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ABSTRACT

Due to the dynamic nature and dynamic routing capability of active packets, 

security in active networks should be hop-by-hop based. This thesis discusses 

the identified drawbacks of existing approaches. These drawbacks are: the high 

performance overhead generated by per-hop Security Association (SA) 

negotiation prior to secured active packet transmission; the high complexity in 

SA negotiation handshake process; active packet can only be securely 

transmitted after SA negotiations; the shared key set generated for protecting 

active packets may not have Perfect Forward Secrecy (PFS); lack of 

confidentiality protection on exchanged symmetric keys and active packets; 

lack of SA negotiation power; and scalability issues. This thesis presents a 

novel hop-by-hop active network security management approach known as 

Security Protocol for Active Networks (SPAN). SPAN is designed to enable 

secure active packet transmission during a series of hop-by-hop SPAN SA 

negotiation along a new execution path, instead of after. The design of SPAN 

has taken into consideration the factors of security, efficiency, flexibility, 

scalability, and applicability. SPAN is resistant to replay, man-in-the-middle, 

impersonate attacks. SPAN is designed to detect DoS attacks much more 

efficiently. Furthermore, SPAN is uniquely designed to enhance the robustness 

and efficiency of underlying active networking systems.
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1 Introduction & Background

1.1 An Overview

Today’s Internet consists of millions of interconnected nodes, which are divided 

in interconnected domains that are managed by different Internet Service 

Providers (ISPs). Connections are typically made between two (or more) end 

points that are located at the edges of the network. High-speed routers are 

used in the core network simply as packet routing devices that route packets to 

their destinations. Figure 1 shows a typical example connection that allows a 

user to access a file server in his office in today’s Internet.

Internet

Connection 
/ (file access)

File server 
(end point)

Client’s PC 
(end point)

Routers

Figure 1 -  A typical connection in the Internet

Over the years, the possibilities of utilising the available resources on routers 

(that are currently being used as packet forwarding machines) have been under



investigation. Active networking, or the concept of Active Networks (ANs), was 

first described in [1]. In [1] and [2], the authors discussed respectively that 

active networking technologies would allow active network users to launch their 

customised executable code (in the form of active packets) to nodes in the 

network. In addition, the benefit of introducing active networking technologies to 

the Internet was highlighted: a range of new applications (e.g. new Internet 

services) would be enabled through the decoupling of services from the 

underlying architecture. It was further discussed in [3] that active technologies 

could be interpreted as a means to enable the network to carry out the role of a 

computer, in order to support a wider range of (new) services in the network. 

Figure 2 shows the concept of (new) service deployment via active technologies, 

in which a network administrator may configure or customise, via active 

management applications, the features of the networks via active technologies, 

in order to create a tailor environment to support a range of services (e.g. a 

QoS-guaranteed access to a remote file server). In other words, active 

technologies “open up” the resources that are currently available in the Internet 

to network users; hence provide the opportunities to create and support 

customised (new) services in the Internet.



_ n xi NetworkConfiguration |[ j adminjstrator
(via active application

technologies)

Internet
QoS-

guaranteed
access

 U
File server 
(end point)

Client’s PC 
(end point)

Routers

Figure 2 -  (New) service deployment via active technologies

More specifically, active technologies could potentially allow a party to install its 

own programs and run services on any nodes in the network, in a way similar to 

how programs are installed and run on computers today. Installed programs are 

then executed in order to support the operations of (new) network-wide 

services.

Since the introduction of the concept of active networking, a series of active 

networking programs/projects were funded by the Defence Advanced Research 

Projects Agency (DARPA) [4]. Several working groups were created within 

DARPA active networks program to address various architectural issues in 

active networking, such as the AN Node Operating System (NodeOS) Working 

Group [5], the AN Security Working Group [6], and the AN Composable 

Services Working Group [7], A document [8] that describes the consolidated
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work of the DARPA active networks program working groups was prepared as a 

draft Request For Comments (RFCs). A survey that describes the fundamental 

concepts of active networking, and the research work carried out during the 

introduction stage of the active networking concept, can be found in [9].

There are currently two implementation approaches to realise the concept of 

active networks: the in-band approach and the out-of-band approach. The 

in-band approach involves the use of discrete capsules which are essentially 

executable programs (or code) encapsulated in traditional data carrying 

packets (such as IP packets). These packets - known as active packets - are 

intercepted and executed at active nodes along the path [10]. In contrast, the 

out-of-band approach involves the use of existing packet format, and the use of 

(external) separated mechanisms, to install additional functionalities on routers 

in a dynamic fashion. For example, the active extension switchlets [11] are sent 

to nodes in the network, which then load new services onto the nodes to enable 

the processing of other switchlets. Note that the fundamental concept of 

in-band and out-of-band approaches is the same: existing routers’ 

functionalities are extended to process packets carrying some form of control 

code.

In order to use any new technology, the related security threats must be 

identified and addressed. Thus, the discussion of the use of active technologies 

for supporting (new) services in the network would be incomplete without an 

investigation of the relevant security issues. A known security issue of active 

networks, i.e. hop-by-hop protection for active packets, is addressed in this 

thesis. Hop-by-hop security is in contrast to traditional end-to-end security in 

today’s Internet. Normally, packets are sent in an end-to-end fashion (Figure 1).
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A packet is sent by a client, and received by a server (vice versa). In this case, 

only two nodes located at either end of a communication link are involved. The 

intermediate nodes (i.e. the nodes in-between the client and the server) simply 

route the packet to its destination. The need for hop-by-hop security in active 

networks is due to a unique feature of active networks: in contrast to passive 

networks' that route data packets between end nodes (section 8.11 on p. 179), 

active networks use control packets that may change state as they traverse the 

network. Intermediate nodes (i.e. the routers in Figure 1) are no longer simple 

packet forwarding machines, but they are now packet intercepting and 

forwarding machines, that intercept active packets on the wire, execute the 

code carried in the packets, and (optionally) add the execution results to the 

packets before forwarding the packets to their destination. The state-changing 

feature of active packets traversing the insecure Internet creates new security 

challenges.

1.2 Motivations

This thesis reports on an investigation to develop a secure, efficient, flexible, 

and scalable hop-by-hop security solution for protecting the authenticity, 

integrity, confidentiality, and non-repudiation [12] of active packets that are 

transmitted in a hop-by-hop fashion in active networks.

The author of this thesis was an active member of the European 

Union-lnformation Society Technologies (EU-IST) active networking research 

project, i.e. Future Active IP Networks (FAIN) [13], during 2001-2004. The 

author was a member of the security architecture group and the active node 

architecture prototype development group. The author’s incentive to develop

1 A passive network is one that transmits data packets through passive nodes (e.g. routers) only.
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hop-by-hop security systems was initiated during his participation in the FAIN 

project.

1.3 Objectives

The reason for developing a hop-by-hop security system for active networks 

was to protect active packets. Note that in contrast to conventional passive 

packets (section 8.11 on p. 179), active packets are dynamic (i.e. that they may 

change state at each intercepting active node during transmission). Thus, 

instead of using end-to-end security techniques that protect passive packets 

(that do not change state during transmission), hop-by-hop security is required. 

Due to the scope and nature of this thesis and space limitation, this thesis shall 

neither discuss the motivation of active technologies, nor justify the impact of 

active technologies. Note that this thesis investigates security management; as 

such, discussions on technological advances in cryptographic algorithms are 

out-of-scope in this thesis. However, relevant security terms are presented in 

the Appendix, and all security terms are referenced.

1.4 Thesis Structure and Organisation

This thesis is organised as follow: first, the fundamental concepts of active 

networks will be presented. Then, one of the major security challenges of active 

networks, namely, hop-by-hop security, is addressed. This is followed by a 

detail discussion of the advantages and limitations of existing solutions for 

hop-by-hop security in active networks. Then, the author’s solution, SPAN, will 

be presented. The SPAN protocol will be discussed and evaluated against 

relevant existing solutions. This thesis ends with a conclusion, future work, and 

appendix.
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1.5 Active Networks

1.5.1 An Overview

An active network does not exist on its own, it is meant to co-exist with existing 

networks such as the Internet i.e. a passive network. An active network, 

consists of both passive nodes and active nodes. An active node is a passive 

node with an active platform installed. An active node transmits and processes 

active packets that carry executable active code. Active codes in active packets 

are executed on intermediate active nodes to perform various tasks. Figure 3 

shows an example active network.

The point to note is that an active network is a store-compute-and-forward 

network (in contrast to a store-and-forward passive network). An active network 

is composed of a mixture of interconnected active and passive nodes. Active 

nodes across heterogeneous administrative network domains inter-work with

Active node
Domain3

Domain 2

Domain 1

mdwgagm

Active platform

Passive node (htar router}

Figure 3 -  An example active network



each other. Active packets (which carry executable active code) are injected 

into the active network, and are intercepted at desired intermediate active 

nodes. Active codes in active packets are executed at intermediate active 

nodes, before the packets are forwarded to their next hop. The execution of 

active code on active nodes creates the opportunity for new service deployment 

in today’s networks. In section 1.5.3 (p.24), an example will be given to show 

how active networks may operate in practise.

1.5.2 Common Terms in Active Networks

Some terms that are commonly used in active networks are defined below:

■ Active Packets

These are special type of IP packets. Active packets use standard transmission 

protocol such as User Datagram Protocol (UDP) and Transmission Control 

Protocol (TCP). Active Network Encapsulation Protocol2 (ANEP) [14][15] is 

defined as the active packet header protocol. ANEP packets are carried within 

UDP packets. Active packets’ content, i.e. active static code and dynamic data 

(section 1.6 on p.28), are determined and executed at active nodes.

■ Active Code

There are executable codes that are carried in active packets. They can be any 

type of executable code ranging from programs written in assembly code [16], 

or programs implemented as Java classes [17], or Simple Network 

Management Protocol (SNMP) commands.

■ Active Node

An active node is composed of a passive node and an active platform. If a

2 ANEP is the work of many researchers from different institutions researching active networks.. 
The purpose of defining ANEP is to specify a mechanism for encapsulating Active Network 
frames for transmission over existing network infrastructure such as IP and IPv6. At the time of 
writing, ANEP is defined as a draft RFC.



hardware passive router is used as the underlying router, a computer is 

attached to the hardware router (e.g. through Ethernet cables). An Operating 

System (OS) and the active platform (e.g. some special software) would be 

installed on the computer. The active platform can then control the hardware 

passive router. If software passive routers are used instead, an active platform 

will be installed on the computer, and routing will be carried out by the OS 

installed on the computer.

Active nodes are also capable of forwarding packets just like passive nodes. In 

addition to packet forwarding, active nodes are capable of intercepting active 

packets, investigating and executing the active code carried in the packet, and 

performing various computational tasks as specified in the active code. 

Optionally, execution results may be added back to the packet before the 

packet is forwarded to its next hop.

■ Active Platform

Over the last few years, a general architecture for active networks has evolved 

[18]. In general, this architecture, i.e. an active platform, is a software platform 

that is capable of interpreting active packets on the wire, and executing the 

active code carried in the active packet. An active platform enables an active 

node to possess the node resources to compute various computational or 

operational tasks.

In [19], a generalised architecture for active platform was presented. This 

architecture identifies three layers of code running (Figure 4). The lowest layer 

is the NodeOS, which hosts several support services such as resource control, 

security, and packet (de)multiplexing. On top of these support services are 

Execution Environments (EEs), which can be considered as resource



abstractions for supporting service execution, deployment, configuration, and 

more. On top of the EEs are Active Applications (AAs), such as end user 

service applications and management applications. AAs make use of the 

services and resources on the node, which are made available through the 

interaction between the EEs and the NodeOS.

User applications

Resource abstraction

DeMUX, Security, 
Resource Control, etc.

Packet
interception

Execution 
Environment 1 (EE)

Active Application 1 
(AA)

Node OS

>  Packet flow
V-''

Figure 4 - The generalised active node architecture

■ NodeOS

The NodeOS abstracts the hardware (i.e. the router), and provides a range of 

low-level management facilities to support the operations of the EEs (and 

subsequently the AAs) [20]. The communications between the EEs and the 

NodeOS are conducted through a set of Application Programming Interfaces 

(APIs). Example management facilities are packet multiplexing (i.e. intercepting 

and examining packets from the wire), security checks on intercept packets (e.g.



authentication and integrity checks), and resource control (e.g. outgoing 

network bandwidth, memory access control).

■ Execution Environments

EEs implement a very board definition of a network API, ranging from 

programming languages to virtual machine [21]. Example EEs are the Packet 

Language for Active Networks (PLAN) [22], Active Node Transfer System 

(ANTS) [23], and the Future Active IP Networks (FAIN) component-based, and 

more. In general terms, an EE is an active network’s programming environment, 

that when instantiated, it is a runtime environment for the execution of active 

code (that are carried by active packets, which are intercepted by the NodeOS 

from the wire). Thus, an EE may be viewed as a definition of a specific 

programming model for the development of a specific AA. An EE may 

implement a set of resource abstractions, using the building blocks as provided 

by the APIs, which link the NodeOS and the EE. To create a service, one may 

manipulate the set of abstractions that are implemented by the EE.

■ Active Applications

An AA is a user-space application, which provides services to users of active 

networks. An AA may trigger code to be downloaded into active nodes, which 

subsequently customise the network to support its needs. An example AA could 

be a QoS-guaranteed media delivery application, which triggers the active 

platform to reserve certain amount of bandwidth along the path of a media 

stream (by injecting active code into the networks).

1.5.3 An Example Active Network Operation

A simple example that shows how an active network may operate is shown in 

Figure 5. The purpose of presenting this example is to give the readers a better
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understanding of the key features of active networks3. This example is chosen 

because it highlights certain features of active networking, which will enable the 

readers to identify the contrasts between the features of active networks and 

passive networks. For example, active networks have the flexibility to support 

dynamic code execution; the capability of supporting (new) service deployment 

in the network; and most importantly, active networks may change the states of 

active packets.

Terminal machine□
Service request

\  _

Active
Packet

injection
* 9  a t

Source 
Active Node

Active Packet
execution

g

Intermediate 
Active Node

Active platform

Passive node (tVw router)

Active Packet 
execution

m — ■ !mr nr
To other 

nodes (e.g. 
Internet)

Destination 
Active Node

Figure 5 -  An example of active network operation

Figure 5 shows an active network that consists of both passive and active 

nodes, which is connected to the Internet. The scenario is that the network 

administrator (which generates commands from a terminal machine) would like 

to get the IP addresses of the traversed active nodes of an active packet via an

3 This example is based on the demonstration that the author presented at the FAIN project audit 
in March 2003.



active management application. Traditionally in passive networks, the 

administrator/application may issue a traceroute command, which determines 

the packets’ route. The fundamental concept of traceroute is to send traceroute 

packets to a particular destination on the network, which triggers bypassing 

nodes to send Internet Control Message Protocol (ICMP) messages to the 

original sender (in this case, the terminal machine). These ICMP messages are 

used by the traceroute program to generate a list of hosts through which the 

packets have traversed en route to the destination.

In the active network scenario, the management application, which is located 

on a terminal machine (operated by, say, the network administrator), triggers 

the following procedures:

1. An active packet that carries executable active code is injected at the source 

active node. The executable active code (when executed) is capable of 

retrieving the IP address of the active node that the active packet is currently 

residing. The active code, in this example, is a Java class that invokes a 

particular SNMP GET command that gets the IP address of the node.

2. The packet is then intercepted on each intermediate active node. Note that 

there are also passive nodes residing along the communication path. The 

packet is passed onto its next hop if intercepted by a passive node. As far as 

the passive nodes are concerned, an active packet is the same as an IP 

packet. This is because active technologies do not override or replace IP; for 

example, an active packet carrying small size static code is encapsulated into 

the payload of a UDP packet prior to packet transmission4.

4 This arrangement applies to transmitting small size static code only. If the size of the static code 
was large i.e. too large to fit into the size of an UDP packet, an alternative approach would be to 
put a network location reference (e.g. IP address) in the active packet, instead of the actual static 
code. The reference refers to a network location where the static code could be downloaded. This
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3. The code carried in the active packet (which gets the IP address of the 

traversed active node) is executed on each intermediate active node. The 

result of code execution (the IP address of the traversed active node) is 

added back to the active packet.

4. The active packet will eventually carry a list of IP addresses. After traversing 

a certain number of hops5, the packet is returned to the source node by the 

active platform (the original source address is obtainable from the code). The 

network administrator retrieves the information (i.e. a list of IP addresses) 

through the management application. Figure 6 shows how the content of the 

active packet changes when the packet traverses the network.
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Figure 6 -  Changes in packet content

is an example of an out-of-band approach in active networks [14].
5 The Time-to-Live (TTL) value in this demonstration was set to 10 hops, which means the active 
node will stop forwarding the packet after it has traversed 10 hops. This value is needed to 
prevent packets from looping indefinitely in the network. The value may be adjusted to include 
more hops, the current standard is 255 hops for passive packets.



This scenario shows how active networks operate differently from passive 

networks; but at the same time, they may co-exist with passive networks. 

Instead of triggering hosts to drop the original packet and to send ICMP 

messages back to the original sender, active nodes may dynamically execute 

an active packet, add contents to the active packet, and route the packet back 

to its original source. These unique capabilities of active networking show that 

active networks are much more dynamic and flexible than passive networks. 

This high level of dynamicity and flexibility of active networks creates a new 

range of security challenges for active network developers.

1.6 Features of Active Networks

1.6.1 Dynamic Data and Static Code in Active Packets

The above example illustrates how active technologies may operate. The key 

point to note is that the content of an active packet may change whilst it is 

crossing the network. Figure 6 shows that in active networks, the result(s) of 

code execution is(are) added back to the packet before the packet is forwarded 

to its next hop. Using the example in section 1.5.3 (p.24), a new IP address is 

appended to the list of traversed IP addresses that are carried in the active 

packet, each time the active code is executed on an active node. The 

state-changing feature of active packets is known as the dynamic nature of 

active packets in this thesis.

Another point to note is that besides dynamic data, active packets carry static 

code. Static code refers to the executable active code that is generated at the 

source node prior to packet injection. The code is static in the sense that it is not 

to be modified when the packet traverses through the network Active packets 

may carry dynamic code: the term dynamic code means that the code injected



into the active network at the source node may be modified at other nodes. The 

reasons for generating dynamic code (or more specifically, modifying the 

original code) could be, for example, when an active node believes the original 

code is no longer suitable for its originally designed purpose (e.g. new network 

conditions may cause active network operators to generate new code to 

accommodate the new conditions); or it may want to add additional commands 

to the packet to fit its own needs. At the time of writing, the author has not come 

across the use of dynamic code in active networks. Thus, this thesis does not 

discuss the use of dynamic code in active networks. However, the security 

protocol presented in this thesis can be used to protect active packets carrying 

static code or dynamic code (section 3.9 on p.94).

1.6.2 Dynamic Routing in Active Networks

Note also that active packets support dynamic routing i.e. the route is not 

known in advance (at the time when the active packet is injected at the source 

node). This is because the next hop of execution may depend on the execution 

results [16][17][23], therefore only the node that a packet execution has just 

taken place would be able to decide where the executed packet should be 

forwarded to (Figure 7). Dynamic routing has a major impact on the design of a 

hop-by-hop security solution for active networks.
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Question 1: What are the difficulties of defining an exact route for an active 

packet at the point of packet injection at the source node?

Imagine a traveller would like to specify the fastest travelling route from one 

place to another on the London Underground, prior to beginning his/her journey. 

The traveller could specify a route if he/she had a (London Underground) map 

in hand (i.e. pre-knowledge of the entire network), and he/she had access to 

real-time congestion information of route(s)/station(s) (i.e. real-time network 

status). Then, the traveller could determine all possible routes, and determine 

the fastest route for his/her journey. Similarly, specifying a static execution route 

for an active packet is only possible when - prior to active packet injection - the 

administrator/management application is capable of specifying exactly at which 

nodes the packet should be executed. This requires the 

administrator/management application to have in-depth (real-time) knowledge 

of the managed network, and the network status remains static (e.g. no new 

congestion in the network). This requirement is not scalable because it cannot



be justified when the managed network is large, for example the Internet, which 

consists of millions of nodes. Furthermore, the network status may change in 

real-time (i.e. congestion may appear at any point and at any time).

Specifying a static execution route limits the scalability and flexibility of active 

packet routing. To enhance flexibility, active platforms should be capable of 

dynamically re-routing active packets, depending on real-time network status.

1.6.3 Hop-by-Hop Transmission

Because active packets may change state at each hop, this thesis refers this 

transmission model as the hop-by-hop transmission model [24][25][26]. 

Hop-by-hop transmission model is in contrast to the end-to-end transmission 

model of passive packets, the latter model involves packets that do not change 

state during their traversal through the network. A hop-by-hop transmission 

model is applicable to active packets due to the dynamic nature and dynamic 

routing capabilities of active packets. A hop-by-hop active packet transmission 

involves exchanging messages between pairs of nodes along the packet’s path; 

the node that sends the packet is the Initiator (section 8.9 on p. 178), the packet 

receiver is the Responder (section 8.15 on p. 189). An Initiator is a node where 

the principal resides. An example Initiator would be the source node of an 

active packet. A Responder would be a node that is about to receive an active 

packet from the Initiator e.g. the next hop of packet forwarding.

6 A principal is the actual creator of executable active code. For example, an administrative or 
management application that creates active packets. Active packets contain static code that is 
executed for control or management purposes.
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1.7 Security in Active Networks

1.7.1 Hop-by-Hop Security

Given that active packets may change state during network traversal, there is a 

need to protect the authenticity, integrity, confidentially and non-repudiation of 

active packets, in a hop-by-hop manner [27][28]. Example threats that are 

applicable to active packets are replay attacks, impersonate attacks, 

man-in-the-middle attacks, and DoS attacks [29] (see section 4.2 on p. 100 for 

more detail on these attacks, and how the author’s solution addresses these 

attacks). This thesis refers this security approach as a hop-by-hop security 

model. Figure 8 shows the deployment of a hop-by-hop security model in active 

networks. Note that two security tunnels are deployed in Figure 8: tunnel a is 

established between the source active node and the intermediate active node; 

whereas tunnel b is established between the intermediate active node and the 

destination active node. These tunnels are established separately in the 

network to enable a hop-by-hop transmission of active packets. Note further 

that in contrast, in passive networks, tunnels (e.g. tunnel z) are usually 

established in an end-to-end fashion.
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Hop-by-hop security is needed because:

■ The authenticity and integrity of static code must by verified at each 

packet intercepting node, based on the principal’s authenticity. This is 

because the static code should be verified based on the identity of its 

actual creator. Without hop-by-hop authenticity and integrity protection, an 

attacker may change the ownership or contents of the static code in active 

packets, resulting in compromised code execution on active nodes.

■ Static code must also be subjected to non-repudiation protection, so that 

the principal cannot deny of any wrongdoing should code execution 

compromises other nodes in the network. Otherwise, anyone may create 

and inject miscellaneous active packets, and deny any wrongdoing.

■ The authenticity and integrity of the dynamic data carried in a packet (i.e.



the execution results, or other information that an intermediate node adds 

to the executed active packet, and wishes to pass onto its next hop) 

should be verified based on the identity of the entity that the packet was 

last modified (i.e. based on the identity of the last execution node). This is 

because the data should be verified based on the identity of its actual 

creator. Integrity protection is important, otherwise attackers may change 

the content of active packets, resulting in compromised code execution.

■ Furthermore, the entire packet should be subjected to confidentiality 

protection; otherwise, intruders may obtain potentially sensitive 

information from the dynamic data on packets, such as code execution 

results.

Question 2: Is it beneficial to protect all (active and passive) packets with 

hop-by-hop protection?

The contents of passive packets would not change whilst the packets are in 

transit, only the hop count value in their headers would. Protecting the static 

headers and contents of passive packets is a form of end-to-end protection.

In active networks, the identity of the intermediate nodes between the source 

and the destination is important. This is because the data carried in an active 

packet is expected to be modified at some intermediate nodes during packet 

transmission. Upon receiving an active packet, each intermediate active router 

must verify:

■ The integrity of the packet arriving from its neighbouring active router.

■ The authenticity of its neighbouring active router (at which the active 

packet was executed and modified, and where the packet was delivered 

from).
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■ The authenticity and integrity of the source active router.

1.7.2 Challenges in Designing Security Solutions for Active Networks

This thesis suggests that the challenge in hop-by-hop protection is that there is 

a need to find a balance point between security and performance. For example, 

it may appear that the simplest solution to hop-by-hop protection is to digitally 

sign the modified parts of an active packet at each router (that packet 

modification has taken place). However, this is not practical. This is because 

asymmetric operations are much slower than symmetric operations (Question 6 

on p. 166). The scalability and efficiency evaluations on different asymmetric 

and symmetric approaches for protecting active packets in a hop-by-hop 

manner are presented in a later chapter of this thesis (section 5.4 on p. 140). 

Using symmetric keys would be an alternative, but because there is no 

centralised authority that distributes symmetric keys - in contrast to asymmetric 

keys where several well known Certificate Authorities (CAs) (section 8.1 on 

p. 162) exist - the use of symmetric keys in a hop-by-hop environment requires 

an efficient key distribution mechanism to generate keys between hops. Also, 

note that active packets support dynamic routing. This implies that the route is 

unknown at the point of packet injection, and further implies that a hop-by-hop 

security system must be capable of dynamically and efficiently setting up 

Security Associations (SAs) (section 8.16 on p. 189) between hops. A SA 

describes a set of security parameters that are needed for maintaining or 

operating a security channel.

Furthermore, existing active network systems assume compatibility. Existing 

applications in active networking systems currently assume that a piece of 

active code injected to the network can be executable on all other remote nodes.
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This is, obviously, an assumption that would not hold in a large-scale network. 

Thus, this thesis will also investigate a secure solution to ensure that, prior to 

establishing a SA, and sending across active packets, the communicating peers 

must ensure compatibility between themselves in a secured fashion.

Note that this thesis is investigating a secure solution for efficient hop-by-hop 

SA negotiation (and hence subsequent secure packet transmission) along a 

new execution path. This thesis defines a new execution path to be a path 

which no active packets have previously traversed (hence no pre-established 

hop-by-hop SAs), or a path of which previously established hop-by-hop SAs 

has expired, therefore there is a need to establish a series of new hop-by-hop 

SAs along the path (hence the name new execution path). In contrast, an old 

execution path would be one where active packets have previously traversed 

(hence hop-by-hop SAs have been established); and the hop-by-hop SAs have 

not expired (so there is no need to renew or re-establish hop-by-hop SA).
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2 State-of-the-Art in Hop-by-Hop Security

Existing active network security systems for hop-by-hop protection and related 

work are discussed in this chapter. Their features and drawbacks are identified.

2.1 Symmetric Cryptography for Hop-by-hop Security
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1) Forward symmetric key

V

3) Forward protected file

2) Symmetric key 
received

O '*
4) Protected file retrieved 
using symmetric key

Internet

on
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Figure 9 -  Secured communications using symmetric keys

Figure 9 shows how symmetric cryptography is used in today’s Internet. The 

sender must first establish with the receiver a symmetric key. This key will be 

used for protecting future traffic between the two. In a hop-by-hop environment, 

in order to transmit a packet securely to its next hop, the node (that the packet 

resides) must share a symmetric key with the packet’s next hop. This shared 

symmetric key is then kept securely on the node, and it will be used for future 

cryptographic operations on packets transmitted between the two nodes. Note
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that the basic assumption when dealing with network security is that the public 

Internet is insecure. As a result, the use of symmetric cryptography would be 

successful only if the shared key was distributed and kept securely. As a 

summary, an efficient, scalable and secure symmetric key distribution 

mechanism is needed to use symmetric cryptography in today’s Internet and 

active networks.

One may suggest not to bother with dynamic key distribution, but to 

pre-distribute shared keys to all nodes in the network. Pre-sharing keys might 

seem simple, but it is a static and a non-scalable key distribution method. It 

requires manual key generation and distribution. Internet Key Exchange v2 

(IKEv2) (section 2.10 on p.55) is a standardised protocol for dynamic key 

exchange in the Internet. IKE is published as a series of Request For 

Comments (RFCs). The latest version of IKE is IKEv2 [30], which has replaced 

its ancestor IKEvI [31][32][33]. A list of the important differences between 

IKEvI and IKEv2 can be found in [34]. The flaws of IKEvI are identified in [35]. 

When compared to IKEvI, IKEv2 is flexible but less complex, simplified, and 

with enhanced security techniques to address network attacks such as DoS 

attacks [36]. Since IKEvI is now obsolete, IKEv2 is discussed in this thesis.

2.2 Asymmetric Cryptography for Hop-by-hop Security

Asymmetric cryptography [37] uses two keys (i.e. known as a key pair): one for 

encryption, the other one for decryption. Asymmetric cryptography is generally 

used for authentication, but it may also be used for confidentiality protection. A 

private key is used for digitally signing a piece of data, and the authenticity of 

the signed data can be verified by using the corresponding public key. For 

instance, the Digital Signature Standard (DSS) [38][39] uses asymmetric
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cryptography for digital signature generation. Asymmetric cryptography can 

also be used for confidentiality protection, such as the Rivert Shamir Adelman 

(RSA) algorithms [40]. In RSA, a piece of data is encrypted by using the 

recipient’s public key. Only the recipient can decrypt the encrypted message 

(because the recipient is the only person who owns the corresponding private 

key for decryption). Note that asymmetric cryptography is more computationally 

expensive than symmetric cryptography (section 8.5.3 on p. 166).

The advantage of using asymmetric authentication is that source authentication 

is achieved, and there is no need for dynamic shared symmetric key 

establishment. Since Public Key Infrastructure (PKI) (section 8.1 on p. 162) 

[41][42] is used to distribute (public) keys, there is no need for each active node 

to dynamically generate and distribute hop-by-hop (symmetric) keys; but this 

implies a solution based on asymmetric cryptography would need a scalable 

and standardised certificate retrieval mechanism i.e. PKI. Because PKI has 

been deployed widely in a large scale (all web browsers support PKI), it is 

reasonable to assume that active nodes on fixed networks, i.e. the Internet, 

have access to PKI. However, asymmetric cryptography has some serious 

drawbacks when being used for hop-by-hop protection; not only because of the 

expensive performance overhead incurred, but also for the following reasons:

■ Unique private key ownership

Asymmetric cryptography requires a private key for signing, and a public key for 

verification. A packet will be signed by the source’s private key at the source 

node, and verified by the source’s public key at the intermediate node; but as 

the source’s private key is kept locally on the source node, the intermediate 

node is unable to reproduce the source’s signature after modifications to the
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packet have been made on an intermediate node.

■ Multiple signatures on packets

To solve the previous problem, each node would have to sign the packets by 

using its own private key. Thus the intermediate node would have to sign the 

modifications made on the packets with it own private key; but then the old 

signature, i.e. the source’s signature (that was generated by the source), would 

be overwritten. Thus, the destination node will not be able to verify the packets’ 

source authenticity.

To go round these problems, the packet structure would have to provide more 

than one field for keeping digital signatures. One field is used for keeping the 

source’s digital signature, another field is used for keeping the digital signature 

generated by the intermediate node, and so on. Thus, the following packet 

format should be used (Figure 10). Note that Packet Data is the original data 

generated by the source node, whereas Packet Data’ is the data created by an 

intermediate node.

UDP HeaderIP Header Packet Data Packet Data’
Digital

Signature
(Source)

Digital
Signature

(Intermediate
Node)

Figure 10 - Packet format for asymmetric authentication

However, asymmetric cryptographic operations are much slower than 

symmetric operations (Question 6 on p. 166). Thus, digitally signing each 

modified part of each packet at each intermediate node would generate an 

undesirable performance overhead. Furthermore, if each intermediate node 

adds a new digital signature to the packet, then the size of the packet will grow 

proportionally as it traverses more and more intermediate nodes.

■ Integrity and confidentiality protection



Packet confidentiality can only be protected if the source node encrypts the 

packets’ data with the intermediate node’s public key; but since any node that 

has access to the PKI may obtain the intermediate node’s certificate (hence its 

public key), authentication could not be achieved. This is because any one can 

encrypt any data with the intermediate node’s public key, thus the intermediate 

node has no way to determine which node had carried out the encryption, 

unless additional symmetric/asymmetric operations are involved. This could be 

solved by requiring the source node to encrypt the packet’s data with the 

recipient’s public key as before, and subsequently sign the encrypted data with 

its own private key. However, this arrangement requires additional overhead.

2.3 A Packet Language for Active Networks (PLAN)

The developers of PLAN [22] claim PLAN (which is later on further developed, 

and known as Safe and Nimble Active Packet (SNAP) [16] to be the first 

practical active packet protocol. The scope of PLAN was to develop a novel, 

efficient, and scalable active network protocol. It is not within the scope of this 

thesis to discuss the applicability of PLAN or SNAP. However, security issues 

were not addressed in PLAN. The developers of PLAN have only made general 

suggestions on using cryptographic techniques for active network security, but 

they did not present the actual design or implementation for active network 

security. Furthermore, hop-by-hop security aspects were not addressed in 

PLAN. A security solution for SNAP, developed by the author, can be found in 

section 2.8 (p.52).

2.4 Secure Active Network Environment (SANE)

Secure Active Network Environment (SANE) [43] provides a set of workarounds 

for avoiding or minimising the overhead raised by SA negotiations in active



networks, and provisioning was made for key exchange [44]. However, the key 

exchange approach did not address hop-by-hop SA negotiations, and it is not 

clear whether the approach has any performance advantages, given that only a 

set of cryptographic benchmarks were provided
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Figure 11 -  SANE proposal: individual tunnels

In one workaround, SANE requires the keys to be individually negotiated 

between the principal and each node (Figure 11). Once SAs have been 

established between the source node and all intermediate nodes, active 

packets could be sent directly from the source node to each of the intermediate 

nodes respectively. This is not scalable as this is a centralised approach: the 

source node is involved in sending active packets to all other nodes directly. 

This arrangement also does not support the dynamic nature of active packets.



In order to pass execution result to another node, the execution results on an 

intermediate node would have to be fed back to the source node through a 

feedback system, before the source node could send the modified active packet 

to the packet’s next hop. A feedback system for processing every packet is not 

scalable; this is because a feedback arrangement creates undesirable 

performance overhead. In other workarounds, SANE requires either that the 

principal knows the execution path in advance (which contrasts with the 

dynamic routing capability of active packets), or that peer-to-peer trust already 

exists. Moreover, the SANE protocol did not address DoS attacks.

2.5 Secure Active Node Transfer System (SANTS)

The developers of Secure Active Node Transfer System (SANTS) [23][28] have 

proposed a solution by using a combination of asymmetric and symmetric 

techniques for hop-by-hop authentication for active packets. Digital signatures 

as well as Credential References (section 8.4 on p. 164) are used to protect the 

end-to-end and hop-by-hop authenticity of active packets in SANTS 

respectively. Credential references bind an object of identity to a claimant’s 

property such as IP address. In SANTS, both active node integrity and link 

integrity are assumed by enforcing Hashed Message Authentication Code 

(HMAC) integrity protection between neighbouring nodes. Note that HMAC [45] 

is a secure hash function that is used for integrity protection (section 8.7 on 

p. 175). A hash function takes a variable size message, and calculates a fixed 

size message digest. The message digest is sent along with the message to the 

recipient. Upon receiving the message (and the message digest), the recipient 

calculates a new message digest of the received message, and compares the 

two message digests. If the message has not been tampered with during



transmission, the message digests should match. This is integrity protection. It 

is computationally impossible to generate the same message digest from two 

different messages for a secure hash function.

In SANTS, ANTS packets are encapsulated into ANEP. To ease reading, ANTS 

packets that are encapsulated in ANEP are known as ANEP-SANTS packets in 

this thesis. ANEP-SANTS packets are authenticated in a per-packet and 

per-hop basis. At the point of packet injection, each ANTS packet is physically 

split into two parts: static and dynamic part. Static parts are parts in the packet 

that shall not be modified during packet transmission, thus static parts are 

digitally signed by the source. The source’s digital signature on static code 

provides data origin authentication. The authenticity and integrity of the 

dynamic parts are protected by per-hop protection i.e. HMAC-SHA1 (section

8.7.3 on p. 177).

The original ANEP format is modified in SANTS: the original ANEP Payload 

field is separated into a static and a variable area for keeping the static 

Message Digest 5 (MD5) hash identifier of the active codes and dynamic (i.e. 

network resource bound) data respectively. A new field is introduced to keep a 

list of credentials (i.e. X.509 identifiers) to support multiple principal attributes 

and identifiers to the packet as the packet traverses the network. An Option 

field is also introduced for keeping digital signatures, which are associated with 

the credential references. Figure 12 shows the resultant ANEP-SANTS packet 

header format. An ANEP-SANTS packet therefore -  as it traverses the network 

-  carries not just the source’s signature, but also a series of identifiers of the 

modifying nodes that the packet’s contents has been modified. ANEP-SANTS 

packets are authenticated upon successful checks on the embedded source’s



signature and credential references in the packets at each of the (execution) 

nodes along the packet’s transmission path.

SANTS’s ANEP header

Figure 12 -  The modified ANEP packet format defined in SANTS

The SANTS approach suffers from several drawbacks:

■ Inefficiency

The idea of packet splitting is suggested in SANTS so that different 

authentication techniques can be applied to static and dynamic parts of the 

packet respectively. However, the developers of SANTS have not discussed 

how they could efficiently separate the contents of an active packet into static 

and dynamic parts. In the SANTS approach, it was said that “The static area of 

our packets (ANEP-SANTS Static Payload) includes the static portions of the 

EE (ANTS) header... and the static portions of the data payload. The variable 

area of our packet (ANEP-SANTS Variable Payload) includes the variable fields 

of the EE (ANTS) header and the variable portions of the data payload'. SANTS 

requires each ANTS packet to be physically split at the sender, and re-united at 

the receiver. The splitting process would involve analysing the contents of an 

ANTS packet, and deciding on which part(s) is(are) static and which parts is(are) 

dynamic. Then, each part must be placed accordingly into the ANEP-SANTS 

packets. Indicators on which parts of the ANEP-SANTS packet refer to static 

code and dynamic code of the original ANTS packet must be added to the
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header of the ANEP-SANTS packet. This information is crucial because the 

receiver needs to know how to un-marshal (or re-create) the original ANTS 

packet upon receiving the ANEP-SANTS packet. The performance overhead 

for keeping track of which-bits-belong-to-where of an ANEP-SANTS packet 

during the packet splitting and re-uniting processes is not discussed in SANTS. 

Note that active routers are built on top of conventional routers (no special 

hardware added), thus active technologies do not increase the physical 

capability of a conventional router (i.e. processing speed), but only the 

functionalities of conventional routers are enhanced through active 

technologies. Note that conventional routers are designed to pass packets 

forward, not to process packets. Thus adding additional functionalities to 

conventional routers is already adding extra load to the nodes. It would be 

undesirable to introduce any unnecessary processes in order to process active 

packets. An active network hop-by-hop security solution, i.e. the FAIN 

ANEP-SNAP Packet Engine, proposed by the author of this thesis suggests 

that no packet splitting is actually required (section 2.8 on p.52).

■ Packet format modification

SANTS requires modifications to the original ANEP packet format (splitting the 

ANEP payload into two parts). Although the ANEP packet format has not been 

used in practise due to the limited applicability of active technologies on real 

networks (i.e. publicly accessible networks other than testbeds), unnecessary 

modifications to existing standards should be limited for inter-operability. As it 

will be discussed in section 2.8 (p.52), packet splitting is not needed anyway. 

Thus, this modification to ANEP packet format is unnecessary.

■ Lack of confidentially protection
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Another drawback of the SANTS approach is that, with message digest (i.e. 

HMAC), only partial authentication and integrity protection are provided, but no 

confidentiality protection to the overall packet’s contents is provided. As shown 

in Figure 12 (p.45), both the static code and dynamic data of an active packet 

are transmitted in the form of clear text (no field in the packet is encrypted). The 

developers of SANTS did not identify the need for confidentiality protection for 

active packets in their paper; and the SANTS approach has made no 

provisioning for confidentiality protection. Currently, active networking has not 

been deployed on a practical network such as the Internet. Thus, the issues 

arising from the actual practical usage of active technologies are largely 

unknown. Therefore, one may argue whether the confidentiality of active 

packets should be protected. However, experiments have shown that the 

flexibility of active technologies allows active packets to carry control code for 

specific service deployment [17][46][47][48], or for node states information 

query [16]. The control code may contain specific node operational status 

information, for example: “if software component w is currently running on this 

node, execute this code only when the flow on interface_x exceeds y bytes over 

z seconds; else if...”. Specific information on node operational status (in this 

example the operational status of specific software components, interface 

names, and packet flow conditions) are potentially sensitive, therefore strong 

protection to active packets, i.e. confidentiality protection, is therefore desirable. 

■ Lack of per-hop key distribution mechanism

The SANTS developers suggested using HMAC-SHA for per-hop protection, 

but they have not discussed how symmetric keys can be distributed efficiently in 

a hop-by-hop manner. Later on in another document [27], they suggested using



Sign Key Transport (SKT) as a way for key distribution for per-hop protection. 

However, SKT has severe drawbacks as a key distribution technique (section

2.6 on p.48).

2.6 Signed Key Transport (SKT)

SKT was proposed by the SANTS developers to support SANTS operations. 

SKT is a technique to distribute symmetric keys between hops. A summary of 

SKT is given below.

Recent research [27] suggests that instead of using the full-scale Multiple 

IPSec approach, SKT could be used for distributing symmetric key in active 

networks. The idea is that the source generates a symmetric key (i.e. a key to 

be used for hop-by-hop packet protection), and signs this key with its private 

key. The signed symmetric key will be sent together with the active packet 

along the transmission path. Each of the intermediate active nodes will obtain a 

copy of this symmetric key after a successful check on the source’s signature. 

The signed symmetric key is only distributed once, and kept locally on each 

node. The symmetric key is used to protect the dynamic data of active packets 

that traverse the (active) network.

The problem is that there is no confidentiality protection for the symmetric key, 

and hence the confidentiality and integrity of the dynamic data of subsequent 

active packets are not protected. Any intermediate node, which has intercepted 

the packet and has access to the source’s public key certificate can obtain the 

symmetric key; and hence any subsequent data encrypted by that symmetric 

key can be decrypted by any of these nodes. In fact, the developers of SKT 

admit that a fundamental requirement of their solution is that “ ...the packet 

distributing the symmetric key routes itself to only trusted nodes”. This
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assumption cannot be justified in an insecure network such as the Internet. The 

solution has no provisioning for Man-in-the-Middle (section 8.5.4 on p. 167) or 

replay attacks (section 8.13.2 on p. 183). Although it is arguable whether active 

packets protected by the symmetric key require confidentiality protection, this 

approach would not fit in situations where strong security is needed since active 

packets may be used to carry control code.

Furthermore, SKT requires all nodes to share the same key. However, when 

more than one-pair of hops share the same key, authentication would fail. This 

is because a mis-behaving member (which owns the shared key) can use the 

shared key for encryption, but claims that the encryption was carried out by 

others. There is no way to tell who actually performed the encryption. This is 

similar to the situation in which there is a lock, but more than one people have a 

copy of the key. Thus, when the lock is un-locked, there is no way to tell who 

actually unlocked the lock. So, unless the symmetric key is replaced with a new 

symmetric key at each hop, per-hop authenticity and anti-replay are not 

protected. However, these issues were not addressed in SKT. Another 

drawback of the proposed SKT is its flexibility: there is no SA negotiation. SA 

negotiation is the process through which two or more nodes can negotiate the 

cryptographic parameters to be used. For instance, the source node may 

support a particular cryptographic algorithm, whereas the recipient node does 

not. In this case, the source node cannot use that cryptographic algorithm 

(because the recipient would not be able to process packets subjected to an 

unknown cryptographic process). SA negotiation is therefore essential in order 

to ensure that both parties are capable of processing cryptographically 

processed packets. Without support for SA negotiation, the source simply
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creates a symmetric key and distributes the key along with the packet. The 

source would expect intermediate hops to accept what was created/chosen by 

the source (i.e. keying materials, the cryptographic algorithm used to generate 

the key). As explained in an earlier section, this would not work if the recipient 

did not support the chosen cryptographic algorithm. With no SA negotiating 

power, SKT would only be suitable for a small-scale active network, in which all 

active nodes involved are pre-ensured that they support a pre-chosen set of 

cryptographic algorithms/materials.

2.7 Centralised Keying Server (KSV)

Another solution for active packet authentication and integrity protection was 

proposed by Krishnaswamy in [49]. It was proposed that a centralised Keying 

Server (KSV) should be used for dynamic SA setup across a set of active nodes 

(Figure 13). A Key Management Module (KMM) is installed on each of the 

participating active nodes. The KMM is implemented as an extension of IKE. 

The KMM handles all interactions between the active node itself and the KSV. 

Each participating active node must first register itself with one KSV. 

Registration is done when the active node boots up. Keys are then established 

per active node. Key establishment between active nodes is done through IKE, 

and IPSec SAs are established between active nodes consequently. Thus, the 

KSV maintains a list of keys that it has established with the participating active 

nodes. The established keys are then used for IPSec protection between the 

nodes. Note that this arrangement therefore protects the hop-by-hop 

authenticity and integrity, as well as addressing SA establishment issues.



Active node

Figure 13 -  The KSV model

The proposed KSV solution limits itself to registration with one KSV i.e. a 

centralised approach. This means the proposed solution is limited to a 

small-scale active network testbed only. The developers of KSV suggested that 

an active node might register itself with more than one KSV to reduce the effect 

of centralisation. However, the developers of KSV had not identified how the 

potential conflict caused by duplicated registration (with more than one KSV) is 

resolved.

The use of a centralised Keying Server causes scalability problems. If the 

keying material for one of the participating nodes is updated, the KSV must 

inform all participating nodes regarding this update, the participating nodes 

must validate and acknowledge the update message, and the KSV must 

validate the integrity and authenticity of the acknowledgement message... and



so on. This could introduce unnecessary performance overhead. A distributed 

solution would be to enable key establishment and maintenance to the 

participating active nodes, instead of dedicating an entity (i.e. the KSV) to carry 

out these jobs.

KSV uses IKE for SA negotiations. IKE was designed to establish SA between 

two static end points. The performance overhead of using IKE for per-hop SA 

negotiation was not addressed in KSV.

2.8 FAIN: ANEP-SNAP Packet Engine

FAIN EE

SNAP Analyse

Comm.
Manager

Digester

Other NodeOS 
components (e.g. DeMUX)

Figure 14 -  The components of ASPE

The FAIN solution, known as the ANEP-SNAP Packet Engine (ASPE), was 

proposed and developed by the author of this thesis in the IST-FAIN project [13]. 

The FAIN solution suggests that no physical packet splitting or reuniting is
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required. Essentially, the ASPE is part of the Security Component of the FAIN 

NodeOS. It encrypts and decrypts SNAP packets used in the active networks. 

The packet (de)multiplexing component on the FAIN NodeOS delivers 

encrypted ANEP-SNAP packets (that are captured on the wire) to the ASPE. 

The ASPE decrypts the packets, and sends the packets to their desired EEs. 

The ASPE is also responsible for encrypting (SNAP) active packets before they 

are sent to the networks through the NodeOS.

Version | Flags Type ID
Header length Packet length
Option's flag Option length

SNAP packet (-bytes)
Payload length

SNAP static content (-bytes) |

Figure 15 -  FAIN ANEP-SNAP packet format

Figure 15 shows the FAIN ANEP-SNAP packet format. The entire SNAP packet 

is placed in the payload field of the ANEP packet format. The static code of the 

SNAP packet is appended to the packet. Static parts of the SNAP packet are 

digitally signed at the source node. This digital signature is static whilst the 

packet is traversing the network. The hop-by-hop authenticity and integrity of 

the entire packet (which includes both static and dynamic parts) are protected 

by using IPSec Authentication Header (AH). At each hop, after security checks, 

the entire active packet is simply extracted. There is no need to physically split 

and re-unite active packets. Although under this arrangement, static parts of the 

packet will be subjected to both the asymmetric (being signed by the source) 

and symmetric cryptographic processes (per-hop protection at each hop); the 

advantage is that there is no need to physically split and re-unite active packets 

at each hop. Since there is no need to keep the dynamic data separately, this



approach requires only one Payload field (that is used to keep the entire active 

packet). Thus, there is no absolute need to modify the ANEP format. To enforce 

hop-by-hop protection, each pair of hops shares a different IPSec SA. This is 

known as multiple IPSec. This solution, however, addresses neither the 

confidentiality, nor the hop-by-hop key distribution issues. To enforce 

confidentiality protection, IPSec Encapsulated Security Payload (ESP) is one of 

the potential solutions (section 2.9 on p.55).

Question 3: Instead of equipping each pair of nodes with different symmetric 

keys, i.e. multiple IPSec, is it possible to equip all nodes in the network (or an 

administrative domain) using the same symmetric key i.e. use multicast IPSec? 

In multiple IPSec (AH), the symmetric key is used to protect the authenticity and 

integrity of an active packet. Upon receiving the protected packet, the receiver 

looks up information (from the corresponding IPSec SA) to determine the 

corresponding symmetric key in order to process the packet. The receiver 

expects the source host to be the only other host that knows the secret key. As 

a result, the packet’s source authenticity is verified. The important point to note 

is that only two nodes own the same symmetric key, so non-repudiation 

protection on the packet is enforced. Enforcing non-repudiation protection on 

the static code of active packets is important in active networks, this is because 

control code is potentially damaging. With non-repudiation, the actual creator of 

the static code cannot deny of any wrong doings should the control code cause 

any damage to the networks.

In multicast IPSec, however, all hosts share the same key. Source 

authentication and non-repudiation protection based on shared key is not 

possible when more than one pair of hosts share the same key. All one can



determine from multicast IPSec is that the data is encrypted by a valid key by a 

member of the IPSec multicast group. However, the actual identify of the 

individual node who encrypted the data is not revealed.

As discussed in an earlier section, currently, the issues arising from the actual 

practical usage of active technologies are largely unknown; so potentially, 

active packets can be multicast to desired node groups. It should be noted that 

(as explained in the last paragraph) multicast security is very different from 

unicast security. This thesis does not discuss the use of multicast IPSec or 

multicast security approaches for active networks. For more background on 

secure IP multicast, readers are referred to [50]. For detail of multicast IPSec 

and challenges of key exchange for multicast IPSec, readers should refer to 

[51][52][53],

2.9 IPSec ESP

To solve the described per-hop authentication and confidentiality protection 

problem, and the lack of SA negotiation power in SKT and its variations, IPSec 

ESP [54] could be used between hosts. Unlike SKT, IPSec uses IKE, which 

supports SA negotiation; thus adds creditability when deployed over a 

heterogeneous network such as the Internet. More specifically, IPSec ESP 

provides authentication, integrity and confidentiality protection. If IPSec ESP is 

applied, the entire active packet is placed in the Protected Payload. In this case, 

the confidentiality of the entire active packet is protected. IPSec ESP, however, 

still does not address hop-by-hop SA establishment.

2.10 Internet Key Exchange v2 (IKEv2)

2.10.1 An Overview

IPSec uses IKE for SA establishment. This section discusses the use of IKEv2

55



for hop-by-hop security.

IKE is an automated key management protocol used by IPSec. The key feature 

of IKE is that it allows two communicating peers to negotiate SA parameters 

before establishing IKE and IPSec SAs. It is the provisioning of SA negotiation 

of IKE that adds credibility to IKE in terms of its flexibility and scalability. IKE 

uses Diffie-Hellman (D-H) Key Exchange (section 8.6 on p. 168) for secure 

private symmetric key establishment between two peers. D-H key exchange is 

a protocol that enables two peers to establish a shared secret (key) instantly 

over an insecure link without having to transmit or disclose any secret 

information over the insecure link, or using any pre-configured or pre-distributed 

parameters. As such, IKE is not only flexible and scalable, it is also secure.

The latest version of IKE is IKEv2. The benefit of using IKEv2 (compared to 

SKT and its variants) is that IKEv2 retains SA negotiation power and the power 

to establish shared secrets securely between peers (through D-H key 

exchange). It should be noted that, according to the IKEv2 RFC, IKEv2 must 

first establish an IKEv2 SA between two peers, then the established IKEv2 SA 

is used to establish another (say, IPSec) SA between the same pair of peers, 

prior to the secure transmission of a (active) packet using the subsequently 

established SA. The purpose of this (rather redundant) arrangement was so 

that IKEv2 could be used as a generic key exchange protocol, that could be 

used as the underlying key exchange protocol on top of which other 

applications (say, IPSec) might establish their own SAs. However, because of 

the hop-by-hop nature in active networks, it is essential to investigate how to 

reduce the performance overhead incurred by per-hop IKEv2 and IPSec SA 

negotiation processes, and to remove any redundancy. Furthermore, as it will
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be discussed later, IKEv2 is subjected to DoS attack (section 4.6 on p. 110). 

Essentially, IKEv2 can be deployed with or without Perfect Forward Secrecy 

(PFS). PFS is a property in key exchange protocol that enables strong security. 

However, enforcing PFS in key exchange incurs a high overhead. Discussion of 

PFS and its performance is out of scope of this thesis, readers are referred to 

the Appendix for more detail (section 8.12 on p. 180). The basic IKEv2 does not 

support PFS, whereas a variant of IKEv2 supports PFS.

2.10.2 Key Exchange Process in IKEv2

An IKEv2 key exchange is conducted between two peers: an Initiator (I) and a 

Responder (R). An Initiator is a node that starts the key exchange, whereas a 

Responder is a node that is responding to the key exchange request initiated by 

the Initiator. The basic IKEv2 protocol (no PFS) involves an exchange of four 

messages to complete a key exchange (Figure 16). Note that, in the following 

sections, items in square brackets are optional, whereas the authenticity, 

integrity, and confidentiality of the items in curly brackets are protected by a 

shared symmetric key set (see shortly later).
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□
Initiator ©

“IKE_SAJNIT” 
HDR, SAi1, D-Hi, 
NONCEi

“IKE_SAJNIT” 
HDR, SAr1, D-Hr, 
NONCEr, 
[CERTi-REQ]

®
“IKE_AUTH” 
HDR, {IDi, [CERTr], [CERTr-REQ], [IDr], 
AUTHi, SAi2, TSi, TSr}

“IKE_AUTH” 
HDR, {IDr, [CERTr], 
AUTHr, SAr2, TSi, 
TSr)

□
Responder

©

Figure 16 -  IKEv2 (with no PFS)

In the first message, the Initiator sends to the Responder a request message 

that contains a header (HDR), its SA (SAi1) which contains a list of preferred or 

supported security parameters such as encryption algorithms and keysize. D-Hi 

is the D-H public values generated by the Initiator for this key exchange, and 

NONCEi is a 128-bit randomly generated nonce. These values (together with 

the D-H public values and the nonce generated by the Responder) are used 

later on in the IKEv2 protocol to generate a shared secret between the Initiator 

and the Responder. Readers are referred to the Appendix for detailed 

information on the D-H algorithm (section 8.6 on p. 168). The Responder
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intercepts the first message, and responds with the second message, which 

contains the Responders SA (SAr1), its D-H public values (D-Hr), a randomly 

generated nonce (NONCEr), and optionally a request for the Initiator’s PKI 

certificate ([CERT-REQ]). SAr1 contains the Responder’s choice of the 

Initiator’s SA. SAi1 and SAr1 are stored locally on the Initiator and the 

Responder respectively for future reference. A SA is identified on the node by a 

Security Parameter Index (SPI).

Once the Initiator and the Responder have exchanged the first and the second 

message, both peers are capable of generating a shared secret (gxy) using the 

D-H algorithm. Subsequently, a shared secret key seed (SKEYSEED) can be 

generated (Equation 1), from which a set of shared keys (SK_a, SK_e, SK_d 

and SK_p) can be derived (Equation 2). A shared secret key seed, i.e. 

SKEYSEED, is established as follow by using concatenation (section 8.2, 

p. 164):

SKEYSEED = PRF(NONCEi | NONCEr, gxy)

Where

| = the notation of concatenation

Equation 1
When generating the SKEYSEED, nonces are applied to the D-H shared secret

with the use of Pseudo-Random Function (PRF) (section 8.13 on p. 182). The

purpose is to add randomness to the resultant shared secret (by applying the

randomly generated, never re-used nonces), and to ensure that the resultant

shared secret key seed (SKEYSEED) has a standard size. The subsequent

shared key set is generated as follow:

SK_d | SK_aj | SK_ar | SK_ej | SK_er | SK_Pi | SK_pr = PRF+(SKEYSEED, 
NONCEi | NONCEr | SPli | SPIr)

Equation 2
SPli and SPIr are the SPIs of the SAs that are stored locally on the Initiator and



the Responder respectively. Again, the idea of applying the PRF function is to 

ensure that randomness and standard size keys (of the shared key set). 

Equation 2 shows that the SK_e, SK_a, SK_d and SK_p keys are generated 

from the output of PRF+ (section 8.13 (p. 182). According to Equation 18 (p. 183), 

SK_d is determined as follow:

SK_d = PRF(SKEYSEED, NONCEi | NONCEr | SPli | SPIr | 0x01)

Equation 3
SK_ai = PRF(SKEYSEED, SK_d | NONCEi | NONCEr | SPIj | SPIr | 0x02)

Equation 4
SK_ar = PRF(SKEYSEED, SK_3i | NONCEj | NONCEr | SPli | SPIr | 0x03)

Equation 5
SK_ej = PRF(SKEYSEED, SK_ar | NONCEi | NONCEr | SPIj | SPIr | 0x04)

Equation 6
SK_er = PRF(SKEYSEED, SK_ej | NONCE) | NONCEr | SPIj | SPIr | 0x05)

Equation 7
SK_Pi = PRF(SKEYSEED, SK_er | NONCEj | NONCEr | SPli | SPIr | 0x06)

Equation 8
SK_pr = PRF(SKEYSEED, SK_Pi | NONCEj | NONCEr | SPIj | SPIr | 0x07)

Equation 9
Note that all subsequent messages exchanged between the Initiator and the 

Responder will be protected by the following keys:

■ SK_e (SK_ei, SK_er)

This key is for encryption. There is one SK_e key for each direction, but each 

peer owns both SK_ej and SK_erkeys.

■ SK_a (SK_ai, SK_ar)

This key is for authentication and integrity protection. There is one SK_a key for 

each direction, but each peer owns both SK_aj and SK_arkeys.

■ SK_d

This key is used to derive subsequent keys for CHILD_SAs. There is only one



SK_d key.

■  S K _p  (SK_Pi, S K _ p r)

This key is used to generate the AUTH Payload. There is one SK_p key for 

each direction.

The third message in the IKEv2 protocol is sent by the Initiator to the 

Responder. The message contains an encrypted and integrity payload which 

contains identity information of the Responder (IDi), the Initiator’s PKI certificate 

(optional), a request for the Responder’s PKI certificate (optional), a specified 

identity of the Responder that the Initiator wishes to communicate with (optional, 

in case the Responder hosts multiple identities and the Initiator knows in 

advance which of the Responder’s identities that it wants to establish a SA with), 

some authentication data (AUTHi), a SA which contains additional security 

parameters that the Initiator wishes to negotiate with the Responder (SAi2, that 

is needed to establish an IPSec SA), and some Traffic Selectors (TSi and TSr, 

which specifies the set of port numbers that applications are allowed to use for 

the established SAs). The AUTHi is a digital signature created by using either 

the Initiator’s private PKI key, or a pre-shared secret shared between the 

Initiator and the Responder7, in order to provide authentication and integrity 

protection of the first message in the key exchange. AUTHi covers the 

following:

HDR, SAi1, D-Hi, NONCEi, NONCEr, PRF(SK_pi, IDi)

Figure 17 -  Items covered in AUTHi

Note that the Initiator countersigns the Responder’s nonce (NONCEr) in AUTHi.

7 The use of pre-shared secret is not considered in this thesis: this is because a key exchange 
protocol is to establish a shared secret. The assumption of having a pre-shared secret to 
establish a secret is a chicken-and-egg problem.
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The idea of countersigning nonces by peers is to prevent impersonation attacks 

(section 4.2 on p. 100). IDi is PRF with SK_pi in order to added security, as well 

as to ensure that the ID of the Initiator is of a standard size. The SK_pi key is 

freshly created for this session, so that each AUTHi from the same Initiator (and 

of the same ID) actually covers the same ID but of different contents. Note that 

a checksum that covers the entire message 3 is created by using the SK_a key. 

The checksum is appended to the message for authenticity and integrity 

protection.

Once the Responder has received message 3, the Responder verifies the 

protected payload in message 3 by using its own set of shared keys. SK_a is 

used to verify the integrity of the message, SK_e is used to decrypt the 

encrypted payload. If these verifications are successful, message 3 is verified. 

The authenticity and integrity of message 1 is then verified by verifying AUTHi. 

If this verification is successful, message 1 (from the Initiator) is verified. In this 

case, the Responder sends to the Initiator the fourth (and the last) message. 

This message contains again a protected payload which contains the 

Responder’s ID (IDr), the Responder’s PKI certificate (CERTr) (optional), the 

Responder’s choices on SAi2, TSi and TSr. Note that a digital signature (AUTHr) 

that is created by the Responder is also included. AUTHr is used to provide 

authenticity and integrity protection to message 2. AUTHr covers the following 

items:

HDR, SAr1, D-Hr, NONCEr, NONCEi, PRF(SK_pr, IDr)

Figure 18 -  Items signed by AUTHr

Again, the Responder countersigns the Initiator’s nonce to prevent 

impersonation attacks. All other items are signed for the same purpose as
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above except that this time, the Responder is protecting the contents of 

message 2, instead of the contents of message 1.

2.10.3 Enforcing PFS Support in IKEv2

Note that the basic IKEv2 does not provide PFS support. In order to provide 

PFS support, another set of message exchanges is required to exchange 

another set of D-H public values. This extra set of message exchanges consists 

of two messages being exchanged. In other words, in order to enforce PFS, the 

total number of message exchanges is now six instead of four. The following 

are the two extra messages that are required to enforce PFS:

Initiator 0-

“CREATE CHILD SA” ts a ii

HDR, {SA, NONCEi, 
Hi], [TSi, TSr]}

D- Responder

‘CREATE_CHILD_SA” 
HDR, {SA, NONCEr, 
[D-Hr], [TSi, TSr]} ©

Figure 19 -  Extra exchanges for establishing CREATE_CHILD_SA

All the terms are self-explanatory; but it should be noted that in order to enable 

PFS, another set of D-H public values must be exchanged. In brief, two cycles 

of shared key set establishment are required. As explained in section 8.12 on 

p. 180, this is an expensive process in terms of performance.

This thesis proposes that, using some useful concepts of IKEv2, but omitting 

the drawbacks of IKEv2, with new message contents and sequence, a much 

simplified SA negotiation sequence with much less performance overhead can
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be used in order to transmit active packets during SA negotiation instead of 

after. The established SA can be retained to protect subsequent packets being 

transmitted across the same link.

Question 4: Is it possible to reuse the established hop-by-hop SAs for 

protecting both active and passive packets, so that the undesirable 

performance can be absorbed?

Security for passive packets is applied end-to-end. A passive packet is 

encrypted at source, and only decrypted at the recipient. Intermediate nodes 

simply forward passive packets. Thus, for passive packets, SA is established 

end-to-end.

Since SAs for active packets are established in a per-hop fashion, the resultant 

hop-by-hop keys that are kept locally on intermediate nodes are of no use to the 

user data which are usually protected end-to-end (unless the destination of 

passive packets is the next hop). Thus, generally, the end-to-end SAs 

established for passive packets cannot be re-used for active packets, unless 

the active packets are transmitted between two end points only.

This further implies that the “re-usability” of the locally kept symmetric keys on 

intermediate nodes is limited to protecting subsequent (active) packets 

travelling across the same pair of hosts.

2.10.4 Use of COOKIEs for Addressing DoS Attacks

Another variant of IKEv2 uses COOKIE (section 8.3 on p. 164). As indicated in 

the IKEv2 RFC: "... an endpoint could use cookies to implement limited DoS 

protection“ [55]. One common type of DoS attacks identified in the IKEv2 RFC 

would be that a Responder was sent large number of initialisation messages 

from a DoS attacker; the Responder would then be driven to handle many
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initialisation messages, which eventually caused CPU exhaustion on the 

Responder. Furthermore, the IKEv2 developers claimed that this type of DoS 

attack could be originated from legitimate IP addresses, but other than the IP 

address of the node that the attack was actually originated [56]. In this case, the 

Responder’s legitimate reply messages would be sent to other victims (i.e. the 

nodes that actually own those legitimate IP addresses). Thus, this would create 

another wave of DoS attacks in the network. The IKEv2 developers claimed that 

by using COOKIEs in the key exchange protocol, it would be possible to ensure 

that the Initiator is indeed sending off initialisation request message from the IP 

address that it claims it owns. However, as it will be described in section 4.6 

(p. 110) and section 5.5 (p. 150), the use of COOKIE in IKEv2 does not provide a 

complete protection against DoS attacks.

The basic idea is that when an IKEv2 Responder receives an initial request 

from the Initiator, the Responder does not respond through the normal 

procedure (as specified in Figure 16), but responds with an empty message that 

contains a COOKIE. A COOKIE is a randomly generated number that is created 

by this equation (Equation 10):

COOKIE = <VersionlDofSecret> | Hash(NONCEi | IPi | SPli | <secret>)

Equation 10

The idea is that the Initiator, upon receiving the COOKIE from the Responder, 

must re-send its original initialisation message with the COOKIE. The 

developers of IKEv2 claimed that under this arrangement, a DoS attacker that 

claimed a legitimate IP address (but the claimed IP address was actually owned 

by another node) would be detected, because the DoS attacker would not be 

able to get the COOKIE (note that the COOKIE was sent by the Responder to 

the victim directly), and would not be able to re-send the initialisation request



message with the valid COOKIE. The protocol exchange is almost exactly the 

same as the basic IKEv2, but with six messages being exchanged. Figure 20 

shows the IKEv2 key exchange with COOKIE.

I I
Initiator

“IKE_SAJNIT” 
HDR, SAi1, D-Hi, 
NONCEi

♦ Responder

“IKE_SAJNIT”
HDR, COOKIE, SAi1, D-Hi, NONCEi

1KE_SAJNIT” 
HDR, SAr1, D-Hr, 
NONCEr, [CERTi- 
REQ]

-0

“IKE_AUTH”
( J \  HDR, {IDi, [CERTr], [CERTr-REQ], [IDr], 

AUTHi, SAi2, TSi, TSr}

“IKE_AUTH”
HDR, (IDr, [CERTr], 
AUTHr, SAr2, TSi, 
TSr)

0

Figure 20 -  IKEv2 with COOKIE



2.10.5 Sequence Numbers as Message ID

In IKEv2, each pair of request and reply messages uses the same message ID. 

A re-transmitted message would use the same message ID that was used in the 

previous, original message. The message ID is a 32-bit number. The first 

request message from a peer (i.e. the Initiator) should always use zero as its 

message ID to start with, and increments sequentially for subsequent 

messages. For instance, the first IKEv2 message exchange pair would use zero 

as their message ID, then the second IKEv2 message exchange pair would use 

“1” as their message ID, and so on.

A peer should maintain two “current” message IDs: one message ID to be used 

for the next request to be initiated by the peer, and another message ID that the 

peer expects to see in a request originated from other peers.

This field is cryptographically protected to prevent replay attacks. If after too 

many message exchanges, the message ID becomes too large to fit in the 

32-bit field, the IKEv2 SA must be re-newed. Message IDs are re-set when an 

IKEv2 SA is re-keyed.

2.11 Just Fast Keying (JFK)

Just-Fast Keying (JFK) [57] has two variants that were designed for different 

purposes. Each variant consists of an exchange of four messages to complete 

the key exchange. The developers of JFK claimed JFK to be a DoS-resistant 

protocol. However, as it will be discussed in section 4.6 (p. 110) and section 5.5 

(p. 150), JFK did not achieve its goal. Furthermore, JFK did not provide identity 

protection. JFKi was designed to protect the Initiator’s identity; whereas JFKr 

was designed to protect the Responder’s identity. It should be noted that neither 

of the variants protect identity of both peers. Figure 21 shows the JFKi protocol:



Initiator (? )  NONCEi, D-Hi, IDr’ ♦ Responder

NONCEr, NONCEi, 
D-Hr, IDr, AUTHrl, ( 2 )  
HASHr

© NONCEi, NONCEr, D-Hi, D-Hr, HASHr, 
{IDi, SAi, AUTHi}

{AUTHr2, SAr}

Figure 21 -  The JFKi protocol

The first message contains the Initiator’s nonce (NONCEi), its D-H public values 

(D-Hi), and some indictors from the Initiator to the Responder on what 

authentication data the Responder should be using during the protocol 

exchange (IDr’). The second message contains the Responder’s nonce 

(NONCEr), the Initiator’s nonce (NONCEi), the Responder’s D-H public values 

(D-Hr), the Responder’s ID (IDr), a signature (AUTHrl) created by using the 

Responder’s PKI private key, and a hash value (HASHr) that is computed using 

the Responder’s pre-established symmetric key.

AUTHrl: D-Hr

HASHr: D-Hr, NONCEr, NONCEi, IPi

Figure 22 -  Items covered by AUTHrl and HASHr

Figure 22 shows the list of items that are covered by AUTHrl and HASHr 

respectively. Note that IPi is the IP address of the Initiator. HASHr is computed 

using the Responder’s pre-established symmetric key. Note further that, the
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Responder’s identity (IDr) is not protected in message 2 (i.e. the authenticity, 

integrity and confidentiality of the Responder’s identity) is not protected. 

Message 3 contains the Initiator’s nonce (NONCEi), the Responder’s nonce 

(NONCEr), the D-H public values of the Initiator and the Responder respectively, 

the hash that was created by the Responder, and a protected payload with 

contains the Initiator’s ID (IDi), the Initiator’s SA (SAi), and the Initiator’s digital 

signature that is created by using the Initiator’s private key over a list of items 

(Figure 23a). Message 4 is protected, and contains the Responder’s signature 

(AUTHr2) that covers another list of items (Figure 23b), and its replies to the 

Initiator’s SA (SAr).

AUTHi: NONCEi, NONCEr, D-Hi, D-Hr, IDr, SAi (a)

AUTHr2 : NONCEi, NONCEr, D-Hr, D-Hi, IDi, SAi, SAr (b)

Figure 23 -  Items covered by AUTHi and AUTHr2

JFKr is almost identical to JFKi except that in JFKr, the Responder’s identity is 

protected but not the Initiator. The JFK developers claimed the variants were 

designed to suit different environments: for example when the identity of the 

Initiator should be protected, then JFKi should be used (e.g. when initiating a 

peer-to-peer session with someone who the Initiator does not know); whereas 

JFKr should be used when the identity of the Responder should be protected (a 

secure server that acts as a Responder to remote calls generated by unknown 

Initiators on the network). Figure 24 shows the JFKr protocol, which is 

self-explanatory.



ResponderInitiator NONCEi, D-Hi

{IDr, SAr, AUTHr}

NONCEr, NONCEi, 
D-Hr, HASHr

NONCEi, NONCEr, D-Hi, D-Hr, HASHr, 
(IDi, IDr’, SAi, AUTHi}

HASHr: D-Hr, NONCEr, NONCEi, IPi 

AUTHi: NONCEi, NONCEr, D-Hi, D-Hr 

AUTHr: D-Hr, NONCEr, NONCEi, D-Hi

Figure 24 -  The JFKr protocol

It should be noted that it is not within the interest of this thesis to justify the level 

of security of JFK. However, since the developers of JFK claimed JFK is 

DoS-resistant, JFK is studied in this thesis to enable the author to compare how 

the proposed protocol in this thesis and an existing solution such as JFK would 

tackle DoS attacks. In section 4.6 (p. 110) and section 5.5 (p. 150), it is 

discussed how JFK (and IKEv2, which is a standardised protocol) is less 

resistant to DoS attacks when compared to the proposed protocol in this thesis.

2.12 IKEvI in aggressive Mode

IKEv2 is designed to be an optimised version of IKEvI (i.e. less complex and 

more efficient). For completeness, IKEvI in aggressive mode is introduced in 

this section. The reason to discuss IKEvI in aggressive mode in this thesis is



because, as the readers will observe in a later section (section 5.4 on p. 140), 

both IKEvI in aggressive mode and the solution proposed in this thesis uses 

three messages to establish one hop-by-hop SA, which often gives the readers 

an impression that IKEvI in aggressive mode has a similar level of scalability 

with the solution proposed in this thesis. This section therefore presents IKEvI 

in aggressive mode, to clarify any potential mis-understandings. Note that it is 

out of scope of this thesis to discuss IKEvI in more detail. Readers are referred 

to the cited references for more detail.

2.12.1 Two Phases Approach in IKEvI (v2)

Background information on IKEvI can be found in [58][59]. IKEvI (v2) has two 

exchange phases: the first exchange phase establishes an IKEvI SA between 

two nodes; the second exchange phase establishes an IPSec SA between the 

same pair of nodes. The established IKEvI SA from the first phase is used to 

establish the IPSec SA in the second phase. The IPSec SA is used to protect 

packets [60].

The need for this recursive SA establishment process in IKEvI (v2) and IPSec is 

that IKEvI (v2) and IPSec were designed to serve different purposes. IKEvI (v2) 

is a key exchange protocol [61], whereas IPSec is a packet protection protocol 

[62][63]. An IKEvI(v2) SA is therefore used to protect key exchange processes, 

whereas IPSec SA is used to protect packet transmission. An established 

IKEvI (v2) SA between a pair of nodes can be used by multiple user 

applications to establish different types of IPSec SAs to accommodate different 

networking environments [64]. For example, if packets do not need 

confidentiality protection, an IPSec AH SA can be used; else, an IPSec ESP SA 

is used.
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This flexibility provisioned in IKEvI (v2) is not needed in active networks. This is 

because packets must always be encrypted. Therefore, there is no need to 

establish multiple SAs across the same pair of hops to protect packets. As such, 

recursive SA establishment is not needed between active nodes. In next 

chapter, it will be shown that there is no need to have recursive SA 

establishment; in fact, a packet can be transmitted during a hop-by-hop SA 

establishment.

IKEvI provides two options for the first exchange phase: IKEvI in main mode 

and IKEv2 in aggressive mode. IKEvI in aggressive mode is designed to be 

less complex, and more efficient that IKEvI in main mode. Therefore, only 

IKEvI in aggressive mode will be discussed. The features of IKEvI in 

aggressive mode and IKEvI in main mode are discussed in [65]. Note that 

IKEvI provides only one option for the second exchange phase: IKEvI quick 

mode.

2.12.2 An Overview on IKEvI in Aggressive Mode

IKEvI in aggressive mode is more efficient than IKEvI in main mode because 

IKEvI needs only half of the number of message exchanges. Only three 

messages are exchanged in IKEvI in aggressive mode. An Initiator sends the 

first message to a Responder that includes SAi, D-Hi, NONCEi, and IDi. The 

responder replies with SAr, D-Hr, NONCEr, and IDr. All items in the reply are 

digitally signed. Finally, the Initiator sends the third and last message, which 

contains a digital signature that covers all items in message 1.

Readers should note that IKEvI in aggressive mode does not protect packets: 

once IKEvI in aggressive mode has been used between a pair of nodes to 

establish a hop-by-hop SA, the hops must go through another round of SA



establishment i.e. the IKEvI Quick Mode Exchange. The latter exchange uses 

the IKEvI SA to establish another SA for IPSec, the IPSec SA is used for 

protecting packets. IKEvI Quick Mode Exchange includes an exchange of two 

messages, which enables the peers to negotiate and establish another SA (i.e. 

IPSec SA). For more detail, readers are referred to [66].



3 Security Protocol for Active Networks

It was discussed in previous sections that there is a need for a hop-by-hop 

security model for protecting active packets. To support hop-by-hop security, 

there is a need to investigate a hop-by-hop SA establishment protocol. It was 

also discussed in an earlier section that existing solutions suffer drawbacks in 

terms of efficiency, scalability, and flexibility, and more. In this chapter, a novel, 

efficient, scalable, and flexible solution to the problem space, known as Security 

Protocol for Active Networks (SPAN), is presented. Firstly, the assumptions 

made in the design of SPAN are discussed and justified. Secondly, the SPAN 

protocol is presented by beginning with an overview of the SPAN protocol, 

followed by the design decisions of the SPAN protocol’s 3-message exchange 

handshake. Then, the SPAN messages are discussed individually together with 

their design decisions.

The SPAN protocol is designed to protect active packets with static code 

(section 1.6.1 on p.28); however, it is also applicable to protect dynamic code. 

Thus, a discussion of how the SPAN protocol is used to protect active packets 

with dynamic code will be presented later in this section. To ease the readers, 

initially, the protocol will be presented by using a simplified deployment 

environment (i.e. the protocol is illustrated using two nodes only); later in the 

chapter, the deployment of the protocol along a path (i.e. many more nodes) will 

be explained.

3.1 Design Assumptions

It is not within the scope of this thesis to investigate access control, or advance 

firewall technologies, or intrusion detection techniques, or new algorithms for



cryptography. Secure storage of keying materials and node integrity are 

assumed. This assumption is fundamental when designing security protocols, 

because no security protocol would work securely if the nodes (where the 

security protocol is deployed) were compromised. New execution path is 

assumed. It was defined that a new execution path is “ ...a path which no active 

packets have previously traversed (hence no pre-established hop-by-hop SAs), 

or a path of which previously established hop-by-hop SAs has expired, 

therefore there is a need to establish a series of new hop-by-hop SAs along the 

path (hence the name new execution path)”. The assumption of new execution 

path in this thesis is justifiable, because currently there is no requirement to 

have inter-connected security channels pre-established between all nodes 

across the entire Internet. The applicability of SPAN in environments in which 

inter-connected security channels have already been pre-established will be 

discussed later on in section 4.8 (p.118).

This thesis assumes that active nodes have access to public key certificates, i.e. 

PKI, is supported. PKI is a widely deployed, standardised technology (e.g. 

embedded in all web browsers). Because active networks are meant to 

co-operate with the existing Internet, the assumption of PKI support in active 

networks is therefore justifiable. For simplicity, in the initial discussion of SPAN, 

each administrator/management application and each NodeOS is assumed to 

have its own PKI key pair; but provisioning have been made in SPAN to 

accommodate situations in which some administrator/management applications 

and NodeOSs do not have their own PKI key pair (section 4.7 on p.115). 

Administrative issues are not addressed in this thesis (i.e. how CAs verify actual 

ownership of valid PKI certificates): the integrity of legitimate PKI public key pair



owners is assumed. Thus, if a person/entity uses a legitimate PKI private key 

for signing data, he/she would be traceable (i.e. non-repudiation protection 

enforced through PKI). Because node and key storage integrity and the integrity 

of PKI public key pair owners are assumed, it is further assumed that any 

requests with valid signatures are legitimate requests; else, they are attack 

messages. Attackers are assumed capable of intercepting all messages on the 

Internet, and are able to create/modify all types of messages that are not 

protected. Provisioning has been made in the proposed solution in this thesis 

for SA maintenance and re-keying.

3.2 An Overview on the SPAN Protocol

SPAN begins when the principal has created an active packet, and is about to 

inject the packet into the network. The SPAN protocol involves an exchange of 

three messages only to complete a hop-by-hop SA negotiation, hop-by-hop EE 

query, and a secure hop-by-hop active packet transmission (Figure 25 shows 

an overview of the handshake). To ease readers, the notations and terms used 

to describe the SPAN protocol in the following sections are adopted from the 

IKEv2 RFC; items that are quoted in square brackets are optional; whereas 

items in curly brackets are protected. All terms are explained.

SPAN INITInitiator ♦ Responder

SNAP AUTH

SPAN-AP

Figure 25 -  The SPAN Protocol



Note that the focus of this thesis is on key management rather than designing 

new cryptographic algorithms. Thus, SPAN uses D-H as the algorithm to 

compute a shared secret; and computes a shared key set from the shared 

secret using the logic as described in [30].

3.3 Design Decisions for a 3-Message Handshake

The SPAN protocol has one handshake between a pair of nodes, which 

involves an exchange of three messages. An active packet is securely 

transmitted across a pair of nodes during a hop-by-hop SA establishment, 

instead of after. SPAN is designed with the appropriate defence mechanisms 

against replay attack, man-in-the-middle attack, and impersonate attack. SPAN 

is also designed to detect DoS attacks more efficiently than existing solutions, 

in order to minimise the effect of DoS attacks on victim node(s). Furthermore, 

SPAN is designed to improve the level of robustness and flexibility of the 

underlying active networking systems.

A 3-message exchange handshake is chosen for SPAN because this is the 

minimum number of message exchange for establishing a symmetric key 

between two nodes in the insecure Internet (when using the Diffie-Hellman 

algorithm), and to transmit an active packet. The initiator must first send a 

request to the Responder to indicate its incentive to establish a shared 

symmetric key (i.e. the 1st message). For efficiency, this message will include 

some data that enables the Responder to start the shared symmetric key 

generation process should it accept to do so. The Responder then replies to the 

Initiator with its willingness to establish a shared symmetric key (i.e. the 2nd 

message). At this stage, both nodes will have the shared symmetric key. The 

third message is needed to send the active packet across using the established
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shared symmetric key. As a rule of thumb, active packets should be sent after a 

secured tunnel has been established.

3.4 SPAN Initialisation (Message 1: SPANJNIT)

3.4.1 An Overview

Stage 1 of the SPAN protocol begins when the principal is about to inject an 

active packet to the network. The first message (SPANJNIT) is sent from the 

Initiator to the Responder. SPANJNIT is shown in Figure 26.

I R:
HDRJNIT, SAi, [EEi], [CERTi], D-Hi, NONCEi, AUTHi

Figure 26 -SPANJNIT

This first message in the exchange enables the Initiator to start a SA 

negotiation (SAi) and, optionally, a query on the information of a remote EE 

([EEi]). Some initial key exchange values (D-Hi and NONCEi) are forwarded to 

the Responder; these key exchange values will be used later on for the shared 

secret generation. This message is digitally signed by the Initiator, and as such, 

this message contains a digital signature (AUTHi).

3.4.2 Design Decisions for SPANJNIT

The purpose of the first message sent from the Initiator to the Responder is as 

follow:

■ To tell the (potential) Responder that it wants to establish a shared key.

■ To pass on necessary information to the (potential) Responder, so that 

should the Responder accepts to establish a shared key, it may start the 

shared key generation process straight away without further delay.

■ To include sufficient cryptographic materials in the message so that the



Responder can verify the message authenticity and integrity.

The decisions on the design of SPANJNIT are explained below. SPANJNIT 

includes the following elements:

■ SAi

This is the SA offered by the Initiator to the Responder. It contains a list of 

supported/preferred cryptographic algorithms of the Initiator. Thus, it must be 

included in the first message; otherwise, the Responder would not be able to 

proceed with the symmetric key generation process.

■ [EEi]

This is the EE information query that the Initiator may optionally send to the 

Responder. This field must be included in the first message if the Initiator is 

uncertain about the EE on the Responder. This is because with this information, 

the Responder may evaluate its own characteristics, in order to decide whether 

to accept the Initiator’s request for shared key establishment (and subsequently 

active packet execution).

■ [CERTi]

This optional field keeps the public key certificate of the Initiator. This field 

should be used when the Initiator wishes to distribute its certificate to a 

Responder (which the Initiator is not sure whether it has its certificate). This 

could be used, for example, when the Initiator has recently obtained a new 

certificate. Multiple certificates may be placed in this field.

■ D-Hi and NONCEi

These are essential pieces of information needed by the Diffie-Hellman 

algorithm; they are needed by the Responder to generate the shared key. 

Including this information in the first message enables the Responder to start
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the key generation process after receiving the initial request from the Initiator.

■ AUTHi

This is the signature created at the source node. This signature must be 

included in the first message so that the Responder can verify the authenticity, 

integrity, and non-repudiation of the message from the Initiator prior to carrying 

out any further computation. This is an important step in defending the system 

from DoS attacks (see section 4.6 on p.110).

3.4.3 SPANJNIT in Detail

More specifically, HDRJNIT is the SPANJNIT message header. SAi is a set of 

security association parameters offered by the Initiator to the Responder. These 

parameters are for example the supported or preferred encryption algorithms 

(of the Initiator), and the supported or preferred key size (of the Initiator). D-Hi 

and NONCEi are the Diffie-Hellman public value and a random 128-bit, never 

reused nonce generated by the Initiator. Both D-Hi and NONCEi are required 

for the symmetric secret establishment between the Initiator and the Responder 

(section 2.10 on p.55). Also, the nonce will be needed for anti-replay attacks 

(section 4.2 on p. 100).

[CERTi] is the PKI certificate of the Initiator. Distributing the Initiator’s PKI 

certificate during the SPAN SA establishment process is optional, and depends 

on the choice of the Initiator. This is because the Responder may already have 

obtained the Initiator’s PKI certificate through previous SA establishments (but 

now the previously established SAs have expired), or by other means e.g. 

pre-distributed PKI certificates using out-of-band channels. As discussed in the 

assumption, administrative issues such as PKI certificate distribution and 

maintenance are out-of-scope of this thesis. As such, the SPAN protocol does



not explicitly enforce PKI certificate distribution during SPAN SA establishment; 

but provisioning has been made in the protocol to accommodate situations in 

which PKI certificate (re)distribution is needed. This field, may be used for 

distributing more than one certificates. For example, a node may distribute 

certificates of other nodes, if the (protected) content of the packet that it is about 

to send to other nodes would need those certificates for verification.

[EEi] is needed to enhance the level of robustness of the underlying active 

networking systems. It is optional, and it is included only when the Initiator 

needs to confirm that the Responder does satisfy certain requirements that are 

needed to execute the to-be-sent active packet, prior to establishing a 

hop-by-hop SA and sending over the active packet. An example query would be 

the availability of specific supportive software/service modules (that are 

required to execute the active packet), or programming language supported by 

the remote execution platform. It will be discussed in a later section (section 4.5 

on p. 106) that the use of [EEi] improves the level of robustness of the 

underlying active networking systems.

The Initiator must provide authenticity, integrity, and non-repudiation protection 

for SPANJNIT by digitally signing this message using its PKI private key. 

AUTHi is a digital signature that is created by using the Initiator’s private key 

that covers all the items contained in SPANJNIT except CERTi8 and the digital 

signature itself. Figure 27 shows the items digitally signed by the Initiator.

HDRJNIT, SAi, [EEi], D-Hi, NONCEi 

Figure 27 -  Items digitally signed in AUTHi

8 Note that [CERTi] is not signed explicitly in AUTHi because certificates should be verified 
through PKI.



The inclusion of AUTHi in SPANJNIT enables more efficient detection of DoS 

attacks (section 4.6 on p.110). Note that because [EEi] is digitally signed, SPAN 

enables the principal to make authenticated and integrity protected queries for 

remote EE information. Shortly, it will be discussed how SPAN enables the 

Initiator to receive protected replies to [EEi], prior to active packet transmission 

(section 3.5 on p.82).

3.5 SPAN Authentication (Message 2: SPAN AUTH)

3.5.1 An Overview

Stage 2 is carried out at the Responder. During this stage, the Responder 

verifies SPANJNIT (message 1 from the Initiator), and computes a shared 

secret, and subsequently computes a shared key set based on its own data and 

the data provided by the Initiator. The Responder then responds to the Initiator 

with the data that are needed by the Initiator to complete the shared secret 

computation process at the Initiator’s side. The reply message from the 

Responder also contains some replies of the Responder to the EE queries that 

were made by the Initiator in SPANJNIT. Parts of SPAN_AUTH are digitally 

signed by the Responder; other parts are protected by the freshly created 

shared key set for security reasons (section 4.3 on p. 103).

I R:

HDR_AUTH, SAr, [CERTr], D-Hr, NONCEr, AUTHr, {[EEr], IDr}

Figure 28 -  SPAN_AUTH

3.5.2 Design Decisions for SPAN_AUTH

SPAN_AUTH is designed to enable the Responder, using just one message, to 

notify the Initiator that:

■ It has accepted the Initiator’s request to generate a shared symmetric key.



■ It has generated the shared symmetric key.

■ It wants to enable the Initiator to generate the shared key.

■ It wants the Initiator to validate the shared key.

The decisions for including the corresponding elements in SPAN_AUTH are as 

follow:

■ SAr

This must be included in this response so that the Initiator knows which of its

supported/preferred cryptographic algorithm(s) the Responder has selected to

use. Without this information, the Initiator would be unable to proceed with the 

shared key generation process.

■ [CERTr]

The Responder may optionally sends its public key certificate to the Initiator if it 

is unsure whether the Initiator has its public key certificate from (if there was 

any) previous interactions. Note that SPAN_AUTH is the only message sent 

from the Responder to the Initiator; thus, this is the only chance that the 

Responder could send anything it wants to send to the Initiator.

■ D-Hr & NONCEr

These are the key elements needed by the Diffie-Hellman algorithm in order to 

generate the shared key. These elements have been used by the Responder to 

generate the shared key; thus, the Responder must send this information to the 

Initiator, so that the Initiator may generate the shared key.

■ AUTHr

This is the signature created by the Responder. It protects the message and 

therefore must be included. Furthermore, it acts as a countersign of some 

elements in SPANJNIT to tackle network attacks such as impersonation



attacks (section 4.2 on p. 100).

■ {[EEr], IDr}

This is a protected payload, which includes information on the Responder’s EE, 

and some identification information that the Responder wants to use in the 

future. The Responder’s EE information should be included if the Initiator has 

made an EE information request in SPANJNIT, or the Responder wants to tell 

the Initiator some information of its EE. This information is included to enhance 

the efficiency, robustness, and security of the SPAN protocol (see next section 

for detail). They are included in this message because this is the only message 

sent from the Responder to the Initiator.

Note that these items are protected by using the recently generated shared key. 

The Initiator must verify these items (after it has generated the shared key). By 

verifying these items, the Initiator is able to verify that the Responder has 

computed the symmetric key correctly (see section 4.3 on p. 103).

3.5.3 SPAN_AUTH in Detail

More specifically, upon receiving the first message (i.e. SPANJNIT) from the 

Initiator, the Responder verifies the authenticity, integrity, and non-repudiation 

of the digitally signed materials in SPANJNIT by using [CERTi] and AUTHi. If 

the digitally signed items cannot be verified, the Responder stops proceeding 

further because SPANJNIT might have been subjected to man-in-the-middle 

attacks, or was created for DoS attacks (section 4.6 on p.110).

If the signature is verified (hence the contents of SPANJNIT), the Responder 

will look into the message. If a [EEi] is included, the Responder will evaluate 

itself against the list of requirements carried in [EEi]. There are two possible 

outcomes:



1. The Responder is unable to satisfy to the requirements as specified in [EEi]. 

This could happen for example when the Responder has already been 

re-configured such that it cannot execute the to-be-sent active packet; or 

the Responder has an incompatible execution platform for the packet, or the 

Responder does not have the necessary supportive software modules or 

services to execute the packet. In this case, the SPANJNIT packet is 

simply forwarded to the Responder’s neighbouring node (a node other than 

the one from which the active packet has arrived from, otherwise the packet 

will be travelling in a loop), where the SPAN protocol exchange may 

potentially continue.

2. The Responder is able to respond to the requirements as specified in [EEi]. 

For example, it satisfies all the requirements specified by the Initiator, or it 

has some missing supportive software modules or services, but it believes 

these missing supportive items can be provided by the Initiator. The 

Responder creates a list of its replies, and stores them in an [EEr] payload. 

This facility is important in SPAN to enhance robustness, it enables the 

Initiator to pass on additional information to the Responder (in the last 

message of the exchange, see later) to ensure that a smooth execution of 

active packets (see section 4.5 on p. 106).

In case 2 or in the case where no [EEi] is included in SPANJNIT, the 

Responder generates its own D-H public value (D-Hr) and a random 128-bit 

nonce (NONCEr). By using these values in conjunction with the Initiator’s 

values, i.e. D-Hi and NONCEi, the Responder is capable of creating a shared 

secret (SKEYSEED) using the D-H algorithm (section 8.6 on p. 168). Note that 

SKEYSEED is a shared secret established secretly between the Initiator and



the Responder, from which a subsequent shared key set can be generated for 

specific purposes. For example, the authentication key (SK_a) is one of the 

keys in the subsequently computed shared key set which is used for 

authenticity protection and integrity checks; the encryption key (SK_e) is used 

for encryption.

Once the Responder has computed the shared secret and the shared key set, it 

responds to the Initiator with the second message in the SPAN protocol 

(SPAN_AUTH), which is shown in Figure 28. Note that the items quoted in curly 

brackets {...} are protected accordingly as embedded payloads in the same 

Encrypted payload, by using the corresponding shared key derived from the 

shared secret SKEYSEED i.e. SK_e. The Encrypted payload is appended with 

integrity protection data -  in this case a keyed hash value -  that covers 

SPAN_AUTH (including the message header and payload). The key used to 

create the keyed hash value (i.e. the integrity protection data) is the SK_a key. 

HDR_AUTH is the message header of SPAN_AUTH. SAr keeps the 

Responder’s replies to SAi (e.g. the Responder’s choice of encryption 

algorithms offered by the Initiator). [CERTr] is the public key certificate of the 

Responder, again for the same reason as explained above, the inclusion of 

[CERTr] is optional and depends on the Responder’s own choice. D-Hr and 

NONCEr are needed by the Initiator to create the shared secret SKEYSEED, 

and therefore must be listed in cleartext i.e. not encrypted. AUTHr is a digital 

signature created by using the Responder’s private key over a list of items.

HDR_AUTH, SAr, D-Hr, NONCEr, NONCEi

Figure 29 -  Items digitally signed in AUTHr

The idea of digitally signing the items listed in Figure 29 by the Responder, is to



enable the Initiator to verify the authenticity, integrity, and non-repudiation of the 

shared secret establishment parameters from the Responder. Note that the 

Initiator’s nonce (NONCEi) is also digitally signed by the Responder. This 

arrangement is necessary to prevent replay attacks (section 4.2 on p. 100). Also 

note that the Responder does not simply sign any anonymous nonce values. 

The Responder must first verify NONCEi (that was included in SPANJNIT), by 

verifying the value against the digital signature (AUTHi) created by the Initiator, 

prior to digitally signing NONCEi.

{[EEr], IDr} is the protected replies to [EEi] and the identity of the Responder 

that will be used for future identification respectively. They are protected by 

using the appropriate shared key i.e. SK_e and SK_a. IDr is not necessarily the 

identity of the Responder as listed in [CERTr]. It could be any form of identifier 

(e.g. IP addresses and host names) that the Responder considers appropriate 

to be used in future for identifying itself. This identity information may also be an 

identity of an AA/EE, which is injecting active packets to the network, but relying 

on the active node to provide hop-by-hop security for its active packets. Note 

that this information is protected for two reasons:

1. The EE replies and the Responder’s identity may contain sensitive 

information (such as real-time operational status of the EE on the 

Responder), so they should be protected from intruders.

2. The protected payload can be used by the Responder as a 

proof-of-knowledge of the shared key set (section 4.3 on p. 103).

3.6 SPAN Active Packet (Message 3: SPAN_AP)

3.6.1 An Overview

Stage 3 is carried out at the Initiator. During this stage, the Initiator first verifies



the digital signature of the reply message from the Responder (i.e. AUTHr in 

SPAN_AUTH), then computes the shared secret (SKEYSEED), and 

subsequently computes the shared key set by using its own data and the data 

provided by the Responder in SPAN_AUTH. The shared key set is then used to 

verify other parts of SPAN_AUTH (i.e. the items in the curly bracket). Then, the 

Responder’s reply (i.e. [EEr]) to the Initiator’s initial EE queries (i.e. [EEi]) is 

extracted.

To complete the protocol, the Initiator sends to the Responder the third 

(protected) message (SPAN_AP) which contains the active packet and, 

optionally, some additional data that would enable a successful execution of the 

active packet at the Responder: for example, the missing modules that are 

requested by the Responder in [EEr]. These modules are for example an 

additional Java class (needed by the Responder) to support the execution of 

the Java-based active code. The modules will be included into the reply if they 

can be fit into the reply message; else, a link that refers to a location where the 

modules can be downloaded from will be included instead. This is an example 

of an out-of-band approach in active networks [14]. The SPAN_AP message is 

shown in Figure 30.

I R:

HDR_AP, {IDi, NONCEr, ACTIVE_PACKET, CODE_SIG}

Figure 30 -  SPAN_AP

3.6.2 Design Decisions for SPAN_AP

This is the last message in the protocol. The purpose of this message is to 

enable the Initiator to tell the Responder:

■ It has generated the shared symmetric key.



■ It wants the Responder to validate the shared key.

■ It is passing the (protected) active packet to the Responder using the 

recently generated shared key and asymmetric cryptography.

The decisions for including the corresponding elements in SPAN_AP are as 

follow:

■ {[IDi]}

Some (protected) identity information of the Initiator that the Initiator wants the 

Responder to use for future communications. It is confidential, thus the Initiator 

must only send this information after it has verified the Responder’s authenticity 

(i.e. after checking on the Responder’s message). Thus, this information must 

be sent in this message (not in message 1 because at that point the Initiator 

had not verified the Responder’s authenticity).

■ {NONCEr}

This is a countersigning process. The Initiator must countersign some elements 

of the Responder’s message to prevent network attacks such as impersonation 

attacks (section 4.2 on p. 100).

■ {ACTIVE_PACKET} & {CODE_SIG}

The protected active packet and the digital signature on its static code. They 

are sent at this stage because only at this stage the Initiator has verified the 

Responder. The code signature is needed because it is for enforcing 

non-repudiation protection on the code. Thus, the code’s original creator, i.e. 

the principal, cannot deny of any wrongdoing should the code cause any 

damage to other nodes.

Note that these items are protected (i.e. encrypted and integrity protected) by 

using the recently generated shared key. They must be protected because they



may contain node operation sensitive information. The Responder must verify 

these items. By verifying these items, the Responder is able to verify the 

Initiator has computed the symmetric key correctly (see section 4.3 on p. 103).

3.6.3 SPAN_AP in Detail

In more detail, upon receiving SPAN_AUTH from the Responder, the Initiator 

must first verify AUTHr using [CERTr]. If the verification process were 

successful, the Initiator would be able to generate the shared secret, i.e. 

SKEYSEED, and the subsequent shared keys (i.e. SK_e, SK_a) by using D-Hi, 

D-Hr, NONCEi, and NONCEr. The Initiator then starts to verify the authenticity 

and integrity of the items contained in SPAN_AUTH: the Initiator decrypts the 

encrypted items in SPAN_AUTH i.e. {[EEr], IDr}, by using the corresponding 

shared key i.e. SK_a and SK_e respectively. If SPAN_AUTH is verified, the 

Initiator sends to the Responder the third, and the last message: SPAN_AP. 

HDR_AP is the header of SPAN_AP. IDi is the identity of the Initiator (or the 

AA/EE that it is representing). NONCEr is protected so that the Initiator can 

acknowledge to the Responder that it has received the correct nonce value and 

for anti-replay attacks (section 4.2 on p. 100). This value does not need to be 

digitally signed by the Initiator, because it is protected by the authenticated and 

integrity verified shared keys i.e. SK_e and SK_a. ACTIVE_PACKET contains 

the entire active packet i.e. both the static code and dynamic data. The dynamic 

data is the result of static code execution on the Initiator. CODE_SIG is the 

signature on the static code that is created for protecting the authenticity, 

integrity, and non-repudiation of the static code, by using the principal's private 

key. Note that the principal is the actual creator of the code. In situations where 

the principal does not have its own public key pairs, the private key of the node



that the principal is currently residing may be used for signing instead. This 

arrangement is more scalable at the expense of a less than ideal 

non-repudiation protection (section 4.7 on p.115). Note further that, by using the 

optional [CERTi] field, a node may pass onto other nodes the public key 

certificate of itself, as well as the certificate(s) that the node has obtained from 

other nodes in previous communications.

Once the Responder has received SPAN_AP, the protected items in the 

message are subjected to verification by using the established shared key set. 

Firstly, the integrity data appended to SPAN_AP is verified. Then, the encrypted 

payload in SPAN_AP is decrypted. The authenticity and integrity of the static 

code in the active packet are verified by checking the digital signature 

(CODE_SIG) in SPAN_AP, which was created by the principal using the 

principal’s private key. If the verifications are successful, the embedded code in 

the active packet is executed.

3.6.4 Secured Active Packet Transmission

Under this arrangement, the hop-by-hop authenticity, integrity, and 

confidentiality of the dynamic data of the active packet are protected by the 

shared key set. The static code is digitally signed by the principal, so the source 

authenticity, integrity, and non-repudiation of the static code are protected. The 

confidentiality of the entire active packet including both static code and dynamic 

data is protected by the shared key set.

3.7 Multiple Hops Transmission

In previous sections, the SPAN protocol was presented using a simplified 

deployment environment with two nodes only (i.e. an exchange between an 

Initiator and a Responder). In reality, the Responder (which is an intermediate
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node) would want to pass on the received packet to other nodes in the network 

(i.e. a multiple hops transmission). Figure 31 shows the differences between the 

two.

Terminal machine

Simplified 
environment 
(i.e. 2 nodes)

Multiple hops 
environment

Active PacketService request
execution

To other 
nodes (e.g. 

Internet)

/
Active Packet 

execution

Active 
Packet 

injection

actiVe p a c k e t ACTIVE PACKET* ACTIVE PACKET”

Source Intermediate Intermediate
Active Node Active Node Active Node (2nd
(1M Initiator) (1ft Responder, 3rd

Responder, Initiator)
Active platform 2nd Initiator)

Passive node (h/w router)

Figure 31 -  Multiple hops transmission

The same SPAN protocol is used for multiple hops transmission. Once the first 

Responder (i.e. the node that first intercepted the active packet from the source 

node) has executed the active packet, the results of code execution, i.e. new 

dynamic data, will be added back to the packet, and the packet will be 

forwarded to its next hop i.e. the 2nd Responder. More specifically, when 

sending the active packet to another node, the first Responder now becomes 

an Initiator, i.e. the 2nd Initiator (Figure 31). This is because it is now attempting 

to start a secure transmission with another node.
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Figure 32 -  Active packet at each node

The SPAN protocol repeats between the new pair of nodes. Figure 32 shows 

the active packet at each node. The new active packet (i.e. ACTIVE_PACKET’) 

from the second Initiator would contain the same static code (i.e. 

STATIC_CODE) as the packet received from the first Initiator, but with new 

dynamic data, which contains the execution results. Note that the 2nd Initiator 

should not generate a new signature on the static code; this is because the 

code is static (i.e. to be executed on all nodes) and should be verified by 

verifying the principal’s signature on the static code i.e. based on the identity of 

administrator/management application on the source node. If there was a need 

to modify the static code (that was originally created by the principal), the 

second Initiator would have to create a new active packet (see section 3.9 on 

p.94). The same process repeats between the third Initiator and other nodes
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until the packet reaches its destination.

3.8 Protecting Active Packets in Subsequent Communications

Once a SA has been established between a pair of nodes, the SA should be 

retained until a timeout (section 8.16 on p. 189). Future active packet 

transmissions, remote EE queries and replies, i.e. [EEi] and [EEr], between the 

pair of nodes may make use of the established hop-by-hop SA. The established 

SA is identified at each node by the respective Security Parameter Index (SPI) 

(that was assigned by the nodes involved during the SA establishment process) 

(section 8.17.1 on p. 192). The SPI is also used for identifying established SAs 

during (future) re-keying. Thus, subsequent packets are protected by using an 

SPAN header (which is similar to IKEv2 header), which contains the SPIs for 

identifying the established SAs to be used, and a 32-bit cryptographically 

protected message ID (for anti-replay attacks). The entire packet is covered by 

an integrity checksum data.

3.9 Protecting Active Packets with Dynamic Code

In section 1.6.1 (p.28), it was discussed that in some occasions, an active node 

may want to modify the original code of an intercepted active packet (i.e. 

dynamic code). It was also emphasised that the SPAN protocol may be used to 

protect active packets with static code or dynamic code. As a recap, static code 

refers to the code that remains unchanged during the packet’s traversal in the 

networks; whereas dynamic code means the code is changed during the 

packet’s traversal. In this section, the use of the SPAN protocol for protecting 

active packets with dynamic code is discussed.

In Figure 6, the content of an active packet traversing the network is shown. 

Note that at all nodes, the active code in the packet remains unchanged. In
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Figure 33, the content of an active packet (without protection) with dynamic 

code is shown. Note that at each node, the active code is modified (the grey 

boxes).
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Figure 33 -  Dynamic code in active packets using the same example in
section 1.5.3 (p.24)

It was discussed in section 3.6.2 (p.88) that active code must be digitally signed

by its original creator, i.e. the principal, to enforce non-repudiation. As such, if

dynamic code is created at an intermediate node, the original creator of this

dynamic code (e.g. an EE or a management application currently residing the

intermediate node) must digitally sign its code. This means that, when a node

generates dynamic code, the node is essentially creating a new active packet.

The node will simply use the SPAN protocol (in the same way as described

earlier in this chapter) to transmit this new active packet to its next hop.
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3.10 Packet Loss Handling in SPAN

Packet loss in SPAN can be handled through retransmission using standard 

techniques (see shortly later). Designing specific packet loss handling 

mechanisms in SPAN is not within the scope of this thesis. The reason is that 

there are existing packet loss handling methods that are being widely used in 

today’s transmission models. For example, TCP implements reliable 

retransmission. Note that SPAN and IKEv2 are protocols on the application 

layer. They are on the application layer because they are protocols designed to 

enable security managers (i.e. users) to modify the behaviour of lower levels in 

the stack through, say, changing encryption policies such as IPSec SAs (i.e. 

layer 3). Thus, SPAN can be run over UDP or TCP. TCP is a 

connection-oriented protocol, which supports retransmission. On the other hand, 

UDP is connectionless, but with less overhead. If SPAN is run over UDP, a 

retransmission technique similar to the one used in IKEv2 can be used in SPAN 

to handle packet loss: the Initiator and the Responder remember their 

messages, and retransmit after a timeout. They may discard the messages 

after the exchange has completed.

3.11 Summary

In this chapter, the SPAN protocol was presented together with its design 

decisions. SPAN is a fully distributed protocol that allows each participating 

active node in the network to establish a hop-by-hop SA with its neighbouring 

active node. The protocol involves a three-message exchange handshake; 

each exchange is specially designed to enhance scalability, efficiency, and 

flexibility of the protocol. SPAN also enhances the robustness of the underlying 

active networking systems, by ignoring incompatible active nodes. Furthermore,
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an active packet is transmitted during the SPAN’S hop-by-hop SA establishment 

process, instead of after. In chapter 4 (p.98), a discussion of SPAN and a 

comparison between SPAN with existing solutions will be presented.
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4 Discussion

In this section, related work and certain unique features of SPAN that make 

SPAN ideal for hop-by-hop security management in active networking systems 

will be discussed.

4.1 Message Security in SPAN

All messages exchanged in SPAN are secured. They are secured using 
different techniques. In this section, these techniques will be discussed in detail.

4.1.1 Message Authenticity, Integrity and Confidentiality Protection

■ Secured message content via Symmetric Cryptography

The authenticity and integrity of the keying materials from the Initiator to the 

Responder (i.e. items in SPANJNIT) are verifiable to the Responder because 

the Initiator signs the message contents (except its PKI certificate, which should 

be verified through PKI) with its own private key. Similarly, the authenticity and 

integrity of the Responder’s keying materials are verifiable to the Initiator 

because the Responder signs the contents of SPAN_AUTH with its own private 

key.

■ Anti-network attack via asymmetric cryptography

The Responder signs the Initiator’s nonce, i.e. NONCEi, to prevent replay 

attacks (section 4.2 on p. 100). The Initiator also signs the Responder’s nonce, 

but it does not use asymmetric cryptography. There is no need for the Initiator 

to digitally sign NONCEr; this is because NONCEr is authenticated and integrity 

protected by using the shared key set, i.e. SK_a, that was derived from 

authenticated an integrity verified keying materials (note that the keying 

materials are digitally signed/counter-signed by each peer). Note that these
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keys are derived from the shared secret that was computed using D-H; and as 

such, they are known to the Initiator and the Responder.

■ Integrity and confidentiality protection to message content

Note that the SPAN_AUTH message and the SPAN_AP message contain an 

Encrypted payload respectively i.e. {[EEr], IDr} and {IDi, NONCEr, 

ACTIVE_PACKET, CODE_SIG}. The Encrypted payload is appended by a 

keyed checksum, which covers the entire SPAN_AUTH and SPAN_AP 

message respectively. The keys used to create the Encrypted payload and the 

checksum are derived from the shared key set (SKEYSEED) i.e. SK_e and 

SK_a. Thus, the hop-by-hop authenticity, integrity, and confidentiality of all 

items in {...} are protected.

■ Protected compatibility queries

As explained in an earlier section, optionally, the Initiator may wish to explore 

the properties of the Responder (by using the [EEi] option), prior to establishing 

a hop-by-hop SA and sending over an active packet. As such, the SPAN 

protocol provisions for EE information query in its first message SPANJNIT i.e. 

[EEi]. The content of this enquiry is not encrypted but authenticated and 

integrity protected because it is digitally signed by using the Initiator’s private 

key. For flexibility, SPAN does not specify the type of remote EE information 

that is allowed to be queried through this request message. The supported type 

of request is dependent on the static code execution requirements, and should 

be defined by the corresponding administrator/management application. 

Generally, the query should contain non-sensitive information. If sensitive 

information must be included in the Initiator’s EE information query message, 

[EEi] must not be included in SPANJNIT. In fact, such query should only be



made after the shared secret has been established, or by other secured means 

(e.g. encrypted with the receiver’s public key).

In SPAN_AUTH, SAr, D-Hr, and NONCEr are carried in cleartext. This 

arrangement is necessary because these values are needed by the Initiator in 

order to generate SKEYSEED (using D-H). According to the D-H algorithm, the 

disclosure of these values is necessary and does not create risk to the key 

exchange process. For confidentiality protection on the replies on EE 

information query and the Responder’s identity -  which could be sensitive -  

they are required to be placed in an Encrypted payload. In SPAN_AP, the 

confidentiality of the Initiator’s ID, and the entire active packet (and the static 

code signature) is protected by using the corresponding keys from the shared 

key set.

4.1.2 Summary

■ All messages are secured in SPAN.

■ A mixture of techniques is used to achieve different levels of security in 

SPAN (i.e. asymmetric cryptography is used to achieve non-repudiation 

protection on static code, symmetric cryptography is used to achieve 

scalable integrity, authenticity, and confidentially protection).

■ The SPAN protocol enables secured compatibility enquires prior to 

actually establishing secure tunnels between nodes.

4.2 Network Attacks on SPAN

When designing key exchange protocols, the design of an anti-network attack 

mechanism is crucial. Example network attacks are replay attacks, impersonate 

attacks, and man-in-the-middle attacks. In this section, the anti-network attack 

techniques used in SPAN will be discussed.



4.2.1 Anti-Network Attack Techniques in SPAN

■ Replay attacks

A typical form of replay attack is that the attacker copies a legitimate message, 

and re-sends the message to one of the peers or other peers. To provide 

anti-replay protection in SPAN, all messages exchanged in SPAN are 

cryptographically protected. Particularly, randomly generated, never reused, 

authenticated and integrity protected 128-bit nonces are included.

The use of nonces in key exchange is a generic technique to counter replay 

attacks (by adding randomness to the protocol). The basic idea is that the 

nonce is randomly generated and will not be re-used. As such, if a receiver (e.g. 

a Responder) receives two (or more) messages using the same nonce, the 

more recently received message(s) will be considered as replay attack(s), and 

will be dropped. Because the nonce is cryptographically protected, attackers 

cannot modify the nonce of a valid message unless he/she has the legitimate 

key (note that key and node integrity are assumed in this thesis).

■ Impersonation attacks

Impersonation attacks [67] deceive the identity of legitimate nodes. This type of 

attack takes place in key exchange when nonces are not countersigned by the 

peers. For example, an Initiator sends a signed request (that contains, say 

some D-H public values and a nonce) to a Responder. An attacker intercepts 

this request, and responds with a legitimate reply. However, the reply could be 

a previous legitimate reply message from the Responder to another Initiator 

that was (previously) intercepted by the attacker. Because nonces are not 

countersigned, the Initiator would believe that the attacker is the legitimate



Responder9.

To avoid an impersonation attack, each peer in SPAN must either digitally sign 

or use symmetric cryptography to protect the authenticity and integrity of each 

other’s nonce: the Responder digitally signs the Initiator’s nonce in 

SPAN_AUTH, and the Initiator protects the authenticity and integrity of the 

Responder’s nonce in SPAN_AP by using the SK_a key. In this case, 

impersonation attacks would fail, because a legitimate reply message from the 

Responder must include the Initiator’s nonce, unless the attackers have the PKI 

key pair of the legitimate Responder.

■ Man-in-the-Middle attacks

Man-in-the-Middle attack is not possible in SPAN, as long as private keys are 

kept securely on the nodes (which is assumed). This is because PKI certificates 

are used for verifying AUTHr and AUTHi at the Initiator and the Responder 

respectively. When a forged SPAN_AUTH is received by the Initiator (i.e. 

SPAN_AUTH with a forged signature), the Initiator would be able to determine 

immediately that the message is forged because the forged signature (i.e. the 

forged AUTHr) cannot be verified against the certificate of the legitimate 

Responder (i.e. the actual owner of [CERTr]). The rule-of-thumb deployed in 

SPAN is that the communicating peers must be verified to each other (through 

verifying AUTHi and AUTHr) prior to active packet transmission.

4.2.2 Summary

■ SPAN addresses replay attacks by including randomly generated, never 

re-used nonces in exchanged messages.

9 The consequence of an impersonation attack does not necessary lead to an attack on the key 
exchange itself (because the use of D-H would prevent a third person from determining the 
shared secret). However, the attacker would have successfully “impersonated” the Responder i.e. 
the Initiator is tricked to believe the attacker is the Responder, which is a form of identity thieving.



■ Impersonation attacks against SPAN are not possible because SPAN 

requires communicating peers to countersign each other’s nonce.

■ Man-in-the-middle attacks are not possible in SPAN, as long as keys are 

kept securely on nodes.

4.3 Proof-of-Knowledge of Shared Keys

In the second message of SPAN (i.e. SPAN_AUTH), IDr and [EEr] are 

protected by using the established shared key set. Besides confidentiality 

protection on nodes’ identity and EE information, this is a precaution step to 

ensure that correct computation of the shared key set at both peers.

It should be noted that the Initiator and the Responder are trying to compute a 

shared secret over an insecure channel without any pre-knowledge. Therefore, 

the SPAN protocol requires the peers to use the freshly created shared key set 

as soon as the keys are computed. This arrangement enables the peers to 

verify to each other that they own the same pair of shared keys (i.e. correct 

computation) as soon as the shared key sets are computed, prior to using the 

shared key set for subsequent communications. Thus, peers can detect - and 

possibly correct - frauds of the protocol exchange at the earliest stage.

In SPAN, the Responder is required to use its shared key set to protect some 

data as soon as it has computed the shared key set; and the Initiator is also 

required to use its shared key set to verify the protected data (from the 

Responder) as soon as it has computed the shared key set. More specifically, 

when the Initiator receives SPAN_AUTH from the Responder, it computes its 

shared key set. Then, it must verify the protected contents in SPAN_AUTH by 

using its shared key set. Because these contents are protected by the 

Responder using the Responder’s shared key set (which should be the same



as the Initiator’s shared key set if the computation is correct), the Initiator would 

know the Responder has computed the same shared key set as it had. The 

Responder gets the same assurance by verifying the protected contents in 

message 3 (SPAN_AP) from the Initiator.

4.3.1 Summary

■ Communicating peers are required to validate each other’s key as soon as 

their keys are computed. This requirement enables peers to discover (if 

any) key computational error at the earliest stage.

4.4 Identity Protection

Some level of information disclosure during key exchange is not avoidable [68]. 

When computing shared secret key, SPAN follows the same guidance as 

recommended in [69]. The general rule is not to disclose sensitive information. 

In IKEv2 and IKEvI in aggressive mode, the identity information of the Initiator 

would be disclosed to the Responder before the Initiator can verify the 

Responder’s authenticity (section 2.10 on p.55 and section 2.12 on p.70 

respectively).

■ Identity disclosure in JFK

In JFK, two variants of the protocol were provided i.e. JFKi and JFKr (section

2.11 on p.67). However, neither of the protocols protects the identity of both 

peers. JFKi protects the Initiator’s identity only. The Responder’s identity is 

disclosed to the Initiator in JFKi message 2 prior to the Responder is able to 

verify the Initiator’s authenticity (that can only be achieved after receiving JFKi 

message 3). In contrast, JFKr protects the Responder’s identity only. The 

Initiator’s identity is disclosed to the Responder in JFKr message 3 prior to the 

Initiator being able to verify the authenticity of the Responder (that can only be



achieved after receiving JFKr message 4). In SPAN, however, the nodes may 

disclose the (protected) identities only after verifying the other node’s 

authenticity i.e. after checking the AUTHs. Thus, identity protection is enforced 

in SPAN.

■ The reasons for protecting identities

One may argue that the node’s identity would have been disclosed if the node 

were required to create a digital signature. Note that the identity information that 

is protected is not necessary the node’s identity. The Initiator is located on the 

NodeOS of an active node, and (together with other on-node security facilities) 

is responsible for protecting active packets on behalf of EEs or AAs. Thus, the 

protected identity information could be provided by respective EEs or AAs, 

which requested the Initiator to secure their active packet. This information, 

should be protected (so that the EE/AA remains anonymous), until the 

communicating Initiator and Responder can verify each other’s authenticity.

■ The techniques used in SPAN for identity protection

Note that in SPAN, no identity information is released through message 1 

(SPANJNIT) from the Initiator to the Responder. This is because the Initiator 

has not verified the Responder’s authenticity. The EE/AA’s identity (i.e. [IDr]) is 

protected in message 2 (SPAN_AUTH), that is sent by the Responder to the 

Initiator. This is because by verifying message 1, the Responder would have 

verified the authenticity of the Initiator. The Initiator only release the identity 

information (i.e. [IDi]) to the Responder in message 3 (i.e. SPAN_AP), after the 

Initiator has verified message 2 (i.e. SPAN_AUTH) from the Responder.

4.4.1 Summary

■ Identities must be protected in SPAN for ensuring the actual



communicating applications on remote nodes may communicate in an 

anonymous fashion (when necessary).

■ SPAN enables communicating applications to communicate in an 

anonymous fashion by requiring nodes to disclose identity information 

using protected message payload.

4.5 Enhanced Robustness, Flexibility, and Scalability

4.5.1 Enhancing Robustness in SPAN

The [EEi] and [EEr] options are needed for enhancing the robustness of the 

underlying active network systems. For example, if a principal or an Initiator is 

about to send an active packet for aggregating network-wide information 

regarding the top ten heaviest flows in the network, the principal/initiator may 

need certain information regarding a specific EE on the remote node (i.e. a 

QoS-monitoring EE on the Responder) prior to establishing a hop-by-hop SA 

with that remote node, and sending over the packet. Information such as 

implementation information regarding the EE on the Responder, or the 

programming language(s) supported by the Responder, or availability of special 

software modules that are required to execute the active packet. The [EEi] and 

[EEr] options provide an opportunity for a principal/initiator to explore their 

neighbours’ properties prior to passing over active packets. To illustrate further, 

suppose Java is used (i.e. the active platform is written in Java, the EE is 

implemented in Java, so as the active code is in Java). To execute some active 

code (e.g. HelloWorld.class), a supportive Java class is needed (e.g. the 

SayHello.class that contains the sayHelloWorld() method). Assume that the 

Initiator has previously launched the same code (so it assumes the code is 

somewhere in the network), and decides not to include the supportive class with



the active code in order to save packet space. The Initiator can make use of the 

[EEi] option to determine whether the Responder has the necessary supportive 

Java class, prior to establishing the security channel. If the Responder currently 

does not hold the supportive Java class (i.e. the Responder is incompatible to 

execute the Java code from the Initiator), the Responder can make a request to 

the Initiator for the supportive Java class using the [EEr] option. Note that this is 

a simplified example, which involves one support class in Java; in reality, active 

code execution may require much more supportive information.

The use of the [EEi] and [EEr] options in SPAN improves robustness because - 

at the time of writing - in current active networking systems, there is no 

provisioning to accommodate incompatibility between active nodes. Thus, 

existing active networking systems must assume compatibility between all 

active nodes. By compatibility, we mean that the management application is 

assumed capable of creating static code that is guaranteed to be executable on 

all remote nodes. This implies that such systems would easily fail to operate if 

deployed in practice because of the high degree of heterogeneity in a large 

network such as the Internet. However, in SPAN, an Initiator can now make 

authenticated and integrity protected queries on remote node/EE’s compatibility, 

and receives protected replies, prior to the actual hop-by-hop SA establishment 

and active packet transmission. The Initiator either can therefore ignore an 

incompatible node, or provides the necessary adjustments to ensure static code 

compatibility on remote Responder (such as supplying the Responder with a 

missing module that is required to execute the packet on the Responder). 

Because the query process is conducted at the initial stage of the SA 

establishment process, incompatibility between nodes would have been
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identified (and resolved, if possible) prior to any other further processing (such 

as SA establishment). An incompatible Responder will not respond to the 

Initiator, but will forward the SPANJNIT message to its neighbours (neighbours 

other than the Initiator), where the protocol may potentially continue. 

Robustness of the underlying active networking systems is therefore enhanced, 

because provisioning is made in the protocol to accommodate incompatibilities 

between nodes. The overall efficiency of active networking systems is also 

enhanced, in the sense that communicating nodes must ensure compatibility 

prior to any other further communications or processing (i.e. not wasting 

resources on establishing SAs with incompatible nodes).

4.5.2 Enhancing Flexibility in SPAN

Besides provisioning for static code hop-by-hop negotiation between 

intermediate nodes (i.e. through [EEi] and [EEr]), SPAN enhances flexibility by 

enabling SA negotiations between nodes. By using the SAi and SAr fields, 

nodes can negotiate security parameters (e.g. supported/preferred encryption 

algorithms and key size) in a hop-by-hop manner. It should be noted SANTS 

does not address hop-by-hop key establishment; whereas pre-distributed 

shared key, SKT, and SANE do not support SA negotiation (and EE query). As 

such, these (related) approaches have limited flexibility when deployed in a 

heterogeneous environment because individual security needs may not be 

satisfied. On the other hand, SPAN, IKE+IPSec, and KSV support SA 

negotiation; and an asymmetric approach (i.e. digitally signing and encrypting 

packets) may be deployed in heterogeneous networks (as long as PKI is 

supported). Thus, in the evaluation section, the efficiency and scalability of 

SPAN will be compared to IKEv2+IPSec, IKEvI in aggressive mode+IPSec,
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KSV, and asymmetric approach only.

4.5.3 Enhancing Scalability in SPAN

SPAN enables dynamic hop-by-hop SA establishment to be carried out by each 

individual node, thus SPAN scales better than centralised approaches such as 

KSV or SANE. SPAN is more scalable in the sense that each participating node 

needs to maintain the state of its immediate neighbours only (note that these 

neighbours do not necessary have to be a physical neighbouring node, but 

could be a neighbouring node on an overlay network). There is no need to 

maintain the state of the entire network (in KSV, a centralised keying server 

would have to maintain SAs for all registered nodes; whereas in SANE, some 

workarounds require the source node to establish trust with each of the nodes 

through which an (active) packet has traversed). Thus, in SPAN, the number of 

states maintained on one node is not dependent on the size of the network, but 

rather on the number of neighbouring nodes only.

4.5.4 Summary

■ SPAN enhances robustness in active networking systems by enabling 

peers to use secured messages to ensure compatibility, prior to actually 

establishing secured tunnels and sending across active packets.

■ Flexibility in SPAN is achieved by enabling peers to negotiate 

cryptographic algorithms prior to establishing secured tunnels.

■ Scalability in SPAN is achieved through dynamic compatibility and security 

negotiations; also, SPAN is decentralised: each node may establish 

tunnels with each other.
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4.6 Efficient Detection of DoS Attacks

Key exchange protocols are subjected to DoS attacks. There have been 

several reports [70][71] on DoS attacks on IKEvI (which is a standardised key 

exchange protocol). For example, a DoS attacker can either create (large 

number of) legitimate key establishment instantiation requests, in an attempt to 

overload a Responder [72]; or it can flood a Responder with initialisation 

requests with forged IP addresses; or it can randomly modify the payload of a 

legitimate request message, causing a cache miss at a Responder10. In this 

section, we will discuss how SPAN addresses DoS attacks.

4.6.1 DoS Attacks in IKEv2

DoS attacks are possible in IKEv2. For example, an IKEv2 Responder - upon 

receiving an initialisation message (i.e. IKEv2 message 1) from an attacker - 

would be wasting computational resources. It will need to create (new) D-H 

values (for IKEv2 message 2), compute shared key sets (upon receiving 

valid/invalid IKEv2 message 3 from the Initiator), and will try to decrypt the 

encrypted IKEv2 message 3 from the Initiator, prior to verifying the authenticity 

of the Initiator11. The same problem is experienced in JFK. A JFK Responder - 

upon receiving the first message from the Initiator (in this case an attacker) - 

would be wasting resources on computing (new) D-H exponentials, creating 

digital signature over the D-H exponentials, creating a keyed hash over keying 

materials, computing the shared key set (upon receiving JFKi/r message 3),

10 One form of DoS attacks is that an attacker randomly changes the contents of a message. 
When the Responder receives the modified message, the integrity check on the message will fail. 
More specifically, the hash value (of the modified message) computed by the Responder (which 
is temporally stored in the Responder’s cache memory) does not match with the hash value that 
was included in the message. An attacker can flood the Responder with malformed messages, 
forcing the Responder to waste resources.
11 In IKEv2, the Initiator’s only signature i.e. AUTH on keying materials is kept in an encrypted 
payload in message 3. Thus, the Responder must compute the shared key set, prior to being able 
to verify the Initiator’s signature.



and trying to decrypt the encrypted contents in JFKi/r message 3, prior to 

verifying the Initiator’s digital signature12.

4.6.2 IKEv2 Defence Mechanisms for DoS Attacks

A variant of IKEv2 includes the use of COOKIEs to implement limited DoS 

protection on participating nodes (section 2.10.4 on p.64). This variant of IKEv2 

involves an exchange of six messages (rather than the standard four), and the 

IKEv2 Responder verifies the identity of the Initiator in the fifth message in its 

exchange. The term “COOKIE” originates in Photuris [73], which was an early 

proposal for key management with IPSec (which is now replaced by IKEv2). In 

a variant of IKEv2, a COOKIE is a randomly generated piece of data that is 

used for addressing DoS attacks (section 8.3 on p. 164).

In brief, a Responder is configured to reject initialisation requests, and responds 

to the Initiator with an unprotected message that contains a COOKIE. The 

IKEv2 Initiator must then resend the initialisation message with the valid 

COOKIE to prove that it is using the same IP address as the one used in the 

(rejected) first initialisation message.

4.6.3 DoS Attacks on IKEv2 with COOKIEs

The IKEv2 RFC claims this arrangement can be used to implement limited 

protection against DoS attacks. In the IKEv2 RFC, it was discussed that this 

arrangement would enable the protocol to start with a weaker form of 

authentication (of IP addresses), and possibly later performing stronger

12 JFK suggests a mechanism to address DoS attacks by requiring the Responder to periodically 
generate D-H exponential tuples (every 30s), and use a First-In-First-Out (FIFO) approach for 
assigning D-H exponentials to Initiator’s requests; but this arrangement would add overhead (i.e. 
state maintenance) to the Responder even when there is no attempt from other nodes to 
establish hop-by-hop SA; more importantly, a JFK Responder would still be wasting resources for 
all other computational expensive processes e.g. computing signature and computing shared key 
set, prior to detecting DoS attacks (as explained in the main text).
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authentication. However, the author of this thesis argues that the use of 

COOKIEs in IKEv2 does not provide a complete solution to the problem [72]: 

this is because attackers can intercept and modify all messages from the 

Responder (assumed). Thus, an attacker can generate the first initialisation 

message using a valid IP address of another node (i.e. a victim node). The 

Responder responds by sending the reply (i.e. a COOKIE) to the victim node, 

using the victim node’s legitimate IP address as the reply’s destination address. 

The attacker then intercepts the COOKIE from the reply sent by the Responder 

to the victim node, and (re)sends the same initialisation message with the valid 

COOKIE. The attacker puts the victim node’s IP address as the source address 

of his/her message. The IKEv2 Responder is tricked to believe the IP address 

used by the Initiator does belong to the Initiator (because the attacker appears 

to be re-sending the valid COOKIE from the same IP address as the first 

initialisation message); and carries out all the computationally expensive 

processes (i.e. generating D-H values or computing share key set). More 

importantly, the Responder is unable to distinguish legitimate request 

messages from DoS attacks until a much later stage: because until receiving 

IKEv2 message 5 (which contains the Initiator’s signature on keying materials), 

the IKEv2 Responder still believes the Initiator is a legitimate requester. The 

use of COOKIEs, however, would enable the Responder to identify that the 

attacker has access to physical link on the route from the Responder to the 

victim’s IP address (i.e. the spoofed IP address being used by the attacker). As 

discussed in [72], in reality, the attacker is probably quite “close” to either the 

Responder or the victim node. Thus, the use of COOKIEs makes tracing easier.
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4.6.4 SPAN Defence Mechanism for DoS Attacks

DoS attack is an important issue to be considered when designing practical key 

exchange protocols: as discussed in [72], detection of DoS attack is the 

fundamental countermeasure against DoS attacks; as such, countermeasures 

are introduced in SPAN against DoS attacks by limiting the resources required 

by a SPAN Responder to identify legitimate requests from DoS request 

messages [57][67][72]. The first countermeasure of SPAN against DoS attacks 

is that a SPAN Responder may carry out essential operations only until it 

verifies whether the request is a legitimate request or part of a DoS attack. As 

discussed in the assumptions, all authenticated request messages (i.e. with 

valid digital signatures) are assumed legitimate requests; whereas others are 

attack messages. Therefore, DoS attack requests can be distinguished from 

legitimate requests by requiring the Responder to verify the authenticity of the 

requests. The approach (of verifying the identity of a peer prior to any further 

communications) to counter DoS attacks was also proposed in [57]; but SPAN 

aims to achieve this goal much more rapidly.

Note that SPAN is capable of verifying the Initiator’s authenticity when the 

Responder receives the first message in the protocol i.e. SPANJNIT. This is 

because SPAN requires the Initiator to digitally sign SPANJNIT using its valid 

PKI private key. If the signature on SPANJNIT cannot be verified, the SPAN 

Responder will consider the message is an attack message, and the SPAN 

Responder will not proceed further. Thus, SPAN can more quickly identify 

legitimate requests from DoS attacks than existing approaches such as JFK.

To address another form of DoS attack that involves random modification of 

encrypted contents of duplicated SPAN_AP, the SPAN Responder caches the
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corresponding SPI values of SPAN_AP. Thus, a duplicated (and/or malformed) 

SPAN_AP can be quickly detected and dropped by the Responder simply by 

matching SPI values in the message header and those values in its cache.

4.6.5 Discussion of SPAN’S Anti-DoS Mechanisms

Although one may argue this would not completely eliminate DoS attacks, i.e. it 

still requires some resources to detect DoS attacks, but the author argues that:

1. This is the only arrangement that would enable the Responder to distinguish 

legitimate request messages from DoS attacks at the very first stage of the 

protocol exchange prior to any other computationally expensive processes 

such as D-H exponential computations and shared key set computations.

2. The rule-of-thumb in key exchange design is to reduce the impact of DoS 

attacks: in the evaluation section, it is proven that the SPAN approach 

enables much more rapid detection of DoS attacks than existing 

approaches i.e. less impact on the Responder.

Note that the cost of signature verification (at the Responder) can be reduced or 

even neglected [74] by using carefully selected parameters for asymmetric 

algorithms: for example use a relatively small public exponent e (but larger 

values for secret prime numbers p and q) [75] to achieve a quicker RSA 

signature verification13. A discussion of the performance of signature verification 

can be found in section 8.14.5 (p. 188). It was discussed in [76][77] that with 

careful selection of parameters, the performance of RSA can be improved 

without lowering the level of security of the protocol14.

13 In brief, the RSA signature verification process is to raise the signature to the power of e mod n. 
A small value of e therefore reduces the computational cost for computing the exponential, hence 
achieving more efficient signature verification.
14 Attacks on a message encrypted by using low-exponent RSA was identified [76], which 
enables the recovery of the plaintext. The corresponding defence mechanism (through padding
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4.6.6 Summary

■ DoS attack must be addressed in key exchange protocols.

■ IKEv2 uses COOKIEs to address DoS attacks.

■ A weakness of using COOKIEs to defend against DoS attacks in IKEv2 is 

discussed.

■ SPAN addresses DoS attacks by requiring communicating peers to verify 

each other’s authenticity, prior to carrying out any further computational 

process.

■ Asymmetric techniques are used to achieve anti-DoS mechanisms in 

SPAN. Techniques for reducing overhead are addressed.

4.7 The Use of Asymmetric Cryptography in SPAN

Although asymmetric cryptography can be used to protect active packets, it is 

performance costly to digitally sign and encrypt every packet. Generally, 

asymmetric cryptographic techniques are used to sign symmetric keys, and the 

symmetric keys are used for packet protection. For example, SKT requires a 

node to digitally sign a symmetric key, and sends the signed key to other nodes 

in the network. Subsequent packets are protected by using the symmetric key. 

Asymmetric cryptography, however, is a widely acceptable technique to provide 

non-repudiation protection. An example is the PKI infrastructure. Given that 

active packets may carry executable control or management code that is to be 

executed on remote nodes, non-repudiation protection on packets’ code is 

essential. Thus, there is a need to find a balance point between efficiency and 

strong security.

with nonce) has been identified [106]. Readers should note that this does not affect the use of 
low-exponent RSA in SPAN because we use RSA for signatures, rather than encryption.



In SPAN, the use of asymmetric cryptography is kept to a minimum. It is used 

for essential non-repudiation protection only, i.e. signing static control code of 

active packets, and for verifying initial exchanged keying materials only. It is not 

practical to create AUTH payloads by using shared secret as a pre-shared key 

(i.e. MAC) as suggested in the IKEv2 RFC. This is because this approach falls 

into a chicken-and-egg problem: to establish a shared key one must first have a 

shared key.

Note that the SPAN protocol requires the static code of an active packet in 

SPAN_AP to be signed separately from the AUTHi payload. This is because, 

the static code signature must be a separate signature (separated from other 

signatures created during the SPAN protocol exchange) so that the Responder 

-  once becomes a new Initiator - can append this signature to the new active 

packet for source authenticity and integrity protection on the static code. The 

private key used to sign static code should belong to the principal (i.e. the actual 

creator of the code on the originating node); whereas AUTH should be signed 

by using the node’s private key. This arrangement of using two private keys is 

to provide strong non-repudiation protection. The static code on an active 

packet was created by the principal e.g. an administrator/management 

application, so the principal’s private key should be used to sign static code; 

whereas the keying materials were created by the node, so the node’s private 

key should be used to sign them.

However, if a principal does not have a public key pair to sign static code, the 

node’s (that the principal is currently residing) private key could be used instead. 

These arrangements enhance scalability (less PKI key pair required in the 

network) at the expense of less than ideal non-repudiation protection (i.e. the



code is now signed by the node on behalf of the actual creator). SPAN neither 

restricts static code to be signed by the principal, nor requires each node and 

each administrator/management application to be equipped with its public key 

pair.

There are some scalability concerns on maintaining potentially large Certificate 

Revocation Lists (CRLs) (to support signature verification). Digitally signed 

static code using a PKI private key can be easily verified on a node if the node 

has been equipped with the same PKI key pair (because the node would 

already have the corresponding certificate of the source node’s/principal’s PKI 

key pair). Otherwise, the CRL problem exists. One solution would be to 

configure nodes to download CRLs when network use is low; but this requires 

additional monitoring tool in place to determine real-time network traffic. A more 

practical solution would be to configure nodes to download CRLs at random 

times to avoid bursts of traffic [78]. Readers should note that it is essential to 

digitally sign static code using a standardised, common technique such as PKI. 

This is because some level of non-repudiation protection must be enforced on 

static code. Note that static code are executed for management or control 

purposes, so sophisticated protections must be in place so that the principal (i.e. 

the Initiator) cannot deny of deploying the (potentially damaging) code. 

Currently, asymmetric cryptography (such as PKI) is the only candidate 

technique that has been widely used (e.g. embedded in all web browsers) to 

support non-repudiation protection. Our design neither restricts static code to 

be signed by the principal, nor requires each node and each 

node/administrator/management application to be equipped with its public key 

pair. The choice of whether relying on the node to sign static code, or to equip
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each node/administrator/management application with their own public key 

pairs, should be made by the administrators or the SPs that operate the active 

networking systems i.e. depending on the level of non-repudiation protection 

that is desirable to the administrators/SPs.

4.7.1 Summary

■ The use of asymmetric cryptography in key exchange protocol is

unavoidable due to the need for non-repudiation protection.

■ However, asymmetric cryptography creates more overhead than

symmetric cryptography.

■ SPAN has minimised the use of overhead by using asymmetric

cryptography only when necessary (i.e. for creating signatures on keying 

elements and static code).

4.8 Applicability of SPAN

SPAN is applicable whenever a new hop-by-hop SA is required i.e. between 

participating nodes along a new execution path. One may argue that SPAN 

would have limited applicability when pre-established SAs exist. Note that this is 

not a fair argument because this argument is based on the assumption that 

hop-by-hop SAs pre-exist, whereas SPAN is to establish hop-by-hop SAs. Also, 

as discussed in the assumption section (section 3.1 on p.74), currently there is 

no requirement for all nodes in the entire Internet to have pre-established trust 

with each other.

One concern would be that there is a chance that an active packet is sent along 

an execution path along which no SA has been established or an established 

SA has expired. In a small-scale network such as a LAN, it is possible that 

shared keys have already been pre-established or constantly being renewed



between all nodes; but this statement cannot be applied to a large-scale 

network, especially when active packets support dynamic routing. This is 

because, as explained in an earlier section, the next hop of execution does not 

necessary have to be to a physical neighbouring node within the same 

administrative domain, but could be to any active node on the heterogeneous 

large Internet. Thus, an efficient hop-by-hop SA establishment and a remote EE 

information query protocol such as SPAN is needed.

One may further argue that SPAN would have limited applicability because 

pre-established trust could be assumed within an administrative domain. In this 

case, SPAN is deployed between gateways of heterogeneous domains only. 

This statement could be valid if the administrative domain is small or 

homogeneous: that the administrator/management application of the domain 

has sufficient knowledge of his domain, and is able to equip each pair of hops 

with different keys. Different keys are needed because if more than one pair of 

hops share the same key, then per-hop authentication would fail (this is 

essentially the same problem in multicast IPSec). However, if the administrative 

domain were large or heterogeneous, an automated tool such as SPAN that 

generates much less performance overhead than traditional techniques (see 

later on evaluation) would be better suited for creating hop-by-hop SA within the 

domain. In both case, the opportunity of an active packet being sent across 

heterogeneous administrative domains, and subsequently the applicability of 

SPAN, would depend on the scale of deployment of the underlying active 

networking systems. The wider the scale of deployment of active networking 

systems, the more heterogeneous administrative domains/nodes would be 

involved, and as such the higher the opportunity an active packet will traverse
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heterogeneous domains/nodes. Thus, an efficient, flexible, and scalable 

hop-by-hop security approach such as SPAN is needed for large-scale 

deployment of active networking systems.

4.8.1 Summary

■ SPAN is designed for establishing new SAs between nodes; it may also be 

used to re-establish expired SAs between nodes.

■ The use of SPAN in an environment in which pre-established trust exists is 

addressed.

■ SPAN may be used in homogeneous or heterogeneous environment (or 

wherever an automated, scalable key exchange tool is needed).



5 Evaluation

In this chapter, SPAN will be evaluated against some of the existing protocols 

by its efficiency, scalability, behaviour under DoS, and flexibility. The choice of 

existing solutions used in this evaluation (for comparison against SPAN) will be 

explained.

For efficiency evaluation, the total time required by SPAN and different variants 

of IKEv2+IPSec to complete one protocol handshake and to transmit an active 

packet between a pair of nodes is determined. This figure will enable the 

readers to notice the efficiency difference between SPAN and different variants 

of IKEv2. For scalability evaluation, the effects of deploying SPAN and other 

existing protocols in a simulated large-scale network will be determined. 

Different implementations of DoS attacks are launched against the protocol, to 

determine the differences between the behaviour of each protocol under DoS 

attacks. For robustness and flexibility, SPAN is evaluated against existing 

solutions in terms of how it accommodates incompatibility and heterogeneities 

in networks.

5.1 Packet Format Designs

The SPAN protocol consists of three messages: SPANJNIT, SPAN_AUTFI, 

and SPAN_AP. The packet format designs for these messages are presented 

in this section.

5.1.1 An Overview on Packet Format Design

SPAN packets may be encapsulated into the payload of a TCP or UDP packet. 

Figure 34 shows a generic representation of a SPAN packet when 

encapsulated into the payload of an UDP packet.
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IP Header IP Header

UDP Header UDP Header

SPAN Header

UDP Payload

SPAN Payload

A UDP packet A SPAN packet

Figure 34 -  A generic representation of a SPAN packet

Each SPAN packet contains a SPAN message. To identify a SPAN message, 

each SPAN message must be defined with an appropriate Exchange Type. An 

Exchange Type is a value placed in the SPAN header, which allows the 

receiver to identify the type of the message (i.e. whether the received message 

is a SPANJNIT, SPAN_AUTH, or SPAN_AP). To avoid potential complications 

with standard IKEv2 messages, a set of private values should be used as the 

Exchange Type of our SPAN messages. SPANJNIT uses 240, SPAN_AUTH 

uses 241, and SPAN_AP uses 242. Similarly, SPAN-specific payloads are 

identified using specific values for the Payload Types. SPAN-specific Payload 

Types (e.g. [EEi] and [EEr].) are specified by using private values in-between 

128-255.

122



5.1.2 A Generic Packet Format Design for SPANJNIT

Byte 1 Byte 2 Byte 3
‘p.

Next Payload

Byte 4

Reserved Payload Length

‘SAi data'

Next Payload Reserved Payload Length
DH Group Reserved

~D-Hi data-

Next Payload | Reserved | Payload Length

-NONCEi data'

Next Payload Reserved Payload Length
Auth Method Reserverd

-AUTHi Data'

Figure 35 -  Packet format for SPANJNIT

Figure 35 shows a generic packet format for a SPANJNIT message. This 

packet format contains all the fields needed to carry the compulsory elements in 

the SPAN INIT message defined in section 3.4 (p.78). The Exchange Type field 

tells the receiver this message is a SPANJNIT message. Each field holds one 

element in the SPAN INIT message, that is, the SA offered by the Initiator to the 

Responder (i.e. SAi), the Diffie-Hellman public values offered by the Initiator to 

the Responder (i.e. D-Hi), the Initiator’s nonce (i.e. NONCEi), and the Initiator’s 

digital signature of the message (i.e. AUTHi). The SPAN header contains 

references to the SPIs that will be used by the Initiator (i.e. SPli) and the
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Responder (i.e. SPIr, but zero for SPIr because this field must be filled in by the 

Responder in the SPAN_AUTH message only). The Next Payload field enables 

the packet receiver to determine what to be expected immediately following the 

SPAN header (in this case it is the SA from the Initiator). The Message ID field 

keeps a dummy message ID for this message. The protocol exchange starts 

with message ID 1. The ID is incremented each time a message is successfully 

received. For example, in the first exchange, a message with ID 1 is sent from 

the Initiator to the Responder. The Responder sends a message with ID 2 back 

to the Initiator, and so on. The message ID is set to zero when the SA expires.

5.1.3 Generic Packet Format Designs for SPAN_AUTH and SPAN_AP

These messages have a similar format to SPANJNIT; thus, only the 

differences will be discussed in detail in this section.



Byte 1 Byte 2 Byte 3 Byte 4

> /  . .  . .  .........

Next Payload I Reserved | Payload Length

-S A r D ata-

Next Payload Reserved Payload Length
DH Group Reserved

*D-Hr Data-

Next Payload Reserved Payload Length

'NO NCEr-

Next Payload Reserved Payload Length
Auth Method Reserverd

AUTHr Data

Next Payload Reserved Payload Length
4 V -

-Encrypted D ata-

Padding
Pad Length

■Integrity D ata-

Encrypted Data prior to encryption:
Reserved ]Next Payload 

ID Type
Payload Length

Reserverd

IDr Data

Figure 36 -  Packet format for SPAN_AUTH

Figure 36 shows the packet format for SPAN_AUTH. It shows all the fields 

needed to contain the elements in SPAN_AUTH, which are defined in section
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3.5 (p.82). Note that the Responder will fill in the SPIr field, using a value that it 

refers to its (to-be-established) SA. The message ID is incremented. The 

AUTHr field keeps a digital signature, which is created by using the 

Responder’s private key. The signature covers the header, SAr, D-Hr, NONCEi 

and NONCEr. Note further that the Encrypted Data field contains the encrypted 

Responder’s ID (i.e. IDr). The Initialisation Vector (IV) field keeps an IV for the 

encrypted payload. This value would be needed in order to address a security 

weakness in some modern encryption ciphers. This weakness is addressed by 

adding a level of randomness (i.e. by using the IV) to the encryption key each 

time the key is used for encryption. Detailed discussion of the use of IV in 

encryption cipher is an issue of cryptographic algorithm, which is out-of-scope 

of this thesis (see section 8.8 on p. 177 for more detail). The encrypted data is 

appended by a checksum. The checksum is created using the freshly created 

shared key set, and it covers the encrypted payload for authenticity and integrity 

protection.



Byte 1 Byte 2 Byte 3 Byte 4

Next Payload Reserved Payload Length

•Encrypted Data-

Padding
Pad Length

“ Integrity Data~

Encrypted Data prior to encryption:
Next Payload Reserved | Payload Length

ID Type Reserverd

IDi Data

Next Payload Reserved | Payload Length

NONCEr Data

Next Payload Reserved | Payload Length

ACTIVE_PACKET

CODE SIG

Figure 37 -  Packet format for SPAN_AP

Figure 37 shows the packet format for SPAN_AP. It is similar to SPANJNIT 

and SPAN_AP, except that it contains an encrypted payload only. The 

encrypted payload contains encrypted IDi, NONCEr, ACTIVE_PACKET, and 

CODE_SIG. CODE_SIG is the digital signature on the static code, it is created 

by the principal (i.e. which is also the Initiator in this case). The encrypted 

payload is appended by a keyed checksum (which is created using the freshly
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created shared key set) for authenticity and integrity protection of the entire 

message.

5.2 Experiment Setup

For the simplest hop-by-hop evaluation, two interconnected nodes are needed. 

One node should be used as the Initiator and the principal (i.e. that an active 

packet is about to be injected), the other node should be used as the 

Responder (i.e. that the active packet will be received). This arrangement 

simulates a hop-by-hop environment. In practise, however, a hop-by-hop 

transmission can involve several nodes, with intermediate nodes being passive 

routers that simply intercept-and-forward IP packet.

The protocols under evaluation were run between two laptops (each with an 

Intel Pentium M processor 1.70GHz, 796MHz cache, with 1GB RAM). The two 

laptops were connected through an Ethernet cable. The machines have a 

shared directory for keeping common data. Linux (with JDK1.5) was installed on 

these machines. Figure 38 shows the experiment setup for evaluating the 

SPAN protocol.



(1) SPANJNIT

(2) SPAN_AUTH

Initiator (principal) (3) SPAN_AP Responder

Ethernet cable

Figure 38 -  Experiment arrangement

5.3 Prototype Design and Implementation

In this section, the prototypes are described. Their design choices are 

explained. Note that the prototypes are implemented for protocol evaluation 

only. The protocols are not limited to the techniques that were chosen to 

implement the protocol prototypes.

5.3.1 Choosing Programming Language

For a fair evaluation, the prototypes of the protocols under evaluation must be 

developed using the same programming language. This is because different 

programming languages have different performance (e.g. C is faster than Java). 

A prototype of SPAN and the relevant components of IKEv215 were developed

15 The reason for developing (relevant parts of) IKEv2 is that at the time when the implementation 
starts (early 2005), no open source of IKEv2 was available.



in Java for evaluation. Java was chosen because of its compatibility and its 

usability.

5.3.2 Choosing Cryptographic Algorithms

Again, for a fair evaluation, the prototypes must use the same set of 

cryptographic algorithm. This is because different cryptographic algorithms 

have different performance e.g. Triple Data Encryption Standard (TDES) would 

be less efficient than Data Encryption Standard (DES). Generally, the more 

sophisticated the cryptographic algorithm, the more resources it would need; 

but relatively, they are more secured. However, it should be noted that this 

evaluation is not to evaluate levels of security of a chosen cryptographic 

algorithm; but to evaluate the efficiency between the chosen key exchange 

protocols. Thus, the chosen cryptographic algorithm(s) should be easy to 

implement. DES and DSA are chosen as the encryption algorithm and digital 

signature algorithm. The choices will be explained shortly later.

5.3.3 The SPAN Package

The SPAN package is designed for evaluation purpose; as such, simplicity is 

the main design criteria. As indicated, it is implemented in Java. An overview of 

the package’s class files is provided below. The code that implements the 

classes will be discussed shortly afterwards.

■ The SPAN_R class

This is the main class that implements the SPAN Responder. It has 363 lines of 

code. This class is started first and listens on a port for incoming initialisation 

request (i.e. SPANJNIT) from remote SPAN Initiators. It verifies the signature 

of the initialisation request, computes its own D-H values, and computes the 

shared key set. It then prepares the SPAN_AUTH message, and sends it back



to the Initiator through a socket. Lastly, it waits for the Initiator’s last message 

(i.e. SPAN_AP).

■ The SPANJ class

This is the main class that implements the SPAN Initiator. It has 381 lines of 

code. This class starts the SPAN protocol by generating a D-H value, creates a 

signature of the message (i.e. AUTHi), and sends the SPANJNIT message to 

the Responder. It then intercepts the SPAN_AUTH message from the 

Responder, verifies the message’s signature, and computes the shared key set. 

It sends the last message in the protocol, i.e. SPAN_AP, to the Responder. The 

message includes a dummy active packet, i.e. ACTIVE_CODE, which 

subsequently includes the active packet’s static code (i.e. STATIC_CODE). The 

size of the active packet and its static code is variable.

■ The KeyDisplayer class, the KeyReader class, and the KeyWriter class 

These classes are used to display the DES key (i.e. the shared key), and to 

read and write the DES key to local storage for future reference. They have 141 

lines of code.

■ The Signer class

This class is responsible for creating and verifying digital signatures in the 

SPAN protocol. It has 122 lines of code.

■ .keystore

This file keeps the asymmetric key pair, which is needed for creating and 

verifying digital signatures in the SPAN protocol.

5.3.4 Creating and Verifying Digital Signatures in SPAN

In SPAN, digital signatures are created using Digital Signature Algorithm (DSA). 

DSA is used because it is a standardised technology for creating digital



signatures; also, it is supported in Java. DSA requires users to have 

pre-installed asymmetric keys (i.e. a keystore) for signing and verifying 

signatures. These keys are simulations of the public key certificates in the 

SPAN protocol. This requirement is acceptable for this evaluation because the 

SPAN protocol requires participating nodes to have public key certificates. This 

file is stored as a hidden file under the user’s account. The keytool command in 

Linux is used to generate this key.

To generate a keystore file:
$ keytool -genkey -alias [alias name] -keyalg [key algorithm] 
-keystore [keystore location]/.keystore
Example:
$ keytool -genkey -alias lcheng -keyalg DSA -keystore 
/home/lcheng/.keystore

Figure 39 -  Asymmetric key generation using keytool

To create and verify a digital signature, the Signer class is used. The Signer 

class contains methods for creating and verifying digital signatures, using the 

key pair information specified in the .keystore file.

// Assuming there is some data (i.e. raw_data) to be signed, and 
// the signature will be stored (i.e. sig_file) for verification:
char[] storePassword = "12345678".toCharArray();
File sig_file = new File ( "data.sig") ;
String algorithm =
System.getProperty("signature.algorithm","DSA");
Signer mySigner = new Signer(algorithm, storePassword);
mySigner.createSignature(raw_data, sig_file, storePassword, 
"lcheng");

// Assuming some signed data (i.e. raw_data) is to be verified: 
ByteArraylnputStream in = new ByteArraylnputStream(raw_data); 
File sig_file = new File ("data.sig") ; 
char[] storePassword = "12345678".toCharArray();



String algorithm = System.getProperty("signature.algorithm", 
"DSA");
Signer mySigner = new Signer(algorithm, storePassword)/ 
boolean valid = mySigner.verifySignature(in, sig_file, "lcheng");

Figure 40 -  Creating and verifying a digital signature using the Signer
class

Essentially, the key pair information from the .keystore file is read into memory. 

A Signer object is created, that is initialised with the chosen cryptographic 

algorithm (i.e. DSA), and the corresponding .keystore file password (so that the 

object has access right to the key pair information). The Signer object takes the 

data to be signed, extracts the private key from the .keystore file, and use the 

update() and sign() methods of the Signature class to create a digital signature 

of the data. The created signature is stored for verification at a later stage.

Figure 41 shows the code of the createSignature() method of the Signer class.

public byte [] createSignature(byte[] inputTextBytes, char 
keyPass [], String myAlias) throws GeneralSecurityException, 
IOException
{

PrivateKey pk = (PrivateKey)ks.getKey(myAlias, keyPass);
sig.initSign(pk);
byte[] buffer = inputTextBytes;
int count = 0;
for(int i = 0; i < buffer.length; + + i)
{

sig.update(buffer, 0, count);
}

byte[] signatureBlock = sig.signO; 
return signatureBlock;

}

Figure 41 -  The createSignatureQ method of the Signer class

The signature verification process is similar. The Signer object takes the data
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that was signed, the digital signature of the signed data, and extracts the public 

key from the keystore file, in order to verify the digital signature of the data. The 

method returns false if the verification fails. The code for the verifySignature is 

shown in Figure 42.

public boolean verifySignature(InputStream in, File sigfile, 
String myAlias) throws GeneralSecurityException, IOException
{

PublicKey pk = ks.getCertificate(myAlias).getPublicKey(); 
sig.initVerify(pk);
byte [] buffer = new byte[in.available() + 100]; 
int count = 0;
while((count = in.read(buffer)) > 0)
{

sig.update(buffer, 0, count);
}

in.close();
FilelnputStream signedln = new FilelnputStream(sigfile) ; 
byte[] signatureBlock = new byte[signedln.available()] ; 
signedln.read(signatureBlock) ; 
signedln.close();
return sig.verify(signatureBlock);

Figure 42 -  The verifySignature() method of the Signer class

5.3.5 D-H Public Value Generation

DHParameterSpec myDHSpec;
AlgorithmParameterGenerator paramGen = 
AlgorithmParameterGenerator.getlnstance("DH");
paramGen.init(512);
AlgorithmParameters params = paramGen.generateParameters(); 
myDHSpec =
(DHParameterSpec)params.getParameterSpec(DHParameterSpec.class);
KeyPairGenerator myKeyPairGenerator =
KeyPairGenerator.getlnstance("DH");
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myKeyPairGenerator.initialize(myDHSpec);
KeyPair myKeyPair = myKeyPairGenerator.generateKeyPair() ; 
KeyAgreement myKeyAgreement = KeyAgreement.getlnstance("DH"); 
myKeyAgreement.init(myKeyPair.getPrivate()); 
byte[] iPublicDHValue = myKeyPair.getPublic () .getEncoded() ;

Figure 43 -  The code for creating the Initiator’s D-H public value

The Exchange Type field tells the receiver this message is a SPANJNIT 

message. Figure 43 shows the code for creating the Initiator’s D-H public value, 

and encoding it, prior to sending it over to the Responder. First, an algorithm 

parameter specification is created. This specification is specified to use D-H as 

the public value generation algorithm. This specification, in turn, allows a 

KeyPairGenerator to be initialised. The KeyPairGenerator is the key component, 

which generates the D-H public and private values. It does this by calling the 

generateKeyPair() method. Note that the private output value of the D-H 

algorithm is kept locally at the Initiator, and never transmitted to the Responder. 

On the other hand, the D-H public value (i.e. iPublicDHValue) is sent to the 

Responder, so that the Responder can compute the shared key set. The D-H 

values generation process at the Responder is almost identical to the one 

shown above, except that the Responder’s key pair is initialised using the 

Initiator’s D-H public value (i.e. iPublicDHValue). Figure 44 shows the code at 

the Responder.

KeyFactory rKeyFactory = KeyFactory.getInstance("DH" ) ;
X5 0 9EncodedKeySpec x509KeySpec = new
X509EncodedKeySpec(iPublicDHValue);
PublicKey iPublicKey = rKeyFactory.generatePublic(x509KeySpec);
DHParameterSpec rDHSpec = ((DHPublicKey)iPublicKey).getParams();
KeyPairGenerator rKeyPairGenerator =
KeyPairGenerator.getlnstance("DH");
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rKeyPairGenerator.initialize(rDHSpec);
KeyPair rKeyPair = rKeyPairGenerator.generateKeyPair();
KeyAgreement rKeyAgreement = KeyAgreement.getlnstance("DH") ;
rKeyAgreement.init(rKeyPair.getPrivate ()) ;

Figure 44 -  The code for creating the Responder’s D-H value

5.3.6 Shared DES Key Computation

Once the Initiator and the Responder has exchanged the D-H public 

parameters, they can establish the shared key set. The shared key set is 

calculated at the Responder as soon as the Responder has received, and 

verified, SPANJNIT. The code shown in Figure 45 shows how the symmetric 

(shared) DES key is computed at the Responder, after it has received and 

verified the SPANJNIT message from the Initiator.

rKeyAgreement.doPhase(iPublicKey, true);
SecretKey rDESKey = rKeyAgreement.generateSecret("DES");
byte[] rDESKeyBytes = rDESKey.getEncoded();
KeyDisplayer myKeyDisplayer = new KeyDisplayer();
String rDESKeyString = myKeyDisplayer.toHexString(rDESKeyBytes) ;
KeyWriter myKeyWriter = new KeyWriter("Responder.key", rDESKey);
myKeyWriter.writeToFile() ;

Figure 45 -  The code for computing the shared key set at the Responder

The code shown in Figure 45 shows how the Responder calculates its 

symmetric DES key. The computation process needs the Initiator’s D-H public 

value (i.e. iPublicKey). The Responder’s DES key (i.e. rDESKey) is initially 

created as a SecretKey object, which is later converted into a byte array (i.e. 

rDESKeyBytes) for easy manipulation. The key is then further converted into a 

String using the toHexString() method of the KeyDisplayer class for display 

purpose. The original SecretKey object (i.e. rDESKey) is written to local storage
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(i.e. Responder.key), so that it can be used to protect subsequent messages 

exchanged between the Responder and the Initiator. The Initiator uses the 

same algorithm to create its DES key.

5.3.7 Encryption and Decryption Code Implementation

Once the shared DES key is ready at both the Initiator and the Responder 

respectively, the key can be used to encrypt and decrypt data. All encryption 

uses DES in Electronic Code Book (ECB) mode. DES in ECB mode is used 

because it is a standardised, easy to implement technology, and it is supported 

in Java since Java 1.2. DES is extensible to support Triple DES (TDES), which 

is considered as a more secure encryption algorithm. ECB enables each 

possible block of plaintext to have a defined corresponding ciphertext; thus, 

using ECB enables the developer to check whether the encryption over a 

particular plaintext was carried out correctly. ECB mode supports 

PKCS5Padding, which adds dummy padding to the original (unencrypted) 

payload prior to encryption. This is essential process in encryption. Figure 46 

shows the code used in SPAN for encryption and decryption.

// Assuming a DES key (i.e. myDESKey) is available and some data 
// (i.e. cleartext) to be encrypted:

Cipher encipher = Cipher.getlnstance("DES/ECB/PKCS5Padding"); 
encipher.init(Cipher.ENCRYPT_MODE, myDESKey); 
byte[] ciphertext = encipher.doFinal(cleartext);

// For decryption, use the same symmetric DES key (i.e. myDESKey) : 
Cipher decipher = Cipher.getlnstance("DES/ECB/PKCS5Padding"); 
decipher.init(Cipher.DECRYPT_MODE, myDESKey); 
byte[] cleartext = decipher.doFinal(ciphertext);

Figure 46 -  Encryption and decryption code in SPAN



The code essentially creates a Cipher object (i.e. encipher), that is instantiated 

with the chosen cryptographic algorithms (i.e. DES, ECB, and PKCS5Padding) 

and the user’s DES key. The user’s DES key is created dynamically during the 

SPAN protocol (see section 5.3.6 on p. 136). Then, the created Cipher object 

encrypts the data (i.e. cleartext) by calling the doFinal() method. The resultant 

encrypted data is in a byte array (i.e. ciphertext). The decryption process is 

asymmetric to the encryption process: a decryption Cipher object is created and 

instantiated with chosen cryptographic algorithms and corresponding DES key 

(i.e. decipher). The decryption Cipher then decrypts the encrypted data (i.e. 

ciphertext) by using the same method (i.e. doFinal()), and returns the decrypted 

data in a byte array (i.e. cleartext).

5.3.8 Sending Packets on the Wire

It was discussed in section 3.10 (p.96) that packet lost in SPAN may be handled

through traditional retransmission mechanism. For simplicity, SPAN messages 

are sent as UDP packets. Once a SPAN message is ready, it is sent to the 

other peer. The communication is via a DatagramSocket. Figure 47 shows the 

code used by the Initiator for sending the packet on the wire to the Responder,

and listens for the Responder’s incoming message.

// Send SPAN_INIT to Responder:

InetAddress rAddr = InetAddress.getByName(rAddrString);
sendSocket = new DatagramSocket(sendPort);
DatagramPacket packet = new DatagramPacket(SPAN_INIT_bytes,
SPAN_INIT_bytes.length, rAddr, rPort);
sendSocket.send(packet);
sendSocket.close() ;

// Now wait for Responder's message (i.e. SPAN_AUTH) :



byte[] buffer = new byte[bufferSize];
packet = new DatagramPacket(buffer, buffer.length);
recvSocket = new DatagramSocket(recvPort);
recvSocket.receive(packet);
raw_data = packet.getData();
recvSocket.close();

Figure 47 -  Packet transmission via DatagramSocket

Essentially, the Initiator opens a DatagramSocket (i.e. sendSocket), specifies 

the Responder’s listening address and port (i.e. rAddr, rPort), and packages the 

SPANJNIT message into a UDP packet (i.e. packet). It calls the send() method 

to send the packet to the Responder. Then, the Initiator opens another socket 

(i.e. recvSocket), and waits for the Responder’s reply (i.e. the SPAN_AUTH 

message). When the reply arrives at the Initiator’s listening socket, the data in 

the packet (i.e. packet) is extracted (i.e. raw_data) by the Initiator by calling the 

getData() method.

5.3.9 The IKEv2 Package

Although the design of the IKEv2+IPSec and SPAN protocols are different 

(IKEv2+IPSec uses six to eight messages to complete protocol exchange and 

active packet transmission, whereas SPAN uses only three messages), the two 

packages use the same classes and methods as described above. The reason 

for using the same classes and methods is because (as explained in section 5.3 

on p. 129), in order to establish a fair evaluation environment, the 

implementations of the protocols under evaluation must use the same 

technologies. For example, in IKEv2, the same createSignature() method 

presented in section 5.3.4 (p. 131) is used to create digital signatures, and the 

same encryption method (section 5.3.7 on p. 137) is used to encrypt data during
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the key exchange protocol, and for encrypting active packets (i.e. a simulation 

of IPSec), and so on. The differences between the two protocols are not 

between the implementations, but are between the number of cryptographic 

processes (i.e. efficiency), and the number of messages (i.e. scalability), 

needed to complete the protocol. In the following sections, the efficiency and 

scalability differences between the two protocols will be discussed.

5.4 Efficiency and Scalability Evaluation

The performance of SPAN is compared with variants of IKEv2:

a) IKEv2+IPSec without PFS

b) IKEv2+IPSec with PFS support (new D-H values)

PFS is defined in [79]16. PFS is optional [80] because it enables strong security 

[34], but incurs a high performance overhead because new D-H values are 

generated. Detailed discussion of PFS can be found in section 8.12 on p. 180. 

The IKEv2+IPSec approaches were chosen for efficiency assessment because:

1. The shared key computation process of SPAN is similar to the one used in 

IKEv2 (both uses D-H).

2. The IKEv2+IPSec approach is one of the approaches identified earlier in 

this thesis that provides a similar level of flexibility as SPAN, as they both 

support SA negotiation.

3. KSV essentially relies on IKEvI, and IKEv2 is meant to optimise IKEvI.

4. IKEv2 is a standardised protocol (published in the form of RFC) i.e. 

reasonable to be used as a benchmark for comparison.

The first measurement is efficiency, i.e. the time to complete one protocol

16 PFS is defined as “ ...an authenticated key exchange protocol provides PFS if disclosure of 
long-term secret keying material does not compromise the secrecy of the exchanged keys from 
earlier runs" [79].



exchange (excluding packet execution time which is application-specific), is 

measured. In each trial, a dummy active packet (of 1024 bytes with a static 

code of 512 byte) is transmitted securely between the two peers during the 

SPAN protocol exchange. Note that it is the performance differences between 

different approaches that this thesis is measuring, not the actual performance 

results. This is because actual performance results are directly related to 

implementation and software design, which is a programming issue. Figure 48 

shows the average results of 400 trials.
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Figure 48 -  Efficiency evaluation between SPAN and IKEv2 variants

The experiment results show that SPAN generates on average 15% to 40% 

less in performance overhead when compared to IKEv2+IPSec without/with 

PFS support. On average, SPAN needs 3103.76 milliseconds (±361 ms), 

IKEv2+IPSec (no PFS) needs 3652.78 milliseconds (±303ms), and 

IKEv2+IPSec (with PFS) needs 5177.315 milliseconds (±366ms). The standard 

deviation shows the root mean square deviation of the values from their
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arithmetic mean.

It is clear from the results that SPAN has a significant efficiency advantage over 

IKEv2+IPSec (with PFS) i.e. -40% less in overhead; and a slightly less 

significant advantage over IKEv2+IPSec (without PFS) i.e. -15%. Readers 

should note that:

■ IKEv2+IPSec (without PFS) is more efficient than IKEv2+IPSec (with PFS) 

because IKEv2+IPSec (without PFS) achieves efficiency at the expense 

of less than ideal security. Although there has always been a challenge to 

determine a balance point between security and performance, in [80], it 

was stated that IKEv2+IPSec (with PFS) is ideal for situations where 

strong security is needed. Readers should note that active packets might 

carry control executable code, which could cause significant damage to 

systems if the code is compromised. Therefore, this thesis argues that 

strong security is desired in active network security solutions;

■ It should be noted that one important factor is that SPAN is deployed in a 

hop-by-hop manner: this means the actual magnitude of the time delay 

reduction (i.e. actual time saved) increases as the scale of deployment of 

SPAN increases. This implies the efficiency advantage of SPAN - in terms 

of magnitude - becomes more significant as the scale of deployment of 

SPAN increases. Using the (average) results presented in section 5.4 

(p. 140), a 15% reduction in processing time of a process that originally 

takes 3600 milliseconds (i.e. IKEv2+IPSec without PFS) means the 

process would now take 3060 milliseconds only. One may argue that a 

540 milliseconds efficiency advantage has very little impact. However, 

when deployed in large scale, say between 256 nodes (which is the typical



maximum TTL value in today’s Internet), the magnitude of time reduction 

would be 255 x 540 = 137,700 milliseconds (2.295 mins). Similarly, when 

SPAN is deployed in a large scale, a 15% advantage becomes much 

more significant. More importantly, the significance of efficiency 

advantage of SPAN is directly related to the size of the deployment: the 

larger the scale of deployment, the more significant the advantage. This 

also implies that SPAN scales better than existing solutions (see later for 

more on scalability evaluation).

The results on efficiency are in-line with the arguments that were made in an 

earlier section. SPAN is more efficient because of the reduced exchange 

messages, i.e. reduced number of cryptographic operations on exchange 

messages (e.g. for message authenticity/integrity protection). Hence, SPAN 

has limited number of hashing, and requires only one D-H exponent generation 

(two are required in IKEv2+IPSec with PFS). One may argue IKEvI in 

aggressive mode+IPSec may produce a similar performance result as SPAN 

due to its simplicity in key exchange handshake (section 2.12 on p.70): but as 

explained in an earlier section (section 4.4 on p. 104), IKEvI in aggressive 

mode+IPSec does not protect peers’ identity (whereas identities are protected 

in SPAN); also, IKEvI in aggressive mode requires more time to detect DoS 

attacks (section 5.5 on p. 150). Furthermore, SPAN scales better than IKEvI in 

aggressive mode+IPSec because SPAN enables secure active packet 

transmission during SA establishment; whereas IKEvI in aggressive 

mode+IPSec can provide secure packet transmission only after IKE SA and 

IPSec SA establishment (section 5.4 on p. 140).

One may argue that the use of asymmetric cryptography would be acceptable if



the number of active packets traversing a pair of nodes over a period (before 

the SA expires) is kept small. Thus, the total time to complete secure 

transmission(s) of different number of active packet(s) by using symmetric (i.e. 

SPAN) and asymmetric (i.e. DSA) approaches respectively over a period were 

measured. Note that each SPAN experiment included a dynamic establishment 

of a hop-by-hop SA; whereas no dynamic hop-by-hop SA was needed for 

deploying DSA because DSA uses asymmetric cryptography.

Figure 49 shows the results of SPAN vs. DSA, which shows the time needed for 

protecting different number of active packets across a pair of nodes (using 

SPAN and DSA respectively). For example, the total time needed to transmit 

three active packets across a pair of nodes using SPAN is 3221 milliseconds 

(±341 ms), in contrast, DSA takes 2095 milliseconds (±78ms) only.

10000

9000

DSA X8000

2 7000

6000

« 5000

SPAN4000

H  3000

2000

1000

0 1 2 3 4 5 6 7 8 9 10

Total no. of packets over a period of time

Figure 49 -  Symmetric vs. asymmetric

The results (Figure 49) show that dynamic establishment of shared key set



does introduce more overhead than the asymmetric approach when the number 

of active packets being protected across a pair of nodes over a period of time is 

limited. However, the performance advantage of the asymmetric approach is 

overturned by SPAN when just four packets are to be secured over a hop over 

a period.

The results imply that symmetric approaches have scalability advantages over 

asymmetric approaches. This is because relatively much less time is needed to 

protect active packets by symmetric approaches when the number of active 

packets to be protected is large (i.e. large number of active packets to be 

protected means large-scale of deployment). The results shown in Figure 49 

show that when protecting 10 active packets across a pair of nodes, SPAN 

takes 3491 milliseconds (±356ms), whereas DSA needs 9752 seconds 

(±125ms) i.e. SPAN has an efficiency advantage of -64%.

One may argue that DSA still has the advantage when the number of packets to 

be protected is small. The reason why DSA has this advantage is that SPAN 

requires hop-by-hop SA establishment, which is a relatively time consuming 

process (the steep slope at the beginning of the curve of SPAN in Figure 49 

shows the overhead for establishing a hop-by-hop SA). However, once the SA 

has been established, it can be re-used to protect subsequent active packets 

travelling along the same pair of hops. Thus, no SA has to be re-established (i.e. 

no time consuming process) until the SA expires.

Note that the standard lifetime of a SA ranges from 8 hours to 24 hours17 [81]. 

The lifetime of a symmetric SA is much shorter than the lifetime of credential

17 A SA must be replaced once it has expired. The expiry time is known as the lifetime of a SA. 
The author has carried out a search for the standard lifetime of a SA, but there is no single 
definition of a SA lifetime. The figures used in this thesis were identified in [81]: it was discussed 
that as a good practise, (symmetric cryptography based) VPN tunnels should be re-established 
between 8-24 hours.



references created by using asymmetric cryptography (e.g. Verisign are selling 

digital certificates that last between one to three years [82]). SAs are subjected 

to renewal because symmetric keys are less complex than asymmetric keys 

(Question 5 on p. 146), and therefore must be replaced more frequently than 

asymmetric keys. This is because less complex keys are easier to be hacked. 

This implies that a hop-by-hop SA, once established, should remain for 8 to 24 

hours. Thus, the author argues that, since active packets may be used for 

real-time control and management purposes, it is reasonable to assume that 

more than four active packets will traverse a pair of nodes over 8 to 24 hours. 

As such, the author argues that the SPAN approach (which uses a mixture of 

symmetric and asymmetric techniques) has an efficiency and scalability 

advantage when compared to approaches that use asymmetric techniques 

only.

Question 6: Explain the reasons why symmetric keys are less complex than 

asymmetric keys.

Symmetric keys are less complex because of the ways they are generated. 

According to the asymmetric key generation process described in section 8.14 

(p. 183) an asymmetric public key involves careful selection of large prime 

numbers. A resultant product of two large prime numbers is computationally 

impossible to factorise. Thus, asymmetric keys are difficult to hack. On the 

other hand, symmetric keys are generated randomly. For instance, by applying 

a secure hash function to a passphrase, and use the resultant hash value as 

the key [83]. Weaknesses in DES keys are discussed in [84],

Note that the results in Figure 49 also show that SPAN is more scalable than 

asymmetric cryptography, because the time delay for the asymmetric approach
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increases much more significantly than SPAN as the number of packets 

protected increases (i.e. a steeper slope). This means the more the number of 

active packets to be protected, asymmetric approaches would take 

(proportionally) more time than symmetric approaches. This result is in-line with 

the discussion presented in Question 6 (p. 166), that symmetric operations are 

much faster than asymmetric operations.

For further scalability evaluation, the following are compared:

(1) SPAN

(2) IKEv2+IPSec (with PFS)

(3) IKEv2+IPSec (without PFS)

(4) SANE

(5) IKEvI in aggressive mode+IPSec

(6) IKEv2+COOKIE

(7) KSV

Scalability evaluation is conducted by determining the number of message 

exchanges required between peers in order to complete the protocols 

respectively along an execution path of 256 nodes. 256 nodes are chosen 

because that is the maximum TTL value i.e. to simulate large-scale deployment. 

TTL is the maximum number of hops that a packet is allowed to traverse. It is 

used as a technique to stop packets looping forever in the network.
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Figure 50 -  No. of message exchanges along 255 hops

Figure 50 shows the number of message exchanges along a path of 255 hops 

under the different approaches. For example, SPAN requires three messages 

to be exchanged between a pair of nodes to complete one handshake; so for 

255 hops, SPAN would need a total of 765 messages to be exchanged.

As shown in Figure 50, SPAN scales better than existing approaches. The 

larger the scale of deployment (i.e. more hops), the difference is more obvious. 

These promising results indicate that SPAN has an efficiency and scalability 

advantage over related work i.e. reduction in message processing and 

cryptographic operations and state maintenance.

Note that SPAN needs three messages to complete its protocol for a hop. One 

may argue whether there are ways to reduce further the number of message 

exchanges in SPAN. If dynamic key establishment is required, and if the rule of 

thumb “ ...the communicating peers must be verified to each other (through
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verifying AUTHi and AUTHr) prior to active packet transmission” (section 4.2 on 

p. 100) still applies, three is indeed the minimum number of message 

exchanges for per hop establishment. This is because one message must be 

reserved for sending across an active packet (note that active packet should 

only be sent across after the peers have verified each other’s authenticity). One 

message must be sent from the Initiator to the Responder to verify the Initiator’s 

authenticity, another message must then be sent from the Responder to the 

Initiator to verify the Responder’s authenticity; note that these messages must 

be countersigned to combat impersonate attacks. Imagine a traveller 

purchasing a flight ticket from a travel agent. Prior to the actual transaction, the 

traveller must verify the authenticity of the travel agent e.g. by checking the 

agent’s registered business licenses (i.e. the Initiator verifies the Responder). 

The travel agent must also verify the traveller’s authenticity e.g. by checking the 

traveller’s passport, credit cards... and more (i.e. the Responder verifies the 

Initiator), prior to completing the transaction e.g. handing over the flight ticket 

(i.e. the actual transmission of an active packet). Therefore, it is apparent that, 

three message exchanges per hop is indeed the least number.

centralised decentralised

Figure 51 -  Centralised approach vs. decentralised approach

Figure 51 explains the other important reason why SPAN is more scalable. This



is because SPAN (and others except KSV and some workarounds of SANE) is 

completely decentralised. More specifically, the number of state maintenance 

on a source node depends on the number of its immediate neighbours on a 

(physical or virtual) network. Under centralised approaches such as KSV and 

some workarounds in SANE, because a keying server/the source node is 

involved in hop-by-hop packet transmission/key establishment, the number of 

state maintenance of a source node depends on the scale of the entire 

(physical or virtual) network. Centralised approaches do not scale well in 

large-scale networks.

5.5 Evaluation on Detecting DoS Attacks

SPAN is compared against IKEv2 for evaluating the protocols under DoS attack 

resistance. IKEv2 is chosen because IKEv2 is a standardised protocol that has 

been used in many implementations. Furthermore, IKEvI in aggressive 

mode+IPSec and JFK experience a similar DoS attack problem as IKEv2. This 

is because the first message from the (IKEvI in aggressive mode or JFK) 

Initiator is not protected (i.e. authenticated) by any means; therefore, the (IKEvI 

in aggressive mode or JFK) Responder carries out a series of cryptographic 

operations upon receiving un-authenticated or integrity checked initialisation 

messages. It will be discussed further shortly that this arrangement has a 

negative effect on DoS attack detection.

As discussed in an earlier section, IKEv2 uses a 6-message exchange with 

COOKIE as a countermeasure against DoS attacks (section 2.10.4 on p.64). 

Note that under this arrangement, an IKEv2 Responder does not verify the 

Initiator until the fifth message in its exchange. The first evaluation of the 

protocols when they are subjected to DoS attacks is to monitor the behaviour of



a SPAN Responder and an IKEv2 Responder (with COOKIE being used) under 

different types of DoS attack messages. For each DoS attack evaluation, 100 

trails of the Responder to detect DoS attacks were monitored. The average time 

delay is the (average) time needed by a Responder to detect a DoS attack. This 

time delay enables one to determine the reply time of the Responder when it is 

subjected to DoS attacks. Thus, the Responder that is quicker to detecting DoS 

attacks may terminate DoS attacks quicker, and therefore fewer resources 

would be wasted, and therefore it is more resistant to DoS attacks.

In the first evaluation, the attacker is configured to send to an IKEv2 Responder 

legitimate IKEv2 message 1 and 3 (with valid COOKIE), and it signs IKEv2 

message 5 with an illegitimate public key pair. On the other hand, the attacker 

sends an illegitimate SPANJNIT message (with invalid signature) to a SPAN 

Responder. The average DoS attack detection time of the SPAN Responder 

and an IKEv2 Responder are 235 milliseconds (±57ms) and 2402 milliseconds 

(±354ms) respectively (-90% less). This result is in-line with the previous 

discussion: that SPAN detects DoS attacks much quicker than IKEv2. This is 

because under this form of DoS attack, an IKEv2 Responder would be wasting 

resources on creating COOKIE (upon receiving IKEv2 message 1), computing 

new D-H exponentials (upon receiving IKEv2 message 3), computing shared 

key set (upon receiving IKEv2 message 5), decrypting the encrypted payload in 

IKEv2 message 5, and checking the (invalid) digital signature in IKEv2 

message 5.

To accommodate the performance costly D-H exponential computation process, 

the IKEv2 RFC recommends several ways to reuse D-H exponentials at the 

expense of having less-than-perfect forward secrecy, or maintaining more state.



Thus, another evaluation is carried out, in which the process is identical to the 

previous experiment except that D-H exponentials are reused in IKEv2. The 

results show that on average it takes 883 milliseconds (±347ms) for an IKEv2 

Responder to detect a DoS attack i.e. SPAN has -73% less in time delay. 

Although the time taken to carry out an operation does not necessary give any 

direct indication on the actual resource needed to carry out the operation (i.e. 

CPU power, memory used), this thesis argues that it is a good indication, that is 

related to the consumed amount of resources for carrying out the operation (i.e. 

more time required means it is likely that more resources are needed). One can 

imagine that if each Responder is implemented as multiple threads, and each 

thread handles each call (initiated from the Initiator), the less time the thread 

needs to detect a DoS attack, the better the design. This is because the more 

threads that are alive at one time, the more resources are consumed at one 

time for the node to manage each thread (and too many threads at one time 

may eventually overload the node, which is what DoS attacks are for). 

Therefore, by comparing the time needed to detect DoS attacks between 

different approaches, this gives the readers an insight on the differences 

between the behaviours of the approaches under DoS attacks.

5.6 Evaluation on Robustness & Flexibility

Evaluation on the robustness and flexibility of the approaches are based on 

how the protocols would operate in a heterogeneous networking environment in 

two aspects: a) verification of static code execution compatibility, and b) support 

for security parameter negotiations.

SPAN has the [EEi] field as an optional field to accommodate code execution 

incompatibility. By having this field in the first message, the Initiator may



propagate authenticity and integrity protected code execution requirements to 

potential Responder(s), prior to any further processing. Potential Responders 

can determine compatibility prior to continuing any further processing. Potential 

Responders must evaluate their own systems, to ensure that they can execute 

the to-be-sent active packet (i.e. either their systems fully satisfy the Initiator’s 

requirements, or as long as the Initiator makes some accommodations on the 

static code). Therefore, prior to establishing hop-by-hop SA and subsequently 

active packet transmission, the Initiator could be certain that the Responder is 

capable of executing the active packet. In other words, the Initiator will not be 

wasting resources on establishing hop-by-hop SA with incompatible Responder. 

In this way, SPAN improves robustness of the underlying active networking 

systems, through ensuring compatibility of code execution on remote nodes 

prior to hop-by-hop SA establishment and active packet transmission.

SPAN enhances flexibility by enabling hop-by-hop SA negotiations between 

nodes. By using the SAi and SAr fields, nodes can negotiate security 

parameters e.g. supported/preferred encryption algorithms and key size in a 

hop-by-hop manner. It should be noted SANTS does not address hop-by-hop 

key establishment; whereas pre-distributed shared key, SKT, and SANE do not 

support SA negotiation. As such, these approaches have limited flexibility when 

deployed in a heterogeneous environment, because individual security needs 

may not be satisfied.



6 Conclusions

The thesis began with an introduction to the fundamental concepts of active 

networking and one of its major security challenges, namely, hop-by-hop 

security. Existing hop-by-hop solutions for active networks were discussed. The 

author’s solution, i.e. SPAN, was presented, discussed, and evaluated.

It was discussed in section 1.5 (p.20) that an active network consists of a 

mixture of active nodes and passive nodes in the Internet. An active node is a 

passive node equipped with an active platform. The NodeOS of an active 

platform hosts several functions to serve specific AAs or EEs’ needs. Example 

functions are security, packet de-multiplexing, resource control... and more.

An active node is capable of intercepting active packets, and executing the 

code carried in the packets. Active packets carrying active code are created by 

a principal (e.g. a management application), and are injected into the active 

network at the source node. Active packets are different from passive packets, 

that active packets may carry static executable code and dynamic execution 

results. At each intercepting node, the packet’s static code is executed. The 

execution results may be added back to the packet before the packet is 

forwarded to its next hop. This means that the contents of active packets are 

subjected to modifications whilst the packets are traversing the network. This 

thesis regarded this feature as the dynamic nature of active packets.

In section 1.6 (p.28), it was discussed that active packets must support dynamic 

routing (i.e. pre-specified route of active packet is neither scalable nor practical). 

This is because to enforce static routing, the principal/source node must have 

in-depth knowledge of the entire network, and must assume stable network 

conditions. Dynamic routing means the next hop of an active packet is



determined at the node of execution based on execution results and real-time 

network conditions. Dynamic routing is therefore a key feature to enhance 

flexibility in active networking technologies.

Also in section 1.6 (p.28), it was further discussed that there is a need for a 

hop-by-hop security approach for heterogeneous large-scale active networking 

systems. The need was due to the dynamic nature and dynamic routing 

capability of active packets. A hop-by-hop security approach means active 

packets are protected in a hop-by-hop manner, so that modifications on an 

active packet made by an intermediate intercepting node are verifiable: the 

authenticity and integrity of the dynamic data on active packets should be 

verified by the identity of the node that the packets were last modified. 

Furthermore, this thesis has also identified that the static code of an active 

packet must be protected, but based on the identity of the principal. This is 

because the static code is created by the principal, and the same piece of code 

is expected to be executed on all nodes without subjected to changes. 

Therefore, the authenticity and integrity of static code should be verified against 

its actual creator i.e. the principal. Static code should also be subjected to 

non-repudiation protection. This is because static code may be created for 

control purposes on remote nodes, and compromised control operations may 

lead to potential damage on remote nodes. Therefore, static code should be 

protected in a way that its creator cannot deny any wrongdoing. Lastly, 

confidentiality protection should be enforced on active packets, so that 

attackers cannot determine their contents.

Existing solutions to the problem space were discussed in chapter 2 (p.37). The 

drawbacks of related work in terms of scalability, efficiency, flexibility,



robustness and security were discussed. Related work either does not support 

SA negotiation, which limits its flexibility to cope with heterogeneity between 

nodes of different administrative domains (e.g. pre-distributed shared key, SKT, 

SANE). Related work follows a centralised approach which is not scalable (e.g. 

KSV), or does not provision for key management (e.g. SANTS), or without 

arrangements to optimise performance for hop-by-hop deployment (e.g. IKEv2); 

or provides no identity protection to both the Initiator and the Responder (e.g. 

IKEvI in aggressive mode+IPSec and JFK); or wastes more resource prior to 

detecting DoS attacks (e.g. IKEvI in aggressive mode, IKEv2 and JFK). 

Existing solutions do not improve robustness of the underlying active network 

system. Pre-distributing shared keys to all nodes in the network is neither 

scalable nor practical; asymmetric operations incur a relatively much higher 

overhead that makes it much less efficient, and would not scale well when the 

number of active packets to be protected is large. Therefore, this thesis 

investigated a new hop-by-hop SA establishment technique to address these 

problems.

To accommodate these new hop-by-hop security challenges in active networks, 

this thesis presented SPAN in chapter 3 (p.74). SPAN is a secure, scalable, 

efficient, and flexible hop-by-hop security approach for large-scale active 

networking systems, that enables secured EE information exchange prior to 

actual hop-by-hop SA establishment, and enables active packet transmission 

during hop-by-hop SA negotiation, instead of after. SPAN is designed against 

replay, man-in-the-middle, impersonation attacks, and is capable of determining 

DoS attacks much more quickly. In SPAN, three messages (SPANJNIT, 

SPAN_AUTH, and SPAN_AP) are exchanged to complete one hop-by-hop SA



establishment and secure active packet transmission. The first two messages 

enable the Initiator and the Responder to determine compatibility for active 

packet execution, to verify each other’s authenticity, to negotiate SA 

parameters, and to establish a shared key set. The last message enables the 

Initiator to complete the protocol, and to securely transmit an active packet to 

the Responder.

In Chapter 4 (p.98), the features and advantages of SPAN were discussed, with 

comparisons to existing solutions. Unlike existing approaches, SPAN is more 

efficient because it has a better design that reduces the number of message 

processing and cryptographic operations that are required to complete a 

protocol exchange. The provisioning in SPAN for making remote EE queries 

prior to hop-by-hop SA establishment and actual active packet transmission 

enhances the overall robustness and efficiency of the underlying active 

networking systems. This is because incompatible Responder will be 

automatically excluded from the hop-by-hop SA establishment process, and 

therefore no resources will be wasted by the Initiator on establishing 

hop-by-hop SA with incompatible Responders. SPAN is fully distributed, in the 

sense that every node is capable of negotiating and establishing hop-by-hop 

SA with its (overlay) neighbours. SPAN is scalable, that requires no centralised 

server, pre-established trust, or feedback system, and requires the minimum 

number of message exchanges to complete the protocol. SPAN is flexible in the 

sense that it provisions for hop-by-hop SA negotiations between nodes, so that 

tailored made hop-by-hop SAs can be established.

Also in chapter 4 (p.98), it was further discussed that the authenticity, integrity 

and confidentially of active packets are protected in SPAN. SPAN is designed



to be resistant to replay, man-in-the-middle, impersonate attacks. This is 

because the design of SPAN includes appropriate defence mechanisms such 

as nonces, countersigned nonces, symmetric cryptographic protection, and 

asymmetric cryptographic protection. Furthermore, SPAN requires each peer to 

verify the shared key set as soon as the key set is computed. This process 

enables the peers to discover any computational errors (of computing the 

shared key set) at the earliest stage of the protocol as possible. Applications’ 

identities (EEs/AAs) are not revealed to the peer unless the authenticity of the 

peer is verified. SPAN is designed to detect DoS attack much more rapidly than 

existing approaches. This is because SPAN restricts all computation processing 

until the peer’s authenticity has been verified. Provisioning was made in the 

design of SPAN to limit the use of performance-costly asymmetric cryptography 

to strong and essential security only. Provisioning has also been made to 

accommodate scalability issues of using asymmetric cryptography in a 

large-scale network.

In the evaluation chapter (chapter 5 on p. 121), the prototypes for SPAN and 

related solution(s) (i.e. variants of IKEv2) that were developed for evaluation 

purposes were presented, together with their implementations. Promising 

results of SPAN were then presented and discussed. SPAN achieves on 

average 15% to 40% less in performance overhead when compared to some of 

related approaches; and SPAN is designed to detect DoS attacks much more 

efficiently than some existing approaches (i.e. 73 to 90% less in time delay for 

detection time for DoS attacks). The high level of robustness, flexibility, and 

scalability of SPAN was also presented.



6.1 Applying SPAN to Other Areas

SPAN was designed for hop-by-hop security in active networks. However, 

potentially, certain features of SPAN could be re-applied to networking 

environments other than active networks, in particular in areas where 

hop-by-hop protection is required.

One potential area where hop-by-hop protection would be needed is distributed 

management systems. The author realised this opportunity whilst he was 

developing different distributed systems [85][86][87][88] in recent years. The 

author has identified several similarities between distributed management 

systems and active networking systems:

■ Both types of system are distributed (i.e. each participating active nodes 

may distribute active packets); so as each participating distributed 

management nodes may distribute management instructions.

■ In both types of system, active packets/management instructions are to be 

executed on (a set of) local and/or remote nodes.

■ Scalability is a critical design factor in both types of system i.e. must 

support large-scale deployment.

Although there are similarities between the two types of system, this does not 

necessary mean the same hop-by-hop security protocol, i.e. SPAN, can be 

applied directly to secure management instructions in distributed management 

systems, without modifications. This is because, to the best of the author’s 

knowledge, there is little evidence to suggest that distributed management 

packets have dynamic nature. More specifically, in [89][90], distributed 

management packets (known as explorer packets) are propagated from one 

source to the entire Internet. Each intercepting node of these explorer packets



takes note of the information contained in the packets, and creates a 

parent-child relationship with the node from which the packet was previously 

delivered. This parent-child relationship forms a spanning tree in the network. 

When the explorer packets reach the edge of the network, they bounce back as 

echo packets to the source, by following the spanning tree that was established 

when the explorer packet was propagated through the network.

The similarity between active networks and the distributed management 

systems is that the echo packets contain some executable code. Each node 

intercepts the echo packets, and executes the code. It is foreseeable and 

apparent that the echo packets may also carry the intermediate execution 

results (such as the IP addresses of traversed nodes). Given that there are 

some similarities between distributed management systems and active 

networking systems, the author argues that, the research work conducted and 

presented in this thesis would enable the readers to gain a better understanding 

of the distributed nature of active/distributed management systems, and the 

challenges and design requirements of hop-by-hop security. These experiences 

may put the readers in a better position to evaluate, experiment with, and to 

investigate the possibility of (re)developing SPAN into different models for 

different distributed management systems.
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8 Appendix

8.1 Certificates & Public Key Infrastructure (PKI)

Public keys are asymmetric cryptography (section 8.5.2 on p. 165). Public keys 

are commonly used as encryption keys and authentication keys during 

communication processes. However, the “man in the middle” attack (section

8.5.4 on p. 167) shows that the use of public key on its own (i.e. without further 

protection) may lead to integrity attacks. This is because without additional 

security precautions, the authenticity of public keys may be forged. Therefore, 

authenticity of public keys must be verified before the keys can be used. Digital 

certificates are introduced to prevent public keys forgery: they are known as 

public key certificates. These certificates use digital signature to bind together a 

legitimate public key with its owner’s identity. The signature is created by a 

reliable Certificate Authority (CA) (section 8.1.1 on p. 162). The entire system of 

public key distribution, certificate creation and verification is known as the 

Public Key Infrastructure (PKI) [91].

8.1.1 Certificate Creation

The fundamental requirement of creating a certificate is that the end user/client 

must have a public key pair. Web browsers are capable of generating public 

key pairs and so as some other software such as keytool provided with Java 

SDK [92][105]. Once a public key pair is created, the client (on behalf of its end 

user) sends the following to a reliable CA for certificate creation:

■ A certificate request

■ The end user’s name

■ The end user’s public key
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Verisign [82] is an example CA. The client should keep the end user’s private 

key locally and securely. Upon receiving the name of the end user and the 

public key of the end user from a client, the CA verifies whether the name 

claimed to be the end user really belongs to the end user. This can be done 

through checking business registration records (for companies) or 

passport/driving licenses (for individuals). This is an administrative issue and 

therefore shall not be discussed in this thesis.

Once the received information is authenticated, the CA creates a message (m) 

based on the materials received from the end user. This message is then 

signed by the CA using the CA’s private key. The resultant signature (s) is sent 

along with message m to the end user/client. Note that message m contains the 

end user’s public key. Message m and signature s together become the end 

user’s certificate [93].

A X.509 certificate contains essential information about the end user (i.e. 

his/her name and his/her public key, and optionally additional information of the 

end user e.g. e-mail addresses). Thus, certificates are not restricted for public 

key verification only. A copy of the certificate may be distributed (if necessary) 

or uploaded and published in the CA’s directory. A CA manages a Certificate 

Server that manages certificate storage and publication.

A certificate would become invalid once it has expired. A CA can actively expire 

a certificate by listing the certificate in the Certificate Revocation List (CRL), 

which is distributed publicly.

8.1.2 Certificate Verification

The authenticity of a certificate (hence the authenticity of the embedded public 

key on the certificate) is verified by checking the digital signature on the

163



certificate. Web browsers contain a list of CAs’ public keys. These public keys 

are used by the Web browsers to authenticate the digital signatures on 

certificates. Note that the digital signatures on the certificates are created by the 

CA’s private key. The matching public key will be selected by the Web browser 

for digital signature verification. Once the digital signature is verified, 

subsequently, the embedded public key on the certificate is verified. The public 

key is said to be authenticated. Thus, the “Man in the Middle” attack described 

in section 8.5.4 (p. 167) would not succeed.

8.2 Concatenation

The notation for concatenation is |. Concatenation puts two strings together, 

one appending the other. For instance, concatenating two strings “HELLO” and 

“WORLD” gives “HELLOWORLD”.

8.3 Cookies

The term cookies originated from [94], Cookies were used in IKEvI as SA 

identifiers. Thus, cookies are equivalent to SPI in IKEv2 (section 8.17.1 on 

p.192). In IKEvI, there are two cookies in each ISAKMP message, one cookie 

is the Initiator’s cookie, the other one is the Responder’s cookie. The cookies 

refer to the Initiator’s IKE SA and the Responder’s IKE SA respectively. Each 

cookie is eight octets i.e. 64-bit.

8.4 Credentials

Credentials are used in authentication and access control. They bind an object 

of identity to a claimant’s property such as IP address. A verifier must verify the 

credentials during an authentication process. A verified credential unique 

identifies the claimant. For example, a digital certificate is an electronic
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credential that binds the identity of a public key owner to his/her public key.

8.5 Cryptography

8.5.1 Symmetric Cryptography

There are two types of cryptographic techniques:

■ Symmetric

■ Asymmetric

Symmetric cryptography is commonly used as an encryption technique for 

protecting message confidentiality. It differs from asymmetric cryptography in 

the sense that it uses the same key for encryption and decryption; whereas 

asymmetric cryptography uses different keys for encryption and decryption 

respectively. In symmetric cryptography, the key is shared between the 

message sender and the receiver. Symmetric cryptography may also be used 

for hashing, integrity checks and authentication.

8.5.2 Asymmetric Cryptography

Asymmetric cryptography makes use of a public key pair for authentication and 

integrity protection. It may also be used for confidentiality protection. Assume 

a receiver needs to verify the authenticity of a block of data that was digitally 

sign by another entity (known as the signer in this thesis). The signer must first 

generate a public-private key pair (section 8.1 on p. 162). Note that this pair of 

keys must be unique i.e. only one can verify the data signed by the other. The 

private key must be securely kept by the signer, whereas the public key will be 

distributed to other parties in the Internet. Public keys are usually distributed in 

the form of certificates (section 8.1 on p. 162). The corresponding public key 

certificates must be accessible by the receiver. The receiver will then obtain a 

public key of the signer. The signer then signs the data with its private key, and



sends the signed block of data for verification.

For confidentiality protection, the process is similar except that the signer 

encrypts the data using the receiver’s public key. Since only the receiver owns 

the corresponding private key, the confidentiality of the data is protected. 

However, authenticity is not protected. These issues are addressed in section

2.6 (p.48).

8.5.3 Symmetric vs. Asymmetric

Symmetric operations are said to be much faster than asymmetric cryptography 

operations [95]. Thus, symmetric cryptography is used for protecting large 

chunk of data, whereas asymmetric cryptography is used for protecting small 

size data, such as message digest.

Question 6: Explain the reasons why symmetric operations are faster than 

asymmetric operations.

Asymmetric operations (i.e. RSA) generate ciphertext as follow:

C = Pe mod TV 

Equation 11

C is the ciphertext, P is the plaintext (the text to be signed), e and N are values 

chosen and used by the RSA algorithm.

Equation 11 essentially means: C is the remainder of Pe/N. Note that P must be 

exponentially multiplied by e. Therefore, if e is large, it becomes 

computationally expensive to calculate Pe. However, e must be large for strong 

encryption security [96].

On the other hand, although different symmetric techniques use different ways 

to encrypt (scramble) plaintext, but symmetric operations use XOR operations. 

XOR operations are more difficult to implement in software, and are usually



implemented in hardware instead. This is because XOR involves bit relocation, 

and bit re-location can be easily performed with wired hardware. However, 

because XOR operations involve only bit re-location, they are faster than 

exponential multiplication. Therefore, symmetric operations are faster than 

asymmetric operations.

Symmetric cryptography requires secret key establishment between two or 

more participating clients across an insecure link (e.g. Diffie-Hellman key 

exchange between two hosts over the Internet), thus symmetric keys 

distribution must be authenticated, integrity protected and confidentiality 

protected. Strong security requirements in symmetric key distribution create a 

key distribution challenge. Asymmetric cryptography does not require secrete 

key distribution, only the public key distribution is needed. Because public keys 

are meant to be public, thus public keys do not require confidentiality protection. 

Thus key distribution is less challenging in asymmetric cryptography (only 

authentication and integrity protection are required). Asymmetric keys are 

usually distributed in the form of digital certificate. A well-known support 

architecture for certification verification is the PKI (section 8.1 on p. 162). 

Without support from PKI, public keys are subjected to Man-in-the-Middle 

attacks (section 8.5.4 on p. 167).

8.5.4 The “Man in the Middle” Attack of Public Key Cryptography

This example illustrates how the authenticity of public keys may be forged 

between an end user and a serve in the absence of certificate. Image a client 

(i.e. a web browser) is requesting on behalf of its end user for a secure 

connection to an on-line bank server. An attacker is in between the client and 

the server, and he is capable of intercepting the traffic between the client and



the server.

If the on-line bank server replies to the client with its public key only (i.e. no 

certificate):

1. The attacker intercepts the on-line bank’s public key.

2. The attacker sends his own public key to the client, pretending that the key 

belongs to the on-line bank’s server.

3. The client receives the (forged) key, and thinks the key really belongs to 

the bank.

4. The client encrypts an instruction (e.g. “pay Mr Smith 60 pounds now”) with 

the (forged) key, and sends the encrypted instruction to the bank. The 

client expects that only the bank (which owns the corresponding private 

key) may decrypt the encrypted instruction.

5. The attacker intercepts the encrypted instruction, and obtains the end 

user’s instructions by decrypting the encrypted instruction using his private 

key.

6. The attacker modifies the end user’s instruction with “paid the attacker 60 

pounds now” and encrypts the new instruction by the bank’s public key, 

then sends the encrypted instruction to the bank. In this case, neither the 

end user nor the bank would recognise the existence of the attacker until 

the transaction raises a concern.

This problem can be resolved by authenticating public keys through certificates 

(see section 8.1 on p. 162).

8.6 Diffie-Hellman Key Exchange (D-H)

Symmetric cryptography needs secure symmetric key sharing between 

participating parties over an insecure channel. Diffie-Hellman (D-H) key



exchange is a secure method for establishing symmetric keys between parties 

over an insecure channel. Note that this method is used to protect the 

confidentiality of the shared key. It does not protect the integrity or authenticity 

of the exchanged keys. It should be note that D-H is the underlying theory of 

key exchange. Internet Key Exchange (IKE) (section 2.10 on p.55) uses D-H to 

establish shared secrets, and IKE provides authenticity and integrity protection 

to the exchanged shared secret.

8.6.1 Diffie-Hellman Key Exchange in MODP Mode

In general, mathematical functions are two-way functions, for example:

y = e '

Equation 12

Rearrange Equation 12, the value of x can be determined by:

x = log ,„ y  

Equation 13

However, the D-H algorithm uses a one-way function:

f ( x )  = x mod p  

Equation 14

Since the function in Equation 14 is a one-way function, the value of x in 

Equation 14 cannot be determined through reverse engineering of the function. 

Basically, Equation 14 means f(x) is the remainder of x/p.

The steps of the D-H algorithm in MODP mode are:

1) The participating parties e.g. Client A and Client B pre-agree on two values: L 

and P.

1RQ



Rule 1: L and P are values that are needed for Equation 15 (see later). L must 

be < P (see later).

2) The participating parties select their own private secret: Client A: a, Client B: 

b.

3) Each party uses its own private secret and the one-way function (Equation 

14) to generate a public sharable value respectively: a and ft.

Client A: a = La modP 

Client B: p  = Lb mod P 

Equation 15

4) The parties exchange the public sharable value. For example, client A sends 

a to client B, and client B sends (I to client A.

5) Each party uses its own private secret, the public sharable value (that was 

received from the other party), and the one-way function to generate a 

symmetric shared secret.

Client A’s symmetric shared secret = pa modP

Client B’s symmetric shared secret = a b modP 

Equation 16

Note that the resultant secret is symmetric i.e. Client A’s and Client B’s shared 

secrets are identical and can be used for encryption and decryption.

Example 1: Given that L = 5, P = 13, a = 4, b = 7. Determine the symmetric 

shared secret [40].

First, determine the public sharable value a of client A. According to Equation 

15:
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a  = La mod P 

a  = 54 mod 13 

a -  624 mod 13 = 1 

Using the same process:

11 =  8

Once a and (J are exchanged between Client A and Client B, determine Client 

A’s symmetric shared secret:

= j3a mod P

= 84 mod 13 

= 4096mod 13 

=  1

Then determine Client B’s symmetric shared secret:

= a b m odi5 

= l 7 mod 13 

=  1

Therefore, the symmetric shared secret is 1. Client A and Client B owns an 

identical shared secret.

Since at each party the public sharable value is generated by using the party’s 

own private secret, the public value is therefore related to the private secret. 

Since the public shareable value is generated by using the one-way function, 

the private secret used to generate the public shareable value cannot be 

determined from the public shareable value. This is why it is safe to transmit 

public sharable values across an insecure channel.

Question 7: Explain why the nodes end up with the identical symmetric shared



secret in the Diffie-Hellman protocol, given that no secrets are exchanged.

The reason why the symmetric shared secret are identical is because both

secrets are generated using the same ingredients (i.e. L, P, a, (3). Extending

Equation 16 (p. 170):

Client A’s symmetric shared secret:

= (3a mod P

Since (3 = Lb mod P, therefore Client A’s symmetric shared secret:

= [Lb mod P]a mod P 

= Labmod P

Similarly, Client B’s symmetric shared secret:

= abmod P

Since a = Lamod P, therefore:

= [Lamod P]b mod P

= Lba mod P which is the same as Client A’s symmetric shared secret

8.6.2 Selection of Private Values

There are certain rules when selected the private values (a, b) and the prime 

modulo P. If these values are small (in particularly if P is small), D-H becomes 

insecure.

This is because the shared secret value = Lab mod P. This means that the 

shared secret value is the remainder of Lab/P, which means the shared secret 

value could be any value between 1 to P-1 only. Thus, if P is small, an attacker 

may easily guess what the shared secret value is. P should be selected a prime



number larger than 300 bits, whereas a and b should be at least 100 bits. 

According to [97], P should be between 512-bit to 1024-bit, whereas a and b 

should be an integer between 1 < a < P-2. a and b should be 192-bit and an 

integer value less than (P-1)/2.

8.6.3 Selection of the public values

The public values L and P are carefully selected: L < P, and L must be a 

primitive root for P if the powers of L, L°, L1, L2, L3, ... include all the residue 

classes mod P (except 0). The primitive roots of P are the appropriate value(s) 

for L (that are between 1 and P-1) -  when used in the mod operation i.e. Le mod 

P (where e is any exponential) -  that return the remainders that cover every 

number mod P occurs except 0. More specifically, the function should return the 

remainders between 1 to P-1 for different values of e. To illustrate this point, an 

example is given below:

Example 2: Determine the appropriate values for L when P = 7.

Consider this equation Le mod P, the following table can be constructed. The 

first column contains different values for e, the first row contains different values 

for L. The table contains the remainders for different combinations of L and e. 

Note that the value for P is fixed (i.e. P = 7).

Different values for L

e 1 2 3 4 5 6

0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 1 4 2 2 4 1

3 1 1 6 1 6 6
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4 1 2 4 4 2 1

5 1 4 5 2 3 6

6 1 1 1 1 1 1

7 1 2 3 4 5 6

9 1 4 2 2 4 1

Table 1 -  The remainders for Le mod P
For example, if e = 0 and L = 1, the remainder = 1° mod 7 = 1. If e = 3 and L = 4,

the remainder = 43 mod 7 = 1. Note that in this example (i.e. when P = 7), L = 3 

or L = 5, and L < P.

The reason why L should be 3 or 5 is that only when L = 3 or L = 5, the 

remainders cover all the values between 1 to P-1, that is, between 1 to 6. Thus, 

3 and 5 are the primitive roots for P when P = 7.

8.6.4 Limitations of the Diffie-Hellman Algorithm

The process requires the participating parties to be on-line at the same time 

during the key exchange process. D-H can only be deployed when both parties 

are on-line at the same time. This is because the parties must exchange certain 

values during the key exchange process. This is a not a crucial limitation 

because both parties must be on-line anyway if they want to exchange keys. 

One party cannot exchange key with another party if the originator cannot be in 

contact with the other party. If off-line key exchange is required, one may 

suggest caching the exchange values. However, caching is not a scalable 

solution because the proxy would have to keep track of which public value 

belongs to which party at what time and so on.

No authentication and integrity protection: a man-in-the-middle attack could be 

easily performed. The lack of authentication and integrity protection is a more



severe limitation. However, this is an application issue and does not devalue 

the theory itself. D-H itself is just a theory and it is commonly used for secret key 

exchange because it is proven to work and its simplicity. As a result, the D-H 

algorithm is used with additional precautions. For example, the D-H algorithm is 

used with additional security measurements in IKEv2 (section 2.10 on p.55).

8.7 Hash, Keyed Hash, Hash Functions, Hash Tables

Asymmetric cryptography subjects to two drawbacks: performance and 

plaintext size restriction. Digital signature computation is known for its slow 

performance (Question 6 on p. 166). Also, the size of the plaintext to be 

encrypted is limited. To overcome these drawbacks, the digital signature is 

made by signing a hash of the plaintext, instead of the plaintext itself.

A hash is also known as a Message Digest (MD) or checksum. A hash is 

computed by applying a hash function on a piece plaintext. The resultant hash 

is much smaller than the size of the plaintext. The size of a hash/MD/checksum 

is usually fixed, whereas the size of the plaintext is arbitrary.

Apart for being used as a form of compression technique, hashes are generally 

used as checksums (i.e. for integrity checks on exchanged messages between 

network entities). The message sender creates a hash of the message to be 

exchanged, and sends the hash along with the message to the receiver. Upon 

receiving the message at the message receiver, the receiver calculates a hash 

based on the message received, and compare the two hashes as part of the 

integrity check process.

Authenticity protection on the hashed data is achieved when a key is used 

during the hashing process. The result is known as keyed hash. One example 

is Hashed Message Authentication Code (HMAC) [45], which is used in IPSec



for integrity protection and authentication.

A hash function is one-way: the resultant hash cannot be used to reproduce the 

plaintext. A secure hash function would only generate a particular hash from a

particular piece of plaintext, no two (different) plaintext would result in the same

hash. If two different pieces of plaintext result in the same hash, then a collision 

is found. There are several types of hash functions [98].

8.7.1 Keyed Hash Functions

Keyed hashes are used for authenticity and integrity protection. To use keyed 

hash functions, the message sender must share a key with the message 

receiver in advance. The message sender uses the shared key and a particular 

hash function to generate a fixed-length hash of a variable length message to 

be transmitted. Upon receiving the message and the fixed-length hash at the 

receiver, the receiver computes a hash of the received message by using the 

same shared key and the same hash function and compares the two hashes. If 

the two hashes match, the integrity of the message is verified.

8.7.2 Message Authentication Code (MAC)

Message Authentication Code (MAC) is keyed hash function that uses shared 

symmetric key cryptography to protect message integrity and authenticity. The 

shared key is hashed with the message to be protected to generate a MAC. The 

resultant MAC is appended to the message to be checked by the recipient.

Note that MAC provides integrity protection as well as authentication (only the 

other participant that owns the shared symmetric key could have generated the 

MAC). However, MAC should not be considered as digital signature because 

MAC does not provide non-repudiation. Digitally signing a piece of data 

provides both authentication and non-repudiation protection to the signed data



because only the signer has the private key to create the signature.

8.7.3 Hashed Message Authentication Code (HMAC)

HMAC is a special type of keyed hash. It works with other existing hash 

functions such as SHA and MD5 i.e. HMAC-SHA and HMAC-MD5. The 

fundamental principle of HMAC is to generate a keyed hash of a keyed hash, 

thus it is stronger. HMAC is designed to provide additional security to existing 

hash functions, without making any modification to the hashing algorithms 

themselves. The following shows the fundamental concepts of HMAC:

HMAC(K, P) = H[(K XOR opad) | H(K XOR ipad | P)]

Where
H = a selected underlying cryptographic hash function e.g. MD5, SHA.

K = the length of the shared symmetric key (should be > L but n B)

P = plaintext
opad = an outer pad (a fixed length string) 

ipad = an inner pad (a fixed length string)

B = hash function block length = 64 bytes for MD5 and SHA-1 

L = hash function output length = 16 bytes for MD5, 20 bytes for SHA-1

Equation 17

8.8 Initialisation Vector (IV)

When using the same key for encryption repeatedly, a security weakness is 

found in block and stream ciphers. When encrypting with block ciphers in CBC 

mode, a (large) message is split into a series of small blocks prior to encryption. 

To encrypt the message, each block of the message is XOR-ed with the 

previous (encrypted) block. However, if the same key is used, two similar 

messages would end up with two similar ciphertext (except the blocks which in 

the ciphertext that contain the differences).

Stream ciphers are subjected to this weakness as well. If a stream cipher is 

used with the same key, XOR-ing two pieces of ciphertext would result in a



XOR-ed version of the two plaintext that were encrypted. If the plaintext were 

written in human readable format then information would be discovered by the 

attacker.

However, key generation processes are performance-wise expensive. It is not 

scalable and practical to request all security systems to generate (and share) a 

new symmetric key every time prior to encryption. The problem can be solved 

by adding randomness to the encryption process. The plaintext is pre-pended 

with a randomly selected IV block. Thus, even two similar pieces of plaintext are 

to be encrypted in CBC mode or stream ciphers, the actual message to be 

encrypted are different because different randomly selected IVs are added to 

the plaintext respectively. Thus, the resultant ciphertext would be unique.

The length of IV must be the same as the block size of the cipher. This is 

because when the cipher is operated in CBC mode, the first block of the 

plaintext is XOR-ed with the IV. The IV must be sent along with the ciphertext to 

the recipient so that the recipient knows what value of IV to use for decryption.

8.9 Initiator

An initiator is an entity that instantiates a Security Association (SA) (section

8.16 on p. 189) negotiation. A SA negotiation involves at least two entities: the 

Initiator and the Responder (section 8.15 on p. 189).

8.10 Nonces

Replay attack is an attack of which an attacker copies a (valid) message, and 

re-uses the message at a later stage to fool the receiver. Nonces are included 

in messages for anti-replay attacks (section 8.13.2 on p. 183). Alternatively, 

sequence numbers may be used for anti-replay attacks (section 8.18 on p. 194). 

For instance, nonces are used in IKEv2 [30].



The idea of nonces is to add some randomness to the message. For instance, 

in IKEv2, the IKE_SA_INIT message contains a randomly generated nonce that 

is at least 128-bit and at least half of the PRF function that is used for shared 

key generation (section 8.13 on p. 182). Both the Initiator and the Responder 

keeps a record of the nonces that are used and received. Nonces should never 

be re-used during a session. If the Responder receives two messages of the 

same nonce, the Responder will consider the second message as a replay 

attack.

Thus, nonces add freshness to the messages. In some cases, nonces add 

freshness to keys too. For instance, in IKEv2, nonces are used for shared key 

generation (section 2.10 on p.55)

8.11 Passive Network

A passive network composes of passive nodes only. It is a store-and-forward 

network in which passive packets are forwarded to their desired destination by 

passive nodes. The content carried in passive packets is irrelevant to passive 

nodes in a passive network.

■ Passive Node

A passive node is a router or a switch that performs simple packet forwarding 

function. There are hardware routers (i.e. high-speed IP routers used for packet 

routing in the Internet) and software routers (i.e. Linux PCs with multiple 

Ethernet cards and with ip_forwarding enabled).

■ Passive Packet

These are normal IPv4 (or IPv6) packets routed by passive nodes in a passive 

network.



8.12 Perfect Forward Secrecy (PFS)

8.12.1 Definitions

Perfect Forward Secrecy (PFS) refers to a property of key generation 

processes. PFS was first defined in [79]: a key generation process is said to 

support PFS, if the secrecy of generated keys would not be compromised even 

if the long-term secret key (that was used to generate subsequent keys) were 

disclosed. In other words, with PFS, if a root key (that was used to generate 

subsequent keys) is compromised, subsequent keys should not be 

compromised.

In some other documents [30], PFS has a slightly different definition. PFS may 

be defined as: once a connection is closed and its corresponding keys are 

forgotten, even someone who has recorded all of the data from the connection 

and gets access to all of the long-term keys of the two endpoints would not be 

able to reconstruct the keys used to protect the conversation without doing a 

brute force search of the session key space.

The major difference between the two definitions is that the latter refers to a 

situation when a connection is closed; whereas the former requires PFS in any 

situation. The former definition implies that, when generating subsequent 

shared keys by using a pre-established key, the key generation parameters that 

were used for generating the pre-established key should not be re-used for the 

subsequent keys generation. It is obvious that if the key generation parameters 

are re-used for generating subsequent keys, and if the key generation 

parameters are compromised, then all subsequent keys would also be 

compromised (i.e. a chain effect). A chain of keys is a bad design.

However, if new key generation parameters were generated for each key



establishment process, the performance overhead would be enormous. For 

instance, a common key generation parameter is the Diffie-Hellman parameters 

(section 8.6 on p. 168); and D-H parameters generation is known to be 

expensive process in terms of performance due to the exponential and modular 

calculations involved, essentially the same problem as asymmetric 

cryptographic techniques (section 8.5.3 on p. 166). Thus, some cryptographic 

designers suggest another definition of PFS (i.e. the second definition), which in 

their point-of-view, is sufficient.

The second definition requires all nodes to forget the key generation materials 

once the connection has closed. This implies that, under this revised definition, 

key generation materials may be re-used during a specific period (i.e. when the 

connection is still on). This period refers to the period of which the 

pre-established keys are still valid. This definition is made on the assumption 

that the effective period of the pre-established keys are short (e.g. 8 hours), 

therefore, it is unlikely that -  within that short period - an attacker would have 

hacked the pre-established keys, and hence compromising the subsequent 

keys. Some serious cryptography designers, however, believe that this 

arrangement is too optimistic, and so call less-than-perfect forward secrecy. 

Never the less, the second definition leads to a less than ideal design (i.e. a 

chain of keys), but is more performance-wise practical because of the 

performance overhead saved.

There is an on-going debate on which definition should be adopted. This thesis 

refers to the original definition as defined in [79]. Firstly, this definition is original; 

secondly, this definition results in a better design; thirdly, the requirement of this 

definition is higher (that each key generation process requires new key



generation parameters), and is therefore more challenging. The author believes 

that, rather than using a simplified definition; effort should be made to targeting 

the requirement that is more complicated.

8.12.2 PFS Explained

In IKEv2, a root secret (i.e. SKEYSEED) is generated during the IKE_SA 

negotiation. If the same root secret is (re)used to derive subsequent keys during 

the CHILD_SA negotiation (for example, IPSec SA negotiation), then the 

system does not support PFS. To enforce PFS, new Diffie-Hellman values 

should be used for the CHILD_SA negotiation.

Note that PFS is needed for strong security. Without PFS, if an attacker 

obtained the root secret, he would be able to determine the subsequent keys. 

Recalling from section 2.10.2 (p.57), subsequent keys (such as SK_a, SK_e) 

are generated by using publicly accessible data such as NONCE], NONCEr, 

and SK_d. If SKEYSEED were compromised, then SK_d would be 

compromised. Hence, all subsequent keys would be compromised as well. 

However, Diffie-Hellman values generation is computationally expensive. Thus, 

PFS is only enforced for security applications that require high level of security. 

In IKEv2, including new Diffie-Hellman values during CHILD_SA negotiation is 

optional.

8.13 Pseudo-Random Function (PRF)

PRF is a generic term to describe the chosen hash function (section 8.7 on 

p.175).

8.13.1 PRF+

PRF+(a, b) = T1 | T2 | T3 |



Where

T1 = PRF(a, b | 0x01)

T2 = PRF(a, T1 | b | 0x02)

T3 = PRF(a, T2 | b | 0x03)

Equation 18

PRF+ differs from PRF that PRF+ allows concatenation (represented by the 

notation |) (section 8.2 on p. 164).

8.13.2 Replay Attacks

Replay attacks [99] involve the re-transmission of a legitimate message by an 

attacker, in order to fool a peer to repeat processing the legitimate message, or 

to confuse the peer with duplicated legitimate messages. Note that if a 

message is significantly delayed, the peer may treat the delayed message as a 

replay attack attempt. Replay attacks can be prevented by including sequence 

numbers (section 8.18 on p. 194) or nonces (section 8.10 on p. 178) in the 

messages.

8.14 Rivert Shamir Adelman (RSA) Algorithms

Public key cryptography is an asymmetric approach, in which a pair of keys is 

used i.e. a public key and a private key. A private key is kept by its owner. The 

public key is publicly distributed. RSA is a widely used public key algorithm (e.g. 

supported by all Web browsers). It provides authentication as well as 

confidentiality protection. DSA is another popular public key algorithm; however, 

DSA provides authentication only. Encryption can be done with either the 

private or the public key in RSA.



8.14.1 RSA Private Key Generation

To generate a RSA private key d, the key owner must select:

■ p and q (two large secret prime numbers)

■ e (a random number)

e is a value that is made public. Although it is random, the choice of e must 

meet certain mathematical requirements i.e. it must be relevant to 0:

t  = iP - ! ) ( ? - ! )

Equation 19

The private key d is then calculated:

e *d  = lmod^

Equation 20

This equation represents a modulus, meaning when dividing (e*d) by 0, the 

remainder is 1. Therefore, it can be rewrite as:

e * d - 1  = k(f)

Where k is any integer

Equation 21

Example 3: Given that e = 13, p =43, q = 59, determine the private key d.

Use the Extended Euclidean Algorithm [100] to determine the private key. First, 

determine the value of o:

0=(p-1)(q-1)

= (43-1 )(59-1)

= 2436
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a q X y

1 (1a) 2436 - 1 0

2 (2a) 13 (2q)187 0 1

3 (3a) 5 (3q) 2 (3x) 1 (3y) -187

4 (4a) 3 1 (4x) -2 (4y) 375

5 2 1 3 -562

6 1 2 -5 (k) 937 (d)

Table 2 -  Extended Euclidean Algorithm

The figures in 1x, 1 y, 2x, and 2y are fixed. Fill the boxes as follow:

(1a) and (2a): Fill these two boxes with the value of 0 and e.

(2q) and (3a): 2436/13 = 187, remainder = 5.

(3q) and (4a): 13/5 = 2, remainder = 3. And so on, until the number in column a

does not give a remainder i.e. 2/1 = 2.

(3x): (3x) = (1 x) — (2q)(2x)

= 1 -  (187)(0)

=  1

(4x): (4x) = (2x) -  (3q)(3x)

= 0 - ( 2)(1)

=  _2

(3y): (3y) = (1y) -  (2q)(2y)

= 0 -  (187)(1)

= -187

(4y): (4y) = (2y) -  (3q)(3y)

= 1-(2)(-187)

= 375



The figures in 6x and 6y are important. According to Equation 21:

e * d - 1  = k(f>

Re-writing :

1 = -k(j) + d * e 

Equation 22

Fetching the numbers (6x and 6y) from 

Table 2:

1 = (-5)(2436)+ (937)(13)

Therefore d = 937.

Note: d must be positive. If d turns out to be negative (i.e. d’), convert it to a 

positive number:

d = d'+<j>

Equation 23

8.14.2 RSA Public Key Generation

A RSA public key is the N and e value. Note that during the generation of the 

private key, the key owner has already selected a value for e. Typical choices of 

e are 3 or 65,537. The owner must also compute N:

N  = p * q  

Equation 24

N and e are distributed as the owner’s public key. Note that encryption can be 

done with either of the RSA private or the public key. For instance, a client -  

upon receiving the public key from an on-line bank -  can use the bank’s public 

key to encrypt its end user’s private data before sending the data to the bank. 

The encrypted data can only be decrypted at the bank (since only the bank



owns the private key). The bank may digitally sign some data with its private 

key i.e. creating a digital signature. Upon receiving the signed data at the client, 

the client shall use the bank’s public key to verify the signed data.

8.14.3 Encryption with a RSA Public Key

To encrypt a plaintext P with a RSA public key:

C = P emodN

Where

C = ciphertext 

P = plaintext

e = public random shared value from key owner 

N = public shared value from key owner

Equation 25

Example 4: Given that P = 1819, e = 13, N = 2537, determine the ciphertext C.

C = Pe modN 

C = 181913 mod 2537

181913
In other words, C is the remainder of ---------

2537

C = 2081

Note: In situation in which e is large, it is very difficult to perform calculation with 

modules. In this example e = 13, and 1 3 = 1 + 2  + 4 + 6, Equation 25 can be 

rewritten as follow to ease calculation:

C = [(P1 mod N )(P2 mod N)(P4 mod N )(P6 mod 77)](mod N)

Equation 26



8.14.4 Decryption with a RSA Private Key

To decrypt a plaintext P with a RSA private key:

P = Cd mod N  

Equation 27

8.14.5 The Level of Complexity of RSA Keys and Prime Numbers

A RSA private key (i.e. d) is calculated by using two large prime numbers (p and 

q), whereas part of a RSA public keys (i.e. N, but not e) is a product of the two 

large prime numbers (p and q). The level of complexity (and hence security) of 

RSA keys depends on the difficulty of factoring a large integer. In RSA, this 

large integer is N, which is product of two large prime numbers p and q.

A prime number has a unique feature: it is an integer that can only be divided by 

1 and itself. Example prime numbers are 3, 5, 17, 257. According to the 

Fundamental Theorem of Arithmetic [101], any (positive) integer has a unique 

prime factorisation: that is, any integer is a product of only one fixed set of prime 

numbers. For example, the integer 65535 is a product of this particular set of 

prime numbers:

65535 = 3 x 5 x  17x257 

Currently, no efficient factorisation algorithm is available for factorising large 

integers: a recent experiment shown it took 18 months to factorise a 200-digit 

number into two 100-digit prime numbers [102]. A RSA public key (N but not e) 

is a product of two large prime numbers (N = p x q). Note that p and q are also 

used for creating a RSA private key, which must be kept secret at all time. Thus, 

RSA keys are complex and secured as long as no efficient factorisation 

algorithm exists. Thus, as long as N is large enough, it would be difficult to 

factorise N (i.e. difficult to obtain p and q), hence it is difficult to obtain b (i.e. the



private key, which is calculated by using on p and q in an one-way function).

It should be noted that the RSA private key (d) must be kept secured. The 

knowledge of d would enable efficient factorisation of N. For more detail, refer 

to [95].

The choice of the value for e is another important security factor of RSA (and 

the performance of RSA operation), e must be a large value. A small value of e 

leads to weakness in RSA keys. According to Equation 25:

C = Pe modiV

Essentially, the eth root of C is the plaintext P. If e = 3, then the plaintext can be 

deduced from:

P =  VCmodAf 

Equation 28

Thus, the value of e should be large. A detailed discussion of the choice of e 

and the impacts of small e value on the RSA algorithm can be found at [95]. 

However, a large value of e means that more computational time is needed for 

RSA cryptographic operations: for RSA encryption, the plaintext P goes through 

a modular exponentiation of e trails. If e and P are large, then the performance 

overhead of this modular exponentiation process would become undesirable.

8.15 Responder

A responder responds to a SA negotiation instantiated by an Initiator.

8.16 Security Associations (SA)

A Security Association (SA) [103] is a contract defining a set of security 

parameters [60] to be used between two IPSec hosts. Each IPSec host



maintains a set of associated SAs in its own Security Association Database 

(SADB)18. An SA is simplex i.e. one-way. An IPSec host must define a SA for its 

outgoing IPSec channel and incoming IPSec channel respectively. For instance, 

in Figure 52, two IPSec tunnels were established. A particular set of 

cryptographic key(s) will be used between SA10Ut and SA1in of host A and host 

B respectively. Whereas another set of cryptographic key(s) will be used 

between SA2in and SA2outof host A and host B respectively.

□
Host A

□
Host B

Figure 52 -  Simplex SAs

Essential IPSec SA parameters are:

■ The IPSec protocol to be used i.e. Authentication Header (AH), 

Encapsulating Security Payload (ESP), or both.

18 For simplicity, the SADB of host B is not shown in Figure 52. In this example, only two nodes 
are involved. The SAs stored in host B’s SADB are identical to those stored in host A’s SADB.



■ The hashing algorithms to be used.

■ The keys to be used.

■ The duration whilst the key remains valid... and more.

SA parameters are categorised into protocol-specific and generic fields. The 

latter field is used by both AH and ESP and are discussed below. Note that 

some of these fields can be updated in the SAs when necessary.

■ Sequence number field

This field contains a 32-bit number in both the AH and ESP header for detecting 

replay attacks. This number is initially set to zero when a SA is established, and 

is incremented by one each time the SA is used to secure a packet. The SA 

should be replaced when this number reaches 4G i.e. 4,000,000,000.

■ Sequence number overflow

This field is set (during outbound processing of IPSec packets) to indicate the 

sequence number has reached 4G.

■ Anti-replay window

This field is used during inbound processing to overcome replay attacks.

■ Lifetime

This field defines the lifetime of a SA. Lifetime is defined either in 1) number of 

bytes to be secured by this SA, or 2) the duration of which the SA is valid.

■ Mode

Three different modes: tunnel, transport, or wild card. Wild card indicates this 

SA supports both tunnel and transport mode.

■ Tunnel destination

The destination address of tunnelled IPSec packet. Appears as clear text in the 

header.



■ PMTU parameters

Path Maximum Transfer Unit (PMTU) parameters are important when using 

IPSec tunnel mode. To avoid packet fragmentation, a peer discovers the PMTU 

of a particular path, and never transmits a packet that exceeds the PMTU.

8.17 SA Creation and Removal

The creation of SA is sub-divided into the negotiation of SA parameters and the 

insertion of SA into the SADB. Key negotiation between participating peers is a 

crucial step in the first stage. There are two ways of key negotiation:

■ Manual key negotiation

Manual key negotiation is ideal for small-scale IPSec deployment. It is usually 

done off-line. Manually negotiated keys may run indefinitely -  until manually 

removed.

■ IKE (Internet Key Exchange)

IKE is more suitable for large-scale IPSec deployment. IKE meant to work 

under the guidance of security policies. For instance, a policy may require a 

particular connection to be secured. The IPSec kernel will then invoke IKE. IKE 

will then negotiate with the receiver the SA parameters, and then create the SA. 

The freshly created SA will be added to the sender’s SADB.

The removal of SA from SADB can also be performed manually or through IKE. 

Frequent updating of SA (i.e. remove and create) is essential in order to 

minimise the chances of keys being compromised. To avoid disruption of an 

established IPSec communication, a replacement SA (for that particular IPSec 

communication) is negotiated before the existing SA is deleted.

8.17.1 Security Parameter Index (SPI)

Once a SA has been established between two nodes, packets can be sent



securely between the two nodes by using the established SA. However, a node 

may have established multiple SAs with different nodes in the network; thus, 

prior to sending across a packet, there is a need to identify which SA to be used 

between the sending node and the receiving node [104]. The sender (also 

known as the Initiator in this thesis) uses the selectors to identify the SA. IPSec 

selectors are:

■ Source address and source (IPSec) application port number; destination 

address and destination (IPSec) application port number.

■ Participating specific protocol (of OSI layer 4 or above).

■ Name of the policy associated to a user or system.

The receiver (also known as the Responder), however, cannot do so. This is 

because some of the fields in the packet header (where the selectors are kept) 

belong to the transport layer. In IPSec, transport layer fields are encrypted. 

Thus, the receiver would not have access to all the fields (i.e. the selectors) 

unless the receiver knows the corresponding SA to be used for decryption. The 

problem becomes a chicken-and-egg problem.

Consequently, at the receiver, each SA is identified by a unique 32-bit Security 

Parameter Index (SPI). The sender uses the selectors to uniquely index a SA 

into its SADB. The SA is associated with a unique SPI. The SPI is kept in the 

AH or ESP header and is sent along with all protected packets from the sender 

to the receiver. The receiver uses the SPI to retrieve the corresponding SA 

(from its SADB), and the SA is used in order to process incoming protected 

packets.

The <SPI, dst> to SA mapping must be unique at all time. Uniqueness of SPI is 

guaranteed by the host that assigns the SPI. In the case when the sender has



more than one source address, i.e. it has more than one interface, the <SPI, src, 

dst> combination can be used. The SPI may be re-used when the 

corresponding SA expires. SPI is included in every IKEv2 message. In IKEvI, 

cookies (section 8.3 on p. 164) were used instead of SPI.

8.18 Sequence Number

Sequence numbers of messages are important for anti-replay attacks (section

8.13.2 on p. 183). If a series of messages are to be exchanged between two 

peers, each exchanged message must contain a unique sequence number. If 

same sequence number is found on two messages, the messages are 

duplicated.

In TCP, for example, sequence numbers are included in all TCP packets. The 

sequence number of the first TCP message of a particular TCP connection is a 

pseudo-random number. Each time a message is sent or received during the 

same connection, the sequence number is incremented by one. A peer would 

be able to detect replay attacks when two messages arrive with the same 

sequence number. Note that the sequence number must be pseudo-random, so 

that the start-off value for each TCP connection is different. This is important 

because, if the first sequence number of all TCP connections always start off 

from a fixed value, then if two TCP connections are simultaneously running, 

there are chances that two TCP packets (of the two TCP connections 

respectively) may arrive at the same time with the same sequence number. The 

peer would mis-understand, and thought one of the messages was a replay 

attack. By using random values, this problem would not happen.

In IKE and IPSec, sequence numbers are known as message IDs. The 

message ID field in IKE messages is authenticated and integrity protected by



using appropriate keys from the shared key set for added security (section 2.10 

on p.55).
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