
Efficient Security Management for
Active Networks

Lawrence L. L. Cheng

Submitted to the Department of Electrical
Engineering in fulfilment of the requirements for
the degree of Doctor of Philosophy in Electrical
Engineering

University College London (UCL)
2007

1

UMI Number: U592711

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592711
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

DECLARATION

This is to declare the work presented in this thesis is the author’s own work.

ACKNOWLEDGEMENT

The author of this thesis would like to thank Prof. C. Todd, Prof. A. Galis for
their valuable advice, and generous help for supporting the research work
presented in this thesis.

To Stanley and Sandra, the giants on whose shoulders I stand.

ABSTRACT

Due to the dynamic nature and dynamic routing capability of active packets,

security in active networks should be hop-by-hop based. This thesis discusses

the identified drawbacks of existing approaches. These drawbacks are: the high

performance overhead generated by per-hop Security Association (SA)

negotiation prior to secured active packet transmission; the high complexity in

SA negotiation handshake process; active packet can only be securely

transmitted after SA negotiations; the shared key set generated for protecting

active packets may not have Perfect Forward Secrecy (PFS); lack of

confidentiality protection on exchanged symmetric keys and active packets;

lack of SA negotiation power; and scalability issues. This thesis presents a

novel hop-by-hop active network security management approach known as

Security Protocol for Active Networks (SPAN). SPAN is designed to enable

secure active packet transmission during a series of hop-by-hop SPAN SA

negotiation along a new execution path, instead of after. The design of SPAN

has taken into consideration the factors of security, efficiency, flexibility,

scalability, and applicability. SPAN is resistant to replay, man-in-the-middle,

impersonate attacks. SPAN is designed to detect DoS attacks much more

efficiently. Furthermore, SPAN is uniquely designed to enhance the robustness

and efficiency of underlying active networking systems.

4

INDEX

INDEX..5

A bbrevations.. 11

1 Introduction & Background... 14

1.1 An O verview .. 14

1.2 Motivations..18

1.3 Objectives..19

1.4 Thesis Structure and O rganisation... 19

1.5 Active Networks.. 20

1.5.1 An O verview .. 20

1.5.2 Common Terms in Active Networks..21

1.5.3 An Example Active Network O peration...24

1.6 Features o f Active Networks... 28

1.6.1 Dynamic Data and Static Code in Active Packets........................ 28

1.6.2 Dynamic Routing in Active N etw orks.. 29

1.6.3 Hop-by-Hop Transmission...31

1.7 Security in Active N etw orks... 32

1.7.1 Hop-by-Hop Security..32

1.7.2 Challenges in Designing Security Solutions for Active Networks

35

2 State-of-the-Art in Hop-by-Hop Security ... 37

2.1 Symmetric Cryptography for Hop-by-hop Security...................... 37

2.2 Asymmetric Cryptography for Hop-by-hop Security38

2.3 A Packet Language for Active Networks (PLAN)........................ 41

2.4 Secure Active Network Environment (S A N E)..............................41

2.5 Secure Active Node Transfer System (SA N TS)............................43

2.6 Signed Key Transport (S K T).. 48

5

2.7 Centralised Keying Server (K SV).. 50

2.8 FAIN: ANEP-SNAP Packet Engine...52

2.9 IP SecE SP ..55

2.10 Internet Key Exchange v2 (IKEv2).. 55

2.10.1 An O verview .. 55

2.10.2 Key Exchange Process in IKEv2...57

2.10.3 Enforcing PFS Support in IKEv2..63

2.10.4 Use o f COOKIEs for Addressing DoS Attacks..............................64

2.10.5 Sequence Numbers as Message I D .. 67

2.11 Just Fast Keying (JFK)..67

2.12 IKEvl in aggressive M ode... 70

2.12.1 Two Phases Approach in IK Evl(v2).. 71

2.12.2 An Overview on IKEvl in Aggressive M ode................................ 72

3 Security Protocol for Active Networks..74

3.1 Design Assumptions.. 74

3.2 An Overview on the SPAN Protocol.. 76

3.3 Design Decisions for a 3-Message H andshake.............................. 77

3.4 SPAN Initialisation (Message 1: S P A N IN IT)...............................78

3.4.1 An O verview ...78

3.4.2 Design Decisions for SPAN IN IT..78

3.4.3 SPAN INIT in D etail.. 80

3.5 SPAN Authentication (Message 2: S P A N A U T H).......................82

3.5.1 An O verview ...82

3.5.2 Design Decisions for SPAN A UTH...82

3.5.3 SPAN AUTH in D etail... 84

3.6 SPAN Active Packet (Message 3: SPAN A P)...............................87

3.6.1 An O verview ...87

6

3.6.2 Design Decisions for SPAN A P .. 88

3.6.3 SPAN AP in Detail.. 90

3.6.4 Secured Active Packet Transm ission.. 91

3.7 Multiple Hops Transmission...91

3.8 Protecting Active Packets in Subsequent Communications 94

3.9 Protecting Active Packets with Dynamic C o d e94

3.10 Packet Loss Handling in SPAN.. 96

3.11 Sum m ary.. 96

D iscussion... 98

4.1 Message Security in SPA N ... 98

4.1.1 Message Authenticity, Integrity and Confidentiality Protection98

4.1.2 Sum m ary...100

4.2 Network Attacks on SPAN.. 100

4.2.1 Anti-Network Attack Techniques in SPA N101

4.2.2 Sum m ary.. 102

4.3 Proof-of-Knowledge o f Shared K eys.. 103

4.3.1 Sum m ary...104

4.4 Identity Protection...104

4.4.1 Sum m ary...105

4.5 Enhanced Robustness, Flexibility, and Scalability.....................106

4.5.1 Enhancing Robustness in SP A N .. 106

4.5.2 Enhancing Flexibility in SPAN...108

4.5.3 Enhancing Scalability in S P A N ... 109

4.5.4 Sum m ary...109

4.6 Efficient Detection o f DoS Attacks..110

4.6.1 DoS Attacks in IKEv2.. 110

4.6.2 IKEv2 Defence Mechanisms for DoS A ttacks...........................111

4.6.3 DoS Attacks on IKEv2 with C O O K IEs.......................................111

4.6.4 SPAN Defence Mechanism for DoS A ttacks..............................113

4.6.5 Discussion o f SPAN’s Anti-DoS M echanism s............................ 114

4.6.6 Sum m ary..115

4.7 The Use o f Asymmetric Cryptography in SPAN.........................115

4.7.1 Sum m ary..118

4.8 Applicability o f SPA N .. 118

4.8.1 Sum m ary..120

Evaluation...121

5.1 Packet Format Designs.. 121

5.1.1 An Overview on Packet Format D esign...121

5.1.2 A Generic Packet Format Design for SPAN IN IT123

5.1.3 Generic Packet Format Designs for SPAN AUTH and SPAN AP

124

5.2 Experiment Setup... 128

5.3 Prototype Design and Implementation... 129

5.3.1 Choosing Programming Language.. 129

5.3.2 Choosing Cryptographic A lgorithm s..130

5.3.3 The SPAN Package..130

5.3.4 Creating and Verifying Digital Signatures in SPAN....................131

5.3.5 D-H Public Value G eneration.. 134

5.3.6 Shared DES Key Computation... 136

5.3.7 Encryption and Decryption Code Implementation....................... 137

5.3.8 Sending Packets on the W ire.. 138

5.3.9 The IKEv2 Package.. 139

5.4 Efficiency and Scalability Evaluation...140

5.5 Evaluation on Detecting DoS A ttacks...150

5.6 Evaluation on Robustness & Flexibility....................................... 152

6 Conclusions.. 154

6.1 Applying SPAN to Other A reas... 159

7 Publication L is t... 161

8 A ppendix...162

8.1 Certificates & Public Key Infrastructure (PKI)........................... 162

8.1.1 Certificate C reation.. 162

8.1.2 Certificate Verification...163

8.2 Concatenation.. 164

8.3 Cookies..164

8.4 Credentials.. 164

8.5 Cryptography..165

8.5.1 Symmetric Cryptography...165

8.5.2 Asymmetric Cryptography.. 165

8.5.3 Symmetric vs. Asym metric... 166

8.5.4 The “Man in the Middle” Attack o f Public Key Cryptography

167

8.6 Diffie-Hellman Key Exchange (D -H)... 168

8.6.1 Diffie-Hellman Key Exchange in MODP M ode......................... 169

8.6.2 Selection o f Private V alues... 172

8.6.3 Selection o f the public values..173

8.6.4 Limitations o f the Diffie-Hellman Algorithm174

8.7 Hash, Keyed Hash, Hash Functions, Hash T ables......................175

8.7.1 Keyed Hash Functions..176

8.7.2 Message Authentication Code (M A C)..176

8.7.3 Hashed Message Authentication Code (H M A C)........................177

8.8 Initialisation Vector (IV)..177

9

8.9 Initiator.. 178

8.10 N onces... 178

8.11 Passive N etw ork...179

8.12 Perfect Forward Secrecy (PFS)...180

8.12.1 Definitions...180

8.12.2 PFS Explained.. 182

8.13 Pseudo-Random Function (P R F)..182

8.13.1 PRF+... 182

8.13.2 Replay A ttacks... 183

8.14 Rivert Shamir Adelman (RSA) Algorithm s..................................183

8.14.1 RSA Private Key G eneration...184

8.14.2 RSA Public Key Generation... 186

8.14.3 Encryption with a RSA Public Key...187

8.14.4 Decryption with a RSA Private K e y .. 188

8.14.5 The Level o f Complexity o f RSA Keys and Prime Num bers. 188

8.15 Responder...189

8.16 Security Associations (S A).. 189

8.17 SA Creation and Rem oval...192

8.17.1 Security Parameter Index (SPI)..192

8.18 Sequence Number... 194

9 References..196

ABBREVATIONS

AA Active Applications

ACK Acknowledgement

AH Authentication Header

AN Active Networks

ANEP Active Network Encapsulation Protocol

ANTS Active Node Transfer System

API Application Programming Interface

ASV Authentication Server

CA Certificate Authority

CBC Cipher Block Chaining

CPU Central Processing Unit

CRL Certificate Revocation List

D-H Diffie-Hellman

DARPA Defence Advanced Research Projects Agency

DES Data Encryption Standard

DoS Denial of Service

DS Digital Signature

DSA Digital Signature Algorithm

DSS Digital Signature Standard

EE Execution Environment

ESP Encapsulating Security Header

EU European Union

FAIN Future Active IP Networks

HMAC Hashed Message Authentication Code

1 Initiator

I-D Internet Draft

ICMP Internet Control Message Protocol

IKE Internet Key Exchange

IP Internet Protocol

IPSec IP Security

ISP Internet Service Provider

1ST Information Society Technologies

IV Initialisation Vector

JFK Just-Fast-Keying

KMM Key Management Module

KSV Keying Server

MAC Message Authentication Code

MD Message Digest

MD5 Message Digest #5

MSEC Multicast Security

MTU Maximum Transfer Unit

NodeOS Node Operating System

OS Operating System

OSI Open Systems Interconnect (model)

P2P Peer-to-Peer

PFS Perfect Forward Secrecy

PLAN A Packet Language for Active Networks

PMTU Path Maximum Transfer Unit

PKI Public Key Infrastructure

PRF Pseudo-Random Function

R Responder

RFC Request For Comments

RSA Rivert Shamir Adelman

SA Security Association

SADB Security Association Database

SANE Secure Active Network Environment

SANTS Secure Active Node Transfer System

SHA Secure Hash Algorithm

SKIP Simple Key Management for Internet Protocol

SKT Signed Key Transport

SNAP Safe and Nimble Active Packet

SNMP Simple Network Management Protocol

SPAN Security Protocol for Active Networks

SPD Security Policy Database

SPI Security Parameter Index

SYN Synchronisation

TCP Transmission Control Protocol

TDES Tripe DES

TS Traffic Selector

TTL Time-To-Live

UDP User Datagram Protocol

XOR Exclusive-OR

1 Introduction & Background

1.1 An Overview

Today’s Internet consists of millions of interconnected nodes, which are divided

in interconnected domains that are managed by different Internet Service

Providers (ISPs). Connections are typically made between two (or more) end

points that are located at the edges of the network. High-speed routers are

used in the core network simply as packet routing devices that route packets to

their destinations. Figure 1 shows a typical example connection that allows a

user to access a file server in his office in today’s Internet.

Internet

Connection
/ (file access)

File server
(end point)

Client’s PC
(end point)

Routers

Figure 1 - A typical connection in the Internet

Over the years, the possibilities of utilising the available resources on routers

(that are currently being used as packet forwarding machines) have been under

investigation. Active networking, or the concept of Active Networks (ANs), was

first described in [1]. In [1] and [2], the authors discussed respectively that

active networking technologies would allow active network users to launch their

customised executable code (in the form of active packets) to nodes in the

network. In addition, the benefit of introducing active networking technologies to

the Internet was highlighted: a range of new applications (e.g. new Internet

services) would be enabled through the decoupling of services from the

underlying architecture. It was further discussed in [3] that active technologies

could be interpreted as a means to enable the network to carry out the role of a

computer, in order to support a wider range of (new) services in the network.

Figure 2 shows the concept of (new) service deployment via active technologies,

in which a network administrator may configure or customise, via active

management applications, the features of the networks via active technologies,

in order to create a tailor environment to support a range of services (e.g. a

QoS-guaranteed access to a remote file server). In other words, active

technologies “open up” the resources that are currently available in the Internet

to network users; hence provide the opportunities to create and support

customised (new) services in the Internet.

_ n xi NetworkConfiguration |[j adminjstrator
(via active application

technologies)

Internet
QoS-

guaranteed
access

 U
File server
(end point)

Client’s PC
(end point)

Routers

Figure 2 - (New) service deployment via active technologies

More specifically, active technologies could potentially allow a party to install its

own programs and run services on any nodes in the network, in a way similar to

how programs are installed and run on computers today. Installed programs are

then executed in order to support the operations of (new) network-wide

services.

Since the introduction of the concept of active networking, a series of active

networking programs/projects were funded by the Defence Advanced Research

Projects Agency (DARPA) [4]. Several working groups were created within

DARPA active networks program to address various architectural issues in

active networking, such as the AN Node Operating System (NodeOS) Working

Group [5], the AN Security Working Group [6], and the AN Composable

Services Working Group [7], A document [8] that describes the consolidated

16

work of the DARPA active networks program working groups was prepared as a

draft Request For Comments (RFCs). A survey that describes the fundamental

concepts of active networking, and the research work carried out during the

introduction stage of the active networking concept, can be found in [9].

There are currently two implementation approaches to realise the concept of

active networks: the in-band approach and the out-of-band approach. The

in-band approach involves the use of discrete capsules which are essentially

executable programs (or code) encapsulated in traditional data carrying

packets (such as IP packets). These packets - known as active packets - are

intercepted and executed at active nodes along the path [10]. In contrast, the

out-of-band approach involves the use of existing packet format, and the use of

(external) separated mechanisms, to install additional functionalities on routers

in a dynamic fashion. For example, the active extension switchlets [11] are sent

to nodes in the network, which then load new services onto the nodes to enable

the processing of other switchlets. Note that the fundamental concept of

in-band and out-of-band approaches is the same: existing routers’

functionalities are extended to process packets carrying some form of control

code.

In order to use any new technology, the related security threats must be

identified and addressed. Thus, the discussion of the use of active technologies

for supporting (new) services in the network would be incomplete without an

investigation of the relevant security issues. A known security issue of active

networks, i.e. hop-by-hop protection for active packets, is addressed in this

thesis. Hop-by-hop security is in contrast to traditional end-to-end security in

today’s Internet. Normally, packets are sent in an end-to-end fashion (Figure 1).

17

A packet is sent by a client, and received by a server (vice versa). In this case,

only two nodes located at either end of a communication link are involved. The

intermediate nodes (i.e. the nodes in-between the client and the server) simply

route the packet to its destination. The need for hop-by-hop security in active

networks is due to a unique feature of active networks: in contrast to passive

networks' that route data packets between end nodes (section 8.11 on p. 179),

active networks use control packets that may change state as they traverse the

network. Intermediate nodes (i.e. the routers in Figure 1) are no longer simple

packet forwarding machines, but they are now packet intercepting and

forwarding machines, that intercept active packets on the wire, execute the

code carried in the packets, and (optionally) add the execution results to the

packets before forwarding the packets to their destination. The state-changing

feature of active packets traversing the insecure Internet creates new security

challenges.

1.2 Motivations

This thesis reports on an investigation to develop a secure, efficient, flexible,

and scalable hop-by-hop security solution for protecting the authenticity,

integrity, confidentiality, and non-repudiation [12] of active packets that are

transmitted in a hop-by-hop fashion in active networks.

The author of this thesis was an active member of the European

Union-lnformation Society Technologies (EU-IST) active networking research

project, i.e. Future Active IP Networks (FAIN) [13], during 2001-2004. The

author was a member of the security architecture group and the active node

architecture prototype development group. The author’s incentive to develop

1 A passive network is one that transmits data packets through passive nodes (e.g. routers) only.

18

hop-by-hop security systems was initiated during his participation in the FAIN

project.

1.3 Objectives

The reason for developing a hop-by-hop security system for active networks

was to protect active packets. Note that in contrast to conventional passive

packets (section 8.11 on p. 179), active packets are dynamic (i.e. that they may

change state at each intercepting active node during transmission). Thus,

instead of using end-to-end security techniques that protect passive packets

(that do not change state during transmission), hop-by-hop security is required.

Due to the scope and nature of this thesis and space limitation, this thesis shall

neither discuss the motivation of active technologies, nor justify the impact of

active technologies. Note that this thesis investigates security management; as

such, discussions on technological advances in cryptographic algorithms are

out-of-scope in this thesis. However, relevant security terms are presented in

the Appendix, and all security terms are referenced.

1.4 Thesis Structure and Organisation

This thesis is organised as follow: first, the fundamental concepts of active

networks will be presented. Then, one of the major security challenges of active

networks, namely, hop-by-hop security, is addressed. This is followed by a

detail discussion of the advantages and limitations of existing solutions for

hop-by-hop security in active networks. Then, the author’s solution, SPAN, will

be presented. The SPAN protocol will be discussed and evaluated against

relevant existing solutions. This thesis ends with a conclusion, future work, and

appendix.

19

1.5 Active Networks

1.5.1 An Overview

An active network does not exist on its own, it is meant to co-exist with existing

networks such as the Internet i.e. a passive network. An active network,

consists of both passive nodes and active nodes. An active node is a passive

node with an active platform installed. An active node transmits and processes

active packets that carry executable active code. Active codes in active packets

are executed on intermediate active nodes to perform various tasks. Figure 3

shows an example active network.

The point to note is that an active network is a store-compute-and-forward

network (in contrast to a store-and-forward passive network). An active network

is composed of a mixture of interconnected active and passive nodes. Active

nodes across heterogeneous administrative network domains inter-work with

Active node
Domain3

Domain 2

Domain 1

mdwgagm

Active platform

Passive node (htar router}

Figure 3 - An example active network

each other. Active packets (which carry executable active code) are injected

into the active network, and are intercepted at desired intermediate active

nodes. Active codes in active packets are executed at intermediate active

nodes, before the packets are forwarded to their next hop. The execution of

active code on active nodes creates the opportunity for new service deployment

in today’s networks. In section 1.5.3 (p.24), an example will be given to show

how active networks may operate in practise.

1.5.2 Common Terms in Active Networks

Some terms that are commonly used in active networks are defined below:

■ Active Packets

These are special type of IP packets. Active packets use standard transmission

protocol such as User Datagram Protocol (UDP) and Transmission Control

Protocol (TCP). Active Network Encapsulation Protocol2 (ANEP) [14][15] is

defined as the active packet header protocol. ANEP packets are carried within

UDP packets. Active packets’ content, i.e. active static code and dynamic data

(section 1.6 on p.28), are determined and executed at active nodes.

■ Active Code

There are executable codes that are carried in active packets. They can be any

type of executable code ranging from programs written in assembly code [16],

or programs implemented as Java classes [17], or Simple Network

Management Protocol (SNMP) commands.

■ Active Node

An active node is composed of a passive node and an active platform. If a

2 ANEP is the work of many researchers from different institutions researching active networks..
The purpose of defining ANEP is to specify a mechanism for encapsulating Active Network
frames for transmission over existing network infrastructure such as IP and IPv6. At the time of
writing, ANEP is defined as a draft RFC.

hardware passive router is used as the underlying router, a computer is

attached to the hardware router (e.g. through Ethernet cables). An Operating

System (OS) and the active platform (e.g. some special software) would be

installed on the computer. The active platform can then control the hardware

passive router. If software passive routers are used instead, an active platform

will be installed on the computer, and routing will be carried out by the OS

installed on the computer.

Active nodes are also capable of forwarding packets just like passive nodes. In

addition to packet forwarding, active nodes are capable of intercepting active

packets, investigating and executing the active code carried in the packet, and

performing various computational tasks as specified in the active code.

Optionally, execution results may be added back to the packet before the

packet is forwarded to its next hop.

■ Active Platform

Over the last few years, a general architecture for active networks has evolved

[18]. In general, this architecture, i.e. an active platform, is a software platform

that is capable of interpreting active packets on the wire, and executing the

active code carried in the active packet. An active platform enables an active

node to possess the node resources to compute various computational or

operational tasks.

In [19], a generalised architecture for active platform was presented. This

architecture identifies three layers of code running (Figure 4). The lowest layer

is the NodeOS, which hosts several support services such as resource control,

security, and packet (de)multiplexing. On top of these support services are

Execution Environments (EEs), which can be considered as resource

abstractions for supporting service execution, deployment, configuration, and

more. On top of the EEs are Active Applications (AAs), such as end user

service applications and management applications. AAs make use of the

services and resources on the node, which are made available through the

interaction between the EEs and the NodeOS.

User applications

Resource abstraction

DeMUX, Security,
Resource Control, etc.

Packet
interception

Execution
Environment 1 (EE)

Active Application 1
(AA)

Node OS

> Packet flow
V-''

Figure 4 - The generalised active node architecture

■ NodeOS

The NodeOS abstracts the hardware (i.e. the router), and provides a range of

low-level management facilities to support the operations of the EEs (and

subsequently the AAs) [20]. The communications between the EEs and the

NodeOS are conducted through a set of Application Programming Interfaces

(APIs). Example management facilities are packet multiplexing (i.e. intercepting

and examining packets from the wire), security checks on intercept packets (e.g.

authentication and integrity checks), and resource control (e.g. outgoing

network bandwidth, memory access control).

■ Execution Environments

EEs implement a very board definition of a network API, ranging from

programming languages to virtual machine [21]. Example EEs are the Packet

Language for Active Networks (PLAN) [22], Active Node Transfer System

(ANTS) [23], and the Future Active IP Networks (FAIN) component-based, and

more. In general terms, an EE is an active network’s programming environment,

that when instantiated, it is a runtime environment for the execution of active

code (that are carried by active packets, which are intercepted by the NodeOS

from the wire). Thus, an EE may be viewed as a definition of a specific

programming model for the development of a specific AA. An EE may

implement a set of resource abstractions, using the building blocks as provided

by the APIs, which link the NodeOS and the EE. To create a service, one may

manipulate the set of abstractions that are implemented by the EE.

■ Active Applications

An AA is a user-space application, which provides services to users of active

networks. An AA may trigger code to be downloaded into active nodes, which

subsequently customise the network to support its needs. An example AA could

be a QoS-guaranteed media delivery application, which triggers the active

platform to reserve certain amount of bandwidth along the path of a media

stream (by injecting active code into the networks).

1.5.3 An Example Active Network Operation

A simple example that shows how an active network may operate is shown in

Figure 5. The purpose of presenting this example is to give the readers a better

24

understanding of the key features of active networks3. This example is chosen

because it highlights certain features of active networking, which will enable the

readers to identify the contrasts between the features of active networks and

passive networks. For example, active networks have the flexibility to support

dynamic code execution; the capability of supporting (new) service deployment

in the network; and most importantly, active networks may change the states of

active packets.

Terminal machine□
Service request

\ _

Active
Packet

injection
* 9 a t

Source
Active Node

Active Packet
execution

g

Intermediate
Active Node

Active platform

Passive node (tVw router)

Active Packet
execution

m — ■ !mr nr
To other

nodes (e.g.
Internet)

Destination
Active Node

Figure 5 - An example of active network operation

Figure 5 shows an active network that consists of both passive and active

nodes, which is connected to the Internet. The scenario is that the network

administrator (which generates commands from a terminal machine) would like

to get the IP addresses of the traversed active nodes of an active packet via an

3 This example is based on the demonstration that the author presented at the FAIN project audit
in March 2003.

active management application. Traditionally in passive networks, the

administrator/application may issue a traceroute command, which determines

the packets’ route. The fundamental concept of traceroute is to send traceroute

packets to a particular destination on the network, which triggers bypassing

nodes to send Internet Control Message Protocol (ICMP) messages to the

original sender (in this case, the terminal machine). These ICMP messages are

used by the traceroute program to generate a list of hosts through which the

packets have traversed en route to the destination.

In the active network scenario, the management application, which is located

on a terminal machine (operated by, say, the network administrator), triggers

the following procedures:

1. An active packet that carries executable active code is injected at the source

active node. The executable active code (when executed) is capable of

retrieving the IP address of the active node that the active packet is currently

residing. The active code, in this example, is a Java class that invokes a

particular SNMP GET command that gets the IP address of the node.

2. The packet is then intercepted on each intermediate active node. Note that

there are also passive nodes residing along the communication path. The

packet is passed onto its next hop if intercepted by a passive node. As far as

the passive nodes are concerned, an active packet is the same as an IP

packet. This is because active technologies do not override or replace IP; for

example, an active packet carrying small size static code is encapsulated into

the payload of a UDP packet prior to packet transmission4.

4 This arrangement applies to transmitting small size static code only. If the size of the static code
was large i.e. too large to fit into the size of an UDP packet, an alternative approach would be to
put a network location reference (e.g. IP address) in the active packet, instead of the actual static
code. The reference refers to a network location where the static code could be downloaded. This

26

3. The code carried in the active packet (which gets the IP address of the

traversed active node) is executed on each intermediate active node. The

result of code execution (the IP address of the traversed active node) is

added back to the active packet.

4. The active packet will eventually carry a list of IP addresses. After traversing

a certain number of hops5, the packet is returned to the source node by the

active platform (the original source address is obtainable from the code). The

network administrator retrieves the information (i.e. a list of IP addresses)

through the management application. Figure 6 shows how the content of the

active packet changes when the packet traverses the network.

IP Header

UDP Header

Active Packet
Header

(Static) Active Code

-(Dynamic)
Execution Results-

Source IP

IP Header

UDP Header

Active Packet
Header

(Static) Active Code

-(Dynamic)
Execution Results-

Source IP,
intermediate IP

IP Header

UDP Header

Active Packet
Header

(Static) Active Code

-(Dynamic)
Execution Results-

Source IP,
intermediate IP,
destination IP

Source Intermediate Destination

Figure 6 - Changes in packet content

is an example of an out-of-band approach in active networks [14].
5 The Time-to-Live (TTL) value in this demonstration was set to 10 hops, which means the active
node will stop forwarding the packet after it has traversed 10 hops. This value is needed to
prevent packets from looping indefinitely in the network. The value may be adjusted to include
more hops, the current standard is 255 hops for passive packets.

This scenario shows how active networks operate differently from passive

networks; but at the same time, they may co-exist with passive networks.

Instead of triggering hosts to drop the original packet and to send ICMP

messages back to the original sender, active nodes may dynamically execute

an active packet, add contents to the active packet, and route the packet back

to its original source. These unique capabilities of active networking show that

active networks are much more dynamic and flexible than passive networks.

This high level of dynamicity and flexibility of active networks creates a new

range of security challenges for active network developers.

1.6 Features of Active Networks

1.6.1 Dynamic Data and Static Code in Active Packets

The above example illustrates how active technologies may operate. The key

point to note is that the content of an active packet may change whilst it is

crossing the network. Figure 6 shows that in active networks, the result(s) of

code execution is(are) added back to the packet before the packet is forwarded

to its next hop. Using the example in section 1.5.3 (p.24), a new IP address is

appended to the list of traversed IP addresses that are carried in the active

packet, each time the active code is executed on an active node. The

state-changing feature of active packets is known as the dynamic nature of

active packets in this thesis.

Another point to note is that besides dynamic data, active packets carry static

code. Static code refers to the executable active code that is generated at the

source node prior to packet injection. The code is static in the sense that it is not

to be modified when the packet traverses through the network Active packets

may carry dynamic code: the term dynamic code means that the code injected

into the active network at the source node may be modified at other nodes. The

reasons for generating dynamic code (or more specifically, modifying the

original code) could be, for example, when an active node believes the original

code is no longer suitable for its originally designed purpose (e.g. new network

conditions may cause active network operators to generate new code to

accommodate the new conditions); or it may want to add additional commands

to the packet to fit its own needs. At the time of writing, the author has not come

across the use of dynamic code in active networks. Thus, this thesis does not

discuss the use of dynamic code in active networks. However, the security

protocol presented in this thesis can be used to protect active packets carrying

static code or dynamic code (section 3.9 on p.94).

1.6.2 Dynamic Routing in Active Networks

Note also that active packets support dynamic routing i.e. the route is not

known in advance (at the time when the active packet is injected at the source

node). This is because the next hop of execution may depend on the execution

results [16][17][23], therefore only the node that a packet execution has just

taken place would be able to decide where the executed packet should be

forwarded to (Figure 7). Dynamic routing has a major impact on the design of a

hop-by-hop security solution for active networks.

29

Packet
interception

Yes No
<execution result = Set next hop to

node B
Set next hop to

node A

Packet execution

Route packet to
node A/B

Figure 7 - Dynamic routing at an active node

Question 1: What are the difficulties of defining an exact route for an active

packet at the point of packet injection at the source node?

Imagine a traveller would like to specify the fastest travelling route from one

place to another on the London Underground, prior to beginning his/her journey.

The traveller could specify a route if he/she had a (London Underground) map

in hand (i.e. pre-knowledge of the entire network), and he/she had access to

real-time congestion information of route(s)/station(s) (i.e. real-time network

status). Then, the traveller could determine all possible routes, and determine

the fastest route for his/her journey. Similarly, specifying a static execution route

for an active packet is only possible when - prior to active packet injection - the

administrator/management application is capable of specifying exactly at which

nodes the packet should be executed. This requires the

administrator/management application to have in-depth (real-time) knowledge

of the managed network, and the network status remains static (e.g. no new

congestion in the network). This requirement is not scalable because it cannot

be justified when the managed network is large, for example the Internet, which

consists of millions of nodes. Furthermore, the network status may change in

real-time (i.e. congestion may appear at any point and at any time).

Specifying a static execution route limits the scalability and flexibility of active

packet routing. To enhance flexibility, active platforms should be capable of

dynamically re-routing active packets, depending on real-time network status.

1.6.3 Hop-by-Hop Transmission

Because active packets may change state at each hop, this thesis refers this

transmission model as the hop-by-hop transmission model [24][25][26].

Hop-by-hop transmission model is in contrast to the end-to-end transmission

model of passive packets, the latter model involves packets that do not change

state during their traversal through the network. A hop-by-hop transmission

model is applicable to active packets due to the dynamic nature and dynamic

routing capabilities of active packets. A hop-by-hop active packet transmission

involves exchanging messages between pairs of nodes along the packet’s path;

the node that sends the packet is the Initiator (section 8.9 on p. 178), the packet

receiver is the Responder (section 8.15 on p. 189). An Initiator is a node where

the principal resides. An example Initiator would be the source node of an

active packet. A Responder would be a node that is about to receive an active

packet from the Initiator e.g. the next hop of packet forwarding.

6 A principal is the actual creator of executable active code. For example, an administrative or
management application that creates active packets. Active packets contain static code that is
executed for control or management purposes.

31

1.7 Security in Active Networks

1.7.1 Hop-by-Hop Security

Given that active packets may change state during network traversal, there is a

need to protect the authenticity, integrity, confidentially and non-repudiation of

active packets, in a hop-by-hop manner [27][28]. Example threats that are

applicable to active packets are replay attacks, impersonate attacks,

man-in-the-middle attacks, and DoS attacks [29] (see section 4.2 on p. 100 for

more detail on these attacks, and how the author’s solution addresses these

attacks). This thesis refers this security approach as a hop-by-hop security

model. Figure 8 shows the deployment of a hop-by-hop security model in active

networks. Note that two security tunnels are deployed in Figure 8: tunnel a is

established between the source active node and the intermediate active node;

whereas tunnel b is established between the intermediate active node and the

destination active node. These tunnels are established separately in the

network to enable a hop-by-hop transmission of active packets. Note further

that in contrast, in passive networks, tunnels (e.g. tunnel z) are usually

established in an end-to-end fashion.

32

Terminal machine Terminal machine

Network A : Network B

Internal secured
^channel (e.g. ssh) Active Packet

transmission

Internal secured f
Active Packet channel (e.g. ssh) /
transmission

Tunnel bTunnel a

Tunnel z

Destination
Active Node

Active platform

Passive node (h/w router)

Source Intermediate
Active Node Active Node

Figure 8 - Hop-by-hop security Vs end-to-end security

Hop-by-hop security is needed because:

■ The authenticity and integrity of static code must by verified at each

packet intercepting node, based on the principal’s authenticity. This is

because the static code should be verified based on the identity of its

actual creator. Without hop-by-hop authenticity and integrity protection, an

attacker may change the ownership or contents of the static code in active

packets, resulting in compromised code execution on active nodes.

■ Static code must also be subjected to non-repudiation protection, so that

the principal cannot deny of any wrongdoing should code execution

compromises other nodes in the network. Otherwise, anyone may create

and inject miscellaneous active packets, and deny any wrongdoing.

■ The authenticity and integrity of the dynamic data carried in a packet (i.e.

the execution results, or other information that an intermediate node adds

to the executed active packet, and wishes to pass onto its next hop)

should be verified based on the identity of the entity that the packet was

last modified (i.e. based on the identity of the last execution node). This is

because the data should be verified based on the identity of its actual

creator. Integrity protection is important, otherwise attackers may change

the content of active packets, resulting in compromised code execution.

■ Furthermore, the entire packet should be subjected to confidentiality

protection; otherwise, intruders may obtain potentially sensitive

information from the dynamic data on packets, such as code execution

results.

Question 2: Is it beneficial to protect all (active and passive) packets with

hop-by-hop protection?

The contents of passive packets would not change whilst the packets are in

transit, only the hop count value in their headers would. Protecting the static

headers and contents of passive packets is a form of end-to-end protection.

In active networks, the identity of the intermediate nodes between the source

and the destination is important. This is because the data carried in an active

packet is expected to be modified at some intermediate nodes during packet

transmission. Upon receiving an active packet, each intermediate active router

must verify:

■ The integrity of the packet arriving from its neighbouring active router.

■ The authenticity of its neighbouring active router (at which the active

packet was executed and modified, and where the packet was delivered

from).

34

■ The authenticity and integrity of the source active router.

1.7.2 Challenges in Designing Security Solutions for Active Networks

This thesis suggests that the challenge in hop-by-hop protection is that there is

a need to find a balance point between security and performance. For example,

it may appear that the simplest solution to hop-by-hop protection is to digitally

sign the modified parts of an active packet at each router (that packet

modification has taken place). However, this is not practical. This is because

asymmetric operations are much slower than symmetric operations (Question 6

on p. 166). The scalability and efficiency evaluations on different asymmetric

and symmetric approaches for protecting active packets in a hop-by-hop

manner are presented in a later chapter of this thesis (section 5.4 on p. 140).

Using symmetric keys would be an alternative, but because there is no

centralised authority that distributes symmetric keys - in contrast to asymmetric

keys where several well known Certificate Authorities (CAs) (section 8.1 on

p. 162) exist - the use of symmetric keys in a hop-by-hop environment requires

an efficient key distribution mechanism to generate keys between hops. Also,

note that active packets support dynamic routing. This implies that the route is

unknown at the point of packet injection, and further implies that a hop-by-hop

security system must be capable of dynamically and efficiently setting up

Security Associations (SAs) (section 8.16 on p. 189) between hops. A SA

describes a set of security parameters that are needed for maintaining or

operating a security channel.

Furthermore, existing active network systems assume compatibility. Existing

applications in active networking systems currently assume that a piece of

active code injected to the network can be executable on all other remote nodes.

35

This is, obviously, an assumption that would not hold in a large-scale network.

Thus, this thesis will also investigate a secure solution to ensure that, prior to

establishing a SA, and sending across active packets, the communicating peers

must ensure compatibility between themselves in a secured fashion.

Note that this thesis is investigating a secure solution for efficient hop-by-hop

SA negotiation (and hence subsequent secure packet transmission) along a

new execution path. This thesis defines a new execution path to be a path

which no active packets have previously traversed (hence no pre-established

hop-by-hop SAs), or a path of which previously established hop-by-hop SAs

has expired, therefore there is a need to establish a series of new hop-by-hop

SAs along the path (hence the name new execution path). In contrast, an old

execution path would be one where active packets have previously traversed

(hence hop-by-hop SAs have been established); and the hop-by-hop SAs have

not expired (so there is no need to renew or re-establish hop-by-hop SA).

36

2 State-of-the-Art in Hop-by-Hop Security

Existing active network security systems for hop-by-hop protection and related

work are discussed in this chapter. Their features and drawbacks are identified.

2.1 Symmetric Cryptography for Hop-by-hop Security

Terminal
machine
(sender)

1) Forward symmetric key

V

3) Forward protected file

2) Symmetric key
received

O '*
4) Protected file retrieved
using symmetric key

Internet

on

Terminal
machine
(receiver)

Figure 9 - Secured communications using symmetric keys

Figure 9 shows how symmetric cryptography is used in today’s Internet. The

sender must first establish with the receiver a symmetric key. This key will be

used for protecting future traffic between the two. In a hop-by-hop environment,

in order to transmit a packet securely to its next hop, the node (that the packet

resides) must share a symmetric key with the packet’s next hop. This shared

symmetric key is then kept securely on the node, and it will be used for future

cryptographic operations on packets transmitted between the two nodes. Note

37

that the basic assumption when dealing with network security is that the public

Internet is insecure. As a result, the use of symmetric cryptography would be

successful only if the shared key was distributed and kept securely. As a

summary, an efficient, scalable and secure symmetric key distribution

mechanism is needed to use symmetric cryptography in today’s Internet and

active networks.

One may suggest not to bother with dynamic key distribution, but to

pre-distribute shared keys to all nodes in the network. Pre-sharing keys might

seem simple, but it is a static and a non-scalable key distribution method. It

requires manual key generation and distribution. Internet Key Exchange v2

(IKEv2) (section 2.10 on p.55) is a standardised protocol for dynamic key

exchange in the Internet. IKE is published as a series of Request For

Comments (RFCs). The latest version of IKE is IKEv2 [30], which has replaced

its ancestor IKEvI [31][32][33]. A list of the important differences between

IKEvI and IKEv2 can be found in [34]. The flaws of IKEvI are identified in [35].

When compared to IKEvI, IKEv2 is flexible but less complex, simplified, and

with enhanced security techniques to address network attacks such as DoS

attacks [36]. Since IKEvI is now obsolete, IKEv2 is discussed in this thesis.

2.2 Asymmetric Cryptography for Hop-by-hop Security

Asymmetric cryptography [37] uses two keys (i.e. known as a key pair): one for

encryption, the other one for decryption. Asymmetric cryptography is generally

used for authentication, but it may also be used for confidentiality protection. A

private key is used for digitally signing a piece of data, and the authenticity of

the signed data can be verified by using the corresponding public key. For

instance, the Digital Signature Standard (DSS) [38][39] uses asymmetric

38

cryptography for digital signature generation. Asymmetric cryptography can

also be used for confidentiality protection, such as the Rivert Shamir Adelman

(RSA) algorithms [40]. In RSA, a piece of data is encrypted by using the

recipient’s public key. Only the recipient can decrypt the encrypted message

(because the recipient is the only person who owns the corresponding private

key for decryption). Note that asymmetric cryptography is more computationally

expensive than symmetric cryptography (section 8.5.3 on p. 166).

The advantage of using asymmetric authentication is that source authentication

is achieved, and there is no need for dynamic shared symmetric key

establishment. Since Public Key Infrastructure (PKI) (section 8.1 on p. 162)

[41][42] is used to distribute (public) keys, there is no need for each active node

to dynamically generate and distribute hop-by-hop (symmetric) keys; but this

implies a solution based on asymmetric cryptography would need a scalable

and standardised certificate retrieval mechanism i.e. PKI. Because PKI has

been deployed widely in a large scale (all web browsers support PKI), it is

reasonable to assume that active nodes on fixed networks, i.e. the Internet,

have access to PKI. However, asymmetric cryptography has some serious

drawbacks when being used for hop-by-hop protection; not only because of the

expensive performance overhead incurred, but also for the following reasons:

■ Unique private key ownership

Asymmetric cryptography requires a private key for signing, and a public key for

verification. A packet will be signed by the source’s private key at the source

node, and verified by the source’s public key at the intermediate node; but as

the source’s private key is kept locally on the source node, the intermediate

node is unable to reproduce the source’s signature after modifications to the

39

packet have been made on an intermediate node.

■ Multiple signatures on packets

To solve the previous problem, each node would have to sign the packets by

using its own private key. Thus the intermediate node would have to sign the

modifications made on the packets with it own private key; but then the old

signature, i.e. the source’s signature (that was generated by the source), would

be overwritten. Thus, the destination node will not be able to verify the packets’

source authenticity.

To go round these problems, the packet structure would have to provide more

than one field for keeping digital signatures. One field is used for keeping the

source’s digital signature, another field is used for keeping the digital signature

generated by the intermediate node, and so on. Thus, the following packet

format should be used (Figure 10). Note that Packet Data is the original data

generated by the source node, whereas Packet Data’ is the data created by an

intermediate node.

UDP HeaderIP Header Packet Data Packet Data’
Digital

Signature
(Source)

Digital
Signature

(Intermediate
Node)

Figure 10 - Packet format for asymmetric authentication

However, asymmetric cryptographic operations are much slower than

symmetric operations (Question 6 on p. 166). Thus, digitally signing each

modified part of each packet at each intermediate node would generate an

undesirable performance overhead. Furthermore, if each intermediate node

adds a new digital signature to the packet, then the size of the packet will grow

proportionally as it traverses more and more intermediate nodes.

■ Integrity and confidentiality protection

Packet confidentiality can only be protected if the source node encrypts the

packets’ data with the intermediate node’s public key; but since any node that

has access to the PKI may obtain the intermediate node’s certificate (hence its

public key), authentication could not be achieved. This is because any one can

encrypt any data with the intermediate node’s public key, thus the intermediate

node has no way to determine which node had carried out the encryption,

unless additional symmetric/asymmetric operations are involved. This could be

solved by requiring the source node to encrypt the packet’s data with the

recipient’s public key as before, and subsequently sign the encrypted data with

its own private key. However, this arrangement requires additional overhead.

2.3 A Packet Language for Active Networks (PLAN)

The developers of PLAN [22] claim PLAN (which is later on further developed,

and known as Safe and Nimble Active Packet (SNAP) [16] to be the first

practical active packet protocol. The scope of PLAN was to develop a novel,

efficient, and scalable active network protocol. It is not within the scope of this

thesis to discuss the applicability of PLAN or SNAP. However, security issues

were not addressed in PLAN. The developers of PLAN have only made general

suggestions on using cryptographic techniques for active network security, but

they did not present the actual design or implementation for active network

security. Furthermore, hop-by-hop security aspects were not addressed in

PLAN. A security solution for SNAP, developed by the author, can be found in

section 2.8 (p.52).

2.4 Secure Active Network Environment (SANE)

Secure Active Network Environment (SANE) [43] provides a set of workarounds

for avoiding or minimising the overhead raised by SA negotiations in active

networks, and provisioning was made for key exchange [44]. However, the key

exchange approach did not address hop-by-hop SA negotiations, and it is not

clear whether the approach has any performance advantages, given that only a

set of cryptographic benchmarks were provided

Source node Secured
tunnels

An active
network

ntermediate
nodes

Destination
node

' Active nodes
that active

packets shall
execute

Figure 11 - SANE proposal: individual tunnels

In one workaround, SANE requires the keys to be individually negotiated

between the principal and each node (Figure 11). Once SAs have been

established between the source node and all intermediate nodes, active

packets could be sent directly from the source node to each of the intermediate

nodes respectively. This is not scalable as this is a centralised approach: the

source node is involved in sending active packets to all other nodes directly.

This arrangement also does not support the dynamic nature of active packets.

In order to pass execution result to another node, the execution results on an

intermediate node would have to be fed back to the source node through a

feedback system, before the source node could send the modified active packet

to the packet’s next hop. A feedback system for processing every packet is not

scalable; this is because a feedback arrangement creates undesirable

performance overhead. In other workarounds, SANE requires either that the

principal knows the execution path in advance (which contrasts with the

dynamic routing capability of active packets), or that peer-to-peer trust already

exists. Moreover, the SANE protocol did not address DoS attacks.

2.5 Secure Active Node Transfer System (SANTS)

The developers of Secure Active Node Transfer System (SANTS) [23][28] have

proposed a solution by using a combination of asymmetric and symmetric

techniques for hop-by-hop authentication for active packets. Digital signatures

as well as Credential References (section 8.4 on p. 164) are used to protect the

end-to-end and hop-by-hop authenticity of active packets in SANTS

respectively. Credential references bind an object of identity to a claimant’s

property such as IP address. In SANTS, both active node integrity and link

integrity are assumed by enforcing Hashed Message Authentication Code

(HMAC) integrity protection between neighbouring nodes. Note that HMAC [45]

is a secure hash function that is used for integrity protection (section 8.7 on

p. 175). A hash function takes a variable size message, and calculates a fixed

size message digest. The message digest is sent along with the message to the

recipient. Upon receiving the message (and the message digest), the recipient

calculates a new message digest of the received message, and compares the

two message digests. If the message has not been tampered with during

transmission, the message digests should match. This is integrity protection. It

is computationally impossible to generate the same message digest from two

different messages for a secure hash function.

In SANTS, ANTS packets are encapsulated into ANEP. To ease reading, ANTS

packets that are encapsulated in ANEP are known as ANEP-SANTS packets in

this thesis. ANEP-SANTS packets are authenticated in a per-packet and

per-hop basis. At the point of packet injection, each ANTS packet is physically

split into two parts: static and dynamic part. Static parts are parts in the packet

that shall not be modified during packet transmission, thus static parts are

digitally signed by the source. The source’s digital signature on static code

provides data origin authentication. The authenticity and integrity of the

dynamic parts are protected by per-hop protection i.e. HMAC-SHA1 (section

8.7.3 on p. 177).

The original ANEP format is modified in SANTS: the original ANEP Payload

field is separated into a static and a variable area for keeping the static

Message Digest 5 (MD5) hash identifier of the active codes and dynamic (i.e.

network resource bound) data respectively. A new field is introduced to keep a

list of credentials (i.e. X.509 identifiers) to support multiple principal attributes

and identifiers to the packet as the packet traverses the network. An Option

field is also introduced for keeping digital signatures, which are associated with

the credential references. Figure 12 shows the resultant ANEP-SANTS packet

header format. An ANEP-SANTS packet therefore - as it traverses the network

- carries not just the source’s signature, but also a series of identifiers of the

modifying nodes that the packet’s contents has been modified. ANEP-SANTS

packets are authenticated upon successful checks on the embedded source’s

signature and credential references in the packets at each of the (execution)

nodes along the packet’s transmission path.

SANTS’s ANEP header

Figure 12 - The modified ANEP packet format defined in SANTS

The SANTS approach suffers from several drawbacks:

■ Inefficiency

The idea of packet splitting is suggested in SANTS so that different

authentication techniques can be applied to static and dynamic parts of the

packet respectively. However, the developers of SANTS have not discussed

how they could efficiently separate the contents of an active packet into static

and dynamic parts. In the SANTS approach, it was said that “The static area of

our packets (ANEP-SANTS Static Payload) includes the static portions of the

EE (ANTS) header... and the static portions of the data payload. The variable

area of our packet (ANEP-SANTS Variable Payload) includes the variable fields

of the EE (ANTS) header and the variable portions of the data payload'. SANTS

requires each ANTS packet to be physically split at the sender, and re-united at

the receiver. The splitting process would involve analysing the contents of an

ANTS packet, and deciding on which part(s) is(are) static and which parts is(are)

dynamic. Then, each part must be placed accordingly into the ANEP-SANTS

packets. Indicators on which parts of the ANEP-SANTS packet refer to static

code and dynamic code of the original ANTS packet must be added to the

Origination Signatures

Varying Payload

Original ANEP Options

Credential Field

Static Payload

Hop Integrity

(list of credentials)

(EE header and data)

(each signature covers two previous fields)

(EE header and data)

(src identifier, destination identifier, integrity
checksum)

(covers everything)

header of the ANEP-SANTS packet. This information is crucial because the

receiver needs to know how to un-marshal (or re-create) the original ANTS

packet upon receiving the ANEP-SANTS packet. The performance overhead

for keeping track of which-bits-belong-to-where of an ANEP-SANTS packet

during the packet splitting and re-uniting processes is not discussed in SANTS.

Note that active routers are built on top of conventional routers (no special

hardware added), thus active technologies do not increase the physical

capability of a conventional router (i.e. processing speed), but only the

functionalities of conventional routers are enhanced through active

technologies. Note that conventional routers are designed to pass packets

forward, not to process packets. Thus adding additional functionalities to

conventional routers is already adding extra load to the nodes. It would be

undesirable to introduce any unnecessary processes in order to process active

packets. An active network hop-by-hop security solution, i.e. the FAIN

ANEP-SNAP Packet Engine, proposed by the author of this thesis suggests

that no packet splitting is actually required (section 2.8 on p.52).

■ Packet format modification

SANTS requires modifications to the original ANEP packet format (splitting the

ANEP payload into two parts). Although the ANEP packet format has not been

used in practise due to the limited applicability of active technologies on real

networks (i.e. publicly accessible networks other than testbeds), unnecessary

modifications to existing standards should be limited for inter-operability. As it

will be discussed in section 2.8 (p.52), packet splitting is not needed anyway.

Thus, this modification to ANEP packet format is unnecessary.

■ Lack of confidentially protection

46

Another drawback of the SANTS approach is that, with message digest (i.e.

HMAC), only partial authentication and integrity protection are provided, but no

confidentiality protection to the overall packet’s contents is provided. As shown

in Figure 12 (p.45), both the static code and dynamic data of an active packet

are transmitted in the form of clear text (no field in the packet is encrypted). The

developers of SANTS did not identify the need for confidentiality protection for

active packets in their paper; and the SANTS approach has made no

provisioning for confidentiality protection. Currently, active networking has not

been deployed on a practical network such as the Internet. Thus, the issues

arising from the actual practical usage of active technologies are largely

unknown. Therefore, one may argue whether the confidentiality of active

packets should be protected. However, experiments have shown that the

flexibility of active technologies allows active packets to carry control code for

specific service deployment [17][46][47][48], or for node states information

query [16]. The control code may contain specific node operational status

information, for example: “if software component w is currently running on this

node, execute this code only when the flow on interface_x exceeds y bytes over

z seconds; else if...”. Specific information on node operational status (in this

example the operational status of specific software components, interface

names, and packet flow conditions) are potentially sensitive, therefore strong

protection to active packets, i.e. confidentiality protection, is therefore desirable.

■ Lack of per-hop key distribution mechanism

The SANTS developers suggested using HMAC-SHA for per-hop protection,

but they have not discussed how symmetric keys can be distributed efficiently in

a hop-by-hop manner. Later on in another document [27], they suggested using

Sign Key Transport (SKT) as a way for key distribution for per-hop protection.

However, SKT has severe drawbacks as a key distribution technique (section

2.6 on p.48).

2.6 Signed Key Transport (SKT)

SKT was proposed by the SANTS developers to support SANTS operations.

SKT is a technique to distribute symmetric keys between hops. A summary of

SKT is given below.

Recent research [27] suggests that instead of using the full-scale Multiple

IPSec approach, SKT could be used for distributing symmetric key in active

networks. The idea is that the source generates a symmetric key (i.e. a key to

be used for hop-by-hop packet protection), and signs this key with its private

key. The signed symmetric key will be sent together with the active packet

along the transmission path. Each of the intermediate active nodes will obtain a

copy of this symmetric key after a successful check on the source’s signature.

The signed symmetric key is only distributed once, and kept locally on each

node. The symmetric key is used to protect the dynamic data of active packets

that traverse the (active) network.

The problem is that there is no confidentiality protection for the symmetric key,

and hence the confidentiality and integrity of the dynamic data of subsequent

active packets are not protected. Any intermediate node, which has intercepted

the packet and has access to the source’s public key certificate can obtain the

symmetric key; and hence any subsequent data encrypted by that symmetric

key can be decrypted by any of these nodes. In fact, the developers of SKT

admit that a fundamental requirement of their solution is that “ ...the packet

distributing the symmetric key routes itself to only trusted nodes”. This

48

assumption cannot be justified in an insecure network such as the Internet. The

solution has no provisioning for Man-in-the-Middle (section 8.5.4 on p. 167) or

replay attacks (section 8.13.2 on p. 183). Although it is arguable whether active

packets protected by the symmetric key require confidentiality protection, this

approach would not fit in situations where strong security is needed since active

packets may be used to carry control code.

Furthermore, SKT requires all nodes to share the same key. However, when

more than one-pair of hops share the same key, authentication would fail. This

is because a mis-behaving member (which owns the shared key) can use the

shared key for encryption, but claims that the encryption was carried out by

others. There is no way to tell who actually performed the encryption. This is

similar to the situation in which there is a lock, but more than one people have a

copy of the key. Thus, when the lock is un-locked, there is no way to tell who

actually unlocked the lock. So, unless the symmetric key is replaced with a new

symmetric key at each hop, per-hop authenticity and anti-replay are not

protected. However, these issues were not addressed in SKT. Another

drawback of the proposed SKT is its flexibility: there is no SA negotiation. SA

negotiation is the process through which two or more nodes can negotiate the

cryptographic parameters to be used. For instance, the source node may

support a particular cryptographic algorithm, whereas the recipient node does

not. In this case, the source node cannot use that cryptographic algorithm

(because the recipient would not be able to process packets subjected to an

unknown cryptographic process). SA negotiation is therefore essential in order

to ensure that both parties are capable of processing cryptographically

processed packets. Without support for SA negotiation, the source simply

49

creates a symmetric key and distributes the key along with the packet. The

source would expect intermediate hops to accept what was created/chosen by

the source (i.e. keying materials, the cryptographic algorithm used to generate

the key). As explained in an earlier section, this would not work if the recipient

did not support the chosen cryptographic algorithm. With no SA negotiating

power, SKT would only be suitable for a small-scale active network, in which all

active nodes involved are pre-ensured that they support a pre-chosen set of

cryptographic algorithms/materials.

2.7 Centralised Keying Server (KSV)

Another solution for active packet authentication and integrity protection was

proposed by Krishnaswamy in [49]. It was proposed that a centralised Keying

Server (KSV) should be used for dynamic SA setup across a set of active nodes

(Figure 13). A Key Management Module (KMM) is installed on each of the

participating active nodes. The KMM is implemented as an extension of IKE.

The KMM handles all interactions between the active node itself and the KSV.

Each participating active node must first register itself with one KSV.

Registration is done when the active node boots up. Keys are then established

per active node. Key establishment between active nodes is done through IKE,

and IPSec SAs are established between active nodes consequently. Thus, the

KSV maintains a list of keys that it has established with the participating active

nodes. The established keys are then used for IPSec protection between the

nodes. Note that this arrangement therefore protects the hop-by-hop

authenticity and integrity, as well as addressing SA establishment issues.

Active node

Figure 13 - The KSV model

The proposed KSV solution limits itself to registration with one KSV i.e. a

centralised approach. This means the proposed solution is limited to a

small-scale active network testbed only. The developers of KSV suggested that

an active node might register itself with more than one KSV to reduce the effect

of centralisation. However, the developers of KSV had not identified how the

potential conflict caused by duplicated registration (with more than one KSV) is

resolved.

The use of a centralised Keying Server causes scalability problems. If the

keying material for one of the participating nodes is updated, the KSV must

inform all participating nodes regarding this update, the participating nodes

must validate and acknowledge the update message, and the KSV must

validate the integrity and authenticity of the acknowledgement message... and

so on. This could introduce unnecessary performance overhead. A distributed

solution would be to enable key establishment and maintenance to the

participating active nodes, instead of dedicating an entity (i.e. the KSV) to carry

out these jobs.

KSV uses IKE for SA negotiations. IKE was designed to establish SA between

two static end points. The performance overhead of using IKE for per-hop SA

negotiation was not addressed in KSV.

2.8 FAIN: ANEP-SNAP Packet Engine

FAIN EE

SNAP Analyse

Comm.
Manager

Digester

Other NodeOS
components (e.g. DeMUX)

Figure 14 - The components of ASPE

The FAIN solution, known as the ANEP-SNAP Packet Engine (ASPE), was

proposed and developed by the author of this thesis in the IST-FAIN project [13].

The FAIN solution suggests that no physical packet splitting or reuniting is

52

required. Essentially, the ASPE is part of the Security Component of the FAIN

NodeOS. It encrypts and decrypts SNAP packets used in the active networks.

The packet (de)multiplexing component on the FAIN NodeOS delivers

encrypted ANEP-SNAP packets (that are captured on the wire) to the ASPE.

The ASPE decrypts the packets, and sends the packets to their desired EEs.

The ASPE is also responsible for encrypting (SNAP) active packets before they

are sent to the networks through the NodeOS.

Version | Flags Type ID
Header length Packet length
Option's flag Option length

SNAP packet (-bytes)
Payload length

SNAP static content (-bytes) |

Figure 15 - FAIN ANEP-SNAP packet format

Figure 15 shows the FAIN ANEP-SNAP packet format. The entire SNAP packet

is placed in the payload field of the ANEP packet format. The static code of the

SNAP packet is appended to the packet. Static parts of the SNAP packet are

digitally signed at the source node. This digital signature is static whilst the

packet is traversing the network. The hop-by-hop authenticity and integrity of

the entire packet (which includes both static and dynamic parts) are protected

by using IPSec Authentication Header (AH). At each hop, after security checks,

the entire active packet is simply extracted. There is no need to physically split

and re-unite active packets. Although under this arrangement, static parts of the

packet will be subjected to both the asymmetric (being signed by the source)

and symmetric cryptographic processes (per-hop protection at each hop); the

advantage is that there is no need to physically split and re-unite active packets

at each hop. Since there is no need to keep the dynamic data separately, this

approach requires only one Payload field (that is used to keep the entire active

packet). Thus, there is no absolute need to modify the ANEP format. To enforce

hop-by-hop protection, each pair of hops shares a different IPSec SA. This is

known as multiple IPSec. This solution, however, addresses neither the

confidentiality, nor the hop-by-hop key distribution issues. To enforce

confidentiality protection, IPSec Encapsulated Security Payload (ESP) is one of

the potential solutions (section 2.9 on p.55).

Question 3: Instead of equipping each pair of nodes with different symmetric

keys, i.e. multiple IPSec, is it possible to equip all nodes in the network (or an

administrative domain) using the same symmetric key i.e. use multicast IPSec?

In multiple IPSec (AH), the symmetric key is used to protect the authenticity and

integrity of an active packet. Upon receiving the protected packet, the receiver

looks up information (from the corresponding IPSec SA) to determine the

corresponding symmetric key in order to process the packet. The receiver

expects the source host to be the only other host that knows the secret key. As

a result, the packet’s source authenticity is verified. The important point to note

is that only two nodes own the same symmetric key, so non-repudiation

protection on the packet is enforced. Enforcing non-repudiation protection on

the static code of active packets is important in active networks, this is because

control code is potentially damaging. With non-repudiation, the actual creator of

the static code cannot deny of any wrong doings should the control code cause

any damage to the networks.

In multicast IPSec, however, all hosts share the same key. Source

authentication and non-repudiation protection based on shared key is not

possible when more than one pair of hosts share the same key. All one can

determine from multicast IPSec is that the data is encrypted by a valid key by a

member of the IPSec multicast group. However, the actual identify of the

individual node who encrypted the data is not revealed.

As discussed in an earlier section, currently, the issues arising from the actual

practical usage of active technologies are largely unknown; so potentially,

active packets can be multicast to desired node groups. It should be noted that

(as explained in the last paragraph) multicast security is very different from

unicast security. This thesis does not discuss the use of multicast IPSec or

multicast security approaches for active networks. For more background on

secure IP multicast, readers are referred to [50]. For detail of multicast IPSec

and challenges of key exchange for multicast IPSec, readers should refer to

[51][52][53],

2.9 IPSec ESP

To solve the described per-hop authentication and confidentiality protection

problem, and the lack of SA negotiation power in SKT and its variations, IPSec

ESP [54] could be used between hosts. Unlike SKT, IPSec uses IKE, which

supports SA negotiation; thus adds creditability when deployed over a

heterogeneous network such as the Internet. More specifically, IPSec ESP

provides authentication, integrity and confidentiality protection. If IPSec ESP is

applied, the entire active packet is placed in the Protected Payload. In this case,

the confidentiality of the entire active packet is protected. IPSec ESP, however,

still does not address hop-by-hop SA establishment.

2.10 Internet Key Exchange v2 (IKEv2)

2.10.1 An Overview

IPSec uses IKE for SA establishment. This section discusses the use of IKEv2

55

for hop-by-hop security.

IKE is an automated key management protocol used by IPSec. The key feature

of IKE is that it allows two communicating peers to negotiate SA parameters

before establishing IKE and IPSec SAs. It is the provisioning of SA negotiation

of IKE that adds credibility to IKE in terms of its flexibility and scalability. IKE

uses Diffie-Hellman (D-H) Key Exchange (section 8.6 on p. 168) for secure

private symmetric key establishment between two peers. D-H key exchange is

a protocol that enables two peers to establish a shared secret (key) instantly

over an insecure link without having to transmit or disclose any secret

information over the insecure link, or using any pre-configured or pre-distributed

parameters. As such, IKE is not only flexible and scalable, it is also secure.

The latest version of IKE is IKEv2. The benefit of using IKEv2 (compared to

SKT and its variants) is that IKEv2 retains SA negotiation power and the power

to establish shared secrets securely between peers (through D-H key

exchange). It should be noted that, according to the IKEv2 RFC, IKEv2 must

first establish an IKEv2 SA between two peers, then the established IKEv2 SA

is used to establish another (say, IPSec) SA between the same pair of peers,

prior to the secure transmission of a (active) packet using the subsequently

established SA. The purpose of this (rather redundant) arrangement was so

that IKEv2 could be used as a generic key exchange protocol, that could be

used as the underlying key exchange protocol on top of which other

applications (say, IPSec) might establish their own SAs. However, because of

the hop-by-hop nature in active networks, it is essential to investigate how to

reduce the performance overhead incurred by per-hop IKEv2 and IPSec SA

negotiation processes, and to remove any redundancy. Furthermore, as it will

56

be discussed later, IKEv2 is subjected to DoS attack (section 4.6 on p. 110).

Essentially, IKEv2 can be deployed with or without Perfect Forward Secrecy

(PFS). PFS is a property in key exchange protocol that enables strong security.

However, enforcing PFS in key exchange incurs a high overhead. Discussion of

PFS and its performance is out of scope of this thesis, readers are referred to

the Appendix for more detail (section 8.12 on p. 180). The basic IKEv2 does not

support PFS, whereas a variant of IKEv2 supports PFS.

2.10.2 Key Exchange Process in IKEv2

An IKEv2 key exchange is conducted between two peers: an Initiator (I) and a

Responder (R). An Initiator is a node that starts the key exchange, whereas a

Responder is a node that is responding to the key exchange request initiated by

the Initiator. The basic IKEv2 protocol (no PFS) involves an exchange of four

messages to complete a key exchange (Figure 16). Note that, in the following

sections, items in square brackets are optional, whereas the authenticity,

integrity, and confidentiality of the items in curly brackets are protected by a

shared symmetric key set (see shortly later).

57

□
Initiator ©

“IKE_SAJNIT”
HDR, SAi1, D-Hi,
NONCEi

“IKE_SAJNIT”
HDR, SAr1, D-Hr,
NONCEr,
[CERTi-REQ]

®
“IKE_AUTH”
HDR, {IDi, [CERTr], [CERTr-REQ], [IDr],
AUTHi, SAi2, TSi, TSr}

“IKE_AUTH”
HDR, {IDr, [CERTr],
AUTHr, SAr2, TSi,
TSr)

□
Responder

©

Figure 16 - IKEv2 (with no PFS)

In the first message, the Initiator sends to the Responder a request message

that contains a header (HDR), its SA (SAi1) which contains a list of preferred or

supported security parameters such as encryption algorithms and keysize. D-Hi

is the D-H public values generated by the Initiator for this key exchange, and

NONCEi is a 128-bit randomly generated nonce. These values (together with

the D-H public values and the nonce generated by the Responder) are used

later on in the IKEv2 protocol to generate a shared secret between the Initiator

and the Responder. Readers are referred to the Appendix for detailed

information on the D-H algorithm (section 8.6 on p. 168). The Responder

58

intercepts the first message, and responds with the second message, which

contains the Responders SA (SAr1), its D-H public values (D-Hr), a randomly

generated nonce (NONCEr), and optionally a request for the Initiator’s PKI

certificate ([CERT-REQ]). SAr1 contains the Responder’s choice of the

Initiator’s SA. SAi1 and SAr1 are stored locally on the Initiator and the

Responder respectively for future reference. A SA is identified on the node by a

Security Parameter Index (SPI).

Once the Initiator and the Responder have exchanged the first and the second

message, both peers are capable of generating a shared secret (gxy) using the

D-H algorithm. Subsequently, a shared secret key seed (SKEYSEED) can be

generated (Equation 1), from which a set of shared keys (SK_a, SK_e, SK_d

and SK_p) can be derived (Equation 2). A shared secret key seed, i.e.

SKEYSEED, is established as follow by using concatenation (section 8.2,

p. 164):

SKEYSEED = PRF(NONCEi | NONCEr, gxy)

Where

| = the notation of concatenation

Equation 1
When generating the SKEYSEED, nonces are applied to the D-H shared secret

with the use of Pseudo-Random Function (PRF) (section 8.13 on p. 182). The

purpose is to add randomness to the resultant shared secret (by applying the

randomly generated, never re-used nonces), and to ensure that the resultant

shared secret key seed (SKEYSEED) has a standard size. The subsequent

shared key set is generated as follow:

SK_d | SK_aj | SK_ar | SK_ej | SK_er | SK_Pi | SK_pr = PRF+(SKEYSEED,
NONCEi | NONCEr | SPli | SPIr)

Equation 2
SPli and SPIr are the SPIs of the SAs that are stored locally on the Initiator and

the Responder respectively. Again, the idea of applying the PRF function is to

ensure that randomness and standard size keys (of the shared key set).

Equation 2 shows that the SK_e, SK_a, SK_d and SK_p keys are generated

from the output of PRF+ (section 8.13 (p. 182). According to Equation 18 (p. 183),

SK_d is determined as follow:

SK_d = PRF(SKEYSEED, NONCEi | NONCEr | SPli | SPIr | 0x01)

Equation 3
SK_ai = PRF(SKEYSEED, SK_d | NONCEi | NONCEr | SPIj | SPIr | 0x02)

Equation 4
SK_ar = PRF(SKEYSEED, SK_3i | NONCEj | NONCEr | SPli | SPIr | 0x03)

Equation 5
SK_ej = PRF(SKEYSEED, SK_ar | NONCEi | NONCEr | SPIj | SPIr | 0x04)

Equation 6
SK_er = PRF(SKEYSEED, SK_ej | NONCE) | NONCEr | SPIj | SPIr | 0x05)

Equation 7
SK_Pi = PRF(SKEYSEED, SK_er | NONCEj | NONCEr | SPli | SPIr | 0x06)

Equation 8
SK_pr = PRF(SKEYSEED, SK_Pi | NONCEj | NONCEr | SPIj | SPIr | 0x07)

Equation 9
Note that all subsequent messages exchanged between the Initiator and the

Responder will be protected by the following keys:

■ SK_e (SK_ei, SK_er)

This key is for encryption. There is one SK_e key for each direction, but each

peer owns both SK_ej and SK_erkeys.

■ SK_a (SK_ai, SK_ar)

This key is for authentication and integrity protection. There is one SK_a key for

each direction, but each peer owns both SK_aj and SK_arkeys.

■ SK_d

This key is used to derive subsequent keys for CHILD_SAs. There is only one

SK_d key.

■ S K _p (SK_Pi, S K _ p r)

This key is used to generate the AUTH Payload. There is one SK_p key for

each direction.

The third message in the IKEv2 protocol is sent by the Initiator to the

Responder. The message contains an encrypted and integrity payload which

contains identity information of the Responder (IDi), the Initiator’s PKI certificate

(optional), a request for the Responder’s PKI certificate (optional), a specified

identity of the Responder that the Initiator wishes to communicate with (optional,

in case the Responder hosts multiple identities and the Initiator knows in

advance which of the Responder’s identities that it wants to establish a SA with),

some authentication data (AUTHi), a SA which contains additional security

parameters that the Initiator wishes to negotiate with the Responder (SAi2, that

is needed to establish an IPSec SA), and some Traffic Selectors (TSi and TSr,

which specifies the set of port numbers that applications are allowed to use for

the established SAs). The AUTHi is a digital signature created by using either

the Initiator’s private PKI key, or a pre-shared secret shared between the

Initiator and the Responder7, in order to provide authentication and integrity

protection of the first message in the key exchange. AUTHi covers the

following:

HDR, SAi1, D-Hi, NONCEi, NONCEr, PRF(SK_pi, IDi)

Figure 17 - Items covered in AUTHi

Note that the Initiator countersigns the Responder’s nonce (NONCEr) in AUTHi.

7 The use of pre-shared secret is not considered in this thesis: this is because a key exchange
protocol is to establish a shared secret. The assumption of having a pre-shared secret to
establish a secret is a chicken-and-egg problem.

61

The idea of countersigning nonces by peers is to prevent impersonation attacks

(section 4.2 on p. 100). IDi is PRF with SK_pi in order to added security, as well

as to ensure that the ID of the Initiator is of a standard size. The SK_pi key is

freshly created for this session, so that each AUTHi from the same Initiator (and

of the same ID) actually covers the same ID but of different contents. Note that

a checksum that covers the entire message 3 is created by using the SK_a key.

The checksum is appended to the message for authenticity and integrity

protection.

Once the Responder has received message 3, the Responder verifies the

protected payload in message 3 by using its own set of shared keys. SK_a is

used to verify the integrity of the message, SK_e is used to decrypt the

encrypted payload. If these verifications are successful, message 3 is verified.

The authenticity and integrity of message 1 is then verified by verifying AUTHi.

If this verification is successful, message 1 (from the Initiator) is verified. In this

case, the Responder sends to the Initiator the fourth (and the last) message.

This message contains again a protected payload which contains the

Responder’s ID (IDr), the Responder’s PKI certificate (CERTr) (optional), the

Responder’s choices on SAi2, TSi and TSr. Note that a digital signature (AUTHr)

that is created by the Responder is also included. AUTHr is used to provide

authenticity and integrity protection to message 2. AUTHr covers the following

items:

HDR, SAr1, D-Hr, NONCEr, NONCEi, PRF(SK_pr, IDr)

Figure 18 - Items signed by AUTHr

Again, the Responder countersigns the Initiator’s nonce to prevent

impersonation attacks. All other items are signed for the same purpose as

62

above except that this time, the Responder is protecting the contents of

message 2, instead of the contents of message 1.

2.10.3 Enforcing PFS Support in IKEv2

Note that the basic IKEv2 does not provide PFS support. In order to provide

PFS support, another set of message exchanges is required to exchange

another set of D-H public values. This extra set of message exchanges consists

of two messages being exchanged. In other words, in order to enforce PFS, the

total number of message exchanges is now six instead of four. The following

are the two extra messages that are required to enforce PFS:

Initiator 0-

“CREATE CHILD SA” ts a ii

HDR, {SA, NONCEi,
Hi], [TSi, TSr]}

D- Responder

‘CREATE_CHILD_SA”
HDR, {SA, NONCEr,
[D-Hr], [TSi, TSr]} ©

Figure 19 - Extra exchanges for establishing CREATE_CHILD_SA

All the terms are self-explanatory; but it should be noted that in order to enable

PFS, another set of D-H public values must be exchanged. In brief, two cycles

of shared key set establishment are required. As explained in section 8.12 on

p. 180, this is an expensive process in terms of performance.

This thesis proposes that, using some useful concepts of IKEv2, but omitting

the drawbacks of IKEv2, with new message contents and sequence, a much

simplified SA negotiation sequence with much less performance overhead can

63

be used in order to transmit active packets during SA negotiation instead of

after. The established SA can be retained to protect subsequent packets being

transmitted across the same link.

Question 4: Is it possible to reuse the established hop-by-hop SAs for

protecting both active and passive packets, so that the undesirable

performance can be absorbed?

Security for passive packets is applied end-to-end. A passive packet is

encrypted at source, and only decrypted at the recipient. Intermediate nodes

simply forward passive packets. Thus, for passive packets, SA is established

end-to-end.

Since SAs for active packets are established in a per-hop fashion, the resultant

hop-by-hop keys that are kept locally on intermediate nodes are of no use to the

user data which are usually protected end-to-end (unless the destination of

passive packets is the next hop). Thus, generally, the end-to-end SAs

established for passive packets cannot be re-used for active packets, unless

the active packets are transmitted between two end points only.

This further implies that the “re-usability” of the locally kept symmetric keys on

intermediate nodes is limited to protecting subsequent (active) packets

travelling across the same pair of hosts.

2.10.4 Use of COOKIEs for Addressing DoS Attacks

Another variant of IKEv2 uses COOKIE (section 8.3 on p. 164). As indicated in

the IKEv2 RFC: "... an endpoint could use cookies to implement limited DoS

protection“ [55]. One common type of DoS attacks identified in the IKEv2 RFC

would be that a Responder was sent large number of initialisation messages

from a DoS attacker; the Responder would then be driven to handle many

64

initialisation messages, which eventually caused CPU exhaustion on the

Responder. Furthermore, the IKEv2 developers claimed that this type of DoS

attack could be originated from legitimate IP addresses, but other than the IP

address of the node that the attack was actually originated [56]. In this case, the

Responder’s legitimate reply messages would be sent to other victims (i.e. the

nodes that actually own those legitimate IP addresses). Thus, this would create

another wave of DoS attacks in the network. The IKEv2 developers claimed that

by using COOKIEs in the key exchange protocol, it would be possible to ensure

that the Initiator is indeed sending off initialisation request message from the IP

address that it claims it owns. However, as it will be described in section 4.6

(p. 110) and section 5.5 (p. 150), the use of COOKIE in IKEv2 does not provide a

complete protection against DoS attacks.

The basic idea is that when an IKEv2 Responder receives an initial request

from the Initiator, the Responder does not respond through the normal

procedure (as specified in Figure 16), but responds with an empty message that

contains a COOKIE. A COOKIE is a randomly generated number that is created

by this equation (Equation 10):

COOKIE = <VersionlDofSecret> | Hash(NONCEi | IPi | SPli | <secret>)

Equation 10

The idea is that the Initiator, upon receiving the COOKIE from the Responder,

must re-send its original initialisation message with the COOKIE. The

developers of IKEv2 claimed that under this arrangement, a DoS attacker that

claimed a legitimate IP address (but the claimed IP address was actually owned

by another node) would be detected, because the DoS attacker would not be

able to get the COOKIE (note that the COOKIE was sent by the Responder to

the victim directly), and would not be able to re-send the initialisation request

message with the valid COOKIE. The protocol exchange is almost exactly the

same as the basic IKEv2, but with six messages being exchanged. Figure 20

shows the IKEv2 key exchange with COOKIE.

I I
Initiator

“IKE_SAJNIT”
HDR, SAi1, D-Hi,
NONCEi

♦ Responder

“IKE_SAJNIT”
HDR, COOKIE, SAi1, D-Hi, NONCEi

1KE_SAJNIT”
HDR, SAr1, D-Hr,
NONCEr, [CERTi-
REQ]

-0

“IKE_AUTH”
(J \ HDR, {IDi, [CERTr], [CERTr-REQ], [IDr],

AUTHi, SAi2, TSi, TSr}

“IKE_AUTH”
HDR, (IDr, [CERTr],
AUTHr, SAr2, TSi,
TSr)

0

Figure 20 - IKEv2 with COOKIE

2.10.5 Sequence Numbers as Message ID

In IKEv2, each pair of request and reply messages uses the same message ID.

A re-transmitted message would use the same message ID that was used in the

previous, original message. The message ID is a 32-bit number. The first

request message from a peer (i.e. the Initiator) should always use zero as its

message ID to start with, and increments sequentially for subsequent

messages. For instance, the first IKEv2 message exchange pair would use zero

as their message ID, then the second IKEv2 message exchange pair would use

“1” as their message ID, and so on.

A peer should maintain two “current” message IDs: one message ID to be used

for the next request to be initiated by the peer, and another message ID that the

peer expects to see in a request originated from other peers.

This field is cryptographically protected to prevent replay attacks. If after too

many message exchanges, the message ID becomes too large to fit in the

32-bit field, the IKEv2 SA must be re-newed. Message IDs are re-set when an

IKEv2 SA is re-keyed.

2.11 Just Fast Keying (JFK)

Just-Fast Keying (JFK) [57] has two variants that were designed for different

purposes. Each variant consists of an exchange of four messages to complete

the key exchange. The developers of JFK claimed JFK to be a DoS-resistant

protocol. However, as it will be discussed in section 4.6 (p. 110) and section 5.5

(p. 150), JFK did not achieve its goal. Furthermore, JFK did not provide identity

protection. JFKi was designed to protect the Initiator’s identity; whereas JFKr

was designed to protect the Responder’s identity. It should be noted that neither

of the variants protect identity of both peers. Figure 21 shows the JFKi protocol:

Initiator (?) NONCEi, D-Hi, IDr’ ♦ Responder

NONCEr, NONCEi,
D-Hr, IDr, AUTHrl, (2)
HASHr

© NONCEi, NONCEr, D-Hi, D-Hr, HASHr,
{IDi, SAi, AUTHi}

{AUTHr2, SAr}

Figure 21 - The JFKi protocol

The first message contains the Initiator’s nonce (NONCEi), its D-H public values

(D-Hi), and some indictors from the Initiator to the Responder on what

authentication data the Responder should be using during the protocol

exchange (IDr’). The second message contains the Responder’s nonce

(NONCEr), the Initiator’s nonce (NONCEi), the Responder’s D-H public values

(D-Hr), the Responder’s ID (IDr), a signature (AUTHrl) created by using the

Responder’s PKI private key, and a hash value (HASHr) that is computed using

the Responder’s pre-established symmetric key.

AUTHrl: D-Hr

HASHr: D-Hr, NONCEr, NONCEi, IPi

Figure 22 - Items covered by AUTHrl and HASHr

Figure 22 shows the list of items that are covered by AUTHrl and HASHr

respectively. Note that IPi is the IP address of the Initiator. HASHr is computed

using the Responder’s pre-established symmetric key. Note further that, the

68

Responder’s identity (IDr) is not protected in message 2 (i.e. the authenticity,

integrity and confidentiality of the Responder’s identity) is not protected.

Message 3 contains the Initiator’s nonce (NONCEi), the Responder’s nonce

(NONCEr), the D-H public values of the Initiator and the Responder respectively,

the hash that was created by the Responder, and a protected payload with

contains the Initiator’s ID (IDi), the Initiator’s SA (SAi), and the Initiator’s digital

signature that is created by using the Initiator’s private key over a list of items

(Figure 23a). Message 4 is protected, and contains the Responder’s signature

(AUTHr2) that covers another list of items (Figure 23b), and its replies to the

Initiator’s SA (SAr).

AUTHi: NONCEi, NONCEr, D-Hi, D-Hr, IDr, SAi (a)

AUTHr2 : NONCEi, NONCEr, D-Hr, D-Hi, IDi, SAi, SAr (b)

Figure 23 - Items covered by AUTHi and AUTHr2

JFKr is almost identical to JFKi except that in JFKr, the Responder’s identity is

protected but not the Initiator. The JFK developers claimed the variants were

designed to suit different environments: for example when the identity of the

Initiator should be protected, then JFKi should be used (e.g. when initiating a

peer-to-peer session with someone who the Initiator does not know); whereas

JFKr should be used when the identity of the Responder should be protected (a

secure server that acts as a Responder to remote calls generated by unknown

Initiators on the network). Figure 24 shows the JFKr protocol, which is

self-explanatory.

ResponderInitiator NONCEi, D-Hi

{IDr, SAr, AUTHr}

NONCEr, NONCEi,
D-Hr, HASHr

NONCEi, NONCEr, D-Hi, D-Hr, HASHr,
(IDi, IDr’, SAi, AUTHi}

HASHr: D-Hr, NONCEr, NONCEi, IPi

AUTHi: NONCEi, NONCEr, D-Hi, D-Hr

AUTHr: D-Hr, NONCEr, NONCEi, D-Hi

Figure 24 - The JFKr protocol

It should be noted that it is not within the interest of this thesis to justify the level

of security of JFK. However, since the developers of JFK claimed JFK is

DoS-resistant, JFK is studied in this thesis to enable the author to compare how

the proposed protocol in this thesis and an existing solution such as JFK would

tackle DoS attacks. In section 4.6 (p. 110) and section 5.5 (p. 150), it is

discussed how JFK (and IKEv2, which is a standardised protocol) is less

resistant to DoS attacks when compared to the proposed protocol in this thesis.

2.12 IKEvI in aggressive Mode

IKEv2 is designed to be an optimised version of IKEvI (i.e. less complex and

more efficient). For completeness, IKEvI in aggressive mode is introduced in

this section. The reason to discuss IKEvI in aggressive mode in this thesis is

because, as the readers will observe in a later section (section 5.4 on p. 140),

both IKEvI in aggressive mode and the solution proposed in this thesis uses

three messages to establish one hop-by-hop SA, which often gives the readers

an impression that IKEvI in aggressive mode has a similar level of scalability

with the solution proposed in this thesis. This section therefore presents IKEvI

in aggressive mode, to clarify any potential mis-understandings. Note that it is

out of scope of this thesis to discuss IKEvI in more detail. Readers are referred

to the cited references for more detail.

2.12.1 Two Phases Approach in IKEvI (v2)

Background information on IKEvI can be found in [58][59]. IKEvI (v2) has two

exchange phases: the first exchange phase establishes an IKEvI SA between

two nodes; the second exchange phase establishes an IPSec SA between the

same pair of nodes. The established IKEvI SA from the first phase is used to

establish the IPSec SA in the second phase. The IPSec SA is used to protect

packets [60].

The need for this recursive SA establishment process in IKEvI (v2) and IPSec is

that IKEvI (v2) and IPSec were designed to serve different purposes. IKEvI (v2)

is a key exchange protocol [61], whereas IPSec is a packet protection protocol

[62][63]. An IKEvI(v2) SA is therefore used to protect key exchange processes,

whereas IPSec SA is used to protect packet transmission. An established

IKEvI (v2) SA between a pair of nodes can be used by multiple user

applications to establish different types of IPSec SAs to accommodate different

networking environments [64]. For example, if packets do not need

confidentiality protection, an IPSec AH SA can be used; else, an IPSec ESP SA

is used.

71

This flexibility provisioned in IKEvI (v2) is not needed in active networks. This is

because packets must always be encrypted. Therefore, there is no need to

establish multiple SAs across the same pair of hops to protect packets. As such,

recursive SA establishment is not needed between active nodes. In next

chapter, it will be shown that there is no need to have recursive SA

establishment; in fact, a packet can be transmitted during a hop-by-hop SA

establishment.

IKEvI provides two options for the first exchange phase: IKEvI in main mode

and IKEv2 in aggressive mode. IKEvI in aggressive mode is designed to be

less complex, and more efficient that IKEvI in main mode. Therefore, only

IKEvI in aggressive mode will be discussed. The features of IKEvI in

aggressive mode and IKEvI in main mode are discussed in [65]. Note that

IKEvI provides only one option for the second exchange phase: IKEvI quick

mode.

2.12.2 An Overview on IKEvI in Aggressive Mode

IKEvI in aggressive mode is more efficient than IKEvI in main mode because

IKEvI needs only half of the number of message exchanges. Only three

messages are exchanged in IKEvI in aggressive mode. An Initiator sends the

first message to a Responder that includes SAi, D-Hi, NONCEi, and IDi. The

responder replies with SAr, D-Hr, NONCEr, and IDr. All items in the reply are

digitally signed. Finally, the Initiator sends the third and last message, which

contains a digital signature that covers all items in message 1.

Readers should note that IKEvI in aggressive mode does not protect packets:

once IKEvI in aggressive mode has been used between a pair of nodes to

establish a hop-by-hop SA, the hops must go through another round of SA

establishment i.e. the IKEvI Quick Mode Exchange. The latter exchange uses

the IKEvI SA to establish another SA for IPSec, the IPSec SA is used for

protecting packets. IKEvI Quick Mode Exchange includes an exchange of two

messages, which enables the peers to negotiate and establish another SA (i.e.

IPSec SA). For more detail, readers are referred to [66].

3 Security Protocol for Active Networks

It was discussed in previous sections that there is a need for a hop-by-hop

security model for protecting active packets. To support hop-by-hop security,

there is a need to investigate a hop-by-hop SA establishment protocol. It was

also discussed in an earlier section that existing solutions suffer drawbacks in

terms of efficiency, scalability, and flexibility, and more. In this chapter, a novel,

efficient, scalable, and flexible solution to the problem space, known as Security

Protocol for Active Networks (SPAN), is presented. Firstly, the assumptions

made in the design of SPAN are discussed and justified. Secondly, the SPAN

protocol is presented by beginning with an overview of the SPAN protocol,

followed by the design decisions of the SPAN protocol’s 3-message exchange

handshake. Then, the SPAN messages are discussed individually together with

their design decisions.

The SPAN protocol is designed to protect active packets with static code

(section 1.6.1 on p.28); however, it is also applicable to protect dynamic code.

Thus, a discussion of how the SPAN protocol is used to protect active packets

with dynamic code will be presented later in this section. To ease the readers,

initially, the protocol will be presented by using a simplified deployment

environment (i.e. the protocol is illustrated using two nodes only); later in the

chapter, the deployment of the protocol along a path (i.e. many more nodes) will

be explained.

3.1 Design Assumptions

It is not within the scope of this thesis to investigate access control, or advance

firewall technologies, or intrusion detection techniques, or new algorithms for

cryptography. Secure storage of keying materials and node integrity are

assumed. This assumption is fundamental when designing security protocols,

because no security protocol would work securely if the nodes (where the

security protocol is deployed) were compromised. New execution path is

assumed. It was defined that a new execution path is “ ...a path which no active

packets have previously traversed (hence no pre-established hop-by-hop SAs),

or a path of which previously established hop-by-hop SAs has expired,

therefore there is a need to establish a series of new hop-by-hop SAs along the

path (hence the name new execution path)”. The assumption of new execution

path in this thesis is justifiable, because currently there is no requirement to

have inter-connected security channels pre-established between all nodes

across the entire Internet. The applicability of SPAN in environments in which

inter-connected security channels have already been pre-established will be

discussed later on in section 4.8 (p.118).

This thesis assumes that active nodes have access to public key certificates, i.e.

PKI, is supported. PKI is a widely deployed, standardised technology (e.g.

embedded in all web browsers). Because active networks are meant to

co-operate with the existing Internet, the assumption of PKI support in active

networks is therefore justifiable. For simplicity, in the initial discussion of SPAN,

each administrator/management application and each NodeOS is assumed to

have its own PKI key pair; but provisioning have been made in SPAN to

accommodate situations in which some administrator/management applications

and NodeOSs do not have their own PKI key pair (section 4.7 on p.115).

Administrative issues are not addressed in this thesis (i.e. how CAs verify actual

ownership of valid PKI certificates): the integrity of legitimate PKI public key pair

owners is assumed. Thus, if a person/entity uses a legitimate PKI private key

for signing data, he/she would be traceable (i.e. non-repudiation protection

enforced through PKI). Because node and key storage integrity and the integrity

of PKI public key pair owners are assumed, it is further assumed that any

requests with valid signatures are legitimate requests; else, they are attack

messages. Attackers are assumed capable of intercepting all messages on the

Internet, and are able to create/modify all types of messages that are not

protected. Provisioning has been made in the proposed solution in this thesis

for SA maintenance and re-keying.

3.2 An Overview on the SPAN Protocol

SPAN begins when the principal has created an active packet, and is about to

inject the packet into the network. The SPAN protocol involves an exchange of

three messages only to complete a hop-by-hop SA negotiation, hop-by-hop EE

query, and a secure hop-by-hop active packet transmission (Figure 25 shows

an overview of the handshake). To ease readers, the notations and terms used

to describe the SPAN protocol in the following sections are adopted from the

IKEv2 RFC; items that are quoted in square brackets are optional; whereas

items in curly brackets are protected. All terms are explained.

SPAN INITInitiator ♦ Responder

SNAP AUTH

SPAN-AP

Figure 25 - The SPAN Protocol

Note that the focus of this thesis is on key management rather than designing

new cryptographic algorithms. Thus, SPAN uses D-H as the algorithm to

compute a shared secret; and computes a shared key set from the shared

secret using the logic as described in [30].

3.3 Design Decisions for a 3-Message Handshake

The SPAN protocol has one handshake between a pair of nodes, which

involves an exchange of three messages. An active packet is securely

transmitted across a pair of nodes during a hop-by-hop SA establishment,

instead of after. SPAN is designed with the appropriate defence mechanisms

against replay attack, man-in-the-middle attack, and impersonate attack. SPAN

is also designed to detect DoS attacks more efficiently than existing solutions,

in order to minimise the effect of DoS attacks on victim node(s). Furthermore,

SPAN is designed to improve the level of robustness and flexibility of the

underlying active networking systems.

A 3-message exchange handshake is chosen for SPAN because this is the

minimum number of message exchange for establishing a symmetric key

between two nodes in the insecure Internet (when using the Diffie-Hellman

algorithm), and to transmit an active packet. The initiator must first send a

request to the Responder to indicate its incentive to establish a shared

symmetric key (i.e. the 1st message). For efficiency, this message will include

some data that enables the Responder to start the shared symmetric key

generation process should it accept to do so. The Responder then replies to the

Initiator with its willingness to establish a shared symmetric key (i.e. the 2nd

message). At this stage, both nodes will have the shared symmetric key. The

third message is needed to send the active packet across using the established

77

shared symmetric key. As a rule of thumb, active packets should be sent after a

secured tunnel has been established.

3.4 SPAN Initialisation (Message 1: SPANJNIT)

3.4.1 An Overview

Stage 1 of the SPAN protocol begins when the principal is about to inject an

active packet to the network. The first message (SPANJNIT) is sent from the

Initiator to the Responder. SPANJNIT is shown in Figure 26.

I R:
HDRJNIT, SAi, [EEi], [CERTi], D-Hi, NONCEi, AUTHi

Figure 26 -SPANJNIT

This first message in the exchange enables the Initiator to start a SA

negotiation (SAi) and, optionally, a query on the information of a remote EE

([EEi]). Some initial key exchange values (D-Hi and NONCEi) are forwarded to

the Responder; these key exchange values will be used later on for the shared

secret generation. This message is digitally signed by the Initiator, and as such,

this message contains a digital signature (AUTHi).

3.4.2 Design Decisions for SPANJNIT

The purpose of the first message sent from the Initiator to the Responder is as

follow:

■ To tell the (potential) Responder that it wants to establish a shared key.

■ To pass on necessary information to the (potential) Responder, so that

should the Responder accepts to establish a shared key, it may start the

shared key generation process straight away without further delay.

■ To include sufficient cryptographic materials in the message so that the

Responder can verify the message authenticity and integrity.

The decisions on the design of SPANJNIT are explained below. SPANJNIT

includes the following elements:

■ SAi

This is the SA offered by the Initiator to the Responder. It contains a list of

supported/preferred cryptographic algorithms of the Initiator. Thus, it must be

included in the first message; otherwise, the Responder would not be able to

proceed with the symmetric key generation process.

■ [EEi]

This is the EE information query that the Initiator may optionally send to the

Responder. This field must be included in the first message if the Initiator is

uncertain about the EE on the Responder. This is because with this information,

the Responder may evaluate its own characteristics, in order to decide whether

to accept the Initiator’s request for shared key establishment (and subsequently

active packet execution).

■ [CERTi]

This optional field keeps the public key certificate of the Initiator. This field

should be used when the Initiator wishes to distribute its certificate to a

Responder (which the Initiator is not sure whether it has its certificate). This

could be used, for example, when the Initiator has recently obtained a new

certificate. Multiple certificates may be placed in this field.

■ D-Hi and NONCEi

These are essential pieces of information needed by the Diffie-Hellman

algorithm; they are needed by the Responder to generate the shared key.

Including this information in the first message enables the Responder to start

79

the key generation process after receiving the initial request from the Initiator.

■ AUTHi

This is the signature created at the source node. This signature must be

included in the first message so that the Responder can verify the authenticity,

integrity, and non-repudiation of the message from the Initiator prior to carrying

out any further computation. This is an important step in defending the system

from DoS attacks (see section 4.6 on p.110).

3.4.3 SPANJNIT in Detail

More specifically, HDRJNIT is the SPANJNIT message header. SAi is a set of

security association parameters offered by the Initiator to the Responder. These

parameters are for example the supported or preferred encryption algorithms

(of the Initiator), and the supported or preferred key size (of the Initiator). D-Hi

and NONCEi are the Diffie-Hellman public value and a random 128-bit, never

reused nonce generated by the Initiator. Both D-Hi and NONCEi are required

for the symmetric secret establishment between the Initiator and the Responder

(section 2.10 on p.55). Also, the nonce will be needed for anti-replay attacks

(section 4.2 on p. 100).

[CERTi] is the PKI certificate of the Initiator. Distributing the Initiator’s PKI

certificate during the SPAN SA establishment process is optional, and depends

on the choice of the Initiator. This is because the Responder may already have

obtained the Initiator’s PKI certificate through previous SA establishments (but

now the previously established SAs have expired), or by other means e.g.

pre-distributed PKI certificates using out-of-band channels. As discussed in the

assumption, administrative issues such as PKI certificate distribution and

maintenance are out-of-scope of this thesis. As such, the SPAN protocol does

not explicitly enforce PKI certificate distribution during SPAN SA establishment;

but provisioning has been made in the protocol to accommodate situations in

which PKI certificate (re)distribution is needed. This field, may be used for

distributing more than one certificates. For example, a node may distribute

certificates of other nodes, if the (protected) content of the packet that it is about

to send to other nodes would need those certificates for verification.

[EEi] is needed to enhance the level of robustness of the underlying active

networking systems. It is optional, and it is included only when the Initiator

needs to confirm that the Responder does satisfy certain requirements that are

needed to execute the to-be-sent active packet, prior to establishing a

hop-by-hop SA and sending over the active packet. An example query would be

the availability of specific supportive software/service modules (that are

required to execute the active packet), or programming language supported by

the remote execution platform. It will be discussed in a later section (section 4.5

on p. 106) that the use of [EEi] improves the level of robustness of the

underlying active networking systems.

The Initiator must provide authenticity, integrity, and non-repudiation protection

for SPANJNIT by digitally signing this message using its PKI private key.

AUTHi is a digital signature that is created by using the Initiator’s private key

that covers all the items contained in SPANJNIT except CERTi8 and the digital

signature itself. Figure 27 shows the items digitally signed by the Initiator.

HDRJNIT, SAi, [EEi], D-Hi, NONCEi

Figure 27 - Items digitally signed in AUTHi

8 Note that [CERTi] is not signed explicitly in AUTHi because certificates should be verified
through PKI.

The inclusion of AUTHi in SPANJNIT enables more efficient detection of DoS

attacks (section 4.6 on p.110). Note that because [EEi] is digitally signed, SPAN

enables the principal to make authenticated and integrity protected queries for

remote EE information. Shortly, it will be discussed how SPAN enables the

Initiator to receive protected replies to [EEi], prior to active packet transmission

(section 3.5 on p.82).

3.5 SPAN Authentication (Message 2: SPAN AUTH)

3.5.1 An Overview

Stage 2 is carried out at the Responder. During this stage, the Responder

verifies SPANJNIT (message 1 from the Initiator), and computes a shared

secret, and subsequently computes a shared key set based on its own data and

the data provided by the Initiator. The Responder then responds to the Initiator

with the data that are needed by the Initiator to complete the shared secret

computation process at the Initiator’s side. The reply message from the

Responder also contains some replies of the Responder to the EE queries that

were made by the Initiator in SPANJNIT. Parts of SPAN_AUTH are digitally

signed by the Responder; other parts are protected by the freshly created

shared key set for security reasons (section 4.3 on p. 103).

I R:

HDR_AUTH, SAr, [CERTr], D-Hr, NONCEr, AUTHr, {[EEr], IDr}

Figure 28 - SPAN_AUTH

3.5.2 Design Decisions for SPAN_AUTH

SPAN_AUTH is designed to enable the Responder, using just one message, to

notify the Initiator that:

■ It has accepted the Initiator’s request to generate a shared symmetric key.

■ It has generated the shared symmetric key.

■ It wants to enable the Initiator to generate the shared key.

■ It wants the Initiator to validate the shared key.

The decisions for including the corresponding elements in SPAN_AUTH are as

follow:

■ SAr

This must be included in this response so that the Initiator knows which of its

supported/preferred cryptographic algorithm(s) the Responder has selected to

use. Without this information, the Initiator would be unable to proceed with the

shared key generation process.

■ [CERTr]

The Responder may optionally sends its public key certificate to the Initiator if it

is unsure whether the Initiator has its public key certificate from (if there was

any) previous interactions. Note that SPAN_AUTH is the only message sent

from the Responder to the Initiator; thus, this is the only chance that the

Responder could send anything it wants to send to the Initiator.

■ D-Hr & NONCEr

These are the key elements needed by the Diffie-Hellman algorithm in order to

generate the shared key. These elements have been used by the Responder to

generate the shared key; thus, the Responder must send this information to the

Initiator, so that the Initiator may generate the shared key.

■ AUTHr

This is the signature created by the Responder. It protects the message and

therefore must be included. Furthermore, it acts as a countersign of some

elements in SPANJNIT to tackle network attacks such as impersonation

attacks (section 4.2 on p. 100).

■ {[EEr], IDr}

This is a protected payload, which includes information on the Responder’s EE,

and some identification information that the Responder wants to use in the

future. The Responder’s EE information should be included if the Initiator has

made an EE information request in SPANJNIT, or the Responder wants to tell

the Initiator some information of its EE. This information is included to enhance

the efficiency, robustness, and security of the SPAN protocol (see next section

for detail). They are included in this message because this is the only message

sent from the Responder to the Initiator.

Note that these items are protected by using the recently generated shared key.

The Initiator must verify these items (after it has generated the shared key). By

verifying these items, the Initiator is able to verify that the Responder has

computed the symmetric key correctly (see section 4.3 on p. 103).

3.5.3 SPAN_AUTH in Detail

More specifically, upon receiving the first message (i.e. SPANJNIT) from the

Initiator, the Responder verifies the authenticity, integrity, and non-repudiation

of the digitally signed materials in SPANJNIT by using [CERTi] and AUTHi. If

the digitally signed items cannot be verified, the Responder stops proceeding

further because SPANJNIT might have been subjected to man-in-the-middle

attacks, or was created for DoS attacks (section 4.6 on p.110).

If the signature is verified (hence the contents of SPANJNIT), the Responder

will look into the message. If a [EEi] is included, the Responder will evaluate

itself against the list of requirements carried in [EEi]. There are two possible

outcomes:

1. The Responder is unable to satisfy to the requirements as specified in [EEi].

This could happen for example when the Responder has already been

re-configured such that it cannot execute the to-be-sent active packet; or

the Responder has an incompatible execution platform for the packet, or the

Responder does not have the necessary supportive software modules or

services to execute the packet. In this case, the SPANJNIT packet is

simply forwarded to the Responder’s neighbouring node (a node other than

the one from which the active packet has arrived from, otherwise the packet

will be travelling in a loop), where the SPAN protocol exchange may

potentially continue.

2. The Responder is able to respond to the requirements as specified in [EEi].

For example, it satisfies all the requirements specified by the Initiator, or it

has some missing supportive software modules or services, but it believes

these missing supportive items can be provided by the Initiator. The

Responder creates a list of its replies, and stores them in an [EEr] payload.

This facility is important in SPAN to enhance robustness, it enables the

Initiator to pass on additional information to the Responder (in the last

message of the exchange, see later) to ensure that a smooth execution of

active packets (see section 4.5 on p. 106).

In case 2 or in the case where no [EEi] is included in SPANJNIT, the

Responder generates its own D-H public value (D-Hr) and a random 128-bit

nonce (NONCEr). By using these values in conjunction with the Initiator’s

values, i.e. D-Hi and NONCEi, the Responder is capable of creating a shared

secret (SKEYSEED) using the D-H algorithm (section 8.6 on p. 168). Note that

SKEYSEED is a shared secret established secretly between the Initiator and

the Responder, from which a subsequent shared key set can be generated for

specific purposes. For example, the authentication key (SK_a) is one of the

keys in the subsequently computed shared key set which is used for

authenticity protection and integrity checks; the encryption key (SK_e) is used

for encryption.

Once the Responder has computed the shared secret and the shared key set, it

responds to the Initiator with the second message in the SPAN protocol

(SPAN_AUTH), which is shown in Figure 28. Note that the items quoted in curly

brackets {...} are protected accordingly as embedded payloads in the same

Encrypted payload, by using the corresponding shared key derived from the

shared secret SKEYSEED i.e. SK_e. The Encrypted payload is appended with

integrity protection data - in this case a keyed hash value - that covers

SPAN_AUTH (including the message header and payload). The key used to

create the keyed hash value (i.e. the integrity protection data) is the SK_a key.

HDR_AUTH is the message header of SPAN_AUTH. SAr keeps the

Responder’s replies to SAi (e.g. the Responder’s choice of encryption

algorithms offered by the Initiator). [CERTr] is the public key certificate of the

Responder, again for the same reason as explained above, the inclusion of

[CERTr] is optional and depends on the Responder’s own choice. D-Hr and

NONCEr are needed by the Initiator to create the shared secret SKEYSEED,

and therefore must be listed in cleartext i.e. not encrypted. AUTHr is a digital

signature created by using the Responder’s private key over a list of items.

HDR_AUTH, SAr, D-Hr, NONCEr, NONCEi

Figure 29 - Items digitally signed in AUTHr

The idea of digitally signing the items listed in Figure 29 by the Responder, is to

enable the Initiator to verify the authenticity, integrity, and non-repudiation of the

shared secret establishment parameters from the Responder. Note that the

Initiator’s nonce (NONCEi) is also digitally signed by the Responder. This

arrangement is necessary to prevent replay attacks (section 4.2 on p. 100). Also

note that the Responder does not simply sign any anonymous nonce values.

The Responder must first verify NONCEi (that was included in SPANJNIT), by

verifying the value against the digital signature (AUTHi) created by the Initiator,

prior to digitally signing NONCEi.

{[EEr], IDr} is the protected replies to [EEi] and the identity of the Responder

that will be used for future identification respectively. They are protected by

using the appropriate shared key i.e. SK_e and SK_a. IDr is not necessarily the

identity of the Responder as listed in [CERTr]. It could be any form of identifier

(e.g. IP addresses and host names) that the Responder considers appropriate

to be used in future for identifying itself. This identity information may also be an

identity of an AA/EE, which is injecting active packets to the network, but relying

on the active node to provide hop-by-hop security for its active packets. Note

that this information is protected for two reasons:

1. The EE replies and the Responder’s identity may contain sensitive

information (such as real-time operational status of the EE on the

Responder), so they should be protected from intruders.

2. The protected payload can be used by the Responder as a

proof-of-knowledge of the shared key set (section 4.3 on p. 103).

3.6 SPAN Active Packet (Message 3: SPAN_AP)

3.6.1 An Overview

Stage 3 is carried out at the Initiator. During this stage, the Initiator first verifies

the digital signature of the reply message from the Responder (i.e. AUTHr in

SPAN_AUTH), then computes the shared secret (SKEYSEED), and

subsequently computes the shared key set by using its own data and the data

provided by the Responder in SPAN_AUTH. The shared key set is then used to

verify other parts of SPAN_AUTH (i.e. the items in the curly bracket). Then, the

Responder’s reply (i.e. [EEr]) to the Initiator’s initial EE queries (i.e. [EEi]) is

extracted.

To complete the protocol, the Initiator sends to the Responder the third

(protected) message (SPAN_AP) which contains the active packet and,

optionally, some additional data that would enable a successful execution of the

active packet at the Responder: for example, the missing modules that are

requested by the Responder in [EEr]. These modules are for example an

additional Java class (needed by the Responder) to support the execution of

the Java-based active code. The modules will be included into the reply if they

can be fit into the reply message; else, a link that refers to a location where the

modules can be downloaded from will be included instead. This is an example

of an out-of-band approach in active networks [14]. The SPAN_AP message is

shown in Figure 30.

I R:

HDR_AP, {IDi, NONCEr, ACTIVE_PACKET, CODE_SIG}

Figure 30 - SPAN_AP

3.6.2 Design Decisions for SPAN_AP

This is the last message in the protocol. The purpose of this message is to

enable the Initiator to tell the Responder:

■ It has generated the shared symmetric key.

■ It wants the Responder to validate the shared key.

■ It is passing the (protected) active packet to the Responder using the

recently generated shared key and asymmetric cryptography.

The decisions for including the corresponding elements in SPAN_AP are as

follow:

■ {[IDi]}

Some (protected) identity information of the Initiator that the Initiator wants the

Responder to use for future communications. It is confidential, thus the Initiator

must only send this information after it has verified the Responder’s authenticity

(i.e. after checking on the Responder’s message). Thus, this information must

be sent in this message (not in message 1 because at that point the Initiator

had not verified the Responder’s authenticity).

■ {NONCEr}

This is a countersigning process. The Initiator must countersign some elements

of the Responder’s message to prevent network attacks such as impersonation

attacks (section 4.2 on p. 100).

■ {ACTIVE_PACKET} & {CODE_SIG}

The protected active packet and the digital signature on its static code. They

are sent at this stage because only at this stage the Initiator has verified the

Responder. The code signature is needed because it is for enforcing

non-repudiation protection on the code. Thus, the code’s original creator, i.e.

the principal, cannot deny of any wrongdoing should the code cause any

damage to other nodes.

Note that these items are protected (i.e. encrypted and integrity protected) by

using the recently generated shared key. They must be protected because they

may contain node operation sensitive information. The Responder must verify

these items. By verifying these items, the Responder is able to verify the

Initiator has computed the symmetric key correctly (see section 4.3 on p. 103).

3.6.3 SPAN_AP in Detail

In more detail, upon receiving SPAN_AUTH from the Responder, the Initiator

must first verify AUTHr using [CERTr]. If the verification process were

successful, the Initiator would be able to generate the shared secret, i.e.

SKEYSEED, and the subsequent shared keys (i.e. SK_e, SK_a) by using D-Hi,

D-Hr, NONCEi, and NONCEr. The Initiator then starts to verify the authenticity

and integrity of the items contained in SPAN_AUTH: the Initiator decrypts the

encrypted items in SPAN_AUTH i.e. {[EEr], IDr}, by using the corresponding

shared key i.e. SK_a and SK_e respectively. If SPAN_AUTH is verified, the

Initiator sends to the Responder the third, and the last message: SPAN_AP.

HDR_AP is the header of SPAN_AP. IDi is the identity of the Initiator (or the

AA/EE that it is representing). NONCEr is protected so that the Initiator can

acknowledge to the Responder that it has received the correct nonce value and

for anti-replay attacks (section 4.2 on p. 100). This value does not need to be

digitally signed by the Initiator, because it is protected by the authenticated and

integrity verified shared keys i.e. SK_e and SK_a. ACTIVE_PACKET contains

the entire active packet i.e. both the static code and dynamic data. The dynamic

data is the result of static code execution on the Initiator. CODE_SIG is the

signature on the static code that is created for protecting the authenticity,

integrity, and non-repudiation of the static code, by using the principal's private

key. Note that the principal is the actual creator of the code. In situations where

the principal does not have its own public key pairs, the private key of the node

that the principal is currently residing may be used for signing instead. This

arrangement is more scalable at the expense of a less than ideal

non-repudiation protection (section 4.7 on p.115). Note further that, by using the

optional [CERTi] field, a node may pass onto other nodes the public key

certificate of itself, as well as the certificate(s) that the node has obtained from

other nodes in previous communications.

Once the Responder has received SPAN_AP, the protected items in the

message are subjected to verification by using the established shared key set.

Firstly, the integrity data appended to SPAN_AP is verified. Then, the encrypted

payload in SPAN_AP is decrypted. The authenticity and integrity of the static

code in the active packet are verified by checking the digital signature

(CODE_SIG) in SPAN_AP, which was created by the principal using the

principal’s private key. If the verifications are successful, the embedded code in

the active packet is executed.

3.6.4 Secured Active Packet Transmission

Under this arrangement, the hop-by-hop authenticity, integrity, and

confidentiality of the dynamic data of the active packet are protected by the

shared key set. The static code is digitally signed by the principal, so the source

authenticity, integrity, and non-repudiation of the static code are protected. The

confidentiality of the entire active packet including both static code and dynamic

data is protected by the shared key set.

3.7 Multiple Hops Transmission

In previous sections, the SPAN protocol was presented using a simplified

deployment environment with two nodes only (i.e. an exchange between an

Initiator and a Responder). In reality, the Responder (which is an intermediate

91

node) would want to pass on the received packet to other nodes in the network

(i.e. a multiple hops transmission). Figure 31 shows the differences between the

two.

Terminal machine

Simplified
environment
(i.e. 2 nodes)

Multiple hops
environment

Active PacketService request
execution

To other
nodes (e.g.

Internet)

/
Active Packet

execution

Active
Packet

injection

actiVe p a c k e t ACTIVE PACKET* ACTIVE PACKET”

Source Intermediate Intermediate
Active Node Active Node Active Node (2nd
(1M Initiator) (1ft Responder, 3rd

Responder, Initiator)
Active platform 2nd Initiator)

Passive node (h/w router)

Figure 31 - Multiple hops transmission

The same SPAN protocol is used for multiple hops transmission. Once the first

Responder (i.e. the node that first intercepted the active packet from the source

node) has executed the active packet, the results of code execution, i.e. new

dynamic data, will be added back to the packet, and the packet will be

forwarded to its next hop i.e. the 2nd Responder. More specifically, when

sending the active packet to another node, the first Responder now becomes

an Initiator, i.e. the 2nd Initiator (Figure 31). This is because it is now attempting

to start a secure transmission with another node.

92

ACTIVE PACKET ACTIVE_PACKET’ ACTIVE PACKET”

IP Header IP Header IP Header

UDP Header UDP Header UDP Header

Active Packet
Header

Active Packet
Header

Active Packet
Header

(Static) Active Code (Static) Active Code (Static) Active Code

-(Dynamic)
Execution Results- -(NEW) Execution

Results- -(NEW) Execution
Results-

(Static) CODE_SIG

(Static) CODE_SIG

(Static) CODE_SIG

1st Initiator 1st Responder, 2nd
Initiator

2nd Responder, 3rd
Initiator

Figure 32 - Active packet at each node

The SPAN protocol repeats between the new pair of nodes. Figure 32 shows

the active packet at each node. The new active packet (i.e. ACTIVE_PACKET’)

from the second Initiator would contain the same static code (i.e.

STATIC_CODE) as the packet received from the first Initiator, but with new

dynamic data, which contains the execution results. Note that the 2nd Initiator

should not generate a new signature on the static code; this is because the

code is static (i.e. to be executed on all nodes) and should be verified by

verifying the principal’s signature on the static code i.e. based on the identity of

administrator/management application on the source node. If there was a need

to modify the static code (that was originally created by the principal), the

second Initiator would have to create a new active packet (see section 3.9 on

p.94). The same process repeats between the third Initiator and other nodes

93

until the packet reaches its destination.

3.8 Protecting Active Packets in Subsequent Communications

Once a SA has been established between a pair of nodes, the SA should be

retained until a timeout (section 8.16 on p. 189). Future active packet

transmissions, remote EE queries and replies, i.e. [EEi] and [EEr], between the

pair of nodes may make use of the established hop-by-hop SA. The established

SA is identified at each node by the respective Security Parameter Index (SPI)

(that was assigned by the nodes involved during the SA establishment process)

(section 8.17.1 on p. 192). The SPI is also used for identifying established SAs

during (future) re-keying. Thus, subsequent packets are protected by using an

SPAN header (which is similar to IKEv2 header), which contains the SPIs for

identifying the established SAs to be used, and a 32-bit cryptographically

protected message ID (for anti-replay attacks). The entire packet is covered by

an integrity checksum data.

3.9 Protecting Active Packets with Dynamic Code

In section 1.6.1 (p.28), it was discussed that in some occasions, an active node

may want to modify the original code of an intercepted active packet (i.e.

dynamic code). It was also emphasised that the SPAN protocol may be used to

protect active packets with static code or dynamic code. As a recap, static code

refers to the code that remains unchanged during the packet’s traversal in the

networks; whereas dynamic code means the code is changed during the

packet’s traversal. In this section, the use of the SPAN protocol for protecting

active packets with dynamic code is discussed.

In Figure 6, the content of an active packet traversing the network is shown.

Note that at all nodes, the active code in the packet remains unchanged. In

94

Figure 33, the content of an active packet (without protection) with dynamic

code is shown. Note that at each node, the active code is modified (the grey

boxes).

IP Header

UDP Header

Active Packet
Header

Original Active
Code

-(Dynamic)
Execution Results-

Source IP

IP Header

UDP Header

Active Packet
Header

Active Code
Modified

-(Dynamic)
Execution Results-

Source IP,
intermediate IP

IP Header

UDP Header

Active Packet
Header

Active Code
Modified Again

-(Dynamic)
Execution Results-

Source IP,
intermediate IP,
destination IP

Source Intermediate Destination

Figure 33 - Dynamic code in active packets using the same example in
section 1.5.3 (p.24)

It was discussed in section 3.6.2 (p.88) that active code must be digitally signed

by its original creator, i.e. the principal, to enforce non-repudiation. As such, if

dynamic code is created at an intermediate node, the original creator of this

dynamic code (e.g. an EE or a management application currently residing the

intermediate node) must digitally sign its code. This means that, when a node

generates dynamic code, the node is essentially creating a new active packet.

The node will simply use the SPAN protocol (in the same way as described

earlier in this chapter) to transmit this new active packet to its next hop.

95

3.10 Packet Loss Handling in SPAN

Packet loss in SPAN can be handled through retransmission using standard

techniques (see shortly later). Designing specific packet loss handling

mechanisms in SPAN is not within the scope of this thesis. The reason is that

there are existing packet loss handling methods that are being widely used in

today’s transmission models. For example, TCP implements reliable

retransmission. Note that SPAN and IKEv2 are protocols on the application

layer. They are on the application layer because they are protocols designed to

enable security managers (i.e. users) to modify the behaviour of lower levels in

the stack through, say, changing encryption policies such as IPSec SAs (i.e.

layer 3). Thus, SPAN can be run over UDP or TCP. TCP is a

connection-oriented protocol, which supports retransmission. On the other hand,

UDP is connectionless, but with less overhead. If SPAN is run over UDP, a

retransmission technique similar to the one used in IKEv2 can be used in SPAN

to handle packet loss: the Initiator and the Responder remember their

messages, and retransmit after a timeout. They may discard the messages

after the exchange has completed.

3.11 Summary

In this chapter, the SPAN protocol was presented together with its design

decisions. SPAN is a fully distributed protocol that allows each participating

active node in the network to establish a hop-by-hop SA with its neighbouring

active node. The protocol involves a three-message exchange handshake;

each exchange is specially designed to enhance scalability, efficiency, and

flexibility of the protocol. SPAN also enhances the robustness of the underlying

active networking systems, by ignoring incompatible active nodes. Furthermore,

96

an active packet is transmitted during the SPAN’S hop-by-hop SA establishment

process, instead of after. In chapter 4 (p.98), a discussion of SPAN and a

comparison between SPAN with existing solutions will be presented.

97

4 Discussion

In this section, related work and certain unique features of SPAN that make

SPAN ideal for hop-by-hop security management in active networking systems

will be discussed.

4.1 Message Security in SPAN

All messages exchanged in SPAN are secured. They are secured using
different techniques. In this section, these techniques will be discussed in detail.

4.1.1 Message Authenticity, Integrity and Confidentiality Protection

■ Secured message content via Symmetric Cryptography

The authenticity and integrity of the keying materials from the Initiator to the

Responder (i.e. items in SPANJNIT) are verifiable to the Responder because

the Initiator signs the message contents (except its PKI certificate, which should

be verified through PKI) with its own private key. Similarly, the authenticity and

integrity of the Responder’s keying materials are verifiable to the Initiator

because the Responder signs the contents of SPAN_AUTH with its own private

key.

■ Anti-network attack via asymmetric cryptography

The Responder signs the Initiator’s nonce, i.e. NONCEi, to prevent replay

attacks (section 4.2 on p. 100). The Initiator also signs the Responder’s nonce,

but it does not use asymmetric cryptography. There is no need for the Initiator

to digitally sign NONCEr; this is because NONCEr is authenticated and integrity

protected by using the shared key set, i.e. SK_a, that was derived from

authenticated an integrity verified keying materials (note that the keying

materials are digitally signed/counter-signed by each peer). Note that these

98

keys are derived from the shared secret that was computed using D-H; and as

such, they are known to the Initiator and the Responder.

■ Integrity and confidentiality protection to message content

Note that the SPAN_AUTH message and the SPAN_AP message contain an

Encrypted payload respectively i.e. {[EEr], IDr} and {IDi, NONCEr,

ACTIVE_PACKET, CODE_SIG}. The Encrypted payload is appended by a

keyed checksum, which covers the entire SPAN_AUTH and SPAN_AP

message respectively. The keys used to create the Encrypted payload and the

checksum are derived from the shared key set (SKEYSEED) i.e. SK_e and

SK_a. Thus, the hop-by-hop authenticity, integrity, and confidentiality of all

items in {...} are protected.

■ Protected compatibility queries

As explained in an earlier section, optionally, the Initiator may wish to explore

the properties of the Responder (by using the [EEi] option), prior to establishing

a hop-by-hop SA and sending over an active packet. As such, the SPAN

protocol provisions for EE information query in its first message SPANJNIT i.e.

[EEi]. The content of this enquiry is not encrypted but authenticated and

integrity protected because it is digitally signed by using the Initiator’s private

key. For flexibility, SPAN does not specify the type of remote EE information

that is allowed to be queried through this request message. The supported type

of request is dependent on the static code execution requirements, and should

be defined by the corresponding administrator/management application.

Generally, the query should contain non-sensitive information. If sensitive

information must be included in the Initiator’s EE information query message,

[EEi] must not be included in SPANJNIT. In fact, such query should only be

made after the shared secret has been established, or by other secured means

(e.g. encrypted with the receiver’s public key).

In SPAN_AUTH, SAr, D-Hr, and NONCEr are carried in cleartext. This

arrangement is necessary because these values are needed by the Initiator in

order to generate SKEYSEED (using D-H). According to the D-H algorithm, the

disclosure of these values is necessary and does not create risk to the key

exchange process. For confidentiality protection on the replies on EE

information query and the Responder’s identity - which could be sensitive -

they are required to be placed in an Encrypted payload. In SPAN_AP, the

confidentiality of the Initiator’s ID, and the entire active packet (and the static

code signature) is protected by using the corresponding keys from the shared

key set.

4.1.2 Summary

■ All messages are secured in SPAN.

■ A mixture of techniques is used to achieve different levels of security in

SPAN (i.e. asymmetric cryptography is used to achieve non-repudiation

protection on static code, symmetric cryptography is used to achieve

scalable integrity, authenticity, and confidentially protection).

■ The SPAN protocol enables secured compatibility enquires prior to

actually establishing secure tunnels between nodes.

4.2 Network Attacks on SPAN

When designing key exchange protocols, the design of an anti-network attack

mechanism is crucial. Example network attacks are replay attacks, impersonate

attacks, and man-in-the-middle attacks. In this section, the anti-network attack

techniques used in SPAN will be discussed.

4.2.1 Anti-Network Attack Techniques in SPAN

■ Replay attacks

A typical form of replay attack is that the attacker copies a legitimate message,

and re-sends the message to one of the peers or other peers. To provide

anti-replay protection in SPAN, all messages exchanged in SPAN are

cryptographically protected. Particularly, randomly generated, never reused,

authenticated and integrity protected 128-bit nonces are included.

The use of nonces in key exchange is a generic technique to counter replay

attacks (by adding randomness to the protocol). The basic idea is that the

nonce is randomly generated and will not be re-used. As such, if a receiver (e.g.

a Responder) receives two (or more) messages using the same nonce, the

more recently received message(s) will be considered as replay attack(s), and

will be dropped. Because the nonce is cryptographically protected, attackers

cannot modify the nonce of a valid message unless he/she has the legitimate

key (note that key and node integrity are assumed in this thesis).

■ Impersonation attacks

Impersonation attacks [67] deceive the identity of legitimate nodes. This type of

attack takes place in key exchange when nonces are not countersigned by the

peers. For example, an Initiator sends a signed request (that contains, say

some D-H public values and a nonce) to a Responder. An attacker intercepts

this request, and responds with a legitimate reply. However, the reply could be

a previous legitimate reply message from the Responder to another Initiator

that was (previously) intercepted by the attacker. Because nonces are not

countersigned, the Initiator would believe that the attacker is the legitimate

Responder9.

To avoid an impersonation attack, each peer in SPAN must either digitally sign

or use symmetric cryptography to protect the authenticity and integrity of each

other’s nonce: the Responder digitally signs the Initiator’s nonce in

SPAN_AUTH, and the Initiator protects the authenticity and integrity of the

Responder’s nonce in SPAN_AP by using the SK_a key. In this case,

impersonation attacks would fail, because a legitimate reply message from the

Responder must include the Initiator’s nonce, unless the attackers have the PKI

key pair of the legitimate Responder.

■ Man-in-the-Middle attacks

Man-in-the-Middle attack is not possible in SPAN, as long as private keys are

kept securely on the nodes (which is assumed). This is because PKI certificates

are used for verifying AUTHr and AUTHi at the Initiator and the Responder

respectively. When a forged SPAN_AUTH is received by the Initiator (i.e.

SPAN_AUTH with a forged signature), the Initiator would be able to determine

immediately that the message is forged because the forged signature (i.e. the

forged AUTHr) cannot be verified against the certificate of the legitimate

Responder (i.e. the actual owner of [CERTr]). The rule-of-thumb deployed in

SPAN is that the communicating peers must be verified to each other (through

verifying AUTHi and AUTHr) prior to active packet transmission.

4.2.2 Summary

■ SPAN addresses replay attacks by including randomly generated, never

re-used nonces in exchanged messages.

9 The consequence of an impersonation attack does not necessary lead to an attack on the key
exchange itself (because the use of D-H would prevent a third person from determining the
shared secret). However, the attacker would have successfully “impersonated” the Responder i.e.
the Initiator is tricked to believe the attacker is the Responder, which is a form of identity thieving.

■ Impersonation attacks against SPAN are not possible because SPAN

requires communicating peers to countersign each other’s nonce.

■ Man-in-the-middle attacks are not possible in SPAN, as long as keys are

kept securely on nodes.

4.3 Proof-of-Knowledge of Shared Keys

In the second message of SPAN (i.e. SPAN_AUTH), IDr and [EEr] are

protected by using the established shared key set. Besides confidentiality

protection on nodes’ identity and EE information, this is a precaution step to

ensure that correct computation of the shared key set at both peers.

It should be noted that the Initiator and the Responder are trying to compute a

shared secret over an insecure channel without any pre-knowledge. Therefore,

the SPAN protocol requires the peers to use the freshly created shared key set

as soon as the keys are computed. This arrangement enables the peers to

verify to each other that they own the same pair of shared keys (i.e. correct

computation) as soon as the shared key sets are computed, prior to using the

shared key set for subsequent communications. Thus, peers can detect - and

possibly correct - frauds of the protocol exchange at the earliest stage.

In SPAN, the Responder is required to use its shared key set to protect some

data as soon as it has computed the shared key set; and the Initiator is also

required to use its shared key set to verify the protected data (from the

Responder) as soon as it has computed the shared key set. More specifically,

when the Initiator receives SPAN_AUTH from the Responder, it computes its

shared key set. Then, it must verify the protected contents in SPAN_AUTH by

using its shared key set. Because these contents are protected by the

Responder using the Responder’s shared key set (which should be the same

as the Initiator’s shared key set if the computation is correct), the Initiator would

know the Responder has computed the same shared key set as it had. The

Responder gets the same assurance by verifying the protected contents in

message 3 (SPAN_AP) from the Initiator.

4.3.1 Summary

■ Communicating peers are required to validate each other’s key as soon as

their keys are computed. This requirement enables peers to discover (if

any) key computational error at the earliest stage.

4.4 Identity Protection

Some level of information disclosure during key exchange is not avoidable [68].

When computing shared secret key, SPAN follows the same guidance as

recommended in [69]. The general rule is not to disclose sensitive information.

In IKEv2 and IKEvI in aggressive mode, the identity information of the Initiator

would be disclosed to the Responder before the Initiator can verify the

Responder’s authenticity (section 2.10 on p.55 and section 2.12 on p.70

respectively).

■ Identity disclosure in JFK

In JFK, two variants of the protocol were provided i.e. JFKi and JFKr (section

2.11 on p.67). However, neither of the protocols protects the identity of both

peers. JFKi protects the Initiator’s identity only. The Responder’s identity is

disclosed to the Initiator in JFKi message 2 prior to the Responder is able to

verify the Initiator’s authenticity (that can only be achieved after receiving JFKi

message 3). In contrast, JFKr protects the Responder’s identity only. The

Initiator’s identity is disclosed to the Responder in JFKr message 3 prior to the

Initiator being able to verify the authenticity of the Responder (that can only be

achieved after receiving JFKr message 4). In SPAN, however, the nodes may

disclose the (protected) identities only after verifying the other node’s

authenticity i.e. after checking the AUTHs. Thus, identity protection is enforced

in SPAN.

■ The reasons for protecting identities

One may argue that the node’s identity would have been disclosed if the node

were required to create a digital signature. Note that the identity information that

is protected is not necessary the node’s identity. The Initiator is located on the

NodeOS of an active node, and (together with other on-node security facilities)

is responsible for protecting active packets on behalf of EEs or AAs. Thus, the

protected identity information could be provided by respective EEs or AAs,

which requested the Initiator to secure their active packet. This information,

should be protected (so that the EE/AA remains anonymous), until the

communicating Initiator and Responder can verify each other’s authenticity.

■ The techniques used in SPAN for identity protection

Note that in SPAN, no identity information is released through message 1

(SPANJNIT) from the Initiator to the Responder. This is because the Initiator

has not verified the Responder’s authenticity. The EE/AA’s identity (i.e. [IDr]) is

protected in message 2 (SPAN_AUTH), that is sent by the Responder to the

Initiator. This is because by verifying message 1, the Responder would have

verified the authenticity of the Initiator. The Initiator only release the identity

information (i.e. [IDi]) to the Responder in message 3 (i.e. SPAN_AP), after the

Initiator has verified message 2 (i.e. SPAN_AUTH) from the Responder.

4.4.1 Summary

■ Identities must be protected in SPAN for ensuring the actual

communicating applications on remote nodes may communicate in an

anonymous fashion (when necessary).

■ SPAN enables communicating applications to communicate in an

anonymous fashion by requiring nodes to disclose identity information

using protected message payload.

4.5 Enhanced Robustness, Flexibility, and Scalability

4.5.1 Enhancing Robustness in SPAN

The [EEi] and [EEr] options are needed for enhancing the robustness of the

underlying active network systems. For example, if a principal or an Initiator is

about to send an active packet for aggregating network-wide information

regarding the top ten heaviest flows in the network, the principal/initiator may

need certain information regarding a specific EE on the remote node (i.e. a

QoS-monitoring EE on the Responder) prior to establishing a hop-by-hop SA

with that remote node, and sending over the packet. Information such as

implementation information regarding the EE on the Responder, or the

programming language(s) supported by the Responder, or availability of special

software modules that are required to execute the active packet. The [EEi] and

[EEr] options provide an opportunity for a principal/initiator to explore their

neighbours’ properties prior to passing over active packets. To illustrate further,

suppose Java is used (i.e. the active platform is written in Java, the EE is

implemented in Java, so as the active code is in Java). To execute some active

code (e.g. HelloWorld.class), a supportive Java class is needed (e.g. the

SayHello.class that contains the sayHelloWorld() method). Assume that the

Initiator has previously launched the same code (so it assumes the code is

somewhere in the network), and decides not to include the supportive class with

the active code in order to save packet space. The Initiator can make use of the

[EEi] option to determine whether the Responder has the necessary supportive

Java class, prior to establishing the security channel. If the Responder currently

does not hold the supportive Java class (i.e. the Responder is incompatible to

execute the Java code from the Initiator), the Responder can make a request to

the Initiator for the supportive Java class using the [EEr] option. Note that this is

a simplified example, which involves one support class in Java; in reality, active

code execution may require much more supportive information.

The use of the [EEi] and [EEr] options in SPAN improves robustness because -

at the time of writing - in current active networking systems, there is no

provisioning to accommodate incompatibility between active nodes. Thus,

existing active networking systems must assume compatibility between all

active nodes. By compatibility, we mean that the management application is

assumed capable of creating static code that is guaranteed to be executable on

all remote nodes. This implies that such systems would easily fail to operate if

deployed in practice because of the high degree of heterogeneity in a large

network such as the Internet. However, in SPAN, an Initiator can now make

authenticated and integrity protected queries on remote node/EE’s compatibility,

and receives protected replies, prior to the actual hop-by-hop SA establishment

and active packet transmission. The Initiator either can therefore ignore an

incompatible node, or provides the necessary adjustments to ensure static code

compatibility on remote Responder (such as supplying the Responder with a

missing module that is required to execute the packet on the Responder).

Because the query process is conducted at the initial stage of the SA

establishment process, incompatibility between nodes would have been

107

identified (and resolved, if possible) prior to any other further processing (such

as SA establishment). An incompatible Responder will not respond to the

Initiator, but will forward the SPANJNIT message to its neighbours (neighbours

other than the Initiator), where the protocol may potentially continue.

Robustness of the underlying active networking systems is therefore enhanced,

because provisioning is made in the protocol to accommodate incompatibilities

between nodes. The overall efficiency of active networking systems is also

enhanced, in the sense that communicating nodes must ensure compatibility

prior to any other further communications or processing (i.e. not wasting

resources on establishing SAs with incompatible nodes).

4.5.2 Enhancing Flexibility in SPAN

Besides provisioning for static code hop-by-hop negotiation between

intermediate nodes (i.e. through [EEi] and [EEr]), SPAN enhances flexibility by

enabling SA negotiations between nodes. By using the SAi and SAr fields,

nodes can negotiate security parameters (e.g. supported/preferred encryption

algorithms and key size) in a hop-by-hop manner. It should be noted SANTS

does not address hop-by-hop key establishment; whereas pre-distributed

shared key, SKT, and SANE do not support SA negotiation (and EE query). As

such, these (related) approaches have limited flexibility when deployed in a

heterogeneous environment because individual security needs may not be

satisfied. On the other hand, SPAN, IKE+IPSec, and KSV support SA

negotiation; and an asymmetric approach (i.e. digitally signing and encrypting

packets) may be deployed in heterogeneous networks (as long as PKI is

supported). Thus, in the evaluation section, the efficiency and scalability of

SPAN will be compared to IKEv2+IPSec, IKEvI in aggressive mode+IPSec,

108

KSV, and asymmetric approach only.

4.5.3 Enhancing Scalability in SPAN

SPAN enables dynamic hop-by-hop SA establishment to be carried out by each

individual node, thus SPAN scales better than centralised approaches such as

KSV or SANE. SPAN is more scalable in the sense that each participating node

needs to maintain the state of its immediate neighbours only (note that these

neighbours do not necessary have to be a physical neighbouring node, but

could be a neighbouring node on an overlay network). There is no need to

maintain the state of the entire network (in KSV, a centralised keying server

would have to maintain SAs for all registered nodes; whereas in SANE, some

workarounds require the source node to establish trust with each of the nodes

through which an (active) packet has traversed). Thus, in SPAN, the number of

states maintained on one node is not dependent on the size of the network, but

rather on the number of neighbouring nodes only.

4.5.4 Summary

■ SPAN enhances robustness in active networking systems by enabling

peers to use secured messages to ensure compatibility, prior to actually

establishing secured tunnels and sending across active packets.

■ Flexibility in SPAN is achieved by enabling peers to negotiate

cryptographic algorithms prior to establishing secured tunnels.

■ Scalability in SPAN is achieved through dynamic compatibility and security

negotiations; also, SPAN is decentralised: each node may establish

tunnels with each other.

109

4.6 Efficient Detection of DoS Attacks

Key exchange protocols are subjected to DoS attacks. There have been

several reports [70][71] on DoS attacks on IKEvI (which is a standardised key

exchange protocol). For example, a DoS attacker can either create (large

number of) legitimate key establishment instantiation requests, in an attempt to

overload a Responder [72]; or it can flood a Responder with initialisation

requests with forged IP addresses; or it can randomly modify the payload of a

legitimate request message, causing a cache miss at a Responder10. In this

section, we will discuss how SPAN addresses DoS attacks.

4.6.1 DoS Attacks in IKEv2

DoS attacks are possible in IKEv2. For example, an IKEv2 Responder - upon

receiving an initialisation message (i.e. IKEv2 message 1) from an attacker -

would be wasting computational resources. It will need to create (new) D-H

values (for IKEv2 message 2), compute shared key sets (upon receiving

valid/invalid IKEv2 message 3 from the Initiator), and will try to decrypt the

encrypted IKEv2 message 3 from the Initiator, prior to verifying the authenticity

of the Initiator11. The same problem is experienced in JFK. A JFK Responder -

upon receiving the first message from the Initiator (in this case an attacker) -

would be wasting resources on computing (new) D-H exponentials, creating

digital signature over the D-H exponentials, creating a keyed hash over keying

materials, computing the shared key set (upon receiving JFKi/r message 3),

10 One form of DoS attacks is that an attacker randomly changes the contents of a message.
When the Responder receives the modified message, the integrity check on the message will fail.
More specifically, the hash value (of the modified message) computed by the Responder (which
is temporally stored in the Responder’s cache memory) does not match with the hash value that
was included in the message. An attacker can flood the Responder with malformed messages,
forcing the Responder to waste resources.
11 In IKEv2, the Initiator’s only signature i.e. AUTH on keying materials is kept in an encrypted
payload in message 3. Thus, the Responder must compute the shared key set, prior to being able
to verify the Initiator’s signature.

and trying to decrypt the encrypted contents in JFKi/r message 3, prior to

verifying the Initiator’s digital signature12.

4.6.2 IKEv2 Defence Mechanisms for DoS Attacks

A variant of IKEv2 includes the use of COOKIEs to implement limited DoS

protection on participating nodes (section 2.10.4 on p.64). This variant of IKEv2

involves an exchange of six messages (rather than the standard four), and the

IKEv2 Responder verifies the identity of the Initiator in the fifth message in its

exchange. The term “COOKIE” originates in Photuris [73], which was an early

proposal for key management with IPSec (which is now replaced by IKEv2). In

a variant of IKEv2, a COOKIE is a randomly generated piece of data that is

used for addressing DoS attacks (section 8.3 on p. 164).

In brief, a Responder is configured to reject initialisation requests, and responds

to the Initiator with an unprotected message that contains a COOKIE. The

IKEv2 Initiator must then resend the initialisation message with the valid

COOKIE to prove that it is using the same IP address as the one used in the

(rejected) first initialisation message.

4.6.3 DoS Attacks on IKEv2 with COOKIEs

The IKEv2 RFC claims this arrangement can be used to implement limited

protection against DoS attacks. In the IKEv2 RFC, it was discussed that this

arrangement would enable the protocol to start with a weaker form of

authentication (of IP addresses), and possibly later performing stronger

12 JFK suggests a mechanism to address DoS attacks by requiring the Responder to periodically
generate D-H exponential tuples (every 30s), and use a First-In-First-Out (FIFO) approach for
assigning D-H exponentials to Initiator’s requests; but this arrangement would add overhead (i.e.
state maintenance) to the Responder even when there is no attempt from other nodes to
establish hop-by-hop SA; more importantly, a JFK Responder would still be wasting resources for
all other computational expensive processes e.g. computing signature and computing shared key
set, prior to detecting DoS attacks (as explained in the main text).

111

authentication. However, the author of this thesis argues that the use of

COOKIEs in IKEv2 does not provide a complete solution to the problem [72]:

this is because attackers can intercept and modify all messages from the

Responder (assumed). Thus, an attacker can generate the first initialisation

message using a valid IP address of another node (i.e. a victim node). The

Responder responds by sending the reply (i.e. a COOKIE) to the victim node,

using the victim node’s legitimate IP address as the reply’s destination address.

The attacker then intercepts the COOKIE from the reply sent by the Responder

to the victim node, and (re)sends the same initialisation message with the valid

COOKIE. The attacker puts the victim node’s IP address as the source address

of his/her message. The IKEv2 Responder is tricked to believe the IP address

used by the Initiator does belong to the Initiator (because the attacker appears

to be re-sending the valid COOKIE from the same IP address as the first

initialisation message); and carries out all the computationally expensive

processes (i.e. generating D-H values or computing share key set). More

importantly, the Responder is unable to distinguish legitimate request

messages from DoS attacks until a much later stage: because until receiving

IKEv2 message 5 (which contains the Initiator’s signature on keying materials),

the IKEv2 Responder still believes the Initiator is a legitimate requester. The

use of COOKIEs, however, would enable the Responder to identify that the

attacker has access to physical link on the route from the Responder to the

victim’s IP address (i.e. the spoofed IP address being used by the attacker). As

discussed in [72], in reality, the attacker is probably quite “close” to either the

Responder or the victim node. Thus, the use of COOKIEs makes tracing easier.

112

4.6.4 SPAN Defence Mechanism for DoS Attacks

DoS attack is an important issue to be considered when designing practical key

exchange protocols: as discussed in [72], detection of DoS attack is the

fundamental countermeasure against DoS attacks; as such, countermeasures

are introduced in SPAN against DoS attacks by limiting the resources required

by a SPAN Responder to identify legitimate requests from DoS request

messages [57][67][72]. The first countermeasure of SPAN against DoS attacks

is that a SPAN Responder may carry out essential operations only until it

verifies whether the request is a legitimate request or part of a DoS attack. As

discussed in the assumptions, all authenticated request messages (i.e. with

valid digital signatures) are assumed legitimate requests; whereas others are

attack messages. Therefore, DoS attack requests can be distinguished from

legitimate requests by requiring the Responder to verify the authenticity of the

requests. The approach (of verifying the identity of a peer prior to any further

communications) to counter DoS attacks was also proposed in [57]; but SPAN

aims to achieve this goal much more rapidly.

Note that SPAN is capable of verifying the Initiator’s authenticity when the

Responder receives the first message in the protocol i.e. SPANJNIT. This is

because SPAN requires the Initiator to digitally sign SPANJNIT using its valid

PKI private key. If the signature on SPANJNIT cannot be verified, the SPAN

Responder will consider the message is an attack message, and the SPAN

Responder will not proceed further. Thus, SPAN can more quickly identify

legitimate requests from DoS attacks than existing approaches such as JFK.

To address another form of DoS attack that involves random modification of

encrypted contents of duplicated SPAN_AP, the SPAN Responder caches the

113

corresponding SPI values of SPAN_AP. Thus, a duplicated (and/or malformed)

SPAN_AP can be quickly detected and dropped by the Responder simply by

matching SPI values in the message header and those values in its cache.

4.6.5 Discussion of SPAN’S Anti-DoS Mechanisms

Although one may argue this would not completely eliminate DoS attacks, i.e. it

still requires some resources to detect DoS attacks, but the author argues that:

1. This is the only arrangement that would enable the Responder to distinguish

legitimate request messages from DoS attacks at the very first stage of the

protocol exchange prior to any other computationally expensive processes

such as D-H exponential computations and shared key set computations.

2. The rule-of-thumb in key exchange design is to reduce the impact of DoS

attacks: in the evaluation section, it is proven that the SPAN approach

enables much more rapid detection of DoS attacks than existing

approaches i.e. less impact on the Responder.

Note that the cost of signature verification (at the Responder) can be reduced or

even neglected [74] by using carefully selected parameters for asymmetric

algorithms: for example use a relatively small public exponent e (but larger

values for secret prime numbers p and q) [75] to achieve a quicker RSA

signature verification13. A discussion of the performance of signature verification

can be found in section 8.14.5 (p. 188). It was discussed in [76][77] that with

careful selection of parameters, the performance of RSA can be improved

without lowering the level of security of the protocol14.

13 In brief, the RSA signature verification process is to raise the signature to the power of e mod n.
A small value of e therefore reduces the computational cost for computing the exponential, hence
achieving more efficient signature verification.
14 Attacks on a message encrypted by using low-exponent RSA was identified [76], which
enables the recovery of the plaintext. The corresponding defence mechanism (through padding

114

4.6.6 Summary

■ DoS attack must be addressed in key exchange protocols.

■ IKEv2 uses COOKIEs to address DoS attacks.

■ A weakness of using COOKIEs to defend against DoS attacks in IKEv2 is

discussed.

■ SPAN addresses DoS attacks by requiring communicating peers to verify

each other’s authenticity, prior to carrying out any further computational

process.

■ Asymmetric techniques are used to achieve anti-DoS mechanisms in

SPAN. Techniques for reducing overhead are addressed.

4.7 The Use of Asymmetric Cryptography in SPAN

Although asymmetric cryptography can be used to protect active packets, it is

performance costly to digitally sign and encrypt every packet. Generally,

asymmetric cryptographic techniques are used to sign symmetric keys, and the

symmetric keys are used for packet protection. For example, SKT requires a

node to digitally sign a symmetric key, and sends the signed key to other nodes

in the network. Subsequent packets are protected by using the symmetric key.

Asymmetric cryptography, however, is a widely acceptable technique to provide

non-repudiation protection. An example is the PKI infrastructure. Given that

active packets may carry executable control or management code that is to be

executed on remote nodes, non-repudiation protection on packets’ code is

essential. Thus, there is a need to find a balance point between efficiency and

strong security.

with nonce) has been identified [106]. Readers should note that this does not affect the use of
low-exponent RSA in SPAN because we use RSA for signatures, rather than encryption.

In SPAN, the use of asymmetric cryptography is kept to a minimum. It is used

for essential non-repudiation protection only, i.e. signing static control code of

active packets, and for verifying initial exchanged keying materials only. It is not

practical to create AUTH payloads by using shared secret as a pre-shared key

(i.e. MAC) as suggested in the IKEv2 RFC. This is because this approach falls

into a chicken-and-egg problem: to establish a shared key one must first have a

shared key.

Note that the SPAN protocol requires the static code of an active packet in

SPAN_AP to be signed separately from the AUTHi payload. This is because,

the static code signature must be a separate signature (separated from other

signatures created during the SPAN protocol exchange) so that the Responder

- once becomes a new Initiator - can append this signature to the new active

packet for source authenticity and integrity protection on the static code. The

private key used to sign static code should belong to the principal (i.e. the actual

creator of the code on the originating node); whereas AUTH should be signed

by using the node’s private key. This arrangement of using two private keys is

to provide strong non-repudiation protection. The static code on an active

packet was created by the principal e.g. an administrator/management

application, so the principal’s private key should be used to sign static code;

whereas the keying materials were created by the node, so the node’s private

key should be used to sign them.

However, if a principal does not have a public key pair to sign static code, the

node’s (that the principal is currently residing) private key could be used instead.

These arrangements enhance scalability (less PKI key pair required in the

network) at the expense of less than ideal non-repudiation protection (i.e. the

code is now signed by the node on behalf of the actual creator). SPAN neither

restricts static code to be signed by the principal, nor requires each node and

each administrator/management application to be equipped with its public key

pair.

There are some scalability concerns on maintaining potentially large Certificate

Revocation Lists (CRLs) (to support signature verification). Digitally signed

static code using a PKI private key can be easily verified on a node if the node

has been equipped with the same PKI key pair (because the node would

already have the corresponding certificate of the source node’s/principal’s PKI

key pair). Otherwise, the CRL problem exists. One solution would be to

configure nodes to download CRLs when network use is low; but this requires

additional monitoring tool in place to determine real-time network traffic. A more

practical solution would be to configure nodes to download CRLs at random

times to avoid bursts of traffic [78]. Readers should note that it is essential to

digitally sign static code using a standardised, common technique such as PKI.

This is because some level of non-repudiation protection must be enforced on

static code. Note that static code are executed for management or control

purposes, so sophisticated protections must be in place so that the principal (i.e.

the Initiator) cannot deny of deploying the (potentially damaging) code.

Currently, asymmetric cryptography (such as PKI) is the only candidate

technique that has been widely used (e.g. embedded in all web browsers) to

support non-repudiation protection. Our design neither restricts static code to

be signed by the principal, nor requires each node and each

node/administrator/management application to be equipped with its public key

pair. The choice of whether relying on the node to sign static code, or to equip

117

each node/administrator/management application with their own public key

pairs, should be made by the administrators or the SPs that operate the active

networking systems i.e. depending on the level of non-repudiation protection

that is desirable to the administrators/SPs.

4.7.1 Summary

■ The use of asymmetric cryptography in key exchange protocol is

unavoidable due to the need for non-repudiation protection.

■ However, asymmetric cryptography creates more overhead than

symmetric cryptography.

■ SPAN has minimised the use of overhead by using asymmetric

cryptography only when necessary (i.e. for creating signatures on keying

elements and static code).

4.8 Applicability of SPAN

SPAN is applicable whenever a new hop-by-hop SA is required i.e. between

participating nodes along a new execution path. One may argue that SPAN

would have limited applicability when pre-established SAs exist. Note that this is

not a fair argument because this argument is based on the assumption that

hop-by-hop SAs pre-exist, whereas SPAN is to establish hop-by-hop SAs. Also,

as discussed in the assumption section (section 3.1 on p.74), currently there is

no requirement for all nodes in the entire Internet to have pre-established trust

with each other.

One concern would be that there is a chance that an active packet is sent along

an execution path along which no SA has been established or an established

SA has expired. In a small-scale network such as a LAN, it is possible that

shared keys have already been pre-established or constantly being renewed

between all nodes; but this statement cannot be applied to a large-scale

network, especially when active packets support dynamic routing. This is

because, as explained in an earlier section, the next hop of execution does not

necessary have to be to a physical neighbouring node within the same

administrative domain, but could be to any active node on the heterogeneous

large Internet. Thus, an efficient hop-by-hop SA establishment and a remote EE

information query protocol such as SPAN is needed.

One may further argue that SPAN would have limited applicability because

pre-established trust could be assumed within an administrative domain. In this

case, SPAN is deployed between gateways of heterogeneous domains only.

This statement could be valid if the administrative domain is small or

homogeneous: that the administrator/management application of the domain

has sufficient knowledge of his domain, and is able to equip each pair of hops

with different keys. Different keys are needed because if more than one pair of

hops share the same key, then per-hop authentication would fail (this is

essentially the same problem in multicast IPSec). However, if the administrative

domain were large or heterogeneous, an automated tool such as SPAN that

generates much less performance overhead than traditional techniques (see

later on evaluation) would be better suited for creating hop-by-hop SA within the

domain. In both case, the opportunity of an active packet being sent across

heterogeneous administrative domains, and subsequently the applicability of

SPAN, would depend on the scale of deployment of the underlying active

networking systems. The wider the scale of deployment of active networking

systems, the more heterogeneous administrative domains/nodes would be

involved, and as such the higher the opportunity an active packet will traverse

119

heterogeneous domains/nodes. Thus, an efficient, flexible, and scalable

hop-by-hop security approach such as SPAN is needed for large-scale

deployment of active networking systems.

4.8.1 Summary

■ SPAN is designed for establishing new SAs between nodes; it may also be

used to re-establish expired SAs between nodes.

■ The use of SPAN in an environment in which pre-established trust exists is

addressed.

■ SPAN may be used in homogeneous or heterogeneous environment (or

wherever an automated, scalable key exchange tool is needed).

5 Evaluation

In this chapter, SPAN will be evaluated against some of the existing protocols

by its efficiency, scalability, behaviour under DoS, and flexibility. The choice of

existing solutions used in this evaluation (for comparison against SPAN) will be

explained.

For efficiency evaluation, the total time required by SPAN and different variants

of IKEv2+IPSec to complete one protocol handshake and to transmit an active

packet between a pair of nodes is determined. This figure will enable the

readers to notice the efficiency difference between SPAN and different variants

of IKEv2. For scalability evaluation, the effects of deploying SPAN and other

existing protocols in a simulated large-scale network will be determined.

Different implementations of DoS attacks are launched against the protocol, to

determine the differences between the behaviour of each protocol under DoS

attacks. For robustness and flexibility, SPAN is evaluated against existing

solutions in terms of how it accommodates incompatibility and heterogeneities

in networks.

5.1 Packet Format Designs

The SPAN protocol consists of three messages: SPANJNIT, SPAN_AUTFI,

and SPAN_AP. The packet format designs for these messages are presented

in this section.

5.1.1 An Overview on Packet Format Design

SPAN packets may be encapsulated into the payload of a TCP or UDP packet.

Figure 34 shows a generic representation of a SPAN packet when

encapsulated into the payload of an UDP packet.

121

IP Header IP Header

UDP Header UDP Header

SPAN Header

UDP Payload

SPAN Payload

A UDP packet A SPAN packet

Figure 34 - A generic representation of a SPAN packet

Each SPAN packet contains a SPAN message. To identify a SPAN message,

each SPAN message must be defined with an appropriate Exchange Type. An

Exchange Type is a value placed in the SPAN header, which allows the

receiver to identify the type of the message (i.e. whether the received message

is a SPANJNIT, SPAN_AUTH, or SPAN_AP). To avoid potential complications

with standard IKEv2 messages, a set of private values should be used as the

Exchange Type of our SPAN messages. SPANJNIT uses 240, SPAN_AUTH

uses 241, and SPAN_AP uses 242. Similarly, SPAN-specific payloads are

identified using specific values for the Payload Types. SPAN-specific Payload

Types (e.g. [EEi] and [EEr].) are specified by using private values in-between

128-255.

122

5.1.2 A Generic Packet Format Design for SPANJNIT

Byte 1 Byte 2 Byte 3
‘p.

Next Payload

Byte 4

Reserved Payload Length

‘SAi data'

Next Payload Reserved Payload Length
DH Group Reserved

~D-Hi data-

Next Payload | Reserved | Payload Length

-NONCEi data'

Next Payload Reserved Payload Length
Auth Method Reserverd

-AUTHi Data'

Figure 35 - Packet format for SPANJNIT

Figure 35 shows a generic packet format for a SPANJNIT message. This

packet format contains all the fields needed to carry the compulsory elements in

the SPAN INIT message defined in section 3.4 (p.78). The Exchange Type field

tells the receiver this message is a SPANJNIT message. Each field holds one

element in the SPAN INIT message, that is, the SA offered by the Initiator to the

Responder (i.e. SAi), the Diffie-Hellman public values offered by the Initiator to

the Responder (i.e. D-Hi), the Initiator’s nonce (i.e. NONCEi), and the Initiator’s

digital signature of the message (i.e. AUTHi). The SPAN header contains

references to the SPIs that will be used by the Initiator (i.e. SPli) and the

123

Responder (i.e. SPIr, but zero for SPIr because this field must be filled in by the

Responder in the SPAN_AUTH message only). The Next Payload field enables

the packet receiver to determine what to be expected immediately following the

SPAN header (in this case it is the SA from the Initiator). The Message ID field

keeps a dummy message ID for this message. The protocol exchange starts

with message ID 1. The ID is incremented each time a message is successfully

received. For example, in the first exchange, a message with ID 1 is sent from

the Initiator to the Responder. The Responder sends a message with ID 2 back

to the Initiator, and so on. The message ID is set to zero when the SA expires.

5.1.3 Generic Packet Format Designs for SPAN_AUTH and SPAN_AP

These messages have a similar format to SPANJNIT; thus, only the

differences will be discussed in detail in this section.

Byte 1 Byte 2 Byte 3 Byte 4

> /

Next Payload I Reserved | Payload Length

-S A r D ata-

Next Payload Reserved Payload Length
DH Group Reserved

*D-Hr Data-

Next Payload Reserved Payload Length

'NO NCEr-

Next Payload Reserved Payload Length
Auth Method Reserverd

AUTHr Data

Next Payload Reserved Payload Length
4 V -

-Encrypted D ata-

Padding
Pad Length

■Integrity D ata-

Encrypted Data prior to encryption:
Reserved]Next Payload

ID Type
Payload Length

Reserverd

IDr Data

Figure 36 - Packet format for SPAN_AUTH

Figure 36 shows the packet format for SPAN_AUTH. It shows all the fields

needed to contain the elements in SPAN_AUTH, which are defined in section

125

3.5 (p.82). Note that the Responder will fill in the SPIr field, using a value that it

refers to its (to-be-established) SA. The message ID is incremented. The

AUTHr field keeps a digital signature, which is created by using the

Responder’s private key. The signature covers the header, SAr, D-Hr, NONCEi

and NONCEr. Note further that the Encrypted Data field contains the encrypted

Responder’s ID (i.e. IDr). The Initialisation Vector (IV) field keeps an IV for the

encrypted payload. This value would be needed in order to address a security

weakness in some modern encryption ciphers. This weakness is addressed by

adding a level of randomness (i.e. by using the IV) to the encryption key each

time the key is used for encryption. Detailed discussion of the use of IV in

encryption cipher is an issue of cryptographic algorithm, which is out-of-scope

of this thesis (see section 8.8 on p. 177 for more detail). The encrypted data is

appended by a checksum. The checksum is created using the freshly created

shared key set, and it covers the encrypted payload for authenticity and integrity

protection.

Byte 1 Byte 2 Byte 3 Byte 4

Next Payload Reserved Payload Length

•Encrypted Data-

Padding
Pad Length

“ Integrity Data~

Encrypted Data prior to encryption:
Next Payload Reserved | Payload Length

ID Type Reserverd

IDi Data

Next Payload Reserved | Payload Length

NONCEr Data

Next Payload Reserved | Payload Length

ACTIVE_PACKET

CODE SIG

Figure 37 - Packet format for SPAN_AP

Figure 37 shows the packet format for SPAN_AP. It is similar to SPANJNIT

and SPAN_AP, except that it contains an encrypted payload only. The

encrypted payload contains encrypted IDi, NONCEr, ACTIVE_PACKET, and

CODE_SIG. CODE_SIG is the digital signature on the static code, it is created

by the principal (i.e. which is also the Initiator in this case). The encrypted

payload is appended by a keyed checksum (which is created using the freshly

127

created shared key set) for authenticity and integrity protection of the entire

message.

5.2 Experiment Setup

For the simplest hop-by-hop evaluation, two interconnected nodes are needed.

One node should be used as the Initiator and the principal (i.e. that an active

packet is about to be injected), the other node should be used as the

Responder (i.e. that the active packet will be received). This arrangement

simulates a hop-by-hop environment. In practise, however, a hop-by-hop

transmission can involve several nodes, with intermediate nodes being passive

routers that simply intercept-and-forward IP packet.

The protocols under evaluation were run between two laptops (each with an

Intel Pentium M processor 1.70GHz, 796MHz cache, with 1GB RAM). The two

laptops were connected through an Ethernet cable. The machines have a

shared directory for keeping common data. Linux (with JDK1.5) was installed on

these machines. Figure 38 shows the experiment setup for evaluating the

SPAN protocol.

(1) SPANJNIT

(2) SPAN_AUTH

Initiator (principal) (3) SPAN_AP Responder

Ethernet cable

Figure 38 - Experiment arrangement

5.3 Prototype Design and Implementation

In this section, the prototypes are described. Their design choices are

explained. Note that the prototypes are implemented for protocol evaluation

only. The protocols are not limited to the techniques that were chosen to

implement the protocol prototypes.

5.3.1 Choosing Programming Language

For a fair evaluation, the prototypes of the protocols under evaluation must be

developed using the same programming language. This is because different

programming languages have different performance (e.g. C is faster than Java).

A prototype of SPAN and the relevant components of IKEv215 were developed

15 The reason for developing (relevant parts of) IKEv2 is that at the time when the implementation
starts (early 2005), no open source of IKEv2 was available.

in Java for evaluation. Java was chosen because of its compatibility and its

usability.

5.3.2 Choosing Cryptographic Algorithms

Again, for a fair evaluation, the prototypes must use the same set of

cryptographic algorithm. This is because different cryptographic algorithms

have different performance e.g. Triple Data Encryption Standard (TDES) would

be less efficient than Data Encryption Standard (DES). Generally, the more

sophisticated the cryptographic algorithm, the more resources it would need;

but relatively, they are more secured. However, it should be noted that this

evaluation is not to evaluate levels of security of a chosen cryptographic

algorithm; but to evaluate the efficiency between the chosen key exchange

protocols. Thus, the chosen cryptographic algorithm(s) should be easy to

implement. DES and DSA are chosen as the encryption algorithm and digital

signature algorithm. The choices will be explained shortly later.

5.3.3 The SPAN Package

The SPAN package is designed for evaluation purpose; as such, simplicity is

the main design criteria. As indicated, it is implemented in Java. An overview of

the package’s class files is provided below. The code that implements the

classes will be discussed shortly afterwards.

■ The SPAN_R class

This is the main class that implements the SPAN Responder. It has 363 lines of

code. This class is started first and listens on a port for incoming initialisation

request (i.e. SPANJNIT) from remote SPAN Initiators. It verifies the signature

of the initialisation request, computes its own D-H values, and computes the

shared key set. It then prepares the SPAN_AUTH message, and sends it back

to the Initiator through a socket. Lastly, it waits for the Initiator’s last message

(i.e. SPAN_AP).

■ The SPANJ class

This is the main class that implements the SPAN Initiator. It has 381 lines of

code. This class starts the SPAN protocol by generating a D-H value, creates a

signature of the message (i.e. AUTHi), and sends the SPANJNIT message to

the Responder. It then intercepts the SPAN_AUTH message from the

Responder, verifies the message’s signature, and computes the shared key set.

It sends the last message in the protocol, i.e. SPAN_AP, to the Responder. The

message includes a dummy active packet, i.e. ACTIVE_CODE, which

subsequently includes the active packet’s static code (i.e. STATIC_CODE). The

size of the active packet and its static code is variable.

■ The KeyDisplayer class, the KeyReader class, and the KeyWriter class

These classes are used to display the DES key (i.e. the shared key), and to

read and write the DES key to local storage for future reference. They have 141

lines of code.

■ The Signer class

This class is responsible for creating and verifying digital signatures in the

SPAN protocol. It has 122 lines of code.

■ .keystore

This file keeps the asymmetric key pair, which is needed for creating and

verifying digital signatures in the SPAN protocol.

5.3.4 Creating and Verifying Digital Signatures in SPAN

In SPAN, digital signatures are created using Digital Signature Algorithm (DSA).

DSA is used because it is a standardised technology for creating digital

signatures; also, it is supported in Java. DSA requires users to have

pre-installed asymmetric keys (i.e. a keystore) for signing and verifying

signatures. These keys are simulations of the public key certificates in the

SPAN protocol. This requirement is acceptable for this evaluation because the

SPAN protocol requires participating nodes to have public key certificates. This

file is stored as a hidden file under the user’s account. The keytool command in

Linux is used to generate this key.

To generate a keystore file:
$ keytool -genkey -alias [alias name] -keyalg [key algorithm]
-keystore [keystore location]/.keystore
Example:
$ keytool -genkey -alias lcheng -keyalg DSA -keystore
/home/lcheng/.keystore

Figure 39 - Asymmetric key generation using keytool

To create and verify a digital signature, the Signer class is used. The Signer

class contains methods for creating and verifying digital signatures, using the

key pair information specified in the .keystore file.

// Assuming there is some data (i.e. raw_data) to be signed, and
// the signature will be stored (i.e. sig_file) for verification:
char[] storePassword = "12345678".toCharArray();
File sig_file = new File ("data.sig") ;
String algorithm =
System.getProperty("signature.algorithm","DSA");
Signer mySigner = new Signer(algorithm, storePassword);
mySigner.createSignature(raw_data, sig_file, storePassword,
"lcheng");

// Assuming some signed data (i.e. raw_data) is to be verified:
ByteArraylnputStream in = new ByteArraylnputStream(raw_data);
File sig_file = new File ("data.sig") ;
char[] storePassword = "12345678".toCharArray();

String algorithm = System.getProperty("signature.algorithm",
"DSA");
Signer mySigner = new Signer(algorithm, storePassword)/
boolean valid = mySigner.verifySignature(in, sig_file, "lcheng");

Figure 40 - Creating and verifying a digital signature using the Signer
class

Essentially, the key pair information from the .keystore file is read into memory.

A Signer object is created, that is initialised with the chosen cryptographic

algorithm (i.e. DSA), and the corresponding .keystore file password (so that the

object has access right to the key pair information). The Signer object takes the

data to be signed, extracts the private key from the .keystore file, and use the

update() and sign() methods of the Signature class to create a digital signature

of the data. The created signature is stored for verification at a later stage.

Figure 41 shows the code of the createSignature() method of the Signer class.

public byte [] createSignature(byte[] inputTextBytes, char
keyPass [], String myAlias) throws GeneralSecurityException,
IOException
{

PrivateKey pk = (PrivateKey)ks.getKey(myAlias, keyPass);
sig.initSign(pk);
byte[] buffer = inputTextBytes;
int count = 0;
for(int i = 0; i < buffer.length; + + i)
{

sig.update(buffer, 0, count);
}

byte[] signatureBlock = sig.signO;
return signatureBlock;

}

Figure 41 - The createSignatureQ method of the Signer class

The signature verification process is similar. The Signer object takes the data

133

that was signed, the digital signature of the signed data, and extracts the public

key from the keystore file, in order to verify the digital signature of the data. The

method returns false if the verification fails. The code for the verifySignature is

shown in Figure 42.

public boolean verifySignature(InputStream in, File sigfile,
String myAlias) throws GeneralSecurityException, IOException
{

PublicKey pk = ks.getCertificate(myAlias).getPublicKey();
sig.initVerify(pk);
byte [] buffer = new byte[in.available() + 100];
int count = 0;
while((count = in.read(buffer)) > 0)
{

sig.update(buffer, 0, count);
}

in.close();
FilelnputStream signedln = new FilelnputStream(sigfile) ;
byte[] signatureBlock = new byte[signedln.available()] ;
signedln.read(signatureBlock) ;
signedln.close();
return sig.verify(signatureBlock);

Figure 42 - The verifySignature() method of the Signer class

5.3.5 D-H Public Value Generation

DHParameterSpec myDHSpec;
AlgorithmParameterGenerator paramGen =
AlgorithmParameterGenerator.getlnstance("DH");
paramGen.init(512);
AlgorithmParameters params = paramGen.generateParameters();
myDHSpec =
(DHParameterSpec)params.getParameterSpec(DHParameterSpec.class);
KeyPairGenerator myKeyPairGenerator =
KeyPairGenerator.getlnstance("DH");

134

myKeyPairGenerator.initialize(myDHSpec);
KeyPair myKeyPair = myKeyPairGenerator.generateKeyPair() ;
KeyAgreement myKeyAgreement = KeyAgreement.getlnstance("DH");
myKeyAgreement.init(myKeyPair.getPrivate());
byte[] iPublicDHValue = myKeyPair.getPublic () .getEncoded() ;

Figure 43 - The code for creating the Initiator’s D-H public value

The Exchange Type field tells the receiver this message is a SPANJNIT

message. Figure 43 shows the code for creating the Initiator’s D-H public value,

and encoding it, prior to sending it over to the Responder. First, an algorithm

parameter specification is created. This specification is specified to use D-H as

the public value generation algorithm. This specification, in turn, allows a

KeyPairGenerator to be initialised. The KeyPairGenerator is the key component,

which generates the D-H public and private values. It does this by calling the

generateKeyPair() method. Note that the private output value of the D-H

algorithm is kept locally at the Initiator, and never transmitted to the Responder.

On the other hand, the D-H public value (i.e. iPublicDHValue) is sent to the

Responder, so that the Responder can compute the shared key set. The D-H

values generation process at the Responder is almost identical to the one

shown above, except that the Responder’s key pair is initialised using the

Initiator’s D-H public value (i.e. iPublicDHValue). Figure 44 shows the code at

the Responder.

KeyFactory rKeyFactory = KeyFactory.getInstance("DH") ;
X5 0 9EncodedKeySpec x509KeySpec = new
X509EncodedKeySpec(iPublicDHValue);
PublicKey iPublicKey = rKeyFactory.generatePublic(x509KeySpec);
DHParameterSpec rDHSpec = ((DHPublicKey)iPublicKey).getParams();
KeyPairGenerator rKeyPairGenerator =
KeyPairGenerator.getlnstance("DH");

135

rKeyPairGenerator.initialize(rDHSpec);
KeyPair rKeyPair = rKeyPairGenerator.generateKeyPair();
KeyAgreement rKeyAgreement = KeyAgreement.getlnstance("DH") ;
rKeyAgreement.init(rKeyPair.getPrivate ()) ;

Figure 44 - The code for creating the Responder’s D-H value

5.3.6 Shared DES Key Computation

Once the Initiator and the Responder has exchanged the D-H public

parameters, they can establish the shared key set. The shared key set is

calculated at the Responder as soon as the Responder has received, and

verified, SPANJNIT. The code shown in Figure 45 shows how the symmetric

(shared) DES key is computed at the Responder, after it has received and

verified the SPANJNIT message from the Initiator.

rKeyAgreement.doPhase(iPublicKey, true);
SecretKey rDESKey = rKeyAgreement.generateSecret("DES");
byte[] rDESKeyBytes = rDESKey.getEncoded();
KeyDisplayer myKeyDisplayer = new KeyDisplayer();
String rDESKeyString = myKeyDisplayer.toHexString(rDESKeyBytes) ;
KeyWriter myKeyWriter = new KeyWriter("Responder.key", rDESKey);
myKeyWriter.writeToFile() ;

Figure 45 - The code for computing the shared key set at the Responder

The code shown in Figure 45 shows how the Responder calculates its

symmetric DES key. The computation process needs the Initiator’s D-H public

value (i.e. iPublicKey). The Responder’s DES key (i.e. rDESKey) is initially

created as a SecretKey object, which is later converted into a byte array (i.e.

rDESKeyBytes) for easy manipulation. The key is then further converted into a

String using the toHexString() method of the KeyDisplayer class for display

purpose. The original SecretKey object (i.e. rDESKey) is written to local storage

13fi

(i.e. Responder.key), so that it can be used to protect subsequent messages

exchanged between the Responder and the Initiator. The Initiator uses the

same algorithm to create its DES key.

5.3.7 Encryption and Decryption Code Implementation

Once the shared DES key is ready at both the Initiator and the Responder

respectively, the key can be used to encrypt and decrypt data. All encryption

uses DES in Electronic Code Book (ECB) mode. DES in ECB mode is used

because it is a standardised, easy to implement technology, and it is supported

in Java since Java 1.2. DES is extensible to support Triple DES (TDES), which

is considered as a more secure encryption algorithm. ECB enables each

possible block of plaintext to have a defined corresponding ciphertext; thus,

using ECB enables the developer to check whether the encryption over a

particular plaintext was carried out correctly. ECB mode supports

PKCS5Padding, which adds dummy padding to the original (unencrypted)

payload prior to encryption. This is essential process in encryption. Figure 46

shows the code used in SPAN for encryption and decryption.

// Assuming a DES key (i.e. myDESKey) is available and some data
// (i.e. cleartext) to be encrypted:

Cipher encipher = Cipher.getlnstance("DES/ECB/PKCS5Padding");
encipher.init(Cipher.ENCRYPT_MODE, myDESKey);
byte[] ciphertext = encipher.doFinal(cleartext);

// For decryption, use the same symmetric DES key (i.e. myDESKey) :
Cipher decipher = Cipher.getlnstance("DES/ECB/PKCS5Padding");
decipher.init(Cipher.DECRYPT_MODE, myDESKey);
byte[] cleartext = decipher.doFinal(ciphertext);

Figure 46 - Encryption and decryption code in SPAN

The code essentially creates a Cipher object (i.e. encipher), that is instantiated

with the chosen cryptographic algorithms (i.e. DES, ECB, and PKCS5Padding)

and the user’s DES key. The user’s DES key is created dynamically during the

SPAN protocol (see section 5.3.6 on p. 136). Then, the created Cipher object

encrypts the data (i.e. cleartext) by calling the doFinal() method. The resultant

encrypted data is in a byte array (i.e. ciphertext). The decryption process is

asymmetric to the encryption process: a decryption Cipher object is created and

instantiated with chosen cryptographic algorithms and corresponding DES key

(i.e. decipher). The decryption Cipher then decrypts the encrypted data (i.e.

ciphertext) by using the same method (i.e. doFinal()), and returns the decrypted

data in a byte array (i.e. cleartext).

5.3.8 Sending Packets on the Wire

It was discussed in section 3.10 (p.96) that packet lost in SPAN may be handled

through traditional retransmission mechanism. For simplicity, SPAN messages

are sent as UDP packets. Once a SPAN message is ready, it is sent to the

other peer. The communication is via a DatagramSocket. Figure 47 shows the

code used by the Initiator for sending the packet on the wire to the Responder,

and listens for the Responder’s incoming message.

// Send SPAN_INIT to Responder:

InetAddress rAddr = InetAddress.getByName(rAddrString);
sendSocket = new DatagramSocket(sendPort);
DatagramPacket packet = new DatagramPacket(SPAN_INIT_bytes,
SPAN_INIT_bytes.length, rAddr, rPort);
sendSocket.send(packet);
sendSocket.close() ;

// Now wait for Responder's message (i.e. SPAN_AUTH) :

byte[] buffer = new byte[bufferSize];
packet = new DatagramPacket(buffer, buffer.length);
recvSocket = new DatagramSocket(recvPort);
recvSocket.receive(packet);
raw_data = packet.getData();
recvSocket.close();

Figure 47 - Packet transmission via DatagramSocket

Essentially, the Initiator opens a DatagramSocket (i.e. sendSocket), specifies

the Responder’s listening address and port (i.e. rAddr, rPort), and packages the

SPANJNIT message into a UDP packet (i.e. packet). It calls the send() method

to send the packet to the Responder. Then, the Initiator opens another socket

(i.e. recvSocket), and waits for the Responder’s reply (i.e. the SPAN_AUTH

message). When the reply arrives at the Initiator’s listening socket, the data in

the packet (i.e. packet) is extracted (i.e. raw_data) by the Initiator by calling the

getData() method.

5.3.9 The IKEv2 Package

Although the design of the IKEv2+IPSec and SPAN protocols are different

(IKEv2+IPSec uses six to eight messages to complete protocol exchange and

active packet transmission, whereas SPAN uses only three messages), the two

packages use the same classes and methods as described above. The reason

for using the same classes and methods is because (as explained in section 5.3

on p. 129), in order to establish a fair evaluation environment, the

implementations of the protocols under evaluation must use the same

technologies. For example, in IKEv2, the same createSignature() method

presented in section 5.3.4 (p. 131) is used to create digital signatures, and the

same encryption method (section 5.3.7 on p. 137) is used to encrypt data during

13Q

the key exchange protocol, and for encrypting active packets (i.e. a simulation

of IPSec), and so on. The differences between the two protocols are not

between the implementations, but are between the number of cryptographic

processes (i.e. efficiency), and the number of messages (i.e. scalability),

needed to complete the protocol. In the following sections, the efficiency and

scalability differences between the two protocols will be discussed.

5.4 Efficiency and Scalability Evaluation

The performance of SPAN is compared with variants of IKEv2:

a) IKEv2+IPSec without PFS

b) IKEv2+IPSec with PFS support (new D-H values)

PFS is defined in [79]16. PFS is optional [80] because it enables strong security

[34], but incurs a high performance overhead because new D-H values are

generated. Detailed discussion of PFS can be found in section 8.12 on p. 180.

The IKEv2+IPSec approaches were chosen for efficiency assessment because:

1. The shared key computation process of SPAN is similar to the one used in

IKEv2 (both uses D-H).

2. The IKEv2+IPSec approach is one of the approaches identified earlier in

this thesis that provides a similar level of flexibility as SPAN, as they both

support SA negotiation.

3. KSV essentially relies on IKEvI, and IKEv2 is meant to optimise IKEvI.

4. IKEv2 is a standardised protocol (published in the form of RFC) i.e.

reasonable to be used as a benchmark for comparison.

The first measurement is efficiency, i.e. the time to complete one protocol

16 PFS is defined as “ ...an authenticated key exchange protocol provides PFS if disclosure of
long-term secret keying material does not compromise the secrecy of the exchanged keys from
earlier runs" [79].

exchange (excluding packet execution time which is application-specific), is

measured. In each trial, a dummy active packet (of 1024 bytes with a static

code of 512 byte) is transmitted securely between the two peers during the

SPAN protocol exchange. Note that it is the performance differences between

different approaches that this thesis is measuring, not the actual performance

results. This is because actual performance results are directly related to

implementation and software design, which is a programming issue. Figure 48

shows the average results of 400 trials.

6000
IKEv2+IPSec
(withPFS)

5000

4000

SPAN
S> 3000

iiiglfsp
W§.

2000

1000

□ SPAN 0 IKEv2+IPSec (no PFS) □ IKEv2+IPSec (with PFS)

Figure 48 - Efficiency evaluation between SPAN and IKEv2 variants

The experiment results show that SPAN generates on average 15% to 40%

less in performance overhead when compared to IKEv2+IPSec without/with

PFS support. On average, SPAN needs 3103.76 milliseconds (±361 ms),

IKEv2+IPSec (no PFS) needs 3652.78 milliseconds (±303ms), and

IKEv2+IPSec (with PFS) needs 5177.315 milliseconds (±366ms). The standard

deviation shows the root mean square deviation of the values from their

141

arithmetic mean.

It is clear from the results that SPAN has a significant efficiency advantage over

IKEv2+IPSec (with PFS) i.e. -40% less in overhead; and a slightly less

significant advantage over IKEv2+IPSec (without PFS) i.e. -15%. Readers

should note that:

■ IKEv2+IPSec (without PFS) is more efficient than IKEv2+IPSec (with PFS)

because IKEv2+IPSec (without PFS) achieves efficiency at the expense

of less than ideal security. Although there has always been a challenge to

determine a balance point between security and performance, in [80], it

was stated that IKEv2+IPSec (with PFS) is ideal for situations where

strong security is needed. Readers should note that active packets might

carry control executable code, which could cause significant damage to

systems if the code is compromised. Therefore, this thesis argues that

strong security is desired in active network security solutions;

■ It should be noted that one important factor is that SPAN is deployed in a

hop-by-hop manner: this means the actual magnitude of the time delay

reduction (i.e. actual time saved) increases as the scale of deployment of

SPAN increases. This implies the efficiency advantage of SPAN - in terms

of magnitude - becomes more significant as the scale of deployment of

SPAN increases. Using the (average) results presented in section 5.4

(p. 140), a 15% reduction in processing time of a process that originally

takes 3600 milliseconds (i.e. IKEv2+IPSec without PFS) means the

process would now take 3060 milliseconds only. One may argue that a

540 milliseconds efficiency advantage has very little impact. However,

when deployed in large scale, say between 256 nodes (which is the typical

maximum TTL value in today’s Internet), the magnitude of time reduction

would be 255 x 540 = 137,700 milliseconds (2.295 mins). Similarly, when

SPAN is deployed in a large scale, a 15% advantage becomes much

more significant. More importantly, the significance of efficiency

advantage of SPAN is directly related to the size of the deployment: the

larger the scale of deployment, the more significant the advantage. This

also implies that SPAN scales better than existing solutions (see later for

more on scalability evaluation).

The results on efficiency are in-line with the arguments that were made in an

earlier section. SPAN is more efficient because of the reduced exchange

messages, i.e. reduced number of cryptographic operations on exchange

messages (e.g. for message authenticity/integrity protection). Hence, SPAN

has limited number of hashing, and requires only one D-H exponent generation

(two are required in IKEv2+IPSec with PFS). One may argue IKEvI in

aggressive mode+IPSec may produce a similar performance result as SPAN

due to its simplicity in key exchange handshake (section 2.12 on p.70): but as

explained in an earlier section (section 4.4 on p. 104), IKEvI in aggressive

mode+IPSec does not protect peers’ identity (whereas identities are protected

in SPAN); also, IKEvI in aggressive mode requires more time to detect DoS

attacks (section 5.5 on p. 150). Furthermore, SPAN scales better than IKEvI in

aggressive mode+IPSec because SPAN enables secure active packet

transmission during SA establishment; whereas IKEvI in aggressive

mode+IPSec can provide secure packet transmission only after IKE SA and

IPSec SA establishment (section 5.4 on p. 140).

One may argue that the use of asymmetric cryptography would be acceptable if

the number of active packets traversing a pair of nodes over a period (before

the SA expires) is kept small. Thus, the total time to complete secure

transmission(s) of different number of active packet(s) by using symmetric (i.e.

SPAN) and asymmetric (i.e. DSA) approaches respectively over a period were

measured. Note that each SPAN experiment included a dynamic establishment

of a hop-by-hop SA; whereas no dynamic hop-by-hop SA was needed for

deploying DSA because DSA uses asymmetric cryptography.

Figure 49 shows the results of SPAN vs. DSA, which shows the time needed for

protecting different number of active packets across a pair of nodes (using

SPAN and DSA respectively). For example, the total time needed to transmit

three active packets across a pair of nodes using SPAN is 3221 milliseconds

(±341 ms), in contrast, DSA takes 2095 milliseconds (±78ms) only.

10000

9000

DSA X8000

2 7000

6000

« 5000

SPAN4000

H 3000

2000

1000

0 1 2 3 4 5 6 7 8 9 10

Total no. of packets over a period of time

Figure 49 - Symmetric vs. asymmetric

The results (Figure 49) show that dynamic establishment of shared key set

does introduce more overhead than the asymmetric approach when the number

of active packets being protected across a pair of nodes over a period of time is

limited. However, the performance advantage of the asymmetric approach is

overturned by SPAN when just four packets are to be secured over a hop over

a period.

The results imply that symmetric approaches have scalability advantages over

asymmetric approaches. This is because relatively much less time is needed to

protect active packets by symmetric approaches when the number of active

packets to be protected is large (i.e. large number of active packets to be

protected means large-scale of deployment). The results shown in Figure 49

show that when protecting 10 active packets across a pair of nodes, SPAN

takes 3491 milliseconds (±356ms), whereas DSA needs 9752 seconds

(±125ms) i.e. SPAN has an efficiency advantage of -64%.

One may argue that DSA still has the advantage when the number of packets to

be protected is small. The reason why DSA has this advantage is that SPAN

requires hop-by-hop SA establishment, which is a relatively time consuming

process (the steep slope at the beginning of the curve of SPAN in Figure 49

shows the overhead for establishing a hop-by-hop SA). However, once the SA

has been established, it can be re-used to protect subsequent active packets

travelling along the same pair of hops. Thus, no SA has to be re-established (i.e.

no time consuming process) until the SA expires.

Note that the standard lifetime of a SA ranges from 8 hours to 24 hours17 [81].

The lifetime of a symmetric SA is much shorter than the lifetime of credential

17 A SA must be replaced once it has expired. The expiry time is known as the lifetime of a SA.
The author has carried out a search for the standard lifetime of a SA, but there is no single
definition of a SA lifetime. The figures used in this thesis were identified in [81]: it was discussed
that as a good practise, (symmetric cryptography based) VPN tunnels should be re-established
between 8-24 hours.

references created by using asymmetric cryptography (e.g. Verisign are selling

digital certificates that last between one to three years [82]). SAs are subjected

to renewal because symmetric keys are less complex than asymmetric keys

(Question 5 on p. 146), and therefore must be replaced more frequently than

asymmetric keys. This is because less complex keys are easier to be hacked.

This implies that a hop-by-hop SA, once established, should remain for 8 to 24

hours. Thus, the author argues that, since active packets may be used for

real-time control and management purposes, it is reasonable to assume that

more than four active packets will traverse a pair of nodes over 8 to 24 hours.

As such, the author argues that the SPAN approach (which uses a mixture of

symmetric and asymmetric techniques) has an efficiency and scalability

advantage when compared to approaches that use asymmetric techniques

only.

Question 6: Explain the reasons why symmetric keys are less complex than

asymmetric keys.

Symmetric keys are less complex because of the ways they are generated.

According to the asymmetric key generation process described in section 8.14

(p. 183) an asymmetric public key involves careful selection of large prime

numbers. A resultant product of two large prime numbers is computationally

impossible to factorise. Thus, asymmetric keys are difficult to hack. On the

other hand, symmetric keys are generated randomly. For instance, by applying

a secure hash function to a passphrase, and use the resultant hash value as

the key [83]. Weaknesses in DES keys are discussed in [84],

Note that the results in Figure 49 also show that SPAN is more scalable than

asymmetric cryptography, because the time delay for the asymmetric approach

146

increases much more significantly than SPAN as the number of packets

protected increases (i.e. a steeper slope). This means the more the number of

active packets to be protected, asymmetric approaches would take

(proportionally) more time than symmetric approaches. This result is in-line with

the discussion presented in Question 6 (p. 166), that symmetric operations are

much faster than asymmetric operations.

For further scalability evaluation, the following are compared:

(1) SPAN

(2) IKEv2+IPSec (with PFS)

(3) IKEv2+IPSec (without PFS)

(4) SANE

(5) IKEvI in aggressive mode+IPSec

(6) IKEv2+COOKIE

(7) KSV

Scalability evaluation is conducted by determining the number of message

exchanges required between peers in order to complete the protocols

respectively along an execution path of 256 nodes. 256 nodes are chosen

because that is the maximum TTL value i.e. to simulate large-scale deployment.

TTL is the maximum number of hops that a packet is allowed to traverse. It is

used as a technique to stop packets looping forever in the network.

0 50 100 150 200 250

No. of hops

Figure 50 - No. of message exchanges along 255 hops

Figure 50 shows the number of message exchanges along a path of 255 hops

under the different approaches. For example, SPAN requires three messages

to be exchanged between a pair of nodes to complete one handshake; so for

255 hops, SPAN would need a total of 765 messages to be exchanged.

As shown in Figure 50, SPAN scales better than existing approaches. The

larger the scale of deployment (i.e. more hops), the difference is more obvious.

These promising results indicate that SPAN has an efficiency and scalability

advantage over related work i.e. reduction in message processing and

cryptographic operations and state maintenance.

Note that SPAN needs three messages to complete its protocol for a hop. One

may argue whether there are ways to reduce further the number of message

exchanges in SPAN. If dynamic key establishment is required, and if the rule of

thumb “ ...the communicating peers must be verified to each other (through

148

verifying AUTHi and AUTHr) prior to active packet transmission” (section 4.2 on

p. 100) still applies, three is indeed the minimum number of message

exchanges for per hop establishment. This is because one message must be

reserved for sending across an active packet (note that active packet should

only be sent across after the peers have verified each other’s authenticity). One

message must be sent from the Initiator to the Responder to verify the Initiator’s

authenticity, another message must then be sent from the Responder to the

Initiator to verify the Responder’s authenticity; note that these messages must

be countersigned to combat impersonate attacks. Imagine a traveller

purchasing a flight ticket from a travel agent. Prior to the actual transaction, the

traveller must verify the authenticity of the travel agent e.g. by checking the

agent’s registered business licenses (i.e. the Initiator verifies the Responder).

The travel agent must also verify the traveller’s authenticity e.g. by checking the

traveller’s passport, credit cards... and more (i.e. the Responder verifies the

Initiator), prior to completing the transaction e.g. handing over the flight ticket

(i.e. the actual transmission of an active packet). Therefore, it is apparent that,

three message exchanges per hop is indeed the least number.

centralised decentralised

Figure 51 - Centralised approach vs. decentralised approach

Figure 51 explains the other important reason why SPAN is more scalable. This

is because SPAN (and others except KSV and some workarounds of SANE) is

completely decentralised. More specifically, the number of state maintenance

on a source node depends on the number of its immediate neighbours on a

(physical or virtual) network. Under centralised approaches such as KSV and

some workarounds in SANE, because a keying server/the source node is

involved in hop-by-hop packet transmission/key establishment, the number of

state maintenance of a source node depends on the scale of the entire

(physical or virtual) network. Centralised approaches do not scale well in

large-scale networks.

5.5 Evaluation on Detecting DoS Attacks

SPAN is compared against IKEv2 for evaluating the protocols under DoS attack

resistance. IKEv2 is chosen because IKEv2 is a standardised protocol that has

been used in many implementations. Furthermore, IKEvI in aggressive

mode+IPSec and JFK experience a similar DoS attack problem as IKEv2. This

is because the first message from the (IKEvI in aggressive mode or JFK)

Initiator is not protected (i.e. authenticated) by any means; therefore, the (IKEvI

in aggressive mode or JFK) Responder carries out a series of cryptographic

operations upon receiving un-authenticated or integrity checked initialisation

messages. It will be discussed further shortly that this arrangement has a

negative effect on DoS attack detection.

As discussed in an earlier section, IKEv2 uses a 6-message exchange with

COOKIE as a countermeasure against DoS attacks (section 2.10.4 on p.64).

Note that under this arrangement, an IKEv2 Responder does not verify the

Initiator until the fifth message in its exchange. The first evaluation of the

protocols when they are subjected to DoS attacks is to monitor the behaviour of

a SPAN Responder and an IKEv2 Responder (with COOKIE being used) under

different types of DoS attack messages. For each DoS attack evaluation, 100

trails of the Responder to detect DoS attacks were monitored. The average time

delay is the (average) time needed by a Responder to detect a DoS attack. This

time delay enables one to determine the reply time of the Responder when it is

subjected to DoS attacks. Thus, the Responder that is quicker to detecting DoS

attacks may terminate DoS attacks quicker, and therefore fewer resources

would be wasted, and therefore it is more resistant to DoS attacks.

In the first evaluation, the attacker is configured to send to an IKEv2 Responder

legitimate IKEv2 message 1 and 3 (with valid COOKIE), and it signs IKEv2

message 5 with an illegitimate public key pair. On the other hand, the attacker

sends an illegitimate SPANJNIT message (with invalid signature) to a SPAN

Responder. The average DoS attack detection time of the SPAN Responder

and an IKEv2 Responder are 235 milliseconds (±57ms) and 2402 milliseconds

(±354ms) respectively (-90% less). This result is in-line with the previous

discussion: that SPAN detects DoS attacks much quicker than IKEv2. This is

because under this form of DoS attack, an IKEv2 Responder would be wasting

resources on creating COOKIE (upon receiving IKEv2 message 1), computing

new D-H exponentials (upon receiving IKEv2 message 3), computing shared

key set (upon receiving IKEv2 message 5), decrypting the encrypted payload in

IKEv2 message 5, and checking the (invalid) digital signature in IKEv2

message 5.

To accommodate the performance costly D-H exponential computation process,

the IKEv2 RFC recommends several ways to reuse D-H exponentials at the

expense of having less-than-perfect forward secrecy, or maintaining more state.

Thus, another evaluation is carried out, in which the process is identical to the

previous experiment except that D-H exponentials are reused in IKEv2. The

results show that on average it takes 883 milliseconds (±347ms) for an IKEv2

Responder to detect a DoS attack i.e. SPAN has -73% less in time delay.

Although the time taken to carry out an operation does not necessary give any

direct indication on the actual resource needed to carry out the operation (i.e.

CPU power, memory used), this thesis argues that it is a good indication, that is

related to the consumed amount of resources for carrying out the operation (i.e.

more time required means it is likely that more resources are needed). One can

imagine that if each Responder is implemented as multiple threads, and each

thread handles each call (initiated from the Initiator), the less time the thread

needs to detect a DoS attack, the better the design. This is because the more

threads that are alive at one time, the more resources are consumed at one

time for the node to manage each thread (and too many threads at one time

may eventually overload the node, which is what DoS attacks are for).

Therefore, by comparing the time needed to detect DoS attacks between

different approaches, this gives the readers an insight on the differences

between the behaviours of the approaches under DoS attacks.

5.6 Evaluation on Robustness & Flexibility

Evaluation on the robustness and flexibility of the approaches are based on

how the protocols would operate in a heterogeneous networking environment in

two aspects: a) verification of static code execution compatibility, and b) support

for security parameter negotiations.

SPAN has the [EEi] field as an optional field to accommodate code execution

incompatibility. By having this field in the first message, the Initiator may

propagate authenticity and integrity protected code execution requirements to

potential Responder(s), prior to any further processing. Potential Responders

can determine compatibility prior to continuing any further processing. Potential

Responders must evaluate their own systems, to ensure that they can execute

the to-be-sent active packet (i.e. either their systems fully satisfy the Initiator’s

requirements, or as long as the Initiator makes some accommodations on the

static code). Therefore, prior to establishing hop-by-hop SA and subsequently

active packet transmission, the Initiator could be certain that the Responder is

capable of executing the active packet. In other words, the Initiator will not be

wasting resources on establishing hop-by-hop SA with incompatible Responder.

In this way, SPAN improves robustness of the underlying active networking

systems, through ensuring compatibility of code execution on remote nodes

prior to hop-by-hop SA establishment and active packet transmission.

SPAN enhances flexibility by enabling hop-by-hop SA negotiations between

nodes. By using the SAi and SAr fields, nodes can negotiate security

parameters e.g. supported/preferred encryption algorithms and key size in a

hop-by-hop manner. It should be noted SANTS does not address hop-by-hop

key establishment; whereas pre-distributed shared key, SKT, and SANE do not

support SA negotiation. As such, these approaches have limited flexibility when

deployed in a heterogeneous environment, because individual security needs

may not be satisfied.

6 Conclusions

The thesis began with an introduction to the fundamental concepts of active

networking and one of its major security challenges, namely, hop-by-hop

security. Existing hop-by-hop solutions for active networks were discussed. The

author’s solution, i.e. SPAN, was presented, discussed, and evaluated.

It was discussed in section 1.5 (p.20) that an active network consists of a

mixture of active nodes and passive nodes in the Internet. An active node is a

passive node equipped with an active platform. The NodeOS of an active

platform hosts several functions to serve specific AAs or EEs’ needs. Example

functions are security, packet de-multiplexing, resource control... and more.

An active node is capable of intercepting active packets, and executing the

code carried in the packets. Active packets carrying active code are created by

a principal (e.g. a management application), and are injected into the active

network at the source node. Active packets are different from passive packets,

that active packets may carry static executable code and dynamic execution

results. At each intercepting node, the packet’s static code is executed. The

execution results may be added back to the packet before the packet is

forwarded to its next hop. This means that the contents of active packets are

subjected to modifications whilst the packets are traversing the network. This

thesis regarded this feature as the dynamic nature of active packets.

In section 1.6 (p.28), it was discussed that active packets must support dynamic

routing (i.e. pre-specified route of active packet is neither scalable nor practical).

This is because to enforce static routing, the principal/source node must have

in-depth knowledge of the entire network, and must assume stable network

conditions. Dynamic routing means the next hop of an active packet is

determined at the node of execution based on execution results and real-time

network conditions. Dynamic routing is therefore a key feature to enhance

flexibility in active networking technologies.

Also in section 1.6 (p.28), it was further discussed that there is a need for a

hop-by-hop security approach for heterogeneous large-scale active networking

systems. The need was due to the dynamic nature and dynamic routing

capability of active packets. A hop-by-hop security approach means active

packets are protected in a hop-by-hop manner, so that modifications on an

active packet made by an intermediate intercepting node are verifiable: the

authenticity and integrity of the dynamic data on active packets should be

verified by the identity of the node that the packets were last modified.

Furthermore, this thesis has also identified that the static code of an active

packet must be protected, but based on the identity of the principal. This is

because the static code is created by the principal, and the same piece of code

is expected to be executed on all nodes without subjected to changes.

Therefore, the authenticity and integrity of static code should be verified against

its actual creator i.e. the principal. Static code should also be subjected to

non-repudiation protection. This is because static code may be created for

control purposes on remote nodes, and compromised control operations may

lead to potential damage on remote nodes. Therefore, static code should be

protected in a way that its creator cannot deny any wrongdoing. Lastly,

confidentiality protection should be enforced on active packets, so that

attackers cannot determine their contents.

Existing solutions to the problem space were discussed in chapter 2 (p.37). The

drawbacks of related work in terms of scalability, efficiency, flexibility,

robustness and security were discussed. Related work either does not support

SA negotiation, which limits its flexibility to cope with heterogeneity between

nodes of different administrative domains (e.g. pre-distributed shared key, SKT,

SANE). Related work follows a centralised approach which is not scalable (e.g.

KSV), or does not provision for key management (e.g. SANTS), or without

arrangements to optimise performance for hop-by-hop deployment (e.g. IKEv2);

or provides no identity protection to both the Initiator and the Responder (e.g.

IKEvI in aggressive mode+IPSec and JFK); or wastes more resource prior to

detecting DoS attacks (e.g. IKEvI in aggressive mode, IKEv2 and JFK).

Existing solutions do not improve robustness of the underlying active network

system. Pre-distributing shared keys to all nodes in the network is neither

scalable nor practical; asymmetric operations incur a relatively much higher

overhead that makes it much less efficient, and would not scale well when the

number of active packets to be protected is large. Therefore, this thesis

investigated a new hop-by-hop SA establishment technique to address these

problems.

To accommodate these new hop-by-hop security challenges in active networks,

this thesis presented SPAN in chapter 3 (p.74). SPAN is a secure, scalable,

efficient, and flexible hop-by-hop security approach for large-scale active

networking systems, that enables secured EE information exchange prior to

actual hop-by-hop SA establishment, and enables active packet transmission

during hop-by-hop SA negotiation, instead of after. SPAN is designed against

replay, man-in-the-middle, impersonation attacks, and is capable of determining

DoS attacks much more quickly. In SPAN, three messages (SPANJNIT,

SPAN_AUTH, and SPAN_AP) are exchanged to complete one hop-by-hop SA

establishment and secure active packet transmission. The first two messages

enable the Initiator and the Responder to determine compatibility for active

packet execution, to verify each other’s authenticity, to negotiate SA

parameters, and to establish a shared key set. The last message enables the

Initiator to complete the protocol, and to securely transmit an active packet to

the Responder.

In Chapter 4 (p.98), the features and advantages of SPAN were discussed, with

comparisons to existing solutions. Unlike existing approaches, SPAN is more

efficient because it has a better design that reduces the number of message

processing and cryptographic operations that are required to complete a

protocol exchange. The provisioning in SPAN for making remote EE queries

prior to hop-by-hop SA establishment and actual active packet transmission

enhances the overall robustness and efficiency of the underlying active

networking systems. This is because incompatible Responder will be

automatically excluded from the hop-by-hop SA establishment process, and

therefore no resources will be wasted by the Initiator on establishing

hop-by-hop SA with incompatible Responders. SPAN is fully distributed, in the

sense that every node is capable of negotiating and establishing hop-by-hop

SA with its (overlay) neighbours. SPAN is scalable, that requires no centralised

server, pre-established trust, or feedback system, and requires the minimum

number of message exchanges to complete the protocol. SPAN is flexible in the

sense that it provisions for hop-by-hop SA negotiations between nodes, so that

tailored made hop-by-hop SAs can be established.

Also in chapter 4 (p.98), it was further discussed that the authenticity, integrity

and confidentially of active packets are protected in SPAN. SPAN is designed

to be resistant to replay, man-in-the-middle, impersonate attacks. This is

because the design of SPAN includes appropriate defence mechanisms such

as nonces, countersigned nonces, symmetric cryptographic protection, and

asymmetric cryptographic protection. Furthermore, SPAN requires each peer to

verify the shared key set as soon as the key set is computed. This process

enables the peers to discover any computational errors (of computing the

shared key set) at the earliest stage of the protocol as possible. Applications’

identities (EEs/AAs) are not revealed to the peer unless the authenticity of the

peer is verified. SPAN is designed to detect DoS attack much more rapidly than

existing approaches. This is because SPAN restricts all computation processing

until the peer’s authenticity has been verified. Provisioning was made in the

design of SPAN to limit the use of performance-costly asymmetric cryptography

to strong and essential security only. Provisioning has also been made to

accommodate scalability issues of using asymmetric cryptography in a

large-scale network.

In the evaluation chapter (chapter 5 on p. 121), the prototypes for SPAN and

related solution(s) (i.e. variants of IKEv2) that were developed for evaluation

purposes were presented, together with their implementations. Promising

results of SPAN were then presented and discussed. SPAN achieves on

average 15% to 40% less in performance overhead when compared to some of

related approaches; and SPAN is designed to detect DoS attacks much more

efficiently than some existing approaches (i.e. 73 to 90% less in time delay for

detection time for DoS attacks). The high level of robustness, flexibility, and

scalability of SPAN was also presented.

6.1 Applying SPAN to Other Areas

SPAN was designed for hop-by-hop security in active networks. However,

potentially, certain features of SPAN could be re-applied to networking

environments other than active networks, in particular in areas where

hop-by-hop protection is required.

One potential area where hop-by-hop protection would be needed is distributed

management systems. The author realised this opportunity whilst he was

developing different distributed systems [85][86][87][88] in recent years. The

author has identified several similarities between distributed management

systems and active networking systems:

■ Both types of system are distributed (i.e. each participating active nodes

may distribute active packets); so as each participating distributed

management nodes may distribute management instructions.

■ In both types of system, active packets/management instructions are to be

executed on (a set of) local and/or remote nodes.

■ Scalability is a critical design factor in both types of system i.e. must

support large-scale deployment.

Although there are similarities between the two types of system, this does not

necessary mean the same hop-by-hop security protocol, i.e. SPAN, can be

applied directly to secure management instructions in distributed management

systems, without modifications. This is because, to the best of the author’s

knowledge, there is little evidence to suggest that distributed management

packets have dynamic nature. More specifically, in [89][90], distributed

management packets (known as explorer packets) are propagated from one

source to the entire Internet. Each intercepting node of these explorer packets

takes note of the information contained in the packets, and creates a

parent-child relationship with the node from which the packet was previously

delivered. This parent-child relationship forms a spanning tree in the network.

When the explorer packets reach the edge of the network, they bounce back as

echo packets to the source, by following the spanning tree that was established

when the explorer packet was propagated through the network.

The similarity between active networks and the distributed management

systems is that the echo packets contain some executable code. Each node

intercepts the echo packets, and executes the code. It is foreseeable and

apparent that the echo packets may also carry the intermediate execution

results (such as the IP addresses of traversed nodes). Given that there are

some similarities between distributed management systems and active

networking systems, the author argues that, the research work conducted and

presented in this thesis would enable the readers to gain a better understanding

of the distributed nature of active/distributed management systems, and the

challenges and design requirements of hop-by-hop security. These experiences

may put the readers in a better position to evaluate, experiment with, and to

investigate the possibility of (re)developing SPAN into different models for

different distributed management systems.

7 Publication List

■ Below is a selected list of papers published by the author.

1. L. Cheng, K. Jean, R. Ocampo, A. Galis, P. Kersch, R. Szabo, “Secure
Bootstrapping of Distributed Hash Tables in Dynamic Wireless Networks”,
in Proceedings of International Conference on Communications (ICC),
Glasgow, Scotland, UK, June 2007.

2. L. Cheng, A. Galis, “Security Protocol for Active Networks”, to appear in
Proceedings of the 14th IEEE International Conference on Networks
(ICON), Singapore, Sep 2006.

3. L. Cheng, A. Galis, "Simple Key Exchange for Active Networks", in
Proceedings of the 13th IEEE International Conference on Networks
(ICON), Kuala Lumpur, Malaysia, Nov 2005, Vol. 1, pp. 6-11.

4. L. Cheng, A. Galis, C. Todd, "Active Network Authentication", in
Proceedings of London Communication Symposium (LCS), London, UK,
Sep 2003.

161

8 Appendix

8.1 Certificates & Public Key Infrastructure (PKI)

Public keys are asymmetric cryptography (section 8.5.2 on p. 165). Public keys

are commonly used as encryption keys and authentication keys during

communication processes. However, the “man in the middle” attack (section

8.5.4 on p. 167) shows that the use of public key on its own (i.e. without further

protection) may lead to integrity attacks. This is because without additional

security precautions, the authenticity of public keys may be forged. Therefore,

authenticity of public keys must be verified before the keys can be used. Digital

certificates are introduced to prevent public keys forgery: they are known as

public key certificates. These certificates use digital signature to bind together a

legitimate public key with its owner’s identity. The signature is created by a

reliable Certificate Authority (CA) (section 8.1.1 on p. 162). The entire system of

public key distribution, certificate creation and verification is known as the

Public Key Infrastructure (PKI) [91].

8.1.1 Certificate Creation

The fundamental requirement of creating a certificate is that the end user/client

must have a public key pair. Web browsers are capable of generating public

key pairs and so as some other software such as keytool provided with Java

SDK [92][105]. Once a public key pair is created, the client (on behalf of its end

user) sends the following to a reliable CA for certificate creation:

■ A certificate request

■ The end user’s name

■ The end user’s public key

162

Verisign [82] is an example CA. The client should keep the end user’s private

key locally and securely. Upon receiving the name of the end user and the

public key of the end user from a client, the CA verifies whether the name

claimed to be the end user really belongs to the end user. This can be done

through checking business registration records (for companies) or

passport/driving licenses (for individuals). This is an administrative issue and

therefore shall not be discussed in this thesis.

Once the received information is authenticated, the CA creates a message (m)

based on the materials received from the end user. This message is then

signed by the CA using the CA’s private key. The resultant signature (s) is sent

along with message m to the end user/client. Note that message m contains the

end user’s public key. Message m and signature s together become the end

user’s certificate [93].

A X.509 certificate contains essential information about the end user (i.e.

his/her name and his/her public key, and optionally additional information of the

end user e.g. e-mail addresses). Thus, certificates are not restricted for public

key verification only. A copy of the certificate may be distributed (if necessary)

or uploaded and published in the CA’s directory. A CA manages a Certificate

Server that manages certificate storage and publication.

A certificate would become invalid once it has expired. A CA can actively expire

a certificate by listing the certificate in the Certificate Revocation List (CRL),

which is distributed publicly.

8.1.2 Certificate Verification

The authenticity of a certificate (hence the authenticity of the embedded public

key on the certificate) is verified by checking the digital signature on the

163

certificate. Web browsers contain a list of CAs’ public keys. These public keys

are used by the Web browsers to authenticate the digital signatures on

certificates. Note that the digital signatures on the certificates are created by the

CA’s private key. The matching public key will be selected by the Web browser

for digital signature verification. Once the digital signature is verified,

subsequently, the embedded public key on the certificate is verified. The public

key is said to be authenticated. Thus, the “Man in the Middle” attack described

in section 8.5.4 (p. 167) would not succeed.

8.2 Concatenation

The notation for concatenation is |. Concatenation puts two strings together,

one appending the other. For instance, concatenating two strings “HELLO” and

“WORLD” gives “HELLOWORLD”.

8.3 Cookies

The term cookies originated from [94], Cookies were used in IKEvI as SA

identifiers. Thus, cookies are equivalent to SPI in IKEv2 (section 8.17.1 on

p.192). In IKEvI, there are two cookies in each ISAKMP message, one cookie

is the Initiator’s cookie, the other one is the Responder’s cookie. The cookies

refer to the Initiator’s IKE SA and the Responder’s IKE SA respectively. Each

cookie is eight octets i.e. 64-bit.

8.4 Credentials

Credentials are used in authentication and access control. They bind an object

of identity to a claimant’s property such as IP address. A verifier must verify the

credentials during an authentication process. A verified credential unique

identifies the claimant. For example, a digital certificate is an electronic

164

credential that binds the identity of a public key owner to his/her public key.

8.5 Cryptography

8.5.1 Symmetric Cryptography

There are two types of cryptographic techniques:

■ Symmetric

■ Asymmetric

Symmetric cryptography is commonly used as an encryption technique for

protecting message confidentiality. It differs from asymmetric cryptography in

the sense that it uses the same key for encryption and decryption; whereas

asymmetric cryptography uses different keys for encryption and decryption

respectively. In symmetric cryptography, the key is shared between the

message sender and the receiver. Symmetric cryptography may also be used

for hashing, integrity checks and authentication.

8.5.2 Asymmetric Cryptography

Asymmetric cryptography makes use of a public key pair for authentication and

integrity protection. It may also be used for confidentiality protection. Assume

a receiver needs to verify the authenticity of a block of data that was digitally

sign by another entity (known as the signer in this thesis). The signer must first

generate a public-private key pair (section 8.1 on p. 162). Note that this pair of

keys must be unique i.e. only one can verify the data signed by the other. The

private key must be securely kept by the signer, whereas the public key will be

distributed to other parties in the Internet. Public keys are usually distributed in

the form of certificates (section 8.1 on p. 162). The corresponding public key

certificates must be accessible by the receiver. The receiver will then obtain a

public key of the signer. The signer then signs the data with its private key, and

sends the signed block of data for verification.

For confidentiality protection, the process is similar except that the signer

encrypts the data using the receiver’s public key. Since only the receiver owns

the corresponding private key, the confidentiality of the data is protected.

However, authenticity is not protected. These issues are addressed in section

2.6 (p.48).

8.5.3 Symmetric vs. Asymmetric

Symmetric operations are said to be much faster than asymmetric cryptography

operations [95]. Thus, symmetric cryptography is used for protecting large

chunk of data, whereas asymmetric cryptography is used for protecting small

size data, such as message digest.

Question 6: Explain the reasons why symmetric operations are faster than

asymmetric operations.

Asymmetric operations (i.e. RSA) generate ciphertext as follow:

C = Pe mod TV

Equation 11

C is the ciphertext, P is the plaintext (the text to be signed), e and N are values

chosen and used by the RSA algorithm.

Equation 11 essentially means: C is the remainder of Pe/N. Note that P must be

exponentially multiplied by e. Therefore, if e is large, it becomes

computationally expensive to calculate Pe. However, e must be large for strong

encryption security [96].

On the other hand, although different symmetric techniques use different ways

to encrypt (scramble) plaintext, but symmetric operations use XOR operations.

XOR operations are more difficult to implement in software, and are usually

implemented in hardware instead. This is because XOR involves bit relocation,

and bit re-location can be easily performed with wired hardware. However,

because XOR operations involve only bit re-location, they are faster than

exponential multiplication. Therefore, symmetric operations are faster than

asymmetric operations.

Symmetric cryptography requires secret key establishment between two or

more participating clients across an insecure link (e.g. Diffie-Hellman key

exchange between two hosts over the Internet), thus symmetric keys

distribution must be authenticated, integrity protected and confidentiality

protected. Strong security requirements in symmetric key distribution create a

key distribution challenge. Asymmetric cryptography does not require secrete

key distribution, only the public key distribution is needed. Because public keys

are meant to be public, thus public keys do not require confidentiality protection.

Thus key distribution is less challenging in asymmetric cryptography (only

authentication and integrity protection are required). Asymmetric keys are

usually distributed in the form of digital certificate. A well-known support

architecture for certification verification is the PKI (section 8.1 on p. 162).

Without support from PKI, public keys are subjected to Man-in-the-Middle

attacks (section 8.5.4 on p. 167).

8.5.4 The “Man in the Middle” Attack of Public Key Cryptography

This example illustrates how the authenticity of public keys may be forged

between an end user and a serve in the absence of certificate. Image a client

(i.e. a web browser) is requesting on behalf of its end user for a secure

connection to an on-line bank server. An attacker is in between the client and

the server, and he is capable of intercepting the traffic between the client and

the server.

If the on-line bank server replies to the client with its public key only (i.e. no

certificate):

1. The attacker intercepts the on-line bank’s public key.

2. The attacker sends his own public key to the client, pretending that the key

belongs to the on-line bank’s server.

3. The client receives the (forged) key, and thinks the key really belongs to

the bank.

4. The client encrypts an instruction (e.g. “pay Mr Smith 60 pounds now”) with

the (forged) key, and sends the encrypted instruction to the bank. The

client expects that only the bank (which owns the corresponding private

key) may decrypt the encrypted instruction.

5. The attacker intercepts the encrypted instruction, and obtains the end

user’s instructions by decrypting the encrypted instruction using his private

key.

6. The attacker modifies the end user’s instruction with “paid the attacker 60

pounds now” and encrypts the new instruction by the bank’s public key,

then sends the encrypted instruction to the bank. In this case, neither the

end user nor the bank would recognise the existence of the attacker until

the transaction raises a concern.

This problem can be resolved by authenticating public keys through certificates

(see section 8.1 on p. 162).

8.6 Diffie-Hellman Key Exchange (D-H)

Symmetric cryptography needs secure symmetric key sharing between

participating parties over an insecure channel. Diffie-Hellman (D-H) key

exchange is a secure method for establishing symmetric keys between parties

over an insecure channel. Note that this method is used to protect the

confidentiality of the shared key. It does not protect the integrity or authenticity

of the exchanged keys. It should be note that D-H is the underlying theory of

key exchange. Internet Key Exchange (IKE) (section 2.10 on p.55) uses D-H to

establish shared secrets, and IKE provides authenticity and integrity protection

to the exchanged shared secret.

8.6.1 Diffie-Hellman Key Exchange in MODP Mode

In general, mathematical functions are two-way functions, for example:

y = e '

Equation 12

Rearrange Equation 12, the value of x can be determined by:

x = log ,„ y

Equation 13

However, the D-H algorithm uses a one-way function:

f (x) = x mod p

Equation 14

Since the function in Equation 14 is a one-way function, the value of x in

Equation 14 cannot be determined through reverse engineering of the function.

Basically, Equation 14 means f(x) is the remainder of x/p.

The steps of the D-H algorithm in MODP mode are:

1) The participating parties e.g. Client A and Client B pre-agree on two values: L

and P.

1RQ

Rule 1: L and P are values that are needed for Equation 15 (see later). L must

be < P (see later).

2) The participating parties select their own private secret: Client A: a, Client B:

b.

3) Each party uses its own private secret and the one-way function (Equation

14) to generate a public sharable value respectively: a and ft.

Client A: a = La modP

Client B: p = Lb mod P

Equation 15

4) The parties exchange the public sharable value. For example, client A sends

a to client B, and client B sends (I to client A.

5) Each party uses its own private secret, the public sharable value (that was

received from the other party), and the one-way function to generate a

symmetric shared secret.

Client A’s symmetric shared secret = pa modP

Client B’s symmetric shared secret = a b modP

Equation 16

Note that the resultant secret is symmetric i.e. Client A’s and Client B’s shared

secrets are identical and can be used for encryption and decryption.

Example 1: Given that L = 5, P = 13, a = 4, b = 7. Determine the symmetric

shared secret [40].

First, determine the public sharable value a of client A. According to Equation

15:

170

a = La mod P

a = 54 mod 13

a - 624 mod 13 = 1

Using the same process:

11 = 8

Once a and (J are exchanged between Client A and Client B, determine Client

A’s symmetric shared secret:

= j3a mod P

= 84 mod 13

= 4096mod 13

= 1

Then determine Client B’s symmetric shared secret:

= a b m odi5

= l 7 mod 13

= 1

Therefore, the symmetric shared secret is 1. Client A and Client B owns an

identical shared secret.

Since at each party the public sharable value is generated by using the party’s

own private secret, the public value is therefore related to the private secret.

Since the public shareable value is generated by using the one-way function,

the private secret used to generate the public shareable value cannot be

determined from the public shareable value. This is why it is safe to transmit

public sharable values across an insecure channel.

Question 7: Explain why the nodes end up with the identical symmetric shared

secret in the Diffie-Hellman protocol, given that no secrets are exchanged.

The reason why the symmetric shared secret are identical is because both

secrets are generated using the same ingredients (i.e. L, P, a, (3). Extending

Equation 16 (p. 170):

Client A’s symmetric shared secret:

= (3a mod P

Since (3 = Lb mod P, therefore Client A’s symmetric shared secret:

= [Lb mod P]a mod P

= Labmod P

Similarly, Client B’s symmetric shared secret:

= abmod P

Since a = Lamod P, therefore:

= [Lamod P]b mod P

= Lba mod P which is the same as Client A’s symmetric shared secret

8.6.2 Selection of Private Values

There are certain rules when selected the private values (a, b) and the prime

modulo P. If these values are small (in particularly if P is small), D-H becomes

insecure.

This is because the shared secret value = Lab mod P. This means that the

shared secret value is the remainder of Lab/P, which means the shared secret

value could be any value between 1 to P-1 only. Thus, if P is small, an attacker

may easily guess what the shared secret value is. P should be selected a prime

number larger than 300 bits, whereas a and b should be at least 100 bits.

According to [97], P should be between 512-bit to 1024-bit, whereas a and b

should be an integer between 1 < a < P-2. a and b should be 192-bit and an

integer value less than (P-1)/2.

8.6.3 Selection of the public values

The public values L and P are carefully selected: L < P, and L must be a

primitive root for P if the powers of L, L°, L1, L2, L3, ... include all the residue

classes mod P (except 0). The primitive roots of P are the appropriate value(s)

for L (that are between 1 and P-1) - when used in the mod operation i.e. Le mod

P (where e is any exponential) - that return the remainders that cover every

number mod P occurs except 0. More specifically, the function should return the

remainders between 1 to P-1 for different values of e. To illustrate this point, an

example is given below:

Example 2: Determine the appropriate values for L when P = 7.

Consider this equation Le mod P, the following table can be constructed. The

first column contains different values for e, the first row contains different values

for L. The table contains the remainders for different combinations of L and e.

Note that the value for P is fixed (i.e. P = 7).

Different values for L

e 1 2 3 4 5 6

0 1 1 1 1 1 1

1 1 2 3 4 5 6

2 1 4 2 2 4 1

3 1 1 6 1 6 6

173

4 1 2 4 4 2 1

5 1 4 5 2 3 6

6 1 1 1 1 1 1

7 1 2 3 4 5 6

9 1 4 2 2 4 1

Table 1 - The remainders for Le mod P
For example, if e = 0 and L = 1, the remainder = 1° mod 7 = 1. If e = 3 and L = 4,

the remainder = 43 mod 7 = 1. Note that in this example (i.e. when P = 7), L = 3

or L = 5, and L < P.

The reason why L should be 3 or 5 is that only when L = 3 or L = 5, the

remainders cover all the values between 1 to P-1, that is, between 1 to 6. Thus,

3 and 5 are the primitive roots for P when P = 7.

8.6.4 Limitations of the Diffie-Hellman Algorithm

The process requires the participating parties to be on-line at the same time

during the key exchange process. D-H can only be deployed when both parties

are on-line at the same time. This is because the parties must exchange certain

values during the key exchange process. This is a not a crucial limitation

because both parties must be on-line anyway if they want to exchange keys.

One party cannot exchange key with another party if the originator cannot be in

contact with the other party. If off-line key exchange is required, one may

suggest caching the exchange values. However, caching is not a scalable

solution because the proxy would have to keep track of which public value

belongs to which party at what time and so on.

No authentication and integrity protection: a man-in-the-middle attack could be

easily performed. The lack of authentication and integrity protection is a more

severe limitation. However, this is an application issue and does not devalue

the theory itself. D-H itself is just a theory and it is commonly used for secret key

exchange because it is proven to work and its simplicity. As a result, the D-H

algorithm is used with additional precautions. For example, the D-H algorithm is

used with additional security measurements in IKEv2 (section 2.10 on p.55).

8.7 Hash, Keyed Hash, Hash Functions, Hash Tables

Asymmetric cryptography subjects to two drawbacks: performance and

plaintext size restriction. Digital signature computation is known for its slow

performance (Question 6 on p. 166). Also, the size of the plaintext to be

encrypted is limited. To overcome these drawbacks, the digital signature is

made by signing a hash of the plaintext, instead of the plaintext itself.

A hash is also known as a Message Digest (MD) or checksum. A hash is

computed by applying a hash function on a piece plaintext. The resultant hash

is much smaller than the size of the plaintext. The size of a hash/MD/checksum

is usually fixed, whereas the size of the plaintext is arbitrary.

Apart for being used as a form of compression technique, hashes are generally

used as checksums (i.e. for integrity checks on exchanged messages between

network entities). The message sender creates a hash of the message to be

exchanged, and sends the hash along with the message to the receiver. Upon

receiving the message at the message receiver, the receiver calculates a hash

based on the message received, and compare the two hashes as part of the

integrity check process.

Authenticity protection on the hashed data is achieved when a key is used

during the hashing process. The result is known as keyed hash. One example

is Hashed Message Authentication Code (HMAC) [45], which is used in IPSec

for integrity protection and authentication.

A hash function is one-way: the resultant hash cannot be used to reproduce the

plaintext. A secure hash function would only generate a particular hash from a

particular piece of plaintext, no two (different) plaintext would result in the same

hash. If two different pieces of plaintext result in the same hash, then a collision

is found. There are several types of hash functions [98].

8.7.1 Keyed Hash Functions

Keyed hashes are used for authenticity and integrity protection. To use keyed

hash functions, the message sender must share a key with the message

receiver in advance. The message sender uses the shared key and a particular

hash function to generate a fixed-length hash of a variable length message to

be transmitted. Upon receiving the message and the fixed-length hash at the

receiver, the receiver computes a hash of the received message by using the

same shared key and the same hash function and compares the two hashes. If

the two hashes match, the integrity of the message is verified.

8.7.2 Message Authentication Code (MAC)

Message Authentication Code (MAC) is keyed hash function that uses shared

symmetric key cryptography to protect message integrity and authenticity. The

shared key is hashed with the message to be protected to generate a MAC. The

resultant MAC is appended to the message to be checked by the recipient.

Note that MAC provides integrity protection as well as authentication (only the

other participant that owns the shared symmetric key could have generated the

MAC). However, MAC should not be considered as digital signature because

MAC does not provide non-repudiation. Digitally signing a piece of data

provides both authentication and non-repudiation protection to the signed data

because only the signer has the private key to create the signature.

8.7.3 Hashed Message Authentication Code (HMAC)

HMAC is a special type of keyed hash. It works with other existing hash

functions such as SHA and MD5 i.e. HMAC-SHA and HMAC-MD5. The

fundamental principle of HMAC is to generate a keyed hash of a keyed hash,

thus it is stronger. HMAC is designed to provide additional security to existing

hash functions, without making any modification to the hashing algorithms

themselves. The following shows the fundamental concepts of HMAC:

HMAC(K, P) = H[(K XOR opad) | H(K XOR ipad | P)]

Where
H = a selected underlying cryptographic hash function e.g. MD5, SHA.

K = the length of the shared symmetric key (should be > L but n B)

P = plaintext
opad = an outer pad (a fixed length string)

ipad = an inner pad (a fixed length string)

B = hash function block length = 64 bytes for MD5 and SHA-1

L = hash function output length = 16 bytes for MD5, 20 bytes for SHA-1

Equation 17

8.8 Initialisation Vector (IV)

When using the same key for encryption repeatedly, a security weakness is

found in block and stream ciphers. When encrypting with block ciphers in CBC

mode, a (large) message is split into a series of small blocks prior to encryption.

To encrypt the message, each block of the message is XOR-ed with the

previous (encrypted) block. However, if the same key is used, two similar

messages would end up with two similar ciphertext (except the blocks which in

the ciphertext that contain the differences).

Stream ciphers are subjected to this weakness as well. If a stream cipher is

used with the same key, XOR-ing two pieces of ciphertext would result in a

XOR-ed version of the two plaintext that were encrypted. If the plaintext were

written in human readable format then information would be discovered by the

attacker.

However, key generation processes are performance-wise expensive. It is not

scalable and practical to request all security systems to generate (and share) a

new symmetric key every time prior to encryption. The problem can be solved

by adding randomness to the encryption process. The plaintext is pre-pended

with a randomly selected IV block. Thus, even two similar pieces of plaintext are

to be encrypted in CBC mode or stream ciphers, the actual message to be

encrypted are different because different randomly selected IVs are added to

the plaintext respectively. Thus, the resultant ciphertext would be unique.

The length of IV must be the same as the block size of the cipher. This is

because when the cipher is operated in CBC mode, the first block of the

plaintext is XOR-ed with the IV. The IV must be sent along with the ciphertext to

the recipient so that the recipient knows what value of IV to use for decryption.

8.9 Initiator

An initiator is an entity that instantiates a Security Association (SA) (section

8.16 on p. 189) negotiation. A SA negotiation involves at least two entities: the

Initiator and the Responder (section 8.15 on p. 189).

8.10 Nonces

Replay attack is an attack of which an attacker copies a (valid) message, and

re-uses the message at a later stage to fool the receiver. Nonces are included

in messages for anti-replay attacks (section 8.13.2 on p. 183). Alternatively,

sequence numbers may be used for anti-replay attacks (section 8.18 on p. 194).

For instance, nonces are used in IKEv2 [30].

The idea of nonces is to add some randomness to the message. For instance,

in IKEv2, the IKE_SA_INIT message contains a randomly generated nonce that

is at least 128-bit and at least half of the PRF function that is used for shared

key generation (section 8.13 on p. 182). Both the Initiator and the Responder

keeps a record of the nonces that are used and received. Nonces should never

be re-used during a session. If the Responder receives two messages of the

same nonce, the Responder will consider the second message as a replay

attack.

Thus, nonces add freshness to the messages. In some cases, nonces add

freshness to keys too. For instance, in IKEv2, nonces are used for shared key

generation (section 2.10 on p.55)

8.11 Passive Network

A passive network composes of passive nodes only. It is a store-and-forward

network in which passive packets are forwarded to their desired destination by

passive nodes. The content carried in passive packets is irrelevant to passive

nodes in a passive network.

■ Passive Node

A passive node is a router or a switch that performs simple packet forwarding

function. There are hardware routers (i.e. high-speed IP routers used for packet

routing in the Internet) and software routers (i.e. Linux PCs with multiple

Ethernet cards and with ip_forwarding enabled).

■ Passive Packet

These are normal IPv4 (or IPv6) packets routed by passive nodes in a passive

network.

8.12 Perfect Forward Secrecy (PFS)

8.12.1 Definitions

Perfect Forward Secrecy (PFS) refers to a property of key generation

processes. PFS was first defined in [79]: a key generation process is said to

support PFS, if the secrecy of generated keys would not be compromised even

if the long-term secret key (that was used to generate subsequent keys) were

disclosed. In other words, with PFS, if a root key (that was used to generate

subsequent keys) is compromised, subsequent keys should not be

compromised.

In some other documents [30], PFS has a slightly different definition. PFS may

be defined as: once a connection is closed and its corresponding keys are

forgotten, even someone who has recorded all of the data from the connection

and gets access to all of the long-term keys of the two endpoints would not be

able to reconstruct the keys used to protect the conversation without doing a

brute force search of the session key space.

The major difference between the two definitions is that the latter refers to a

situation when a connection is closed; whereas the former requires PFS in any

situation. The former definition implies that, when generating subsequent

shared keys by using a pre-established key, the key generation parameters that

were used for generating the pre-established key should not be re-used for the

subsequent keys generation. It is obvious that if the key generation parameters

are re-used for generating subsequent keys, and if the key generation

parameters are compromised, then all subsequent keys would also be

compromised (i.e. a chain effect). A chain of keys is a bad design.

However, if new key generation parameters were generated for each key

establishment process, the performance overhead would be enormous. For

instance, a common key generation parameter is the Diffie-Hellman parameters

(section 8.6 on p. 168); and D-H parameters generation is known to be

expensive process in terms of performance due to the exponential and modular

calculations involved, essentially the same problem as asymmetric

cryptographic techniques (section 8.5.3 on p. 166). Thus, some cryptographic

designers suggest another definition of PFS (i.e. the second definition), which in

their point-of-view, is sufficient.

The second definition requires all nodes to forget the key generation materials

once the connection has closed. This implies that, under this revised definition,

key generation materials may be re-used during a specific period (i.e. when the

connection is still on). This period refers to the period of which the

pre-established keys are still valid. This definition is made on the assumption

that the effective period of the pre-established keys are short (e.g. 8 hours),

therefore, it is unlikely that - within that short period - an attacker would have

hacked the pre-established keys, and hence compromising the subsequent

keys. Some serious cryptography designers, however, believe that this

arrangement is too optimistic, and so call less-than-perfect forward secrecy.

Never the less, the second definition leads to a less than ideal design (i.e. a

chain of keys), but is more performance-wise practical because of the

performance overhead saved.

There is an on-going debate on which definition should be adopted. This thesis

refers to the original definition as defined in [79]. Firstly, this definition is original;

secondly, this definition results in a better design; thirdly, the requirement of this

definition is higher (that each key generation process requires new key

generation parameters), and is therefore more challenging. The author believes

that, rather than using a simplified definition; effort should be made to targeting

the requirement that is more complicated.

8.12.2 PFS Explained

In IKEv2, a root secret (i.e. SKEYSEED) is generated during the IKE_SA

negotiation. If the same root secret is (re)used to derive subsequent keys during

the CHILD_SA negotiation (for example, IPSec SA negotiation), then the

system does not support PFS. To enforce PFS, new Diffie-Hellman values

should be used for the CHILD_SA negotiation.

Note that PFS is needed for strong security. Without PFS, if an attacker

obtained the root secret, he would be able to determine the subsequent keys.

Recalling from section 2.10.2 (p.57), subsequent keys (such as SK_a, SK_e)

are generated by using publicly accessible data such as NONCE], NONCEr,

and SK_d. If SKEYSEED were compromised, then SK_d would be

compromised. Hence, all subsequent keys would be compromised as well.

However, Diffie-Hellman values generation is computationally expensive. Thus,

PFS is only enforced for security applications that require high level of security.

In IKEv2, including new Diffie-Hellman values during CHILD_SA negotiation is

optional.

8.13 Pseudo-Random Function (PRF)

PRF is a generic term to describe the chosen hash function (section 8.7 on

p.175).

8.13.1 PRF+

PRF+(a, b) = T1 | T2 | T3 |

Where

T1 = PRF(a, b | 0x01)

T2 = PRF(a, T1 | b | 0x02)

T3 = PRF(a, T2 | b | 0x03)

Equation 18

PRF+ differs from PRF that PRF+ allows concatenation (represented by the

notation |) (section 8.2 on p. 164).

8.13.2 Replay Attacks

Replay attacks [99] involve the re-transmission of a legitimate message by an

attacker, in order to fool a peer to repeat processing the legitimate message, or

to confuse the peer with duplicated legitimate messages. Note that if a

message is significantly delayed, the peer may treat the delayed message as a

replay attack attempt. Replay attacks can be prevented by including sequence

numbers (section 8.18 on p. 194) or nonces (section 8.10 on p. 178) in the

messages.

8.14 Rivert Shamir Adelman (RSA) Algorithms

Public key cryptography is an asymmetric approach, in which a pair of keys is

used i.e. a public key and a private key. A private key is kept by its owner. The

public key is publicly distributed. RSA is a widely used public key algorithm (e.g.

supported by all Web browsers). It provides authentication as well as

confidentiality protection. DSA is another popular public key algorithm; however,

DSA provides authentication only. Encryption can be done with either the

private or the public key in RSA.

8.14.1 RSA Private Key Generation

To generate a RSA private key d, the key owner must select:

■ p and q (two large secret prime numbers)

■ e (a random number)

e is a value that is made public. Although it is random, the choice of e must

meet certain mathematical requirements i.e. it must be relevant to 0:

t = iP - !) (? - !)

Equation 19

The private key d is then calculated:

e *d = lmod^

Equation 20

This equation represents a modulus, meaning when dividing (e*d) by 0, the

remainder is 1. Therefore, it can be rewrite as:

e * d - 1 = k(f)

Where k is any integer

Equation 21

Example 3: Given that e = 13, p =43, q = 59, determine the private key d.

Use the Extended Euclidean Algorithm [100] to determine the private key. First,

determine the value of o:

0=(p-1)(q-1)

= (43-1)(59-1)

= 2436

184

a q X y

1 (1a) 2436 - 1 0

2 (2a) 13 (2q)187 0 1

3 (3a) 5 (3q) 2 (3x) 1 (3y) -187

4 (4a) 3 1 (4x) -2 (4y) 375

5 2 1 3 -562

6 1 2 -5 (k) 937 (d)

Table 2 - Extended Euclidean Algorithm

The figures in 1x, 1 y, 2x, and 2y are fixed. Fill the boxes as follow:

(1a) and (2a): Fill these two boxes with the value of 0 and e.

(2q) and (3a): 2436/13 = 187, remainder = 5.

(3q) and (4a): 13/5 = 2, remainder = 3. And so on, until the number in column a

does not give a remainder i.e. 2/1 = 2.

(3x): (3x) = (1 x) — (2q)(2x)

= 1 - (187)(0)

= 1

(4x): (4x) = (2x) - (3q)(3x)

= 0 - (2)(1)

= _2

(3y): (3y) = (1y) - (2q)(2y)

= 0 - (187)(1)

= -187

(4y): (4y) = (2y) - (3q)(3y)

= 1-(2)(-187)

= 375

The figures in 6x and 6y are important. According to Equation 21:

e * d - 1 = k(f>

Re-writing :

1 = -k(j) + d * e

Equation 22

Fetching the numbers (6x and 6y) from

Table 2:

1 = (-5)(2436)+ (937)(13)

Therefore d = 937.

Note: d must be positive. If d turns out to be negative (i.e. d’), convert it to a

positive number:

d = d'+<j>

Equation 23

8.14.2 RSA Public Key Generation

A RSA public key is the N and e value. Note that during the generation of the

private key, the key owner has already selected a value for e. Typical choices of

e are 3 or 65,537. The owner must also compute N:

N = p * q

Equation 24

N and e are distributed as the owner’s public key. Note that encryption can be

done with either of the RSA private or the public key. For instance, a client -

upon receiving the public key from an on-line bank - can use the bank’s public

key to encrypt its end user’s private data before sending the data to the bank.

The encrypted data can only be decrypted at the bank (since only the bank

owns the private key). The bank may digitally sign some data with its private

key i.e. creating a digital signature. Upon receiving the signed data at the client,

the client shall use the bank’s public key to verify the signed data.

8.14.3 Encryption with a RSA Public Key

To encrypt a plaintext P with a RSA public key:

C = P emodN

Where

C = ciphertext

P = plaintext

e = public random shared value from key owner

N = public shared value from key owner

Equation 25

Example 4: Given that P = 1819, e = 13, N = 2537, determine the ciphertext C.

C = Pe modN

C = 181913 mod 2537

181913
In other words, C is the remainder of ---------

2537

C = 2081

Note: In situation in which e is large, it is very difficult to perform calculation with

modules. In this example e = 13, and 1 3 = 1 + 2 + 4 + 6, Equation 25 can be

rewritten as follow to ease calculation:

C = [(P1 mod N)(P2 mod N)(P4 mod N)(P6 mod 77)](mod N)

Equation 26

8.14.4 Decryption with a RSA Private Key

To decrypt a plaintext P with a RSA private key:

P = Cd mod N

Equation 27

8.14.5 The Level of Complexity of RSA Keys and Prime Numbers

A RSA private key (i.e. d) is calculated by using two large prime numbers (p and

q), whereas part of a RSA public keys (i.e. N, but not e) is a product of the two

large prime numbers (p and q). The level of complexity (and hence security) of

RSA keys depends on the difficulty of factoring a large integer. In RSA, this

large integer is N, which is product of two large prime numbers p and q.

A prime number has a unique feature: it is an integer that can only be divided by

1 and itself. Example prime numbers are 3, 5, 17, 257. According to the

Fundamental Theorem of Arithmetic [101], any (positive) integer has a unique

prime factorisation: that is, any integer is a product of only one fixed set of prime

numbers. For example, the integer 65535 is a product of this particular set of

prime numbers:

65535 = 3 x 5 x 17x257

Currently, no efficient factorisation algorithm is available for factorising large

integers: a recent experiment shown it took 18 months to factorise a 200-digit

number into two 100-digit prime numbers [102]. A RSA public key (N but not e)

is a product of two large prime numbers (N = p x q). Note that p and q are also

used for creating a RSA private key, which must be kept secret at all time. Thus,

RSA keys are complex and secured as long as no efficient factorisation

algorithm exists. Thus, as long as N is large enough, it would be difficult to

factorise N (i.e. difficult to obtain p and q), hence it is difficult to obtain b (i.e. the

private key, which is calculated by using on p and q in an one-way function).

It should be noted that the RSA private key (d) must be kept secured. The

knowledge of d would enable efficient factorisation of N. For more detail, refer

to [95].

The choice of the value for e is another important security factor of RSA (and

the performance of RSA operation), e must be a large value. A small value of e

leads to weakness in RSA keys. According to Equation 25:

C = Pe modiV

Essentially, the eth root of C is the plaintext P. If e = 3, then the plaintext can be

deduced from:

P = VCmodAf

Equation 28

Thus, the value of e should be large. A detailed discussion of the choice of e

and the impacts of small e value on the RSA algorithm can be found at [95].

However, a large value of e means that more computational time is needed for

RSA cryptographic operations: for RSA encryption, the plaintext P goes through

a modular exponentiation of e trails. If e and P are large, then the performance

overhead of this modular exponentiation process would become undesirable.

8.15 Responder

A responder responds to a SA negotiation instantiated by an Initiator.

8.16 Security Associations (SA)

A Security Association (SA) [103] is a contract defining a set of security

parameters [60] to be used between two IPSec hosts. Each IPSec host

maintains a set of associated SAs in its own Security Association Database

(SADB)18. An SA is simplex i.e. one-way. An IPSec host must define a SA for its

outgoing IPSec channel and incoming IPSec channel respectively. For instance,

in Figure 52, two IPSec tunnels were established. A particular set of

cryptographic key(s) will be used between SA10Ut and SA1in of host A and host

B respectively. Whereas another set of cryptographic key(s) will be used

between SA2in and SA2outof host A and host B respectively.

□
Host A

□
Host B

Figure 52 - Simplex SAs

Essential IPSec SA parameters are:

■ The IPSec protocol to be used i.e. Authentication Header (AH),

Encapsulating Security Payload (ESP), or both.

18 For simplicity, the SADB of host B is not shown in Figure 52. In this example, only two nodes
are involved. The SAs stored in host B’s SADB are identical to those stored in host A’s SADB.

■ The hashing algorithms to be used.

■ The keys to be used.

■ The duration whilst the key remains valid... and more.

SA parameters are categorised into protocol-specific and generic fields. The

latter field is used by both AH and ESP and are discussed below. Note that

some of these fields can be updated in the SAs when necessary.

■ Sequence number field

This field contains a 32-bit number in both the AH and ESP header for detecting

replay attacks. This number is initially set to zero when a SA is established, and

is incremented by one each time the SA is used to secure a packet. The SA

should be replaced when this number reaches 4G i.e. 4,000,000,000.

■ Sequence number overflow

This field is set (during outbound processing of IPSec packets) to indicate the

sequence number has reached 4G.

■ Anti-replay window

This field is used during inbound processing to overcome replay attacks.

■ Lifetime

This field defines the lifetime of a SA. Lifetime is defined either in 1) number of

bytes to be secured by this SA, or 2) the duration of which the SA is valid.

■ Mode

Three different modes: tunnel, transport, or wild card. Wild card indicates this

SA supports both tunnel and transport mode.

■ Tunnel destination

The destination address of tunnelled IPSec packet. Appears as clear text in the

header.

■ PMTU parameters

Path Maximum Transfer Unit (PMTU) parameters are important when using

IPSec tunnel mode. To avoid packet fragmentation, a peer discovers the PMTU

of a particular path, and never transmits a packet that exceeds the PMTU.

8.17 SA Creation and Removal

The creation of SA is sub-divided into the negotiation of SA parameters and the

insertion of SA into the SADB. Key negotiation between participating peers is a

crucial step in the first stage. There are two ways of key negotiation:

■ Manual key negotiation

Manual key negotiation is ideal for small-scale IPSec deployment. It is usually

done off-line. Manually negotiated keys may run indefinitely - until manually

removed.

■ IKE (Internet Key Exchange)

IKE is more suitable for large-scale IPSec deployment. IKE meant to work

under the guidance of security policies. For instance, a policy may require a

particular connection to be secured. The IPSec kernel will then invoke IKE. IKE

will then negotiate with the receiver the SA parameters, and then create the SA.

The freshly created SA will be added to the sender’s SADB.

The removal of SA from SADB can also be performed manually or through IKE.

Frequent updating of SA (i.e. remove and create) is essential in order to

minimise the chances of keys being compromised. To avoid disruption of an

established IPSec communication, a replacement SA (for that particular IPSec

communication) is negotiated before the existing SA is deleted.

8.17.1 Security Parameter Index (SPI)

Once a SA has been established between two nodes, packets can be sent

securely between the two nodes by using the established SA. However, a node

may have established multiple SAs with different nodes in the network; thus,

prior to sending across a packet, there is a need to identify which SA to be used

between the sending node and the receiving node [104]. The sender (also

known as the Initiator in this thesis) uses the selectors to identify the SA. IPSec

selectors are:

■ Source address and source (IPSec) application port number; destination

address and destination (IPSec) application port number.

■ Participating specific protocol (of OSI layer 4 or above).

■ Name of the policy associated to a user or system.

The receiver (also known as the Responder), however, cannot do so. This is

because some of the fields in the packet header (where the selectors are kept)

belong to the transport layer. In IPSec, transport layer fields are encrypted.

Thus, the receiver would not have access to all the fields (i.e. the selectors)

unless the receiver knows the corresponding SA to be used for decryption. The

problem becomes a chicken-and-egg problem.

Consequently, at the receiver, each SA is identified by a unique 32-bit Security

Parameter Index (SPI). The sender uses the selectors to uniquely index a SA

into its SADB. The SA is associated with a unique SPI. The SPI is kept in the

AH or ESP header and is sent along with all protected packets from the sender

to the receiver. The receiver uses the SPI to retrieve the corresponding SA

(from its SADB), and the SA is used in order to process incoming protected

packets.

The <SPI, dst> to SA mapping must be unique at all time. Uniqueness of SPI is

guaranteed by the host that assigns the SPI. In the case when the sender has

more than one source address, i.e. it has more than one interface, the <SPI, src,

dst> combination can be used. The SPI may be re-used when the

corresponding SA expires. SPI is included in every IKEv2 message. In IKEvI,

cookies (section 8.3 on p. 164) were used instead of SPI.

8.18 Sequence Number

Sequence numbers of messages are important for anti-replay attacks (section

8.13.2 on p. 183). If a series of messages are to be exchanged between two

peers, each exchanged message must contain a unique sequence number. If

same sequence number is found on two messages, the messages are

duplicated.

In TCP, for example, sequence numbers are included in all TCP packets. The

sequence number of the first TCP message of a particular TCP connection is a

pseudo-random number. Each time a message is sent or received during the

same connection, the sequence number is incremented by one. A peer would

be able to detect replay attacks when two messages arrive with the same

sequence number. Note that the sequence number must be pseudo-random, so

that the start-off value for each TCP connection is different. This is important

because, if the first sequence number of all TCP connections always start off

from a fixed value, then if two TCP connections are simultaneously running,

there are chances that two TCP packets (of the two TCP connections

respectively) may arrive at the same time with the same sequence number. The

peer would mis-understand, and thought one of the messages was a replay

attack. By using random values, this problem would not happen.

In IKE and IPSec, sequence numbers are known as message IDs. The

message ID field in IKE messages is authenticated and integrity protected by

using appropriate keys from the shared key set for added security (section 2.10

on p.55).

9 References

[1] D. Tennenhouse, D. Wetherall, “Towards an Active Network Architecture”
in Multimedia Computing and Networking, San Jose, California, USA, Jan,
1996.

[2] J. Vicente, H. Cartmill, G. Maxson, S. Siegel, and R. Fenger, “Managing
Enhanced Network Services: a Pragmatic View of Policy-based
Management”, Intel Technology Journal, 1st Quarter, 2000.

[3] M. Brunner, “A Service Management Toolkit for Active Networks”, in
IFIP/IEEE International Symposium on Network Operations and
Management (IFIP/IEEE-NOMS), Hawaii, USA, April 2000, pp. 265-278.

[4] The DARPA Active Networks web site,
http://nms.lcs.mit.edu/darpa-activenet/

[5] L. Peterson, et al., “NodeOS Interface Specification”, AN NodeOS
Working Group, Jan 2001,
http://protocols.netlab.uky.edu/~calvert/nodeos-latest.ps

[6] S. Murphy, et al., “Security Architecture for Active Networks”, AN Security
Working Group, July 2001,
http://protocols.netlab.uky.edu/~calvert/sec-latest.ps

[7] The AN Composable Services Working Group, “Composable Services for
Active Networks”, Georgia Institute of Technology, Sep 1998.

[8] K. Calvert, et al., “Architectural Framework for Active Networks”, Active
Network Working Group, July 1999,
http://protocols.netlab.uky.edu/~calvert/arch-docs.html

[9] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, G. Minden, “A
Survey of Active Network Research”, in IEEE Communications Magazine,
Vol. 35, Issue 1, Jan 1997, pp. 80-86.

[10] J. Kornblum, D. Raz, Y. Shavitt, “The Active Process Interaction with its
Environment”, in Computer Networks, the International Journal of
Computer and Telecommunications Networking, Vol. 36, Issue 1, June
2001, pp. 21-34, ISSN: 1389-1286

[11] D. Alexander, “ALIEN: A Generalised Computing Model of Active
Networks”, PhD thesis, University of Pennsylvania, Feb 1997.

[12] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 143-148.

[13] The Future Active IP Networks (FAIN) Project web site,
http://www.ist-fain.org

1 Qfi

http://nms.lcs.mit.edu/darpa-activenet/
http://protocols.netlab.uky.edu/~calvert/nodeos-latest.ps
http://protocols.netlab.uky.edu/~calvert/sec-latest.ps
http://protocols.netlab.uky.edu/~calvert/arch-docs.html
http://www.ist-fain.org

[14] ANEP: Active Network Encapsulation Protocol,
http://www.cis.upenn.edu/~switchware/ANEP/

[15] D. Alexander, B. Braden, C. Gunter, A. Jackson, A. Keromytis, G. Minden,
D. Wetherall, “Active Network Encapsulation Protocol (ANEP)”, Active
Network Groups, DRAFT RFC (obsolete), temporarily available at:
http://www.ee.ucl.ac.uk/~lcheng/Papers/Draft-RFC-ANEP.txt

[16] J. Moore, M. Hicks, S. Nettles, “Practical Programmable Packets”, in
proceedings of 12th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), Anchorage, AK, USA, April 2001,
pp. 41-50.

[17] T. Suzuki, C. Kitahara, S. Denazis, L. Cheng, W. Eaves, A. Galis, T.
Becker, D. Gabrijelcic, A. Lazanakis, G. Karetsos, “Dynamic Deployment
& Configuration of Differentiated Services Using Active Networks”, IFIP
TC6 5th International Workshop on Active Networks (IWAN), Kyoto, Japan,
Dec 2003, pp. 190-201.

[18] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepreau, S. Schwab, H.
Dandekar, A. Purtell, J. Hartman, “An OS Interface for Active Routers”,
IEEE Journal on Selected Areas in Communications, Vol. 19, No. 3,
March 2001.

[19] J. Smith, K. Calvert, S. Murphy, H. Orman, L. Peterson, “Activating
Networks: A Progress Report”, IEEE Computer, Vol. 32, pp.32-41, April
1999.

[20] P. Tullmann, M. Hibler, J. Lepreau, “Janos: A Java-Oriented OS for Active
Network Nodes”, IEEE Journal on Selected Areas in Communications, Vol.
19, No. 3, March 2001.

[21] S. Denazis, S. Karnouskos, T. Suzuki, S. Yoshizawa, “Component-Based
Execution Environments of Network Elements and a Protocol for their
Configuration”, in IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, Vol. 34, No. 1, Feb 2004.

[22] M. Hicks, A. Keromytis, J. Smith, “A Secure PLAN”, in proceedings of the
First International Working Conference on Active Networks (IWAN),
volume 1653 of Lecture Notes in Computer Science, pages 307-314.
Springer-Verlag, June 1999. Reprinted with extensions in DARPA Active
Networks Conference and Exposition (DANCE) and IEEE Transactions on
Systems, Man, and Cybernetics, Part C.

[23] D. J. Wetherall, J. Guttag, D. Tennenhouse, “ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols”, IEEE Open Architectures
and Network Programming (OpenArch), San Francisco, CA, USA, April
1998, pp. 117-129.

[24] L. Cheng, A. Galis, “Security Protocol for Active Networks”, in
Proceedings of the 14th IEEE International Conference on Networks

http://www.cis.upenn.edu/~switchware/ANEP/
http://www.ee.ucl.ac.uk/~lcheng/Papers/Draft-RFC-ANEP.txt

(ICON), Singapore, Sep 2006.

[25] L. Cheng, A. Galis, "Simple Key Exchange for Active Networks", in
Proceedings of the 13th IEEE International Conference on Networks
(ICON), Kuala Lumpur, Malaysia, Nov 2005, Vol. 1, pp. 6-11.

[26] L. Cheng, A. Galis, C. Todd, "Active Network Authentication", in
Proceedings of London Communication Symposium (LCS), London, UK,
Sep 2003.

[27] S. Murphy, A. Hayatnagarkar, S. Krishnaswamy, W. Morrison, R. Watson,
“Prophylactic, Treatment and Containment Techniques for Ensuring
Active Network Security”, in proceedings of DARPA Information
Survivability Conference and Exposition, April 2003, Vol. 1, pp. 97-108.

[28] S. Murphy, E. Lewis, R. Puga, R. Watson, R. Yee, “Strong Security for
Active Networks”, in proceedings of IEEE Open Architectures and
Network Programming (OpenArch), Anchorage, AK, USA, April 2001, pp.
63-70.

[29] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 234-239.

[30] C. Kaufman, “RFC 4306- Internet Key Exchange (IKE v2) Protocol”,
Network Working Group, Request for Comments 4306, Dec 2005.

[31] D. Harkins, D. Carrel, “RFC - 2409 The Internet Key Exchange (IKE)”,
Network Working Group, Request for Comments 2409, Nov 1998.

[32] D. Piper, et. Al., “The Internet IP Security Domain of Interpretation for
ISAKMP”, IETF RFC 2407, Nov 1998.

[33] D. Maughan, M. Schertler, M. Schneider, J. Turner, “Internet Security
Association and Key Management Protocol (ISAKMP)”, IETF RFC 2408,
Nov 1998.

[34] H. Soussi, M. Hussain, H. Afifi, D. Seret, “ IKEvI and IKEv2: A Quantitative
Analyses”, in Proceedings of World Enformatika Society (WEC), Istanbul,
Turkey, Jun 2005, Vol. 6, pp. 194-198.

[35] K. Matsuura, H. Imai, “Resolution of ISAKMP/Oakley Key-Agreement
Protocol Resistant Against Denial-of-Service Attack”, in Proceedings of
Internet Workshop (IW), Piscataway, New Jersey, USA, Feb 1999, pp.
17-24.

[36] R. Perlman, C. Kaufman, “Key Exchange in IPSec: Analysis of IKE”, in
IEEE Internet Computing, Vol. 4., Issue 6, Dec 2000, pp. 50-56

[37] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 401-432.

[38] National Institute of Standards and Technology, “Digital Signature
Standard (DSS)”, Federal Information Processing Standards Publication
(FIPS PUB) 186, May 1994.

[39] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 373-382.

[40] D. Salomon, “Data Privacy and Security”, Springer-Verlag, New York,
2003, ISBN: 0-387-00311-8, pp. 195-202.

[41] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 369-372.

[42] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2 edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 239-244.

[43] D. S. Alexander, W. Arbaugh, D. Keromytis, J. Smith, “A Secure Active
Network Environment Architecture: Realization in SwitchWare”, in IEEE
Network Magazine (special issue on Active and Controllable Networks),
June 1998.

[44] W. Arbaugh, A. Keromytis, D. Farber, J. Smith, “Automated Recovery in a
Secure Bootstrap Process”, in proceedings of Network and Distributed
System Security Symposium, Internet Society, March 1998, pp. 155-167.

[45] H. Krawczyk, M. Bellare, R. Canetti, “RFC 2104 - HMAC: Keyed-Hashing
for Message Authentication”, Network Working Group, Request For
Comments: 2104, February 1997.

[46] T. Becker, L. Cheng, S. Denazis, D. Gabrijelcic, A. Galis, "Management
and Performance of Virtual and Execution Environments in FAIN", in
Proceedings of the 6th International Working Conference on Active
Networks (IWAN), Kansas, USA, Oct 2004.

[47] T. Becker, L. Cheng, S. Denazis, D. Gabrijelcic, A. Galis, G. Karetsos, A.
Lazanakis, "FAIN: A Flexible Node Architecture for the Dynamic
Deployment of New Services", in Proceedings of the 6th International
Working Conference on Active Networks (IWAN), Kansas, USA, Oct
2004.

[48] W. Eaves, L. Cheng, A. Galis, T. Becker, T. Suzuki, S. Denazis, C.
Kitahara, “SNAP based Resource Control for Active Networks”, in
Proceedings of IEEE Global Telecommunications Conference (Globecom),
Taipei, Taiwan, Nov 2002.

[49] S. Krishnaswamy, J. Evans, G. Minden, “A Prototype Framework for
providing Hop-by-Hop Security in an Experimentally Deployed Active
Network”, in proceedings of the IEEE DARPA Active Networks
Conference and Exposition (DANCE), San Francisco, CA, USA, May
2002, pp. 216-222.

[50] P. Pessi, “Secure Multicast”, in Proceedings of Helsinki University of
Technology Seminar on Network Security, 1995,
http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/multicast. html#intro

[51] MSEC (Multicast Security) Working Group,
http://www.securemulticast.org/msec-index.htm

[52] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2nd edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 220-233.

[53] T. Aurish, C, Karg, “Using the IPSec Architecture for Secure Multicast
Communication”, extended abstract for the 8th International Command
and Control Research and Technology Symposium (ICCRTS),
Washington D.C., USA, Jun 2003, pp. 14-17,
http://www.dodccrp.org/events/2003/8th_ICCRTS/pdf/027.pdf

[54] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 240-241.

[55] C. Kaufman, “RFC 4306- Internet Key Exchange (IKE v2) Protocol”,
Network Working Group, Request for Comments 4306, Dec 2005, pp. 20.

[56] C. Kaufman, “RFC 4306- Internet Key Exchange (IKE v2) Protocol”,
Network Working Group, Request for Comments 4306, Dec 2005, pp.
19-20, http://www.rfc-archive.org/getrfc.php?rfc=4306

[57] W. Aiello, S. Bellovin, M. Blaze, R. Canetti, J. loannidis, A. Keromytis, O.
Reingold, “Efficient, DoS-Resistant Secure Key Exchange for Internet
Protocols”, in proceedings of the 9th ACM Computers and
Communications Security Conference (CCS), Washington D.C., USA,
2002, pp. 48-58.

[58] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2nd edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 56-57.

[59] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2nd edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 122-123.

[60] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2nd edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 71-77.

[61] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2 edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 59-71.

[62] S. Kent, R. Atkinson, “RFC 2401 - Security Architecture for the Internet
Protocol”, Network Working Group, Request for Comments 2401, Nov

http://www.tml.tkk.fi/Opinnot/Tik-110.501/1995/multicast
http://www.securemulticast.org/msec-index.htm
http://www.dodccrp.org/events/2003/8th_ICCRTS/pdf/027.pdf
http://www.rfc-archive.org/getrfc.php?rfc=4306

1998.

[63] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2nd edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 43-54.

[64] C. Kaufman, “RFC 4306- Internet Key Exchange (IKE m2) Protocol”,
Network Working Group, Request for Comments 4306, Dec 2005, pp. 34,
http://www.rfc-archive.org/getrfc.php?rfc=4306

[65] Juniper Networks, “The E-Series Routing Protocols Configuration Guide,
Vol. 1”,
http://www.juniper.net/techpubs/software/erx/erx51x/swconfig-routing-vol
1/html/ipsec-config5.html

[66] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2 edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 123-127

[67] H. Krawczyk, et al., “SIGMA: the SIGn-and-Mac Approach to
Authenticated Diffie-Hellman and its Use in the IKE Protocols”, in
proceedings of Advances in Cryptography (CRYPTO), LNCS 2729,
Springer, 2003, http://www.ee.technion.ac.il/~hugo/sigma.html

[68] C. Kaufman, “RFC 4306- Internet Key Exchange (IKE m2) Protocol”,
Network Working Group, Request for Comments 4306, Dec 2005, pp. 88,
http://www.rfc-archive.org/getrfc.php?rfc=4306

[69] C. Kaufman, “RFC 4306- Internet Key Exchange (IKE m2) Protocol”,
Network Working Group, Request for Comments 4306, Dec 2005, pp.
27-29, http://www.rfc-archive.org/getrfc.php?rfc=4306

[70] Internet mailing list, ”UDP DoS attack in Win2K via IKE”,
http://marc.theaimsgroup.com/?l=bugtraq&m=100774842520403&w=2

[71] Internet references, ’’Nortel VPN Router Malformed IKE Packet DoS”,
http://www.osvdb.Org/16918

[72] P. Eronen, “Denial of service in public key protocols”, in proceedings of
the Helsinki University of Technology Seminar on Network Security,
December 2000,
http://www.niksula.hut.fi/~peronen/publications/netsec_2000.pdf

[73] P. Karn, W. Simpson, “Photuris: Session-Key Management Protocol”,
IETF RFC 2522, March 1999.

[74] K. Matsuura, H. Imai, “Modification of Internet Key Exchange Resistant
against Denial-of-Service”, in proceedings of Internet Workshop (IWS),
Feb 2000, pp. 167-174.

[75] Y. Zheng, “Digital Signcryption or How to Achieve Cost(Signature &

orn

http://www.rfc-archive.org/getrfc.php?rfc=4306
http://www.juniper.net/techpubs/software/erx/erx51x/swconfig-routing-vol
http://www.ee.technion.ac.il/~hugo/sigma.html
http://www.rfc-archive.org/getrfc.php?rfc=4306
http://www.rfc-archive.org/getrfc.php?rfc=4306
http://marc.theaimsgroup.com/?l=bugtraq&m=100774842520403&w=2
http://www.osvdb.Org/16918
http://www.niksula.hut.fi/~peronen/publications/netsec_2000.pdf

Encryption) « Cost(Signature) + Cost(Encryption)”, in Proceedings of
Advances in Cryptology (CRYPTO), Berlin, Germany, Springer-Verlag,
LNCS 1294, August 1997, pp. 165-179.

[76] D. Coppersmith, M. Franklin, J. Patarin, M. Reiter, ’’Low-exponent RSA
with related messages”, in Proceedings of Advances in Cryptology
(EUROCRYPT), vol. 1070 of LNCS, Springer-Verlag, Saragossa, Spain,
May 1996, pp. 1-9.

[77] A. Odlyzk, “The future of integer factorisation”, CryptoBytes 1(2):5— 12,
1995.

[78] D. Cooper, “A Model of Certificate Revocation”, in Proceedings of the 15th
IEEE-Annual Computer Security Applications Conference (ACSAC),
Scottsdale, AZ, USA, Dec 1999,
http://csrc.nist.gov/pki/documents/acsac99.pdf

[79] W. Diffie, P. Oorschot, M. Wiener, “Authentication and Authenticated Key
Exchanges”, Designs Codes and Cryptography, vol. 2, 1992, pp. 107-125.

[80] B. Springer, L. Kilmartin, “Performance Evaluation of the IKE Protocol
under Dynamic VoIP Network Conditions”, in proceedings of the Irish
Signals and Systems Conference, Limerick, Ireland, 2003.

[81] SonicWall, “Creating IKE IPSec VPN Tunnels between SonicWALL
Devices and Cisco 3000 VPN Concentrators”, TECHnotes, May 2002,
http://www.vpn-technology.com/lnteroperability/SonicWALL%20VPN%20
with%20Cisco%203000.pdf

[82] Verisign, http://www.verisign.com

[83] Algorithm Solutions Software GmbH, “Key for Cryptography (Crypt Key)”,
The LEDA menu,
http://www.algorithmic-solutions.info/leda_manual/CryptKey.html#CryptK
ey

[84] D. Salomon, “Data Privacy and Security”, Springer-Verlag, New York,
2003, ISBN: 0-387-00311-8, pp. 170-172.

[85] L. Cheng, K. Jean, R. Ocampo, A. Galis, “Towards Flexible Service-aware
Adaptation Management in Ambient Networks”, to appear in Proceedings
of the 1st IEEE International Conference on Networks (ICON), Singapore,
Sep 2006.

[86] L. Cheng, R. Ocampo, K. Jean, A. Galis, C. Simon, R. Szabo, P. Kersch,
R. Giaffreda, “Towards Distributed Management Systems Composition &
Decomposition in Ambient Networks”, to appear in Proceedings of
IFIP/IEEE Distributed Systems: Operations and Management (DSOM),
Dublin, Ireland, Oct 2006 (acceptance ratio: -20%).

[87] R. Ocampo, L. Cheng, K. Jean, A. Prieto, A. Galis, “Towards a Context

http://csrc.nist.gov/pki/documents/acsac99.pdf
http://www.vpn-technology.com/lnteroperability/SonicWALL%20VPN%20
http://www.verisign.com
http://www.algorithmic-solutions.info/leda_manual/CryptKey.html%23CryptK

Monitoring System for Ambient Networks”, to appear as work-in-progress
report in IEEE Chinacom, Peking, China, Oct 2006.

[88] L. Cheng, R. Ocampo, A. Galis, R. Szabo, C. Simon, P. Kersch,
"Self-management in Ambient Networks for Service Composition", in
Proceedings of IFIP International Conference on Intelligence in
Communication Systems (INTELLCOMM), Montreal, Canada, Oct 2005.

[89] K. Lim, C. Adam, R. Stadler, “Decentralizing Network Management”, KTH
Technical Report, Nov 2005, available at:
http://www.ee.kth.se/~stadler/nmrg/DECENTRALIZING-KTHTR-2005.pdf

[90] K. Lim, R. Stadler, “Real-time Views of Network Traffic using
Decentralised Management”, 9th IFIP/IEEE International Symposium on
Integrated Network Management (IM) 2005, Nice, France, May 2005.

[91] Public Key Infrastructure (X.509) Working Group,
http://www.ietf.org/html.charters/pkix-charter.html

[92] Sun Microsystems, “keytool - key and certificate Management Tool”,
http://iava.sun.eom/i2se/1.4.2/docs/tooldocs/solaris/kevtool.html

[93] Microsoft, “Cryptographic Key Storage and Exchange”, MSDN Library,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/seccrypto/
security/cryptographic_key_storage_and_exchange.asp

[94] P. Karn, W, Simpson, “The Photuris Session Key Management Protocol”,
Internet Draft, draft-ietf-ipsec-photuris-03.txt, Sep 1995 (obsolete).

[95] RSA Laboratories, “Chapter 3.1, Techniques in Cryptography”, Crypto
FAQ, http://www.rsasecurity.com/rsalabs/node.asp?id=2215

[96] D. Salomon, “Data Privacy and Security”, Springer-Verlag, New York,
2003, ISBN: 0-387-00311-8, pp.201.

[97] P. Oorshot, M. Wiener, “On Diffie-Hellman Key Agreement with Short
Exponents”, in proceedings of Eurocrypt 1996, LNCS 1070,
Springer-Verlag, 1996,
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E96/332.PDF

[98] RSA Laboratories, ’’Chapter 3.6, Techniques in Cryptography”, Crypto
FAQ, http://www.rsasecurity.com/rsalabs/node.asp?id=2258

[99] R. Smith, “Authentication, From Passwords to Public Keys”,
Addison-Wesley, 2002, ISBN: 0-201-61599-1, p. 338-339.

[100] B. Ikenaga, ”An Example Using the Extended Euclidean Algorithm”,
Internet article,
http://www.millersv.edu/-|bikenaqa/absala/exteuc/exteucex.html

[101] H. Thomas, “A History of Greek Mathematics”, Vol. 2, Dover Publications,

http://www.ee.kth.se/~stadler/nmrg/DECENTRALIZING-KTHTR-2005.pdf
http://www.ietf.org/html.charters/pkix-charter.html
http://iava.sun.eom/i2se/1.4.2/docs/tooldocs/solaris/kevtool.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/seccrypto/
http://www.rsasecurity.com/rsalabs/node.asp?id=2215
http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E96/332.PDF
http://www.rsasecurity.com/rsalabs/node.asp?id=2258
http://www.millersv.edu/-%7cbikenaqa/absala/exteuc/exteucex.html

new edition, ISBN: 0-486-24073-8.

[102] F. Bahr, M. Boehm, J. Franke, T. Kleinjung, e-mail announcement on RSA
factorisation, http://www.crypto-world.com/announcements/rsa200.txt

[103] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2nd edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 46-47.

[104] N. Doraswamy, D. Harkins “IPSec The New Security Standard for the
Internet, Intranets, and Virtual Private Networks”, 2 edition, Prentice Hall,
2003, ISBN: 0-13-046189-X, pp. 153-159.

[105] M. Wutka, et al., “Hacking Java: The Java Professional’s Resource Kit”,
Chapter 27, Que Pub; ISBN: 078970935X, Nov 1996.

[106] lus mentis, “PGP Attack FAQ: The asymmetric cipher”, Internet references,
http://www.iusmentis.com/technology/encryption/pgp/pgpattackfaq/asym
metric/

http://www.crypto-world.com/announcements/rsa200.txt
http://www.iusmentis.com/technology/encryption/pgp/pgpattackfaq/asym

