬂ) = Z(%(wad;;, %dsf) = %u’fz(dﬁ)

1 1 1 1 1
= wassfsf = Z(Ew%, 553f31) = Z(Ewés,f*(gdafl?))

So the maps f, and f* are adjoint with respect to Z.

Suppose now that Af” is homotopic to some element of TOP3, and (B, 3) is chain
homotopy equivalent to C.(M'),viaa homotopy equivalence f : C.(M') — (B, ).
Let ¢ denote a duality equivalence (B, 3)* — (B, 3) and let ¢ be a homotopy inverse
to it.

Let © denote Tor(H2((B, 3); Z|G])). We define the linking number on (3, 3) to be
the bilinear map v : © x © — Q/Z, given by:

v(z,y) = Z(Y.z,y)

Let h denote a homotopy inverse to f. Suppose we have a homotopy equivalence
g: C.(M’) — (C.7). Let k denote a homotopy inverse to it. Then a duality equiva-
lence (C,v)* — (C,7) is given by gh¢h*g*. A homotopy inverse to that is given by
K*fryfk. Letm = fk.
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Now let ©' = Tor(H,((C,v); Z[G])) and let v/ be the linking number
O’ x © — Q/Z. We have:

Viz,y) = Z(m*Yumaz,y) = V' (z,y) = Z(Ysm.z, myy) = v(m.z, my)

by the adjointness property. Hence we have that the linking number is well defined
up to isomorphism. In particular, such properties as being symmetric or antisym-

metric are independent of the choice of (B, 3).

Theorem 4.6.2 (see [1], Lemma D(ii) ) v is antisymmetric.

Note that [1] is concerned with simply connected, closed, orientable 5- manifolds.
However, the fact that G is finite means that M will be closed, simply connected
and orientable.

We now describe v in terms of 3. We know that H((B, 3); Z[G]) is the cokernel of
3 :J — J*. Hence © = Tor(H;((B, 3); Z|G])) consists of maps J — Z of the form
13(z. ), witha € Z,z € J.

LetH ={he J®Q| pB(h,zr) € Z Vzx e J}, where we take the natural extension
of 3 to J ® Q. This extension restricts to a form on H. Any element of © may then
be written in the form 3(h, _), for some h € H.

Let K = {k € H| J3(k,z) = 0 Vz € J}. Then the set of maps of the form
3(h,_), h € H, are naturally identified with H/K. Two such maps are homologous
precisely if they differ by a map of the form §(z, _), r € J. Such maps are naturally
identified with J/K. Consequently, we have © = H/(J + K).

Let A; : J — J be the map induced by 3 and let Ay : J — J be the dual of the

map induced by y». We will now compute v(z/a,y/b), for r,y € J,a.b € Z.

r/a represents the element of © corresponding to the map 13(z, ). Hence

vu(r/a) = 13(x, A2). Applying this to y and dividing by b gives:

v(zx/a,y/b) = aibﬁ(r’ A2(y))
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From the commutativity of the square

g2

1
6‘

J—J
we know that (z, A2(y)) = B(y, A1(x)), for all z,y € J. Hence
Bz, A2(y)) + B(y, Ao(x)) = B(z, (A1 + A2)(y))-

The fact that v is antisymmetric may therefore be stated as follows:
Lemma 4.6.3 If a|((x, -) and b|3(y, -) then ab|B(x, (A1 + A2)(y)).

We now suppose that M is self dual. We may choose (B, 5) such that we may take
¢ and ¥ to be identity chain maps. In this case 8 will be symmetricand A\; = Ay = 1.
Hence from lemma 4.6.3 we have that if a|3(z, _) and b|8(y, -) then ab|23(z, y).

We will denote the kernel of 3 by H3. The inclusion of Hj in J splits over Z. Let
V denote a complementary space. By combining a basis of Hs3, with a basis of V,

we obtain a basis of J, with respect to which, we may represent 3 by a matrix B.

(1)

The condition m divides 3(z,y) for all y € J, is equivalent to m|Bz. Hence we

Then B will have the form

where Det(C) # 0.

have:
Lemma 4.6.4 m|Bxr and l|By imply that ml|2zT By for all integers m, land x, y € J.
Lemma 4.6.5 m|Cz and l|Cy imply that ml|2zT Cy for all integers m, land z, y € V.

Proof: If m|Cr and {|Cy then m|Bx’ and l|By’, where &’ = (0,z) and y = (0,y).

Consequently m!|2x'" By'. But 22" By’ = 227Cy so mi|22TCy.



CHAPTER 4. ALGEBRAIC POINCARE 5- COMPLEXES 136

Note that C is invertible over Q and symmetric. Note also, that © = coker(C).

Lemma 4.6.6 If © has a non-trivial element of order k, then there exists some vector

x € V, such that k|Cx and k, x are coprime.

Proof: Some vector must have order k£ modulo the columns of C. Hence multi-
plying that vector by k, gives Cx for some z. If | were some non-trivial divisor of
z and k, then Cz/l would be in the image of C and our original vector would have
order less than or equal to k/1.

a

Suppose O has a non-trivial element of order k. Let =’ denote x factored out by
the highest common factor of the components of x. As k is coprime to z, we still
have k|Cz'. We may extend the vector z’ to a basis of V. Let D denote the matrix

representing the bilinear form represented by C, with respect to the new basis.

We know that D is a symmetric matrix with non-zero determinant. Also we know
that if m|Dx and {| Dy then m!|2zT Dy, for any z,y € J. Finally, we know that the

first row and the first column of D are divisible by k.

Lemma4.6.7 k£ =2

(1)

Proof: Let e; denote
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As D has non-zero determinant, we may choose some vector v such that Dv =
me; for some positive integer m.
We have v De; = m. As m|Dv and k|De;, we know that km divides 2m. m is

positive, so k = 2.

Corollary 4.6.8 © = Z,*, for some s.

Proof: © is a finitely generated Abelian group, whose non-trivial elements all
have order 2.
a
We have shown that if M is self dual, then Hy(M; ZG) = Z" ®Z§ for some integers
r and s. To show that elements of TOP® are not always self dual, we need only
show a manifold which does not satisfy this homological condition.

We refer again to [1].

Proposition 4.6.9 (See [1], lemma 1.1(i)) For each integer k > 1, there exists a simply

connected, closed, manifold My, with Hy(My; Z) = Zy, & Zy.

Lemma 4.5.4 tells us that for any manifold, we may choose (B, 3) so that we may
take both A\; and \; to augment to 1. If the manifold is simply connected (as above),
then we are working over Z, so J is free and the augmentation condition is vacuous.
However, it is possible that some condition on G could force closed, orientable,

simply connected manifolds with fundamental group G, to be self dual.
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