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Abstract

With the molecular revolution in medicine, many new potential prognostic and predic-
tive factors are becoming available. However, whether new factors will lead to substantial
improvement in the accuracy of prognostic assessments requires the use of a suitable per-
formance measure when considering different prognostic models. Several such measures
have been proposed for use in survival analysis with a particular emphasis on measures
proposed for the Cox proportional hazards model. However, there is no consensus of opin-
ion on this issue. The proposed measures make use of a wide spectrum of techniques from
information theory to statistical imputation. No comprehensive systematic summary of
these measures has been done, and no adequate comparison of measures, theoretically or
in practice, has been reported.

This PhD studies the proposed measures systematically. It defines a set of criteria
that a measure should possess in the context of survival analysis. Essential aspects
of a measure are that it should be consistent under different degrees of censoring and
sample size conditions; it should also possess properties such as variable and parameter
monotonicity. Desirable properties of a measure are robustness and extendability. This
thesis compares the existing measures using these criteria discussing their strengths and
shortcomings.

From a practical point of view, a discussion of why these measures are important
and what information they can provide in medical research, practical data analysis, and
perhaps most importantly in prognostic modelling is presented. Data has been taken from
completed randomised controlled trials in several diseases carried out by MRC Clinical
Trials Unit and other research organisations. The measures that have the best properties
will be applied to models fitted to these datasets. This allows us to quantify and assess
the prognostic ability of the available prognostic factors in several diseases.
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Title: Professor
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Chapter 1

Introduction

1.1 The context of the research

In the last century, considerable progress was achieved in understanding the aetiology of
many diseases. However, both treatment of individual patients and foreknowledge about
the outcome of a disease remains a matter of particular importance. In all diseases, there
exist factors which assist clinicians in acquiring this knowledge and predicting the progno-
sis of patients. Such factors are called "prognostic factors". Prognostic factors are useful
in a number of ways. Knowledge of prognostic factors can help us understand how the
disease would behave if it were untreated, or is likely to behave if treated. Identification
of potential prognostic factors may also provide information useful to understand disease

mechanisms and help devise new treatments.

One of the objectives in prognostic factor studies is to identify factors that can be
used to guide clinical management of patients. To clinicians, knowledge of the relative
importance of prognostic factors is invaluable since they usually combine such knowledge
with experience to informally help them make decisions about the care of their patients.
Laupacis et al (1997) [58] described how clinicians can use prognostic factors to devise
clinical rules which assist them in medical decision making when caring for their patients.
In general, these rules are created by multivariate regression analysis and either provide
the probability of observing an specific outcome, or suggest a diagnostic or therapeutic

course of action.

In clinical research, especially in the study of cancer, an understanding of prognostic

factors is important in the design and analysis of clinical trials and retrospective reviews
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of clinical experience. As Simon (1984) [105] pointed out, it is very difficult to design good
clinical trials when prognosis is poorly understood. Valid comparison of treatment and
control groups requires that the expected outcome without treatment should be similar in
both. Prognostic factors are used as eligibility criteria to ensure a relatively uniform study
population, and they may also be used in the process of stratification that is undertaken

to balance the case mix in each arm as far as possible.

The necessity to assess the impact of prognostic factors on the survival outcome of
patients has given rise to considerable numbers of studies every year. The results of studies
are usually summarized in the form of statistics resulting from statistical significance
testing, i.e. estimated parameters, confidence intervals, and p-values. Sole dependence
on these statistics may lead to misinterpretation of the findings of a study. As Ludwig
(2005) [66] stated, statistical tests and p-values give very little information because they
can answer only the one very specific question: "Does an observed difference exceed that
which might reasonably be expected solely as a result of sampling error and/or random
allocation of individuals?" They do not inform us whether prognostic factor information
will lead to substantial improvement in the prognostic assessment. There is a great deal
of literature about the use and misuse of p-values and statistical tests (Ludwig (2000)
[65]; Ludwig (2005) [66]; Igles et al {2001) [73]; Cohen (1994) [16]). Small p-values say
nothing about the clinical relevance of the results or the size of the effect. Small p-values
can always be obtained with large samples no matter what the true relationship is and
how much random experimental error is present. As many, including Abelson (1985) [1],
have wisely cautioned, statistical significance tests and p-values should always be used

"for guidance rather than for sanctification”.

To determine whether research results are of practical significance, we often need
to supplement p-values and parameter estimates with statistics that measure the effect
magnitude of prognostic factors and new treatments. A variety of statistics have been
introduced to measure effect magnitude. Many of the statistics fall into one of two
main categories: measures of effect size (typically, standardized mean differences between
treatment and control groups) and measures of strength of association (Kirk (2007) [52]).
In normal linear regression, R? is a standard measure of strength of association between
the outcome and predictors. It is also a measure which can be used to further understand
the clinical importance of prognostic factors. This measure can help to quantify the
improvement in predictive ability when using information on a set of prognostic factors

compared to using another set or not using them at all.
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1.1.1 Predictive ability in linear regression

The coefficient of determination, R?, is a well known measure in normal linear regression,
which is applied to quantify the predictive ability of covariates, i.e. prognostic factors, in
the model. The primary reason for its application is its interpretation as the proportion
of variability in the outcome explained by a model, where variability is measured by the
variance of outcome variable. In general, the more variability is explained, the better the
predictive ability of the model. In other words, R? measures how well the model explains
the occurrence of different values of the outcome. Furthermore, R? quantifies how close
the model based predictions are to the observed values of the outcome. It is also a measure
of randomness in the outcome that is explained by the model. Kullback and Leibler
(1951) [55] applied Shannon’s information function [104], which can be used to quantify
the amount of information, in statistics and introduced the Kullback-Leibler information
gain [55] or divergence measure. They showed that R? can be expressed through the
Kullback-Leibler distance between models. Due to the link with information gain (i.e.
reduction in entropy), R? can also be interpreted as the proportion of ‘randomness’ in

the outcome that is explained by the model.

In summary, R? is a measure of explained variation and explained randomness, as

well as a measure of predictive accuracy for individuals in the study.

1.1.2 Applications of R?

The coefficient of determination, R?, has wide applications in medical research and prac-

tical data analysis. Some of the applications of R? are described below.

To quantify our knowledge of the disease under study

An important application of a predictive ability measure is its use to quantify our knowl-
edge of the disease under study. R? as a measure of explained variation can also be
considered as a tool to help in finding out how much we know about a disease. In prog-
nostic modelling where the goal is to develop a model which describes the outcome as
well as possible, a suitable measure can tell us how much variation in the outcome is
explained by prognostic factors in the model. After constructing the prognostic model,
the remaining unexplained variation is usually attributed to the random error term in

the model. The concept of randomness is an interesting one, as it could be argued that
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no events in nature are truly random; we may not know all their influencing factors, and

thus they just appear random to our limited knowledge.

For instance, if 20% of the variation in the outcome variable, e.g. survival of patients,
is explained by known prognostic factors, this tells us that much remains to be known
about the disease. Explaining the remaining proportion of variation may, in theory, be
available to a more sophisticated system of prognostic determination, perhaps by using
molecular or other types of marker. On the other hand, if 90% of variation in the outcome
variable is explained by a model, which is (perhaps) unlikely for many diseases, it tells

us that our level of knowledge about the disease is very high.

Effectiveness of surrogate endpoints

A measure like R? can be used to evaluate the effectiveness of surrogate endpoints. Her-
son (1989) [45] wrote that "a surrogate endpoint is one that an investigator deems as
correlated with a true endpoint of interest but that can perhaps be measured at lower ex-
pense or at an earlier time than the endpoint of interest". Therefore, surrogate endpoints

are only useful if they are a good predictor of clinical outcome.

The validation of surrogate endpoints has been studied by Prentice (1989) [83]. He
presented a definition as well as a set of criteria, which are equivalent only if the surrogate
and true endpoints are binary. Before a surrogate endpoint can replace a final endpoint
in the evaluation of an experimental treatment, it must be formally ‘validated’. Freed-
man and Graubard (1992) [28] supplemented these criteria with the so-called ‘proportion
explained’, which is the proportion of the treatment effect mediated by the surrogate.
Buyse and Molenberghs (1998) [13] discussed some problems with this class of measures
and proposed to replace it with new measures. One of their proposed measures was the
individual-level association between the endpoints, after accounting for the effect of treat-
ment, and referred to it as ‘adjusted association’. This is one of the applications of R?
which evaluates the individual level association between the predictor and the outcome.
A similar measure can also be used to validate the effectiveness of a surrogate endpoint

where the outcome is the survival time.
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Practical data analysis

Another application of predictive ability measures is in practical data analysis. In medical
research, continuous variables are often converted into categorical variables by grouping
values into two or more groups. Royston et al (2006) [90] and Altman and Royston (2006)
[5] explained the consequences of converting the continuous data into groups. They also
presented alternative methods that make full use of information at hand. A suitable
measure of predictive ability can be used to quantify to what extent predictive ability of
a continuous variable is diminished, if at all, by recording it as a dichotomy, trichotomy,
or more groups. In other words, to what extent do we lose, or.gain, by recording a
continuous prognostic factor, for example age at diagnosis, into discrete classes on the

basis of cutpoints.

Model validation

Measures of predictive ability can also be used for model validation. As Harrell (2001)
[36] stated, "model validation is done to ascertain whether predicted values from the
model are likely to accurately predict responses on future subjects not used to develop
our model". Altman and Royston (2000) [4] examined some general approaches to model
validation and discussed two kinds of model validation: internal validation and external
validation. Data-splitting, bootstrapping, and cross-validation are methods that can be
applied for internal validation of a prognostic model. Measures of predictive ability can
be used to evaluate the quality of the predictions obtained from prognostic models. For
example, a suitable measure of predictive ability can be used to validate a model in data-
splitting methods where we have training and test data sets. Suppose we have training
and test samples, each with the same covariates recorded. A model is developed on the
training data, its predictive ability, R?, is estimated, and the model’s performance is
evaluated on the test data. Royston (2006) [88] demonstrated how this can be done in

practice,

1.1.3 Measures of predictive ability in survival models

Survival time studies are an important part of clinical research. There have been serious
efforts in the last two decades to devise a measure of predictive ability for statistical

models in the analysis of survival data. However, the presence of censoring makes the
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definition of such measure much more complicated. Nonetheless, several measures of
predictive ability have been proposed for use in survival models, almost exclusively for the
Cox proportional hazards regression model. As Schemper and Stare (1996) [99] indicated,
there is no simple, easy to calculate, easy to interpret measure for survival models, and

in particular for the Cox proportional hazards (PH) regression.

The interpretation of R? in linear regression as a measure of explained variation,
explained randomness, and predictive accuracy has given rise to a wide spectrum of
measures for survival models. We, therefore, classify the proposed measures as measures
of explained variation, measures of explained randomness, and measures of predictive
accuracy in survival models. We refer to all of them as measures of "predictive ability"
in this thesis. The last known attempt to compare the proposed measures was done by
Schemper and Stare in 1996 [99]. The outcome of their investigation will be discussed in
chapter 3 in more detail. Graf and Schumacher (1995) [32] demonstrated the conceptual
differences between some explained variation and predictive accuracy measures in survival
models. Furthermore, Henderson et al (2001) [43] investigated the reliability of point
predictions derived from familiar survival models by applying some of the measures to
real data sets. Several new measures have been proposed since then and there has been
no attempt in the literature to compare these measures systematically with regard to a
set of criteria. The measures have been mainly studied by the authors who proposed
the measures - with the exception of Schemper and Stare (1996) [99]. Despite all the
promising properties that were presented by the authors of the measures, the shortcomings
of these measures have rarely been addressed. For example, their behaviour has rarely
been assessed in the context of multiple regression. Moreover, previous studies lack

investigation of these measures systematically across several diseases and real data sets.

This thesis is a study of measures that have been prr;posed to quantify the predictive
ability of covariates in survival models. It investigates their statistical properties and
their application in medical research. In addition, it studies the proposed measures
across several diseases to quantify and assess the predictive ability of available/known
prognostic factors. Great variation exists in the application of measures for examining
predictive ability in survival models. Even when investigators use the same measure
for a similar population, the estimates of selected measure sometimes differ substantially.
Finally, several thorny statistical issues have been raised regarding properties of measures;
in particular: variations in formulae, identification and selection of a suitable measure,

the effect of censoring, the impact of highly skewed covariates, the relationship between
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likelihood and some of the measures, and the maximum value that the measures can
reach. We try to address these issues in this thesis with the aim of recommending a small

number of measures for general use.

1.2 Organisation and overview

This thesis consists of 9 chapters. This chapter provides an overview. It discusses why
measures of predictive ability are important and what information they can provide in
medical research and practical data analysis. It also explains their potential use in quan-

tifying our knowledge about a disease.

In chapter 2, first, we give an overview of the measure of predictive ability in linear
regression, R%. Second, an introduction to survival models and proposed measures of
predictive ability for survival time data is given. The measures are classified into three
main categories and some details on their background are presented. However, there exist
measures which use a completely different approach to characterising the predictive ability
in survival models such as rank correlation or proportional reduction in log-likelihood.
These measures comprise a separate category named as "the other proposed measures".

More statistical details of these measures are included in Appendix B.

In chapter 3 we assess the proposed measures with regard to a set of criteria. This
chapter formulates our approach and provides us with a framework to study these mea-
sures systematically. The measures have been developed based on broad and elusive
concepts. The criteria, which are important in the context of survival analysis, simplify
the process of drawing conclusions. Tables that summarise these measures according to
the proposed criteria will be presented. A thorough investigation of proposed measures
in chapter 3, with regard to the proposed criteria, leads to a short-list of measures which

might be considered as "potentially recommendable".

In chapter 4, we propose simulation studies to further study the "potentially recom-
mendable measures". We explain the limitations of previous studies and explain the need
for further investigation of these measures. This chapter also describes the simulation
study design. The simulation studies are mainly designed to investigate the measures
with respect to the criteria which are established in chapter 3. Chapter 4 also explains

the data generation process and different aspects of the simulation study.

Chapter 5, 6, and 7 study the proposed explained variation measures, explained ran-
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domness measures, and predictive accuracy measures, respectively. Each chapter explores
the measures in each category through a series of simulation studies and illustrates the re-
sults of the study with a set of tables and graphs. In each chapter the impact of censoring
and sample size are studied, together with parameter and number of variables monotonic-
ity properties described as criteria in chapter 3. The impact of covariate distribution will
be studied by considering distributions with different skewness. The presence of extreme
observations in normal linear regression inflates R?. The R? in normal linear regression
is also sensitive to outlier observations. In each chapter we assess the impact of extreme
and outlier, known an atypical, observations on the measures in that category. Most of
the measures are proposed in the context of Cox proportional hazards (PH) regression
model. In the presence of non-proportional hazards, the behaviour of these measures is

not clear. We discuss this issue together with the impact of model mis-specification.

Chapter 8 is devoted to the application of these measures to medical research and
practical data analysis. Data sets from several diseases are considered in this chapter.

Finally, chapter 9 presents conclusions of this thesis with some practical recommendations.
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Chapter 2

Measures of predictive ability in

survival models

2.1 Introduction

Hardin and Hilbe (2007) ([34]) indicated that different interpretations of R? in linear
regression have given rise to a wide class of measures in nonlinear models. Understanding
R? in normal linear regression helps us to study many proposed measures in survival
models, including their motivation and background. Therefore, in this chapter, first the
measure of predictive ability, R?, in normal linear regression is presented, together with
some warning points with respect to its application. Second, an introduction to the
Cox proportional hazards (PH) model is given. Then, an introduction to the proposed
measures of predictive ability in survival models and their motivation is presented; further

statistical details are included in Appendix B for some measures.

Most of the measures are proposed for the Cox PH model. These measures can be
classified into three main categories: a) measures of explained variation; b) measures of
explained randomness; and ¢) measures of predictive accuracy. However, other measures
of predictive ability proposed for the survival models exist which do not belong to the
above categories, such as the proportional reduction in log-likelihood proposed by Harrell
(1986) [35] and a measure based on the rank correlation between the imputed survival
times and the covariates, proposed by Schemper and Kaider (1997) [98]. We classify them

as a completely different category named "other proposed measures" in this thesis.

As presented by Schemper and Stare (1996) [99] and Xu and O’Quigley (1999) [116],
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sometimes measures in the same category differ substantially because they measure dif-
ferent population quantities. Nonetheless, the proposed classification helps us to grasp
the theoretical underpinning of the measures and facilitates their interpretation. In nor-
mal linear regression, R? measures all three of explained variation, explained random-
ness/uncertainty, and predictive accuracy. Outside the linear regression model, the mea-
sures usually differ. Understanding this distinction is essential in order to draw correct

conclusions in practice.

2.1.1 R? and its interpretation in simple linear regression

Let X1, X2, ..., Xp and Y denote p+ 1 random variables. In the standard linear regression
model X1, X2, ..., Xp typically denote independent variables or covariates, usually called
predictors or explanatory variables, and Y typically denotes the dependent variable, also
known as the outcome variable. The regression function is linear and the model can be

stated as

p
Y =80+ B;Xj+e (2.1)

=1
where Y = (y1,....,yn), X = (z1,%2,...,2p) is a fixed n x p design matrix, 8, and B;
(4 =1, ..., p) represent the unknown parameters, e = (e, ..., en)' is a vector of independent

errors with E(e;) = 0, var(e;) = 02 (i = 1,...,n), and n is the total sample size.

Let us assume the simplest model with one dependent and one independent variable
where we have Y and one X. Figure 2-1 shows the observation Y; for the values of X;.
The variation in Y; is conventionally measured in terms of the deviation of ¥;s around
their mean Y, i.e. ¥; —Y, which is specified by a vertical line for observation i in figure 2-
1. The measure of total variation, denoted by SST, is the sum of the squared deviations,
SST = S (Y; — Y)2. The greater the variation among Y; observations, the higher the
value of SST.

When we use the predictor variable X, the variation reflecting uncertainty in the
outcome variable Y is Y; — ﬁ that of the Y; observations around the fitted regression line.
A measure of variation in the Y; when regression on the predictor variable X is taken
into account is the sum of the squared deviations, SSE = 3 (Y; — 171)2 The greater the

variation of ¥; observations around the fitted regression line, the higher the value of SSE.

The difference between $ST and SSE accounts for the regression sum of squares
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Figure 2-1: Relationship between Y and estimated Y in simple linear regression

SSR = Z(?z —Y)2. The total deviation Y; — Y can be decomposed into two components.

v,-Y = -V + Y, - %,
R p—
Total deviation Dev. of fitted regression value from mean Dev. of data from fitted regression line

(2.2)
Figure 2-1 shows the decomposition for observation Y; by dotted line. It can be shown
that the sums of these squared deviations have the same relationship, i.e. the total sum
of squares, SST, is equal to the sum of regression sum of squares, SSR, and error sum

of squares, SSE.

07 = B[(R-7) (5-7)
( :

The last term on the right equals zero, as we can see by expanding it:
23 (%-7) (vi-%) =2} % (vi-%) -2¥ > (v~ V).
The first summation on the right is zero, which is one of the properties of fitted
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regression line, and the second equals zero since it is the sum of the residuals. SST
measures the variation in the observation Y}, or the uncertainty in predicting Y, when the
predictor variable X is not taken into account. Similarly, SSE measures the variation
in the Y; when a regression model utilizing the predictor variable X is considered. A
natural measure of the effect of X in reducing the variation in Y, i.e. in reducing the
uncertainty in predicting Y, is to state the decrease in variation (SST — SSE = SSR)

as a proportion of the total variation:

variation in y ezplained by regression  SSR 1 SSE (2.3)

2 __ —
R = total observed variation in y - SST 58T

The measure R? is called the coefficient of determination. Since 0 < SSE < SS8T, it
follows that 0 < R? < 1.

Several formulae have been presented for R? for the linear regression in the literature,
which lead to the same results in simple linear regression. Kvalseth (1985) [56] listed

some of them as follows.

m (Y - )2 SSE
Ro-z=miz¥) _, SSE 2.4
‘ (Y- Y)2 SST (24)
) " (Yi-Y)? SSR )
= — = .5
= S (Ve SST (25)
n (P -T2
R === (2.6)
w1 (Yi —Y)
nor,_ =\2
RE=1- Zfl(e' 5)2 (2.7)
,;:1(Yi - Y)
wheree; = Y; - Y and e = }L Z?:l ;.
R?, = squared multiple correlation coefficient between response variable and predictor
= (Y, X)) (2:8)
R2 = squared correlation coef ficient between Y; and Y;
= (%% (29)
2 S (Y- Vi)
=1- 2.1
A > 210



nov2
R: = _—E"jl 52 (2.11)
However, care must be exercised as the above definitions of R? lead to different results
in models where suitable transformations of the variables are used to form standard linear
models (Kvalseth 1985 [56]). Besides, they result in different values in models without
intercept or when different methods of estimation other than linear least squares are used
(see section 2.1.2). In these cases, values of R? derived from the above definitions would

not necessarily be the same.

2.1.2 Health warnings against model comparisons using R’

Despite its usefulness and common application in linear regression, R? may easily be
misinterpreted by research workers. For example, R? can be misinterpreted as a measure
of goodness of fit. Magee (1990) [68] and Vandaele (1981) [111] showed the relationship
between R? and measures of model fit. These relationships were defined to suggest logical
extensions of R? and show problems that may arise in its application. However, R? is
an inappropriate measure to compare the fit of competing regression models for which
the underlying null models are not identical. To explain this in more detail, consider the
general definition of R? in (2.3). R? measures only how much the model (2.1) improves
the null model, i.e. a model with just an intercept. R? is the proportion of variation
in the outcome variable that can be accounted for by incorporating a covariate into a
particular model instead of viewing the outcome variable by itself. An important feature
of R? is that it is used to compare models for which the underlying null model is identical,

e.g. nested models.

Royston (2006) [88] showed how ignoring this characteristic of R? may cause data
analysts to reach misleading conclusions in practice. He compared measures of goodness
of fit and R%s of a range of survival models including gamma, Weibull, and lognormal.
The results of his analysis showed that the R? for the gamma model is lower than that
of the Weibull or lognormal models. The gamma model has the lowest deviance, i.e.
—Qlff’ for the null model and the model with covariates because it fits the underlying
distribution better than the other two models, leaving less scope than the other models

for the inclusion of covariates to improve the fit . Nevertheless, as judged by the AIC,

AIC = -2(log likelihood) + 2(c + p + 1)
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where ¢ is the number of covariates and p is the number of model-specific ancillary pa-
rameters, the Weibull and lognormal models with covariates fit worse than the gamma
model. Therefore, the common belief that large R? demonstrates model adequacy or

model superiority is proven to be wrong.

Anderson-Sprecher (1994) (6] and Scott and Wild (1991) {103] presented some of the
strongest warnings about the mis-application of R? in model selection when the values
of the coeflicient are calculated in different contexts. Some of the points that should be

considered in the application of R? in model building are as follows.

Transformation and R?

To identify the correct functional form between the outcome and the predictors, it is
often advantageous to transform the response variable when a least squares regression
model is fitted to a set of data. This can lead to difficulties in making comparisons
between competing transformations. Kvalseth (1985) [56] warned of the problems that
arise when R? is used to compare models that involve different transformations of the
response variable. Scott and Wild (1991) [103] reiterated this warning by applying it to

real data.

Their example consisted of data on the length of the liver as the response variable
and gestational age as a single predictor. Scott and Wild (1991) used two different
transformations of the response variable, i.e. logarithmic and power transformations.
The results of the study showed that the two models were essentially interchangeable
for all practical purposes. Almost all model diagnostic tests including residual tests,
predictions, and the fitted curves resulting from the models were identical. The R? of
the two models was calculated as the squared multiple correlation coefficient between the
response variable and the predictor (RZ in equation (2.8)). The R?s of the two models
differed enormously, being 0.13 and 0.88. The exact reason for the big difference in R? is
beyond the scope of this thesis. To put it in a nutshell, it is the result of a change in the

metric of the response variable.

Huang and Draper (2003) [46] examined this problem and gave a thorough explanation
in a new way by considering the underlying regression geometry. Greenland (1996) [33]
also explained how transformation of the response variable can have profound effects on
the correlation coefficient in the lognormal distribution. In summary, R? should not be

used to compare models with different transformations of the outcome variable.
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Models with unequal measures of variation

Different measures of variation in numerator and the denominator of the R? definition
in (2.3) result in different R2s. For example, the least median squares estimator (applied
in robust regression) uses med,(Y; — 2)2 as the measure of variation and replacing this
quantity in the general definition of the R? in (2.3) will lead to

med;(Y; — ;)2
med;(Y; — M)?

Ry =1- (2.12)

where M is a constant that minimises med;(Y; —~ M}2. Rousseeuw and Leroy (1987) [87]

resented R2, for robust regression.
P R g

Using different measures of variation will lead to different R? values. Examples of
methods whose R? should not be compared against each other, or against least squares
regression, are ridge regression, robust regression, and weighted least squares. In brief, R?

should not be used to evaluate models that are based on different measures of variation.

In summary, research workers should take due consideration and should definitely be
careful in the interpretation of R2. The R? should not be used to compare predictive
ability of different models whose null model are different, or models that use different
outcome transformation. However, it can be used to compare the predictive ability of

nested models.

2.1.3 Adjusted R?

In theory, using an unlimited number of independent variables to explain the change
in a dependent variable would result in an R? of 1. Consider the general definition
of R? in (2.3): SST is fixed (unchanging) and SSR can only increase by adding new
independent variables. Therefore, each additional variable used in the regression model
will not decrease the §ST and will probably increase SSR at least slightly, resulting in
a higher R%?. This happens even when the new variable causes the regression model to
become less efficient by adding to the variance of the predictions. Ezekiel (1930) [24]
proposed an adjusted R? that is obtained by dividing two quantities, SSE and SST, by

the respective degrees of freedom.

SSE/(n —p)

_ (n-1)
SS8T/(n—1)

=1 =BG

R, =1 (2.13)
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where n is the sample size and p is the number of independent variables. In addition,
Kendall and Stuart (1979) ([48], page 362) showed that R? in (2.3) is a biased estimator
of the population R2, which is defined as

_ E{Var(Y|X)}

2 _
R = Var(Y)

where Var(Y|X) = F {[Y - E(Y]|X)]? |X} is the variance of the response around its

true regression. Furthermore, Kendall and Stuart (1979) [48) showed that when R? = 0

E(R?R? = 0) ml—E{SSE} P

SST [~

T n-1

but
E(RZ,;|IR? =0) =0.

So Rgdj is an unbiased estimator when R? = 0.

2.2 Survival Models

2.2.1 The proportional hazards model

Let T be a non-negative random variable representing time to an event of interest, e.g.
death or disease recurrence, in individuals or objects in the population under study. We
will assume T to be continuous. The survival function is defined as S(¢t) = Pr(T > t)
where Pr denotes the probability. The distribution function of the random variable T,
F(t), and survival function, S(¢), have the relationship S(¢) = 1 — F(t). An important
concept in the study of survival time distribution and modelling is the hazard function,

which is defined as
. Pt <T <t+ AT 2 t)
= lim ]
At—0 At

h(t)

The hazard function can be interpreted as a measure of proneness to failure in the
interval [¢,t + At], for small At, provided that the event has not occurred before t. In
contrast to the survival function, which describes the probability of not failing before time
t, the hazard function focuses on the propensity to fail at time ¢ among those individuals
who have not experienced the event by ¢t. It can be shown that S(t) and h(t) have the

following relationship:
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t
S(t) = exp(= / h(u)du) (2.14)
0
Cox (1972) [19] introduced the proportional hazards regression model in which the

hazard function, h(t, X'), is modelled for an individual with covariate vector X, using
h(t, X) = ho(t)exp(8X) (2.15)

where ho(t) is the baseline hazard function. The Cox proportional hazards model does
not make any assumption about the shape of the underlying hazard function by using
partial likelihood to estimate the underlying regression coefficients, 3. In proportional
hazards regression, the baseline hazard, ho(t), vanishes from the partial likelihood, and
we obtain only estimates of the regression coefficients associated with the explanatory

covariates. The only assumption in the Cox model is that the hazards are proportional.

2.2.2 Generalised survival models

Royston and Parmar (2002) {92] developed flexible parametric models based on the as-
sumption of proportional hazards or proportional odds scaling of the covariate effects or
probit. Their proposed class of models are based on the transformation of the survival

function by a link function g(.) given by
9[S(t; Z)] = g[So(t)] + BX (2.16)

where So(t) = S(t;0) is the baseline survival function and 3 is a vector of parameters
to be estimated for covariates X. They developed three such types of models for sur-
vival analysis. They are obtained with the probit, logit and complementary log-log link

functions respectively,

g(s) =@ (1 -s) (2.17)
o(s) = In(> — 2 (2.18)
g(8) = In[— In(s)] (2.19)

These three link functions generate the regression models

71 - 8(t; X)) = @711 - So(t)] +BX  (probit model) (2.20)
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1-S(tX) 1 — So(t:; X)

1n(__m) = In( 5ot X) )+ B8X  (proportional odds model) (2.21)

In[—InS(t; X)] = In[—In Sp(t)) + BX  (proportional hazards model). (2.22)

They called this class of models generalised survival models or GSMs. Royston and
Sauerbrei (2004) [93] applied GSMs to define an R?-type measure based on discrimination

measures for survival data which will be discussed later in this chapter.

2.3 Measures of predictive ability in survival models

This section presents statistical details of three classes of measures of predictive ability in
survival analysis. As a first step toward systematic comparisons among predictive ability
measures in survival models, some of the proposed measures are computed in this section
for illustration using real data. This example helps us to clarify the differences between
three main classes of predictive ability measures and to show where they are applicable.

The technical details of the measures in each category follows this example.

We work with the breast cancer data set which was analysed in detail by Sauerbrei
and Royston (1999) [94]. Further analysis of this data set, along with real data sets from
other diseases, will be presented in chapter 8. The data relate to a set of 686 patients
with node-positive breast cancer. The outcome of interest is the recurrence-free survival
time (RFS), that is the duration in years from entry into the study (typically, the time
of diagnosis of primary breast cancer) until either death or disease recurrence, whichever
occurred first. There were 299 events for this outcome and the median follow-up time

was about 5 years.

Model III of [94] was a Cox proportional hazards model for RFS which included 5
covariates: age with a fractional polynomial transformation with powers —2 and —0.5,
tumour grade 2/3, number of positive lymph nodes (PLN) with the exponential trans-
formation exp (—0.12 * PLN), progesterone receptor with a fractional polynomial trans-
formation with power 0.5, and hormonal therapy with tamoxifen (yes/no). Tables 2.1 to

2.3 show estimated values of some predictive ability measures for model III.

As it is evident from tables 2.1 to 2.3, the values of these measures vary widely,
even though all measures are constrained to the [0,1] range. The selected explained
variation measures vary from 0.24 to 0.29. They generally measure the variation in

the outcome variable in the model that is ‘explained’ through the prognostic factors in
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Table 2.1: Estimates of some explained variation measures using model III for breast
cancer data in Royston and Sauerbrei (1999).

Measures of Explained Variation Measure Value
Helland (1987) [41], Kent & O'Quigley (1988) [49] - R%,, 0.27
Royston & Sauerbrei measure (2004) [93] - R%, 0.28
Korn & Simon measure (1990) (53] - R% ¢ 0.241
Royston measure (2006) (88] - R}, ,10n 0.29

T squared error loss was used to evaluate the measure

the model. Therefore, it can be concluded that the available prognostic factors explain
about 24% —29% of the variation in the outcome variable, whereas the selected explained
randomness measures in table 2.2 vary from 0.20 to 0.40. These measures involve the
calculation of expected information gain. Because of the link with information gain (i.e.
reduction in entropy or randomnpess as explained in section 2.3.2), Kent & O’Quigley
(1988) [49] describe these types of measures as the proportion of ‘explained randomness’
of a model, rather than explained variation. The selected measures in the third category,
predictive accuracy measures, in table 2.3 vary from 0.16 to 0.18. These measures evaluate
the individual survival probability predictions from the model. The results in table 2.3
show that providing informative prognosis at the individual level is limited for breast
cancer patients since the predictive accuracy that can be achieved with the available

prognostic factors is only 16% — 18%.

Table 2.2: Estimates of some explained randomness measures using model III for breast
cancer data in Royston and Sauerbrei (1999).

Measures of Explained Randomness Measure Value
Kent and O’Quigley measure (1988) [49] - pj;, 0.36
Approximation to Kent and O’Quigley [49) - p%v’ A 0.38
Nagelkerke measure (1991) [71] - p2 0.20
Xu & O'Quigley measure (1999) [116] - pg(qu 0.37
O’Quigley et al measure (2005) [80] - p? 0.40

For the normal-errors regression model without censoring, explained variation, ex-
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Table 2.3: Estimates of some predictive accuracy measures using model III for breast
cancer data in Royston and Sauerbrei (1999).

Measures of Predictive Accuracy Measure Value
Schemper’s Vi and V2 measures (1990) [95] Vi =0.16; Vo =0.17
Graf et al measure [31] - R 0.16!
Schemper and Henderson measure (2000) [97] - Vsy 0.18

1: evaluated al the G0th centile of observed survival time

plained randomness, and predictive accuracy (and the resulting statistics) coincide, but
for survival models with or without censoring, these statistics are different. The rest of
this chapter presents a theoretical summary of the three main classes of predictive ability

measures in survival analysis.

2.3.1 Measures of explained variation

The first category contains explained variation measures. The most popular interpre-
tation of R? is the percent variance in the outcome that is explained by the covariates.
Measures in this category are proposed by Helland (1987) [41], modified to use for the Cox
PH model by Kent and O’Quigley (1988), Korn and Simon (1990) [53], Akazawa (1997)
[2], O’Quigley and Flandre (1994) [75], O’Quigley and Xu (2001) [78] [79], Royston and
Sauerbrei (2004) [93], and Royston (2006) [88]. The measures summarise the proportion
of variability in the outcome explained by the model, where variability is measured by a
variation function. In general, the more variability explained, the better the predictive
ability of the model. The main difference in the proposed measures in this category is in

their variation function.

Helland (1987) and Kent and O’Quigley (1988) measure - R%,,

Helland (1987) [41] proposed an explained variation measure for the linear regression
models. He suggested that the population multiple correlation coefficient can be defined
as the correlation between the outcome and the linear predictor, i.e. prognostic index
B'z. He concluded that the total variation in the outcome splits into two components:
that explained by the covariates, and the remaining unexplained variation. Therefore,

an explained variation measure can be defined as the ratio of variation explained by
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total variation in
outcome variable

T

variation remaining
explained unexplained
by covariates variation

Figure 2-2: Schematic illustration of explained variation measures; the total variation in
outcome is divided into two components

covariates in the model to the total variation which consists of two components.

R2 _ _ Varx(8'z)
Helland Varx (,B,ZE) + 0_?

(2.23)

where Var(Y) = Var, (8'z) + 02 is the total variation in the regression model.
X £

This can be generalised for other regression models as
EY|X|=8'X+¢
where ¢ is the error term. Variance of ¥ given X is
Var(Y|X) = E[Y?|X] - (E[Y|X])*
and since E[g(Y)] = E[E[g(Y)|X]], specifically E[Y] = E[E[Y|X]], we can write

E(Var(Y|X)) = E[Y? - (E[Y])® - El(E[Y|X])*] + (E[Y])?
= Var(Y) - E[(E[Y|X])’] + (E[E[Y|X]})*
= Var(Y)—- Var(E[Y|X])
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E(Var(Y|X))
Var(Y)

Var(E[Y|X])
Var(Y)
Var(8'X)

Var(#'X) + o2

R = 1-

Motivated by the above relationship and Helland’s measure (1987) for linear regression
models, Kent and O’Quigley (1988) [49] proposed a similar measure, R%,,, for the Cox
PH model.

Var x (8'z)
Varx(8'z) + n2/6

where %2 ~ 1.645 is the variance of error term in an equivalent Weibull model. In this

model the conditional distribution of T" given X is modelled by
Y =log(T) = —o(p — BX) + o
where ¢ is independent of X and has density f(y) where

f(y) = e¥ exp(—¢¥),

i.e. the extreme value density. In this case we know that T = e¥ follows a Weibull

distribution conditional upon X = z [59].

Royston and Sauerbrei measure (2004) - R?

Royston and Sauerbrei (2004) (93] proposed a measure of explained variation based on
the above measure, R%,,;. One of the interests in the survival analysis is in identifying
subgroups of patients with different risks of failure. The aim is to define groups which
are well-separated and sufficiently substantial to be useful in clinical settings. Royston
and Sauerbrei (2004) [93] proposed a measure, D, to assess prognostic separation of
survival curves. They applied the D measure to the explained variation measure defined
by Helland (1987) and Kent and O’Quigley (1988), i.e. R%,,, to propose a new measure

which is based on the separation of survival curves:




D2/K,2

2 _ _ L/RT
oy (2.25)

where k = /8/m and o2 is the variance of the error term in the model, where

1 (lognormal model or models with probit link)

Q
MR

=4 72/3 (log-logistic model or proportional odds model)

72 /6 (proportional hazards models)

R2 can be used for a wide class of models, including the Cox PH model.

Korn and Simon class of measures (1990)

Korn and Simon (1990) [53] proposed a class of explained variation measures which
requires the specification of a loss function, L(t,t), that gives the loss incurred from a
prediction, ¢, to the observed survival time, t. Their approach leads to a wide range of
measures of explained variation depending on the loss function applied to minimise the
expected loss. Two common possibilities are absolute error loss, L(t,p) = It — ﬂ, and

squared error loss, L(t,t) = (t — t)2.

Korn and Simon measures (1990) require the specification of a time range of interest.
For example, their loss function approach can quantify the predictive ability of a set of
covariates up to 5 years after diagnosis. They suggest using the average of predicted
survivals in the denominator of the measures instead of squared error loss given the null
model. Henderson (1995) [42] further developed Korn and Simon’s (1990) approach by
proposing more flexible loss functions. The expected loss (risk) for any loss function,

L(t, 1), is defined as

R(z) = /O - L(t, t)dF (t|z)

where F(tjz) = 1 — S(t|z). For example, £ = E(T|z) is the optimal predictor that
minimises the expected risk with squared error loss R = min [(t — t)2dF(t|z), which is
the variance of T'. The risk under the null model is defined a: Ry = [ L(t,to)dFp(t) where
fp minimises the expected loss with respect to Fy(t). Then, the explained variation is

defined as the proportional decrease in risk obtained by using the covariates in the model.

Ry — Ex|R(X)]
Ry

explained variation = (2.26)
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where E[R(X)] is the expected value of R(z) averaged over the distribution of the Xs, i.e.
covariate(s). For the censored survival data, Korn and Simon (1990) proposed alternative

R(x) which is loss function with squared error loss censored at T.

Akazawa measure (1997) -R?%,

Akazawa (1997) [2] proposed a similar measure to Korn and Simon’s (1990) class of
measures. His approach was motivated by the definition of R? in normal linear regression

in equation (2.6) and is defined as:

Z?zl (E[TiIXi] - % ?:1 E[E]Xi])

2
n 1 A I
A Zl ti)?

1=

R%, = (2.27)

where E[Ti|X;] = [ TdF(T|X;, To)-

O’Quigley and Flandre measure (1994) - R%QF

O’Quigley and Flandre (1994) [75] suggested a measure for the Cox PH model that
compares mean squared Schoenfeld residuals [101] under a proportional hazards model
to that of the null model. The R? in normal linear regression can be defined in terms
of prediction errors or residuals, equation (2.5). This measure applies this principle to
the Cox PH model, but it considers Schoenfeld residuals. O’Quigley and Flandre (1994)
[75] argued that since the Cox semiparametric model leaves inference depending only
on the failure time rankings, and being able to predict the failure rankings of all failed
subjects is equivalent to being able to predict at each failure time which subject is to fail,
it is sensible to measure the discrepancy between the observed covariate at a given time
and its expected value under the model. This measure quantifies the predictability of a

covariate from a given failure time and is given by:

Zfailures t; ’rj? (0) - Zfailures t; T_?(ﬁ)
Zfailures ty rj2(0)

where 7(3) and r(0) are Schoenfeld residuals [101] under the full and null models, re-

Rboi(8) = (2.28)

spectively. In the absence of censoring, the quantity >~ , 2

(8)/n is a residual sum of
squares, analogous to SSF in linear regression, and can be viewed as the average dis-
crepancy between the observed covariate and its expectation under the model, whereas

3% 1 72(0)/n is the total sum of squares, analogous to SST in linear regression. The
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population value of this measure for a single covariate is

5 Var(X) — [;° Var(X[t) f(t)dt
Rogr = Var(X)

(2.29)

where Var(X) — [J° Var(X|t) f(t)dt = Var (E(X|t)).

Xu and O’Quigley measure (2001) - Rg(uOQ

Xu and O’'Quigley (2001) [78] further developed O’Quigley and Flandre’s measure (1994)
to eliminate any dependence of RE)Q # upon censoring. They did this by weighting the
squared Schoenfeld residuals by the increments of consistent estimate of marginal failure

time distribution function. Their measure is defined as

Zfailures t; W(tJ)TJz(O) - Zfailures t; W(tJ)rjz(ﬁ)
Zfailures t; W(tj)‘r? (0)

where W (t;) is the jump of the Kaplan-Meier curve at an event time ¢;.

Rkuog(B) =

Measures proposed by O’Quigley and Flandre (1994) and Xu and O’Quigley (2001)
[78] exploit partial likelihood estimation method because it provides model-based esti-
mates of the distribution of covariates conditional on survival time. Focusing on a scalar
covariate, Xu and O’Quigley (2000) presented an estimate of the distribution of the co-
variate, X;, ¢ = 1,...,n, conditional on the event occurring at time ¢;, j = 1, ..., k, where

n and k are the number of individuals and number of events, respectively.

Royston measure (2006) - R%Dyswn

Finally, Royston (2006) [88] suggested a measure which is a modified version of a measure

proposed by O’Quigley et al (2005) [80].

B pi

Rtoyson =
v = G R 6)(1 — 77)

where p? is a measure of explained randomness, presented in the next section, proposed

by O’Quigley et al (2005) [80].
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2.3.2 Measures of explained randomness

The second category contains explained randomness measures. These measures are based
on the notion of information in information theory. Information has a technical meaning,
not radically different from the everyday meaning, which is "a numerical quantity that
measures the uncertainty in outcome of an experiment to be performed" [107]. In other
words, we can gain information only about matters in which we are to some degree
ignorant, or uncertain: indeed, information may be defined as that which removes or
reduces uncertainty. The important implication of this definition is that once we are able

to measure uncertainty, we can also measure information in similar terms.

Several methods have been introduced to quantify the amount of information in the
context of communication engineering and information theory [38] [104]. Later, these
methods were applied to statistical theory by discussing the notion of information in an
experiment. One purpose of experimentation is to reach decisions, another purpose is
to gain knowledge about the state of nature, e.g. about parameters in the model. The
knowledge is measured by the amount of information, as described below. In this section,
we first give a brief overview of information and then present the background to the
proposed measures of explained randomness/uncertainty before introducing them in the

last subsection.

Information functions

Scientists in information and communication theory have devised methods to express in-
formation numerically in the same way as distance, time, mass, temperature, etc. Hartley
(1928) [38] introduced the first information function. He stated that the answer to a ques-
tion that can assume the two values ‘yes’ or ‘no’ contains one unit of information, that
is one bit. Hartley’s formula to measure the amount of information in a set £ which
contains N elements is

I(E) = logy(N).

For example, suppose that we toss a symmetric coin then the information content of the
event 1) having a head, or 2) having a tail is logy(2) = 1 unit of information, a bit. Later,
Shannon (1948) [104] further developed Hartley’s formula for sets or elements that do
not occur with equal probabilities. Shannon’s (1948) function was primarily proposed

to quantify the expected uncertainty associated with an outcome from a set of symbols
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{zj;7=1,...,J} that are received from a source X according to probability distribution
Pr(X). Suppose X is a random variable with possible values E = {x,z9,...,zx}. Let us
denote P the probability that X assumes the value zx, & = 1,2,..., N. Shannon (1948)

[104] proposed the following function to calculate the amount of information:

1 1 1
I(E) = Plog, I + Py log, B + ...+ Py log, B (2.30)
= - Z P, logy(P;)
IfP=P=..=P = % then Shannon’s formula reduces to that of Hartley (1928).

He called this function "entropy" because of the similarities of his proposed function
with the thermodynamic entropy expression. If X is a continuous random variable, the
probability distribution, Pr{X), and summation notation in equation 2.30 are replaced

with the density function, f(z), and integral, respectively.

Kullback-Leibler information gain

Kullback and Leibler (1951) [55] applied Shannon’s information function to statistics and
introduced the Kullback-Leibler information gain [55] or divergence measure. Let Hy and
H; be null and alternative hypotheses for a random variable Y defined on a sample space y
with true density f(y;ag). Under Hy, Y is assumed to follow density f(y; ) and, under
Hi, it is assumed to follow density f(y;3). Sometimes, we shall want to suppose that
Hy is nested in H;. We regard Hy as the true model with true parameter . Following
the Shannon’s formula in I{E) above, I(ag|ag) = fy log{ f(y; a0) } f(y; @) dy is defined as
the expected information on ag under f(y;ap), i.e. information at the true parameter
value. Similarly, the expected information attached to the value 8 when the distribution
is £(y;a0) is I(Bloo,y) = [, log{f(y; 8)}f(y; ao)dy. Now, consider how much I(aglao)

exceeds the information attached to some other parameter, 3, value:

Iaolew) - I(Bles) = / log {f (3:a0) /f(4: 8)} F(y: o)y (2.31)
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This equation is known as Kullback-Leibler information gain [55]. Since log is a concave

function, Jensen’s inequality implies that
Yy 1ump

r

- /10g{f(y;ﬁ)/f(y; o) }f(y; a0)dy < — < ~log | {£(u:B)/f (ws (43 co)dy
Jy

- ~log | f(y;B)dy

e— e,

Therefore I(ao|ao) — I(B|a,) is always non-negative and I(8|ag) as a function of 8 attains
its maximum at the true value 3 = ap. The entity I{a,|a,) — I(8|a,) denotes the
distance from f(y; 3) to f(y; ao) when f(y; 3) is used to approximate f(y;ag). Although
it is common to refer to Kullback-Leibler information gain [55] as a distance, it is not a

distance in the usual geometric sense.

Statistical models can be expressed by conditional density in the form of f(y|z;3) for
Y given the observed value z of X. If we want to test the null hypothesis Hy : 3 = 0
against H; : 8 = (33, the distance between the two models indexed by 8 =0 and 3 = 3,
can be provided by the Kullback-Leibler information gain I(8,|8y) — 1(0|85). 8o can be
replaced by B, a consistent estimate of 3. In exponential family models where censoring
is not present, a standard estimate of information gain will be provided by n~! times the

usual likelihood ratio test statistic (Kent (1983) [50], (1986) [51)).

R? and Kullback-Leibler information gain

Kullback (1951) [55] pointed out the relationship between the Kullback-Leibler infor-
mation gain [55] and the correlation coefficient. Suppose that Hy and H; are null and
alternative hypotheses as follows. Under Hp, X and Y have bivariate normal density
with mean zero, variance o, and o, respectively and Py correlation, and under H;, X
and Y are independent with respective probability densities f;(z) and fa(y). Now the

information gain may be written as

T{alag) — I(Blavs) = / log{ f(z, 1)/ f1(2) fow)} 2, y)dedy

where

1 1 x? zy  y?

QWUIO'y(l _ p2y)1/2 eXP[—2(1 _p%y) (;;2: — 4Pzy 020y, + o__g)]

flz,y) =
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and the marginal densities are

fi(z) = exp[—

\/_
faly) = \/—— [

53]

Kullback (1951) [55] showed that

I{aolao) — I(Blay) = [f log{f(x,y)/ fi(x) fa(y)} f(z, y)dxdy = —%log(l — pay) (2.32)

so that I(a,|a,) — I(Bla,) is a function of the correlation coefficient p,,, only , and ranges

from 0 to co as |p| ranges from 0 to 1.

Kent (1983) [50] generalised equation (2.32) by defining a measure of correlation
between two random variables. He proposed a measure of correlation for more general

models as

phc = 1 — exp{~T(H, : Ho)}. (2.33)

where ['(H; : Hp) = 2{I(ap; ) — I{B; )} is twice the Kullback-Leibler information
gain and I{ap; o) is the expected information assuming Hy and I(8;a,) is the expected
information assuming H,. Note that a factor of 2 is introduced to generalise this measure
since we have factor % in equation (2.32). Therefore, the correlation coefficient p?, has

the following properties:

1) If X and Y are independent, then p?; = 0.

2) 0< piz < 1.

Explained randomness measures in survival models

Measures in this category use the relationship proposed by Kent (1983) [50] in equation
(2.33) to provide a measure of predictive ability in survival models. This category includes
measures proposed by Maddala (1983) [67], Kent and O’Quigley (1988) [49], Magee (1990)
[68], Nagelkerke (1991) [71], Verweij and Van Houwelingen (1993) [113], Xu and O’Quigley
(1999) [116], and O’Quigley et al (2005) [80]. Most of the measures in this category have
been introduced for the Cox PH model, and the main difference between them is in the

way they construct the Kullback-Leibler information gain [55].
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Maddala (1983), Magee (1990), and Nagelkerke (1991) measures - p2

Maddala (1983) [67] and Magee (1990) [68] proposed two similar measures for the models

that use maximum likelihood as a criterion of fit. Maddala (1983) proposed

phe =1~ {L(B)/L(0)}*/

where L(3) and L(0) denote the likelihoods of the fitted and the null models, respectively.
Magee’s (1988) proposed measure is

2(lﬂ - lo)}

where g and lp are the log likelihoods of the fitted and the null models, respectively.
Since Nagelkerke (1991) [71] studied the properties of these measures, they are generally
attributed to him in the literature. Allison (1995) (3] suggested p2 for survival models,
including the Cox PH model.

Kent (1986) [51] showed that for the exponential family, an estimate of information
gain is provided by n~! times the usual likelihood ratio test statistic. Therefore, p2 is a
measure of randomness for exponential family models. It is unclear what p2 measures in

the context of survival models and in particular the Cox PH model. p2 can be written as

2 _ exp(—2lp) —exp (~2ls)
Pr exp (—%lo)

where exp (~%l0) and exp (—%lg) are defined as the randomness of outcome in the null
model and the randomness of outcome given the covariate. Then p? can be interpreted

as the proportion of randomness in the outcome which is explained by the covariate.

Verweij and Houwelingen (1993) [113] proposed a similar measure to p2 in which the
log likelihoods, I3 and [y, are replaced with the cross-validated log likelihood counterparts,

i.e. cvlg and culg.

P2, =1—exp (—-E(c'vlg - cvlo)) .

Xu and O’Quigley measure (2005)

Xu and O’Quigley (2005) [80] suggested a modified measure of explained randomness for
the Cox PH model. They proposed replacing sample size, n, in p2 by the number of
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events, i.e. effective sample size, k:
. 2
dh=1-ew {25~ 10)}.

Kent and O’Quigley measures (1988) - p, & p¥, ,

Kent and O’Quigley (1988) [49] proposed a different measure of explained randomness
for the Cox PH model. The Cox PH model in (2.15) can be written as

¢
f(t]X; 8) = ho(t) exp {,@X — ePX /0 hg(u)du} . (2.34)

The underlying distribution remains unknown in the Cox PH model, i.e. the baseline
hazard ho(t) is completely unspecified, which makes the construction of Kullback-Leibler
information gain [55] impossible. The measures proposed by Kent and O’Quigley (1988)
[49], Xu and O’Quigley (1999) [116], and O’Quigley et al (2005) [80] make use of properties

of the Cox PH model, as explained below, to find a way round this problem.

Kent and O’Quigley’s (1988) measure replaces the baseline hazard, ho(t), in the Cox
PH model with a monotonic function of time to form Kullback-Leibler information gain
[55]. Any transformation of time which does not change the rank of event or censoring
times will result in the same parameter estimates in the Cox PH model. Kent and
O’Quigley (1988) [49] claimed that since this does not change the parameter estimates
in the model, it should not change the predictive ability of the model either. Thus,
any strictly monotonic transformation of time, T* = ¢(T), gives the same regression
coefficient in the Cox PH model as T does. Kent and O’Quigley utilized this property of
the Cox model and defined hj(t) = cexp(u)t*~! for any choice of  and . By choosing

this baseline hazard we ensure that the baseline hazard is proportional to a power of t.

Kent and O’Quigley (1988) [49] argued that generally ho(t) can be replaced by any
other strictly monotonic transformation of ¢, but the expected log likelihood function,
I(3; 8) and I(0; 3), calculations will be too awkward to compute easily. Note that finding
a suitable transformation would in practice not be possible if no parametric form for
baseline hazard was assumed. Therefore, if we replace ho(t) in (2.34) with h{(t), the

conditional distribution of T* given X = z, f*(¢t|X; ), follows a Weibull distribution:

F*(t1X; 8) = acexp(pe + BX)t* " exp [—t% exp (u + SX)].

53



Now it is possible to construct expected log likelihoods under the full and null mod-
els, I(3;3) and I(0;3), and hence the Kullback-Leibler information gain {55], ' =
2{I(B;3)— 1(0;8)}. Time, t, is indirectly involved in the calculation of I(5;3) and
I{0; 8) and is used only through the estimate of 3, i.e. B I(3; 3) has a closed form but
I(0; B) should be numerically maximised to evaluate the Kullback-Leibler information
gain [55]. Using equation (2.33) developed by Kent (1983), Kent and O’Quigley (1988)
proposed the following measure of explained randomness/uncertainty for the Cox PH

model:

piy =1 —exp(-T). {(2.35)
Since no explicit formula is available for p%,, they proposed an approximation,

2 _ Vary (8'z)
Pw.a Vary (8'z) +1

(2.36)

which is numerically easier to compute.

Note that replacing the baseline hazard function with hA§(t) = aexp(u)t*~! in the
Cox PH model means that the conditional distribution of T given X follows a Weibull

distribution. Therefore ¥ = InT™* follows a linear regression model:

Y=n(T") = —-o(p+ LX)+ oc

1

where ¢ = a7, ¢ is independent of X, Y has density f(y) where

f(y) = e exp(=e¥),

i.e. the extreme value (Gumbel) density (Lawless, 1982 [59]) with variance %2 ~ 1.645.
In the extreme value (Gumbel) density, ¢ and p are scale and location parameters, re-
spectively. Therefore a measure of explained variation for the Cox PH model, based on

Helland’s measure (1987) in equation (2.23) is:

Varx(8'z)
Varx(8'z) + 1.645°

RzPM = (2.37)

Kent and O’Quigley (1988) [49] suggested that if Vary(3'z) is small, there exists the

following relationship between explained variation measure, R%,,, and explained ran-
g P PM p
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domness measure, pﬁ,, 4, in the Cox PH model.

Piv.a = 1.645R%), (2.38)

Xu and O’Quigley measure (1999) - p%(uOQ

Xu and O’Quigley (1999) [116] proposed an alternative measure to Kent and O’Quigley’s
meastre (1988) [49] based on the Kullback-Leibler information gain [55]. They argued
that this alternative measure is more natural in the context of the Cox proportional haz-
ards regression. An apparently unusual feature of the O’Quigley and Flandre (1994) [75]
measure of explained variation in section 2.3.1 is that, rather than measuring the ability of
the covariate to predict time, as we might expect, we measure how close model-based co-
variate predictions are to the observed value of covariate at each failure time. O’Quigley
and Xu (1999) [116] showed that doing things this way around is, in fact, natural in
the context of the Cox PH model and amounts to predicting not times themselves, but,

instead, the time ranks or the ordering of the observations.

Xu and O’Quigley (1999) [116] used the above property and defined an alternative
Kullback-Leibler information gain [55] to propose a new measure of explained randomness.

Recall the Cox PH model

t
F(1X3 8) = ho(t) exp {ﬁX —ex [ ho(u)du} .

Xu and O’Quigley (1999) [116] indicated that we could equally work with an alternative
I5(B; 5) given by

(8; 8) = /T /X log {g(zlt: 8)} g(c|t: B)dedF(t) (2.39)

where F(t) is the marginal distribution function of 7', and g(zl¢;.) is the conditional
density or conditional probability function of X given T. As before, define the Kullback-
Leibler information gain [55] as T'2(3) = 2{2(5; 8) — I,(0; 8)} and

Piuoo(B) =1 — exp(—T2(B)). (2.40)

Xu and O’'Quigley (1999) [116] showed that under the proportional hazards model
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the conditional distribution of X given T, g(z|t; 8), is consistently estimated by

PX<aT=t)=)_ mi(t; B)

{i: X<z}

where
Yi(¢) exp(B8X:)
Y1 Ya(t) exp(8X))

is the conditional probability of choosing individual i, given all the individuals at risk at

mi(t; B) = (241)

time ¢ and that one individual is to be selected to fail. Y;(t) in 7;(¢; 8) is at risk indicator
for individual i. The product of the m;s over the observed failure times is the partial

likelihood (Cox (1972) [19] and Cox (1975) [18)).

Let t; < ... < t; be distinct failure times. We estimate the conditional distribution
of X given T by {ry(t ﬁ)} j = 1,.., k, and the marginal distribution of T', F(t), b

the Kaplan-Meier estimate. Let W (t;) be the jump of the Kaplan-Meier curve at time

tj. Then
ra@) =2 [ [ 1o { ZHM otals asar e
can be consistently estimated by
o e o e
Iy (8) = Qijl W(t;) Zizl mi(ti; B) log {m}

where the outer sum is effectively over those subjects that are in the risk set at time t;.

The above expression can be shown to be equal to

i MO Xiexo(BX) | S, Vi) exp(BX0)
Fz(ﬁ)—2z Wit { Y Yi(t) exp(B X)) ~los Yoy Yal) }

Then using Kent’s (1983) formula, we have:
Pxuog =1 —exp {—fz(g)} :

The results of Xu and O’Quigley’s investigation [116] indicate that this measure is
an approximation to the Kent and O’Quigley measure (1988) [49] and O’Quigley and
Flandre measure (1994) [75].
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Survival predictions, null model —
Survival predictions, full model —
Survival status —

5O

event time-'Ti'

Figure 2-3: Schematic presentation of survival status (dotted line), survival predictions
from the null model (broken line), survival prediction given covariates (solid line) for
individual i in predictive accuracy measures.

2.3.3 Measures of predictive accuracy

The third category, predictive accuracy measures, includes three main measures proposed
by Schemper (1990) [95], Grafet al (1999) [31], and Schemper and Henderson (2000) [97].
Although they use different mechanisms to evaluate the predictive ability of a survival
model, they broadly quantify the accuracy of predicted survival probabilities. In normal
linear regression R2 quantifies how close the model-based predictions are to the observed
values of the outcome. The proposed measures in this category apply this to survival
models, but on the survival probability scale rather than the actual time scale. Figure 2-
3 shows schematically the mechanism that these measures apply to quantify the predictive
accuracy. The dotted line is the survival status of an individual who survived until event

time ¢j; therefore its survival status is 1 until # and 0 thereafter.

In these measures, predicted survival probabilities from the null and full models are
compared with the survival status of individuals, i.e. 1ifalive at time ¢ and 0 otherwise, at
each time point # in the observation period which result in the marginal and conditional
prediction errors, i.e. AB is compared to the AC in figure 2-3. This leads to a measure
which quantifies relative gain in terms of predictions when using covariates. The main
difference between these measures is in the specification of the distance function, D, that

they use to penalise the marginal and conditional prediction errors.
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Schemper measures (1990) - V; & V>

Schemper’s measure (1990) [95] evaluates predictive accuracy of the model by first av-
eraging the prediction error for subject i over event times, t; where j = 1,...,k, then
averaging this summary over all individuals. In this measure, the contribution to the

distance functions Dy is split into three categories:

Category D X,
1-  Failure before event time ¢ S (t;]1X:)
2-  Failure at event time £; 0.5 - §(tj|Xi)

3- Failure after event time t; 1- §(tj|Xi)

Where S (tj|X;) is the estimated survival probability at time point ¢; for individual i
given covariate X;. D is defined in a similar fashion using marginal survival probabilities.

Schemper’s measure (1990}, V1, is calculated using the following formula.

1”} _ Z:l:l(kl, Zfailures t; D) - Z:l:l(k% Zfa-ilures t, DXI)
1= pa— —
i:l(k_i me'lures t; D)
Schemper {1994) [96] also proposed V, measure similar to V; which is defined in terms of

squared sums (5 3 fpiures 1, D)? and (& 2 faitures ¢; Dx,)2. O’Quigley et al (1999) [77]

studied the population characteristics of Schemper measures mathematically.

Graf et al (1999) RZ (T*) & Schemper and Henderson (2000) Vs.,;; measures

In contrast to Schemper measures (1990) Vi and V5, Graf et al measure (1999) [31] and
Schemper and Henderson measure (2000) [97] calculate the predictive accuracy of the
model by first calculating the average prediction error at event time ¢;, j = 1,..., k for all
individuals, then taking a weighted average of this summary over the event times in the
observation period. These two measures use a weighting scheme to compensate for the

loss of information due to censoring.

In Graf’s measure (1999), first a particular time point, T*, at which we would like to
assess the survival probability predictions is specified. The time point should be equal or
before the last failure time in the data. In this measure, the contributions to the distance

function, D;(T*), are split into three categories:
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Category D x; (T*)
1- Failure before T* S(T*|1Xx;) /G(T*)
2-  Censored before T 0
3-  Failure or censored after T* (1 — S (T*|X;))/G(T*)

where § (T*|X;) is the estimated survival probability at time point 7™ for individual ¢
given covariate X;, and G’(T*) is the estimated survivor function for censoring times.

Then the average squared distance is calculated

=3 B (). (2.42)

Compare this with its counterpart calculated from the model without covariate which

leads to Graf at al measure (1999)

S DHa -3 D% (1)
S D

Schemper and Henderson measure (2000) [97] is based on a similar principle to Graf et

& (T") =

al’s measure (1999) [31]. The main difference between them is that in the second category
where Schemper and Henderson measure (2000) [97] uses the proposed regression model
to determine the probability of reaching 7™ if censored earlier. Therefore, the contribution

to distance function will be as follows

Category D x, (T™)
1-  Failure before T* S (T*| X;)
2-  Censored before T* P+ (1—8(T*|X:)) + (1 — P)» 8§ (T*| X;)
3- Failure or censored after T (1-8 (T X))

where P = § (T*|X3)/ S (T'| X;) is the probability of reaching T if censored earlier. Unlike
Graf et al’s measure (1999) [31] which evaluates the predictive accuracy at a time point in
the study period, i.e. T*, this measure gives a summary measure over all failure times. In
addition, Graf at al’s measure (1999) averages squared distance over all individuals, but
Schemper and Henderson’s measure (2000) averages absolute distance, 7—12 ijl D x, (T*)

over all individuals at an event time.
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To give a summary measure, a weighted average is taken over all failure times

Zfailures t {% Z?:l ﬁx" () /a(tj)}
2 e, (VEE)

Compare this with its counterpart calculated from the model without covariate to give

Dsu(X) = (2.43)

an estimate of the predictive accuracy measure.

Dsy — Dsy(X)

_ (2.44)
Dsy

Vsehr =

2.3.4 Other proposed measures in survival models

Two measures proposed by Harrell (1986) [35] and Schemper and Kaider (1997) [98] form
the other category. They do not belong to any of the three main categories discussed
above. Harrell's measure (1986) {35] is the proportion of increase in the log likelihood of

the model given covariates compared with the one from the null model, given by:

where [y and [z are the log likelihoods under the null and full model, i.e. model with

covariates, respectively.

Schemper and Kaider (1997) [98] apply multiple imputation methods to impute the
censored survival times and make use of a nonparametric measure of correlation, such as
Spearman correlation coefficient (Spearman (1904) [108]) or Kendall 7 (Kendall (1938)
[47]), to calculate a measure of association between completed or imputed survival times
and covariates in the Cox PH model. The algorithm that is applied to compute this
measure is included in Appendix B. We identify this measure as Rgch ) throughout this

thesis.

2.4 Discussion

Over the course of this chapter we have presented the proposed measures of predictive
ability for survival models, in particular the measures proposed in the context of the
Cox PH model. In the linear regression, R? is a well known measure of predictive ability.

Different interpretations of R? as a measure of explained variation, explained randomness,
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and predictive accuracy has led to a wide range of measures for survival models.

The diversity of the measures proposed for survival models raises two important ques-
tions: I) what does each of these measures estimate; II) which measures are recommend-
able for general use in practical applications. To address these questions, we need to
compare the proposed measures systematically to have a better understanding of their
performance. This requires a set of criteria against which we can evaluate the proposed
measures. The criteria should indicate the properties that a measure of predictive ability
should possess in the context of survival analysis. These criteria will provide us with a
framework for comparing the proposed measures consistently and help us to investigate

the behaviour of the measures in similar conditions.

The next chapter presents the criteria that, in our opinion, a measure of predictive
ability should possess in the context of survival analysis. Then, we compare the proposed
measures with regard to these criteria. This will suggest the need for further empirical

studies to investigate the performance of the proposed measures.
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Chapter 3

Investigation of the proposed

measures

3.1 Introduction

As reviewed in the previous chapter, many measures have been proposed to assess the
predictive ability of survival models. An extensive literature search uncovered only one
study to evaluate the performance of selected R? analogues in survival models. Schemper
and Stare (1996) [99] reviewed some of the predictive ability measures in survival analysis
with the conclusion that no particular statistic can be recommended for general use,
mainly due to the impact of censoring on the measures. They described several properties
that a measure should have, such as independence from censoring, intuitive interpretation,
and robustness against model mis-specification. Nagelkerke (1991) also presented some
properties for a measure in more general models such as consistency with classical R? in
linear regression, intuitive interpretation, dimensionless, i.e. it does not depend on the

units, and independence of sample size.

In this chapter, we define a set of criteria that a suitable measure of predictive ability
should possess in the context of survival analysis. These criteria are used as a basis
to compare the proposed measures. The criteria provide us a framework for choosing
a suitable measure of predictive ability. Some of the proposed properties have been
recommended in previous work by Schemper and Stare (1996) [99] and Royston and
Sauerbrei (2004) [93].
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3.2 Properties of a "good" measure

The properties that a suitable measure of predictive ability should possess can be clas-
sified into two main categories: essential properties; and desirable properties. Essential
properties are the ones that a suitable measure of predictive ability should possess in
the context of survival analysis. Satisfying desirable properties could give a measure an

advantage over the other measures.

3.2.1 Essential properties
I) Independence from censoring:

The expected value of the measure should be approximately independent of the amount
of censoring. Censoring is one of the basic properties of survival data and it is present
in almost all practical applications. Therefore, a measure that is unduly affected by the

amount of censoring is considered unsuitable.

Since one of the aims of this study is to make practical comparisons of the measures, we
quantify the extent of censoring effect by comparing the average percentage change in the
expected value of the measures compared to that of non-censored data. We translate the
resulted figures into 4 categories, each representing the extent of censoring: 1) censoring
has almost no effect; 2) censoring has a slight effect; 3) censoring has moderate effect; 4)

censoring has large effect. For further definition of these categories, see section 5.3.

ITI) Independence from sample size:

Sample size should not affect the measure. The measure should converge to the popula-

tion/true value of the measure, if they exist, in both censored and non-censored data.

IIT) Monotonicity:

a) Parameter monotonicity: An appropriate measure of predictive ability should
acquire higher values as the effect of prognostic factor, i.e. covariate, on the outcome
variable becomes stronger. This means that the expected value of the measure does not

decrease as the absolute value of the parameter estimate in the model increases.
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b) Number of variables monotonicity: An appropriate measure of predictive ability
should acquire higher values as new prognostic factors, i.e. covariates, are included in
the model. The number of variables monotonicity means that the expected value of a

suitable measure of predictive ability should not decrease by adding new covariates.

3.2.2 Desirable properties

A measure of predictive ability which possesses desirable properties could have an advan-

tage over the other measures.

I) Robustness:

In normal linear regression, R? is influenced by the outliers and extreme observations
( Kvalseth (1985) [56], Montgomery (2001) [69]). The impact of such observations has
not been studied in the proposed measures of predictive ability for survival models. It is
worth bearing in mind that unlike linear regression, where there are established methods
to identify such observations in the model building process and rectify them, no method
has been universally accepted in survival analysis to identify outliers and extreme ob-
servations. Therefore, a measure that is resistant to such observations might have an

advantage over the other measures.

II) Confidence intervals:

Confidence intervals show how much uncertainty is associated with point estimates. A
measure is preferred if its confidence intervals can be obtained, although using the boot-

strap is always a possibility.

III) Partial R2:

Partial R? measures the correlation between outcome variable, for example survival time,
and a covariate when other covariates in the model are held constant with respect to
the outcome variable and that covariate. It measures the marginal contribution of one
covariate when all the others are already included in the model. It can help us to examine

the relative importance of different sets of covariates.
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IV) Adjusted R?:

It is also desirable to provide an adjusted R? for the reasons explained in section 2.1.3.

V) Generalisability:

Ideally, the measure should be generalisable for different types of survival models. Para-
metric survival models sometimes are considered as alternatives to the Cox PH model,
and they might give better fit to the data under study. Therefore, a flexible measure can
be used in these circumstances. Some other areas of extension include flexible parametric

models proposed by Royston and Parmar (2002) [92], as presented in section 2.2.2.

3.3 Shortcomings of some measures

An extensive literature search uncovered properties of the proposed measures with re-
gard to the criteria outlined in the last section. One of the objectives in this thesis is to
recommend one or more measures for general use. When comparing the proposed mea-
sures with regard to the essential properties, the evidence from previous studies suggests
that some of the proposed measures are unsuitable for survival models. These measure

generally do not satisfy the essential properties.

We classify the proposed measures of predictive ability into two categories: poten-
tially recommendable measures; and unsuitable measures. Potentially recommendable
measures are those for which the previous studies do not provide evidence against the
essential criteria outlined in section 3.2, or the evidence is inconclusive to reach a definite

conclusion when comparing the measures against these properties.

The class of unsuitable measures includes Korn and Simon (1990) [53], Schemper’s V;
and V3 (1990) (1994) [95] [96], Akazawa (1997) [2], Harrell’s likelihood (1984), Maddala
(1983) [67], Magee {1990) [68], Nagelkerke (1991) [71] and Verweij & Van Houwelingen
(1993) [113).

Despite some promising properties presented by Korn and Simon (1990) (1991) [53]
[54] and Henderson (1995) [42], Korn and Simon’s class of measures (1990) {53] is clas-
sified as unsuitable because the previous studies suggest that the amount of censoring
has a considerable impact on the measures. Schemper and Stare (1996) [99] performed

a range of simulation studies on the measures, as well as some others. They gener-
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ated exponentially distributed survival times (f(t) = Aexp(—At)) with hazard function
A = exp(—Xf), respectively with 3 set to 0, log(2), log(16) and log(64). For example,
the results of simulation for S=log(16) showed the expected values of the measure as
0.35, 0.56 and 0.19 for 0%, 50% and 90% censored data, respectively. In addition, in a
simulation study Stare (1994) ([109], page 33) showed that the measure is not invariant
under monotonic transformation of time. Therefore, whilst a monotonic transformation
of time will not change the parameter estimates in the Cox PH model, Korn and Simon'’s

measure will result in a different value in the Cox PH model.

Schemper’s V7 and V, measures (1990) (1994) [95] [96] are influenced heavily by the
degree of censoring. Schemper and Stare (1996) [99] investigated the effect of censoring
on Vi. The expected value of the measure, resulted from the simulation study with the
same setting as the Korn and Simon’s measure explained above, were 0.59, 0.46 and 0.11,

respectively.

Akazawa’s measure (1997) [2] is also classified as unsuitable for two reasons. First, this
measure is based on the rather strong assumption that the follow-up terminates at some
prespecified time with "no loss to follow-up". Censoring is one of the basic properties
of survival data and it is present in almost all practical applications. Accepting the
assumption of "no loss to follow-up" makes this measure inapplicable in practice for a vast
majority of studies. Second, this measure is heavily influenced by the degree of censoring.
Akazawa (1997) [2] performed a simulation study with exponentially distributed survival
times and one dichotomous covariate for a range of hazard ratios. The results were
presented in graphs ([2], pages 233 & 234) which suggest that this measure is heavily

influenced by the amount of censoring.

Harrell ’s measure (1986) [37] which is based on likelihood function is another unsuit-
able measure. This measure is slightly influenced by the degree of censoring and heavily
influenced by the changes in sample size. Stare (1994) [109] performed a simulation study
on exponentially generated survival data with one discrete covariate. The value of the
measure for non-censored data was 0.07 for a hazard ratio of 16 which increased to 0.11
for 50% censored data. The expected value of the measure decreased as the sample size
increased; the expected value of the measure were 0.11, 0.07 and 0.06 for sample sizes 80,

800, 4000, respectively.

Nagelkerke’s measure (1991) [71] is also considered unsuitable for survival models.

O’Quigley et al (2005) [80] generated a large sample {n = 5000) of exponentially dis-

66



tributed survival times (f(t) = Aexp(—At)) with hazard function A = exp(—Xg), respec-
tively with 3 set to 0, log(2), log(16) and log(64). The results of simulation for B=log(16)
showed the expected value of the measure as 0.68, 0.64, and 0.13 for 0%, 50%, and 90%
censored data, respectively. The measures proposed by Maddala (1983) [67] and Magee
(1990) [68], therefore, are heavily influenced by the degree of censoring. Verweij and
Van Houwelingen’s measure (1993) [113] will have the same drawback since it is very
similar to Nagelkerke’s measure (1991) [71] with one difference; it uses cross-validated

log-likelihoods instead of log-likelihoods.

3.4 Tables of the properties of measures

Tables 3.1 to 3.5 present potentially recommendable measures and unsuitable measures,
their properties, and the programs available to compute them. The description of the
properties are at the bottom of each table. Tables 3.1 and 3.2 present potentially rec-
ommendable measures and their status regarding the essential and desirable properties.
Unsuitable measures have been rejected on the grounds that they did not satisfy all the

essential properties outlined in section 3.2.
Key of the tables

The description of the terms used in the tables are as follows:

e nk: not known - the evidence from previous studies is inconclusive.
e yes: the measure does possess the desired property.

¢ no: the measure does not possess the desired property.
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Table 3.1: Summary of the essential properties of the potentially recommendable mea-
sures of predictive ability in survival analysis

Measure category Measures I II IT1
a b

Helland;Kent & O’Quigley,R'f,M 1k nk nk nk

—

O’Quigley & Flandre (94) nk nk yes yes
Explained variation Xu and O’Quigley (01) yes nk yes yes
Royston & Sauerbrei (04) nk nk yes nk
Royston (06) nk nk yes yes
Kent & O’Quigley (88) yes nk yes yes
Explained randomness Xu & O’Quigley (99) yes nk yes yes
O’Quigley et al (05) nk nk yes yes
Graf et al (99) nk nk nk nk

Predictive Accuracy
Schemper & Henderson (00) nk yes yes nk

Other Schemper & Kaider (97) yes yes nk nk

I) Independence from censoring: the expected value of the measure should be approximately inde-

pendent of the degree of censoring.
H) Independence from sample size: sample size should not affect the measure.

IIT) Monotonicity

a) Parameter monotonicity: the measure should not decrease as the absolute value of the para-
meter estimates increase.

b) Number of variables monotonicity: the measure does not go down by adding new covariates

to the model.
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Table 3.2: Summary of the desirable properties of the potentially recommendable mea-
sures of predictive ability in survival analysis

Category Measure I Im ur v v

-

Helland;Kent & O'Quigley,R%,, nk yes yes yes yes
O’Quigley & Flandre (1994) nk yes nk yes nk
Explained variation Xu and O’Quigley (01) nk yes nk yes nk

Royston & Sauerbrei (2004) yes yes yes yes yes

Royston (2006) nk nk yes yes yes
Kent & O’Quigley (1988) nk yes nk yes nk
Explained randomness Xu & 0O’Quigley (1999) nk yes nk yes nk
O’Quigley et al (2005) nk nk nk yes yes
Graf et al (1999) nk nk nk nk yes

Predictive Accuracy
Schemper & Henderson (2000) nk nk nk nk yes

Other Schemper & Kaider (97) nk nk nk nk yes

I) Robustness: the measure should not be unduly affected by outliers and extreme observations.

IT) Confidence intervals

III) Adjusted R?
IV) Partial R?

V) Generalisability: the measure should be generalisable for different types of survival models.
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Table 3.3: Summary of the essential properties of the unsuitable measures of predictive
ability in survival analysis

Category Measure I 1II II1
a b
Korn & Simon (1990) no nk nk nk
Explained variation
Akazawa (1997) no nk yes nk
Nagelkerke (1991) no nk yes yes
Explained randomness Magee & Maddala (1990) no nk yes yes

Verwei] & Houwelingen (1993) no nk nk nk

Predictive accuracy Schemper (1990) no no nk nk

Other Harrell (1984) no no yes yes

I) Independence from censoring: the expected value of the measure should be approximately inde-

pendent of the degree of censoring.
II) Independence from sample size: sample size should not affect the measure.

IIT) Monotonicity

a) Parameter monotonicity: the measure should not decrease as the absolute value of the para-

meter estimates increase.

b) Number of variable monotonicity: the measure does not go down by adding new covariates.
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Table 3.4: Summary of the desirable properties of the unsuitable measures of predictive
ability in survival analysis

Category Measure I I 11 v v
Korn & Simon (1990) nk no nk nk yes
Explained variation
Akazawa (1997) nk no nk npk nk
Nagelkerke (1991) nk nk nk yes yes
Explained randomness Magee & Maddala (1990) nk nk nk yes yes

Verweij & Houwelingen (1993) nk nk nk yes yes

Predictive accuracy Schemper (1990) nk no nk nk yes

other Harrell (1984) nk no nk yes yes

I) Robustness: the measure should not be unduly affected by outliers and extreme observations.
II) Confidence intervals
IIT) Adjusted R?

IV) Partial R?

V) Generalisability: the measure should be generalisable for different types of survival models,
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3.5 Discussion

In this chapter we first set out the criteria that a suitable measure of predictive ability
should possess in the context of survival analysis. A suitable measure should not unduly
be affected by the changes in the amount of censoring and sample size. It should also be

generalisable and monotonic (as explained in section 3.2).

Overall, our investigation of proposed measures of predictive ability led us to a short-
list of measures, i.e. potentially recommendable measures presented in tables 3.1 and
3.2. Evidence from previous studies helped us to reject some of the measures as potential
candidates, mainly on the grounds that censoring has a considerable impact on them. As
it is clear from the tables of the essential and desirable properties, the performance of the
potentially recommendable measures with respect to some of the properties is still un-
known, which requires further investigation. This constitutes the next stage of this thesis.
For example, the evidence from previous empirical studies has been mainly inconclusive

about the extent of censoring effect, specially when comparing different measures.

Further work in this area would include a series of simulation studies using different
censoring mechanisms for simulating censored time-to-event data, in order to thoroughly
assess the impact of censoring and its magnitude under different censoring assumptions.
The influence of sample size on the measures also remains unknown. The simulation study
also needs to include different sample size conditions and covariate effects to investigate

their impact on the measures.

The next chapter presents simulation design followed by the assessment of measures
in each category in the following chapters. The main objective of the simulation study
is to provide a thorough comparison of the potentially recommendable measures with

regard to the properties set out in this chapter.
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Table 3.5: Summary of the programs available to calculate the proposed measures of
predictive ability in survival analysis
Category Measure Program

Korn & Simon (1990) SAS!
O’Quigley & Flandre (1994) STATA!, R
Explained variation Xu and O’Quigley (01) STATA!, R
Akazawa (1997) Not Available
Royston & Sauerbrei (2004) STATA

Royston (2006) STATA

Nagelkerke (1991) Any
Magee (1983) & Maddala (1990) Any

Explained randomness Verweij & Houwelingen (1993) GAUSS

Kent & O’Quigley (1988) STATA!, SAS
Xu & O’Quigley (1999) STATA!, C
Xu & O’Quigley (2005) Any
Schemper (1990) SAS
Predictive accuracy Graf et al (1999) R, STATA

Schemper & Henderson (2000) SAS & R

Other Harrell (1984) Any
Schemper & Kaider (1997) SAS & R
1: program is written by the author
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Chapter 4

Further assessment of the

proposed measures

4.1 Introduction

The classification of proposed measures into the potentially recommendable and unsuit-
able measures in chapter 3 helps us to concentrate on the measures that have, so far, not
been rejected as the candidate measures of predictive ability in survival models. These
measures are presented in tables 3.1 and 3.2, together with their properties. The tables
showed that there are still unresolved issues with regard to the proposed measures, which
require further investigation. This leads us to the next stage of this study to further in-
vestigate the properties of the potentially recommendable measures. In this chapter, we
recommend simulation studies to investigate the measures against the criteria for which
the performance of the measures are still unknown, such as independence of censoring
and sample size and monotonicity properties, i.e. parameter and number of variables

monotonicity.

4.2 Limitations of previous simulation work

Although previous simulation studies have been quite informative, there is a need for
further investigation to incorporate several needed refinements to more fully scrutinise the
performance of the measures. First, previous simulation studies [75] [99] [116] [80] - with

the exception of Schemper and Stare (1996) [99] - have not compared all the alternative
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measures against each other. In our study, we carry out a comprehensive simulation study
to compare the measures of predictive ability against each other. Second, prior studies
have not investigated the proposed measures in the context of multiple regression. We
carry out our study in the context of multiple regression. Third, no prior sirnulation has
examined the sampling distribution of the proposed measures under different censoring
types, censoring proportions, sample sizes, and covariate effects. This is done in the
current study. Fourth, previous simulations have mainly studied the impact of one kind
of censoring, i.e. administrative censoring [63], on the measures. We study the impact of
random censoring [12] and type I censoring at an specific time, 7, as a result of constant
follow-up of 7 time units for all individuals. Fifth, the impact of covariate skewness
has not been addressed in the previous studies. This study investigates the impact of
mild to relatively high skewed covariate distributions on the measures. Sixth, outlier and
extreme observations deflate or inflate R? in normal linear regression (Draper and Smith
(1998) [21], page 246). No prior study has investigated the impact of such observations
on the measures. We will carry out simulation studies investigating the impact of such

observations on the measures.

4.3 Simulation study

We propose simulation studies to get a better understanding of the performance and relia-
bility of the potentially recommendable measures of predictive ability for survival models.
Simulation study provides empirical estimation of the sampling distribution characteris-
tics rather than on theoretical expectations of those characteristics. A simulation study
offers us an alternative to theoretical investigation of measures where the theoretical

approach is difficult to implement, or statistical theories simply do not exist.

Although statistical theories are efficient, the validity of statistical theory is usually
based on some theoretical assumptions that might be violated in the data that we have.
Therefore, we are sometimes unaware of how much we can trust the theoretical estimates
and how uncertain are the estimates if some crucial assumptions of the theory have been
violated. We describe the study design of the simulation studies in this chapter, and

present the results of simulations in the following chapters.
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4.3.1 Basic steps of the study
We will take the following steps to successfully implement the simulation studies:

e Specify aims and objectives clearly

e Design the simulation study to address the unknowns in tables 3.1 and 3.2
e Generate data

e Compute the measures for survival models

e Obtain and accumulate the measures of predictive ability from each replication in

survival analysis
e Analyse the accumulated measures

e Draw conclusions based on the empirical results.

4.3.2 Aims and objectives

The aims of our simulation studies are to answer questions arising with regard to the
criteria which were established in chapter 3. That is to address the unknowns in tables
3.1 and 3.2 of chapter 3. The measures are mainly defined in the context of the Cox PH
regression model. Therefore, the simulation study to investigate the unknowns in table
3.1 to 3.2 will be based on the assumptions of the Cox PH model. This assumption,
however, affects the generalisability of the findings. Nonetheless, we use the simulation
studies to disprove the measures that are less favourable when we compare them against

the criteria we set up in the previous chapter.

4.3.3 Data generation

Data generation is the main part of any simulation study. To investigate the unknowns
in our simulation study, we initially use techniques that are used to generate survival
times in the Cox PH regression model. Leemis (1987) [61] and Leemis et al (1990)
[62] presented the formula for the general relation between the hazard function and the
corresponding survival time as a tool to generate survival times. Bender et al (2005) [11]
presented techniques to generate survival times following distributions compatible with
proportional hazards assumption such as exponential. We follow the procedure described

by Bender et al (2005) {11].
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4.3.4 The effect of censoring

The impact of different degrees of censoring on the potentially recommendable measures
in table 3.1 is studied in our simulation studies. The impact of censoring on these mea-
sures has either been unclear or remained unknown in previous studies. The studies on
the impact of censoring is implemented by considering four levels censoring proportions as
0%, 20%, 50%, and 80% censoring in the experiments. We will consider two types of cen-
soring: random censoring [12]; and type I or administrative censoring with no staggered
entry. Random censoring is rather common in clinical studies whereas type I or admin-
istrative censoring is more common in population-based studies as well as animal studies
where birth cohorts are followed up until a prespecified time point, 7. This helps us to
elucidate the behaviour of the measures in different censoring situations. Mechanisms to
generate censored survival time observations differ in different types of censoring. They

are explained in the following section.

Generating different censoring proportions

Random non-informative right censored data with a specified proportion of censored ob-
servations is generated in a similar manner to the non-censored survival times by assuming
an exponential distribution for the censoring times but without including any covariates.
Determining the parameters of the censoring distribution given the censoring probability
is achieved by iteration. For each simulated survival time, we generate in addition a
pseudo-random exponentially distributed observation representing the time to possible
censoring with an specific hazard. Different choices of hazards for censoring distribution

give 0, 20, 50 or 80 percent censoring on average, respectively.

A simulated survival time is treated as censored if it is greater than the corresponding
simulated time from the censoring distribution. The survival times incorporating both
events and censored observations are calculated for each case by combining the non-
censored survival times and the censoring times. We also consider type I or administrative
censoring at an specific time, 7, as a result of constant follow-up of 7 time units for all

individuals.
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4.3.5 The effect of sample size

Different sample size conditions are considered to investigate the behaviour of these mea-
sures in different study sizes. The chosen sample sizes range from 200, quite at the low
end for use with a survival model containing highly censored survival times up to 1000, a

relatively large sample size. The proposed sample size conditions are 200, 500, and 1000.

4.3.6 Monotonicity effect

Increasing parameter effects (parameter monotonicity) will also be studied in the sim-
ulation study. To do this, different sizes of data sets are generated (see section 4.3.5)
with a covariate with a specific distribution, i.e. normal, lognormal, and heavily skewed
distributions, and exponentially distributed survival times (f(f) = Aexp(—At) where
A = exp(—pX)) for a range of #s. The (s considered in this study are 0.223, 0.405,
0.693, and 1.386. These values result in hazard ratios of 1.25, 1.5, 2, and 4, respectively

(HR = exp(8)).

4.3.7 Survival model

The model we consider is the univariate exponential model with distribution function
F(t) =1 — exp(—At)

so that

t= F(u) = —((log(1 — u))/A)

then, the survival time T of the Cox PH model can be generated using the following

formula:

T = —((log(1 = U))/doexp(8X)))

where A = Agexp(SX) and A\ is the baseline or underlying hazard. The mean and

variance of exponential distribution are 1/A and 1/ and the pth quantile is tp =

—4 log(1 - p).
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4.3.8 Covariate distribution

We study the measures in the context of multiple regression where prognostic index ( PI),
i.e. linear predictor, in the model is usually a function of several random variables. By
virtue of the central limit theorem, the prognostic index should tend to Normality as the
dimension of the parameter vector (3 increases. However, heavily skewed covariate and
prognostic index distributions are not uncommon in medical research. For example, the
number of positive lymph nodes and progesterone receptor in the breast cancer study
used by Royston and Sauerbrei (1999) [94] are heavily skewed, with skewness 2.8 and 4.8,
respectively. Furthermore, the prognostic index of the multivariate survival model that

Royston and Altman (1994) [89] developed for leg ulcer is negatively skewed.

We, therefore, carry out our simulation studies with four covariate distributions.
These are normal N(0, 1), lognormal LN(0, lj, and heavily skewed covariates with positive
and negative skewness of 2.8 and —2.8. Fleishman (1978) {26] proposed a method based
on polynomial transformation to generate sample data with desired degrees of skewness
and kurtosis from standard normal distribution. We applied this method to transform
the standard normal distribution to a positively skewed distribution with skewness=2.8 -
graph C in 4-1 - and a heavily skewed distribution with skewness=—2.8 - graph D in 4-1.

Both distributions have mean 0 and variance 1.

4.3.9 Numbers of simulations

Burton et all (2006) [12] discussed the number of simulations required and presented
formulae to obtain the optimum number of runs. This depends on the degree of accuracy
that is required to achieve, the true value of the estimate of interest, and the variability

of estimate of interest. Burton et al (2006) [12] presented the formula

Z(l_%)cr 2
d

Number of simulations = (
to determine the number of simulations required, assuming the normality of the estimated
parameter. Z(l_%} is the quantile of the standard normal distribution, o2 is the variance
for the parameter of interest, and 4 is the specified level of accuracy of the estimate of

interest we are willing to accept.

For example, if the true value of predictive ability measure from fitting a univariate

Cox regression is 0.067 with standard deviation of 0.066, then the number of simulations
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Figure 4-1: Covariate distributions considered in the simulation study

required to produce an estimate to within 5 percent accuracy of the true measure value

with a 5 percent significance level would be 1492,

In this study 16 parameters are being estimated for each measure since there are
four levels of covariate effect and four covariate distributions. So, the optimum number
of simulations required for each parameter differs for each condition according to its
variability. The number of simulations required decreases as the sample size increases
because the variability of the parameter of interest decreases. We have no information
about the variability of the parameters of interest in the beginning of our study to obtain
the optimum number of simulations required. To be consistent, we choose 5,000 for
the numbers of replications to obtain the expected value of the measures in different
covariate distributions and to study the censoring and sample size effects. This might be
computationally expensive, but gives us an insight into the value of the parameters and
their variability. Given the results obtained in these studies, we will adjust the number

of simulations later in our studies to be more efficient.

80



4.3.10 Analysing the accumulated statistic of interest

We report the descriptive statistics of the sampling distribution of the measures under four
covariate distribution (normal, lognormal, and two skewed distributions), four covariate
effects (8 = 1.25, 1.5, 2, 4), three sample size conditions (n = 200, 500, 1000), two
censoring types (random and type I), and four censoring proportions (0%, 20%, 50%,
and 80% censoring). This defines a total of 384 experimental conditions. However, the
number of experimental conditions increases to about 500 when we add our studies on

the robustness and monotonicity properties of the measures to this.

At each experimental condition, the values for each measure will be accumulated
across all 5,000 simulations. Then the basic descriptive information such as the mean of
the sampling distribution and standard errors are analysed. In addition, the measures’
sample distributions are presented as histograms which graphically illustrate the sampling
distribution of the measures. This information is presented in tables for each of the

measures.

4.3.11 Evaluation of the predictive ability measures

At present, very little is known about the sampling distributions of the measures in differ-
ent censoring conditions. We therefore examined two key components of the performance
of the measures in each experimental condition: a) mean, b) dispersion. To compare the
performance of the proposed measures with regard to the amount of censoring, we cal-
culated the difference between the expected value of the measures in different censoring

conditions from the corresponding non-censored value.

As previously mentioned, since the proposed measures assess different population
quantities, results to show the censoring effect on the proposed measures are computed
in the relative form in each experimental condition, as a percentage of the expected value
of the measures in the corresponding non-censored condition. Then we take the average
across the experimental conditions. To assess the spread of the measures, we calculate
the standard deviation of the sampling distribution and the coefficient of variation in each

experimental condition and take the average over the experimental conditions.
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4.4 Software used

Windows-based Stata and SAS are used to implement the simulations. Then, Stata is

used to summarise the results and prepare the graphs.

4.5 Discussion

In this chapter we first presented the shortcomings of the previous empirical studies. The
last attempt to compare the proposed measures was done by Schemper and Stare (1996)
[99]. More measures have been proposed since then which suggests the need for further
empirical work. Next, we proposed further simulation studies to compare the alternative
measures against the criteria we proposed in chapter 3. We described the simulation study
design and provided the justification for choosing different parameters in the simulation

studies.

In the next three chapters, we present the results of our simulation studies on the three
main classes of measures and compare them systematically. We present the results of our
studies on explained variation measures, explained randomness measures, and predictive
accuracy measures, respectively. The measure proposed by Schemper and Kaider (1997),
R%_, i, is the only measure in the "other" category that has been classified as potentially
recommendable. We include the results of our investigation on this measure in chapter

7, together with the results of predictive accuracy measures.
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Chapter 5

Investigation of the measures of

explained variation

5.1 Introduction

This chapter studies various aspects of potentially recommendable measures in the ex-

2
Royston?

proposed by Helland (1987) [41] and Kent & O’Quigley (1988} [49], O’Quigley and Flan-
dre (1994) {75], Xu and O’Quigley (2001) [78], Royston & Sauerbrei (2004) [93], and
Royston (2006) [88], respectively.

plained variation category. The measures are R2P A R%QF, R%,;uOQ, RQD, and R

This chapter consists of eight sections. First, the results of simulation studies under
different covariate distributions and covariate effects are presented using non-censored
data. This helps us to study the expected value of the measures and investigate the
impact of different covariate distributions on the measures. Second, the behaviour of the
measures in different censoring mechanisms is studied in section 5.3. In section 5.4, we
study the consistency and the sampling distribution of the measures, and discuss the effect
of sample size on the measures. In section 5.5, the monotonicity properties of the measures
are investigated. The upper bound of the measures for a range of covariate effects is
illustrated in section 5.6. The behaviour of the measures in the presence of outlying
observations is discussed in section 5.7. In section 5.8, the issue of model mis-specification
in the context of the Cox PH model and some simulation results which elucidate the
impact of model mis-specification on the measures are presented. A discussion of this

chapter is presented in the last section.
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5.2 Impact of covariate distribution on the measures

In this section, we evaluate the measures of explained variation under different covariate
distributions and covariate effects. The aim of this section is to gain an understanding
of the expected value and the spread of the sampling distribution of the measures across
all covariate effects and covariate distributions in the absence of censoring. We examine

the impact of censoring on the measures in section 5.3.

We present the result of simulation studies to evaluate the measures under different
covariate distributions and covariate effects. In the simulation study, the survival times
were simulated with four different covariate distributions as described in section 4.3.8,
i.e. normal, lognormal, highly positively skewed, and highly negatively skewed distrib-
utions. The simulations were run for four covariate distributions, four covariate effects
B = {0.223,0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three
sample size conditions n = {200, 500, 1000}, with 5,000 replicates in each experimental

condition.

Tables 5.1 and 5.2 contain the mean and standard deviation of the sampling distri-
bution of the measures by the covariate distribution and covariate effect, averaged over
three sample size conditions. The first thing to note from table 5.1 is that the measures
appear to give a good reflection of strength of association as measured by 8 and tend
to 1 for high, but plausible, values of 3. The measures generally agree with each other

in normally and, to some extent, lognormally distributed covariates with the values of

2

Royston lower. The measures differ substantially

R%,QF and Rg(uOQ slightly higher and R

when the covariate distribution is heavily skewed across all covariate effects.

As is evident from table 5.2, the standard deviation (S.D.) of the measures varies
across different covariate effects and distributions. Large S.D. implies that the sampling
distribution of the measure is more dispersed, which results in wider confidence intervals
for the measure. Although the standard deviation is an informative measure of dispersion,
it is difficult in this case to compare the spread of distribution across different covariate
effects because the scales of the measures vary across different covariate effects. For
example, for a normally distributed covariate with 8 = 0.223, the mean and standard
deviation of the sampling distribution of R% a are 0.031 and 0.014, respectively. When
B = 1.386, however, they are equal to 0.538 and 0.034, respectively. As seen in this
example, the spread of the sampling distribution, compared with the mean value, is

much larger when the covariate effect, 3, is equal to 0.223. Therefore, standard deviation
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can be used to compare the dispersion of the measures when the covariate effects, 3s, are

similar (within the rows in table 5.2).

Table 5.1: Mean of the sampling distribution of explained variation measures by the
covariate distribution and covariate effect across all sample size conditions, censoring=0%
Covariate Distribution exp(8) Rpy Rp  Rpor Rg(uog R%, ston

normal 1.25 0.031 0.031 0.048 0.048 0.030
1.5 0.092 0.092 0.132 0.132 0.086
2 0.227 0.227 0.283  0.283 0.204
4 0.538 0.538 0.574  0.574 0.480
lognormal 1.25 0.031 0.029 0.043 0.043 0.028
1.5 0.093 0.087 0.112 0.112 0.080
2 0.227 0.214 0.248  0.248 0.188
4 0.537 0.514 0.552  0.551 0.451
positively skewed 1.25 0.032 0.021 0.039 0.039 0.026
1.5 0.093 0.059 0.105 0.105 0.069
2 0.226 0.139 0.256  0.256 0.156
4 0.534 0.341 0597 0.597 0.365
negatively skewed 1.25 0.031 0.023 0.095 0.095 0.033
1.5 0.092 0.062 0.255  0.255 0.092
2 0.225 0.135 0.465  0.465 0.201
4 0.533 0291 0.728  0.728 0.428

To compare the dispersion of the measures across covariate effects (within the columns
in table 5.2), it is more logical to use a measure of relative dispersion, or relative variability,
than a measure of absolute dispersion or absolute variability. A better comparison of the
spread of distributions can be made by using coefficient of variation (C.V.). Pearson [81]

! suggested a formula for the computation of the coefficient of variation

_ S8.D.
" Mean’

C.V.

This is one way of standardising the dispersion of the measures to improve compara-
bility across covariate effects. The coefficient of variation, C.V. is only a good measure
of dispersion when Mean > 0. Table 5.3 shows the average coefficient of variation of the
measures across three sample size conditions in the non-censored condition, expressed as
percentages. The spread of the distribution of measures is similar in the normally distrib-
uted covariate. The distribution of R?D M RZD, R%Q F» and RE(UOQ become relatively more
dispersed as the skewness of the covariate becomes larger. The relative spread of dis-

tribution remains unchanged for R%goy ston, il different covariate distributions. Finally, as

'Reference taken from Paul L. Boynton, "The Coefficient of Variation as a Tool in Educational Prac-
tice", Peabody Journal of Education (1934}, 11(5), 216-224.
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Table 5.2: Standard deviation of the sampling distribution of explained variation mea-
sures by the covariate distribution and covariate effect across all sample size conditions,
censoring=0%

Covariate Distribution exp(8) Rpy; R,  Roor Rxuoo Rhouston

normal 1.25 0.014 0.014 0.022 0.022 0.013
1.5 0.024 0.024 0.033 0.033 0.022
2 0.034 0.034 0.040 0.040 0.030
4 0.034 0.034 0.037 0.037 0.033
lognormal 1.25 0.015 0.014 0.019 0.019 0.013
1.5 0.024 0.024 0.029 0.029 0.020
2 0.035 0.034 0.040 0.040 0.028
4 0.038 0.037 0.045 0.057 0.034
positively skewed 1.25 0.016 0.012 0.020 0.020 0.011
1.5 0.028 0.020 0.040 0.040 0.018
2 0.045 0.031 0.074 0.074 0.027
4 0.055 0.043 0.074 0.074 0.037
negatively skewed 1.25 0.016 0.012 0.078 0.078 0.016
1.5 0.031 0.020 0.100 0.100 0.026
2 0.051 0.029 0.091 0.091 0.035
4 0.061 0.039 0.055 0.055 0.039

the covariate effect becomes smaller, the spread of the distribution of measures becomes

larger. Some of the findings are highlighted below for each measure in this category.

5.2.1 Helland (1987) and Kent & O’Quigley (1988) measure - R%,,

The mean of the sampling distribution of R%,, varies from 0.031 to 0.538 for different
covariate effects. The measure is independent of the shape of the covariate distribution.
The dispersion of the measure decreases as the covariate effect increases. For example,
the coefficient of variation decreases from 43.4% for 8 = 0.223 (hazard ratio of 1.25) to
6% for B8 = 1.386 (hazard ratio of 4) when the covariate distribution is normal. There
is a similar pattern in other covariate distributions, but with bigger dispersion in skewed

covariate distributions.

5.2.2 Royston and Sauerbrei measure (2004) - 1%

The mean and dispersion of the sampling distribution of R%, are similar to those of R%,,
for normally distributed covariates. The expected value of the measure decreases as the
covariate distribution becomes asymmetrical. The larger the skewness of the covariate
distribution, the larger the decrease. For example, for § = 1.386 (hazards ratio of 4), the

expected value of the measure decreases from 0.536 in the normally distributed covariate
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Table 5.3: Coefficient of variation of explained variation measures by the covariate dis-
tribution and covariate effect, expressed as %. Table entries are the average across all
combinations of sample sizes, censoring=0%.

Covariate Distribution _exp(8) REy,  RL, Bior Riuog  Rhoyston

normal 1.25 43.4 43.5 42.6 42.6 42.6
1.5 244 245 23.7 23.7 24.0
2 14.1 14.1 13.5 13.5 14.0
4 6.0 6.1 6.0 6.0 6.5
lognormal 1.25 43.7 449 41.0 41.0 42.0
1.5 24.9 25.7 23.7 23.7 23.8
2 14.7 15.2 14.9 14.9 14.3
4 6.6 6.7 7.7 10.3 7.1
positively skewed 1.25 46.1 534 46.5 46.5 42.2
1.5 284 328 35.3 35.3 25.2
2 18.8 214 27.3 273 16.5
4 9.8 120 11.9 11.9 9.5
negatively skewed 1.25 49.0 51.3 79.1 79.1 47.3
1.5 31.7 30.8 37.9 37.9 27.5
2 21.5 20.2 18.7 18.7 16.7
4 109 128 7.2 7.2 8.6

to 0.514 when the skewness is equal to 1, that is lognormal covariate, and to 0.341 when

the skewness is equal to 2.8.

This reflects the impact of non-normality of the covariate or the prognostic index ( PI)
on the D measure [93], which was reported by Royston and Sauerbrei (2004) [93]. They
showed that on average non-normality of the PI appears to reduce the D measure . To
compute D, first the Cox PH model is fitted. Then the prognostic index of the model,
B’ X, is transform to give standard normal order rank statistics (rankits - formed using
Blom’s approximation [93]). The rankits are multiplied by a factor of \/m to give Z;
(i = 1, ..,n subjects). Finally a Cox PH model is fitted to these values; D is the coefficient
of Z, say ¢*, from this second model. Royston and Sauerbrei (2004) [93] showed that D
most accurately measures separation of survival curves when the underlying prognostic
index values, 3'z;, are normally distributed. The regression on the Z in the second model
is then linear and ¢* is an approximately unbiased estimate of . They explained that
when the 8'z; are not normally distributed, linearity in the second model breaks down
[93]. D still measures separation because o* in the second model still estimates o, but

with bias.
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5.2.3 0O’Quigley and Flandre measure (1994) - R,p

This measure and RE(HOQ are identical in non-censored data. They seem to have higher
values than the other measures in this category. The mean of the sampling distribution
is about 0.048 for 8 = 0.223, and increases to 0.574 for 4 = 1.386. This measure is
also influenced by the covariate distribution. The impact of covariate distribution on this
measure seems to depend on the strength of the relationship and the skewness of covariate
distribution. The dispersion of the measure increases as the distribution of the covariate

in the model becomes skewed.

5.2.4 Xu and O’Quigley measure (2001) - R% o0

This measure is identical to O’Quigley and Flandre’s measure (1994), R?)QF, in non-
censored data. Thus, it possesses the same properties as the O’Quigley and Flandre

measure (1994).

5.2.5 Royston measure (2006) - R}, ..

The mean of the sampling distribution of this measure varies from 0.026 to 0.480, depend-
ing on the strength of the relationship and the skewness of the covariate. The dispersion
of this measure decreases with increasing covariate effect, and the covariate skewness has

less impact on this measure compared with its impact on the others.

5.3 Impact of censoring on the measures

The impact of censoring was studied by considering two types of censoring mecha-
nisms, type I, known as administrative censoring, and random censoring, and four cen-
soring proportions. The mechanisms applied for generating each censoring type was
explained in section 4.3.4. Simulations were run for two types of censoring mecha-
nisms, four censoring proportions, 0%, 20%, 50%, and 80%, four covariate effects § =
{0.223,0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three sample

size conditions n = {200, 500, 1000}, with 5, 000 replicates in each experimental condition.

Table 5.4 shows the average percentage difference of measures to the expected value of
corresponding non-censored data by the covariate distribution and censoring proportion.

The entries in the table are the average across two censoring types, four covariate effects,
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and three sample size conditions, as outlined in section 4.3. Table 5.5 shows the rela-
tive dispersion of the measures expressed as C.V., averaged over the same experimental

conditions.

Furthermore, table 5.6 displays the impact of censoring type on the expected value
and dispersion of the measures by covariate distributions. The figures in this table are
the average across four censoring proportions, four covariate effects, and three sample
size conditions. Detailed simulation results are presented in Appendix A. The tables in
Appendix A show the impact of censoring by the covariate distribution, censoring type,

and censoring proportion in a similar way to table 5.6.

Since one of the aims of this study was to make practical comparisons of the measures,
we translate the figures in table 5.4 into 4 categories each representing the extent of

censoring. The categories are:

1) almost no effect: the average percentage change in the expected value of the measure

is 0% — 9% compared to that of non-censored data.

2) slight effect: the average percentage change in the expected value of the measure is

10% — 19% compared to that of non-censored data.

3) moderate effect: the average percentage change in the expected value of the measure

is 20% — 49% compared to that of non-censored data.

4) large effect: the average percentage change in the expected value of the measure is

more than 50% compared to that of non-censored data.

This classification helps us to interpret the results and easily compare the measures.

The impact of censoring on each measure is summarised in the following sections.

5.3.1 Helland (1987) and Kent & O’Quigley (1988) measure - R%,,

The amount of censoring has the least impact on this measure among the explained
variation measures. As it appears from table 5.4, the measure increases slightly with
the amount of censoring. For instance, with 80% censoring and normally distributed
covariates, the measure is on average 6.3% higher than the value of the measure with the
corresponding non-censored data. The spread of the sampling distribution of this measure

also increases as the amount of censoring increases for all covariate distributions. Table 5.6
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Table 5.4: The average percentage difference from the expected value of the measures in
the corresponding non-censored data by the covariate distribution and censoring propor-
tion.

Covariate Distribution % Censored Rpy,  R) Réor Rixuoo  Rhsyston

normal 20 0.4 0.4 2.3 1.8 5.3
50 1.6 1.6 6.8 5.6 13.1
80 6.3 6.4 16.0 14.4 26.9
lognormal 20 0.2 4.9 3.5 2.3 10.2
o0 1.0 13.5 11.0 8.1 28.0
80 4.0 28.1 25.1 20.6 58.1
positively skewed 20 0.1 13.1 2.9 1.5 16.0
50 0.5 40.2 11.3 7.2 50.1
80 2.2 889 30.6 23.6 115.9
negatively skewed 20 1.3 -10.6 -12.3 -9.3 -10.6
50 4.5 -19.7 -195 -14.7 -21.1
80 16.7 -21.3 -18.8 -14.3 -24.5

Table 5.5: Coefficient of variation of explained variation measures by the covariate dis-
tribution and censoring proportion, expressed as %.
Covariate Distribution % Censored R%,, R% R2OQ F Rg{uOQ R

RHoyston

normal 20 23.6 23.7 23.1 23.4 23.9
50 28.4 28.5 27.7 31.8 29.2

80 40.1 40.3 39.1 57.3 42.1

lognormal 20 23.5 24.6 22.9 23.1 23.6
50 27.1 28.8 26.4 27.9 28.3

80 36.4 39.1 35.8 51.8 39.7

positively skewed 20 26.3 31.0 47.2 48.2 24.7
50 28.5 34.6 35.5 43.3 28.5

80 34.6 429 37.9 58.4 37.5

negatively skewed 20 31.8 31.6 34.0 37.2 27.8
20 39.3 39.1 394 50.3 34.6

80 57.2 56.4 53.5 714 50.6

shows that the mean and relative dispersion of the sampling distribution of this measure

are similar in both censoring types.

5.3.2 Royston and Sauerbrei measure (2004) - R%

The impact of censoring on this measure depends on the covariate distribution. In a
model whose covariate or prognostic index distribution is positively skewed, the measure
increases as the amount of censoring increases. In contrast, when the covariate is nega-
tively skewed, the measure decreases as the amount of censoring increases. The impact of
censoring becomes larger as the covariate becomes more skewed. The spread of sampling

distribution of this measure in censored data is similar to that of R%,, with the exception
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Table 5.6: Summary performance of explained variation measures by the covariate dis-
tribution and censoring mechanism.

Random Censoring  Type I Censoring

Measure Covariate Distribution Average Average
% Difference C.V. % Difference C.V.
R%,,, normal 2.9 30.9 2.6 30.4
lognormal 2.0 29.4 1.5 28.7
positively skewed 1.3 30.1 0.6 29.4
negatively skewed 7.1 42.4 7.9 43.2
R% normal 2.9 31.1 2.7 30.6
lognormal 14.4 31.2 16.7 30.5
positively skewed 43.6 36.9 51.2 35.4
negatively skewed -14.6 42.5 -19.8 42.2
R%QF normal 8.1 30.3 8.6 29.6
lognormal 13.1 28.7 13.3 28.0
positively skewed 16.1 37.4 13.8 43.0
negatively skewed -13.8 44.0 -19.8 40.7
R?Yqu normal 5.9 45.3 8.6 29.6
lognormal 7.4 40.6 13.3 28.0
positively skewed 7.8 56.9 13.8 43.0
negatively skewed -5.7 65.3 -19.8 40.7
R%oystm normal 13.5 31.9 16.7 31.5
lognormal 28.8 30.8 35.4 30.3
positively skewed 55.1 30.7 66.3 29.8
negatively skewed -16.5 37.7 -20.9 37.6

of positively skewed distribution, which is higher than that of Rf, a7+ Table 5.6 shows that
type I censoring has more impact on the expected value of the measure than random
censoring. However, the spread of the sampling distribution seems to be similar under

both random and type I censoring.

5.3.3 O’Quigley and Flandre measure (1994) - R}y

The impact of censoring on this measure also depends on the skewness of the covariate
distribution. Table 5.4 makes it clear that while the measure decreases as the amount of
censoring increases in negatively skewed covariates, it increases as the amount of censoring
decreases in positively skewed covariates. Table 5.5 shows that the spread of the sampling
distribution increases as both censoring and the covariate skewness increase. For example,
in positively skewed covariates, the measure is on average 16.1% higher under random
censoring conditions compared with the value of the measure in the corresponding non-
censored data. However, it is on average 13.8% lower compared with the expected value

of the measure in the corresponding non-censored data if the covariate is negatively
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distributed.

5.3.4 Xu and O’Quigley measure (2001) - R%,00

This measure is a modification of O’Quigley and Flandre’s measure (1994) [75], R?)QF.
As discussed in Xu (1996) [115] and Xu and O’Quigley (2001) (78], to eliminate the
asymptotic dependence of O’Quigley and Flandre’s measure (1994) [75] on censoring,
it is necessary to weight the squared Schoenfeld residual in O’Quigley and Flandre’s
measure (1994) [75] by increments of any consistent estimate of the marginal failure time
distribution function. Xu and O’Quigley (2006) [79] explained that the practical impact
of this weighting on numerical values would typically be small. The results in table 5.4
emphasise this theory. However, the results of the simulation study show that censoring
still has a minor effect on this measure and the weighting scheme has not eliminated its

impact completely.

The weighting scheme diminishes the impact of censoring on this measure compared
with its impact on O’Quigley and Flandre’s measure (1994) [75]. Nevertheless, the spread
of the sampling distribution of this measure increases dramatically as the censoring pro-
portion becomes larger. For example, the C.V. of Xu and O’Quigley’s measure (2001)
[78] in the normally distributed covariate is on average 57.3, where that of O’Quigley
and Flandre’s measure (1994) [75| is on average 39.1. Table 5.6 shows that this measure
is identical to O’Quigley and Flandre’s measure (1994) [75] in type I censoring. Ran-
dom censoring has less impact on this measure compared with O’Quigley and Flandre’s

measure (1994) [75] in all covariate distributions.

Further assessment of the simulation results revealed an undesirable impact of cen-
soring on this measure. Figure 5-1 demonstrates this finding in more detail. The figure
consists of four graphs one for each covariate effect. In the graphs, the dots represent
the estimates of this measure in each replicate and the solid line is the expected value of
the measure when the covariate is normally distributed from 0% to 90% censoring. As
it is evident, the expected value of the measure is consistent as the amount of censor-
ing increases across four covariate effects. But the measure cannot be guaranteed to be
non-negative. In fact, as figure 5-2 demonstrates, the chance that the measure leads to a

negative value increases as the amount of censoring goes up.
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Figure 5-1: The expected value (solid line) of Xu and O’Quigley measure (2001) by
the censoring proportion when the covariate is normally distributed, random censoring
condition, and sample size=1000, Dots are the estimates of the measure in each replicate.

R2 - (Xu & O'Quigley 2001) - beta=0.22 R2 - (Xu & O'Quigley 2001) - beta=0.41
S
%o
S
1
N
2¢ 2!
0 2 4 6 8 1 0 2
proportion censored proportion censored
bandwidth = 8 adnidh=8
R2 - (Xu & O Quigley 2001) - beta=0.69 R2 - (Xu & O'Quigley 2001) - beta=1.39
proportion censored proportion censored

bandwidth = 8

5.3.5 Royston measure (2006) - HRXjstan

Among the measures in this category, performance is the worst with regard to
the impact of censoring. Table 5.4 reveals that the censoring has the biggest impact on
this measure, compared with other measures in this category, in all censoring proportions
and covariate distributions. Table 5.6 also shows that type I censoring has more impact

on this measure than random censoring.

5.4 Consistency, distributional shape, and sample size ef-

fect

In this section, we discuss the consistency and the shape of the sampling distribution of
the measures as well as the effect of sample size on them. First, the characteristic of a

consistent estimator together with the results of the simulation study to investigate the
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Proportion of replicates resulted in negative value
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Figure 5-2: Proportion of simulations in which Xu and O'Quigley measure (2001) resulting
in negative value. The covariate is normally distributed and survival times are randomly
censored.

consistency of 2D and are presented. Then, the shape of the sampling distribution
of the measures in the presence of censoring is discussed. Finally, the effect of sample

size on the measure is studied.

5.4.1 Consistency of the measures

An important characteristic of estimators is consistency. Formally, 9 is a consistent
estimator of the parameter 9 if and only if Z,iran ,00Pr ~ 9—9 < ¢) = 1 for every e > 0
(Mood et al (1974) [70], page 295). Less formally, a consistent estimator is one for which
the probability that it is arbitrarily close to the parameter converges to 1 as the sample
size, n, increases without bound. A consistent estimator is not necessarily unbiased in
finite samples, but as the sample becomes larger and larger, the estimator gets closer
and closer in value to the parameter of interest (Mood et al (1974) [70], page 295).
If the measures studied here are consistent under different censoring proportions, their
bias should decrease toward 0 and the spread of their sampling distributions should
become smaller and smaller as the sample size increases. Therefore, bias and M SE of

the estimators should be investigated.

In this section, we explore the consistency of the measure proposed by Royston and

Sauerbrei (2004) [93] through some simulation studies. For the Cox PH model, the
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measure is defined as
2 D2/I‘€2
Rp=——5——F+
D?/k2% +1.645
where D is a measure of prognostic separation when the underlying prognostic index
values #' X;, ¢ = 1,..., n, are normally distributed and k = /8/7 =~ 1.60. In the simulation
study, the survival times were simulated considering a normally distributed covariate,
N(0,1), as described in section 4.3.8. The simulations were run for four covariate effects
B = {0.223,0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three
sample size conditions n = {200, 500, 1000}, and two censoring proportions, 0% and 80%,
with 5000 replicates in each experimental condition. The survival times are randomly
censored by considering an exponential distribution for censoring times, as described in

section 4.3.4.

In the above setting, a model with normally distributed covariate, D?/k? is, by defi-
nition, the variance of the prognostic index, 8'X;, of the model (Royston and Sauerbrei
(2004) [93]). If X ~ N(0,1) then 8'X; ~ N(0, 3?); therefore, the population value of the
R%, for different values of the covariate effect, 5 = {0.223,0.405, 0.693, 1.386}, are .029,
0.091, 0.226, and 0.539, respectively.

Table 5.7 displays the results of the simulation study in terms of the estimated bias

and the estimated vV MSE of the ﬁ% The bias is defined as
R =2 2
Bias = Rp — Rp

=2 . .. . . . .
where R}, is the empirical mean across 5,000 sampling repetitions used in a given exper-

imental condition

5000
RY,

52 _ =l
Rp= 5000

The empirical root mean squared error, v M SE, is defined as

MSE = Bias®? — SE?

where
5000 5\ /2
> (Rb, - Tb)
| =
oB = 5000
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Table 5.7 shows that the sample estimate ]/%20 is unbiased in non-censored data for all cases
considered. In the censored data, the sample estimate has a slight positive bias for the
small covariate case, i.e. § = {0.223,0.405}, when the sample size is small, i.e. n = 200;
otherwise, the sample estimate is unbiased. In terms of MSE, the sample estimate has
larger MSE in censored data compared to the non-censored one, as expected. As it is
evident from the table, the M SE and Bias of the sample estimate ﬁ% becomes smaller
as the sample size, n, increases in both censored and non-censored data. We, therefore,
can conclude that the sample estimate ﬁ% is a consistent estimator of RQD in normally

distributed covariates.

Table 5.7: Summary of the estimated bias and root mean squared error (RMSE) of the
estimator of Royston and Sauerbrei measure (2004). Normally distributed covariate and
randomly censored data.

R% n 0% censoring 80% censoring
Bias MSE | Bias +MSE

0.029 | 200 | 0.003 0.020 | 0.014 0.047
500 | 0.001 0.012 | 0.006  0.027
1000 | 0.001 0.008 | 0.003 0.019
0.091 | 200 | 0.003 0.033 | 0.012  0.069
500 | 0.001 0.021 0.005  0.043
1000 | 0.001 0.014 | 0.002  0.030
0.226 { 200 | 0.001 0.046 | 0.006  0.088
500 | 0.001 0.029 | 0.004  0.056
1000 | 0.000  0.021 0.002  0.039
0.539 | 200 | -0.005 0.047 | -0.002 0.080
500 | -0.002 0.030 | 0.000 0.050
1000 | -0.001  0.021 | 0.000 0.035

Similar analysis was performed for the R‘% u to investigate the consistency of this
measure. The results were very similar to those of R2,, thus the same conclusion can be
drawn on Rf, a - In section 5.2, we showed that the mean and dispersion of the sampling

distribution of R% are also similar to those of RZ,,, for a normally distributed covariate.

'The consistency of other measures in this category were studied before. The measures
proposed by O’Quigley and Flandre (1994) [75], RQOQ F» is a consistent estimator of the
population value, Ron F as expressed in equation 2.29, in the absence of censoring ([75]
and [115]). However, Xu (1996) [115] showed that R?)Q r depends upon censoring even
asymptotically in the presence of censoring. Xu (1996) [115] introduced Rg(uOQ and ana-
lytically established its consistency as an estimator of the population value, R%)Q - The
measure proposed by Royston (2006) [88] is a transformation of the explained randomness

measure proposed by O’Quigley et al (2005) [80], p2. As pointed out by O’Quigley et al

96




(2005) [80], pi is consistent in the absence of censoring. But, it converges to a different
population quantity in censored data. More discussion on the consistency of p?, along
with other explained randomness measures, is presented in section 6.4 of next chapter.
In the next section, we present the sampling distribution of the measures for different

sample sizes, covariate effects, and censoring proportions.

5.4.2 Sampling distribution of the measures

Generally, simulation results show that for small sample sizes and small covariate effects,
the sampling distributions of the estimators of explained variation measures exhibit con-
siderable skewness, particularly when censoring is more than 50%. Figure 5-3 is presented
as an example to depict the distributional properties of the measures. The figure shows
the sampling distribution of Royston and Sauerbrei’s measure (2004) [93], R%, by the
censoring proportion, covariate effect, and sample size. The smooth curves in the fig-
ure are the kernel density estimates in each experimental condition. The survival times
are randomly censored by considering an exponential distribution for censoring times,
as described in section 4.3.4. The covariate, or prognostic index in the case of multiple
regression, of the model is normally distributed and the number of replicates are 5,000

in each experimental condition.

As seen in figure 5-3, more symmetry is evident as the covariate effect, 3, and sample
size, n, become larger. By the time n attains 1,000, however, virtually all distributions
are approximately bell shaped in small to moderate censoring, i.e. when the censoring
proportion is not more than 50%. The positive skewness in all distributions is quite
evident when censoring is heavy and sample size is small. We explored the sampling
distribution of other measures in this category with the same experimental conditions.
The shape of the sampling distribution of the measures follows a similar pattern, except
Rg(uOQ which results in negative values as censoring increases, as explained in section

5.3.4.

We can also crudely explore the consistency of the estimators graphically over the
range of n in this study. Sampling distributions of consistent estimators should tend
towards a spike over the parameter of interest as n becomes ever larger. Intuitively, this
means that the sampling distribution of a consistent estimator becomes more and more
concentrated on the parameter of interest as m becomes ever larger. All distributions

in figure 5-3 appear to exhibit this tendency, although some more so than the others,
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Figure 5-3: Sampling distributions of Royston and Sauerbrei measure (2004) by the co-
variate effect, sample size, and censoring proportions in the normally distributed covariate
and random censoring condition.
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depending on the censoring proportion.

5.4.3 Impact of sample size on the measures

The results of all simulation studies show that in all explained variation measures sample
size has an effect when the covariate effect is small and the amount of censoring is high.
To illustrate this, we tabulated the results of a set of simulation studies with 5, 000 repli-
cates. In the simulation study, the conditional survival times are generated by assuming

T|X ~Exponential(exp(3X)) where X ~ N(0,1) is the covariate.

Table 5.8: Percentage change in the expected value of explained variation measures in
small and large sample sizes by censoring proportion. The figures in brackets are the
standard deviation of the sampling distribution.

20% Censoring 80% Censoring
Sample size Sample size
Measure exp(3) 1000 200 % Change 1000 200 % Change
R%,, 1.25 0.030  0.033 9% 0.032  0.044 27%
(0.009) (0.022) (0.019) (0.045)
4 0.539  0.537 0% 0.539  0.538 0%
(0.022)  (0.049) (0.034) (0.076)
R%, 1.25 0.030  0.033 9% 0.033  0.044 25%
{0.009) (0.022) (0.019) (0.045)
4 0.538  0.534 -1% 0.538  0.537 0%
(0.022) (0.050) (0.035) (0.080)
R?)Q P 1.25 0.047  0.052 10% 0.0562  0.072 28%
(0.015) (0.034) (0.030) (0.073)
4 0.584  0.590 1% 0.634  0.647 2%
(0.024) {(0.054) (0.039) (0.089)
R%,oq 125 0.047  0.052 10% 0.052  0.069 25%
(0.015) (0.035) (0.070) (0.120)
4 0.574  0.583 2% 0.614  0.631 3%
(0.024)  (0.054) (0.079) (0.131)
szoystm 1.25 0.030  0.032 6% 0.033  0.044 25%
(0.009) (0.021) (0.019) (0.046)
4 0.514  0.507 -1% 0.641 0.630 -2%
(0.024) (0.053) (0.045) (0.100)

Random non-informative right censoring was generated as described in section 4.3.4.
Table 5.8 shows that the measures increase when both sample size and the covariate
effect are small, i.e. n = 200 and exp(f3) = 1.25, and the amount of censoring is high, i.e.
80%. This pattern was observed in other simulation studies when we considered skewed

covariates and a different censoring mechanism, i.e. type I censoring.
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5.5 Monotonicity properties of the proposed measures

In this section, the parameter and number of variables monotonicity properties of the
explained variation measures are investigated. In chapter 3, these two properties were
considered essential for a suitable measure of predictive ability. Parameter monotonicity
means that the expected value of predictive ability measures should not decrease as the
absolute value of covariate effect, 3, in the model increases. The number of variables
monotonicity means that the expected value of a suitable measure of predictive ability
should not decrease by adding new covariates. This section is divided into two parts,

describing the two monotonicity properties separately.

5.5.1 Parameter monotonicity

The parameter monotonicity of R%,QF and Riqu has been established analytically by
O’Quigley and Flandre (1994) [75] and Xu (1996) [115]. Furthermore, R%,, satisfies this

property since it is a monotonic function of |3|. Equation 2.24 can be written as

Varx (3'x)
Varx (8'x) + n2/6
n2/6
- B*Varx (x) + n2/6

2
Rpar

= 1

which is an increasing function of the covariate effect, 3. Similarly, the measure proposed

by Royston and Sauerbrei (2004) (93], R%,, can be written as

D?/k?
D?/k2 + o2
o2

1—— %
D?/kg? + o2

R},

where o2 = 72/6 for the Cox PH model. This shows that R is an increasing function of
the D measure ([93]) which is a monotonic function of |3| (Royston and Sauerbrei (2004)
[93]) when the prognostic index of the model, 3'x , is assumed to be normally distributed.
The measure proposed by Royston (2006) [88], R??oyston’ inherits p? properties of which
parameter monotonicity is one (section 6.6 or O’Quigley et al (2005) [80]).

Furthermore, the simulation results displayed in table 5.1 show that the expected

value of the measures increase as the covariate effect becomes stronger in all covariate

distributions. Moreover, the results of another simulation study, performed to investigate
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the upper bound of the measures for a wide range of covariate effects, presented in section
5.6, show that the measures are an increasing function of the covariate effect. Thus, all

of them satisfy this property.

5.5.2 Number of variables monotonicity

As it was described in chapter 3, an appropriate measure of predictive ability should
not decrease as new prognostic factors, i.e. covariates, are included in the model. The
number of variables monotonicity means that the expected value of a measure of predictive
ability should not decrease by adding new covariates. In this section, a further simulation
study was carried out to investigate the impact of adding new but independent covariates
to the model. The simulation study was carried out for four covariate effects and two
censoring proportions. The sample size was 500, and 2,000 replicates were generated
for each experimental conditions. In the simulation, the distribution of survival time is
generated using the algorithm outlined in section 4.3.9 by assuming only one covariate
that is normally distributed. Then, two new covariates were generated independently
and the following models were fitted in each replicate: Model I with only the dependent
covariate; Model II with the dependent covariate and one independent covariate; and

Model III with the dependent covariate and two independent covariates.

Table 5.9 displays the differences in the expected values of the measures after fitting
models II and III compared to model I. The table shows that the expectation of the
measures do not decrease as new but independent covariates are included in the model

in both non-censored and censored conditions.

Table 5.10 displays the results of the simulation study, summarised in terms of pro-
portions. The entries in the table are the proportion of simulations in which the measure
decreased after adding one or two independent covariates to the model. For example,
when exp(3) = 1.25 (4 = 0.22) and the amount of censoring is 0%, in about 10% of 2000
simulations the value of R%,, decreased after adding one new independent covariate. The
proportion of simulations in which the measure decreased fell to 3% after two independent

covariates were added to the model.

As seen, R%oystm always increases after adding new covariate to the model. This
measure is based on the likelihood function which always increases by adding a new
covariate to the model, regardless of whether the covariate is related to the outcome. It

is also clear that the performance of R%, R?)QF, and RgmoQ is similar in non-censored
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Table 5.9: Mean difference in the expected value of the measures after adding one or two
independent covariates to the model in 2,000 simulations, normally distributed covariates.

Model II Model III
Measure | exp(8) | Mean difference to model I Mean difference to model I
0% censoring 80% censoring | 0% censoring 80% censoring
R%), 1.25 0.001 0.006 0.003 0.012
1.5 0.001 0.005 0.003 0.011
2 0.001 0.005 0.003 0.009
4 0.001 0.003 0.002 0.006
'R}, 1.25 0.001 0.006 0.003 0.012
1.5 0.001 0.005 0.003 0.011
2 0.001 0.005 0.003 0.009
4 0.001 0.003 0.002 0.006
ﬁ%QF 1.25 0.002 0.009 0.004 0.018
1.5 0.002 0.007 0.003 0.015
2 0.001 0.005 0.002 0.010
4 0.001 0.002 0.001 0.004
Riuoq | 1.2 0.002 0.009 0.004 0.019
1.5 0.002 0.008 0.003 0.016
2 0.001 0.004 0.002 0.010
4 0.001 0.002 0.001 0.005
Rioyston | 1-25 0.001 0.006 0.002 0.012
1.5 0.001 0.006 0.002 0.012
2 0.001 0.005 0.002 0.011
4 0.001 0.003 0.002 0.006

data. But, Rgfqu performs worse in censored conditions, i.e. the chance that the measure
goes down after adding a new independent covariate to the model is more than the other

measures.

5.6 Upper bound of the measures

In this section, more simulation studies are carried out to investigate the upper bound of
explained variation measures. In the simulations, the predictor X is normally distributed
and the distribution of the conditional survival times are exponentially distributed, i.e.
T|X ~Exponential(exp(8X)). Random non-informative right censoring are generated
by considering an exponential distribution for censoring times as described in section
4.3.4. The simulations are carried out for a wide range of covariate effects from small
to large, but reasonable, values with 2,000 replicates in each experimental condition.
Figure 5-4 displays the expected value of the measures from 3 = 0.22 (exp(3) = 1.25) to
B = 5.55 (exp(f) = 256) for 0% and 50% censoring. In both censoring conditions, the

expected values of the measures increase with the covariate effect, and they reach values
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Table 5.10: Proportion decrease in measures after adding one or two independent covari-
ates to the model in 2,000 simulations, normally distributed covariates.

Model I Model III
Measure | exp(3) | prop. decreased to model I prop. decreased to model 1
0% censoring 80% censoring | 0% censoring 80% censoring
R%,; 1.25 0.10 0.07 0.03 0.02
1.5 0.15 0.12 0.06 0.04
2 0.18 0.19 0.09 0.10
4 0.20 0.27 0.09 0.18
R%, 1.25 0.18 0.16 0.09 0.05
1.5 0.24 0.20 0.13 0.09
2 0.27 0.26 0.17 0.15
4 0.30 0.34 0.21 0.23
Rbor 1.25 0.17 0.16 0.07 0.06
1.5 0.20 0.23 0.11 0.12
2 0.25 0.29 0.16 0.20
4 0.30 0.34 0.22 0.26
R%(uOQ 1.25 0.17 0.40 0.07 0.32
1.5 0.20 0.40 0.11 0.33
2 0.25 0.42 0.16 0.36
4 0.30 0.42 0.22 0.35
R%Oyston 1.25 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00

near, but less than, 1. This suggests that, first, the measures have the upper limit of 1
and, second, they will lead to high values for large, but reasonable, covariate effects, i.e.

they reach values more than 0.80.

5.7 Robustness of the measures

In this section, we study the impact of extreme and outlier observations on the explained
variation measures. Barnett and Lewis (1994) [9] defined an outlier as an observation
(or a set of observations) which appears to be inconsistent with the remainder of that
set of data. Barnett and Lewis (1994) [9] made a clear distinction between outliers and
extreme observations and argued that they are not coincident concepts. An outlier obser-
vation may substantially alter the estimate of a parameter, or the outcome of a specific
test. In contrast, an extreme observation follows the general pattern of the data, but it
appears in the extremes of the data set. We name both extreme and outlier observations
"atypical" observations. Barnett and Lewis (1994) [9] also present methods to deal with

such observations in statistical analysis of data. Some of the proposed procedures exits
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Figure 5-4: Explained variation measures as a function of the covariate effect in the
model, normally distributed covariate. In the bottom graph, survival times are randomly
censored according to an exponential distribution for the censoring times.
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to accommodate the atypical observations, while others aim at identifying them.

As Barnett and Lewis (1994) [9] explain, atypical observations do not inevitably "per-
plex" or "mislead"; they are not necessarily "bad" or "erroneous". Rejection of such
observations is a naive way of dealing with them. As Cook and Weisberg (1980) [17]
argue the presence of atypical observations does not necessarily imply that they should
be deleted or down weighted. This can only be justified when such observations have
arisen from purely deterministic reasons such as mistakes in reading or recording in the
data (Barnett and Lewis (1994) [9]). Otherwise, they might provide useful information

about, first, the underlying mechanism that generated the data and, second, the choice
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of the statistical technique or the model applied to analyse the data. For example, if
atypical observations proved to be discordant on an assumed normal distribution, it is
more likely that we would have chosen to reject them. However, this action might not be
justified if an appropriately sophisticated non-normal model incorporated them in a non-
discordant fashion. Moreover, in the context of clinical research, they might lead us to
unsuspected prognostic factors of particular importance. New procedures have recently

been developed in many statistical methods to deal with such observations.

To study the influence of atypical observations on the predictive ability measures,
Draper and Smith (1998) [21] explained why outliers reduce the R? in linear regression.
Wilcox and Muska (1999) [114] presented a non-parametric alternative to the R? in linear
regression. Rousseeuw and Leroy (1987) [87] presented R% (equation 2.12) for robust

regression.

In the context of survival analysis, the issue of atypical observations have not been
studied extensively. While there are established methods in normal linear regression mod-
els to deal with atypical observations, the methods to diagnose and deal with such obser-
vations in the context of survival analysis are not well established. Nardi and Schemper
{1999) [72] proposed new residuals which can be used to detect such observations. Pettitt
and Bin-Daud (1989) [82] showed that various use of residuals have only limited value in
reflecting atypical observations and suggested other forms of diagnostic plots. Henderson
and Oman (1993) [44] introduced a method, akin to Cook distance in linear regression,
to detect atypical observations in the context of survival analysis. But no method has
been universally accepted to detect and accommodate such observations in the context

of survival analysis.

The aim of this section is to show the behaviour of the proposed measures when atyp-
ical observations are present in the data. To do this, we carried out further studies to
investigate the impact of extreme and outlier observations on explained variation mea-
sures. The outline of the simulation study and the corresponding results are presented in

the following sections.

The study was carried out for four covariate effects, (8 = 0.223,0.405, 0.693, 1.387),
four censoring proportions (0%, 20%, 50%, 80%), and three sample size conditions (200, 500, 1000)
with 2,000 replicates in each experimental conditions. In the simulation study, the con-
ditional survival times are generated by assuming T'|X ~Exponential{exp(8X)) where

X ~ N(0,1) is the covariate.

105




To contaminate the data sets with extreme and outlier observations, we used the
rule of thumb introduced by Tukey (1977) ([110], page 44). He defined a "mild" outlier
observation as an observation that lies 1.5 to 3 times outside the interquantile range, IQR,
( IQR = @3 — @1 where ) and @3 are the first and third quantile, respectively), and
an "extreme" outlier observation as an observation that lies more than 3 times outside
the interquantile range, IQR. In the simulation study, we created contaminated data
sets containing one atypical observation by replacing one covariate’s observation with m
times the standard deviation of the covariate, i.e. m = 1,2, ..., 8. Therefore, according to
Tukey’s definition of "mild" and "extreme" outlier observations, the data sets in which
one covariate’s observation is replaced with 3 and 4 contain a "mild" outlier observation,
whereas the data sets in which one covariate’s observation is replaced with values more
than 4 contain an "extreme" outlier observation. Finally, we generated the survival times
as described in section 4.3.9 depending on what type of atypical observation we study, i.e.
extreme or outlier. The survival time of an extreme observation depends on the outlier
covariate value. In contrast, the survival time of the outlier observation is independent of
the outlier covariate. Random non-informative right censoring with a specified proportion

of censored observations was created, as described in section 4.3.4.

We only present the result of one experimental condition where the covariate effect,
3, is equal to 0.69, sample size is equal to 200, and censoring proportion is 50%. Similar
results were observed in the other experimental conditions. However, the simulation
results for the other experimental conditions showed that atypical observations have more

impact on the measures in small sample sizes than large ones.

5.7.1 Impact of extreme observations

To generate extreme observations, first the random variable X ~ N(0, 1) was generated.
Then, X was contaminated by replacing one observation’s covariate with m times the
standard deviation of the covariate, i.e. X ~ N(0,1). Finally, conditional survival times
T'| X, where X is contaminated covariate, were generated based on the procedure described
in section 4.3.9. Random non-informative right censoring with a specified proportion of
censored observations was created, as described in section 4.3.4. The simulation study

carried out for different m values as m=1,2,...8.

Figure 5-5 displays the impact of extreme observation on the expected value of ex-

plained variation measures by m+SD, where SD is the standard deviation of the standard
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Figure 5-5: Mean of the sampling distribution of explained variation measures as the
extreme observation becomes more influential.

normal distribution. For example, 4SD in the X axis represents the condition where one
observation’s covariate, X ~ N (0,1), is replaced with 4, and the corresponding value in
the Y axis represents the expected value of measures. The expected value of measures in

the uncontaminated data is represented with 0 * SD on the X axis.

If a measure is resistant to the extreme observations, its expected value would not
change in the presence of such observations. In other words, we expect a flat line across
the X axis if the measure is resistant to extreme observations. The graph shows that
the measure proposed by Royston and Sauerbrei (2004) [93], RD, is resistant to the
extreme observation in the data. The graph shows that the expected value of R D increases
slightly but remains constant as the observation becomes more extreme. There is a similar
pattern in RiPM and Rj{nysUn with more impact on the measure in stronger extreme
observations. Furthermore, the measures proposed by O’Quigley and Flandre (1994)
[75], R0QF, aiud Xu and O’Quigley (2001) [78], RXU0QI remain constant in small or
moderate contamination. But, they increase rapidly when the observation becomes more

extreme. Similar results were found in other experimental conditions.

5.7.2 Impact of outlier observations

To generate outlier observations, a normally distributed random variable, ie. X ~

7V(0,1), was generated. Conditional survival times T\X were generated based on the
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procedure described in section 4.3.9. Then, the data was contaminated by replacing one
observation’s covariate with m times the standard deviation of the covariate. Random
non-informative right censoring was generated as described in section 4.3.4. In the previ-
ous study, the survival time of the extreme observation depends on the atypical covariate
value. In contrast, the survival time of the outlier observation in this study is independent

of the atypical covariate.

This study was also carried out for similar experimental conditions as the study 011
extreme observations. Figure 5-6 summarises the results of the simulation study in one
experimental condition. Similar to graph 5-5, we expect a flat line across the X axis if the
measure is resistant to outlier observations. The graph demonstrates that the measure
proposed by Royston and Sauerbrei (2004) [93], R’D, is the only measure that is resistant

to outliers. The other measures decrease as the outlier contamination becomes stronger.

Impact of one outlier on explained variation measures
(beta=0.69, n=200, 50% Censoring)
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Royston (06) —

OSD. +1S.D. +2S.D. +3S.D. +4S.D. +5S.D. +6S.D. +7S.D. +8S.D.
Outlier
S.D : Standard Deviation

Figure 5-6: Mean of the sampling distribution of explained variation measures as the
outlier observation becomes more influential.

The justification for the results of this study is that RPM in equation 2.24 depends
on the variance of the prognostic index, Var(f3'X), of the model. Variance is sensitive
to extreme and outlier observations; therefore, the presence of such observation has an
impact on the RiPM, whereas R/D based 011 the D measure is not unduly influenced
by a small number of atypical observations (Royston and Sauerbrei (2004) [93]) in the
data. The D measure is unaffected by outliers, but also by any monotonic increasing

transformation of the linear predictor. It is simultancously a strength and a weakness
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of R%4. Both R2 and R? depend on the variance of the covariate; therefore,
D OQF Xu0g 9P

they suffer from a similar problem to that of R% »- The measure proposed by Royston

(2006) (88], Rf{oy ston 18 based on the likelihood function, which is not resistant to atypical

observations.

5.8 Impact of model mis-specification on the measures

To analyse the survival of patients in comparative randomised clinical trials, important
prognostic factors comprising demographic information such as age, sex, previous medical
history, and other medical assessments may be included for the adjustment of the treat-
ment effect. Omitting these factors in the survival model can be considered as one type
of model mis-specification. Lagakos and Schoenfeld (1984) [57] described three types of
mis-specification of the Cox PH regression models as: omitted or mis-modelled covariates,
non-proportional treatment hazard functions, and omitted treatment-covariate interac-
tions. The Cox PH model leads to a loss of efficiency as well as a change in the treatment
effect being estimated if needed prognostic factors are omitted or mis-modelled from the
analysis of randomised trials (Hauch et al (1998) [39] and Gail et al (1984) [29]). Schmoor
and Schumacher (1997) [100] also showed the impact of omitting covariates from the Cox
PH model, and the related issue of modelling a continuous covariate as categorical. Ros-
thoj and Keiding (2004) [86] studied the impact of model misspecification on some of the

measures of predictive ability in survival models.

In this section, we examine the impact of two of the most common mis-specifications
of the model on the measures of explained variation: (i) an important prognostic factor
is omitted from the analysis; and (ii) the true relationship between the prognostic fac-
tor and the outcome, log relative hazards in the Cox PH model, is ignored. However,
one might argue that these issues are generally dealt with in the model building stage.
Nevertheless, understanding the impact of model mis-specification on the measures of

explained variation gives better insight into the measures.

5.8.1 Impact of under-fitting - covariate omission

We studied the impact of under-fitting on the measures of explained variation through
a series of simulation studies. In the simulation study, we generated pseudo-random,

exponentially distributed observations with hazard exp(1.386 * X; + 0.693 * X32), i.e.
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Table 5.11: The expected value of explained variation measures for full and under-fitted
models. Normally distributed covariate(s) and random censoring. The figures in brackets
are the standard deviation of the sampling distribution.

Measure Covariates in model 0% Censoring 20% Censoring 50% Censoring

RZ.,, both X;&X; 0.594 (0.028)  0.595 (0.029)  0.595 (0.032)
only X * 0.418 (0.034)  0.432 (0.035)  0.454 (0.039)
R both X;& X5 0.592 (0.028)  0.593 (0.030) _ 0.593 (0.034)
only X, * 0.417 (0.034)  0.431 (0.036)  0.453 (0.040)
Rbor  both X1&X, 0.622 (0.029)  0.636 (0.032) _ 0.658 (0.036)
only X * 0.491 (0.034)  0.515 (0.036)  0.553 (0.042)
R¥uoq both X1&X; 0.622 (0.029)  0.627 (0.032) _ 0.640 (0.045)
only X; * 0.491 (0.034)  0.499 (0.039)  0.520 (0.060)
R, on  Doth X1&X; 0.534 (0.028)  0.570 (0.032) _ 0.627 (0.039)
only X * 0.378 (0.030)  0.416 (0.035)  0.481 (0.045)

*s=under-fitted model

T|X ~Exponential(exp(1.386x.X;+0.693xX5)), where X; ~ N(0,1),i = 1,2 are the two
independent covariates. The simulations were carried out in three censoring conditions,
0%, 20%, and 50%, with 500 sample size and 2,000 replicates in each experimental
condition. Random non-informative right censoring was generated as described in section
4.3.4. Then, the measures are computed for the full model, both X; and X5 in the model,
and for the model with only one covariate, X;. Results from this study are displayed in

table 5.11.

The results of simulation studies in section 5.3 indicate that the expected values of
R%,;, R%, and Rg(qu are unaffected by the amount of random censoring in the normally
distributed covariate. We, however, observe that under-fitted models impose bias on these
measures under different censoring conditions, and the bias depends on the amount of
censoring. In particular, estimates with the covariates omitted, only X, in the model, will
be biased toward zero compared to the estimator with covariates included, both X;&X>
in the model. This reflects the similar effect of under-fitting on the estimated parameters
in the Cox PH model, reported by Gail et al (1984) [29]. It is difficult to quantify
the impact of underfitting on R}op and R%,, ., in the censored condition since the

sirnulation studies in section 5.3 showed that even in the full model they increase with

the amount of censoring.

One implication of this bias is its impact on the partial measures of predictive ability.
The formulae for a partial RZ?, similar to the one defined for the linear models, was

presented by O’Quigley and Flandre (1994) [75] and O’Quigley et al (2005) [80]. They
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introduced the following general formula to compute a partial measure:
1 - RY(Xy, .., Xp) = (1 = R¥(X1,... Xo)] [1 — RE(Xgqu1, .-, Xpl X1, .y Xy)] (5.1)

where X1,..., X, are covariates in the model and ¢ < p. In the above equation, the
partial measure of explained variation is R2(Xq+1, vy Xp| X1, ..., Xg), L.e. the variation in
the outcome, survival time, that is explained by the covariates Xg¢1,..., X, after having

accounted for the effects of X1, ..., X,

In the above study partial R%s , i.e. R?(X2|X1), can be computed using the formu-
lae 1 — R%(X1,X2) = [1— R*(X1)] [1 - R%(X3|X1)]. We can observe from the results
presented in table 5.11 that under-fitting imposes further bias on the measures under

different censoring proportions which inevitably affects R?(X2|X).

5.8.2 Impact of covariate mis-modelling

This section studies the implications of covariate mis-modelling for the explained variation
measures, specially in the presence of random censoring. For this purpose, we carried
out a set of simulation studies to examine the measures if a covariate is mis-modelled
in the Cox PH model. The conditional survival times were generated by assuming two
functional forms for the covariate. Figure 5-7 demonstrates the two models and the linear
predictor distributions of the corresponding models. In model I, we assumed that the true
relationship between the covariate and the log hazard ratio is curvature. In model II, the
functional form of the covariate is similar to that of the number of positive lymph nodes in
Model III proposed by Sauerbrei and Royston (1999) [94] for breast cancer data discussed
in section 2.3. The simulations were carried out in three censoring conditions, 0%, 20%,
and 50%, with 500 sample size and 2, 000 replicates in each experimental condition. The
data generation procedure and models used in the simulation studies are described below

for both models.

Model I

In this simulation study, conditional survival times T'|X ~Exponential(exp(f;(X))) are

generated as described in section 4.3.7 where

f1{X) = 0932« X +0.156 X% + 0.014 x X3
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Figure 5-7: The true relationship between the log hazard ratio and the covariate (red
curve), and the linear model (blue line) fitted to the simulated data. Bottom graphs
show the distribution of prognostic index or linear predictor of the true models.

and X ~ /V(0,1). Random non-informative right censoring is generated as described in
section 4.3.4. Then, the explained variation measures are computed for 1) the true model
and 2) for the mis-specified model where the covariate is modelled as a linear function.
The results of simulation study are summarised in table 5.12. The entries in the table are
the expected value and standard deviation of the sampling distribution by the amount of

censoring.

We can observe that the expected value of Rp M in the true model is rather consistent
across three censoring proportions. In contrast, it increases with censoring in the mis-
specified model. As it is apparent from the simulation results, R D is resistant to covariate
mis-modelling since the expected value of RD in the true model and the mis-specified
model coincide. However, the measure increases with censoring in both true and mis-
specified models. As table 5.12 illustrates, this measure is the only one in this category
which possesses this property, as long as the relationship between the prognostic index and
the log hazard ratio is monotonic (see table 5.13 when this relationship is non-monotonic).
The estimates of RQQOF, tixuOQ' anc* RRoyston are 1°wer in mis-specified model compared

with the corresponding estimates in the true model.
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Table 5.12: The mean and standard deviation of the sampling distribution of the measures
for the correctly specified model I and misspecified model.

Measure model 0% Censoring 20% Censoring 50% Censoring
R%,,  truemodell 0.381 (0.034) 0.383 (0.036)  0.388 (0.043)
missp. model  0.361 (0.034)  0.378 (0.037)  0.410 (0.044)
23 true model T 0.360 (0.033)  0.377 (0.037) _ 0.408 (0.044)
missp. model  0.360 (0.033)  0.377 (0.037)  0.408 (0.044)
Rbon  true model T  0.308 (0.040) 0412 (0.043)  0.443 (0.053)
missp. model  0.375 (0.035)  0.397 (0.039)  0.439 (0.049)
R%.00 truemodell  0.398 (0.040)  0.402 (0.041)  0.416 (0.053)
missp. model  0.375 (0.035)  0.379 (0.039)  0.395 (0.064)
RZ, — truemodel ] 0314 (0.028)  0.347 (0.034) _ 0.416 (0.047)
missp. model  0.205 (0.030)  0.327 (0.035)  0.395 (0.049)

Table 5.13: The mean and standard deviation of the sampling distribution of the measures

for the correctly specified model II and misspecified model.

Measure model 0% Censoring 20% Censoring 50% Censoring
RZ,,  true model 1T 0.380 (0.055) 0.382 (0.065)  0.385 (0.087)
missp. model  0.159 (0.033)  0.144 (0.031)  0.126 (0.031)
R% true model II  0.200 (0.029)  0.181 (0.029) 0.158 (0.031)
missp. model  0.160 (0.030)  0.145 (0.028) 0.127 (0.029)
RZor  truemodel I 0.639 (0.068)  0.623 (0.079)  0.589 (0.103)
missp. model  0.328 (0.038)  0.322 (0.040)  0.299 (0.050)
R%.0o true model 11 0.639 (0.068)  0.636 (0.085)  0.622 (0.132)
missp. model  0.328 (0.038)  0.328 (0.041)  0.324 (0.073)
R%, om truemodel 11 0.312 (0.034)  0.284 (0.035)  0.244 (0.040)
missp. model 0.192 (0.031)  0.180 (0.032) 0.153 (0.034)
Model I1

The simulation structure described above is applied for this study as well, except that

the data are generated from a mode] with linear predictor fa(X) where
f2(X) = 0668 x X — 0.413 % X% +0.045 + X3

and X ~ N(0,1). Table 5.13 demonstrates that the estimates in the true model and mis-
specified model differ substantially for all the measures. It is apparent that RE(UOQ does
hardly change with the amount of censoring in both the true and mis-specified models.
The estimates of R% u also does not change for the true model. But other measures
decrease with increasing amount of censoring in both models. Furthermore, unlike model
(T} which considered a monotonic function for the covariate, in non-monotonic functions

Rf, results in different values for the true and mis-specified models.
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Figure 5-8: The survival pattern of a two-arm trial under non-proportional hazards. Red
curve is the survival in the treatment arm, and the black curve is the survival in the
control arm. In the treatment arm, the hazard changes for those who survived after two
years.

5.8.3 Non-proportional hazards

In this section, a different simulation study was carried out to study the impact of non-
proportional hazards on explained variation measures. We used the method proposed
by Barthel et al (2006) [10] to generate survival times under non-proportional hazards
where the hazards of one arm changes after a specific time in a clinical trails. As they
argued, the situations may occur in, for example, a two arm trial when a treatment is
very effective in the beginning but patients experience a levelling off of the treatment
effect, which in turn brings the survival curves closer together over time or if, such as in a
trial comparing surgery followed by chemotherapy with surgery alone, the two treatments
have similar hazards in the beginning which then diverge over time (graph 5-8). In this
case, the hazard in the treatment arm was changed for each patient who had survived two
years in the trial, which led to a change in the overall hazard ratio from HRI to HR2.
This was simulated by first assigning a probability to whether patients experienced an
event before the time of changing hazard. If not, the exponential survival distribution

was adapted to incorporate a change in hazards after this point.

Design specifications for all sets of simulations were two years of accrual, two years of

follow-up, equal allocation to both treatment arms, exponential survival times, one year
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median survival in the control group, and the survival times were censored by assuming
exponential distribution for censoring times. The simulations were carried out in four
censoring conditions, 0%, 20%, 50%, and 80%, with 500 sample size and 2, 000 replicates
in each experimental condition. Simulation results under non-proportional hazards are
displayed in table 5.14. The entries of the table represented in italics are the expected
value of the measures when the hazard ratio does not change (i.e. HR1 = HR2 = (0.5),

i.e. when the proportional hazards assumption holds.

The first thing to note from the table is that the expected values of explained variation
measures appear to be consistent under different censoring proportions when the hazard
ratio does not change (i.e. HR1 = HR2 = 0.5). We can observe a slight increase in the
expected values when the proportion of censored survival times is equal to 80%. Second,
the value of R% is in line with the values of R?)Q F and Rg(uOQ when the covariate is
dichotomy, whereas R%,, and ngoystm have smaller values. Third, the impact of non-

proportional hazards on the measures diminishes as the amount of censoring increases.
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Table 5.14: Simulation results for non-proportional hazards. HR1 - hazard ratio in favour
of treatment arm for the first two years in trial. HR2 - hazard ratio after two years in
trial. Sample size is 500 in all experimental conditions, and survival times are randomly
censored. The standard deviations are given in brackets

Measure

HR1

HR2

0% Cens.

20% Cens.

50% Cens.

80% Cens.

2
RPM

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.149 (0.024)
0.100 (0.019)
0.069 (0.016)
0.049 (0.014)
0.035 (0.012)

0.137 (0.026)
0.094 (0.022)
0.069 (0.019)
0.053 (0.017)
0.041 (0.015)

0.097 (0.028)
0.082 (0.027)
0.071 (0.024)
0.063 (0.023)
0.057 (0.022)

0.075 (0.042)
0.075 (0.042)
0.075 (0.042)
0.075 (0.041)
0.075 (0.041)

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.216 (0.024)
0.148 (0.019)
0.104 (0.016)
0.074 (0.014)
0.054 (0.012)

0.199 (0.026)
0.14 (0.022)
0.105 (0.019)
0.081 (0.017)
0.064 (0.015)

0.144 (0.028)
0.122 (0.027)
0.107 (0.024)
0.095 (0.023)
0.086 (0.022)

0.112 (0.042)
0.112 (0.042)
0.112 (0.042)
0.111 (0.041)
0.111 (0.041)

Rbqr

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.167 (0.028)
0.131 (0.025)
0.101 (0.023)
0.077 (0.021)
0.057 (0.02)

0.162 (0.033)
0.129 (0.029)
0.104 (0.027)
0.084 (0.026)
0.068 (0.024)

0.138 (0.04)
0.123 (0.039)
0.111 (0.037)
0.101 (0.036)
0.092 (0.035)

0.121 (0.066)
0.120 (0.066)
0.120 (0.066)
0.120 (0.065)
0.120 (0.065)

Rg{ u0Q

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.167 (0.028)
0.131 (0.025)
0.101 (0.023)
0.077 (0.021)
0.057 (0.020)

0.168 (0.032)
0.132 (0.027)
0.102 (0.026)
0.077 (0.025)
0.058 (0.023)

0.169 (0.040)
0.135 (0.042)
0.106 (0.041)
0.084 (0.039)
0.064 (0.037)

0.120 (0.111)
0.115 (0.111)
0.110 (0.113)
0.107 (0.111)
0.102 (0.112)

Royston

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.125 (0.019)
0.090 (0.017)
0.065 (0.015)
0.047 (0.014)
0.035 (0.012)

0.129 (0.026)
0.090 (0.021)
0.068 (0.018)
0.052 (0.017)
0.041 (0.015)

0.099 (0.030)
0.083 (0.028)
0.072 (0.025)
0.064 (0.024)
0.057 (0.023)

0.076 (0.043)
0.076 (0.043)
0.076 (0.043)
0.076 (0.042)
0.076 (0.042)
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5.9 Discussion

In this chapter, we studied the measures of explained variation through a set of simulation
studies. The simulations have been aimed at finding how these measures perform in
different conditions, addressing the unresolved issues with respect to properties presented
in tables 3.1 to 3.2 of chapter 3. Furthermore, we studied the impact of model mis-

specification that might occur in statistical analysis of survival data.

We first evaluated the measures in non-censored data to have an understanding of
the proposed measures in terms of effect size and spread of the sampling distribution.
This has revealed the impact of the covariate distribution on these measures. Table 5.1
showed that R%,, is the only measure that was independent of covariate distribution or
prognostic index in the Cox PH model. The measure proposed by Royston and Sauerbrei
(2004), R%, depends on covariate distribution; the measure results in lower values if the
covariate distribution departs from normality. The more the departure from normality,
the lower the expected value of the measure. The measure decreases about 35% - 45%
in the skewed covariate distributions considered in this study depending on the covariate
effect. This reflects the properties of D measure (93] in a model with a non-normal

covariate distribution.

Both R2OQ r and R}UOQ depend on covariate distribution; the measures result in
lower values if covariate distribution is positively skewed and higher values if covariate
distribution is negatively skewed. For example, in non-censored data when 8 = 1.386,
the expected values of both measures is 0.597 in covariates with positively skewed dis-
tributions, whereas they increase to 0.728 in negatively skewed distributions. R%Coyston
also changes as the covariate distribution alters with no specific pattern evident from the
simulation studies. However, the change in the expected value of this measure in different

covariate distributions is not as much as that of R%), R2OQ Fy and R%(UOQ.

The impact of censoring was investigated by considering different censoring mecha-
nisms and censoring proportions. Table 5.15 summarises the findings of simulation studies
presented in section 5.3. For the majority of the measures, the impact of censoring de-
pends on the skewness of covariate distribution in the model. The codes in the table
show the extent of censoring effect on the measures, with 1 representing almost no effect,
i.e. the average percentage change in the expected value of the measure is 0% — 9%
compared to that of non-censored data, and 4 representing a large effect, i.e. the average

percentage change in the expected value of the measure is over 50% compared to that of
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Table 5.15: Summary of censoring effects on explained variation measures by the covariate
distribution and censoring type. The codes show the extent of censoring effect in different
situations from almost no effect, 1, to a large effect, 4.
Censoring Exp. Var. Covariate or Prognostic Index Distribution
type measure  Normal Lognormal Pos. skewed Neg. skewed

1

p—
—
o

=
Rpp

2
Ry
Random censoring RéQ P

[N

Rj(uOQ
Rfioystcm
gzw

D
Type I censoring RE)QF

2
R}X w0Q
Royston

R B BN — =N = D =
QO B D DD W~ NN
=R N R = e B

O W W WD NN

1: Almost no effect, i.e. the average percentage change in the wean of sampling distribution is 0% —-9%
2: Slight cffect, i.e. the average percentage change in the mean of sampling distribution is 10%-19%
3: Moderate cffect, i.e. the average percentage change in the mean of sampling distribution is 20%—49%

4: Large effect, Le. the average percentage change in the mean of sampling distribution is over 50%

non-censored data. The table indicates that R%,, is the only measure which is indepen-
dent of censoring in all covariate distributions. It also shows that R%?Dyston is the poorest

measure with respect to the impact of censoring.

The sampling distribution of the measures were displayed for different covariate effects
under different censoring and sample size conditions in section 5.4. Histograms of the
sampling distribution of the measures indicate that the measure proposed by Royston and
Sauerbrei (2004) [93], R%,, can be regarded as a consistent estimator because its sampling
distribution becomes more concentrated around the expected value as the sample size
becomes larger in all covariate effects and censoring proportions (figure 5-3) . The figures
of other measures in this category show similar findings, with the exception of R?-(UOQ

which results in negative values as censoring increases.

Sample size seems to affect the measures by only a modest amount if the effective
sample size, i.e. the number of events, &, is small, i.e. £ =~ 40 in our simulation studies.
If the covariate effect is small, i.e. 8 = 0.223, all of the measures increase by about 25%

when the total sample size and number of events are 200 and 40, respectively.

All of the measures possess the parameter monotonicity property which requires the
measures to increase as the covariate effect becomes stronger. Although the expected

values of the measures do not decrease by adding a new covariate to the model, table
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Measure Sample Size Does parameter monotonicity hold?

R%,, no effect’ yes?
R%, no effect! yes?
Rbop no effect! yes?
Ru00 no effect! yes?
R}, ston no effect! yes?

1) There is a moderate cffect of saple size on measures only when covariate effect s 1.25,
sample size is 200, and censoring proportion is high, i.c. 80%.

2) The measurce increases with increasing parameter effect.

Table 5.16: Summary of sample size effect and parameter monotonicity property of ex-
plained variation measures.

5.10 shows that the RQRoyaton is the only measure that is strictly monotonic, i.e. it always
satisfies the number of variables monotonicity. In all the replicates, R%{Oyst(m does not
decrease as a new covariate is added to the model. Among the measures, Rg(uOQ performs
the poorest in this regard since the proportion of simulations in which this measure
decreased after adding one or two independent covariates to the model was the highest

compared with other measures.

The simulations to study the impact of extreme and outlier observations revealed
that RZ is the only measure which remains almost unaffected by such observations.
Other measures generally increase in the presence of extreme observations, whereas they
decreased in the presence of outlier observations in the data. The results of our simulation
studies indicate that in the presence of severe outlier observations, i.e. m = 8 in section
5.7, R%yp, Rh, Rbors Riuogr and Rh, .., decrease by about 59%, 6%, 44%, 44%,
and 38% respectively (the expected values of measures at 85D are compared with the
corresponding values at 0SD, no contamination, in figure 5-6), whereas they increase by
27%, 8%, 55%, 43%, and 18% in the presence of influential extreme observations (figure
5-5).

All measures attain values near 1 for large, but plausible, values of covariate effects,
i.e. fs. The simulation study presented in section 5.6 shows that the measures are an
increasing function of § when the covariate or PI of the model is normally distributed.

The rate of increase slows down after 3 = 3.47.

Finally, we studied the impact of model mis-specification on the measures in section
5.8. As described by Lagakos and Schoenfeld (1984) [57], model mis-specification of the
Cox PH regression models includes non-proportional treatment hazard functions, omitted

and mis-modelled covariates. Section 5.8.1 demonstrates that omission of influential
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covariates in a model imposes bias on the measures. Furthermore, covariate mis-modelling
affects the measures, depending on how severe the departure is from the true functional
form. The simulation studies showed that R%, is the only measure that results in the same
value for both the true model and a mis-specified one if the true relationship between
the covariate and the outcome is monotonic. The impact of non-proportional hazards
was discussed in section 5.8.3. Table 5.14 demonstrates that all measures are susceptible
to changes in treatment hazards. The susceptibility of the measures to non-proportional

hazards diminishes as the amount of censoring increases.

In summary, our study showed that R%, s is independent of censoring and covariate
distribution, but it is very sensitive to covariate outliers in the data. R%, performs well
generally, but struggles with heavily skewed covariate(s) when the amount of censoring
is high, i.e. more than 50%. RQOQF performs reasonably well in general, but it is not
a consistent. estimator of the population value, R“(!)Q F as expressed in equation 2.29, in
the presence of censoring. To overcome this, R%Q r was further developed to introduce
RE(HOQ. However, RgmoQ possesses the undesirable property of resulting in negative
values as censoring increases. Finally, beystm has the poorest performance with regard
to the essential properties outlined in chapter 3 compared with other measures in this
category. Therefore, the two explained variation measures Rsz and R% can be recom-
mended for general use, depending on the skewness of the covariate, or prognostic index,
of the model and the amount of censoring. R%; a7 18 suitable if the amount of censored
observations in the data is high, i.e. about 70% — 90%, and the covariate, or prognostic
index, of the model is heavily skewed. The measure proposed by Royston and Sauerbrei

(2004), R‘f), is preferable if there is an indication of extreme covariate outliers in the data.

The next chapter studies the measures of explained randomness in a similar fashion.
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Chapter 6

Investigation of the measures of

explained randomness

6.1 Introduction

This chapter studies various aspects of potentially recommendable measures in the ex-
plained randomness category. The measures in this category generally quantify the ran-
domness or uncertainty in the outcome, as defined in equation 2.30 of chapter 2, that
is explained by prognostic factors in a regression model. The measures are p%v, p2Xqu,
and p} proposed by Kent and O’Quigley (1988) [49], Xu and O’Quigley (1999) [116], and
O’Quigley et al (2005) [80], respectively. Since no explicit formula is available for p%v,
Kent and O’Quigley (1988) [49] suggested p%V, 4> in equation 2.36, as an approximation .
They, however, did not compare pjy, 4 and pé, in detail. We include /’12/1/, 4 1n our studies
in sections 6.2 and 6.3 to elucidate its performance and compare it to the other explained
randomness measures. p%v’ 4 is not intrinsically an explained randomness measure and,
in principle, is similar to R%,,. The only difference between them is that the variance of
error term in the definition of R%,, in equation 2.24, i.e. 1'63 o~ 1.645, is replaced with 1

in the definition of p%u 4 In equation 2.36.

This chapter has a similar structure to that of chapter 5. We carried out the same
simulation studies on the above explained randomness measures, hence the study design
of the simulations for each section is the same as those presented in chapter 5. We,
therefore, present the results through similar graphs and tables to describe the main

findings for each measure, and do not explain the simulation study design for each study
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again.

In summary, this chapter addresses the following:

The expected value of the measures in non-censored data

The impact of different covariate distributions on the measures

The impact of censoring on the measures

Consistency, distributional shape, and sample size effect

Monotonicity properties of the measures

The upper bound of the measures

The impact of extreme and outlier observations on the measures

The impact of model mis-specification on the measures

In addition, we evaluated Kullback-Leibler information gain for the Cox PH model,
and hence developed a new measure of explained randomness for the proportional hazards
models. Since the main theme of this thesis is to compare the already proposed measures
of predictive ability in survival models, we only present the new measure in Appendix

B.8 of this thesis. The last section contains the discussion of this chapter’s findings.

6.2 Impact of covariate distribution on the measures

In this section, we present the results of our simulation study, carried out to assess
the measures in the absence of censoring. The study was also carried out to inves-
tigate the expected value and dispersion of measures in different covariate effects and
covariate distributions. In summary, the simulations were run for four covariate distrib-
utions, four covariate effects 3 = {0.223,0.405, 0.693,1.386} representing hazard ratios
of {1.25,1.5,2,4}, and three sample size conditions n = {200,500,1000}, with 5,000

replicates in each experimental condition.

The results of the simulations are summarised in tables 6.1 to 6.3. The first thing
to note from table 6.1 is that the explained randomness measures generally result in
higher values compared with the corresponding values of the explained variation measures,

presented in table 5.1. As it is evident from tables 6.1 to 6.3, the measures lead to
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similar results in the normally distributed covariate. In this case, the expected value
and the relative spread of the sampling distribution, as expressed in terms of the C.V.,
of the measures is similar. The results of the simulation study show that P%/v, 4 15 a
good approximation to p%v if the covariate is normally distributed, otherwise they differ.
O’Quigley et al (2005) [80] showed that in the absence of censoring p? and pg(uOQ coincide,
and in censored data p,% can be considered as a good approximation to pg(uOQ. Tables

6.1 to 6.3 display this theory.

Tables 6.2 and 6.3 show that the spread of the sampling distribution of p%,, p%mOQ,
and p? are similar in normally, lognormally, and positively skewed distributions. In
negatively skewed distributions, however, the spread of the sampling distribution of p%v
and pa,’ 4 Is higher than that of p? and pg(uOQ' Some important findings for each measure

is explained in the following sections.

Table 6.1: Mean of the sampling distribution of explained randomness measures by the
covariate distribution and covariate effect across all sample size conditions, censoring=0%
Covariate Distribution exp(8) pi, P%V, A pg{uOQ o

normal 1.25 0.049 0.050 0.048 0.048
1.5 0.141 0.143 0.134 0.134
2 0.316 0.325 0.296 0.296
4 0.637 0.657 0.602 0.602
lognormal 1.25 0.046 0.060 0.045 0.045
1.5 0.128 0.143 0.125 0.125
2 0.282 0325 0.275 0.275
4 0.584 0.656 0.575 0.574
positively skewed 1.25 0.042 0.051 0.042 0.042
1.5 0.110 0.144 0.109 0.109
2 0.235 0324 0.233 0.233
4 0.495 0.652 0.486 0.485
negatively skewed 1.25 0.062 0.049 0.052 0.052
1.5 0.195 0.142 0.142 0.142
2 0.433 0322 0.292 0.292
4 0.759 0.651 0.552 0.551

6.2.1 Kent and O’Quigley measures (1988) - p?, & pf 4

This measure varies from 0.049 to 0.637 in the normally distributed covariate. It decreases
in positively skewed distributions, whereas it increases in negatively skewed distributions.
In contrast, its proposed approximation, p%v. A, 18 not affected by the changes in the covari-
ate distribution. As it is evident from table 6.3, the spread of the sampling distribution

of this measure and its approximation, p%V’ 4» decreases as the covariate effect becomes
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Table 6.2: Standard deviation of the sampling distribution of explained randomness mea-
sures by the covariate distribution and covariate effect across all sample size conditions,
censoring=0%

Covariate Distribution exp(8) p§, p% A pg{uOQ pz

normal 1.25 0.022 0.022 0.021 0.021
1.5 0.034 0.035 0.032 0.032
2 0.041 0.042 0.039 0.039
4 0.032 0.031 0.032 0.032
lognormal 1.25 0.020 0.023 0.020 0.020
1.5 0.030 0.035 0.030 0.030
2 0.036 0.044 0.037 0.037
4 0.031 0.034 0.034 0.033
positively skewed 1.25 0.018 0.024 0.018 0.018
1.5 0.027 0.040 0.028 0.028
2 0.036 0.056 0.037 0.037
4 0.042 0.051 0.047 0.040
negatively skewed 1.25 0.038 0.025 0.025 0.025
1.5 0.079 0.044 0.039 0.039
2 0.105 0.063 0.046 0.046
4 0.070 0.056 0.040 0.040

larger.

6.2.2 Xu and O’Quigley measure (1999) - p%.00

Similar findings are observed for this measure, with the exception that this measure leads

to slightly lower values than p%v in all the covariate distributions.

6.2.3 O’Quigley et al measure (2005) - p?

O’Quigley et al (2005) [80] showed that this measure converges to the same values as
P%(uocz in non-censored data. The summary data presented in tables 6.1 to 6.3 confirms
this theory. Therefore similar conclusions to those of pgon can be drawn for this measure

in non-censored data.

6.3 Impact of censoring on the measures

In this section, we study the impact of censoring on the explained randomness mea-
sures through a series of simulation studies similar to those used to assess the impact
of censoring on the explained variation measures in section 5.3. In summary, the simu-

lations were run for two types of censoring mechanisms, type I and random censoring,
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Table 6.3: Coeflicient of variation of explained randomness measures by the covariate
distribution and covariate effect, expressed as %. Table entries are the average across all
combinations of sample sizes, censoring=0%.

Covariate Distribution exp(8)  pf, p%Z_ A Pxu00  Pe
normal 1.25 42,1 423 41.7 41.7
1.5 22.8 230 227 227
2 122 123 124 124
4 4.7 4.5 50 5.0
lognormal 1.25 41.1 427 41.8 41.8
1.5 223 234 22.6 22.6
2 12.2 128 12.8 12.8
4 5.1 5.0 9.5 9.5
positively skewed 1.25 41.1 449 414 414
1.5 23.6 26.7 241 241
2 14.7 164 15.0 15.0
4 8.0 74 95 7.7
negatively skewed 1.25 59.0 477 46.1 46.1
1.5 39.9 29.7 25.9 259
2 23.5 18.6 14.9 14.8
4 8.8 8.1 6.9 6.8

and four censoring proportions, 0%, 20%, 50%, and 80%, four covariate effects 8 =
{0.’223, 0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three sam-
ple size conditions n = {200, 500, 1000}, with 5,000 replicates in each experimental con-
dition. The mechanisms applied for generating each censoring type were explained in

section 4.3.4 of chapter 4.

Tables 6.4 to 6.6 summarise the results of the simulation study on the proposed
explained randomness measures. The entries in tables 6.4 and 6.5 are the average over
two censoring types, four covariate effects, and three sample size conditions. The values
in table 6.6 are the average across four censoring proportions, four covariate effects, and
three sample size conditions. The figures in these tables are the average across four
covariate effects, and three sample size conditions. In summary, it is evident that P%V
and p%V! 4 are least affected by censoring, whereas pz is most affected by the amount of

censoring in all covariate distributions.

Detailed simulation results are presented in Appendix A. The tables in Appendix A
show the impact of censoring by the covariate distribution, censoring type, and censoring
proportion in a similar way to table 6.6. The impact of censoring on each measure is

explained in details in the following sections.
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Table 6.4: The average percentage difference from the expected value of explained ran-
domness measures in the corresponding non-censored data by the covariate distribution
and censoring proportion.

Covariate Distribution % Censored  pf;, p?,K A pg(qu P

normal 20 03 03 2.7 4.5
50 1.3 1.3 6.0 109
80 52 5.3 13.5 21.7
lognormal 20 0.2 0.2 5.4 8.9
50 0.8 09 141 23.7
80 3.0 33 31.8 472
positively skewed 20 0.1 041 83 143
50 03 04 25.3 43.0
80 1.5 18 62.9 93.6
negatively skewed 20 1.3 1.2 74 -98
50 4.1 3.8 -15.7 -19.5
80 139 136 -22.6 -23.0

Table 6.5: Coeflicient of variation of explained randomness measures by the covariate
distribution and censoring proportion, expressed as %.
Covariate Distribution % Censored  p3, inL Pxw0q  Ph

A
normal 20 222 223 229 233
50 273 274 29.1  30.0
80 414 41.7 47.3  48.1
lognormal 20 214 222 23.2 240
50 251  26.0 30.0 323
80 35.5 36.7 50.7 538
positively skewed 20 22.5 245 25.4 265
50 247 26.8 33.1 375
80 314 337 59.2 659
negatively skewed 20 36.7  30.0 244 234
50 44.9 38.8 29.2 266
80 69.2 64.9 426 391

6.3.1 Kent and O’Quigley measures (1988) - p}, & piy 4

Censoring has almost no effect on this measure, except in highly censored data, i.e. 80%
censoring, with negatively skewed covariates. The average percentage change in the ex-
pected value of the measure is generally less than 5% compared with the expected value
of the measure in the corresponding non-censored data. We observe a slight increase
in the expected value of the measure in positively skewed covariates with highly cen-
sored data, i.e. 80% censoring; the measure is on average 13.9% higher compared with
the corresponding non-censored data. Table 6.5 shows that the spread of the sampling
distribution increases with the amount of censoring, as expected. Random and type I

(administrative) censoring have similar impact on this measure (table 6.6). The results
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Table 6.6: Summary performance of explained randomness measures by the covariate
distribution and censoring mechanism.

Random Censoring  Type I Censoring

Measure Covariate Distribution Average Average
% Difference C.V. % Difference C.V.
Py normal 2.4 30.6 2.2 30.0
lognormal 1.5 27.8 1.1 26.9
positively skewed 0.9 26.7 0.3 25.7
negatively skewed 6.1 49.8 6.7 50.7
P A normal 2.4 30.8 2.2 30.2
lognormal 1.7 28.7 1.3 27.8
positively skewed 1.1 28.9 0.5 27.8
negatively skewed 5.8 44.0 6.5 45.2
Pxuog  normal 1.1 32.3 13.7 34.0
lognormal 4.8 32.0 264 37.2
positively skewed 9.6 34.1 54.8 44.4
negatively skewed -9.9 35.1 -19.6 29.1
Pt normal 11.0 33.6 13.7 34.0
lognormal 23.8 36.2 29.4 37.2
positively skewed 45.6 42.5 54.9 44.1
negatively skewed -15.4 30.4 -19.5 29.1

of our simulation study show similar impact of censoring on the approximation of this

measure, p¥; 4.

6.3.2 Xu and O’Quigley measure (1999) - p% .00

Table 6.4 displays that, overall, pgfqu is affected by the amount of censoring. However,
table 6.6 reveals that the effect is mainly as a result of type I censoring, and random
censoring has almost no effect on this measure since the average percentage difference
in the expected value of the measure is less than 10% compared to that of non-censored
data. Therefore pf{»uOQ performs well in random censoring. In the type I censoring, the
measure increases rapidly with the amount of censoring in positively skewed covariates,
whereas it decreases rapidly in negatively skewed covariates. The higher the amount of
censoring, the larger the impact on the measure. Table 6.5 reveals that the spread of the

sampling distribution also increases with the amount of censoring.

6.3.3 O’Quigley et al measure (2005) - p?

This measure is affected by both random and type I censoring. It appears that there

is an interaction between censoring and the covariate distribution in this measure. The

127




measure increases with the amount of censoring in positively skewed covariates, whereas
decreases in negatively skewed covariates. Table 6.6 shows that type I censoring has

similar impact on this measure to that of p%(uOQ'

6.4 Consistency, distributional shape, and sample size ef-

fect

In this section, we investigate the consistency and the shape of the sampling distribution
of the measures of explained randomness, together with the impact of sample size. The
consistency of the proposed measures, pZ,, pg(uOQ, and p?, are discussed by Kent &
O’Quigley (1988) [49], Xu & O’Quigley (1999) [116], and O’Quigley et al (2005) [80].
We first summarise their findings on the consistency of the proposed measures. Then,
we illustrate the shape of the sampling distribution of the measures in the presence of
censoring. Finally, the effect of sample size on the measure is studied. The approximation
of p%v, P%v, 4> Possesses similar properties to that of R}% ar and will not be discussed in this

section.

6.4.1 Consistency of the measures

For models beyond the normal linear regression, Kent (1983) [50] proposed a general
measure of correlation, known as explained randomness measure p%c, based on the trans-

formation of the Kullback-Leibler information gain [55]

pic =1 —exp{-T'(8)}

where ['(3) is twice the Kullback-Leibler information gain [55], as described in section
2.3.2. Therefore, all the proposed explained randomness measures are a transformation
of the Kullback-Leibler information gain [55]. The only difference between them is the
way the Kullback-Leibler information gain, I'(3), is defined for each measure. The mea-
sures are considered consistent if the estimator of their corresponding Kullback-Leibler

information gain, IA‘(H) is consistent.

For the measure proposed by Kent and O’Quigley (1988) [49], p%,, the Kullback-

Leibler information gain is defined as
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rig =2 [ [0 { ZELY rex ppeara)

where f*(£|X; 8) = aexp(u+8X)t*! exp [~t¥ exp (u + BX)] and F(z) is the distribution
function of the covariate X. Kent and O’Quigley (1988) [49] showed that I';(3) can be

consistently estimated by the fitted information gain
=2y £*(tli; B 3
h(8)=— /log S ¢ ST X8)dt
7 2 [ 8 o) [ TP

where 3 is the maximum likelihood estimator of 8. Thus, % = 1 —exp{—TL1(3)} is a

consistent estimator of the population value p%v.

For the measure proposed by Xu and O’Quigley (1999) [116], pg(uoq, the Kullback-

Leibler information gain is defined as

ru@ =2 [ [ 1o { dos) g;}g(ﬂslt;ﬁ)dwdl*“(t)

where F(t) is the marginal distribution function of T, and g(z|t;.) is the conditional
density or conditional probability function of the covariate, X, given T. Xu and O’Quigley
(1999) [116] showed that I'z(3) can be consistently estimated by

@) =23 Wit) 3o, it ) o {%tﬁ%}

where W(¢;) the jump in the Kaplan-Meier curve at event time ¢; and

Y;(t) exp(82;)
ZYz(t exp(ﬁzt)
=1

7 {t; B) =

In the measure proposed by O’Quigley et al (2005) [80], p?, ['2(3) is also defined as
the Kullback-Leibler information gain. However, O’Quigley et al (2005) [80] proposed an

alternative estimator for I'z(3) as
= > ﬂ-z(Xza ﬁ
T24(8) = Zél {MX% Oi}

where 8; = I(T; < C;) and k is the number of events. O’Quigley et al (2005) [80] showed

that in the absence of censoring I's (E) and Tayu (B) will converge to the same population
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values, hence both estimators are consistent estimator of I';(3). They, however, converge
to different quantities in the presence of censoring, but can be anticipated to be close

(0"Quigley et al (2005) [80]).

O’Quigley and Flandre (2006) {76] claimed that the advantage of pg(uOQ, which is
based upon fQ(B), is that it is consistent in both censored and non-censored data and does
not depend upon censoring. Although p? is not consistent in the presence of censoring, it
is particularly straightforward to evaluate, being a simple transformation of the partial
likelihood ratio statistic. The results of our simulation studies, summarised in table
6.6, indicate that pi—qu is not affected by censoring if the survival times are randomly
censored, but it results in the same values as pﬁ in the presence of type I or administrative

censoring.

6.4.2 Sampling distribution of the measures

Figure 6-1 illustrates the sampling distribution of Kent and O’Quigley measure (1988),
piy, from our simulation study, by the covariate effect, sample size, and censoring pro-
portion, with 5, 000 replicates in each experimental condition. The covariate is normally
distributed and the survival times are randomly censored by considering an exponential

distribution for censoring times, as described in section 4.3.4.

As in explained variation measures, we crudely explore the sampling distributions of
the estimators graphically over the range of n in this study. Sampling distribution of con-
sistent estimators should tend towards a spike over the parameter of interest as n becomes
ever larger. All distributions in figure 6-1 appear to exhibit this tendency. For example,
for the normally distributed covariate when the covariate effect, 3, is 1.39, the expected
value of the measure proposed by Kent and O’Quigley (1988), p¥,, is 0.637 (table 6.1).
Figure 6-1 demonstrates that the distribution of p?, is approximately centred over the
expected value. The distribution of the measure is clearly becoming more concentrated
and spiking near this value as sample size increases. The shape of the distribution of the
measures proposed by Xu and O’Quigley (1999) and O’Quigley et al (2005) [80], pQXuOQ
and p? follows a similar pattern, i.e. they display considerable skewness when censoring

is more than 50%.
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Figure 6-1: Sampling distributions of Kent & O’Quigley measure (1988) by the covariate
effect, sample size, and censoring proportions in the normally distributed covariate and
random censoring condition.
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6.4.3 Impact of sample size on the measures

Similar to the effect of sample size on explained variation measures, the simulation results
show that the measures of explained randomness increase slightly when the effective
sample size, i.e. number of events, is small. We tabulated the results of the simulations
in table 6.7 where the covariate is normally distributed and the data is randomly censored,
with 5, 000 replicates in each experimental condition. Table 6.7 show that the measures
increase when both the sample size and the covariate effect are small, i.e. n = 200 and
exp() = 1.25, and the amount of censoring is high, i.e. 80%. This pattern was observed
in other simulation studies when we considered skewed covariates and a different censoring

mechanism, i.e. type I or administrative censoring.

Table 6.7: Percentage change in the expected value of explained randomness measures in
small and large sample sizes by censoring proportion - random censoring. The figures in
brackets are the standard deviation of the sampling distribution.

20% Censoring 80% Censoring
Sample size Sample size
Measure exp(8) 1000 200 % Change 1000 200 % Change
Py 1.25 0.048  0.052 8% 0.052  0.067 20%
(0.015) (0.033) (0.029) (0.066)
4 0.639 0.635 -1% 0.639 0.635 1%
(0.02) (0.046) (0.03) (0.07)
pr 4 1.25 0.048 0.053 8% 0.052 0.068 29%
(0.015) (0.034) {0.29)  (0.067)
4 0.658 0.655 -1% 0.658 0.655 -1%
(0.002) (0.045) (0.003) (0.007)
szu()Q 1.25 0.047 0.049 4% 0.046 0.058 26%
(0.014) (0.031) (0.028) (0.061)
4 0.607 0.598 -1% 0.649 0.643 -1%
(0.022) (0.048) (0.078) (0.119)
Py 1.25 0.048 0.051 6% 0.053 0.068 28%
(0.015) (0.032) (0.03) (0.069)
4 0.635 0.627 -1% 0.746 0.733 -2%
(0.022) (0.049) (0.037) (0.086)

6.5 Monotonicity properties of the proposed measures

This section consists of two parts discussing the two monotonicity properties in explained
randomness measures, as defined in chapter 3. In the second part where we discuss the
number of variables monotonicity, similar simulation study to that of explained variation

measures is carried out. The sample size is 500, and 2,000 replicates are generated
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for each experimental condition. In the simulation, the distribution of survival time is
generated using the algorithm outlined in section 4.3.9 by assuming only one covariate

that is normally distributed.

6.5.1 Parameter monotonicity

The parameter monotonicity property of p%, and pgquQ was analytically established
by Kent & O’'Quigley (1988) [49] and Xu and O’Quigley (1999) [116]. The measure
proposed by O’Quigley et al (2005) [80], pZ, is similar to pg(uOQ in non-censored data
[80], hence satisfying parameter monotonicity property. Furthermore, the simulation
results presented in table 6.1 and graph 6-2 demonstrate that the measures increase as

the covariate effect becomes stronger.

6.5.2 Number of variables monotonicity

The number of variables monotonicity means that the expected value of a suitable measure
of predictive ability should not decrease by adding new covariates to the model. Tables 6.8
and 6.9 demonstrate the results of similar simulation study as in section 5.5 to investigate
the number of variables monotonicity of the measures. The following models are fitted
after generating the data: Model I with one dependent covariate; Model II with only
dependent covariate and one independent covariate; and Model III with only dependent
covariate and two independent covariates. The entries in table 6.8 are the differences in
the expected values of the measures after fitting models II and IIT compared to model I.
The table shows that the expectation of the measures does not decrease after adding new

covariates to the model.

Table 6.9 displays the proportion of simulations in which the measures decreased after
adding one and two independent covariates by covariate effects and censoring proportions.
Whilst p? always increases after adding a new covariate to the model in censored and

non-censored data, P%(uoc;) does not always increase in censored data.

6.6 Upper bound of the measures

In this section, we demonstrate the upper bound of the measures of explained randomness

using similar simulation studies to those of section 5.6. Figure 6-2 contains two graphs
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Table 6.8: Mean difference in the expected value of the measures after adding one or two
independent covariates to the model in 2,000 simulations, normally distributed covariates.

Model II Model HI
Measure | exp(3) Mean difference to model 1 Mean difference to model I
0% censoring 80% censoring | 0% censoring 80% censoring

Py 1.25 0.002 0.009 0.004 0.018

1.5 0.002 0.008 0.004 0.015

2 0.002 0.005 0.003 0.011

4 0.001 0.002 0.002 0.005
p%v,A 1.25 0.002 0.009 0.004 0.018

1.5 0.002 0.008 0.004 0.016

2 0.002 0.006 0.003 0.011

4 0.001 0.003 0.002 0.005
Pxuwoq | 125 0.002 0.009 0.004 0.019

1.5 0.002 0.008 0.003 0.017

2 0.001 0.007 0.003 0.013

4 0.001 0.003 0.002 0.005
I 1.25 0.002 0.008 0.004 0.016

1.5 0.002 0.007 0.003 0.014

2 0.001 0.005 0.003 0.010

4 0.001 0.002 0.002 0.004

which summarise the results of simulation studies in both non-censored and censored
data. In the simulation studies, survival times are exponentially distributed, the covariate
is normally distributed X ~ N(0,1), sample size is 500, and non-informative random
censoring is generated by considering an exponential distribution for the censoring times
with 2,000 replicates in each experimental condition. Figure 6-2 displays the expected
value of the measures from 3 = 0.22 (exp(f) = 1.25) to 8 = 5.55 (exp(f) = 256) for 0%
and 50% censoring. it is evident that the expected value of the measures increases as the
covariate effect becomes larger, and they reach values close to 1 for high but reasonable

covariate effects.

6.7 Robustness of the measures

In this section, simulation studies analogous to section 5.7 are carried out to investigate
the impact of "atypical" observations, i.e. extreme and outlier observations as described
in section 5.7, on the explained randomness measures. Similarly, this section consists
of two parts which demonstrate the impact of extreme and outlier observations on the
measures of explained randomness respectively. The methods we apply to contaminate
the data with extreme and outlier observations are described in section 5.7. Similarly,

we present the results of the simulation studies through graphs. In the graphs, the X
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Table 6.9: Proportion decrease in measures after adding one or two independent covariates
to the model in 2000 simulations, normally distributed covariates.

Model II Model III
Measure | exp(3) prop. decreased to model I prop. decreased to model I
0% censoring 80% censoring | 0% censoring 80% censoring

Py 1.25 0.11 0.07 0.03 0.02

1.5 0.15 0.13 0.07 0.05

2 0.20 0.21 0.11 0.12

4 0.23 0.29 0.13 0.21
p%if,A 1.25 0.10 0.07 0.03 0.02

1.5 0.15 0.12 0.06 0.04

2 0.18 0.19 0.09 0.10

4 0.20 0.27 0.09 0.18
Pxuog | 125 0.00 0.12 0.00 0.05

1.5 0.00 0.21 0.00 0.11

2 0.00 0.27 0.00 0.19

4 0.00 0.35 0.00 0.28
s 1.25 0.00 0.00 0.00 0.00

1.5 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00

axis represents the extent of contamination. For example, 55D in the X axis represents
the condition where one observation’s covariate, X ~ N(0, 1), is replaced with 5, and the
corresponding value in the Y axis represents the expected value of the measures in this
condition. We present the result of one experimental condition where the covariate effect,
B, is equal to 0.69, sample size is equal to 200, and censoring proportion is 50%. We
also carried out simulation studies considering different sample sizes, i.e. 500 and 1000,
and censoring proportions, i.e. 0%, 20% and 80%. Similar results were observed in other
experimental conditions. However, the results suggested that both extreme and outliers
observations have more impact on the measures in small sample sizes than large ones, as

expected.

6.7.1 Impact of extreme observations

Figure 6-3 displays the impact of one extreme observation on the expected value of ex-
plained randomness measures. If the measures are resistant to the extreme observations,
the expected value of the measures would not change in the presence of such observa-
tions. In other words, we expect a flat line across the X axis if the measure is resistant
to extreme observations. The graph demonstrates that the measures are not resistant

to extreme observations, i.e. the covariate and corresponding time move towards the
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Figure 6-2: Explained randomness measures as a function of the covariate effect in the
model, normally distributed covariate. In the bottom graph, survival times are randomly
censored according to an exponential distribution for censoring times.
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extremes of their respective distributions. The graph indicates that the measures go up

as one observations becomes more extreme.

6.7.2 Impact of outlier observations

A similar simulation study was also carried out to demonstrate the impact of outlier
observations on pfv, PxuOQ' anc*p\- I'lthe simulation studies the data sets are generated
using the method explained in section 5.7.2. Figure 6-4 demonstrates that the measures
are largely influenced by such observations in the data. The measures decrease as the

outlier contamination becomes more severe, with the measure proposed by Kent and
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" (beta=0.69, n=200, 50% Censoring)
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Influential Observation
S.D. Standard Deviation

Figure 6-3: Mean of the sampling distribution of explained randomness measures as the
extreme observation becomes more influential.

O’Quigley (1988) [49], plv, most affected among the measures.

6.8 Impact of model mis-specification on the measures

This section investigates the effect of model mis-specification on the measures. The notion
of model mis-specification in the context ofthe Cox PH model was explained in section 5.8.
This section consists of three parts each describing the impact of under-fitting, covariate
mis-modelling, and non-proportional hazards on the measures of explained randomness.
Similar simulation studies to those of section 5.8 are carried out to investigate the issue of
model mis-specification on the measures; therefore, we do not describe the study design
in this section again. Likewise, all the simulations are carried out in different censoring
conditions with 500 sample size and 2,000 replicates in each experimental condition. The

results are summarised in similar tables to those of section 5.8.

6.8.1 Impact of under-fitting - covariate omission

Table 6.10 demonstrates the impact of under-fitting 011 the explained randomness mea-
sures. The entries of the table are the expected value and the standard deviation of the
sampling distribution of the measures for full and under-fitted models. We observe that

under-fitting imposes bias on plv, p(VA, and PXWWQ in censored data, and the bias in-
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Figure 6-4: Mean of the sampling distribution of the explained randomness measures as
the outlier observation becomes more influential.

creases as the proportion of censored observations increases. For example, p2 and Px tpQ
are fairly consistent in the full model, whereas they are inconsistent in the under-fitted

model, i.e. they increase with the amount of censoring.

Similar to the measures of explained variation, the implication of this bias is that it
imposes bias on the estimates ofthe partial measure of explained randomness suggested by
Kent and O’Quigley (1988) [49] and O’Quigley et al (2005) [80]. Similar to equation 5.1,
they suggested the following general formula to compute the partial measure of explained

randomness

1-p2(X1,... Xp)= [1-"(*1, ...,%)] [1-p2(Xq+l,... Xp\XU...,Xq)] (6.1)

where X'\, ..., X ¢ are covariates in the model and ¢ <p. In the above equation, the partial
measure of explained randomness is pz (XqH\,..., XP\X\, ..., Xg), i.e. the randomness in
the outcome, survival time, that is explained by the covariates Xq+\, ..., Xv after having

accounted for the effects of X' |,.... Xgq.

In the above study, a partial measure of explained randomness p2(X2I-X1) can be
computed using the formula 1 —p2(X\, X2) = [l —p2(X1)] [l —p2(X2 )] - The results
presented in table 6.10 indicate that under-fitting imposes further bias 011 the measures

under different censoring proportions which inevitably affects p2(2Q |ATi).
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Table 6.10: The expected value of explained randomness measures for full and under-
fitted models. Normally distributed covariate(s) and random censoring. The figures in
brackets are the standard deviation of the sampling distribution.

Measure Covariates in model 0% Censoring 20% Censoring 50% Censoring

02, both X;&X» 0.687 (0.025)  0.688 (0.026)  0.688 (0.029)
only X; * 0.525 (0.034)  0.539 (0.035)  0.560 (0.038)
) both X, & Xz 0.706 (0.024) _ 0.707 (0.025) _ 0.707 (0.028)
only X; * 0.541 (0.035)  0.555 (0.035)  0.577 (0.038)
Pkwoq  both X1&X, 0.653 (0.025) _ 0.655 (0.028) _ 0.668 (0.045)
only X, * 0.499 (0.032)  0.517 (0.035)  0.550 (0.050)
o2 both X;& X2 0.653 (0.025)  0.685 (0.028)  0.733 (0.033)
only X, * 0.499 (0.032)  0.539 (0.036)  0.603 (0.043)

*=under-fitted model

6.8.2 Impact of covariate mis-modelling

In a similar study to that of section 5.8.2, we investigate the impact of covariate mis-
modelling on the explained randomness measures, i.e. modelling the covariate, X, as
linear function of log hazard ratio in the Cox PH model where the true functional form
of the covariate is either "model 1", f1(X), or "model I1", fo(X). Figure 5-7 in chapter
5 demonstrates the functional forms of the covariate against the log hazard ratio in the

Cox PH model. The findings of simulation studies are summarised below for each model.

Model 1

In this model, the true functional form of the covariate in the Cox PH model is:
F1(X) = 0.932 « X +0.156 + X2 +0.014 » X>

where X ~ N(0,1). Table 6.11 displays the mean and standard deviation of the sampling
distribution of the measures for true and mis-specified models by censoring proportions.
This table indicates that the measure proposed by Kent and O’Quigley (1988), p%v, and its
approximation, p%V, 4. result in different values in both the true and mis-specified models.
It also suggests that they are fairly consistent under different censoring proportions in
the true model. In the mis-specified model, however, they increase as the amount of
censoring increases. With increasing censoring, both pg(uOQ and p? increase in both true

and mis-specified models.
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Table 6.11: The mean and standard deviation of the sampling distribution of the measures

for correctly specified model I and misspecified model.

Measure

model

0% Censoring 20% Censoring 50% Censoring

Pl

true model I
missp. model

0.438 (0.033)
0.466 (0.035)

0.441 (0.038)
0.484 (0.038)

0.451 (0.057)
0.516 (0.044)

2

Ph . truemodelI  0.503 (0.036) 0504 (0.038)  0.509 (0.046)
missp. model  0.481 (0.037)  0.499 (0.039)  0.532 (0.045)
Phuon  true model I 0.429 (0.032)  0.431 (0.035)  0.442 (0.050)
missp. model 0.407 (0.034)  0.425 (0.038)  0.461 (0.052)
P true model I ~ 0.429 (0.032)  0.466 (0.037) 0.538 (0.048)
missp. model  0.407 (0.034)  0.444 (0.040)  0.517 (0.052)

Table 6.12: The mean and standard deviation of the sampling distribution of measures
for correctly specified model II and misspecified model.

Measure model 0% Censoring 20% Censoring 50% Censoring
o true model 1L 0.630 (0.079) _ 0.630 (0.001) _ 0.625 (0.116)

missp. model

0.231 (0.044)

0.211 (0.042)

0.187 (0.042)

Poa true model I 0.501 (0.059)  0.502 (0.068)  0.503 (0.091)
missp. model  0.236 (0.045)  0.216 (0.042)  0.190 (0.043)
Pxeog  true model II 0427 (0.039) 0.414 (0.044)  0.384 (0.061)
missp. model  0.280 (0.040)  0.255 (0.038)  0.221 (0.044)
o true model I 0.427 (0.039)  0.394 (0.042)  0.345 (0.049)
missp. model  0.280 (0.040)  0.264 (0.042)  0.229 (0.047)

Model II

In this model, the true functional form of the covariate in the Cox PH model is:

f2(X) = 0.668 x X — 0.413 x X2 4+ 0.045 » X*

where X ~ N(0,1). Similarly, table 6.12 contains the mean and standard deviation
of the sampling distribution of measures for true and mis-specified models by censoring
proportions. We observe that in the true model, both p%, and p%m 4 are consistent un-
der different censoring proportions, but they decrease in the mis-specified model as the

amount of censoring increases. The simulation results also show that both pg(uOQ and p?

decrease in true and mis-specified models as the amount of censoring increases.

6.8.3 Non-proportional hazards

In an analogous study to that of explained variation measures in section 5.8.3, we car-
ried out simulation studies to investigate the impact of non-proportional hazards on the

explained randomness measures. Design specifications for all sets of simulations were
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two years of accrual, two years of follow-up, equal allocation to both treatment arms,
exponential survival times, one year median survival in the control group, and the sur-
vival times were censored by assuming exponential distribution for censoring times. The
simulations were carried out in four censoring conditions, 0%, 20%, 50%, and 80%, with

500 sample size and 2, 000 replicates in each experimental condition.

Simulation results under non-proportional hazards are displayed in table 6.13. The
entries of the table represented in italics are the expected value of the measures when
the hazard ratio does not change (i.e. HR1 = HR2 = 0.5), i.e. when the proportional

hazards assumption holds.

Table 6.13 shows that the measures result in similar values in the Cox PH model with
a dichotomous covariate if the proportional hazards assumption holds. Furthermore, the
expected value of p%V and pinQ, presented in italics, appear to be consistent under
different censoring proportions when the hazard ratio does not change (i.e. HR1 =
HR2 =0.5). In this case, the expected value of p? increases slightly with the amount of
censoring. Finally, the impact of non-proportional hazards on the measures diminishes

as the amount of censoring increases.
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Table 6.13: Simulation results for non-proportional hazards. HR1 - hazard ratio in favour
of treatment arm for the first two years in trial. HR2 - hazard ratio after two years in
trial. Sample size is 500 in all experimental conditions, and survival times are randomly
censored. The standard deviations are given in brackets

Measure

HR1

HR2

0% Cens.

20% Cens.

50% Cens.

80% Cens.

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.212 (0.030)
0.149 (0.027)
0.106 (0.025)
0.077 (0.022)
0.056 (0.020)

0.195 (0.032)
0.140 (0.029)
0.106 (0.027)
0.082 (0.025)
0.065 (0.023)

0.144 (0.037)
0.121 (0.035)
0.106 (0.034)
0.095 (0.033)
0.086 (0.031)

0.111 (0.054)
0.110 (0.054)
0.110 (0.054)
0.110 (0.054)
0.109 (0.054)

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.223 (0.032)
0.154 (0.029)
0.109 (0.026)
0.078 (0.023)
0.057 (0.021)

0.204 (0.034)
0.145 (0.031)
0.109 (0.029)
0.085 (0.026)
0.067 (0.024)

0.149 (0.039)
0.125 (0.037)
0.110 (0.036)
0.097 (0.034)
0.088 (0.033)

0.114 (0.057)
0.114 (0.057)
0.114 (0.057)
0.113 (0.057)
0.113 (0.057)

2
PXxuoqQ

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.188 (0.027)
0.140 (0.025)
0.103 (0.024)
0.076 (0.022)
0.056 (0.020)

0.174 (0.029)
0.131 (0.028)
0.103 (0.026)
0.082 (0.025)
0.066 (0.023)

0.139 (0.039)
0.116 (0.035)
0.103 (0.034)
0.093 (0.033)
0.085 (0.032)

0.109 (0.058)
0.107 (0.058)
0.104 (0.057)
0.102 (0.055)
0.101 (0.055)

0.5
0.5
0.5
0.5
0.5

0.1
0.3
0.5
0.7
0.9

0.188 (0.027)
0.140 (0.025)
0.103 (0.024)
0.076 (0.022)
0.056 (0.020)

0.194 (0.033)
0.140 (0.030)
0.107 (0.028)
0.084 (0.026)
0.067 (0.024)

0.152 (0.041)
0.127 (0.039)
0.111 (0.037)
0.099 (0.035)
0.089 (0.034)

0.116 (0.059)
0.115 (0.059)
0.115 (0.058)
0.115 (0.058)
0.114 (0.058)
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6.9 Discussion

In this chapter, we studied the measures of explained randomness proposed by Kent and
O’Quigley (1988) [49], p#,, Xu and O’Quigley (1999) [116], Puogr and O’'Quigley et
al (2005) [80], pi. We repeated similar studies to those performed on the measures of
explained variation, presented in chapter 5. This helped us to understand the behaviour
of explained randomness measures in similar conditions and to compare the two categories

consistently.

The results of simulation studies showed that explained randomness measures studied
in this chapter generally result in higher values than the explained variation measures
presented in chapter 5. The measures are influenced by the distribution of covariates in
the model. They generally lead to higher values in negatively skewed covariates and lower
values in positively skewed covariates. Contrary to the claim by Kent and O’Quigley [49],
table 6.1 shows that p%V, 4 1s not a good approximation for pZ, if the covariate distribution
is asymmetric. We also observed that the measures were in agreement if the covariate

distribution is normally distributed.

The simulation results presented in section 6.3 demonstrate that p%, and its approxi-
mation, P%v, 4. are least affected and p? is most affected by the amount of censoring. Also,
the impact of censoring on the measures depends on the distribution of covariate as seen
in table 6.14. The codes in the table show the extent of the censoring effect on the mea-
sures of explained randomness, with 1 representing almost no effect and 4 representing
a large effect. The table indicates that p%, is the only measure which is independent of

censoring in all covariate distributions, whereas p? is most affected.

The distributional properties of explained randomness measures were investigated in
section 6.4.2. The sampling distribution of Kent and O’Quigley’s measure (1988) [49],
p%;, is presented in graph 6-1, for different covariate effects and censoring proportions.
The sampling distribution of the estimator of pjj, display considerable skewness when
censoring is more than 50%. This graph confirms Kent and O’Quigley’s theory [49] that
this measure is a consistent estimator; the sampling distribution of the estimator becomes
more concentrated around the expected value of the measure as the sample size increases.

The shape of the sampling distribution of other measures follows a similar pattern.

Our simulation studies indicate that p%v is the only measure which is consistent un-

der both random and administrative censoring. Sample size has a moderate effect on
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Table 6.14: Summary of censoring effects on explained randomness measures by the
covariate distribution and censoring type. The codes show the extent of censoring effect
in different situations from almost no effect, 1, to a large effect, 4.

Censoring Exp. Rand. Covariate or Prognostic Index Distribution
type measure Normal Lognormal Pos. skewed Neg. skewed
P 1 1 1 1
Random censoring p%v’ A 1 1 1 1
Pu0Q 1 1 2 2
pi 2 3 4 2
Py 1 1 1 1
Type 1 censoring p%v’ A 1 1 1 1
PXu0Q 2 3 4 3
p‘fc 2 3 4 2

1: Almost no cffect, i.e. the average percentage change in the mean of samnpling distribution is 0%—9%
2: Slight. effect, i.e. the average percentage change in the mean of sampling distribution is 10%~19%
3: Moderate effect, i.e. the average percentage change in the mean of sampling distribution is 20%—49%

4: Large effect, i.e. the average percentage change in the mean of sampling distribution is over 50%

Table 6.15: Summary of sample size effect and parameter monotonicity of the explained
randomness measures.

Measure Sample Size Does parameter monotonicity hold?
P%V no effect! yes®
PXu00 no effect! yes?
pE no effect! yes?

1) There is a moderate effeet of sample size on measures only when covariate effect is 1.25,
sample size is 2000, and censoring proportion is high, i.c. 80%.

2) The measure increases with increasing parancter effect.

the measures whereby they increase by about 25% if both the effective sample size, i.e.

number of events, and the covariate effect are small (8 = 0.22 in table 6.7).

Graphs presented in section 6.6 illustrate that all measures increase as the covariate
effect increases, hence satisfying the parameter monotonicity property. Moreover, the
results of another simulation study presented in table 6.9 indicate that p? is the only
measure that is strictly monotonic. Although p2XuOQ possesses the same property in non-
censored data, the simulation study showed that when the censoring is 20% and HR = 4,

the measure decreases in 35% of replicates as a new covariate is added to the model.

The investigation which was carried out in section 6.7, to elucidate the behaviour of
the explained randomness measures in the presence of extreme and outlier observations,
show that the measures are susceptible to such observations in the data. The measures
increase in the presence of extreme observations, whereas they decrease in the presence

of outlier observations. However, the results of simulation studies show that the impact
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of extreme observations on the explained randomness measures is not as large as those of
explained variation measures. For example, in the presence of severe outlier observations,
i.e. m = 8 in section 6.7, p¥,, p%(uOQ, and p? decrease by 59%, 44%, and 36% respectively
(the expected value of the measures at 85D are compared with the corresponding values
at 05D, no contamination, in figure 6-4), whereas they increase by only 10%, 10%, and

15% in the presence of influential extreme observations (figure 6-3).

The graphs presented in section 6.6 indicate that the measures of explained random-
ness can reach values near 1 in both non-censored and censored data. The measures

increase as the covariate effect in the models becomes larger.

The impact of three different types of model mis-specification was investigated in
section 6.8. First, the results of the study on the impact of under-fitting, or omitted
covariates, show that under-fitting imposes positive bias on the measures in the presence
of censoring; the measures increase with an increasing amount of censoring. Second,
the simulation study shows that the measures are influenced by covariate mis-modelling,
depending how severe the departure is from the true functional form of the covariate.
Furthermore, table 6.13 demonstrates that all measures are susceptible to changes in
treatment hazards. Similar to the impact of non-proportional hazards on the explained
variation measures, the susceptibility of the measures to non-proportional hazards di-
minishes as the amount of censoring increases. Among the three types of model mis-
specification, under-fitting is the most common in practice, which has implications for
the partial measure of explained randomness suggested by Kent and O’Quigley (1988)
[49] and O’Quigley et al (2005) [80] - it imposes bias on the proposed partial measure of

explained randomness in the presence of censoring.

In summary, among the explained randomness measures, the measure proposed by
Kent and O’Quigley (1988) [49], p#,, performs reasonably well with regard to the essential
properties outlined in chapter 3. Its approximation, p%v, 4. performs well with respect to
the essential properties but is not a good approximation for p‘fy if the covariate distrib-
ution is asymmetric. The measure proposed by Xu and O’Quigley (1999) [116], piqu,
performs well with randomn censoring, but struggles in type I or administrative censoring.
The results of our study indicate that among the explained randomness measures, the
measure proposed by O’Quigley et al (2005) [80], pZ, performs worst with regard to our

essential properties.

The next chapter presents similar studies on the proposed predictive accuracy mea-
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sures and the measure proposed by Schemper and Kaider (1997).
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Chapter 7

Investigation of the measures of

predictive accuracy

7.1 Introduction

This chapter studies various aspects of potentially recommendable measures in the pre-
dictive accuracy category. The measures in this category quantify the ability of the
regression model to predict the outcome, i.e. being "alive" or "dead" in the context of
survival analysis. The two measures are proposed by Graf et al (1999) [31], R%(T™*), and
Schemper and Henderson (2000) [97], Vseny, in this chapter.

We also included the results of similar investigations carried out to evaluate the mea-
sure proposed by Schemper and Kaider (1997) [98], R%_, .. Since this measure it is not
based on either a variation function or the Kullback-Leibler information gain [55], it can
not be classified as an explained variation or explained randomness measure; neither is
it a predictive accuracy measure because it does not evaluate the accuracy of the model-
based survival probability predictions. It, however, uses a non-parametric measure of
correlation such as Spearman correlation coefficient (Spearman (1904) [108}) or Kendall
7 (Kendall (1938) [47]) to provide a measure of association between the imputed survival

times and covariates in the model.

The studies performed on the explained variation and explained randomness measures
are repeated for the above measures in this chapter, hence the study design in all sim-
ulation studies are similar to those of chapters 5 and 6. We will not explain the study

design and only present the results through similar graphs and tables.
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Like the two previous chapters, this chapter addresses the following:

e The expected value of the measures in non-censored data

The impact of different covariate distributions on the measures

The impact of censoring on the measures

¢ Consistency, distributional shape, and sample size effect

Monotonicity properties of the measures

The impact of atypical observations on the measures

The upper bound of the measures

The impact of model mis-specification on the measures

As was discussed in section 2.3.3, Graf et al’s measure (1999) (31], R%(T™), evaluates
the predictive accuracy of the model at a particular time point, 7*. In practice, the
choice of the time point depends on the aim of the study. For example, the aim of the
study might be to evaluate the performance of the fitted survival model in predicting the
individual’s status as "dead" or "alive" after T* = 2 years. In the simulation studies,
however, we considered different time points to elucidate the behaviour of this measure
at different times. The time points are the 0.10th, 0.156th, 0.20th, 0.25th, and 0.50th
quantile of the exponential distribution used to generate survival times, as described in
section 4.3.7. This corresponds to 5 time points as 77 = 5.27, T2 = 8.13, T3 = 11.16,
Ty = 14.38, T5 = 34.66.

The measures proposed by Schemper and Henderson (2000) [97], Vensr, and Schemper

and Kaider (1997) [98], R%_, ., provide an overall measure of predictive ability.

7.2 Impact of covariate distribution on the measures

Simulations were carried out to assess the measures of predictive accuracy with non-
censored data. The study was conducted with the same experimental conditions as those
of section 5.2, and the results are presented through similar tables. The simulations were

run for four covariate distributions, four covariate effects 8 = {0.223,0.405, 0.693,1.386}

representing hazard ratios of {1.25,1.5, 2, 4}, and three sample size conditions, {200, 500, 1000},

with 5,000 replicates for each experimental condition.
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Tables 7.1 to 7.3 summarise the simulation results for different covariate distributions
and covariate effects in non-censored data. They show the expected value, the standard
deviation of the sampling distribution, and the relative dispersion of the measures. The
first thing to note from the table is that the predictive accuracy measures, R%(T*) and
Vserir, appear to be lower than the corresponding values of the explained variation and
explained randomness measures presented in tables 5.1 and 6.1. The only measure in the
"other" category proposed by Schemper and Kaider (1997) [98], R%_, ), seems to be in
agreement with explained variation measures in the normally distributed covariate. Some

of the findings are summarised in the following sections for each measure.

Table 7.1: Mean of the sampling distribution of predictive accuracy measures and
Schemper and Kaider’s measure (1997) by the covariate distribution and covariate ef-
fect across all sample size conditions, censoring=0%

Covariate Graf et al measure at different time points
distribution exp(8) RE(T1) RL(T2) RL(T3) Riz(Ty) RE(Ts) Vsenn | Rigx
normal 1.25 0.006 0.008 0.011 0.013 0.024  0.027 | 0.036
1.5 0.019 0.028 0.035 0.043 0.073 0.069 | 0.104
2 0.064 0.087 0.106 0.123 0.176  0.159 | 0.244
4 0.281 0.319 0.343 0.360 0.403 0.369 | 0.543
lognormal 1.25 0.007 0.010 0.013 0.016 0.025  0.027 | 0.034
1.5 0.028 0.038 0.046 0.053 0.073  0.068 | 0.097
2 0.103 0.122 0.136 0.146 0.168  0.152 | 0.226
4 0.351 0.363 0.369 0.373 0.373 0.348 | 0.509
pos. skewed 1.25 0.011 0.014 0.017 0.019 0.025 0.026 | 0.024
1.5 0.048 0.055 0.060 0.063 0.064 0.061 | 0.065
2 0.151 0.155 0.155 0.153 0.133 0.125 | 0.146
4 0.396 0.379 0.363 0.349 0.285 0.264 | 0.335
neg. skewed 1.25 0.003 0.005 0.007 0.009 0.020 0.025 | 0.025
1.5 0.009 0.013 0.018 0.023 0.052  0.061 | 0.069
2 0.020 0.031 0.042 0.053 0.119 0.128 | 0.157
4 0.061 0.093 0.125 0.157 0.318 0.277 | 0.361

7.2.1 Graf et al measure (1988) - R%(T*)

Table 7.1 displays that this measure is affected by the covariate distribution, it is reduced
with negatively skewed covariates. This measure is an increasing function of the covariate
effect, 3, in all covariate distributions and time points. The measure tend to increase as
the time point, T*, increases in the normally and lognormally distributed covariates.
Table 7.3 shows that the dispersion of the measure, as measured by the C.V., decreases

as the covariate effect, 4, and T* increase.
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Table 7.2: Standard deviation of the sampling distribution of predictive accuracy mea-
sures and Schemper and Kaider’s measure (1997) by the covariate distribution and co-
variate effect across all sample size conditions, censoring=0%

Covariate Graf et al measure at different time points

distribution _exp(8) R&(Th) Ry(Te) RE(Ts) REL(Ty) RE(T5) Vsen | Rix

normal 1.25 0.008 0.010 0.011 0.012 0.016 0.010 | 0.019
1.5 0.016 0.019 0.020 0.022 0.025  0.017 ] 0.030
2 0.031 (0.033 0.034 0.035 0.035 0.023 | 0.040
4 0.053 0.048 0.045 0.044 0.041  0.026 | 0.040

lognormal 1.25 0.011 0.012 0.013 0.014 0.016  0.010 | 0.018
1.5 0.023 0.024 0.025 0.025 0.025 0.016 | 0.029
2 0.043 0.041 0.039 0.037 0.034 0.022 | 0.040
4 0.056 0.050 0.047 0.045 0.041  0.025 | 0.041

pos. skewed 1.25 0.016 0.016 0.016 0.016 0.015  0.010 | 0.015
1.5 0.034 0.031 0.029 0.027 0.021  0.015 | 0.024
2 0.054 0.046 0.042 0.038 0.029  0.020 | 0.035
4 0.061 0.055 0.050 0.048 0.038  0.025 | 0.044

neg. skewed 1.25 0.005 0.006 0.008 0.009 0.014  0.010 | 0.016
1.5 0.008 0.010 0.012 0.013 0.021  0.016 | 0.026
2 0.012 0.014 0.017 0.019 0.030  0.023 | 0.037
4 0.020 0.024 0.028 0.031 0.043  0.027 | 0.046

7.2.2 Schemper and Henderson measure (2000) -~ Vs.uy

Table 7.1 shows that this measure is an increasing function of the covariate effect, 3. In
the normally distributed covariate, the expected value of the measure varies from 0.027
to 0.369 for the range of 3 in the study. This measure is influenced by the covariate
distribution, it decreases as the covariate distribution becomes asymmetric. Table 7.3

indicates that the dispersion of the measure decreases as the § increases in the model.

7.2.3 Schemper and Kaider measure (1997) - R% ,

This measure is the only measure that does not belong to any of the proposed three main
classes of predictive ability. In the normally distributed covariate, the expected value of
the measure varies from 0.036 to 0.543 for the range of 5 in the study. The results of
the simulation study in table 7.1 suggest that this measure is affected by the covariate
distribution; it decreases as the covariate distribution becomes asymmetric. The measure
increases as the covariate effect, 3, becomes larger. Table 7.3 displays that the dispersion

of the measure decreases with increasing covariate effect.
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Table 7.3: Coeflicient of variation of predictive accuracy measures and Schemper and
Kaider’s measure (1997) by the covariate distribution and covariate effect, expressed as
%. Table entries are the average across all combinations of sample sizes, censoring=0%.

Covariate Graf et al measure at different time points

distribution exp(8) R&(Th) R&(Te) RL(T3) RL(TW) REL(Ts)  Vsenn R?

normal 1.25 138.1 111.5 96.2 85.8 60.5 36.4 | 48.7
1.5 79.4 63.7 54.5 47.8 33.1 23.1 27.5
2 46.7 36.5 30.4 26.7 18.8 13.8 | 15.7
4 17.7 14.3 12.6 11.5 9.7 6.6 7.0

lognormal 1.25 140.8 112.1 95.2 84.8 58.8 35.9 | 50.8
1.5 77.6 60.5 51.1 444 31.9 22.7 28.8
2 40.0 31.5 27.1 24.3 19.1 13.8 16.7
4 15.2 13.1 12.1 114 104 6.9 7.7

pos. skewed 1.25 139.5 107.3 90.9 80.6 56.1 35.2 1 60.0
1.5 67.4 53.6 46.1 41.3 31.8 23.0| 359
2 33.8 28.4 25.6 23.7 20.8 15.0 | 22.6
4 14.7 13.7 13.1 12.9 12.7 89| 126

neg. skewed 1.25 143.1 117.0 101.5 91.6 65.6 38.0| 60.1
1.5 86.4 69.7 60.4 54.0 38.8 256 | 359
2 54.9 44.1 38.2 34.2 24.3 16.7 22.3
4 30.7 24.9 21.4 18.8 12.8 94| 121

7.3 Impact of censoring on the measures

In this section, we investigate the impact of censoring on R%(T*), Vsensr, and R%ch %
through a series of simulation studies similar to section 5.3. The results are summarised

using similar methods to those of section 5.3.

Tables 7.4 to 7.6 summarise the results of the simulation studies. More detailed sim-
ulation results are presented in Appendix A. The tables in Appendix A summarise the
impact of censoring by the covariate distribution, censoring type, and censoring propor-
tion in a similar way to table 7.6. The figures in these tables are the average across four
covariate effects, and three sample size conditions. It is evident from the tables that no
summary statistic is presented for the Graf et al measure (1999) [31] in 80% censoring.
We also presented the summary statistics for 4 time points, 77 to Tj. To evaluate the
predictive accuracy of a model using Graf et al measure (1999) [31], the time point of
interest, T*, should either be smaller than or equal to the last event time in the data. In
some of the generated replicates, the time points, T} to Ts, were, by chance, larger than
the last event time in small sample sizes, i.e. n = 200, when the amount of censoring was
80%. Although exponential distribution was used for the censoring distribution in ran-
dom censoring condition, the risk set, i.e. time to the last event time, became shorter and

shorter as the proportion of censored observations increased. Similar problem occurred
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for Ts = 34.66 in 50% censoring condition when the covariate effect was 3 = 1.386. This
caused the program to stop, and we had to carry out the simulations with large sample
size, i.e. 1,000, to investigate the performance of this measure in 80% censoring, which
will be presented later in another table. We, therefore, present the summary statistic in
4 time points and 2 censoring proportions, i.e. 20% and 50% censoring, for the Graf et

al’s measure (1999).

Detailed simulation results are presented in Appendix A. The tables in Appendix A
show the impact of censoring by the covariate distribution, censoring type, and censoring
proportion in a similar way to table 7.4. The following sections describe the impact of

censoring on each measure in details.

Table 7.4: The average percentage difference from the expected value of measures in the
corresponding non-censored data by the covariate distribution and censoring proportion.

Covariate %o Graf measure at different time points
Distribution Censored RZ(Th) R&(Ty) RG(T3) RE(Ty) Vsenn | Rigk
normal 20 -1.3 -1.8 -2.2 -2.1 -0.6 -0.1
50 -3.1 -4.5 -5.4 -5.4 -8.4 1.0
80 -27.2 5.3
lognormal 20 -0.8 -1.3 -1.5 -1.4 1.0 -0.3
50 -1.9 -3.2 -3.8 -3.4 -2.0 0.6
80 -14.4 3.6
pos. skewed 20 -0.6 -0.8 -0.8 -0.5 2.8 -0.3
o0 -1.2 -1.9 -1.9 -1.1 7.9 0.2
80 10.6 1.5
neg. skewed 20 -2.7 -3.4 -4.0 -4.1 -5.6 -0.4
50 -5.9 -84 -10.1 -10.6  -21.8 1.7
80 -44.0 11.4

7.3.1 Graf et al measure (1988) - R%(T*)

The simulation results indicate that this measure is almost unaffected by the amount of
censoring in these experimental conditions. Table 7.4 shows that the average percentage
change in the expected value of the measure is on average less than 10% in most of the
experimental conditions. Table 7.6 show that the measure is unaffected by the amount
of censoring in random censoring conditions, but decreases slightly in the type I or ad-
ministrative censoring in all covariate distributions. The relative spread of the sampling

distribution, indicated in table 7.5 , increases as the amount of censoring increases.

Due to computational issues in small samples as explained before, the performance

of this measure in 80% censoring condition was not presented in the above tables. We,
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Table 7.5: Coeflicient of variation of measures by the covariate distribution and censor-
ing proportion, expressed as %. Table entries are the average across three sample size
conditions.

Covariate % Graf measure at different time points
Distribution Censored RZ(T1) RZ(Th) RZ(T3) RE(TY) Vsenn | Ri
normal 20 70.7 56.6 48.4 43.0 21.2 25.7
50 72.3 57.7 49.2 43.8 23.8 29.9
80 30.1 43.6
lognormal 20 68.8 04.4 46.5 41.3 21.1 26.6
50 70.7 099.7 474 42.4 24.2 29.6
80 31.2 39.0
pos. skewed 20 64.1 50.9 44.1 39.9 22.1 33.0
50 65.6 52.0 45.2 41.4 28.0 33.9
80 38.8 37.2
neg. skewed 20 78.8 63.8 54.9 49.1 24.2 33.5
50 79.5 64.2 55.0 49.1 34.2 39.7
80 48.4 65.1

therefore, carried out further simulations with large samples, n = 1,000, to examine this
measure in the presence of heavy censoring. The simulations were run for two censoring
proportions 0% and 80%, with 5,000 replicates in each experimental condition. Random

non-informative right censoring was generated as described in section 4.3.4.

Table 7.7 shows the expected value and standard deviation of the sampling distribution
of this measure evaluated at T = 8.13. It is evident from the table that the expected
value of this measure is consistent in the presence of heavy censoring across all covariate

effects and covariate distributions.

7.3.2 Schemper & Henderson measure (2000) - Vg,y

Table 7.6 shows that this measure is not influenced by random censoring, except when the
covariate distribution is negatively skewed, which decreases with the amount of censor-
ing. However, the table suggests that there is an interaction between censoring and the
covariate distribution in the type I or administrative censoring. The measure decreases
on average in normal, lognormal, and negatively skewed distributions, but it increases
in positively skewed distributions. Like Graf et al’s measure (1999), the spread of the
sampling distribution of the measure, expressed as the C.V. in table 7.5, increases with

the amount of censoring.
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Table 7.6: Summary performance of measures by the covariate distribution and censoring
mechanism. Note that the entries for the Graf’s measure (1999) do not include 80%
censoring.

Random Censoring Type I Censoring

Measure Covariate Average Average

Distribution % Difference C.V. % Difference C.V.

R%(Ty) normal 1.4 72.7 -5.7 70.3

lognormal 1.7 70.9 -4.5 68.6

pos. skewed 1.3 65.6 -3.1 64.1

neg. skewed -0.2 80.2 -8.4 78.0

R%(T2) normal 1.4 58.8 -7.7 55.4

lognormal 1.4 56.4 -5.9 53.7

pos. skewed 1.2 52.3 -3.8 50.6

neg. skewed 0.3 66.3 -12.1 61.8

Graf’s measure RZ(T3) normal 1.1 50.9 -8.7 46.8
(1999) lognormal 1.1 48.6 -6.4 45.3
pos. skewed 1.1 45.6 -3.7 43.7

neg. skewed 0.4 57.9 -14.5 51.9

RZ(T4) normal 1.2 45.9 -8.7 40.9

lognormal 1.1 43.6 -6.0 40.1

pos. skewed 1.2 41.7 -27 39.6

neg. skewed 1.2 52.8 -15.9 45.3

Schemper & VsehH normal -0.9 30.5 -23.3 19.6
Henderson lognormal 1.5 28.6 -11.8 224
(2000) pos. skewed 7.1 29.6 7.1 29.6
neg. skewed -23.9 35.5 -23.8 35.6

Schemper & R%,)  normal 2.0 33.3 2.1 32.8
Kaider lognormal 1.4 32.1 1.3 31.3
(1997) pos. skewed 0.5 34.9 0.4 34.5
neg. skewed 3.9 45.8 4.6 46.4

7.3.3 Schemper & Kaider measure (1997) - R% ,

This measure can be considered independent of censoring since the average percentage
change in the expected value of the measure in both random and administrative censoring
is less than 10% compared with the corresponding non-censored data (tables 7.4 and 7.6).
The only exception is when the data is heavily censored, i.e. 80% censoring, and the
covariate is heavily skewed to the left. In this case, the average percentage change in the
expected value of the measure is 11.4% compared with the value of the measure in the

corresponding non-censored data.
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Table 7.7: The expected value and standard deviation (in brackets) of the sampling
distribution of Graf et al (1999) measure in 0% and 80% censoring by the covariate effect

and covariate distribution.

Graf et al measure evaluated at T, = 8.13

Covariate distribution exp(3) 0% censoring 80% censoring
normal 1.25 0.008 (0.006) 0.009 (0.007)
1.5 0.027 (0.011) 0.028 (0.014)
2 0.086 (0.020) 0.087 (0.025)
4 0.319 (0.030) 0.319 (0.041)
lognormal 1.25 0.010 (0.007) 0.010 (0.009)
1.5 0.037 (0.014) 0.038 (0.018)
2 0.122 (0.025) 0.123 (0.031)
4 0.363 (0.031) 0.364 (0.041
pos. skewed 1.25 0.013 {0.009) 0.015 (0.012)
1.5 0.054 (0.019) 0.055 (0.022)
2 0.155 (0.028) 0.155 (0.035)
neg. skewed 1.25 0.005 (0.004) 0.005 (0.005)
1.5 0.013 (0.006) 0.014 (0.008)
2 0.031 (0.009) 0.031 (0.011)

7.4 Consistency, distributional shape, and sample size ef-

fect

This section investigates the consistency and the shape of the sampling distribution of

the measures as well as the impact of sample size.

7.4.1 Consistency of the measures

Both predictive accuracy measures are based on the measures of marginal and conditional
prediction errors. In Graf et al’s measure (1999) [31], R%(T*), the prediction error is
quantified by the average of the quadratic differences between an observed outcome,
survival status, and the model-based survival probabilities, whereas in Schemper and
Henderson measure (2000) [97] the prediction error is quantified by the average of the

absolute differences of the same quantities.

In general, the marginal prediction error, D, is determined for a model without
prognostic factors, and conditional prediction error, D(X), is determined for a model
with prognostic factors. Both measures provide a measure of predictive accuracy using
[D — D(X)] /D which evaluates the relative gain in predictive accuracy provided by the
the prognostic factors when added to the model. A consistent estimator is the one whose

estimators of marginal and conditional prediction errors are consistent.
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In Graf’s measure (1999) the marginal and conditional prediction errors at time T*,

D (T*) and Dx (T*), are defined as

D(T*) = E[(Y (T*) - S(T*))’]

and

Dx (T*) = E |(Y (T*) - S(T"|X))?]

where Y (T*) is the individual survival status at time T*, i.e. equal to 0 if event happened
before T and is equal to 1, otherwise. Graf (1998) [30] showed that Dx (T*) in equation
2.42 of chapter 2 and its marginal counterpart are consistent estimators of Dy (T*) and

D (T*) in the Cox PH model.

In Schemper and Henderson’s measure (2000), the corresponding population values

of the marginal and conditional prediction errors, Dgy and Dgy(X), are defined as

. o
Dsn =2 S®UL-SO @ | 0

and
T‘ Tﬂ
Dgn(X) =2 | Ex [S(¢1X){1 = S(t|X)}] F(t)dt/ A f(e)dt
where [0,7™) is the follow-up period. Schemper and Henderson (2000) [97] showed that

the estimator of conditional prediction error, ﬁSH(X ), equation 2.43 of chapter 2, and

its marginal counterpart, Dgp, are a consistent estimator of the Dgy(X) and Dgg.

Finally, Schemper and Kaider’s measure (1997) provides a non-parametric measure

of correlation.

7.4.2 Sampling distribution of the measures

Figure 7-1 depicts the sampling distribution of the Schemper and Henderson (2000) [97],
Vsensr, and Schemper and Kaider (1997) [98], R%_, i, measures from the simulation stud-
ies. In the simulations, the covariate is normally distributed with 5,000 replicates in
each experimental condition. The survival times are randomly censored by considering
an exponential distribution for censoring times, as described in section 4.3.4. The shape
of the sampling distribution of both measures are similar to those of explained variation

and randomness measures in chapters 5 and 6.
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The sampling distribution of the Schemper and Henderson (2000) [97] confirms the
consistency of the estimator, f}sch}{ as defined in equation 2.44, in random censoring
condition. All distributions in figure 7-1 tend towards a spike over the parameter of
interest as n becomes ever larger, as those of Schemper and Kaider measure [98], RZ_, 1.
The sampling distribution of both measures exhibit considerable skewness, particularly
when the covariate effect is small and censoring is more than 50%. The shape of the
sampling distribution of Graf et al measure (1999) is similar to those of Schemper and

Henderson (2000) [97], Vschs-

7.4.3 Impact of sample size on the measures

In a similar simulation study to those of explained variation and explained randomness
measures, we evaluated the impact of sample size on the three measures studied in this
chapter. The results are tabulated in table 7.8 which indicate that the measures increase
slightly when the effective sample size, i.e. number of events, is small. The table shows
that the measures increase when both sample size and the covariate effect are small, i.e.
n = 200 and exp(8) = 1.25, and the amount of censoring is high, i.e. 80%. We observed
a similar pattern in other simulation studies when we studied skewed covariates and a

different censoring mechanism, i.e. type I or administrative censoring.

Table 7.8: Percentage change in the expected value of measures in small and large sample
sizes by censoring proportion. The figures in brackets are the standard deviation of the
sampling distribution.

20% Censoring 80% Censoring
Sample size Sample size
Measure exp(3) 1000 200 % Change 1000 200 % Change
R%«;(Tl) 1.25 0.005 0.006 20% 0.006 0.008 33%
(0.005)  (0.012) (0.006) (0.016)
4 0.282 0.282 0% 0.283 0.283 0%
(0.032) (0.072) (0.039) (0.089)
Vschr 1.25 0.026 0.028 7% 0.026 0.032 22%
(0.007) (0.016) (0.015) (0.032)
4 0.37 0.368 0% 0.347 0.337 -3%
(0.017) (0.037) (0.031) (0.064)
Rr.. 125 0035 0039  12% 0037 0049  31%
(0.035) (0.039) (0.037)  (0.049)
4 0.543 0.539 -1% 0.548 0.545 -1%
(0.543)  (0.539) (0.548) (0.545)
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Figure 7-1: Sampling distributions of Schemper and Henderson (2000) and Schemper and
Kaider (1997) measures by the covariate effect, sample size, and censoring proportions in
the normally distributed covariate and random censoring conditions.
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7.5 Monotonicity property of proposed measures

In this section, we investigate the parameter and number of variables monotonicity prop-
erties of R%.(T“), Vsenp, and R%Ch « in two parts. The first part of this section discusses
the findings of the simulation studies which confirm the parameter monotonicity of the
measures. In the second part, the results of another simulation study similar to that of

explained variation and explained randomness measures are presented.

7.5.1 Parameter monotonicity

The results of the simulation studies presented in sections 7.2 and 7.6 confirm that all
three measures increase as the covariate effect becomes stronger. Table 7.1 shows that
all three measures increase with increasing covariate effects in non-censored data. It is
evident from the table that the measures increase slower in asymmetric covariates than
normally distributed covariates. Further simulation study presented in section 7.6 shows
that all three measures are also an increasing function of the covariate effect in censored

data (Graph 7-2).

7.5.2 Number of variables monotonicity

The number of variables monotonicity means that the expected value of a suitable measure
of predictive ability should not decrease by adding new covariates to the model. Tables 7.9
and 7.10 demonstrate the results of simulations to investigate this property. The entries
in table 7.9 are the differences in the expected values of the measures after fitting model
II, i.e. the model with only dependent covariate and one independent covariate, and
model III, i.e. the model with only dependent covariate and two independent covariates,
compared to model I, i.e. the model with one dependent covariate. The table shows
that, in both censored and non-censored data, the expectation of the measures does not

decrease after adding new covariates.

Table 7.10 displays the proportion of simulations in which the measures decreased
after adding one and two independent covariates by the covariate effect and censoring
proportion. The results indicate that whilst the expected value of the measures does not
decrease, all three measures decreased in a certain proportion of replicates after adding a
new covariate to the model. Schemper and Henderson’s measures (2000), Vs.ng, perform

better than the two other measures in this regard.
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Table 7.9: Mean difference in the expected value of measures after adding one or two

independent covariates to the model in 2,000 simulations, normally distributed covariates.
Model II Model I11
Measure | exp(8) | Mean difference to model I | Mean difference to model I
non-censored  censored | non-censoring censored

R%(Ty) | 1.25 0.000 0.001 0.001 0.001

1.5 0.000 0.001 0.001 0.001

2 0.000 0.001 0.001 0.002

4 0.001 0.001 0.001 0.002
Vsehn 1.25 0.001 0.004 0.002 0.008

1.5 0.001 0.004 0.002 0.007

2 0.001 0.003 0.002 0.006

4 0.001 0.002 0.001 0.004
R | 125 0.001 0.007 0.003 0.013

1.5 0.001 0.006 0.003 0.012

2 0.001 0.005 0.002 0.009

4 0.001 0.002 0.001 0.005

7.6 Upper bound of the measures

In this section, we demonstrate the upper bound of the measures by applying similar
simulation studies to section 5.6. In the simulations, survival times are exponentially
distributed, the covariate is normally distributed X ~ N(0, 1), sample size is 500, and
non-informative random censoring was generated by considering an exponential distrib-
ution for the censoring times with 2,000 replicates in each experimental condition. For
the Graf et al’s measure (1999), we have carried out the simulations in three time points

Th =527, T» = 8.13, and T3 = 11.16.

A comparison of simulation results in section 7.2 with the corresponding sections of
chapters 5 and 6 clarifies that the predictive accuracy measures, Ré(T*) and Vg,
attain lower values than the explained variation and explained randomness measures. To
examine whether these measures reach values close to 1 in theory, we carried out the
simulations for a wider range of covariate effect from, i.e. 3 = 0.22 (exp(8) = 1.25)
to 3 = 8.32 (exp(3) = 4096), than we did for the explained variation and explained
randomness measures. However, hazards ratios of this magnitude, i.e. HR = 4096, are

rare in practical applications.

Figure 7-2 displays the expected value of measures from 3 = 0.22 (exp(8) = 1.25)
to 8 = 8.32 (exp(8) = 4096) in 0% and 50% censoring conditions. All three measures
are an increasing function of the covariate effect. With increasing covariate effect, the

predictive accuracy measures, R%(T*) and Vsenp, increase slower than Schemper and
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Table 7.10: Proportion decrease in measures after adding independent covariate(s) to the
model in 2000 simulations, normally distributed covariates.

Model II Model III
Measure | exp(3) | Prop. decreased to model I | Prop. decreased to model I
non-censored censored non-censoring  censored
R%(Ty) 1.25 0.44 0.40 0.41 0.35
1.5 0.43 0.41 0.41 0.37
2 0.42 0.38 0.37 0.35
4 0.41 0.38 0.38 0.34
Vschh 1.25 0.17 0.20 0.07 0.09
1.5 0.16 0.19 0.07 0.09
2 0.15 0.22 0.06 0.12
4 0.14 0.25 0.05 0.15
RgchK 1.25 0.32 0.15 0.23 0.06
1.5 0.32 0.19 0.23 0.08
2 0.34 0.21 0.25 0.12
4 0.36 0.30 0.27 0.20

Kaider measure (1997) (98], R% ;. x -

Both predictive accuracy measures, R%(T*) and Vg.np, are in agreement for the range
of the covariate effect studied here. It is evident from figure 7-2 that the expected value
of Graf et al’s measure (1999) in the three time points converges as the covariate effect
becomes larger; they all reach values near 0.90. The expected value of Schemper and
Henderson measure (2000), Vsenpg, increases in both censored and non-censored data. It
appears that this measure levels off after 8 = 6.24 (HR = 512) in non-censored data,
whereas it still increases in censored data. Schemper and Kaider’s measure (1997) [98]
increases rapidly with increasing covariate effect and reaches values near 1 for large but

reasonable covariate effects.

7.7 Robustness of the measures

Simulations were carried out to investigate the impact of extreme and outlier observations
on the three measures investigated in this chapter. This section consists of two parts which
demonstrate the impact of extreme and outlier observations on the measures of predictive
accuracy, respectively. We show the results of an simulation study carried out for the
covariate effect 8 = 0.69, sample size = 200, and 50% censoring condition with 2,000
replicates in each experimental condition. We contaminated the data sets with extreme
and outlier observations in the same way as we did for the study on the robustness of the

explained variation measures, which was described in section 5.7, and present the results
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Figure 7-2: Measures as a function of covariate effect in the model, normally distributed
covariate. In the bottom graph, survival times are randomly censored according to an
exponential distribution for censoring times.
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through similar graphs.

7.7.1 Impact of extreme observations

Graph 7-3 displays the expected value of measures as one observation in the data set
becomes more extreme. If a measure is resistant to extreme observations, the curve
which represents the measure is expected to be a flat line across the X axis. The graph
demonstrates that the measures are resistant to extreme observations since the expected
value of the measures remain relatively constant as one of the observations becomes more

extreme, i.e. the covariate and corresponding outcome value, i.e. time, move towards the
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Figure 7-3: Mean of the sampling distribution of two predictive accuracy measures and
Schemper and Kaider measure (1997) as the extreme observation becomes more influen-
tial.

extremes of their respective distributions.

7.7.2 Impact of outlier observations

Graph 7-4 displays the results of a similar simulation study to show the impact of outlier
observations. Similar to graph 7-3, we expect flat lines across the X axis if the mea-
sures are resistant to such observations. The graph demonstrates that the measures are

influenced by the outliers in the data set.

Limited simulation studies were carried out for other experimental conditions which
showed that, in general, outlier observations have more impact on the measures in small

sample sizes than the large ones.

7.8 Impact of model mis-specification on the measures

This section investigates the effect of model mis-specification on Vschfl, and
R'schKm This section consists of three parts, each examining the impact of under-fitting,
covariate mis-modelling, and non-proportional hazards on the measures. Simulation stud-
ies similar to those of section 5.8 were carried out to study the issue of model mis-

specification on the measures; therefore, we do not describe the study design in this
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Figure 7-4: Mean of the sampling distribution of two predictive accuracy measures and
Schemper and Kaider measure (1997) as the outlier observation becomes more influential.

section again. All the simulations were carried out in different censoring conditions with
500 sample size and 2,000 replicates in each experimental condition. The results are

summarised in similar tables to those of section 5.8.

7.8.1 Impact of under-fitting - covariate omission

Table 7.11 demonstrates the impact of under-fitting on / VschH, and R?gchK- The
table presents the expected value and standard deviation of the sampling distribution of
the measures for the full and under-fitted models by the amount of censoring. Unlike
the explained variation and explained randomness measures, where under-fitting imposes
further bias on the measures in censored data, the expected value of the measures studied
in this section remain relatively constant in the under-fitted model across different cen-
soring proportions. The dispersion of the measures in both full and under-fitted models

increase as the amount of censoring increases.

7.8.2 Impact of covariate mis-modelling

In a similar simulation study to those of explained variation and explained randomness
measures, we examine the impact of covariate mis-modelling on RQ(T*), VgchH, anti

RgchK 'n this section. We repeated the studies to investigate the impact of modelling the

164



Table 7.11: The expected value of measures for full and under-fitted models. Normally
distributed covariate(s) and random censoring. The figures in brackets are the standard

deviation of the sampling distribution.

Measure Covariates in model 0% Censoring 20% Censoring 50% Censoring
RZ(Ts) both X;&Xz 0.443 (0.036)  0.444 (0.037) _ 0.445 (0.046)
only X; * 0.339 (0.035) 0.341 (0.036) 0.342 (0.046)
Vst both X1&X; 0.410 (0.022) _ 0.411 (0.023) __ 0.410 (0.026)
only X; * 0.297 (0.023) 0.302 (0.024) 0.311 (0.028)
R%,.. both X;&X; 0.595 (0.033)  0.596 (0.034) _ 0.593 (0.036)
only X, * 0.470 (0.036)  0.473 (0.037)  0.478 (0.040)

s=under-ftted model

Table 7.12: The mean and standard deviation of the sampling distribution of measures

for the correctly specified model I and misspecified model.

Measure model 0% Censoring 20% Censoring 50% Censoring
R%(Ts) true model I  0.268(0.033) 0.268(0.035) 0.269(0.042)
missp. model  0.264(0.034) 0.263(0.036) 0.263(0.045)
Veenu true model I 0.247(0.022) 0.247(0.023) 0.251(0.029)
missp. model  0.239(0.023) 0.245(0.025) 0.263(0.031)
Rk true model I  0.365(0.037) 0.365(0.039) 0.363(0.046)
missp. model  0.365(0.037) 0.370(0.039) 0.388(0.044)

covariate, X, as linear function of log hazard ratio in the Cox PH model where the true

functional form of the covariate is either "model I", i.e. f;(X), where

f1(X) =0.932% X +0.156 * X? +0.014 + X3

or "model II", i.e. fo(X), where

fa(X) = 0.668 %« X — 0.413 x X2 +0.045 + X3

where X is normally distributed, X ~ N(0,1). Figure 5-7 of chapter 5 illustrates the

relationship between both true and linear models and the log hazards ratio.

Model 1

Table 7.12 shows the expected value and standard deviation of the sampling distribution
of the measures for true and mis-specified models by censoring proportions. The table
indicates that the measure proposed by Graf et al (1999), Ré(T*) is consistent in both
true and mis-specified models, whereas Vgeay and R% . increase in the mis-specified

model as the amount of censoring increases.
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Table 7.13: The mean and standard deviation of the sampling distribution of measures
for the correctly specified model II and misspecified model.

Measure model 0% Censoring 20% Censoring 50% Censoring
RZ(Ts) true model I 0.134(0.026)  0.134(0.027) _ 0.136(0.031)
missp. model  0.086(0.026)  0.088(0.026)  0.090(0.029)
VoenH true model II  0.193(0.023) 0.192(0.023) 0.188(0.027)
missp. model  0.128(0.022) 0.123(0.022) 0.111(0.023)
RZ_, .  truemodel I 0.237(0.037)  0.237(0.038)  0.237(0.041)
missp. model  0.220(0.037)  0.213(0.037)  0.191(0.037)
Model 11

Similarly, table 7.13 shows the mean and standard deviation of the sampling distribution
of the measures for the true and mis-specified models by censoring proportions. Simi-
lar conclusions can be drawn for this case, except that the measures Vg, g and RéchK

decrease in the mis-specified model as the amount of censoring increases.

7.8.3 Non-proportional hazards

In an analogous simulation study to those of explained variation measures in section
5.8.3, we examined the impact of non-proportional hazards on R%4(T*), Vschn, and B3, k-
Simulation results under non-proportional hazards are displayed in table 7.14. The entries
of the table represented in italics are the expected value of the measures when the hazard
ratio does not change (i.e. HR1 = HR2 = 0.5), i.e. when the proportional hazards
assumption holds. In this case, Ré(Ts,) and Vs.npy agree and R%chK results in slightly
higher values. Furthermore, the impact of non-proportional hazards on the measures

diminishes as the amount of censoring increases.
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Table 7.14: Simulation results for non-proportional hazards. HR1 - hazard ratio in favour
of treatment arm for the first two years in trial. HR2 - hazard ratio after two years in
trial. Sample size is 500 in all experimental conditions, and survival times are randomly
censored. The standard deviations are given in brackets

Measure HR1 HR?2 0% Cens. 20% Cens. 50% Cens. 80% Cens.
05 0.1 0.051(0.027) 0.056(0.029) 0.068(0.034)
05 0.3  0.065(0.025) 0.067(0.027) 0.070(0.034)
RL(Ts) 0.5 0.5 0.068(0.023) 0.069(0.025) 0.070(0.033)
0.5 0.7 0.066(0.021) 0.067(0.024)  0.070(0.033)
05 0.9 0.062(0.020) 0.065(0.023) 0.070(0.032)
0.5 0.1 0.091(0.017) 0.089(0.018) 0.072(0.020) 0.051(0.027)
0.5 0.3  0.069(0.015) 0.068(0.016) 0.064(0.020) 0.052(0.028)
Veenst 0.5 0.5 0.055(0.013) 0.056(0.014) 0.056(0.019) 0.052(0.029)
05 07 0.046(0.012) 0.047(0.013) 0.050(0.018)  0.053(0.030)
05 0.9 0.0380.011) 0.040(0.012) 0.046(0.017) 0.053(0.031)
05 0.1 0.118(0.028) 0.116(0.029) 0.103(0.032) 0.089(0.047)
05 0.3  0.008(0.025) 0.095(0.025) 0.093(0.031) 0.089(0.046)
R, 05 05 0.085(0.024) 0.086(0.024) 0.086(0.030) 0.089(0.046)
05 0.7 0.076(0.023) 0.080(0.024) 0.080(0.030)  0.089(0.046)
0.5 0.9 0.060(0.022) 0.070(0.024) 0.076(0.029)  0.088(0.046)
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7.9 Discussion

In this chapter, we studied the predictive accuracy measures, R4 (T*) and Vs, proposed
by Graf et al (1999) [31] and Schemper and Henderson (2000) [97], and the measure
proposed by Schemper and Kaider (1997) [98], Rgch k- We carried out similar simulation
studies to those of explained variation and explained randomness measures, presented in

chapters 5 and 6, to compare all the measures consistently.

The results of our simulation studies in section 7.2 imply that RE(T*) and Vgag
are generally lower than the explained variation and explained randomness measures.
The results of our simulation studies in section 7.2 showed that the expected value of RE;
depends on the time point that is used to evaluate predictive accuracy. If the time point of
interest is at the beginning of the study where survival probabilities are near 1, we observe
less variability and eventually low predictive ability. The measure proposed by Schemper
and Kaider (1997) (98], R%_, ;. is in agreement with the explained variation measures
if the distribution of the covariate is either symmetric or moderately asymmetric, i.e.

normal and lognormal distributions.

The results of our simulation studies on the impact of censoring in section 7.3 indicate
that R%(T*) and R%, - are largely unaffected by the amount of censoring. The measure
Vseng performs well in random censoring with symmetric or moderately asymmetric
covariate distributions, otherwise it is affected by the amount of censoring. Table 7.15
summarises the findings of our simulation studies carried out to investigate the impact of
censoring on the measures. The codes in the table show the extent of censoring effect on
the measures, with 1 representing almost no effect, i.e. the average percentage change in
the mean of sampling distribution is 0% — 9% compared with the expected value of the
measure in the corresponding non-censored data, and 4 representing a large effect, i.e. the
average percentage change in the mean of sampling distribution is over 50% (compared
with the expected value of the measure in the corresponding non-censored data.) The
tables indicate that RZ(T™*) performs reasonably well with respect to censoring in all

experimental conditions.

Consistency and the sampling distribution of measures were investigated in section
7.4. Our investigation found that the measures are consistent in the presence of ran-
dom censoring. The sampling distribution of the Schemper and Henderson (2000) and
Schemper and Kaider (1997) measures were presented in figure 7-1 for different covari-

ate effects and censoring proportions. Similar to the measures investigated in chapters
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Table 7.15: Summary of censoring effects on predictive accuracy and Schemper and Kaider
(1997) measures by the covariate distribution and censoring type. The codes show the

extent of censoring effect in different situations from almost no effect, 1, to a large effect,
4.

Censoring P. A. Covariate or Prognostic Index Distribution
type measure Normal Lognormal Pos. skewed Neg. skewed
RE(T™) 1 1 1 1
Random censoring Vseny 1 1 1 3
R% i 1 1 1 1
R%(T™) 1 1 1 2
Type I censoring  Vgoug 3 2 1 3
R% . 1 1 1 1

1: Almmost no effect, i.e. the average percentage change in the mean of sampling distribution is 0%—9%
2: Slight effect, i.e. the average percentage change in the mean of sampling distribution is 10%—19%
3: Moderate cffect, i.e, the average percentage change in the mean of sampling distribution is 20%-—49%

4: Large effect, i.e. the average percentage change in the mean of sampling distribution is over 50%

5 and 6, the sampling distributions of both estimators show considerable skewness when

censoring is more than 50%.

Sample size has a moderate effect on the measures if both number of events and
covariate effect are small. Table 7.8 indicate that the measures increase by about 22% -

33% in these circumstances.

Graphs presented in section 7.6 and tables 7.9 and 7.10 indicate that the measures
satisfy both monotonicity properties. Furthermore, the investigation which was carried
out in section 7.7 to examine the impact of extreme and outlier observations shows that
the measures perform satisfactorily in the presence of extreme values, but they decrease
in the presence of outlier observations. For example, in the presence of severe outlier
observations, i.e. m = 8 in section 7.7, R4(T*), Vscnir, and R% ;- decrease by about 34%,
44%, and 23% respectively (the expected value of the measures at 85D are compared with
the corresponding values at 05D, no contamination, in figure 7-4), whereas they increase

by only 6%, 4%, and 2% in the presence of influential extreme observations (figure 7-3).

The predictive accuracy measures R2G (T*) and Vgeppr, can reach high values, i.e. more
than 0.80, in theory. The graphs in section 7.6 suggested that we need strong prognostic
factors to be able to predict the individual’s status as "dead" or "alive" using the survival
models. The measure proposed by Schemper and Kaider (1997), R%-chK, also reaches

values near 1.

Finally, the impact of three types of model mis-specification was investigated in section
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Table 7.16: Summary of sample size effect and parameter monotonicity of predictive
accuracy and Schemper and Kaider (1997) measures.

Measure Sample Size Does parameter monotonicity hold?
RZ(T™) no effect! yesZ
Voo no effect! yes?
R% | 4 no effect! yes?

1) There is a moderate effect of sample size on measures only when covariate effect is 1.25,
sample size is 200, and censoring proportion is high, i.e. 80%.

2) The measure increases with increasing parameter effect.

7.8. Unlike the explained variation and explained randomness measures, R%(T*) results
in consistent values under different degrees of censoring in models that are either under-
fitted or their covariate is mis-modelled. In under-fitted models, the measures Vs .,z and
R%- i are consistent under different degrees of censoring. They, however, are inconsistent
if the covariate is mis-modelled. Similar to the impact of non-proportional hazards on
the explained variation and explained randomness measures, the susceptibility of the

measures to non-proportional hazards diminishes as the amount of censoring increases.

In summary, the measure proposed by Graf et al (1999), R%(T*), performs reasonably
well with regard to the essential properties outlined in chapter 3. It is unaffected by the
amount of censoring, is consistent, and satisfies the monotonicity properties. Moreover, it
results in consistent values in the case of model mis-specification. However, this measure
evaluates the predictive ability of the model at a specific time point, and its value changes
with the time point of interest. The alternative measure, Vgp g, provides an overall mea-
sure of predictive accuracy. This measure performs well in the case of random censoring
when the covariate is symmetric or moderately asymmetric. Between the two measures,
RZ%(T*) is preferred if we can not rely on the model. The measure proposed by Schemper

and Kaider (1997), R%_, ;, performs well with regard to the essential properties.

In the last three chapters, we carried out simulation studies to investigate the proposed
measures of predictive ability in survival models. In the next chapter, we apply them to

the data sets from real studies.
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Chapter 8

Applications to medical research

and data analysis

8.1 Introduction

In this chapter, we apply the potentially recommendable measures of predictive ability
discussed in the last three chapters to real data. We compute the measures for the

proposed survival models for different diseases. The aims of this chapter are:

I) to illustrate the applications of the predictive ability measures in medical research
IT) to quantify the predictive ability of available/known prognostic factors
IIT) to compare the measures in each category systematically in real data sets

IV) to explain the observed discrepancies in the estimates of proposed measures based

on the results of our investigations in the previous chapters.

This chapter consists of 3 sections. First, a summary of the data sets and the proposed
regression models are presented. The data sets are chosen from different diseases to
examine the performance of the proposed measures in various disease types. The data

sets have a wide range of censoring proportions and sample size conditions.

In the second section, we present the estimates of predictive ability measures with the
corresponding bootstrap confidence intervals. We apply survival models from literature
to these data sets. Some of the proposed models have been developed to study the impact

of a particular treatment on the survival of patients, while others have been developed as

171




a prognostic model. An important characteristic of prognostic models is their consistency

with basic medical knowledge.

Multivariable fractional polynomial (MFP) approach, introduced by Royston and Alt-
man (1994} [89], is a method which ensures that the resulting models are both parsimo-
nious and consistent with basic medical knowledge. It is a strategy in which continuous
predictors are kept continuous, and nonlinear relationships (if present) are detected and
modelled appropriately. We apply this approach to the data sets and compare the pre-
dictive ability of the models based on fractional polynomial approach to other proposed

models.

In medical research, continuous variables are often converted into categorical variables
by grouping values into two or more categories. In some proposed models, continuous
prognostic factors, such as age, are introduced into multivariable regression models as cat-
egorical variables. We identify these models as "linear models" in our studies and compare
their predictive ability to models developed using fractional polynomial approach. We
only report the estimated predictive ability measures in this chapter; the estimated coef-
ficients and goodness of fit measures of the proposed models are presented in Appendix
C. We discuss the findings based on the results of the simulation studies in the previous

chapters. Finally, a discussion of the main points is presented.

8.2 Clinical data sets

In this section, we give a summary of 9 data sets that we use to describe the predictive
ability measures using real data. The data sets are mainly from clinical trials in breast,
renal, and prostate cancers, and diseases such as leg ulcer and primary biliary cirrhosis
(PBC). The data sets are from studies that were generally carried out by research organ-
isations to investigate the impact of the prognostic factors on the survival of patients in

the relevant disease types.

8.2.1 Data set 1: venous leg ulcer

The first data set is from a clinical trial which was carried out to evaluate prognostic
factors in uncomplicated venous leg ulcer healing (Smith et al, 1992 [106]). The data
consists of several covariates and one outcome variable on 200 individuals. The covariates

are clinical and biological factors such as age, diastolic blood pressure, height, ankle
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pressure, body weight, presence or absence of deep vein involvement, and treatment
differences. The outcome variable, survival time, is the number of days from diagnosis to

complete healing.

Smith et al (1992) [106] fitted a Cox proportional hazards regression model to inves-
tigate the prognostic factors in this study. Royston and Altman (1994) [89] discussed
two models, MFP I & MFP II in tables 8.1 to 8.8, based on a multivariable fractional
polynomial (MFP) approach [89]. The MFP algorithm resulted in a model, MFP 1, which
contain five prognostic factors as significant at the 5% level in a multivariable model as
age, months since onset, initial ulcer area (mm?), diastolic blood pressure (mm Hg), and
deep vein involvement (1 = Y,0 = N). In this model, the covariates age, months since
onset, and initial ulcer area (mm?) were subject to an FP1 transformation with powers
—2, 0, and 0.5. Royston and Altman (1994) [89] suggested an alternative model, MFP
II, which is biologically more plausible. In this model, only months since onset was sub-
ject to FP1 transformation with power 0. The estimated coefficients and goodness of fit

measures of both models are presented in Appendix C.

8.2.2 Data set 2: breast cancer I

The second data set is a sample of 295 women with breast cancer (Van’t Veer et al (2002)
[112]). Van’t Veer et al (2002) [112] used this data set to develop a 70-gene classifier
to predict survival in young patients with stage I or stage Il breast cancer. The gene-
expression data set was derived by researchers from the Netherlands Cancer Institute
and Rosetta Inpharmatics—Merck using oligonucleotide microarrays (Agilent). Data on
recurrence-free survival (RFS), defined as the time to a first event, and overall survival
(OS) were available for all patients. Most of the patients had stage I or II breast cancer;
165 had received local therapy alone, 20 had received tamoxifen only, 20 had received

tamoxifen plus chemotherapy, and 90 had received chemotherapy only.

Cheng Fan et al (2006) [25] analysed this data set further and fitted different multi-
variable Cox proportional hazards models using recurrence-free survival (RFS) and overall
survival (OS) as two different end points. They first included clinical prognostic factors
alone in the models, then "70-gene predictor" was added to the model to evaluate the its
effect on RFS and OS. We identify the models containing only the biological prognostic
factors as RFS I and OS I, and the models containing both the biological prognostic
factors and the 70-gene predictor as RFS II and OS II in tables 8.1 to 8.8. The mod-
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els including only biological prognostic factors comprise age (as a continuous variable),
oestrogen-receptor status (positive vs. negative), tumour grade (1 vs. 2 and 1 vs. 3),
nodal status (no positive nodes vs. one to three positive nodes and no positive nodes vs.
more than three positive nodes), tumour diameter (2 cm or less vs. more than 2 cm), and
treatment received {no adjuvant therapy vs. chemotherapy, hormonal therapy, or both).
Models RFS II and OS II contain 70-gene predictor as well. We display the estimated co-
efficient and goodness-of-fit measures, which were included in the supplementary material

in Cheng Fan’s (2006) paper [25], in Appendix C.

8.2.3 Data set 3: breast cancer II

The third data set is from German Breast Cancer Study Group which carried out a
comprehensive cohort study in primary nodes positive breast cancer [102]. Randomised
and non-randomised patients were eligible, and about two-thirds were entered into the
randomised part. This study recruited 720 individuals of which 686 had complete infor-
mation, of which 299 experienced the event of interest (RFS). Besides treatment, data
on other clinical and biological factors such as age, tumour size, number of lymph nodes,
progesterone and oestrogen respecter status, menopausal status, and tumour grade were

collected.

The aim of the study was to investigate the prognostic factors in node positive breast
cancer and their impact on recurrence-free survival defined as the time from randomisation
until the earliest occurrence of muscle invasion, distant metastasis, second primary tumour
or death due to malignant disease. Schumacher et al (1994) [102] applied the Cox PH
model to study the impact of clinical and biological prognostic factors on recurrence-free
survival of the patients in this study. They proposed a multivariable regression model
which was based on the categorisation of continuous predictors such as age and number
of positive lymph nodes. Their proposed linear model comprises 4 prognostic factors
tumour grade, number of positive lymph nodes, progesterone respecter, and hormonal

treatment, all as categorical variables.

Sauerbrei and Royston (1999) [94] further studied this data set and proposed prog-
nostic models based on the MFP approach [94]. We only consider one of their proposed
models, "model III" from Sauerbrei and Royston (1999) [94]. We applied the measures
of predictive ability to both the linear model, proposed by Schumacher et al (1994) [102],
and the MFP model, proposed by Sauerbrei and Royston (1999) [94].
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8.2.4 Data set 4: prostate cancer

The fourth data set is from a well-known trial in patients with advanced prostate can-
cer. The data set with 506 patients has been analysed by Byar and Green (1980) [14]
and others; the data may be found in Reference [7]. Missing values in 31 observations
were replaced with imputations to give complete data for analysis of results from all 506
patients. We have applied the MFP approach to this data and computed the predictive
ability measures for the resulting model. The MFP model is comprised of 5 continuous
prognostic factors: age; standardised weight; acid phosphates; haemoglobin (g=100 ml);
and size of primary tumour; and 2 binary prognostic factors - performance status and
history of cardiovascular disease. In this model, only acid phosphates is subject to FP1

transformation with power 0.

8.2.5 Data set 5: renal cancer 1

The fifth data set is from MRC REO1 randomised trial comparing interferon-a with
medroxyprogesterone acetate (MPA) in patients with metastatic renal carcinoma. We
analysed data from 347 patients that participated in this randomised trial. The data set
consists of clinical and biological prognostic factors of the patients. Missing values were

replaced with imputations to give complete data for analysis of results from all patients.

Ritchie et al (1999) [84] studied the effect of two treatments, interferon-a with medrox-
yprogesterone acetate (MPA), on the overall survival by fitting a multivariable Cox PH
model on 335 patients and 236 deaths. The model, with deletion of nonsignificant prog-
nostic factors, resulted in a model comprising WHO performance status, haemoglobin,
white cell count and time from metastasis to randomisation. We apply this model to
all 347 individuals and compare it with a MFP model in which the variable time from

metastasis to randomisation is subject to FP1 transformation with power —0.5.

8.2.6 Data set 6: renal cancer I1

The sixth data set uses data from patients with progressive metastatic renal cell carcinoma
who were entered into consecutive clinical trials to receive either (A) IFN-a2a, IL-2
(n=102 pts), (B) IFN-a2a, IL-2 and 5-FU (n=235 pts) or (C) IFN-a2a, IL-2 and 5-
FU combined with 13cRA (n=88 pts) (Atzpodien et al, 2003 [8]). Patient treatments

included radical tumour nephrectomy (n=412), chemotherapy (n=>5), immunotherapy
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(n=47), chemoimmunotherapy (n==8), and hormone therapy (n=32).

Royston et al (2006) [91] constructed a prognostic model based on 425 of the patients
recruited in this study using fractional polynomials considering the overall survival as the
outcome. Six binary predictors (sex, lung, lymph node, liver, bone, brain/CNS metasta-
sis) and eight continuous predictors (age, time from diagnosis to metastatic disease, num-
ber of metastatic sites, ESR, C-reactive protein (CRP), haemoglobin, neutrophils, LDH)
were included in univariate FP analysis. The MFP algorithm selected five prognostic
factors as significant at the 5% level in a multivariable model: lymph node metastasis,
liver metastasis, bone metastasis, age, CRP, and neutrophils. Royston et al (2006) [91]
proposed a model for this data set based on the MFP approach where C-reactive protein
was subject to a FP1 transformation with power —2. We used a subset of this data from
322 individuals and applied the model proposed by Royston et al (2006) to compute the
measures of predictive ability considering overall survival as outcome. The estimated

coefficients in the model and goodness of fit statistics are included in Appendix C.

8.2.7 Data set 7: primary biliary cirrhosis I (PBC I)

The seventh data set is from a study on primary biliary cirrhosis (PBC) which is a
degenerative liver disease, often rapidly fatal. In a trial at Mayo Clinic, 312 patients par-
ticipated in the randomised placebo controlled trial of the drug D-penicillamine. Fleming
and Harrington (1991) [27] presented the data in Appendix D1 of [27]. The data set
contains values on overall survival time (the number of days between randomisation and

death), assigned treatment, age, sex, biochemical measurements, and disease conditions.

Lawless (2003) [60] studied this data set and considered 5 covariates as important in
predicting survival time. They are: age; oedema, i.e. a variable scaled to take values
0, 0.5, and 1, respectively, denoting three levels of oedema of increasing severity; serum
albumin concentration; serum bilirubin concentration; and prothrobin time. Lawless
(2003) ([60], page 423) fitted a Cox PH model to this data by considering age and oedema
(both untransformed) and log transformation of the last three covariates, i.e. In(albumin),
In(bilirubin), and ln(prothrobin). We applied the predictive ability measures to this

model.
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8.2.8 Data set 8: primary biliary cirrhosis IT (PBC II)

The eighth data set is from another study on primary biliary cirrhosis (PBC). A total
of 248 patients were randomised to receive either azathioprine or placebo (Christensen
et al, 1985 [15]). This data set was analysed by Christensen (1985) [15] and later by
Royston et al (2006) [90]. After removing 41 (17%) of cases with missing values or no
patient follow-up, data on 207 patients (105 deaths) in the PBC data set were available

for analysis.

Royston et al (2006) [90] developed a multivariable prognostic model for overall sur-
vival using the MFP procedure. They selected variables and functions of continuous
variables by using a nominal p-value of 0.05. The Cox model selected by the MFP proce-
dure comprised cirrhosis, central cholestasis, age (untransformed), and log bilirubin. Age,
albumin and bilirubin were continuous measurements and the other two were binary. We

applied the predictive ability measures discussed in the last three chapters to this model.

8.2.9 Data set 9: lymphoma

The last data set is from a study on diffuse large B cell lymphoma with 240 patients.
Rosenwald et al (2007) [85] used this data set to develop a 17-gene classifier of over-
all survival for patients with advanced diffuse large B cell lymphoma receiving CHOP
chemotherapy. A three-level “International Prognostic Index” (IPI) based on both clinical
and pathological factors is currently used for risk stratification of patients with aggressive
lymphoma (low risk: IPI 0-1, intermediate: IPI 2-3 and high: IPI 4-5). Dunkler et al
(2007) [22] evalnated the extent to which the continuous Rosenwald gene score adds to
the IPI in the prediction of overall survival in 73 patients of the independent validation
series for which the IPI values were available. They computed Vgqnpr for this data set,
along with other data sets, to study how effective gene expression profiling is in providing
accurate predictions of the survival of individual patients. We computed the measures
for two models: model I, including only IPI, and model II, including both IPI and the

17-gene classifier, to evaluate the predictive ability of the proposed gene classifier.

8.3 The estimates of the measures in real data

In this section, the estimates of predictive ability measures computed for the above data

sets are presented. Table 8.1 presents the models applied to evaluate the predictive ability
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Table 8.1: Summary of the models applied to the data sets, model Chi-squared and
degrees of freedom, skewness and kurtosis of the prognostic indices resulting from the
fitted resgression models.

Study Model Model d.f. Sample % PI. PI.
X2 Size  Censored Skewness Kurtosis

Leg ulcer MFP I 119.89 5 200 0.52 -2.12 10.21
MFPII 113.74 5 200 0.52 -5.29 36.73

Breast RFS I 50.51 8 295 0.60 -0.01 2.46
cancer [ RFS 11 72.62 9 205 0.60 -0.16 1.92
OS1 60.61 8 295 0.73 -0.24 2.19

OS 11 77.64 9 295 0.73 -0.29 1.79

Breast linear 122.9 5 686 0.56 -0.31 3.07
cancer II MFP 153.11 6 686 0.56 0.21 3.88
Prostate MFP 77.41 7 506 0.30 0.40 3.05
Renal 1 linear 12271 6 347 0.07 0.68 6.02
MFP 13269 6 347 0.07 0.81 4.96

Renal II MFP 43.9 1 322 0.15 0.36 2.63
PBC1 Lawless 199.13 5 312 0.60 0.98 3.60
PBC II Royston 136.81 5 207 0.49 0.31 2.57
Lymphoma Model I 7.55 2 73 0.34 -0.49 1.32
Model IT  17.64 3 73 0.34 -0.19 2.11

measures. The table contains the y? statistic for each model and the respective degrees
of freedom. It also consists of the number of individuals in each data set and censoring
proportion. The last two columns are the skewness and kurtosis of the prognostic index
(PT), i.e. linear predictor, resulting from the fitted models. Graphs 82 to 8-8, presented
at the end of this chapter, are histograms of the prognostic index in each model. Tables
8.2 to 8.7 present the estimated predictive ability measures for each model in the different

data sets. We discuss the results of each category in the following sections.

8.3.1 Estimates of explained variation measures

Table 8.2 presents the estimates of explained variation measures and the corresponding
95% bootstrap confidence intervals in different studies. From the results of our simulation
studies, we expect the measures to agree with each other if the prognostic index of the
model is normally distributed with the values of RQOQ r and Rg(uOQ slightly higher and
R}

becomes asymmetric. The results of our simulation studies also showed that R%, is the

oyston lower. We also expect them to differ as the prognostic index of the model

only measure that is resistant to the extreme and outlier observations in the data.

Table 8.2 shows that the measures differ substantially if the distribution of the prog-
nostic index is heavily skewed. For example, in both MFP I and M FP II models fitted

178




Table 8.2: The estimates of explained variation measures for different studies. The figures

in brackets are the bootstrap confidence intervals.

Study Model R%,, R%, Roor R%.00 R, ston

Leg ulcer MFP I 0.77 0.54 0.82 0.83 0.60
(0.64-0.87) (0.44-0.66) (0.71-0.91) (0.71-0.91) (0.49-0.72)

MFP I1 0.94 0.52 0.92 0.93 0.58
(0.80-0.98) (0.44-0.65) (0.80-0.98) (0.81-0.98) (0.46-0.71)

Breast RFSI 0.24 0.23 0.34 0.33 0.25
cancer I (0.16-0.39) (0.16-0.39) (0.24-0.53) (0.21-0.51) (0.17-0.43)

RFSII 0.32 0.29 0.48 0.44 0.34
(0.23-0.50) (0.23-0.46) (0.36-0.64) (0.30-0.62) (0.24-0.53)

OS1 0.41 0.35 0.54 0.30 0.41
(0.30-0.67) (0.25-0.54) (0.38-0.80) (0.02-0.77) (0.30-0.62)

OS1I 0.51 0.41 0.68 0.36 0.50
(0.40-0.73) (0.31-0.58) (0.55-0.87) (0.07-0.88) (0.40-0.70)

Breast linear 0.24 0.22 0.34 0.35 0.24
cancer II (0.17-0.32) (0.16-0.29) (0.26-0.45) (0.24-0.47) (0.18-0.32)

MFP 0.27 0.28 0.37 0.38 0.29
(0.21-0.35) (0.21-0.35) (0.30-0.46) (0.30-0.48) (0.23-0.38)

Prostate MFP 0.13 0.13 0.18 0.16 0.13
(0.09-0.20) (0.09-0.21) (0.13-0.27) (0.11-0.26) (0.09-0.19)

Renal 1 linear 0.25 0.24 0.34 0.34 0.22
(0.20-0.35) (0.19-0.31) (0.28-0.47) (0.27-0.46) (0.18-0.29)

MFP 0.27 0.26 0.37 0.36 0.24
{0.21-0.36) (0.20-0.33) (0.29-0.46) (0.30-0.47) (0.19-0.31)

Renal I MFP 0.11 0.11 0.14 0.13 0.10
(0.05-0.18)  (0.05-0.19) (0.07-0.23) (0.06-0.22) (0.04-0.16)

PBC1 Lawless 0.56 0.65 0.69 0.65 0.70
(0.48-0.65) (0.55-0.74) (0.59-0.79) (0.56-0.76) (0.60-0.80)

PBCII Royston 0.58 0.61 0.65 0.63 0.62
(0.47-0.67) (0.50-0.70) (0.56-0.76) (0.53-0.75) (0.50-0.74)

Lymph. Mod. 1 0.10 0.09 0.16 0.13 0.09
(0.02-0.28) (0.02-0.30) (0.03-0.42) (0.02-0.41) (0.02-0.29)

Mod. 11 0.23 0.23 0.32 0.27 0.21
(0.11-0.42) (0.11-0.40) (0.14-0.59) (0.08-0.54) (0.10-0.42)

179




for leg ulcer data, where skewness=—5.29 and kurtosis=36.73, we observe large variation
and unexpectedly high values in the estimates of some measures. Further assessment of
this data revealed that there are some extreme observations in one covariate, i.e. "initial
ulcer area" which inflate the measures substantially, with the exception of RD. Figure
8-1 consists of two scatter plots of survival time and log hazard ratio versus FP1 trans-
formation of this variable in M FP [ model. It is evident that there are some censored

observations at the extremes of the distribution of this covariate.

To uncover the influence of extreme observations on the measures, we carried out
further analysis by removing these observations from the data, a total of 5. Since these
observations are censored, the estimated coefficients in the corresponding Cox PH models
are almost the same as the models fitted to the complete data, as seen in Appendix C. We
refitted both M FP I and M FP II models to 195 observations; graphs in figure 8-3 show
the prognostic indices of the two models. We computed explained variation measures to
assess the predictive ability of the two models after removing the extreme observations.
Table 8.3 presents the results with the 95% confidence intervals. The results confirm the
conclusions of the simulation studies; the measures are in better agreement with Rggqf’

ana RXxwvog fiighcr and R Royston lower.

Figure 8-1: Survival time (left) and log hazard ratio (right) versus initial ulcer area with
FP1 transformation of 0.5 using model MFP 1 for leg ulcer data.

survival times versus ulcera area with FP1 trans. of 0.5 log HR versus ulcera area with FP1 trans. of 0.5

‘3
1

o\*y

5 1 5 1
XA0.5: X =ulcarea/10000 X~.S: X =ulcarea/10000

« event time « censored timi « eventtime * censored tim

For practical purposes, we suggest using a measure from the 5 candidate measures of
explained variation to evaluate the predictive ability in each study. Generally, RXUQQ
can not be recommended since it is not guaranteed to be non-negative. In contrast, the
simulation studies showed that this measure is more likely to result in negative values as
censoring increases. We also do not recommend RIRaySt(m due to its poorer performance

with regard to the essential properties. Below, we present a measure in each study as a
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Table 8.3: The estimates of explained variation measures in the leg ulcer data after
removing the censored observations with extreme values.

Measure category  Measure MFP I model MFP II model

RSy, 0.65 0.75
(0.53-0.77) (0.59-0.88)
8 0.53 0.50
(0.40-0.64) (0.39-0.63)
Explained variation Rpqp 0.73 0.78
(0.62-0.85) (0.65-0.90)
oo 0.73 0.78
(0.43-0.74) (0.64-0.90)
Rh o 0.56 0.54
(0.44-0.66) (0.42-0.67)

candidate measure of predictive ability.

In both models for the leg ulcer study we recommend R% because there are some
extreme observations in the data that are inflating the other measures. It can be concluded

that the available prognostic factors explain about 50% of the variation in the outcome.

In breast cancer I study, Rf; ar and R2, agree in both RFS I, which includes only clinical
and biological factors, and RFS II, which includes 70-gene predictor as well. In this study

RQOQ 5 and Rg(uOQ are both higher and R lower. For this study we recommend R%

Froyston
for both RFS I and RFS II since the prognostic index of both models is nearly symmetric
and the data is not heavily censored. In summary, the clinical and biological factors in
this model explain about 23% of the variation in the recurrence-free survival of cancer
patients. This increases to 29% when we add a genetic factor to the model, i.e. 70-gene
predictor. Van’t Veer et al (2002) [112] promised prediction of cancer outcome from
this gene-expression classifier which immediately generated the impression of a major
breakthrough. However, the results of our analysis could not confirm this breakthrough

since the clinical factors together with this gene-expression classifier explain only 29% of

the variation in the recurrence-free survival of breast cancer patients.

In a similar study on overall survival of the same patients, we recommend R%,, for
both OS I and OS II models. Royston and Sauerbrei (2004) [93] showed that R% decreases
when the covariate or the prognostic index of the model is short tailed. This is due to the
effect of short-tailed covariates on the D measure [93]. Therefore, we recommend R%,,
as the candidate measure in this study. It is evident that the 70-gene predictor increases
the variation explained in the overall survival, but not substantially. Note the difference

in the estimates of R?JQ F and R%mOQ for this model, i.e. 0.68 and 0.36 for the OS II. Xu
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and O’Quigley (2001) [78] claimed that R,y and R%,0¢ should be close in practice.
The estimates, however, show that they differ substantially in this case. Moreover, the
wide bootstrap confidence intervals for Rg(uOQ, (0.07,0.88), reflects the findings of our

simulation studies in chapter 5.

For breast cancer II study, Rf,M and R% agree in both linear and MFP models.
However, we recommend Rr;_’) since it is resistant to outlier and extreme observations. The
MFP model has better predictive ability than a linear model where continuous covariates,
e.g. age, have been entered in the model as categorical variables. This shows that
classifying continuous a prognostic factor into a dichotomy, trichotomy, or more groups
diminishes its predictive ability. We can see a similar effect in the renal cancer I study;

the predictive ability of MFP model is higher than the linear model.

For lymphoma study, R?, A and R2D agree in both model I and model II. Therefore
the three-level “International Prognostic Index” (IPI) explains 10% of the variation in
the survival of patients with large-B-cell lymphoma. This increases to only 23% after
including the 17-gene classifier to the model. Despite the increase in explained variation,
this tells us that much remains to be known about the disease. The difference in estimates
of R?)Q r and Rg(uOQ, indicates the inconsistency of Ri-uOQ, specially in model II where

the estimates differ noticeably.

As a candidate measure of explained variation, we recommend R’f) in prostate, renal
cancer I, renal cancer II, and PBC II studies. In PBC I study, we recommend R% A since
the censoring proportion is more than 50% and the prognostic index of the model is close
to lognormal distribution. The simulation studies showed that R% increases with the

amount of censoring in this case.

8.3.2 Estimates of explained randomness measures

Table 8.4 presents the estimates of explained randomness measures and the corresponding
95% bootstrap confidence intervals in different studies. The table indicates that p,, p%V’ A
pg(uOQ, and p} generally agree, with the exception of leg ulcer study. In this study the
estimates of p¥, and P%V, 4 are much higher than those of pg(uOQ and p2. This reflects
the results of simulations studies presented in table 6.1 which showed that p%v results in
higher values if the covariate or prognostic index of the model is heavily skewed to the left.
The presence of extreme observations in the leg ulcer data, as explained above, inflates

p%V’ 4 in a similar way to R%, s since they both depend on the variance of prognostic index
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of the model.

To uncover the influence of extreme observations on the explained randomness mea-
sures, we carried out further analysis similar to the one on explained variation measures
by removing 5 extreme observations in the leg ulcer data set. We refitted both MFP [
and M EF'P I models to 195 observations and evaluated the measures. Table 8.5 presents
the results with the 95% confidence intervals. The results show that all explained ran-
domness measures decrease. However, the decrease in the estimates of p§, and p%v’ 4 are
more noticeable; they decreased about 10% after removing 5 extreme observations. We
recommend the estimates of p¥, as the indication of the explained randomness of the
models in all data sets except the leg ulcer study. In this study, it is difficult to evaluate
the randomness that is explained by the covariate in the model due to the presence of

extreme observations.

183




Table 8.4: The estimates of explained randomness measures for different studies. The
figures in brackets are the bootstrap confidence intervals.

L Study Model P Py A pg{uOQ Pi |

Leg ulcer MFP 1 0.90 0.84 0.70 0.71
(0.78-0.95) (0.73-0.92) (0.60-0.81) (0.60-0.81)

MFP 11 0.99 0.96 0.69 0.69
(0.93-0.99) (0.85-0.99) (0.58-0.79) (0.59-0.79)

Breast RFSI 0.33 0.34 0.34 0.35
cancer I (0.24-0.51) (0.24-0.51) (0.23-0.52) (0.24-0.54)

RFS II 0.42 0.44 0.46 0.46
(0.33-0.59) (0.35-0.60) (0.35-0.63) (0.36-0.63)

OS1I 0.52 0.53 0.51 0.54
(0.38-0.74) (0.41-0.77) (0.38-0.71) (0.43-0.73)

OS 11 0.61 0.63 0.62 0.63
(0.561-0.82) (0.51-0.82) (0.52-0.78) (0.52-0.79)

Breast linear 0.34 0.34 0.33 0.34
cancer II (0.26-0.46) (0.26-0.44) (0.25-0.43) (0.26-0.44)

MFP 0.36 0.38 0.37 0.40
(0.29-0.47)  (0.30-0.48) (0.30-0.46) (0.30-0.48)

Prostate MFP 0.18 0.20 0.19 0.20
(0.13-0.27)  (0.14-0.29) (0.13-0.29) (0.14-0.29)

Renal 1 linear 0.33 0.36 0.31 0.32
(0.26-0.44) (0.28-0.46) (0.25-0.40) (0.26-0.40)

MFP 0.33 0.37 0.33 0.34
(0.27-0.42)  (0.30-0.48) (0.26-0.42) (0.28-0.42)

Renal II MFP 0.16 0.17 0.15 0.15
(0.08-0.25) (0.08-0.27) (0.07-0.24) (0.07-0.24)

PBC1 Lawless 0.60 0.68 0.71 0.80
(0.53-0.68) (0.60-0.76) (0.60-0.80) (0.71-0.87)

PBC IT Royston 0.65 0.69 0.76 0.73
(0.56-0.74) (0.60-0.78) (0.59-0.79) (0.63-0.82)

Lymph. Mod. 1 0.15 0.15 0.14 0.15
{0.04-0.37) (0.03-0.40) (0.03-0.37) (0.03-0.38)

Mod. II 0.32 0.33 0.30 0.31
(0.15-0.53) (0.15-0.54) (0.14-0.52) (0.15-0.54)

Table 8.5: The estimates of explained randomness measures in the leg ulcer data after
removing the censored observations with extreme values.

Measure category Measure MFP I model MFP IT model
D 0.79 0.0.91
(0.69-0.88) (0.78-0.97)
Piv A 0.77 0.86
(0.66-0.85) (0.72-0.95)
Explained variation pg;qu 0.67 0.66
(0.56-0.79) (0.54-0.77)
P 0.69 0.66
(0.57-0.79) (0.55-0.78)
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Table 8.6: The three time points (in days) at which the predictive ability of the models
are evaluated using the Graf et al’s measure (1999) for each study.

Study Three time points
Ty T T3
Leg ulcer 33 54 86

Breast cancer I (RFS) 618 1078 1986
Breast cancer I (OS) 931 1386 2109

Breast cancer I1 426 646 1105
Prostate 280 715 1142
Renal I 85 223 455
Renal 11 291 554 1061
PBCI1 597 1083 2071
PBCII 456 1024 1744
Lymphoma 201 420 1114

8.3.3 Estimates of predictive accuracy measures and R%_,

In this section, we present the estimates of predictive accuracy measures and R%chK
proposed by Schemper and Kaider (1997). We evaluate the measure proposed by Graf
et al (1999), R%(T) at three time points in each study. The time points are the 0.25th,
0.50th, and 0.75th quantile of the time to the last event in each study. Table 8.6 displays
the time points, in days, in each study. For practical purposes, it is worth bearing in
mind that the choice of time point will be application-specific. In some studies, there
might be clinically relevant fixed time point, such as five-year survival being used as the

effectiveness of a specific treatment, e.g. chemotherapy.

Table 8.7 shows the estimated values and the 95% bootstrap confidence intervals of
the measures. The estimates of predictive accuracy measures R%(T*) and Vgopy are
lower than the corresponding explained variation and explained randomness measures.
The estimates are the highest in the leg ulcer and PBC I and II studies with about 40%.
The estimates of predictive accuracy measures in most of the other studies are below
20%. This indicates the limited ability of the available clinical and biological prognostic
factors in predicting the individual status of patients in terms of experiencing the event

of interest by means of the Cox PH regression model.

As it was observed in the simulation studies, the estimates of R%(T*) increases with
increasing T* in most of the studies. The estimates of Ré(T*) and Vgepy are fairly close
for the fitted models in each study which indicates that the gain in terms of predictive
accuracy is very limited even after using a more representative model, i.e. models based

on MFP approach. The estimates of R%, ;- are much higher than the predictive accuracy
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measures. The results indicate that this measure is in agreement with the explained

variation measures studied in chapter 5, as shown in the simulation studies.

The estimates of R%;(T*) and Vgengy for the models for the breast cancer I and lym-
phoma studies confirm our previous findings that the gene-expression classifiers, i.e. 70-
gene predictor in breast cancer and 17-gene predictor in lymphoma, have limited predic-
tive ability. For example, the estimates of R%(T3) and Viepp for the OS I model in breast
cancer study, i.e. model with only clinical prognostic factors, are 0.20. They increase to
0.23 and 0.24 when we add the gene-expression classifier to the model. The predictive
accuracy of both models increased, but not substantially. This contradicts the conclu-
sion made by Van’t Veer et al (2002) [112] that this gene-expression classifier is strongly

predictive of the survival of breast cancer patients characterised in this study.
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Table 8.7: The estimates of predictive accuracy measures and Schemper and Kaider
measure (1997) for different studies. The figures in brackets are the bootstrap confidence

intervals.
Study Model Graf measure at three time points
Rz(Ty) R(T) R&(T3) Vsch R% 1k
Leg ulcer MFP 1 0.23 0.33 0.46 0.39 0.62
(0.08-0.37) (0.18-0.42) (0.33-0.57) (0.30-0.47) | (0.50-0.73)
MFP 11 0.22 0.32 0.46 0.38 0.62
(0.08-0.33) (0.19-0.43) (0.34-0.57) (0.30-0.46) | (0.50-0.73)
Breast RFS1I 0.12 0.12 0.17 0.14 0.29
cancer I (0.04-0.17) (0.04-0.19) (0.09-0.24) (0.10-0.3) | (0.18-0.44)
RFS II 0.12 0.14 0.23 0.19 0.39
(0.04-0.18) (0.06-0.21) (0.14-0.30) (0.15-0.28) | (0.30-0.52)
OS1 0.13 0.17 0.20 0.20 0.46
(0.03-0.21) (0.07-0.26) (0.10-0.28) (0.14-0.31) | (0.32-0.63)
OS 11 0.11 0.17 0.23 0.24 0.54
(0.02-0.18) (0.07-0.25) (0.12-0.31) (0.18-0.37) | (0.45-0.70)
Breast linear 0.09 0.13 0.17 0.16 0.28
cancer II (0.05-0.13) (0.08-0.18) (0.11-0.22) (0.12-0.20) | (0.22-0.35)
MFP 0.12 0.16 0.20 0.18 0.30
(0.07-0.18) (0.10-0.21) (0.14-0.25) (0.14-0.23) | (0.24-0.38)
Prostate MFP 0.06 0.11 0.10 0.10 0.15
(0.02-0.10) (0.06-0.15) (0.05-0.14) (0.07-0.14) | (0.10-0.24)
Renal T linear 0.21 0.27 0.18 0.19 0.35
(0.13-0.28) (0.20-0.33) (0.10-0.24) (0.15-0.24) | (0.29-0.45)
MFP 0.24 0.27 0.19 0.20 0.37
(0.16-0.31) (0.21-0.34) (0.11-0.26) (0.16-0.24) | (0.30-0.46)
Renal I  MFP 0.11 0.13 0.05 0.09 0.15
(0.06-0.16) (0.08-0.19) (0.01-0.12) (0.05-0.13) | (0.09-0.24)
PBCI Lawless 0.38 0.47 0.47 0.40 0.54
(0.19-0.52) (0.38-0.58) (0.34-0.57) (0.34-0.48) | (0.47-0.64)
PBC II Royston 0.34 0.35 0.43 0.41 0.61
(0.16-0.49) (0.20-0.47) (0.38-0.55) (0.33-0.49) | (0.51-0.70)
Lymph. Mod. 1 0.05 0.11 0.09 0.08 0.15
(0.01-0.10) (0.01-0.18) (0.06-0.20) (0.01-0.19) | (0.02-0.36)
Mod. 11 0.16 0.22 0.24 0.17 0.31
(0.02-0.24) (0.05-0.34) (0.07-0.38) (0.09-0.34) | (0.16-0.53)
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8.4 Discussion

In this chapter, we applied the predictive ability measures studied in chapters 5 to 7 to real
data sets from different diseases. Our main objective was to illustrate the application of
these measures in medical research. It is important for medical investigators to realise that
even strong and highly significant regression coefficients associated with prognostic factors
of outcome may not automatically translate into sufficiently accurate prediction or close
determination of individual outcome values of patients. Gains from the use of prognostic
factors can only be demonstrated by the use of a suitable measure of predictive ability,
but not by means of large hazard ratios, nor by their corresponding p-values. This issue
often is not taken into account and even partly explains why so many identified prognostic

factors "fail" particularly when used to predict outcomes for individual patients.

Furthermore, we have shown how to study the clinical importance of new genetic
factors in addition to clinical characteristics of the patients. The results suggest that de-
termining the patients outcome is very limited even after considering the gene classifier in
breast cancer I study. As mentioned before, the early papers promising prediction of can-
cer outcome from this gene classifier generated the impression of a major breakthrough.

Our results could not confirm such a breakthrough.

Our second objective was to compare the measures with real data sets and provide
justification for the observed discrepancies in the estimates of measures. We compared
the measures and recommended a measure for practical applications in each study. The
measures within explained variation and explained randomness groups are broadly in

agreement if the distribution of the prognostic index of the model is approximately normal.

Table 8.8 presents the skewness and kurtosis of prognostic indices of the fitted models
together with the range of estimated values in explained variation and explained random-
ness categories. It is evident that the measures in each class result in similar values if
the skewness and kurtosis of the prognostic index of the model is close to that of normal
distribution (i.e. skewmness=0 and kurtosis=3). The estimated values in each category
differ substantially when the skewness and kurtosis of the prognostic index of the mode] is
far from normality. Finally, the limitations of the proposed measures make it impossible

to recommend one measure for all the studies.

By applying the measures to linear, where the continuous covariates transformed to

categorical variable, and MPF models, we showed the application of the measures in sta-
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Table 8.8: The range of explained variation and explained randomness estimates for each

study.
Study Model PlI. PI. Range in Range in
Skewness Kurtosis FE.V. measures FE.R. measures
Leg ulcer MFP I -2.12 10.21 0.29 0.20
MFP II -5.29 36.73 0.42 0.30
Breast RFS1I -0.01 2.46 0.10 0.02
cancer I RFS II -0.16 1.92 0.19 0.04
OSs1I -0.24 2.19 0.24 0.02
OS1II -0.29 1.79 0.32 0.02
Breast linear -0.31 3.07 0.13 0.01
cancer II MFP 0.21 3.88 0.11 0.04
Prostate MFP 0.40 3.05 0.05 0.02
Renal I linear 0.68 6.02 0.12 0.05
MFP 0.81 4.96 0.13 0.04
Renal I1 MFEP 0.36 2.63 0.04 0.02
PBC 1 Lawless 0.98 3.60 0.14 0.20
PBCII Royston 0.31 2.57 0.07 0.11
Lymphoma Model I -0.49 1.32 0.07 0.01
Model I1 -0.19 2.11 0.11 0.02

tistical practice. The results showed that the models developed using MFP approach have

better predictive ability. Therefore, as Royston et al (2006) [90] indicated, dichotomising

continuous covariates diminishes the overall predictive ability of the models.
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Figure 8-2: Distributions of the prognostic index in the MFP I (left) and MFP II (right)
models for leg ulcer study.

PI Inthe 'MFP P model for leg ulcer study PI in the 'MFP II' model for leg ulcer study

-30

=20
Linear prediction Lincar prediction

Figure 8-3: Distributions of the prognostic index in the MFP I (left) and MFP II (right)
models for leg ulcer study after removing the censored observations with extreme covariate
values.

PI Inthe '"MFP I' model for leg ulcer study PI in the '"MFP II' model for leg ulcer study
some censored data with extreme observations removed some censored data with extreme observations removed
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Figure 8-4: Distributions of the prognostic index in the RFS I (top left), RFS II (top
right), OS I (bottom left), and RFS II (bottom right) models for breast cancer I study.

PI in the 'RFS I‘model for breast cancer Istudy PI in the 'RFS II'model for breast cancer I study
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3 2 2 1
Lincar prediction Linear prediction

Figure 8-5: Distributions of the prognostic index in the linear (left) and MFP (right)
models for breast cancer II study.

PI in the linear model for breast cancer I study PI in the MFP model for breast cancer II study
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Figure 8-6: Distributions of the prognostic index in the linear (left) and MFP (right)
models for renal cancer I study.
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Figure 8-7: Distributions of the prognostic index in the models for prostate cancer (left)
and renal cancer II (right) studies.

PI in the MFP model for prostate cancer study PI in the MFP model for renal cancer II study
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Figure 8-8: Distributions of the prognostic index in Fleming (left) and Royston (right)
models for the PBC I and II studies.
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Figure 8-9: Distributions of the prognostic index in the model I (left) and model II (right)
for the lymphoma study.
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Chapter 9

Summary and conclusions

9.1 Summary

Several measures have been proposed to evaluate the predictive ability of survival models
in the last two decades and their properties have not been adequately evaluated. The
presence of censoring in survival data and its effect on the proposed measures adds another
dimension to the complexity of the measures. There has not been a consensus of opinion
on what the "best" measure is. This thesis was a study of these measures with the aim
of recommending one or more measures for practical applications. The thesis consisted

of four major parts which concentrated on the following issues:
1) the need for predictive ability measures and the measures for survival models
2) critical review of the proposed measures and the need for further research
3) presenting the results of simulation studies on the proposed measures
4) applications of the measures in prognostic modelling.

In the first part, chapters 1 and 2, we discussed the need for predictive ability measures
and described its application in medical research. We gave a review of an equivalent
measure of predictive ability in linear regression, R?, and presented some mis-applications
of R? in practical data analysis. We explained why R? is not a goodness of fit measure and
does not provide sufficient information for model selection. Then, we gave an overview of

the proposed measures of predictive ability for survival models, mainly for the Cox PH

model, by classifying them into three main categories:
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I) explained variation measures
IT) explained randomness measures

III) predictive accuracy measures.

The classification of proposed measures into three major groups has been a main
theme of this thesis. The theoretical underpinning and conceptual differences of the
proposed measures has led us to this classification. We have also identified two other
measures that could not be classified into one of the three main classes. These comprised

an "other" category.

In the second part, chapters 3 and 4, we provided the framework for examining the
proposed measures. To study the measures systematically, we defined two sets of proper-
ties, i.e. essential and desirable, that a measure of predictive ability should possess in the
context of survival analysis. Chapter 3 described the essential and desirable properties
of a suitable measure of predictive ability for survival models. Some of the criteria are
based on or closely related to those proposed by Schemper and Stare (1996) [99] and
Royston and Sauerbrei (2004) [93] for a "good" measure of explained variation. The
essential properties of a suitable measure are independence of censoring, independence
of sample size, and parameter and number of variables monotonicity. In our opinion,
these are the properties that a measure of predictive ability should possess in the context
of survival analysis. The desirable properties include robustness, generalisability, the
availability of straightforward confidence intervals, and partial and adjusted measures.
We then considered the measures which have been proposed against the essential crite-
ria. The shortcomings of some measures with respect to essential properties led us to a
short-list, called potentially recommendable measures, requiring further investigation of
properties. From a total of 10 potentially recommendable measures, 5 were classified in
the explained variation category, 3 in the explained randomness category, and 2 in the
predictive accuracy category. We also included one measure from the "other" category

in our investigations because it was potentially recommendable.

In chapter 4, we set out the need for further investigation of the potentially rec-
ommendable measures and proposed comprehensive simulation studies to explore the
measures further. The rest of chapter 4 presented the simulation design and different
parameters involved in the simulation studies. Mostly, the simulation studies were uni-

variate in character. In the simulation studies, we considered 4 covariate distributions
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with different skewness to model potentially different distributions of the prognostic in-
dex of the multiple regression model. We put more emphasis on the normally distributed
covariate because by virtue of the central limit theorem the prognostic index of a mul-
tiple regression model, which is usually a function of several random variables, tends to
Normality as the dimension of the parameter vector 3 increases. In the next section, we

will discuss the findings of the simulation studies.

9.2 Findings of the simulation studies

In the third part of this thesis, chapters 5 to 7, we presented the results of simulation
studies on three classes of predictive ability measures, i.e. explained variation measures,
explained randomness measures, predictive accuracy measures, and the measure proposed
by Schemper and Kaider (1997) [98], R%_, ;. The performance of the measures with

respect to the criteria outlined in chapter 3 is summarised below.

9.2.1 Explained variation measures

In chapter 5, we carried out simulation studies on 5 potentially recommendable measures
in the explained variation category. The measures proposed by Korn and Simon (1990)
[53] and Akazawa (1997) [2] were excluded from our studies because previous simulation
studies provided us with suflicient evidence that these measures are affected by the amount

of censoring.

The results of the simulation studies, presented in chapter 5, show that the explained
variation measures are influenced by the distribution of covariate or prognostic index in
the case of multiple regression, with the exception of R%,,. The results also indicate
that R%.,0q (Xu and O’Quigley (2001) [78]) and R}, (Royston (2006) [88]) perform
poorly with respect to censoring. The measure proposed by Xu and O’Quigley (2001),

2

RgquQ, can not be guaranteed to be non-negative, and R Royston

is heavily influenced by
the degree of censoring. Therefore, we reject these two measure. The measure proposed
by O’'Quigley and Flandre (1994), %Q r, is slightly affected by the amount of censoring
but performs reasonably well in general with respect to the other essential properties.
Both R%Q g and R_%CuOQ possess parameter and variable monotonicity properties. But,

Rg{uOQ performs poorly in censored conditions since the chance that it decreases after

adding a new independent covariate to the model is more than for the other measures.
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Moreover, R%)Q r and its modification, Rg(uOQ, quantify the variation in the covariate
which is explained by the survival time. This makes both measures, R2OQ r and Rg(—qu,

counter-intuitive.

The results of the simulation studies indicate that two measures R%,, (Helland (1987)
[41] and Kent & O’Quigley (1988) [49]) and R2% (Royston & Sauerbrei (2004) [93])
satisfy the essential criteria. The results of our simulation studies, however, revealed
some limitations of pr A and R2D with respect to the desirable properties. The results
indicate that R%,, is influenced by the presence of extreme or outlier observations since
it depends on the variance of the prognostic index of the model. R% is not influenced by
extreme and outlier observations, but is affected by the covariate distribution. Therefore,
if the distribution of one (or some) prognostic factor(s) in a study is either contaminated
with outliers or skewed, the value of Rf, a and R2D may be considerably different from
what would have been achieved had the outlier contamination or skewness not been
present. Furthermore, our simulation results showed that all of the explained variation

measures increase with the amount of censoring in under-fitted models.

9.2.2 Explained randomness measures

In chapter 6, we presented the results of simulation studies on 3 potentially recommend-
able measures in explained randomness category. Explained randomness measures com-
prise an alternative class of measures. These measures are essentially founded on the
concept of information, and the way information is quantified in communication theory
(Shannon (1948) [104]). Kullback and Leibler (1951) {55] applied this concept to statistics

and established the relationship between information gain [55] and R? in linear regression.

The shortcomings of explained randomness measures proposed by Nagelkerke (1991)
[71], Magee (1990) [68], Maddala (1983) [67], and Verweij and Van Houwelingen (1993)
[113] with respect to essential properties has led us to the 3 potentially recommendable
measures in the explained randomness category, proposed by Kent and O’Quigley (1988)
[49], Xu and O’Quigley (1999) [116], and O’Quigley et al (2005) [80].

The results of the simulation studies, presented in chapter 6, show that the explained
randomness measures, i.e. P&, pﬁxuoq, and p?, are influenced by the distribution of
covariate or prognostic index in the case of multiple regression. The results indicate that
among the randomness measures, pi (O’Quigley et al (2005) [80]) performs the worst with

regard to censoring and because of this is not recommended as a candidate measure of
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explained randomness. The measure proposed by Xu and O’Quigley (1999) [116], pg{uOQ’

performs well in random censoring conditions.

The measure proposed by Kent and O’Quigley (1988) [49], p¥,, and its approximation
p%v, A are almost unaffected by the amount of censoring and generally satisfy the essen-
tial properties. The results also show that pa,, 4 is not a good approximation to pa, if
the covariate distribution is asymmetric. Two measures of explained randomness, p%v
and pg(uOQ, performed well with respect to the essential properties; but, pg(qu is not
straightforward to interpret since it evaluates the randomness in the covariate, which is

explained by survival time.

The results of further simulation studies indicate limitations in all of the explained
randomness measures similar to those of RQPM. They are all affected by extreme and
outlier observations. Also, the measures increase with the amount of censoring in under-

fitted models.

9.2.3 Predictive accuracy measures & R%, .

In chapter 7, we presented the results of simulation studies on predictive accuracy mea-
sures and the measure proposed by Schemper and Kaider (1997) [98], RZ , ;.. We excluded
Schemper’s V; and V4 measures (1990) (1994) [95] [96] from our studies because previous
studies showed that these two measures are influenced to a major extent by the amount

of censoring.

The results in chapter 7 indicate that RZ (Graf et al (1999) [31]), Vs.np (Schemper
and Henderson (2000) [97]), and R% ;. (Schemper and Kaider (1997) [98]) are affected
by the covariate distribution. The results show that R% and R%_,, perform well in both
random and type I censoring. Also, Vsny is not affected by random censoring if the
covariate is normally distributed or skewed to the left, whereas it is affected by type I
censoring. All three measures possess parameter monotonicity properties. Among the
three measures, however, R% performs the worst with regard to the number of variables
monotonicity since the chance that it decreases after adding new independent covariate
to the model is more than for the other measures. All three are sensitive to outliers and
extreme observations in the data. Moreover, Vsepir and R% , ;- increase with the amount
of censoring if the covariate in mis-modelled, whereas the expected value of Ré does not

change with increasing censoring.
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9.2.4 Comparison of three groups of measures

In summary, the results of our simulation studies have revealed that the expected values
of explained randomness measures are higher than the corresponding values of explained
variation and predictive accuracy measures. They have also shown that predictive ac-
curacy measures result in lower values than the measures in the other categories. The
expected value of R?; i agrees with the corresponding value of explained variation mea-
sures. All the measures increase with increasing covariate effect and appear to have an
upper bound of less than 1. Predictive accuracy measures, however, reach high values,
i.e. more than 0.80, only if the covariate effect is unrealistically high. The sampling dis-
tribution of all measures shows considerable skewness when censoring is more than 50%.
We have also learned that for all the measures, when there is a weak association between
the covariate and the outcome and the amount of censoring is high, the sample estimator

has a positive bias.

Finally, we update table 3.1 of chapter 3 after our investigation and present it in table
9.1. It is evident from this table that our investigation has led us to reach new conclusions
about the properties of some measures. For example, based on previous investigations,
in table 3.1 we concluded that Xu & O’Quigley (1999) measure [116], pQXuOQ, was in-
dependent of censoring. However, our investigations showed that this measure is affected
by type I or administrative censoring. Regarding the desirable properties of the poten-
tially recommendable measures presented in table 3.2, we only carried out investigation
on the robustness property of these measures. Thus we have not updated this table in

this section.
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Table 9.1: Summary of the essential properties of potentially recommendable measures
of predictive ability in survival analysis after our investigation

Measure Measure Proposed by I II 111

Category a b
R%,, Helland; Kent & O’Quigley (1988) yes yes® yes yes
R3oF O’Quigley & Flandre (1994) no yes® yes yes

Explained

Variation RE(UOQ Xu & O’Quigley (2001) yes? yes® yes yes
R% Royston & Sauerbrei (2004) no® yes® yes yes
R% yston  ROyston (2006) no yes® yes yes
P Kent & O’Quigley (198R) yes yes® vyes yes

Explained

Randomness pi-uOQ Xu & O’Quigley (1999) no* yes® yes yes
i O’Quigley et al (2005) no yes® yes yes

Predictive R% Graf et al (1999) : yes yes® yes yes

Accuracy
Vsent Schemper & Henderson (2000) nol  yes® yes yes

Other R% . Schemper & Kaider (1997) yes yes® yes yes

Key of the table

I) Independence of censoring;

II) Independence of sample size

III-a) Parameter monotonicity III—b) number of variables monotonicity

yes: the measure does possess the desired property
no: the measure does not possess the desired property

1) This measure is largely independent of random censoring if the covariate is normally distributed

or skewed to the left

2) The expected value of this measure does not change with censoring but results in negative values

3) This measure is independent of censoring if the covariate is normally distributed

4) The expected value of this measure does not change with censoring in random censoring conditions

with normal covariates

5) Sample size has a moderate effect, i.e. positive bias, when there is a weak association and censoring

is high
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9.3 Applications of the measures in medical research

In the last part of this thesis, chapter 8, we applied the measures to data sets from different
disease types to quantify the predictive ability of available/known prognostic factors. We
applied the measures to different models and discussed the observed discrepancies in
the estimated values of the measures based on the results of simulation studies. Two
important findings resulted. First, the measures within each category are broadly in
agreement if the distribution of the prognostic index of the model is approximately normal.
Second, the estimated values of R2OQ r and its modification Rg{qu in the study of overall
survival for breast cancer study I differ substantially in heavily censored data. The
results of simulation studies on RgCuOQ in chapter 5 indicated that this measure behaves
inconsistently in heavily censored data; the probability that it results in negative values

increases with increasing censoring.

In summary, the results of our analysis on real data sets indicate that the measures
within each category differ substantially when the censoring is high or the distribution of

the prognostic index of the model is far from normality.

9.4 Recommendations for practice

One of the aims in this study was to recommend a small number of measures for general
use. We have classified the measures into three main categories. This classification is a
broad but conceptual one. In this section, we first sumimnarise the conceptual differences
of the three classes of measures. We then suggest two measures in the explained variation

category for general use.

In practice, an important question might be raised: which class of measures should
one use to quantify the predictive ability in survival models? The choice of the measure
depends on the clinical aim of the study. Two quite different goals can be sought in clinical
research. These are the goal of understanding and the goal of prediction. Theoretically,
explained variation measures are used if the goal is understanding and predictive accuracy
measures are used if the goal is prediction. However, the performance of some measures

might make them less useful in practical applications.

Explained variation measures generally quantify how much of the variation in the out-

come variable is explained by the predictors in the model. Predictive accuracy measures
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evaluate the predictions made in terms of model-based survival probabilities, with and
without covariates, and compare them with the survival status of individuals at time t*.
This leads to a measure which shows the relative gain in terms of the accuracy of estimated
survival probability in predicting the individuals’ status as "dead" or "alive" when using
prognostic factors information compared with when not using them. Explained variation
measures can be used to quantify the clinical significance of the prognostic factors in the
model, whereas predictive accuracy measures can help researchers where they need to
know the ability of the prognostic factors in predicting an individuals’ status, for exam-
ple, 2 years after the start of study. Explained variation measures are intuitive and easy
to explain to researchers in medical research, whereas it is more difficult to interpret the

estimates of R2G or Vgenn-

Explained randomness comprises an alternative class of measures. These measures are
founded on the way information is quantified in communication theory (Shannon (1948)
(104]). Kullback and Leibler (1951) [55] applied this concept to statistics and established
the relationship between information gain [55] and R? in linear regression. However,
the interpretation of these measures is a challenge in models other than linear regression
since they generalise the relationship between the information gain and R2?, presented by
Kullback and Leibler (1951) [55]. Nevertheless, they can be interpreted as the information
in the outcome, as defined in information theory, which can be potentially recovered by

the prognostic factors in the model.

In the next sections we present our recommmended measures and provide justification

for the recommendations.

9.4.1 Explained variation measures - recommended

We recommend explained variation measures in general and in particular R?D A and R2D
for general use. First, they are interpretable and easy to explain to clinicians compared
with measures in the other two groups. For example, an estimate of 0.20 for R?D A Ieans
that 20% of the variation in the outcome is explained by the prognostic factors in the
model. Tt is more difficult to interpret the same estimate of explained randomness or

predictive accuracy measures.

Second, they offered good performance in our studies and mostly satisfied the essential
criteria defined in chapter 3. The amount of censoring and censoring mechanism do not

affect R%M. This also applies to RQD if the distribution of the prognostic index of the

201




model is not skewed. Other measures are either influenced by the censoring mechanism

or affected by the follow-up period, with the exception of p#, and R%_ .

Third, R%,M and RZ% have traceable statistical properties and can be consistently
estimated, whereas the statistical properties of explained randomness measures and pre-
dictive accuracy measures are difficult to establish, especially in the context of multiple

regression models.

Fourth, the estimates of R%,, and R% appear to give a good reflection of strength of
association as measured by the covariate effect, 3, and tend to 1 for high, but plausible,

values of 3.

Fifth, R%,; and R?, are based on the same principle thus can be used for sensitivity
analysis. We recommend computing both R%,, and RZ for any study. If there is a large
discrepancy between them, say more than 10%, we suggest investigating the data under
study for the potential reasons such as the presence of outlier observations or highly
skewed prognostic index. Qur simulation studies indicate that R% can not be larger than
R%,, except in heavily censored data where the prognostic index of the model is highly

skewed, or in cases where the data contains some outlier observations which affect R%, M-

Sixth, both R%,; and R% can be generalised for use in the flexible parametric models

proposed by Royston and Parmar (2002) [92].

Finally, R?, has the advantage that it can be used in a model validation context which

is an important part of prognostic modelling.

9.4.2 Explained randomness measures - not recommended

We do not recommend explained randomness measures for the following reasons. First, as
explained in the last section, the proposed explained randomness measures use the rela-
tionship between the correlation coefficient of two normally distributed random variables
and Kullback-Leibler information gain [55] to define the proposed explained randomness
measures for survival models. Despite all the promising properties of these measures, the

explained randomness measures lack clear interpretation.

Second, the results of our investigation indicate that the measure proposed by Kent
and O’Quigley (1988), p%v, is the only measure which has performed satisfactorily with
respect to the essential criteria. In this measure, the baseline hazard in the Cox PH model

is replaced with a specific function of time to form the Kullback-Leibler information gain
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[55]. The procedure, however, is not straightforward and inference for the resulting

estimate is even less so (O’Quigley (2008} [74]).

Third, p%, is complex to calculate. Although a very simple approximation, p?,KA, was
suggested, our simulations studies showed that p%v, 4 is not a good approximation if the
prognostic index of the model is non-normal.

Fourth, the measures in this category lack generalisability. The measures p%mOQ and
pz accommodate time-dependent covariates in the context of the Cox PH model. However,
all three measures p¥,, p?XuOQ, and pf are based on specific properties of the Cox PH
model which makes them difficult, if not impossible, to be generalised to other types of

survival models, e.g. flexible parametric models proposed by Royston and Parmar (2002)

[92].

9.4.3 Predictive accuracy measures - not recommended

The main drawback in both predictive accuracy measures, R2G and Vscnp, is their depen-
dence on the follow-up period. This limits their applications, specially when comparing

studies with different follow-up periods.

Furthermore, our simulation studies as well as analysis of real data in chapter 8
indicate that predictive accuracy measures are generally lower than explained variation
and explained randomness measures. The lower values in predictive accuracy measures
are expected since they capture the uncertainty in a binary outcome, i.e. event status
as being "dead" or "alive", accounted for by a model rather capturing the uncertainty
about the survival time itself. In other words, at each event time a binary outcome is
evaluated which leads to lower values of predictive ability, due to the loss of information.
This approach is similar to the R? analogues for logistic regression [20] that compare
discrete observed values (typically zero and one for a dichotomous dependent variable)

with predicted probabilities that result from applying logistic regression.

The only measure in the "other" category proposed by Schemper and Kaider (1997),
R%, ., performed well with regard to the essential criteria. It is, however, a non-
parametric measure of association, numerically complex, and not affording clear inter-

pretation.
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9.5 Conclusions and outlook

This thesis has studied the measures of predictive ability proposed for survival models,
with a particular emphasis on measures proposed for the Cox PH model. It has explained
their use in medical research, and systematically compared their performance with respect

to a set of criteria.

As described by the authors of the measures, most of them possess promising proper-
ties. They, however, have shortcomings as addressed in this thesis. Therefore, there is not
a single measure of predictive ability that can be universally recommended. Nonetheless,
findings from our studies present a good though not unassailable case for preferring the
explained variation category in general and two of the measures specifically, i.e. R%M

and R%, over the other predictive ability measures applicable to survival models.

Finally, we have summarised the conclusions of our studies in some flow diagrams
which can be used as a guide to choose the right measure. The flow diagram in fig-
ure 9-1 guides users to choose the right explained variation measure(s). No measure is
recommended when the prognostic index of the model is asymmetric and outliers are
present. This condition is highlighted with a question mark in the diagram. This can be
an area for further research. We have also prepared similar diagrams for the potentially
recomnmendable measures in the explained randomness and predictive accuracy category
(Figures 9-2 and 9-3). They can be used as a guide in choosing the right measure if one

wants to use them.
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Figure 9-1: Flow diagram recommending an explained variation measure. Question mark:
no measure is recommended.

Explained
Randomness
Measures
Random censoring Type Icensoring
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(if no outlier is present)
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(if no outlier is present) (if no outlier is present)
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Figure 9-2: Flow diagram recommending an explained randomness measure.
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is present)

Figure 9-3: Flow diagram showing when the predictive accuracy measure proposed by
Schemper and Henderson (2000) is recommended.

9.5.1

Future research

For further research we would like to expand on several studies:

1)

2)

3)

Future simulations in this area could consider a wide variety of models to investigate
performance of the proposed measures when many more covariates are introduced.
Future work could explore models with varying numbers of regressors which re-
flect more realistic conditions to see if the measures fare better or worse in more

cumbersome models.

In the explained randomness measure (&, proposed by Kent and O’Quigley (1988),
the baseline hazard in the Cox PH model is replaced with a monotonic function
of time to form the Kullback-Leibler information gain. Kent and O’Quigley (1988)
argued that any monotonic transformation of time can be used. We would like to
see how this measure behaves with another monotonic function of time and compare

it with Pw-

The results of the simulation studies showed that in the presence of censoring omit-
ting influential covariate(s) imposes bias on the explained variation and explained
randomness measures as well the estimated betas in the Cox PH model. We would

like to investigate how to handle this difficult issue.
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4)

6)

From a practical point of view, we would like to investigate the application of
measures in model validation. While some progress has been made in this area by
Royston (2006) [88] using some of the measures, expanding this to more complicated

model validation using other measures requires further work.

We proposed a new measure of explained randomness, p2.,, in Appendix B.8.
The results of our investigation showed that this measure results in higher values
compared with the other explained randomness measures when the covariate effect
is high. Further investigation is required to investigate why this measure is higher

than others in similar settings.

We investigated the impact of extreme and outlier observations by contaminating
each data set with one atypical observation. We could extend the simulation studies

where the outlying observations come from a certain distribution.

A number of areas have been identified in which the work in this thesis can be ex-

tended. These include the following;:

7)

8)

Generalisability of the measures that have performed satisfactorily is one of the
main areas that could be investigated. Royston and Sauerbrei (2004) [93] have
proposed extensions to R% for more flexible survival models. The performance
of their proposed measures requires further investigation. Also, extending other

measures requires further work.

The theoretical properties of the new explained randomness measure, p2_,, in Ap-

pendix B.8 require further investigation.

Extension of the promising measures to partial and adjusted measure(s), similar to
adjusted-R? in linear regression, is another area which would benefit from further

investigation.
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Appendix A

Simulation results by covariate
distribution, censoring type, and

censoring proportions

In this section, we present the results of simulation studies in more details. This section
shows simulation results to study the impact of censoring on: I) explained variation
measures; II) explained randomness measures; and I1I) predictive accuracy measures and
R%x- The results are shown in similar tables to those of 5.6, 6.6, and 7.6. The tables
indicate the performance of the measures in different covariate distributions, censoring
mechanisms and censoring proportions, The figures in these tables are the average across

four covariate effects, and three sample size conditions.
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Table A.1: Summary performance of the explained variation measures proposed by Kent
and O’Quigley (1988) and Royston and Sauerbrei (2004) by the covariate distribution,
censoring mechanism, and censoring proportion.

Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
R%y normal 20 0.1 23.7 0.2 23.5
50 0.5 28.6 0.5 28.1
80 1.7 40.5 1.4 39.7
lognormal 20 0.1 23.7 0.1 23.4
50 0.4 27.5 0.3 26.8
80 1.2 36.9 0.9 35.8
pos. skewed 20 0.1 26.5 0.0 26.1
50 0.3 28.9 0.1 28.1
80 0.9 35.1 0.5 34.0
neg. skewed 20 0.4 31.3 0.4 32.2
50 1.1 38.7 1.5 39.9
80 4.7 57.0 5.1 57.4
R}, normal 20 0.1 23.8 0.2 23.6
50 0.5 28.7 0.5 28.3
80 1.9 40.7 1.5 40.0
lognormal 20 4.2 24.7 5.5 24.4
50 11.9 29.1 14.2 28.4
80 24.0 39.6 26.3 38.6
pos. skewed 20 12.8 31.5 15.9 30.5
50 40.0 35.4 47.6 33.7
80 88.5 43.8 97.7 41.9
neg. skewed 20 -8.3 31.6 -13.3 31.7
50 -19.7 39.2 -26.3 39.0
80 -28.0 56.9 -31.5 55.9
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Table A.2: Summary performance of the explained variation measures proposed by
O’Quigley and Flandre (1994) and Xu and O’Quigley (2001) by the covariate distrib-
ution, censoring mechanism, and censoring proportion.

Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
Rpop  normal 20 2.2 23.3 2.6 22.9
50 6.2 28.0 7.1 274
80 13.0 39.5 13.4 38.7
lognormal 20 3.1 23.0 2.9 22.8
50 9.5 26.8 9.8 25.9
80 21.3 36.5 21.5 35.2
pos. skewed 20 2.7 34.4 0.7 32.2
50 8.9 38.9 7.2 36.7
80 24.1 39.0 22.0 60.1
neg. skewed 20 -4.7 36.6 -9.6 314
50 -10.7 41.1 -15.5 37.8
80 -14.3 54.2 -16.6 52.8
"R%.0o normal 20 0.7 23.8 2.6 22.9
50 3.3 36.1 7.1 274
80 9.6 76.0 13.4 38.7
lognormal 20 0.6 234 2.9 22.8
50 3.3 29.9 9.9 25.9
80 12.8 68.3 21.6 35.2
pos. skewed 20 0.1 36.4 0.7 60.1
50 0.3 54.3 7.2 32.2
80 10.1 80.1 22.0 36.7
neg. skewed 20 -1.1 43.1 -9.6 31.4
50 -4.3 62.7 -15.5 37.8
80 -9.2 90.1 -16.6 52.8

Table A.3: Summary performance of the explained variation measure proposed by Roys-
ton (2006) by the covariate distribution, censoring mechanism, and censoring proportion.
Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
1‘2!2Roysttm normal 20 5.5 24.0 7.9 23.8
50 14.7 294 18.7 29.0
80 28.6 42.4 33.1 41.9
lognormal 20 9.7 23.7 13.2 23.5
50 28.5 28.6 35.2 28.0
80 60.2 40.0 68.5 39.3
pos. skewed 20 15.2 25.0 19.3 24.4
50 50.0 29.0 59.9 28.0
80 117.3 38.1 131.0 36.8
neg. skewed 20 -7.0 277 -10.9 27.9
50 -18.4 34.6 -24.5 34.6
80 -284 50.9 -31.0 50.3
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Table A.4: Summary performance of the explained randomness measure proposed by Kent
and O’Quigley (1988) by the covariate distribution, censoring mechanism, and censoring
proportion.

Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
Py normal 20 0.1 22.1 0.1 21.9
50 0.4 26.6 0.4 26.2
80 1.4 37.6 1.1 36.8
lognormal 20 0.1 21.4 0.1 21.0
50 0.3 24.9 0.2 24.2
80 1.0 33.6 0.7 32.6
pos. skewed 20 0.1 22.5 0.0 22.1
50 0.2 24.8 0.1 24.1
80 0.7 30.8 0.3 29.7
neg. skewed 20 0.4 35.5 0.3 36.2
50 0.9 41.3 1.1 42.0
80 3.2 54.8 3.3 54.7

Table A.5: Summary performance of the explained randomness measures proposed by Xu
and O’Quigley (1999} and O’Quigley et al {2005) by the covariate distribution, censoring
mechanism, and censoring proportion.

Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
p?YuOQ normal 20 -0.1 224 6.3 22.2
50 0.3 28.2 14.3 27.0
80 4.8 44.0 24.3 38.6
lognormal 20 0.1 22.0 10.8 21.9
50 23 26.7 27.5 26.0
80 15.4 41.6 50.5 36.0
pos. skewed 20 0.2 23.5 16.0 23.2
50 3.5 26.9 47.2 26.1
80 30.3 40.8 95.8 33.7
neg. skewed 20 -2.6 26.8 -10.0 26.3
50 -9.1 35.5 -21.9 32.7
80 -23.5 56.8 -27.8 47.4
0% normal 20 4.2 22.5 6.3 22.2
50 11.1 274 14.3 27.0
80 21.1 39.2 24.3 38.6
lognormal 20 7.7 22.2 10.8 21.9
50 22.1 26.6 27.5 26.0
80 44.6 36.8 50.6 36.0
pos. skewed 20 12.6 23.5 16.2 22.9
50 39.7 27.0 47.6 25.9
80 86.4 34.8 96.2 33.5
neg. skewed 20 -6.2 26.1 -9.9 26.3
50 -16.3 32.6 -21.8 32.7
80 -25.4 47.9 -27.7 47.4
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Table A.6: Summary performance of the predictive accuracy measures proposed by Graf
et al (1999) and Schemper and Henderson (2000) by the covariate distribution, censoring
mechanism, and censoring proportion. Note that the entries for the Graf’s measure (1999)
do not include 80% censoring.

Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
R%(Ty) normal 20 0.1 43.5 -2.2 44.4
50 04 45.8 -7.0 46.7
80
lognormal 20 0.2 41.4 -1.4 42.3
50 0.5 43.6 -4.2 44.1
80
pos. skewed 20 0.3 39.6 -0.4 40.4
50 0.5 41.6 -1.0 41.8
80
neg. skewed 20 -0.2 50.0 -7.2 51.9
50 0.5 52.7 -23.6 55.2
80
Vseny normal 20 0.2 21.5 -1.0 21.1
50 0.1 2.5  -13.8 95.4
80 -6.9 42.8 -44.3 36.6
lognormal 20 0.2 21.0 2.3 20.8
50 1.5 25.0 -0.3 24.9
80 2.2 37.6 -18.4 37.0
pos. skewed 20 3.3 21.5 3.3 214
50 12.0 26.4 11.9 26.3
80 24.3 37.5 23.9 37.6
neg. skewed 20 -6.2 25.4 -6.2 25.3
50 -25.0 43.0 -24.6 43.0
80 -50.0 83.2 -50.4 83.5

Table A.7: Summary performance of the measure proposed by Schemper and Kaider
{1997) by the covariate distribution, censoring mechanism, and censoring proportion.
Random Censoring  Type I Censoring

Measure  Covariate % Average Average
Distribution Censored % Difference C.V. % Difference C.V.
RQSChK normal 20 -0.3 25.8 0.1 25.2
50 0.1 29.3 0.2 28.7
80 1.7 39.7 1.7 39.1
lognormal 20 -04 26.8 -0.1 26.2
50 -0.1 29.2 -0.1 28.7
80 1.3 36.7 1.2 35.8
pos. skewed 20 -0.4 32.9 -0.1 32.6
50 -0.2 33.4 0.0 33.5
80 0.6 36.2 0.5 35.5
neg. skewed 20 -0.5 33.4 -0.1 33.1
50 0.1 37.9 0.5 38.3
80 3.8 54.2 4.5 54.5
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Appendix B

More details on some of the

proposed measures

B.1 Royston and Sauerbrei D measure (2004)

Royston and Sauerbrei (2004) [93] define the D measure as follows. Suppose the data on
n individuals are denoted by (¢1,d1, X1), ..., (tn, On, Xn) where for the ith individual ¢; is
the observed time, §; is 1 if the event of interest is experienced at ¢; or 0 otherwise (right
censoring), and X is the covariate vector of prognostic factors. The Cox model may be

written as

In A(t;, X;) = In Ao(t;) + h;

where h; = §'X; is the prognostic index (PI) for the ith individual. Consider the distri-
bution of the PI values. Defining order statistics h(;) < ... < h(,) we may quite generally
write

h(i) =p+ou; +e¢; (B.l)

where u; is the ¢th expected standard Normal order statistic (rankit) in a sample of size
n. Ordering the data on the h; and substituting for gy in B.1 we have (in an obvious

notation)

In Ay, Xpy) = In dolt) + p + oui + &

So far we have assumed no specific distribution for the h;. Let us now suppose that the

h; are Normally distributed N(u,c?). The parameter is the standard deviation (S.D.) of
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the PI values and is a natural measure of separation. By definition, the regression of the
h(;y on the u; is linear with E(h(;)) = ¢t + ou; and E(e;) = 0. To a first approximation,

let us ignore the random perturbation ¢ and set i = 0. Then
In /\(t(i]a X(i)) ~ In Ag(t(t]) + i+ ou; (BZ)

Under the Normality assumption, the special Cox model B.2 is (approximately) linear
in the u;. On fitting it to the data, the constant is absorbed into the baseline hazard
function and the regression coefficient, o* say, will estimate ¢. Royston and Sauerbrei’s

proposed measure D is defined as

where k = /8/7 ~ 1.60.

B.1.1 Interpretation

D is log hazard ratio comparing two equal-sized prognostic groups based on dichotomising

a continuous prognostic index (3'X).

214




B.2 R(X) and Rj in Korn and Simon measure (1990)

The measure proposed by Korn and Simon (1990} is

Ry — Ex[R(X)]
Ro

.

explained variation =

The calculation of R(X) and Ry for loss function with squared error loss censored at Tp
is presented below. For this loss function there are essentially two predictions possible:
survival less than 7 or survival greater than or equal to Tp. One way to think about this
loss function is that the time axis has been transformed so that the interval [T, 00) has

been collapsed to the point Tp. From the definition of expected risk

R(X) = /0 Tt~ B 2dF (] X)

and

_ ot LN Y]
R{)—./O (t* — DAF(T)

where t* = min(t,Tp), tz, = E(T* | X;). To estimate these quantities we should replace

F(t|X;) and the optimal predictor with their respective estimates, therefore

Ry = [ " (min(t, To) — E(T*(X:))2dF(t]X:)

To — 00 o~
= (t — B(T*|X;))%dF (1] X;) +/ (To — E(T*|X;))2dF (t| X;)
0 T
and t = E(T*) are the optimal predictors which are obtained as follows.

BT X) = [ mint, To)dF(X:)
0
TD e o}
_ / tdF (1] X;) + / TLdF(£|X,)
1] To

- / " (X - To(1 — F(To| X))
J0

and similarly E(T*) = fOTO tdF(t) + To(1 — F(Tp)) where S(To|X;) = 1 — F(Tp|X;) and
S(Iv) = 1 — F(To). Expanding this and replacing E(T* | X;) = _IGTO tdF (t|X;) + To(1 —
F(Tp|X;)) will result in

2

~ I, . ~ LI o~
R(X;)= /(; t2dF (t|X:)+ tQS(TO | X;) — l;/ tdF (t | X;) + ToS (To | Xi) (B.4)
0
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where

T, N ~
f 2dF (| X)) = Y t] [S (- | Xi) =St | Xz')]

0 ti<To
and

To —~ ~
/0 af (¢ %) = 3 1 [ 1 X0 - 81 %)

t;<To
Ry is also obtained in a similar manner by replacing F (¢ | X;) with Fo(t) = 1 3 F(t|z;)
=1
—~ ~ 13
and S (T(] E Xz) with S(TQ) = % Z S(T[)lﬂti).
i=1

If a parametric model is used for survival data, then the explained risk will be a func-
tion of the unknown parameters. Substitution of consistent estimates of these parameter
estimates will result in a consistent estimate of the explained risk. For example for the
two-group exponential model with parameters A; and Az where n; = ny = 3 depending
DItz TN

on whether z; = 1 or z; = 2, the explained risk is: explained risk = .
FYVAIFYY B VS
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B.3 Schemper and Kaider measure (1997)

Schemper and Kaider (1997) [98] proposed a measure, R%_, ., based on Spearman correla-
tion coefficients and Kendall T between survival times and covariates. They apply Rubin’s
multiple imputation method to augment censored survival times with random residual
life times to make all survival times uncensored. Several such "augmented" data sets
are generated and correlation between survival times (observed or completed/imputed)
and independent variables are calculated using either Spearman correlation coefficients

or Kendall 7 for each data set then an average is taken. The algorithm is as follows.

1 We observe a sample data as (t;, z;), ¢ = 1,...,n, and estimate the parameters 3 and
baseline survival function Sp(t) for Cox’s model with standardised covariate vector
z. Note that Sp(t) is only defined for ¢t < t*(t* denotes the maximum observed

uncensored life time).

2 Therefore we need to calculate an expected So(t) for t > t*, denoted by §8(t) To
estimate §§ (t), Schemper and Kaider (1997) {98] proposed a linear function which
is fitted to the points (¢*, §0(t*)) and (dt*,0) where d is a constant whose value can
be chosen anything greater than 1, but for numerical reasons they recommend d =
2. therefore S&(t) will be

Sg(t) = bo + byt

where by = §g(t*)d—f-l- and b; = —§0(t*);;(71:r). Due to assumed proportional
hazards also the individual survival functions, S;(¢) = §0(t)e"l’(a’”") (for t < t*) and

Se(t) = §3(t)exp(/§“‘*) (for t > ¢*) are now completely defined.

3 Next is to impute each censored survival time ¢{ become an uncensored time t;

according to the following procedure:

3.1 Draw a random number u;, uniformly distributed in the interval [0, §,(tf)]
where §,,(tf) = gg(tf)e’“’(ﬁx‘}. Note that cumulative survival probabilities for
t >t are uniformly distributed in the interval [0, §i(t§)] and that we draw u;

from one of these cumulative survival probabilities.

3.2 Then we follow the next steps to calculate ¢,.

321 Ifu; > §¢(t*) then ¢; = t; for which §i(tj) Zu; = §i(tj+1) (t; denotes the

ordered uncensored survival times).
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3.2.2 If u; < S;(t*) then t; = [exp((log u;)/ exp(Bz;)) —bo] /b1 with by and b; cal-
culated in step 2. The latter expression follows from equating §8(ti)exf’(ﬁ“) =

(bo + b t,;)e’(p(am") to u;.

4 Calculate a measure of correlation, Rg, hk» Using Spearman’s correlation r,(T, X) or
Kendall’s 7(T, X) where T stands for either an observed or an imputed uncensored

survival time.

5 Repeat steps 3 and 4 m times and then average R%_, s to obtain ﬁgch,{. m is

suggested to be m = 3.
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B.4 Akazawa Measure (1997)

Akazawa (1997) [2] proposed a measure which is derived from the squared product-
moment correlation; it can be interpreted as an adaptation of multiple correlation co-
efficient for normal linear model to the survival time regression model. He named his
measure "MEVa". MEVa was proposed to calculate measure of explained variation in

censored survival data with no loss to follow-up.

To explain his measure, let n be individuals entering a study at random over time
and that the follow-up terminates at some prespecified time with no loss to follow-up.

Let us consider the survival time setting. T = min(Ty, T..) is the observed time, T is the

survival time and T, is the right censoring time. Let X; be covariate vector for individual
i. He defined three statistics e;, € and T to use in his measure. He adapted equation (??)
in simple linear regression to decomposed 7; — T into three components. In this method
e;, € and T are e; = E[T}|X;,T.], € = 2 i ejand T = i T; where E[.|X;,T,] is the
conditional expectation given X; and T,. 1§i1nce T,-T = G’: —e)+(e;—8) +(—-T),
this follows
IS TR = 1S e+ 2 -2+ 2 S T2t 2 T) Y (17)
= i [t i=1 " i=1

(B.5)

—
3

Using the weak law of large numbers under suitable regularity conditions,

_ n n
T—¢— 0and % > Tie; — % > e? — 0 as n — 400, in probability. Therefore,
i=1 i=1

the expression (B.5) can be written asymptotically as 1

T
==

(=T — & 5 (Ti-ei+
1 i=1
2

3=
<M3

(e; —€)* as n — +o00, in probability.

It

=1

Thus, the mean of total sum of squares about the mean of 7; is asymptotically de-
composed into two parts: the means of the sum of squares about the mean and the sum
of squares due to regression. Let ¢; (i = 1,...,n) denote the observed time-on-study and

t the mean of ¢;. Then, the measure of explained variation is defined as

" {e;—€ 2
MEVa= %ﬁ’i((t,——f))? (B.6)

The conditional expected time e; lived in the time interval [0, Tp| is estimated using

the following expressions:
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Tec oo
E(T)= T¢dF(t) + / T.dF(t)
0 JT.
and if we assume that F (u)Xi, To) is the conditional distribution of T; = min(Ty, Tp)
defined on [0,7p) so that F(u|X;, To)=F(u|X;) on [0,7p), and F(u|X;) = 1 on [Ty, 00)

then we can write:

Te Te_
wdF(u|X;,T.) = / wdF(u Xi, T) + To{1 — F(To|Xi, To)}
JQ

o
li

EITIX,.T) = |

0
To
= WFIX T - [ X Tdu s Tl - (T X, T2}
0
Te
= {1 - F(ulX;,T,) }du
0
where T,_ is just the time before T,.. To calculate M EV a in Cox proportional hazards

regression model, the survival function (1 — F(7y|X;,T¢)) will be estimated by Link’s

methods (1984) [64], provided that the proportional hazards assumption holds.
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B.5 Harrell measure (1986)

Harrell (1986) [37] defined a measure of explained variation for survival data. He intro-
duced

P log L{0) — log L(b)

HL ™ “Jog L(0) — log L*

(B.7)

as measure of explained variation for more general models where log L(0} — log L(b) is
likelihood ration test (LR) and L* is the best (lowest) likelihood, so log L{0) — log L* is
the amount of log-likelihood that is capable of being explained by the model. The lowest
(best) possible log-likelihood for the Cox PH model is zero, so log L* is zero in equation
(B.7) for Cox model. He also introduced a measure similar to adjusted R? where the

measure is penalised by the number of parameters in the model as

LR-2p

2 —
Radj*HL - __2 log L(O) . (B-S)

The parameters in this measure are p, the number of parameters estimated and LR =
2(log L(b) —log L(0)). L(b) and L(0) are likelihoods of model with and without covariates.
If the model LR is less than 2p, Ridj_ g1 is set to 0.
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B.6 Kent and O’Quigley measure (1988)

Heinzl (2000) [40] explored Kent and O’Quigley measure (1988), p%,, and introduced a
SAS procedure to compute this measure. His proposed algorithm is presented below. The

Cox proportional hazards model in (2.15) can be written as

¢
F(t|X; B) = ho(t) exp {ﬂX — X / hg(u)du} . (B.9)

JO

Kent and O’Quigley (1988) [49] used p?, = 1 — exp(—I'(8;)) as a measure of explained
variation where ['(84) = 2{I(8q; 8y) — I(0; B¢)} and

1(8:80) = /X [T log {f(tlz: B)} £ (t]: Bo)dtdG(z) (B.10)

where G(z) is the distribution function of X. In practice 3; will be replaced by the
maximum likelihood estimator B Assuming no censoring a standard estimate of infor-
mation gain will be provided by n™! times the usual likelihood ratio test (Kent 1983
[50]). An alternative estimate, having similar statistical properties, is provided by the
fitted information (Kent 1986 [51]) in which I (,B;B), for 3=0and 8 = B are estimated
by
- 1< [ -
13:8) = 23 [ log{ftfaf)} stk Bt (B.11)
nsdT

The distribution of X has been replaced by its empirical distribution in (B.11) . Kent
and O’Quigley used (B.11) to form I (E, B) and 1(0; B) and then calculate p%c. The detail

of the procedure is explained below.

The problem with the Cox model is that the baseline hazard function hg(t) in (2.34)
is completely unspecified. This makes it impossible to form I(3; B) in (B.11). To tackle
this obstacle, Kent and O’Quigley used the following property of The Cox model. The
inference and estimation of the parameters in the Cox model, as the result of using partial
likelihood, is based on the survival time ranks not the actual survival times; therefore,
any ’squeezing’ or ’stretching’ of the time axis does not change the results of the Cox
regression model. It should neither change the result of a measure of dependence based
on Cox regression model. Thus, any strictly monotone transformation of T', T* = ¢(T)
gives the same Cox regression coefficient as 7. Kent and O’Quigley utilized this property
of the Cox model and defined hg(t) = orexp(p)t®~! for any choice of iz and «. By choosing

this baseline hazard we can be ensured that the baseline hazard is proportional to power
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of t. Therefore, if we replace ho(t) in (2.34) with hj(t), the conditional distribution T
given X = z, f*(t|X;8), follows a Weibull distribution

FH(tIX; B) = aexp(p + BX)t* " exp [~ exp (u + BX)],

and Y = InT* follows a linear regression model

Y =In(T") = —o(p+ BX) +o¢ (B.12)

where 0 = a~! and ¢ is independent of X and has density f(y) where

f(y) = ¥ exp(—e€¥),

i.e. the extreme value (Gumbel) density (Lawless, 1982 [59]) with variance ¢/(1) = 1.645.
o and p are scale and location parameters, respectively. Note that finding a suitable
transformation would in practice not be possible if no parametric form for baseline hazard
was assumed. Let 8 = (3, 4, 02) denote the parameters of the model. Let 8; = (8, 11, 0%)
denote the true value of the parameters, generally with 3, # 0. Define #; to be the value
of 8 maximising the expected log likelihood, analogous to [ log { f(t|z:; 8)} f(t|x:; B)dtin
(B.11), fy log({f(y|z;8)}f(y|z; 1)dy over 6 satisfying Hy. Here f(ylz;61) = af(oy+p+
BX) with o = o7 L.

Consider two hypothesis Ho : 0y = (0, st9,03) and Hy : 61 = (8, 11,0%). It can be
shown that p%G does not depend on the choice of y, 0%, they can be given arbitrary values.
To make it as simple as possible, the best choice is ¢4y and ¢y = 1 which corresponds to
a constant baseline hazards function equal to one for H;. The main problem is to find
the estimator 8 = (0, fig, 75). Just the appropriate values for gy and 02 > 0 have to be

computed.

It is obvious that the vector of the true model parameter values 6, is the § maximising
[y log({f(y|z; 0)} f (y|z; 61)dy over all § satistfying Hy. Therefore

+oc
/log({f(ylm; N}f(ylz;00)dy = [ af(ay+p+ BX)ayfloay + py + 6:X)dy

—00

= log(@) + (1) + b - exp(b)y(=- + 1)

where b = p + Bz — (Z)(p; — 1) and () and v'(.) denote the gamma function and

its derivative, respectively. This nonstandard notation is chosen to avoid confusion with
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symbol T, which is already used for denoting information gain. The constant v'(1) =-
0.577215...=1(1) is the negative value of Euler’s constant. Now we can estimate the
measure of dependence between T and X , Py = 1 — exp(—f). Assume that for a study
with n patients censored survival data have been observed with survival times £;, censoring
indicator ¢;, and p-dimensional covariate vector z;, ¢ = 1,..,n. Fitting a Cox regression
model under H; to the data, that is, using all p covariates yields estimated vector B of
regression coefficients. For calculating 7% we consider §; = (B,O7 1) as true parameter
values. Thus, T' = T{H: Ho;gl, Gn(z)}, where G, (x) denoted the empirical distribution
of X putting mass 1/n at each of data points. To compute the estimator By = (Og, Big, @) T
the empirical expected log likelihood I(H;@l) =1 i fy log({f(y|=; 0)} f(ylx; 81)dy has to
be numerically maximised with respect to u and oz,zé\f > 0. Taking partial derivatives and

setting them to zero finally yields an explicit solution for i,
1 — ~
flo = ~log(7(@o +1)) —log(~ > _ exp(~&oz;3))
i=1
and an implicit solution for &g,
i expl—az;
(o) = (1) — (o) + 3 2RO g

i=1 Y exp(—az;j)
j=1

where z; = :c?ﬁ —EE, i = 1,..,n and the vector T contain mean values of the p covariates.
Heinzle (2000) showed how to solve numerical equation £(«) using (a) Newton-Raphson

and (b) simple grid search. After we have found a numerical solution for &g, we can

compute [ = 2 {1(9;51) - I(B;EO)} and
P2 =1—exp(-T) (B.13)

where T' = 2[(1— Go)¥(1) + log{7(d0)} + log{L _)f,lexp( —az;)}].
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B.7 Verweij and Van Houwelingen measure (1993)

Verweij and Houwelingen (1993) [113] proposed a similar measure to Magee’s measure,
Rip=1- exp(—%(l(ﬁ) —1(0)), in which the log-likelihood, I(5), is replaced with the
cross-validated log-likelihood, cul.

The contribution of observation i to the log-likelihood can be defined as

L(B) = UB) — L—(B),

where [(_;)(8) is the log-likelihood when observation ¢ left out. The value of J that

maximises [(_;)(8) is denoted by B(_é).

If the components of the likelihood are independent ;(3) simply equals the contribu-

tion of the ¢th component and

> k(B =18).

Then the cross-validated log-likelihood cuvl is defined by

Tt o~
col=7  Li(By).

cvl can be considered as a measure of predictive value since for a given model cvl measures
how well every observation ¢ can be predicted using the other observations. For the
computation of the cross-validated likelihood cu!l, the coefficients B(_i) are required. They

are estimated by fitting » models, each with n — 1 observations.

Verweij and Houwelingen (1993) [113] used cv! to define a cross-validated measure of

explained variation in future data as

R2 =1-exp ( 2 (cvl — cvlmu)) .

n
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B.8 A new measure of explained randomness for PH mod-

els

The measures of explained randomness p%v, pgmoQ, and p? make use of the properties
of the Cox PH model [19] to quantify the predictive ability of the model. They are all
based on the Kullback-Leibler information gain in equation 2.33, as discussed in section
2.3.2. Since the baseline hazard remains unspecified in the Cox PH model, the proposed
explained randomness measures either replace the baseline hazard with a monotonic func-
tion of time, as in pf;, or work with the distribution of covariate(s) given time, as in pg(uOQ

and pz, to form the Kullback-Leibler information gain.

However, Ebrahimi and Kirmani (1996) [23] showed that Kullback-Leibler information
gain ([55]) is independent of time for the proportional hazards models. We, therefore,
develop the Kullback-Leibler information gain for the Cox PH model, and hence a new

measure of explained randomness for the proportional hazards models.

The Cox PH model is defined as

A(tlz) = A(t). exp(8'z)

and for simplicity in the maths operations consider a = exp(8'z). Thus, the density

function can be written as

t
f@@:Amamw%_aAAmu@

where

t t
M@:AAWWL ﬂﬂ=wﬂi£MMM} S(tlz) = S(8)*

@) =A@®).50)  f(tlr) = At]z).S(t]z)

A@:—%% Atlz) = -

S'(t|z
S(tlz)

—

The Kullback-Leibler information gain is
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KL= /ftl ) In( (E')))

and estimated information gain (Kent & O’Quigley (1988) [49]) for fitted density for T

given X is

estimated KLx— f f(t|z:) In( ft(‘:)z))dt
Therefore
[ S
KL = [ Sty (e
= [T remmEgE e
_ Atlz) = %
KL= a5 /0 F(t]2) In(S(t|z))dt — /0 F(t]) In(S(t))dt

[ s
/0 " He) In(S(ea))ds (1)
[0 T ftle)n(S@)d: ()

A(t exp(ﬁ x)) o [T ot
/ftl in(=2S )dt—ﬁ:c'/o F(te)dt = B
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D+ = [ ) n(S(0) — f(te) n(S(e)] de
= [ Uty ms) - Sl n(ste)] ae
= | = 1) msea
= -0 femEee )

/ ~ F(te) In(S(t))dt = / T A(t[z).S(t]z). In(S(t))dt
0 0

RS g
- /0 SriStia)- In(S(0)de

_ f " S(tlz). In(S(t))dt

0
- fo (SO (S (1)) dt
. / " a8/ (1S n(S(t))dt

0
S(t) = =z dz = S'(t)dt t:[0,00[ z:[1,0]

1
= a/ 2L In(2)dz
J0

/vdu =uv — /udv v = In(2) dv=— du = z°"1dz U=—

1 1
= a. (—10‘. In(1) — —Oa.ln(O)) — (ila _ Loa)
«a a a.« a.o

In the above equation, é()"‘. In(0) is of indeterminate form, so we should investigate
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the limit

lim y*. In(y).
y—0

We can write this limit as

1
lim ¥°.In(y) = lim ngy)
y—0 y—0 55:

which is now in the form co/oco, and hence the L'Hopital’'s Rule applies:

. In(y) _ y - o
lim —= = lim ) = lim —a.y* =0
y—0 7 z—0 oyl y—0
hence
1
Q. (l.l"‘.O — —1-0> — o (— — O> =
o o Q.o
(3e) -
=—a— | =——
a.o a
1 1
WVy=(a-1).—=—-1
(V) =(a-1).= =~
thus

1
KL=p8z—-1+ o= Bz —1+exp(—f3'z)

and the estimated information gain (Kent & O’Quigley (1988) [49]) is

. 1 n [ ~1
estimated KL = n Zi:l [ﬁ z; — 1 +exp(—4 z,)}

(B.14)

where x;, i = 1,2,...n, is the covariate, and B is the maximum likelihood estimator of

the parameter in the model. In the case of multiple regression, Elxi will be replaced with

prognostic index, i.e. linear predictor, of the model to compute estimated information

gain.

Finally, using the relationship between the Kullback-Leibler information gain and

the measures of predictive ability proposed by Kent & O’Quigley (1988) [49], presented

in equation (2.33), a new measure for the non-stratified proportional hazards model is

defined as
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1—n [ >
New measure pfww =1-—exp {—2 (— Zizl [Blfﬂi — 1 +exp(-f l‘z)]) } .

n

If the covariate, X, is normally distributed, N(0, 1), the expected value of KL with

respect to X is

E. (KL) = BE(X) — 1 + Eq [exp(—2)]

where

. 2
E; [exp(—8X)] = 7=/ e PXe X /2dx
_ < o~ X2/2-BX g x
v I
§X+ﬂ)2 g_}
= — dX
\/—/
a2 gx+622
= e 2 2 dX
\/277
32
= e 2

since E(X) =0, therefore

;‘ﬁ
EXNN(O,I)(KL) =—1+ez.

Then a measure of explained randomness for the univariate model where X ~ N(0,1) is

8
New p%VelemN(O,l) =1—exp {—2 (*1 +e?2 ) } .

The new measure can be evaluated for different 5 values in this univariate model as

follows

Hazard Ratio B New p%,ewl X~N(0,1) oy Pev, A P%(uOQ pi

1.25 0.223 0.049 0.049 0.050 0.048 0.048
1.5 0.405 0.157 0.141 0.143 0.134 0.134
2 0.693 0.419 0316 0.325 0.296 0.296
4 1.386 0.960 0.637 0.657 0.602 0.602
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B.8.1 Extension to the stratified Cox PH model

Kullback-Leibler information gain in equation 2.33 can be modified for the stratified Cox
PH model. In the stratified model, the Kullback-Leibler information gain in equation
2.33 can be measured by twice the weighted average of the stratum-specific information

gains

KL=Y ?nifowf(tlm, $) 1n(Lj)(”;—’)s—))dt.

By repeating the same maths operations, similar equation to B.14 can be derived for
the stratified Cox models where, for example, the variable X5 is split into strata which

are represented by the m-level-factor S

KL, = Z:;l % {"nl— le (B — 1+ eXP(-ﬁ’msi)]}
% 27;1 Zzl [B'zsi — 1+ exp(—F'24)]

where s = 1,2,...,m and n; is the number of observations in strata s. For the strati-
fied Cox PH model, KL, replaces KL in p2,, to provide a new measure of explained

randomness for the stratified Cox PH model.

In summary, a measure of explained randomness for the Cox PH model can be de-
fined without replacing the baseline hazard with a monotonic transformation of time, as
in p2,, or reversing the role of outcome and covariate, as in pg(uOQ. In normally distrib-
uted covariates, the new measure p%, is in agreement with other explained randomness
measures in small to moderate covariate effects, but it results in much higher values if
the covariate effect is large, i.e. 1.386. This new measure is independent of censoring,

intuitive, and can be modified for the stratified Cox PH model.
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Appendix C

Models fitted to data sets in

chapter §

C.1 Models fitted to leg ulcer study data set

C.1.1 MPFP I model:

. fracgen ulcarea 0.5
. fracgen mthson 0, replace

. fracgen age -2

. stcox age_l mthson_1 ulcare_l diastbp deepppg, nohr

No. of subjects = 200 Number of obs = 200
No. of failures = 97
Time at risk = 14232

LR chi2(5) = 119.89

Log likelihood = -387.77022 Prob > chi?2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Intervall]

age_1 26.04694 7.32928 3.55 0.000 11.68182 40.41207
mthson_1 -.45057 .1030608 -4.37 0.000 -.65257 -.2485791
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ulcare_1 -8.49743 1.46874  -5.79 0.000 -11.37612 -5.618759
diastbp  -.01884 .0081183 -2.32 0.020 -.03476 -.0029353
deepppg  -.58603  .2096234 -2.80 0.005 -.99689 -.1751824

C.1.2 MFP I model after removing 5 extreme observations:

. stcox age_1 mthson_1 ulcare_1 diastbp deepppg, nohr

No. of subjects = 195 Number of obs = 195
No. of failures = 97
Time at risk = 13620
LR chi2(5) = 109.81
Log likelihood = -387.7683 Prob > chi2 = 0.0000
_t Coef Std. Err z P>|z| [95% Conf. Intervall
age_1  26.04648 7.329038 3.66 0.000 11.68183 40.41113
mthson_1 -.45053 .103060 -4.37 0.000 -.65252  -.24853
ulcare_1 -8.49398 1.470568 -5.78 0.000 -11.37625 -5.61172
diastbp -.01884 .008118 -2.32 0.020 -.03475 -.00293
deepppg -.58604  .209622 -2.80 0.005 -.99689 -.17519
C.1.3 MFP II model:
. stcox age mthson_1 ulcarea diastbp deepppg, nohr
No. of subjects = 200 Number of obs = 200
No. of failures = 97
Time at risk = 14232
LR chi2(5) = 113.74
Log likelihood =  -390.84948 Prob > chi2 = 0.0000
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_t Coef.

age -.0212034
mthson_1 -.4391165
ulcarea -.0016209
diastbp -.0178674
deepppg -.5714134

Std. Err.

.0087131
.1029093
.0003338
.0080573
.2100124

-2.43
-4.27
-4.86
-2.22
-2.72

P>zl [95% Conf. Intervall
0.015 -.038 -.0041261
0.000 -.640 -.237418
0.000 -.002275 -.00097
0.027 -.0336594 -.00208
0.007 -.9830302 -.15980

C.1.4 MFP II model after removing 5 extreme observations:

. stcox age mthson_1 ulcarea diastbp deepppg, nohr

No. of subjects = 195
No. of failures = 97
Time at risk = 13620
Log likelihood =  -390.84948
_t Coef Std. Err

age -.0212034 .0087131
mthson_1 -.4391165 .1029083
ulcarea -.0016209 .0003338
diastbp -.0178674 .0080573
deepppg —.5714134  .2100124

-2.43
-4.27
-4.86
-2,22

Number of obs = 195

LR chi2(5) = 103.64

Prob > chi2 = 0.0000
P>|z| [95% Conf. Intervall
0.015 -.0382808 -.0041261
0.000 -.640815 -.237418
0.000 -.002275 -.0009667
0.027 -.0336594 -.0020753
0.007 -.9830302 ~.1597966

-2.72

C.2 Models fitted to breast cancer I study data set

. 8tset rfs rfsstat
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C.2.1 RFS I model:

. stcox age er graddl gradd2 size noddl nodd2 therl, nohr

No. of subjects = 295 Number of obs = 295
No. of failures = 118
Time at risk = 24975.06033
LR chi2(8) = 50.51
Log likelihood =  -597.04107 Prob > chi2 = 0.0000
_t | Coef Std. Err z P>|z| [95% Conf. Intervall
age | -.0522733 .0162416 -3.22 0.001 -.0841063 -.0204404
er | -.4389279 .219263 -2.00 0.045 ~-.8686755 -.0091802
graddl | .8948001 .3107595 2.88 0.004 . 2857227 1.503878
gradd2 | .9299319  .3194396 2.91 0.004 .3038419 1.556022
size | .3372146  .1943897 1.73 0.083 -.0437823 .7182114
nodd1l | .2771259  .3082003 0.90 0.369 -.3269356 .8811873
nodd2 | .8061004  .3546643 2.27 0.023 .1109712 1.50123
therl | -.5869892 .3056888 -1.92 0.055 -1.186128 .0121498
C.2.2 RFS II model:
. stcox age er graddl gradd2 size noddl nodd2 therl gene70, nohr
No. of subjects = 295 Number of obs = 295
No. of failures = 118
Time at risk = 24975.06033
LR chi2(9) = 72.62
Log likelihood =  -585.98855 Prob > chi2 = 0.0000
_t | Coef.  Std. Err. z P>|z| [95% Conf. Intervall



+

e v o et . e T o o e o s o R e o i o e o o O e e S S S o o o e e e

age | -.0447666 .0162788 -2.75 0.006 ~-.0766725 -.0128607
er | -.1565484  .2169731 -0.72 0.471 -.5818079 .2687111
graddi | .4479252  .3270106 1.37 0.171 -.1930039 1.088854
gradd2 | .2809455  .3421962 0.82 0.412 -.3897448 .9516358
size | .3665994  ,19436568 1.89 0.059 -.0143505 . 7475493
nodd1l | .1836802  .3037698 0.60 0.545 -.4116977 . 7790581
nedd2 | .781884  .3649559 2.14 0.032 .0665835 1.497184
therl | -.6095437 .3082959 -1.98 0.048 -1.213793 -.0052948
gene70 | 1.236802  .2822552 4,38 0.000 .6835923 1.790012
C.2.3 OS I model:
. stset os osstat
. stcox age er graddl gradd2 size noddl nodd2 therl, nohr
No. of subjects = 295 Number of obs = 2956
No. of failures = 79
Time at risk = 27838.31012
LR chi2(8) = 60.61
Log likelihood =  -387.99393 Prob > chi2 = 0.0000
t Coef. Std. Err. z P>{z| (95% Conf. Interval]
age | -.0402315 .019744 -2.04 0.042 -.078929 -.001534
er | -.8276249  .2504392 -3.30 0.001 -1.318477 -.3367731
graddl | 1.460347 .54231 2.69 0.007 .3974392 2.523255
gradd2 | 1.785506  .5409229 3.30 0.001 .7253168 2.845696
size | .4154089  .2417264 1.72 0.086 -.058366 .8891839
noddl | . 0624291 . 4063887 0.15 0.878 -.734078 . 8589362
nodd2 | .6153807  .4397907 1.40 0.1862 -.2465932 1.477355
therl | -.2107762  .3912291 -0.54 0.590 -.9775701 .5560197
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C.2.4 OS II model:

. stcox age er graddl gradd2 size noddl nodd2 therl gene70, nohr

No.

No. of failures

Time at risk

of subjects

295
79

27838.31012

Number of obs

LR chi2(9)

Prob > chi2

[95% Conf.

285

77.64

0.0000

Intervall

72
-2.16
1.68
1.86
1.89
0.03
1.49
.74

Log likelihood =  -379.47708
_t | Coef Std. Err

age | -.0338659 .0196702

er | -.5339754 .2475778
graddl | .9378675  .5580181
gradd2 | 1.04331  .5623386
size | .4569345  .2413038
noddl |  .0125814  .3975092
nodd2 | .6759106  .4547843
therl | -.2929577  .3955662
gene70 |  1.550349  .4322426

. o o o o o O ©o
Lo}
-\I
(631

-.0724187
-1.0192195
-.1558278

.0b88536

.0160123

. 7665224

.2154502
-1.068253
. 7031692

.004687
-.0487317
2.031563
2.145473
.9298812
.7916852
1.567271
.4823379
2.397529

C.3 Models fitted to breast cancer II study data set

. describe hormon x1 x2 x3 x4 x5 x6 x7 rectime censrec

variable name

storage

type

German breast cancer dataset

display

format

value

label
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e e i S o o e 4 b B S " e e AR, S S o T P Y o i WD o o, i i o i et . . i B} D B S S S S e o Sy W T 7T o o s, M g

hormon byte %12.0g Therapy Hormonal Therapy

x1 byte %9.0g Age

x2 byte %14.0g menop Menopausal status

x3 int %9.0g Tumour size

x4 byte %9.0g Tumour grade

x5 byte %9.0g Number of positive nodes

x6 int %9.0g Progesterone receptor

x7 int %9.0g Estrogen receptor

rectime int %9.0g Recurrence free survival time
censrec byte %9.0g cencode Censoring Indicator

o ——— o i ot . o " = . o T S T e S B o e e e e D T e e e S

. 8tset rectime censrec

. fracgen x1 -2 ~-.5

. fracgen x6 .5

. gen x5a=cond(x5>=3,1,0)
. gen x5b=cond(x5>=9,1,0)
. gen x4a=cond(x4>=2,1,0)

. gen x5e=exp(-0.12*x5)

C.3.1 Linear model:

. stcox x4a xb6a xbb x6_1 hormon, nohr

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 771400
LR chi2(5) = 122.90
Log likelihoed = -1726.7229 Prob > chi2 = 0.0000
_t | Coef Std. Err z P>lz| [95% Conf. Interval]
_______ e _—

e o . e i S ! S . . Y o . il B " M T e e e o e
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xda | .60101 .24902 2.41 0.016 .1129398 1.08908

xba | .5943838  .1376574 4.32 0.000 . 3245803 .8641874
x5b | .601952  .1441665 4.18 0.000 .3193909 .8845131
x6a | -.0570375 .0111694 -5.11  0.000 -.0789292  -.0351459
hormon | -.3842406  .1282575 -3.07 0.002 -.6297408  -.1387405

C.3.2 MFP model:

. stcox x1_1 x1_2 x4a xbe x6_1 hormon, nohr

No. of subjects = 686 Number of obs = 686
No. of failures = 299
Time at risk = 771400
LR chi2(6) = 163.11
Log likelihood = -1711.6186 Prob > chi2 = 0.0000
_t | Coef Std. Err z P>lz| [95% Conf. Intervall
______ o e e
xla | 1.742153  .3301373 5.28 0.000 1.095095 2.38921
xib | -7.817902  1.749447 -4.47 0.000 -11.24675  -4.389049
xda | .51743561 .2493739 2.07 0.038 .0286713 1.006199
xBe | -1.981213  .2268903 -8.73 0.000 -2.4256909 -1.536516
x6a | -.0581884  .0110946 -5.24 0.000 -.0799335  -.0364433
hormon | -.3944998 . 128097 -3.08 0.002 -.6455653  -.1434342

C.4 DModel fitted to prostate cancer study data set

obs: 506 Bone prostate data
storage display value
variable name type format label variable label

239



Acid phosphatase

Performance status

ap int %8.0g
pf byte %8.0g
Sorted by:

. fracgen ap O

. stcox ap_1 pf

No. of subjects

No. of fajilures

Time at risk =

Log likelihood

_t | Coef
ap_1 |  .0642943
pf |  .3785905
age | .0211054
wt | -.0108855
hx | 4718573
hg | -.0068701
sz | .0164314

age wt hx hg sz, nohr

506 Number of obs = 506
356
18551
LR chi2(7) = 77.41
-1990.015 Prob > chi2 = 0.0000
Std. Err z P>|z]| [95% Conf. Intervall
.0325554 1.97 0.048 .000487 .1281017
.1595785 2.37 0.018 .0658224 .6913585
.0083726 2.52 0.012 .0046954 .0375154
.0043808 -2.48 0.013 -.0194718 -.0022993
.110972 4.25 0.000 .2543562 .6893584
.0029825 -2.30 0.021 -.0127156  ~.0010245
.0043956 3.74 0.000 .0078162 . 0250467

C.5

describe

storage

variable name type

display

format

t_mt who2 who3 haem iwccl trt

value

label wvariable label

Models fitted to renal cancer I study data set
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t_mt int %8.0g Days from diagnosis of

metastasis to randomisation

who2 byte %8.0g WHO PS 1
who3 byte %8.0g WHO PS 2
haem float %9.0g HAEMOGLOBIN
iwccl float %9.0g

trt int %8.0g trt_  TREATMENT

C.5.1 Linear model:

. stcox it_mtl who2 who3 ihaeml iwccl trt, nohr

No. of subjects 347 Number of obs = 347
322

4507.752957

No. of failures

]

Time at risk

LR chi2(6) = 122.71
Log likelihood =  -1552,185b Prob > chi2 = 0.0000
_t | Coetf Std. Err z P>|z| [95% Conf. Intervall
______ o o e e e
t_mtl | -.0003498 .0002028 -1.73 0.084 -.0007473 .0000476
who2 | . 2627672 .1396847 1.81 0.070 -.0210097 . 5265441
who3 | .833791 .1657898 5.03 0.000 .5088489 1.158733
haeml | -.2152997 .0345636 -6.23 0.000 -.2830431 —.1475663
wcel | . 0696692 .0132308 5.27  0.000 .0437374 . 095601
trt | -.3491271 .113224 -3.08 0.002 -.571042 -.1272122

C.5.2 MFP model:

. fracgen it_mtl -.5

. stcox it_mtl_1 who2 who3 ihaeml iwccl trt, nohr

241



347 Number of obs = 347

No. of subjects

322

No. of failures

4507 .7520957

Time at risk

LR chi2(6) = 132.69

Log likelihood =  -1547.1966 Prob > chi2 = 0.0000
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_______ SR ——— e
t_mtl_1]| .0441056 .0108671 4,06 0.000 .0228065 .0654047
who?2 | .2855838 .1378819 2.07 0.038 .0153402 .5558274
who3 | .8871175 .1639929 5.41 0.000 .5656974 1.208538
haeml | -.2067895 .0344722 -6.00 0.000 -.2743538  -.1392252
weel | . 06934 .0132359 5.24 0.000 . 0433981 .095282
trt | -.3338317 .1130017 -2.95 0.003 -.556311 -.1123525

C.6 Models fitted to renal cancer II study data set

. fracgen crp -2

. des age_t 1lk_t liver_t bone_t neutr_ul crp_t

storage display value
var name type format label variable label
age byte %8.0g
1k byte %8.0g 1k lymph node metastasis
liver byte 7%8.0g liver liver metastasis
bone byte J8.0g bone bone metastasis
neutr_ul int %8.0g neutrophils
crp int %8.0g crp-protein
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. stcox age lk

No. of subjects =

No. of failures =

Time at risk

Log likelihood

liver bone neutr_ul

322
274
10399.67147

-1365.6732

_t | Coef.

age | -.0206172

1k | .3321942
liver | .3162244
bone | .6104281
neutr_ul .0001386
crp_1 | -8.035771

e i . . . o . e e o

.0072866
.1306681
.1725015
.1528271
.0000361
3.726544

-2.83
2.54
1.83
3.99
3.84

-2.16

c¢rp, nohr

Number of obs = 322

LR chi2(6) = 48.78

Prob > chi2 = 0.0000

P>zl fo95% Conf. Intervall
0.005 -.0348986 ~.0063358
0.011 .0760894 .588299
0.067 -.0218724 .6543211
0.000 .3108925 . 9099636
0.000 .0000678 .0002094
0.031 -15.33966 -.7318786

C.7 Model fitted to PBC I study data set

. gen cens=cond(status==2,1,0)

. gen age_y=age/365.25

. gen lnalbumin=log(albumin)

. gen lnbilir=log(bilir)

. gen lnpro_time=log(pro_time)

. stset time cens

. 8tcox age_y edema lnalbumin lnbilir lnpro_time, nohr

No. of subjects

No. of failures

Time at risk

312
125
625985
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Log likelihood =

_t | Coef
age_y .033266
edema . 784686

lnalbumi -3.053267

1nbilir 879207

LR chi2(5) = 199.13
-540.41244 Prob > chi2 = 0.0000
Std. Err z P>z [95% Conf. Intervall
_______ e e e e o e o e e e e e o e
.0086598 3.8¢4 0.000 .0162933 .0502391
.2991328 2.62 0.009 .1983967 1.370976
.7240783 -4.22 0.000 -4.472434  -1.634099
.0987322 8.90 0.000 . 6856962 1.072719
1.023797 2.95 0.003 1.009076 5.022286

lnpro_tim 3.015681

C.8 Model fitted to PBC II study data set

. stset time dead

. describe age bilir

storage
variable name  type
age float
bilir float
cirrh int
central int
treat int

. fracgen bilir O

. Stcox age

No. of subjects

No. of failures

cirrh central treat

display

207
105

244
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bilir_1 cirrh central treat, nohr

Number of obs =

value
format label variable label
%9.0g Age
%9.0g Bilirubin
%#8.0g Cirrhosis [1=yes]
%8.0g Central cholestasis [1=yes]
%8.0g Treatment
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Time at risk

313913

LR chi2(5) = 136.81
Log likelihood = ~422.14087 Prob > chi2 = 0.0000
_t Coef. Std. Err z P>lz]| [95% Conf. Intervall
age .046440 .0109895 4.23 0.000 .024901 . 067979
bilir_1 1.078658 .1300643 8.29 0.000 .823736 1.333579
cirrh .924442 .214637 4.31 0.000 .503761 1.345123
central . 769449 .2657023 2.90 0.004 .248683 1.290217
treat -.498985 .2016777 -2.47 0.013 —-.894266 -.103704
C.9 Model fitted to lymphoma study data set
C.9.1 Model I:
. stcox ipi_ddl ipi_dd2, nohr
No. of subjects = 73 Number of obs = 73
No. of failures = 43
Time at risk = 332.0099385
LR chi2(2) = 7.5b6
Log likelihood = -176.8355 Prob > chi2 = 0.0229
_t Coef. Std. Err. z P>zl [95% Conf. Interval]
_____________ N Ip— ——— e e o e e e e o
ipi_ddi .9873513 .458733 2.15 0.031 . 0882512 1.88645
ipi_dd2 .8289193 .3480562 2.38 0.017 .1467487 1.51109
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C.9.2 Model II:

. stcox ipi_ddl ipi_dd2 outcome_predictor_score, nohr

No. of subjects 73

48

No. of failures

Time at risk 332.0099985

Log likelihood -171.79222

_t Coef. Std. Err.

+
|
|
i

ipi_ddi 1.042206  .4620482
ipi_dd2  .718093  .3509191
gene_17  .719341  .2268566

Number of obs = 73

LR chi2(3) = 17.64

Prob > chi2 = 0.0005
z P>|z| [95% Conf. Intervall
2.26 0.024 .136608 1.947804
2.05 0.041 .030305 1.405883
3.17 0.002 274710 1.163972
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