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Abstract

With the molecular revolution in medicine, many new potential prognostic and predic­
tive factors are becoming available. However, whether new factors will lead to substantial 
improvement in the accuracy of prognostic assessments requires the use of a suitable per­
formance measure when considering different prognostic models. Several such measures 
have been proposed for use in survival analysis with a particular emphasis on measures 
proposed for the Cox proportional hazards model. However, there is no consensus of opin­
ion on this issue. The proposed measures make use of a wide spectrum of techniques from 
information theory to statistical imputation. No comprehensive systematic summary of 
these measures has been done, and no adequate comparison of measures, theoretically or 
in practice, has been reported.

This PhD studies the proposed measures systematically. It defines a set of criteria 
that a measure should possess in the context of survival analysis. Essential aspects 
of a measure are that it should be consistent under different degrees of censoring and 
sample size conditions; it should also possess properties such as variable and parameter 
monotonicity. Desirable properties of a measure are robustness and extendability. This 
thesis compares the existing measures using these criteria discussing their strengths and 
shortcomings.

From a practical point of view, a discussion of why these measures are important 
and what information they can provide in medical research, practical data analysis, and 
perhaps most importantly in prognostic modelling is presented. D ata has been taken from 
completed randomised controlled trials in several diseases carried out by MRC Clinical 
Trials Unit and other research organisations. The measures tha t have the best properties 
will be applied to models fitted to these datasets. This allows us to quantify and assess 
the prognostic ability of the available prognostic factors in several diseases.

Thesis supervisor: Patrick Royston 
Title: Professor

Thesis Co-supervisors: Mahesh Parm ar and Rumana Omar 
Title: Professor and PhD

3



C ontents

1 Introduction 23

1.1 The context of the r e s e a rc h ..................................................................................  23

1.1.1 Predictive ability in linear regression .....................................................  25

1.1.2 Applications of R 2 ...................................................................................... 25

1.1.3 Measures of predictive ability in survival m o d e l s ..............................  27

1.2 Organisation and overview .....................................................................................  29

2 M easures o f predictive ability  in survival m odels 31

2.1 In troduction ............................................................................................................... 31

2.1.1 R 2 and its interpretation in simple linear regression ........................  32

2.1.2 Health warnings against model comparisons using R 2 ......................  35

2.1.3 Adjusted R 2 ..............................................    37

2.2 Survival M odels........................................................................................................  38

2.2.1 The proportional hazards m o d e l ............................................................ 38

2.2.2 Generalised survival m o d e ls .....................................................................  39

2.3 Measures of predictive ability in survival models ........................................... 40

2.3.1 Measures of explained v a ria tio n ..............................................................  42

2.3.2 Measures of explained ran d o m n ess ........................................................  48

2.3.3 Measures of predictive accuracy ..............................................................  57

2.3.4 Other proposed measures in survival m odels........................................  60

4



2.4 D iscussion................................................................................................................  60

3 Investigation  o f th e proposed m easures 62

3.1 In troduction .............................................................................................................  62

3.2 Properties of a "good" m e asu re .......................................................................... 63

3.2.1 Essential properties ................................................................................. 63

3.2.2 Desirable p ro p e r t ie s ................................................................................. 64

3.3 Shortcomings of some m easu res .......................................................................... 65

3.4 Tables of the properties of m e a s u re s .....................................................   67

3.5 D iscussion................................................................................................................  72

4 Further assessm ent o f  th e  proposed m easures 74

4.1 In troduction .............................................................................................................  74

4.2 Limitations of previous simulation w o r k .........................................................  74

4.3 Simulation s t u d y ...................................................................................................  75

4.3.1 Basic steps of the s t u d y ..........................................................................  76

4.3.2 Aims and o b je c tiv e s ................................................................................. 76

4.3.3 D ata generation ....................................................................................... 76

4.3.4 The effect of censo ring .............................................................................  77

4.3.5 The effect of sample s iz e .......................................................................... 78

4.3.6 Monotonicity e ffec t...................................................................................  78

4.3.7 Survival m o d e l ..........................................................................................  78

4.3.8 Covariate d is tr ib u tio n .............................................................................  79

4.3.9 Numbers of s im u la tio n s .......................................................................... 79

4.3.10 Analysing the accumulated statistic of i n t e r e s t ................................  81

4.3.11 Evaluation of the predictive ability measures ...................................  81

4.4 Software u s e d .......................................................................................................... 82

4.5 D iscussion................................................................................................................  82

5



5 Investigation  o f th e  m easures o f explained variation 83

5.1 In troduction ..............................................................................................................  83

5.2 Impact of covariate distribution on the m e a s u re s ........................................... 84

5.2.1 Helland (1987) and Kent & O ’Quigley (1988) measure - . . .  86

5.2.2 Royston and Sauerbrei measure (2004) - F?2D .......................................  86

5.2.3 O’Quigley and Flandre measure (1994) - R qqF .................................  88

5.2.4 Xu and O ’Quigley measure (2001) - R-xuOQ .................................... 88

5.2.5 Royston measure (2006) - R p ^ ^ .......................................................  88

5.3 Impact of censoring on the m e a su re s .................................................................  88

5.3.1 Helland (1987) and Kent & O ’Quigley (1988) measure - R p M . . .  89

5.3.2 Royston and Sauerbrei measure (2004) - R j-,.......................................  90

5.3.3 O ’Quigley and Flandre measure (1994) - R qqF .................................  91

5.3.4 Xu and O’Quigley measure (2001) - R x uO Q ........................................  92

5.3.5 Royston measure (2006) -   93

5.4 Consistency, distributional shape, and sample size e f f e c t ..............................  93

5.4.1 Consistency of the m easures.....................................................................  94

5.4.2 Sampling distribution of the m e asu re s ..................................................  97

5.4.3 Impact of sample size on the m easu res .................................................. 99

5.5 Monotonicity properties of the proposed measures ............................................100

5.5.1 Parameter m ono ton ic ity ............................................................................... 100

5.5.2 Number of variables monotonicity ............................................................101

5.6 Upper bound of the m e a su re s ................................................................................. 102

5.7 Robustness of the m e a su re s ..................................................................................... 103

5.7.1 Impact of extreme observations...................................................................106

5.7.2 Impact of outlier observations......................................................................107

5.8 Impact of model mis-specification on the m e a s u re s ........................................... 109

5.8.1 Impact of under-fitting - covariate o m iss io n ............................................109

6



5.8.2 Impact of covariate mis-modelling ............................................................ I l l

5.8.3 Non-proportional h a z a r d s ............................................................................ 114

5.9 D iscussion......................................................................................................................117

6 Investigation  o f th e  m easures o f explained random ness 121

6.1 In troduction ...................................................................................................................121

6.2 Impact of covariate distribution on the m e a s u re s ............................................... 122

6.2.1 Kent and O’Quigley measures (1988) - pfy & Pw a ............................... 123

6.2.2 Xu and O ’Quigley measure (1999) - Px uo q ............................................124

6.2.3 O ’Quigley et al measure (2005) - p% ........................................................124

6.3 Impact of censoring on the m e a su re s ................................   124

6.3.1 Kent and O ’Quigley measures (1988) - pyy h  Pw a ...............................126

6.3.2 Xu and O ’Quigley measure (1999) - p\ uq q ............................................127

6.3.3 O’Quigley et al measure (2005) - p\ .........................................................127

6.4 Consistency, distributional shape, and sample size e f f e c t .................................. 128

6.4.1 Consistency of the m easures......................................................................... 128

6.4.2 Sampling distribution of the m e a su re s ..................................................... 130

6.4.3 Impact of sample size on the m easu res ......................................................132

6.5 Monotonicity properties of the proposed measures ........................................... 132

6.5.1 Parameter m ono ton ic ity ............................................................................... 133

6.5.2 Number of variables monotonicity ............................................................133

6.6 Upper bound of the m e a su re s .................................................................................. 133

6.7 Robustness of the m e a s u re s ..................................................................................... 134

6.7.1 Impact of extreme observations.................................................................. 135

6.7.2 Impact of outlier observations..........................   136

6.8 Impact of model mis-specification on the m e a s u re s ........................................... 137

6.8.1 Impact of under-fitting - covariate o m iss io n ............................................137

7



6.8.2 Impact of covariate m is-m o d e ilin g ...........................................................139

6.8.3 Non-proportional h a z a r d s ...........................................................................140

6.9 D iscussion.....................................................................................................................143

7 Investigation  o f th e  m easures o f predictive accuracy 147

7.1 In troduction..................................................................................................................147

7.2 Impact of covariate distribution on the m e a s u re s ..............................................148

7.2.1 Graf et al measure (1988) - R q (T*) .........................................................149

7.2.2 Schemper and Henderson measure (2000) - VschH ..................................150

7.2.3 Schemper and Kaider measure (1997) - R s chk .......................................150

7.3 Impact of censoring on the m e a su re s .................................................................... 151

7.3.1 Graf et al measure (1988) - R q (T*) .......................................................152

7.3.2 Schemper & Henderson measure (2000) - V s h H ......................................153

7.3.3 Schemper & Kaider measure (1997) - R%chK .............................................154

7.4 Consistency, distributional shape, and sample size e f f e c t ................................. 155

7.4.1 Consistency of the m easures........................................................................ 155

7.4.2 Sampling distribution of the m e asu re s ......................................................156

7.4.3 Impact of sample size on the m easures..................................................... 157

7.5 Monotonicity property of proposed measures .................................................... 159

7.5.1 Parameter m ono ton ic ity ..............................................................................159

7.5.2 Number of variables monotonicity ........................................................... 159

7.6 Upper bound of the m e a su re s ................................................................................ 160

7.7 Robustness of the m e a s u re s .................................................................................... 161

7.7.1 Impact of extreme observations.................................................................. 162

7.7.2 Impact of outlier observations..................................................................... 163

7.8 Impact of model mis-specification on the m e a s u re s .......................................... 163

7.8.1 Impact of under-fitting - covariate o m iss io n ............................................164

8



7.8.2 Impact of covariate mis-modelling ...........................................................164

7.8.3 Non-proportional h a z a rd s ........................................................................... 166

7.9 D iscussion.................................................................................................................... 168

8 A pplications to  m edical research and data analysis 171

8.1 In troduction ................................................................................................................. 171

8.2 Clinical data s e t s ........................................................................................................172

8.2.1 Data set 1: venous leg u lc e r ........................................................................172

8.2.2 Data set 2: breast cancer I ........................................................................173

8.2.3 D ata set 3: breast cancer I I ........................................................................174

8.2.4 D ata set 4: prostate c a n c e r ......................................................   175

8.2.5 D ata set 5: renal cancer I ...........................................................................175

8.2.6 D ata set 6: renal cancer I I ...........................................................................175

8.2.7 D ata set 7: primary biliary cirrhosis I (PBC I ) ......................................176

8.2.8 D ata set 8: primary biliary cirrhosis II (PBC I I ) .................................... 177

8.2.9 D ata set 9: ly m phom a................................................................................. 177

8.3 The estimates of the measures in real d a ta .......................................................... 177

8.3.1 Estimates of explained variation m easu res................................................178

8.3.2 Estimates of explained randomness m e a s u re s .........................................182

8.3.3 Estimates of predictive accuracy measures and R%c h K .......................... 185

8.4 D iscussion.................................................................................................................... 188

9 Sum m ary and conclusions 193

9.1 S u m m a ry .................................................................................................................... 193

9.2 Findings of the simulation s tud ies.......................................................................... 195

9.2.1 Explained variation m easu re s ...................................................................... 195

9.2.2 Explained randomness m e a s u re s ................................................................196

9.2.3 Predictive accuracy measures & R schK ......................................................197

9



9.2.4 Comparison of three groups of m easu res ................................................. 198

9.3 Applications of the measures in medical re s e a rc h ..............................................200

9.4 Recommendations for p rac tice .................................................................................200

9.4.1 Explained variation measures - recom m ended.........................................201

9.4.2 Explained randomness measures - not recom m ended ................................202

9.4.3 Predictive accuracy measures - not recom m ended.................................203

9.5 Conclusions and o u tlo o k ...........................................................................................204

9.5.1 Future re sea rch ..............................................................................................206

A S im u la tio n  re su lts  by cov aria te  d is tr ib u tio n , cen so rin g  ty p e , an d  cen­

so rin g  p ro p o r tio n s  208

B M o re  d e ta ils  on  som e o f th e  p ro p o sed  m easu res  213

B .l Royston and Sauerbrei D  measure ( 2 0 0 4 ) .......................................................  213

B.1.1 In te rp re ta tion .................................................................................................214

B.2 R(X ) and Ro in Korn and Simon measure (1990)..........................................  215

B.3 Schemper and Kaider measure (1997)   217

B.4 Akazawa Measure (1997)......................................................................................  219

B.5 Harrell measure (1986)...................................................................................  221

B.6 Kent and O’Quigley measure ( 1 9 8 8 ) ................................................................ 222

B.7 Verweij and Van Houwelingen measure (1993).........................................   225

B.8 A new measure of explained randomness for PH m o d e ls ..................................226

B.8.1 Extension to the stratified Cox PH m o d e l..............................................231

C M odels f itte d  to  d a ta  se ts  in  c h a p te r  8 232

C .l Models fitted to leg ulcer study data s e t .............................................................. 232

C.1.1 M FP I model:  232

C.1.2 MFP I model after removing 5 extreme observations:............................233

C .l.3 M FP II m o d e l : ............................................................................................. 233

10



C .l.4 M FP II model after removing 5 extreme o b serv a tio n s :.........................234

C.2 Models fitted to breast cancer I study data  set .................................................234

C.2.1 RFS I m o d e l: ................................................................................................. 235

C.2.2 RFS II model:............................................................................................... 235

C.2.3 OS I m o d e l:.....................................................................................................236

C.2.4 OS II m o d e l : ................................................................................................. 237

C.3 Models fitted to breast cancer II study data s e t .................................................. 237

C.3.1 Linear m o d e l:................................................................................................. 238

C.3.2 MFP model:......................................................................................................239

C.4 Model fitted to  prostate cancer study data s e t ....................................................239

C.5 Models fitted to renal cancer I study data s e t ......................................................240

C.5.1 Linear m o d e l:..................................................................................................241

C.5.2 MFP model:.................................................................................................. 241

C.6 Models fitted to renal cancer II study data s e t ..................................................... 242

C.7 Model fitted to PBC I study data s e t .................................................................243

C.8 Model fitted to PBC II study data s e t ............................................................. 244

C.9 Model fitted to lymphoma study data s e t ......................................................... 245

C.9.1 Model I : ........................................................................................................... 245

C.9.2 Model I I : ...........................    246

11



List o f Figures

2-1 Relationship between Y and estimated Y in simple linear regression . . .  33

2-2 Schematic illustration of explained variation measures; the total variation

in outcome is divided into two components .................................................... 43

2-3 Schematic presentation of survival status (dotted line), survival predictions

from the null model (broken line), survival prediction given covariates (solid 

line) for individual i in predictive accuracy measures......................................  57

4-1 Covariate distributions considered in the simulation s t u d y .........................  80

5-1 The expected value (solid line) of Xu and O’Quigley measure (2001) by the

censoring proportion when the covariate is normally distributed, random 

censoring condition, and sample size=1000, Dots are the estimates of the 

measure in each replicate........................................................................................ 93

5-2 Proportion of simulations in which Xu and O ’Quigley measure (2001) re­

sulting in negative value. The covariate is normally distributed and sur­

vival times are randomly censored........................................................................ 94

5-3 Sampling distributions of Royston and Sauerbrei measure (2004) by the

covariate effect, sample size, and censoring proportions in the normally 

distributed covariate and random censoring condition..................................... 98

5-4 Explained variation measures as a function of the covariate effect in the

model, normally distributed covariate. In the bottom graph, survival times 

are randomly censored according to an exponential distribution for the 

censoring times.............................................................................................................. 104

5-5 Mean of the sampling distribution of explained variation measures as the

extreme observation becomes more influential....................................................... 107

12



5-6 Mean of the sampling distribution of explained variation measures as the

outlier observation becomes more influential..........................................................108

5-7 The true relationship between the log hazard ratio and the covariate (red

curve), and the linear model (blue line) fitted to the simulated data. Bot­

tom graphs show the distribution of prognostic index or linear predictor of 

the true models............................................................................................................. 112

5-8 The survival pattern of a two-arm trial under non-proportional hazards.

Red curve is the survival in the treatment arm, and the black curve is the 

survival in the control arm. In the treatment arm, the hazard changes for 

those who survived after two years...........................................................................114

6-1 Sampling distributions of Kent & O ’Quigley measure (1988) by the covari­

ate effect, sample size, and censoring proportions in the normally distrib­

uted covariate and random censoring condition.....................................................131

6-2 Explained randomness measures as a function of the covariate effect in

the model, normally distributed covariate. In the bottom graph, survival 

times are randomly censored according to an exponential distribution for 

censoring times............................................................................................................. 136

6-3 Mean of the sampling distribution of explained randomness measures as

the extreme observation becomes more influential................................................137

6-4 Mean of the sampling distribution of the explained randomness measures

as the outlier observation becomes more influential............................................. 138

7-1 Sampling distributions of Schemper and Henderson (2000) and Schemper

and Kaider (1997) measures by the covariate effect, sample size, and censor­

ing proportions in the normally distributed covariate and random censoring 

conditions....................................................................................................................... 158

7-2 Measures as a function of covariate effect in the model, normally distrib­

uted covariate. In the bottom graph, survival times are randomly censored 

according to an exponential distribution for censoring times............................. 162

7-3 Mean of the sampling distribution of two predictive accuracy measures and

Schemper and Kaider measure (1997) as the extreme observation becomes 

more influential............................................................................................................. 163

13



7-4 Mean of the sampling distribution of two predictive accuracy measures and

Schemper and Kaider measure (1997) as the outlier observation becomes 

more influential............................................................................................................. 164

8-1 Survival time (left) and log hazard ratio (right) versus initial ulcer area

with FP1 transformation of 0.5 using model MFP I for leg ulcer data. . . 180

8-2 Distributions of the prognostic index in the MFP I (left) and MFP II

(right) models for leg ulcer study..............................................................................190

8-3 Distributions of the prognostic index in the MFP I (left) and MFP II

(right) models for leg ulcer study after removing the censored observations 

with extreme covariate values....................................................................................190

8-4 Distributions of the prognostic index in the RFS I (top left), RFS II (top

right), OS I (bottom left), and RFS II (bottom right) models for breast 

cancer I study................................................................................................................ 191

8-5 Distributions of the prognostic index in the linear (left) and MFP (right)

models for breast cancer II s tu d y ............................................................................191

8-6 Distributions of the prognostic index in the linear (left) and MFP (right)

models for renal cancer I study.........................................   191

8-7 Distributions of the prognostic index in the models for prostate cancer

(left) and renal cancer II (right) studies..................................................................192

8-8 Distributions of the prognostic index in Fleming (left) and Royston (right)

models for the PBC I and II studies........................................................................ 192

8-9 Distributions of the prognostic index in the model I (left) and model II

(right) for the lymphoma s tu d y ............................................................................... 192

9-1 Flow diagram recommending an explained variation measure. Question

mark: no measure is recommended.......................................................................... 205

9-2 Flow diagram recommending an explained randomness measure.....................205

9-3 Flow diagram showing when the predictive accuracy measure proposed by

Schemper and Henderson (2000) is recommended................................................ 206

14



List o f Tables

2.1 Estimates of some explained variation measures using model III for breast

cancer data in Royston and Sauerbrei (1999)....................................................  41

2.2 Estimates of some explained randomness measures using model III for

breast cancer data in Royston and Sauerbrei (1999)........................................  41

2.3 Estimates of some predictive accuracy measures using model III for breast

cancer data in Royston and Sauerbrei (1999)....................................................  42

3.1 Summary of the essential properties of the potentially recommendable mea­

sures of predictive ability in survival a n a ly s is ................................................. 68

3.2 Summary of the desirable properties of the potentially recommendable

measures of predictive ability in survival a n a ly s is ..........................................  69

3.3 Summary of the essential properties of the unsuitable measures of predic­

tive ability in survival analysis ..........................................................................  70

3.4 Summary of the desirable properties of the unsuitable measures of predic­

tive ability in survival analysis ..........................................................................  71

3.5 Summary of the programs available to calculate the proposed measures of

predictive ability in survival a n a ly s is ................................................................  73

5.1 Mean of the sampling distribution of explained variation measures by the

covariate distribution and covariate effect across all sample size conditions, 

censoring=0% ..........................................................................................................  85

5.2 Standard deviation of the sampling distribution of explained variation mea­

sures by the covariate distribution and covariate effect across all sample

size conditions, censoring=0% .............................................................................  86

15



5.3 Coefficient of variation of explained variation measures by the covariate 

distribution and covariate effect, expressed as %. Table entries are the 

average across all combinations of sample sizes, censoring=0%..................... 87

5.4 The average percentage difference from the expected value of the measures 

in the corresponding non-censored data by the covariate distribution and 

censoring proportion................................................................................................  90

5.5 Coefficient of variation of explained variation measures by the covariate 

distribution and censoring proportion, expressed as %....................................  90

5.6 Summary performance of explained variation measures by the covariate 

distribution and censoring mechanism.................................................................  91

5.7 Summary of the estimated bias and root mean squared error (RMSE) of the 

estimator of Royston and Sauerbrei measure (2004). Normally distributed 

covariate and randomly censored data ................................................................. 96

5.8 Percentage change in the expected value of explained variation measures

in small and large sample sizes by censoring proportion. The figures in 

brackets are the standard deviation of the sampling distribution.................  99

5.9 Mean difference in the expected value of the measures after adding one 

or two independent covariates to the model in 2,000 simulations, normally 

distributed covariates.................................................................................................. 102

5.10 Proportion decrease in measures after adding one or two independent co­

variates to the model in 2,000 simulations, normally distributed covariates. 103

5.11 The expected value of explained variation measures for full and under-fitted 

models. Normally distributed covariate(s) and random censoring. The 

figures in brackets are the standard deviation of the sampling distribution. 110

5.12 The mean and standard deviation of the sampling distribution of the mea­

sures for the correctly specified model I and misspecified model.......................113

5.13 The mean and standard deviation of the sampling distribution of the mea­

sures for the correctly specified model II and misspecified model..................... 113

16



5.14 Simulation results for non-proportional hazards. HR1 - hazard ratio in 

favour of treatm ent arm for the first two years in trial. HR2 - hazard ratio 

after two years in trial. Sample size is 500 in all experimental conditions, 

and survival times are randomly censored. The standard deviations are 

given in b ra c k e ts ........................................................................................................116

5.15 Summary of censoring effects on explained variation measures by the co­

variate distribution and censoring type. The codes show the extent of 

censoring effect in different situations from almost no effect, 1, to a large 

effect, 4........................................................................................................................... 118

5.16 Summary of sample size effect and parameter monotonicity property of 

explained variation measures..................................................................................... 119

6.1 Mean of the sampling distribution of explained randomness measures by 

the covariate distribution and covariate effect across all sample size condi­

tions, c en so rin g = 0 % ................................................................................................. 123

6.2 Standard deviation of the sampling distribution of explained randomness 

measures by the covariate distribution and covariate effect across all sample

size conditions, censoring=0% ................................................................................. 124

6.3 Coefficient of variation of explained randomness measures by the covariate 

distribution and covariate effect, expressed as %. Table entries are the 

average across all combinations of sample sizes, censoring==0%.........................125

6.4 The average percentage difference from the expected value of explained 

randomness measures in the corresponding non-censored data by the co­

variate distribution and censoring proportion........................................................ 126

6.5 Coefficient of variation of explained randomness measures by the covariate 

distribution and censoring proportion, expressed as %........................................126

6.6 Summary performance of explained randomness measures by the covariate 

distribution and censoring mechanism.....................................................................127

6.7 Percentage change in the expected value of explained randomness measures 

in small and large sample sizes by censoring proportion - random censor­

ing. The figures in brackets are the standard deviation of the sampling 

distribution.....................................................................................................................132

17



6.8 Mean difference in the expected value of the measures after adding one 

or two independent covariates to the model in 2,000 simulations, normally 

distributed covariates...................................................................................................134

6.9 Proportion decrease in measures after adding one or two independent co­

variates to the model in 2000 simulations, normally distributed covariates. 135

6.10 The expected value of explained randomness measures for full and under­

fitted models. Normally distributed covariate(s) and random censoring.

The figures in brackets are the standard deviation of the sampling distri­

bution..............................................................................................................................139

6.11 The mean and standard deviation of the sampling distribution of the mea­

sures for correctly specified model I and misspecified model..............................140

6.12 The mean and standard deviation of the sampling distribution of measures

for correctly specified model II and misspecified model.......................................140

6.13 Simulation results for non-proportional hazards. HR1 - hazard ratio in 

favour of treatm ent arm for the first two years in trial. HR2 - hazard ratio 

after two years in trial. Sample size is 500 in all experimental conditions, 

and survival times are randomly censored. The standard deviations are 

given in b ra c k e ts ........................................................................................................142

6.14 Summary of censoring effects on explained randomness measures by the

covariate distribution and censoring type. The codes show the extent of 

censoring effect in different situations from almost no effect, 1, to a large 

effect, 4........................................................................................................................... 144

6.15 Summary of sample size effect and parameter monotonicity of the explained 

randomness measures...................................................................................................144

7.1 Mean of the sampling distribution of predictive accuracy measures and 

Schemper and Raider’s measure (1997) by the covariate distribution and 

covariate effect across all sample size conditions, censoring—0 % .................... 149

7.2 Standard deviation of the sampling distribution of predictive accuracy mea­

sures and Schemper and Raider’s measure (1997) by the covariate distrib­

ution and covariate effect across all sample size conditions, censoring~0% 150

18



7.3 Coefficient of variation of predictive accuracy measures and Schemper and 

Raider’s measure (1997) by the covariate distribution and covariate effect, 

expressed as %. Table entries are the average across all combinations of 

sample sizes, censoring=0%....................................................................................... 151

7.4 The average percentage difference from the expected value of measures 

in the corresponding non-censored data by the covariate distribution and 

censoring proportion.................................................................................................... 152

7.5 Coefficient of variation of measures by the covariate distribution and cen­

soring proportion, expressed as %. Table entries are the average across 

three sample size conditions.......................................................................................153

7.6 Summary performance of measures by the covariate distribution and cen­

soring mechanism. Note that the entries for the G raf’s measure (1999) do

not include 80% censoring.......................................................................................... 154

7.7 The expected value and standard deviation (in brackets) of the sampling 

distribution of Graf et al (1999) measure in 0% and 80% censoring by the 

covariate effect and covariate distribution.............................................................. 155

7.8 Percentage change in the expected value of measures in small and large 

sample sizes by censoring proportion. The figures in brackets are the stan­

dard deviation of the sampling distribution........................................................... 157

7.9 Mean difference in the expected value of measures after adding one or 

two independent covariates to the model in 2,000 simulations, normally 

distributed covariates.................................................................................................. 160

7.10 Proportion decrease in measures after adding independent covariate(s) to

the model in 2000 simulations, normally distributed covariates........................ 161

7.11 The expected value of measures for full and under-fitted models. Normally 

distributed covariate(s) and random censoring. The figures in brackets are

the standard deviation of the sampling distribution.............................................165

7.12 The mean and standard deviation of the sampling distribution of measures

for the correctly specified model I and misspecified model................................. 165

7.13 The mean and standard deviation of the sampling distribution of measures

for the correctly specified model II and misspecified model............................... 166

19



7.14 Simulation results for non-proportional hazards. HR1 - hazard ratio in 

favour of treatm ent arm for the first two years in trial. HR2 - hazard ratio 

after two years in trial. Sample size is 500 in all experimental conditions, 

and survival times are randomly censored. The standard deviations are 

given in b ra c k e ts ........................................................................................................167

7.15 Summary of censoring effects on predictive accuracy and Schemper and 

Kaider (1997) measures by the covariate distribution and censoring type.

The codes show the extent of censoring effect in different situations from 

almost no effect, 1, to a large effect, 4.....................................................................169

7.16 Summary of sample size effect and parameter monotonicity of predictive 

accuracy and Schemper and Kaider (1997) measures...........................................170

8.1 Summary of the models applied to the data sets, model Chi-squared and 

degrees of freedom, skewness and kurtosis of the prognostic indices result­

ing from the fitted resgression models..................................................................... 178

8.2 The estimates of explained variation measures for different studies. The 

figures in brackets are the bootstrap confidence intervals................................... 179

8.3 The estimates of explained variation measures in the leg ulcer data after 

removing the censored observations with extreme values....................................181

8.4 The estimates of explained randomness measures for different studies. The 

figures in brackets are the bootstrap confidence intervals................................... 184

8.5 The estimates of explained randomness measures in the leg ulcer data after 

removing the censored observations with extreme values....................................184

8.6 The three time points (in days) at which the predictive ability of the models

are evaluated using the Graf et aFs measure (1999) for each study..................185

8.7 The estimates of predictive accuracy measures and Schemper and Kaider 

measure (1997) for different studies. The figures in brackets are the boot­

strap confidence intervals............................................................................................187

8.8 The range of explained variation and explained randomness estimates for 

each study. ..................................................................................................................189

20



9.1 Summary of the essential properties of potentially recommendable mea­

sures of predictive ability in survival analysis after our investigation . . . 199

A .l Summary performance of the explained variation measures proposed by 

Kent and O’Quigley (1988) and Royston and Sauerbrei (2004) by the co­

variate distribution, censoring mechanism, and censoring proportion. . . . 209

A.2 Summary performance of the explained variation measures proposed by 

O ’Quigley and Flandre (1994) and Xu and O’Quigley (2001) by the co­

variate distribution, censoring mechanism, and censoring proportion. . . . 210

A.3 Summary performance of the explained variation measure proposed by 

Royston (2006) by the covariate distribution, censoring mechanism, and 

censoring proportion....................................................................................................210

A.4 Summary performance of the explained randomness measure proposed by 

Kent and O’Quigley (1988) by the covariate distribution, censoring mech­

anism, and censoring proportion...............................................................................211

A.5 Summary performance of the explained randomness measures proposed 

by Xu and O’Quigley (1999) and O’Quigley et al (2005) by the covariate 

distribution, censoring mechanism, and censoring proportion............................ 211

A.6 Summary performance of the predictive accuracy measures proposed by 

Graf et al (1999) and Schemper and Henderson (2000) by the covariate 

distribution, censoring mechanism, and censoring proportion. Note that 

the entries for the G raf’s measure (1999) do not include 80% censoring. . 212

A.7 Summary performance of the measure proposed by Schemper and Kaider 

(1997) by the covariate distribution, censoring mechanism, and censoring 

proportion...................................................................................................................... 212

21



A cknow ledgem ent 1 I  would like to thank the following people for lending their support 

and inspiration during the completion of this work:

Patrick Royston for his supervision and advice, as well as for his patience especially 

in the early stages of my work. Max Parmar, my other supervisor at the M RC Clinical

Trials Unit, for providing many fruitful ideas for this research.

I  would also like to thank Dr. Rumana Omar, my other supervisor at the UCL for  

giving guidance on the organisational side of the PhD.

Last but not least I would like to express my sincere appreciation to my family for their 

wonderful cooperation, understanding and support throughout the period of this research.

22



Chapter 1

Introduction

1.1 T he con text o f  th e  research

In the last century, considerable progress was achieved in understanding the aetiology of 

many diseases. However, both treatm ent of individual patients and foreknowledge about 

the outcome of a disease remains a m atter of particular importance. In all diseases, there 

exist factors which assist clinicians in acquiring this knowledge and predicting the progno­

sis of patients. Such factors are called "prognostic factors". Prognostic factors are useful 

in a number of ways. Knowledge of prognostic factors can help us understand how the 

disease would behave if it were untreated, or is likely to behave if treated. Identification 

of potential prognostic factors may also provide information useful to  understand disease 

mechanisms and help devise new treatments.

One of the objectives in prognostic factor studies is to identify factors that can be 

used to guide clinical management of patients. To clinicians, knowledge of the relative 

importance of prognostic factors is invaluable since they usually combine such knowledge 

with experience to informally help them make decisions about the care of their patients. 

Laupacis et al (1997) [58] described how clinicians can use prognostic factors to devise 

clinical rules which assist them in medical decision making when caring for their patients. 

In general, these rules are created by multivariate regression analysis and either provide 

the probability of observing an specific outcome, or suggest a diagnostic or therapeutic 

course of action.

In clinical research, especially in the study of cancer, an understanding of prognostic 

factors is important in the design and analysis of clinical trials and retrospective reviews
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of clinical experience. As Simon (1984) [105] pointed out, it is very difficult to design good 

clinical trials when prognosis is poorly understood. Valid comparison of treatment and 

control groups requires that the expected outcome without treatm ent should be similar in 

both. Prognostic factors are used as eligibility criteria to ensure a relatively uniform study 

population, and they may also be used in the process of stratification that is undertaken 

to balance the case mix in each arm as far as possible.

The necessity to assess the impact of prognostic factors on the survival outcome of 

patients has given rise to considerable numbers of studies every year. The results of studies 

are usually summarized in the form of statistics resulting from statistical significance 

testing, i.e. estimated parameters, confidence intervals, and p-values. Sole dependence 

on these statistics may lead to misinterpretation of the findings of a study. As Ludwig 

(2005) [66] stated, statistical tests and p-values give very little information because they 

can answer only the one very specific question: "Does an observed difference exceed that 

which might reasonably be expected solely as a result of sampling error and/or random 

allocation of individuals?" They do not inform us whether prognostic factor information 

will lead to substantial improvement in the prognostic assessment. There is a great deal 

of literature about the use and misuse of p-values and statistical tests (Ludwig (2000) 

[65]; Ludwig (2005) [66]; Igles et al (2001) [73]; Cohen (1994) [16]). Small p-values say 

nothing about the clinical relevance of the results or the size of the effect. Small p-values 

can always be obtained with large samples no matter what the true relationship is and 

how much random experimental error is present. As many, including Abelson (1985) [l], 

have wisely cautioned, statistical significance tests and p-values should always be used 

"for guidance rather than for sanctification".

To determine whether research results are of practical significance, we often need 

to supplement p-values and parameter estimates with statistics tha t measure the effect 

magnitude of prognostic factors and new treatments. A variety of statistics have been 

introduced to measure effect magnitude. Many of the statistics fall into one of two 

main categories: measures of effect size (typically, standardized mean differences between 

treatm ent and control groups) and measures of strength of association (Kirk (2007) [52]). 

In normal linear regression, R 2 is a standard measure of strength of association between 

the outcome and predictors. It is also a measure which can be used to further understand 

the clinical importance of prognostic factors. This measure can help to quantify the 

improvement in predictive ability when using information on a set of prognostic factors 

compared to using another set or not using them at all.
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1.1.1 Predictive ability in linear regression

The coefficient of determination, R 2, is a well known measure in normal linear regression, 

which is applied to quantify the predictive ability of covariates, i.e. prognostic factors, in 

the model. The primary reason for its application is its interpretation as the proportion 

of variability in the outcome explained by a model, where variability is measured by the 

variance of outcome variable. In general, the more variability is explained, the better the 

predictive ability of the model. In other words, R 2 measures how well the model explains 

the occurrence of different values of the outcome. Furthermore, R 2 quantifies how close 

the model based predictions are to the observed values of the outcome. It is also a measure 

of randomness in the outcome that is explained by the model. Kullback and Leibler 

(1951) [55] applied Shannon’s information function [104], which can be used to quantify 

the amount of information, in statistics and introduced the Kullback-Leibler information 

gain [55] or divergence measure. They showed that R 2 can be expressed through the 

Kullback-Leibler distance between models. Due to the link with information gain (i.e. 

reduction in entropy), R 2 can also be interpreted as the proportion of ‘randomness’ in 

the outcome that is explained by the model.

In summary, R 2 is a measure of explained variation and explained randomness, as 

well as a measure of predictive accuracy for individuals in the study.

1.1.2 Applications o f R2

The coefficient of determination, R 2, has wide applications in medical research and prac­

tical data analysis. Some of the applications of R 2 are described below.

To quantify our know ledge o f th e  disease under stud y

An important application of a predictive ability measure is its use to quantify our knowl­

edge of the disease under study. R 2 as a measure of explained variation can also be 

considered as a tool to help in finding out how much we know about a disease. In prog­

nostic modelling where the goal is to develop a model which describes the outcome as 

well as possible, a suitable measure can tell us how much variation in the outcome is 

explained by prognostic factors in the model. After constructing the prognostic model, 

the remaining unexplained variation is usually attributed to the random error term in 

the model. The concept of randomness is an interesting one, as it could be argued that
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no events in nature are truly random; we may not know all their influencing factors, and 

thus they just appear random to our limited knowledge.

For instance, if 20% of the variation in the outcome variable, e.g. survival of patients, 

is explained by known prognostic factors, this tells us that much remains to be known 

about the disease. Explaining the remaining proportion of variation may, in theory, be 

available to a more sophisticated system of prognostic determination, perhaps by using 

molecular or other types of marker. On the other hand, if 90% of variation in the outcome 

variable is explained by a model, which is (perhaps) unlikely for many diseases, it tells 

us that our level of knowledge about the disease is very high.

E ffectiveness o f surrogate endpoints

A measure like R 2 can be used to evaluate the effectiveness of surrogate endpoints. Her- 

son (1989) [45] wrote that "a surrogate endpoint is one that an investigator deems as 

correlated with a true endpoint of interest but that can perhaps be measured at lower ex­

pense or at an earlier time than the endpoint of interest". Therefore, surrogate endpoints 

are only useful if they are a good predictor of clinical outcome.

The validation of surrogate endpoints has been studied by Prentice (1989) [83]. He 

presented a definition as well as a set of criteria, which are equivalent only if the surrogate 

and true endpoints are binary. Before a surrogate endpoint can replace a final endpoint 

in the evaluation of an experimental treatment, it must be formally ‘validated’. Freed­

man and Graubard (1992) [28] supplemented these criteria with the so-called ‘proportion 

explained’, which is the proportion of the treatment effect mediated by the surrogate. 

Buyse and Molenberghs (1998) [13] discussed some problems with this class of measures 

and proposed to replace it with new measures. One of their proposed measures was the 

individual-level association between the endpoints, after accounting for the effect of treat­

ment, and referred to it as ‘adjusted association’. This is one of the applications of R 2 

which evaluates the individual level association between the predictor and the outcome. 

A similar measure can also be used to validate the effectiveness of a surrogate endpoint 

where the outcome is the survival time.
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Practical data analysis

Another application of predictive ability measures is in practical data  analysis. In medical 

research, continuous variables are often converted into categorical variables by grouping 

values into two or more groups. Royston et al (2006) [90] and Altman and Royston (2006) 

[5] explained the consequences of converting the continuous data into groups. They also 

presented alternative methods that make full use of information at hand. A suitable 

measure of predictive ability can be used to quantify to what extent predictive ability of 

a continuous variable is diminished, if at all, by recording it as a dichotomy, trichotomy, 

or more groups. In other words, to what extent do we lose, or. gain, by recording a 

continuous prognostic factor, for example age at diagnosis, into discrete classes on the 

basis of cutpoints.

M odel validation

Measures of predictive ability can also be used for model validation. As Harrell (2001) 

[36] stated, "model validation is done to ascertain whether predicted values from the 

model are likely to accurately predict responses on future subjects not used to develop 

our model". Altman and Royston (2000) [4] examined some general approaches to model 

validation and discussed two kinds of model validation: internal validation and external 

validation. Data-splitting, bootstrapping, and cross-validation are methods that can be 

applied for internal validation of a prognostic model. Measures of predictive ability can 

be used to evaluate the quality of the predictions obtained from prognostic models. For 

example, a suitable measure of predictive ability can be used to validate a model in data- 

splitting methods where we have training and test data sets. Suppose we have training 

and test samples, each with the same covariates recorded. A model is developed on the 

training data, its predictive ability, R 2, is estimated, and the model’s performance is 

evaluated on the test data. Royston (2006) [88] demonstrated how this can be done in 

practice.

1.1.3 M easures o f predictive ability in survival m odels

Survival time studies are an important part of clinical research. There have been serious 

efforts in the last two decades to devise a measure of predictive ability for statistical 

models in the analysis of survival data. However, the presence of censoring makes the
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definition of such measure much more complicated. Nonetheless, several measures of 

predictive ability have been proposed for use in survival models, almost exclusively for the 

Cox proportional hazards regression model. As Schernper and Stare (1996) [99] indicated, 

there is no simple, easy to calculate, easy to interpret measure for survival models, and 

in particular for the Cox proportional hazards (PH) regression.

The interpretation of R 2 in linear regression as a measure of explained variation, 

explained randomness, and predictive accuracy has given rise to a wide spectrum of 

measures for survival models. We, therefore, classify the proposed measures as measures 

of explained variation, measures of explained randomness, and measures of predictive 

accuracy in survival models. We refer to all of them as measures of "predictive ability" 

in this thesis. The last known attem pt to compare the proposed measures was done by 

Schernper and Stare in 1996 [99]. The outcome of their investigation will be discussed in 

chapter 3 in more detail. Graf and Schumacher (1995) [32] demonstrated the conceptual 

differences between some explained variation and predictive accuracy measures in survival 

models. Furthermore, Henderson et al (2001) [43] investigated the reliability of point 

predictions derived from familiar survival models by applying some of the measures to 

real data sets. Several new measures have been proposed since then and there has been 

no attem pt in the literature to compare these measures systematically with regard to a 

set of criteria. The measures have been mainly studied by the authors who proposed 

the measures - with the exception of Schernper and Stare (1996) [99]. Despite all the 

promising properties that were presented by the authors of the measures, the shortcomings 

of these measures have rarely been addressed. For example, their behaviour has rarely 

been assessed in the context of multiple regression. Moreover, previous studies lack 

investigation of these measures systematically across several diseases and real data sets.

This thesis is a study of measures that have been proposed to quantify the predictive 

ability of covariates in survival models. It investigates their statistical properties and 

their application in medical research. In addition, it studies the proposed measures 

across several diseases to quantify and assess the predictive ability of available/known 

prognostic factors. Great variation exists in the application of measures for examining 

predictive ability in survival models. Even when investigators use the same measure 

for a similar population, the estimates of selected measure sometimes differ substantially. 

Finally, several thorny statistical issues have been raised regarding properties of measures; 

in particular: variations in formulae, identification and selection of a suitable measure, 

the effect of censoring, the impact of highly skewed covariates, the relationship between
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likelihood and some of the measures, and the maximum value tha t the measures can 

reach. We try to address these issues in this thesis with the aim of recommending a small 

number of measures for general use.

1.2 O rganisation and overview

This thesis consists of 9 chapters. This chapter provides an overview. It discusses why 

measures of predictive ability are important and what information they can provide in 

medical research and practical data analysis. It also explains their potential use in quan­

tifying our knowledge about a disease.

In chapter 2, first, we give an overview of the measure of predictive ability in linear 

regression, R 2. Second, an introduction to survival models and proposed measures of 

predictive ability for survival time data is given. The measures are classified into three 

main categories and some details on their background are presented. However, there exist 

measures which use a completely different approach to characterising the predictive ability 

in survival models such as rank correlation or proportional reduction in log-likelihood. 

These measures comprise a separate category named as "the other proposed measures". 

More statistical details of these measures are included in Appendix B.

In chapter 3 we assess the proposed measures with regard to a set of criteria. This 

chapter formulates our approach and provides us with a framework to study these mea­

sures systematically. The measures have been developed based on broad and elusive 

concepts. The criteria, which are important in the context of survival analysis, simplify 

the process of drawing conclusions. Tables that summarise these measures according to 

the proposed criteria will be presented. A thorough investigation of proposed measures 

in chapter 3, with regard to the proposed criteria, leads to a short-list of measures which 

might be considered as "potentially recommendable".

In chapter 4, we propose simulation studies to further study the "potentially recom­

mendable measures". We explain the limitations of previous studies and explain the need 

for further investigation of these measures. This chapter also describes the simulation 

study design. The simulation studies are mainly designed to investigate the measures 

with respect to the criteria which are established in chapter 3. Chapter 4 also explains 

the data generation process and different aspects of the simulation study.

Chapter 5, 6 , and 7 study the proposed explained variation measures, explained ran­
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domness measures, and predictive accuracy measures, respectively. Each chapter explores 

the measures in each category through a series of simulation studies and illustrates the re­

sults of the study with a set of tables and graphs. In each chapter the impact of censoring 

and sample size are studied, together with parameter and number of variables monotonic­

ity properties described as criteria in chapter 3. The impact of covariate distribution will 

be studied by considering distributions with different skewness. The presence of extreme 

observations in normal linear regression inflates i?2. The R 2 in normal linear regression 

is also sensitive to outlier observations. In each chapter we assess the impact of extreme 

and outlier, known an atypical, observations on the measures in that category. Most of 

the measures are proposed in the context of Cox proportional hazards (PH) regression 

model. In the presence of non-proportional hazards, the behaviour of these measures is 

not clear. We discuss this issue together with the impact of model mis-specification.

Chapter 8 is devoted to the application of these measures to medical research and 

practical data analysis. D ata sets from several diseases are considered in this chapter. 

Finally, chapter 9 presents conclusions of this thesis with some practical recommendations.
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Chapter 2

M easures o f predictive ability in 

survival m odels

2.1 Introduction

Hardin and Hilbe (2007) ([34]) indicated that different interpretations of i?2 in linear 

regression have given rise to a wide class of measures in nonlinear models. Understanding 

Ft2 in normal linear regression helps us to study many proposed measures in survival 

models, including their motivation and background. Therefore, in this chapter, first the 

measure of predictive ability, R 2, in normal linear regression is presented, together with 

some warning points with respect to its application. Second, an introduction to the 

Cox proportional hazards (PH) model is given. Then, an introduction to the proposed 

measures of predictive ability in survival models and their motivation is presented; further 

statistical details are included in Appendix B for some measures.

Most of the measures are proposed for the Cox PH model. These measures can be 

classified into three main categories: a) measures of explained variation; b) measures of 

explained randomness; and c) measures of predictive accuracy. However, other measures 

of predictive ability proposed for the survival models exist which do not belong to the 

above categories, such as the proportional reduction in log-likelihood proposed by Harrell 

(1986) [35] and a measure based on the rank correlation between the imputed survival 

times and the covariates, proposed by Schernper and Kaider (1997) [98]. We classify them 

as a completely different category named "other proposed measures" in this thesis.

As presented by Schernper and Stare (1996) [99] and Xu and O ’Quigley (1999) [116],
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sometimes measures in the same category differ substantially because they measure dif­

ferent population quantities. Nonetheless, the proposed classification helps us to grasp 

the theoretical underpinning of the measures and facilitates their interpretation. In nor­

mal linear regression, i?2 measures all three of explained variation, explained random­

ness/uncertainty, and predictive accuracy. Outside the linear regression model, the mea­

sures usually differ. Understanding this distinction is essential in order to draw correct 

conclusions in practice.

2.1.1 R2 and its interpretation in sim ple linear regression

Let X \ , X.2 i X p and Y  denote 1 random variables. In the standard linear regression 

model X\ ,  X 2 , ..., X p typically denote independent variables or covariates, usually called 

predictors or explanatory variables, and Y  typically denotes the dependent variable, also 

known as the outcome variable. The regression function is linear and the model can be 

stated as
p

Y  =  ,3 0 +  ^ 2 ^ X j  +  e  ( 2 . 1 )

j -  1

where Y  =  (y\ , ..., yn)r, X  — (aq, xp) is a fixed n  x p  design matrix, and fij 

(j = 1,..., p) represent the unknown parameters, e =  (e i , ..., en/  is a vector of independent 

errors with E{ei) = 0 , var(ei) =  a2 (i = 1,..., n), and n is the total sample size.

Let us assume the simplest model with one dependent and one independent variable 

where we have Y  and one X . Figure 2-1 shows the observation Yi for the values of X{. 

The variation in Yi is conventionally measured in terms of the deviation of YiS around 

their mean Y,  i.e. Yi — T, which is specified by a vertical line for observation i in figure 2- 

1. The measure of total variation, denoted by S S T ,  is the sum of the squared deviations, 

S S T  = (VJ — Y ) 2. The greater the variation among Yi observations, the higher the 

value of SST .

When we use the predictor variable X , the variation reflecting uncertainty in the 

outcome variable Y  is Yi — Yi that of the Yi observations around the fitted regression line. 

A measure of variation in the Yi when regression on the predictor variable X  is taken 

into account is the sum of the squared deviations, S S E  = ~ Yi)2- The greater the

variation of Yi observations around the fitted regression line, the higher the value of S S E .

The difference between S S T  and S S E  accounts for the regression sum of squares
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Figure 2-1: Relationship between Y and estimated Y in simple linear regression 

S S R  = YKXi — Y)2. The total deviation Yi — Y  can be decomposed into two components.

Y ^ - Y  =  Y - Y  +
To ta l  d ev i a t io n Dev .  o f  f i t t e d  re gr e ss io n  value f r o m  m e a n  Dev.  o f  da t a f r o m  f i t t e d  re gr e ss i on  l ine

(2 .2 )

Figure 2-1 shows the decomposition for observation Yi by dotted line. It can be shown 

that the sums of these squared deviations have the same relationship, i.e. the total sum 

of squares, S S T , is equal to the sum of regression sum of squares, S S R , and error sum 

of squares, S S E .

£ ( y - y)2 = £ [ ( « - y) +
= £  (yi - F ) 2+(y i - f i) 2 + 2 ( ^ - 7 )  (V;-?;)

= £  (y  -  y ) 2+ £  (y  - y ) 2+ 2 Y  (y  -  y ) (* -  «)

The last term on the right equals zero, as we can see by expanding it:

2 £ ( £ - y )  =  2  £  y  ( y  -  y )  -  2 7 £  ( Y i  -  Yi

The first summation on the right is zero, which is one of the properties of fitted
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regression line, and the second equals zero since it is the sum of the residuals. S S T  

measures the variation in the observation Yi, or the uncertainty in predicting Y,  when the 

predictor variable X  is not taken into account. Similarly, S S E  measures the variation 

in the Y{ when a regression model utilizing the predictor variable X  is considered. A 

natural measure of the effect of X  in reducing the variation in Y,  i.e. in reducing the 

uncertainty in predicting Y,  is to state the decrease in variation (S S T  — S S E  = S S R ) 

as a proportion of the total variation:

^ 2  variation in y explained by regression S S R   ̂ S S E  .
total observed variation in y S S T  S S T

The measure R 2 is called the coefficient of determination. Since 0 <  S S E  < S S T , it 

follows that 0 < R 2 < 1.

Several formulae have been presented for R 2 for the linear regression in the literature, 

which lead to the same results in simple linear regression. Kvalseth (1985) [56] listed 

some of them as follows.

-2  ■ . s s e

1 e l  A K - y )2 S S T

R2 = EL, ( Y i - Y ) 2 SSR  
2 E L i W - y )2 S S T

„2 ELi
* 3 ~  t H o X W  (2'6)

o2 , E,Li(ei-e)2
- 1 _  e l ^ t w  (2-7)

where e,- =  K —Y  and e

R 2 = squared multiple correlation coefficient between response variable and predictor 

=  r2(Yi,Xi)  (2 .8 )

=  squared correlation coeff icient between Y) and Yi

= r2(Yt,Yi) (2.9)

*  - .  -  S g g L- f f  <m o ,
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v n  V 2

R l = z ( 2 ' n )

However, care must be exercised as the above definitions of R 2 lead to different results 

in models where suitable transformations of the variables are used to form standard linear 

models (Kvalseth 1985 [56]). Besides, they result in different values in models without 

intercept or when different methods of estimation other than linear least squares are used 

(see section 2.1.2). In these cases, values of R 2 derived from the above definitions would 

not necessarily be the same.

2.1.2 H ealth warnings against m odel comparisons using R2

Despite its usefulness and common application in linear regression, R 2 may easily be 

misinterpreted by research workers. For example, R 2 can be misinterpreted as a measure 

of goodness of fit. Magee (1990) [68] and Vandaele (1981) [111] showed the relationship 

between R? and measures of model fit. These relationships were defined to suggest logical 

extensions of R 2 and show problems that may arise in its application. However, R2 is 

an inappropriate measure to compare the fit of competing regression models for which 

the underlying null models are not identical. To explain this in more detail, consider the 

general definition of R 2 in (2.3). R 2 measures only how much the model (2.1) improves 

the null model, i.e. a model with just an intercept. R 2 is the proportion of variation 

in the outcome variable that can be accounted for by incorporating a covariate into a 

particular model instead of viewing the outcome variable by itself. An important feature 

of R 2 is that it is used to compare models for which the underlying null model is identical, 

e.g. nested models.

Royston (2006) [88] showed how ignoring this characteristic of R 2 may cause data 

analysts to reach misleading conclusions in practice. He compared measures of goodness 

of fit and R 2s of a range of survival models including gamma, Weibull, and lognormal. 

The results of his analysis showed that the R 2 for the gamma model is lower than that 

of the Weibull or lognormal models. The gamma model has the lowest deviance, i.e. 

—21 p, for the null model and the model with covariates because it fits the underlying 

distribution better than the other two models, leaving less scope than the other models 

for the inclusion of covariates to improve the fit . Nevertheless, as judged by the A I C ,

A I C  — —2 (log likelihood) -t- 2(c -H p  +  1)
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where c is the number of covariates and p  is the number of model-specific ancillary pa­

rameters, the Weibull and lognormal models with covariates fit worse than the gamma 

model. Therefore, the common belief that large R 2 demonstrates model adequacy or 

model superiority is proven to be wrong.

Anderson-Sprecher (1994) [6] and Scott and Wild (1991) [103] presented some of the 

strongest warnings about the mis-application of H2 in model selection when the values 

of the coefficient are calculated in different contexts. Some of the points that should be 

considered in the application of R 2 in model building are as follows.

Transform ation and i?2

To identify the correct functional form between the outcome and the predictors, it is 

often advantageous to transform the response variable when a least squares regression 

model is fitted to a set of data. This can lead to difficulties in making comparisons 

between competing transformations. Kvalseth (1985) [56] warned of the problems that 

arise when R 2 is used to compare models that involve different transformations of the 

response variable. Scott and Wild (1991) [103] reiterated this warning by applying it to 

real data.

Their example consisted of data on the length of the liver as the response variable 

and gestational age as a single predictor. Scott and Wild (1991) used two different 

transformations of the response variable, i.e. logarithmic and power transformations. 

The results of the study showed that the two models were essentially interchangeable 

for all practical purposes. Almost all model diagnostic tests including residual tests, 

predictions, and the fitted curves resulting from the models were identical. The R 2 of 

the two models was calculated as the squared multiple correlation coefficient between the 

response variable and the predictor (R$ in equation (2.8)). The R 2s of the two models 

differed enormously, being 0.13 and 0.88. The exact reason for the big difference in R 2 is 

beyond the scope of this thesis. To put it in a nutshell, it is the result of a change in the 

metric of the response variable.

Huang and Draper (2003) [46] examined this problem and gave a thorough explanation 

in a new way by considering the underlying regression geometry. Greenland (1996) [33] 

also explained how transformation of the response variable can have profound effects on 

the correlation coefficient in the lognormal distribution. In summary, R 2 should not be 

used to compare models with different transformations of the outcome variable.
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M odels w ith  unequal m easures o f variation

Different measures of variation in numerator and the denominator of the R 2 definition 

in (2.3) result in different R 2s. For example, the least median squares estimator (applied 

in robust regression) uses medi(Yi — Yi)2 as the measure of variation and replacing this 

quantity in the general definition of the R 2 in (2.3) will lead to

_o „ mediCYi — Yi)2
= (2-12)

where M  is a constant that minimises medi(Yi — M ) 2. Rousseeuw and Leroy (1987) [87] 

presented R 2R for robust regression.

Using different measures of variation will lead to different R 2 values. Examples of 

methods whose R 2 should not be compared against each other, or against least squares 

regression, are ridge regression, robust regression, and weighted least squares. In brief, R 2 

should not be used to evaluate models that are based on different measures of variation.

In summary, research workers should take due consideration and should definitely be 

careful in the interpretation of R 2. The R 2 should not be used to compare predictive 

ability of different models whose null model are different, or models that use different 

outcome transformation. However, it can be used to compare the predictive ability of 

nested models.

2.1,3 A djusted R 2

In theory, using an unlimited number of independent variables to explain the change 

in a dependent variable would result in an R 2 of 1. Consider the general definition 

of R 2 in (2.3): S S T  is fixed (unchanging) and S S R  can only increase by adding new 

independent variables. Therefore, each additional variable used in the regression model 

will not decrease the S S T  and will probably increase S S R  at least slightly, resulting in 

a higher R 2. This happens even when the new variable causes the regression model to 

become less efficient by adding to the variance of the predictions. Ezekiel (1930) [24] 

proposed an adjusted R 2 that is obtained by dividing two quantities, S S E  and S S T , by 

the respective degrees of freedom.

2 S S E / { n - p )  ^ ( n - 1 )
Radi S S T / ( n  — 1)  ̂ \ n - p )   ̂ '
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where n is the sample size and p is the number of independent variables. In addition, 

Kendall and Stuart (1979) ([48], page 362) showed that R 2 in (2.3) is a biased estimator 

of the population R2, which is defined as

2 E  {Var(Y |X)}
V ar(Y )

where V a r(y |A ) =  E  j [ ^  — ^ ( ^ i -^)]2 1^} IS the variance of the response around its 

true regression. Furthermore, Kendall and Stuart (1979) [48] showed that when R2 =  0

£(*2lR2 = o) = i - £{ ! f}  = ^ T ’
but

E ( f l ^ |R 2 =  0 ) =  0 .

So is an unbiased estimator when R2 = 0.

2.2 Survival M odels

2.2.1 The proportional hazards model

Let T  be a non-negative random variable representing time to an event of interest, e.g. 

death or disease recurrence, in individuals or objects in the population under study. We 

will assume T  to be continuous. The survival function is defined as S(t) = P r(T > t) 

where P r denotes the probability. The distribution function of the random variable T, 

F(£), and survival function, S(t),  have the relationship S(t) = 1 — F(t).  An important 

concept in the study of survival time distribution and modelling is the hazard function, 

which is defined as
=  l im P ^ r < «  +  A t | r ^ p

v ' At—>0 A t

The hazard function can be interpreted as a measure of proneness to failure in the 

interval [£, t 4- A£], for small A t, provided that the event has not occurred before t. In 

contrast to the survival function, which describes the probability of not failing before time 

£, the hazard function focuses on the propensity to fail at time t among those individuals 

who have not experienced the event by t. It can be shown that S(t)  and h(t) have the 

following relationship:
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I

S(t) = exp(— j  h(u)du) (2.14)
o

Cox (1972) [19] introduced the proportional hazards regression model in which the 

hazard function, h ( t , X ), is modelled for an individual with covariate vector X , using

h(t, X )  — ho(t)exp(j3X) (2.15)

where ho(t) is the baseline hazard function. The Cox proportional hazards model does 

not make any assumption about the shape of the underlying hazard function by using 

partial likelihood to estimate the underlying regression coefficients, (3. In proportional 

hazards regression, the baseline hazard, ho(t), vanishes from the partial likelihood, and 

we obtain only estimates of the regression coefficients associated with the explanatory

covariates. The only assumption in the Cox model is that the hazards are proportional.

2.2.2 G eneralised survival models

Royston and Parm ar (2002) [92] developed flexible parametric models based on the as­

sumption of proportional hazards or proportional odds scaling of the covariate effects or 

probit. Their proposed class of models are based on the transformation of the survival 

function by a link function g{.) given by

g[S(t ;Z)]=g[S0(t)]+!3X  (2.16)

where 5o(£) =  5 (t;0 ) is the baseline survival function and (3 is a vector of parameters 

to be estimated for covariates X .  They developed three such types of models for sur­

vival analysis. They are obtained with the probit, logit and complementary log-log link 

functions respectively,

s (S) = $ - I( l - s )  (2.17)

g(s) = ln (-— ") (2-18)s

g(s) =  ln[— ln(s)] (2.19)

These three link functions generate the regression models

1[1 — S(t;X)] = $  X[1 — 5oW] +f3X  (probit model) (2.20)
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l n(— ) — ln(  ̂ +  (proportional odds model) (2 .21)J*. j OQ\t) j\ j

ln[— In5 (t;X )] =  ln[— In So(t)} 4- f iX  (proportional hazards model). (2 .22)

They called this class of models generalised survival models or GSMs. Royston and 

Sauerbrei (2004) [93] applied GSMs to define an i?2-type measure based on discrimination 

measures for survival data which will be discussed later in this chapter.

2.3 M easures o f  predictive ab ility  in survival m odels

This section presents statistical details of three classes of measures of predictive ability in 

survival analysis. As a first step toward systematic comparisons among predictive ability 

measures in survival models, some of the proposed measures are computed in this section 

for illustration using real data. This example helps us to clarify the differences between 

three main classes of predictive ability measures and to show where they are applicable. 

The technical details of the measures in each category follows this example.

We work with the breast cancer data set which was analysed in detail by Sauerbrei 

and Royston (1999) [94]. Further analysis of this data set, along with real data sets from 

other diseases, will be presented in chapter 8 . The data relate to a set of 686 patients 

with node-positive breast cancer. The outcome of interest is the recurrence-free survival 

time (RFS), that is the duration in years from entry into the study (typically, the time 

of diagnosis of primary breast cancer) until either death or disease recurrence, whichever 

occurred first. There were 299 events for this outcome and the median follow-up time 

was about 5 years.

Model III of [94] was a Cox proportional hazards model for RFS which included 5 

covariates: age with a fractional polynomial transformation with powers —2 and —0 .5 , 

tumour grade 2/3, number of positive lymph nodes (PLN) with the exponential trans­

formation exp (—0.12 * PL N ) ,  progesterone receptor with a fractional polynomial trans­

formation with power 0.5, and hormonal therapy with tamoxifen (yes/no). Tables 2.1 to

2.3 show estimated values of some predictive ability measures for model III.

As it is evident from tables 2.1 to 2.3, the values of these measures vary widely, 

even though all measures are constrained to the [0,1] range. The selected explained 

variation measures vary from 0.24 to 0.29. They generally measure the variation in 

the outcome variable in the model that is ‘explained’ through the prognostic factors in
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Table 2.1: Estimates of some explained variation measures using model III for breast
cancer data in Royston and Sauerbrei (1999).

Measures of Explained Variation Measure Value

Helland (1987) [41], Kent & O ’Quigley (1988) [49] - KZPM 0.27

Royston & Sauerbrei measure (2004) [93] - R?D 0.28

Korn & Simon measure (1990) [53] - R%g 0.241

Royston measure (2006) [88] - 0.29

1: squared error loss was usnd to evaluate the measure

the model. Therefore, it can be concluded that the available prognostic factors explain 

about 24% — 29% of the variation in the outcome variable, whereas the selected explained 

randomness measures in table 2.2 vary from 0.20 to 0.40. These measures involve the 

calculation of expected information gain. Because of the link with information gain (i.e. 

reduction in entropy or randomness as explained in section 2.3.2), Kent & O’Quigley 

(1988) [49] describe these types of measures as the proportion o f ‘explained randomness’ 

of a model, rather than explained variation. The selected measures in the third category, 

predictive accuracy measures, in table 2.3 vary from 0.16 to 0.18. These measures evaluate 

the individual survival probability predictions from the model. The results in table 2.3 

show that providing informative prognosis at the individual level is limited for breast 

cancer patients since the predictive accuracy that can be achieved with the available 

prognostic factors is only 16% — 18%.

Table 2.2: Estimates of some explained randomness measures using model III for breast 
cancer data in Royston and Sauerbrei (1999).

Measures of Explained Randomness Measure Value

Kent and O’Quigley measure (1988) [49] - pfy 0.36

Approximation to Kent and O’Quigley [49] - Pw ^ 0.38

Nagelkerke measure (1991) [71] - p^ 0.20

Xu & O ’Quigley measure (1999) [116] - p2XuOQ 0.37

O ’Quigley et al measure (2005) [80] - p\ 0.40

For the normal-errors regression model without censoring, explained variation, ex-
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Table 2.3: Estimates of some predictive accuracy measures using model III for breast
cancer data in Royston and Sauerbrei (1999).

Measures of Predictive Accuracy Measure Value

Schemper’s V\ and V2 measures (1990) [95]

Graf et al measure [31] - R q

Schernper and Henderson measure (2000) [97] - V$h

Vi =  0.16; V2 = 0.17 

0.161 

0.18

1:  e v a l u a t e d  a l  t h e  f i ( h h  r e n l i l e  o f  o b s e r v e d  s u r v i v a l  t i m e

plained randomness, and predictive accuracy (and the resulting statistics) coincide, but 

for survival models with or without censoring, these statistics are different. The rest of 

this chapter presents a theoretical summary of the three main classes of predictive ability 

measures in survival analysis.

2.3.1 M easures o f explained variation

The first category contains explained variation measures. The most popular interpre­

tation of R 2 is the percent variance in the outcome that is explained by the covariates. 

Measures in this category are proposed by Helland (1987) [41], modified to use for the Cox 

PH model by Kent and O ’Quigley (1988), Korn and Simon (1990) [53], Akazawa (1997) 

[2], O’Quigley and Flandre (1994) [75], O’Quigley and Xu (2001) [78] [79], Royston and 

Sauerbrei (2004) [93], and Royston (2006) [88], The measures summarise the proportion 

of variability in the outcome explained by the model, where variability is measured by a 

variation function. In general, the more variability explained, the better the predictive 

ability of the model. The main difference in the proposed measures in this category is in 

their variation function.

H elland (1987) and K ent and O’Q uigley (1988) m easure - R 2PM

Helland (1987) [41] proposed an explained variation measure for the linear regression 

models. He suggested that the population multiple correlation coefficient can be defined 

as the correlation between the outcome and the linear predictor, i.e. prognostic index 

f tx .  He concluded tha t the total variation in the outcome splits into two components: 

tha t explained by the covariates, and the remaining unexplained variation. Therefore, 

an explained variation measure can be defined as the ratio of variation explained by
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Figure 2-2: Schematic illustration of explained variation measures; the total variation in 
outcome is divided into two components

covariates in the model to the total variation which consists of two components.
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where Var(Y) =  Varx (j3'x) -F cr2 is the total variation in the regression model. 

This can be generalised for other regression models as

E[Y\X\ ^ $ fX  + E

where s is the error term. Variance of Y  given X  is

V a r (Y \X )  = E[Y2\X] -  (E[Y\X\)2 

and since E[g(Y)\ = E[E[g{Y)\X]], specifically E[Y] = E[E[Y\X]], we can write

E(V a r (Y \X ) )  = E[Y2\ -  (E{Y\)2 -  E[(E{Y\X\ f}  + ( E [ Y } f  

= Var(Y )  -  E[(E[Y\X])2} + (E[E[Y\X]\)2 

= Var(Y)  -  Var(E\Y\X])
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2 E(Var(Y \X ))
Var(Y)

Var(E[Y\X])
V a r ( Y )
V a r ( f tX )

V a r ( f fX )  +  a\

Motivated by the above relationship and Helland’s measure (1987) for linear regression 

models, Kent and O’Quigley (1988) [49] proposed a similar measure, R%M, for the Cox 

PH model.

r2 = Varx ( f i x )
PM ’Va.vx(P'x) + 7r2/6

2
where ^  ~  1.645 is the variance of error term in an equivalent Weibull model 

model the conditional distribution of T  given X  is modelled by

Y  = log(T) =  -  0 X )  +  ae

where £ is independent of X  and has density f (y)  where

f(y)  = e2/ ex p (-ey),

i.e. the extreme value density. In this case we know that T  = eY follows a Weibull 

distribution conditional upon X  — x  [59].

R oyston and Sauerbrei m easure (2004) -

Royston and Sauerbrei (2004) [93] proposed a measure of explained variation based on 

the above measure, $ p M- One of the interests in the survival analysis is in identifying 

subgroups of patients with different risks of failure. The aim is to define groups which 

are well-separated and sufficiently substantial to be useful in clinical settings. Royston 

and Sauerbrei (2004) [93] proposed a measure, £>, to assess prognostic separation of 

survival curves. They applied the D  measure to the explained variation measure defined 

by Helland (1987) and Kent and O ’Quigley (1988), i.e. R 2PM, to propose a new measure 

which is based on the separation of survival curves:

(2.24) 

. In this
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R 2D =
D 2/ k?

D 2/ k2 +  a 2 (2.25)

where n — y/S/w and a 2 is the variance of the error term in the model, where

1 (lognormal model or models with probit link)

7t2/3  (log-logistic model or proportional odds model)

7t 2 / 6  (proportional hazards models)

R 2d can be used for a wide class of models, including the Cox PH model.

Korn and Sim on class o f m easures (1990)

Korn and Simon (1990) [53] proposed a class of explained variation measures which 

requires the specification of a loss function, L( tyV), that gives the loss incurred from a 

prediction, t, to the observed survival time, t. Their approach leads to a wide range of 

measures of explained variation depending on the loss function applied to minimise the 

expected loss. Two common possibilities are absolute error loss, L(t,p) = jt — £], and 

squared error loss, L(t, t) =  (t — t)2.

Korn and Simon measures (1990) require the specification of a time range of interest. 

For example, their loss function approach can quantify the predictive ability of a set of 

covariates up to 5 years after diagnosis. They suggest using the average of predicted 

survivals in the denominator of the measures instead of squared error loss given the null 

model. Henderson (1995) [42] further developed Korn and Simon’s (1990) approach by 

proposing more flexible loss functions. The expected loss (risk) for any loss function, 

is defined as

r  o o

R(x) = / L(t, t)dF(t\x)
Jo'o

where F(t\x) =  1 — S,(^|x). For example, t = E{T\x)  is the optimal predictor that 

minimises the expected risk with squared error loss R  = min f ( t  — T)2dF(t\x),  which is
p ' '

the variance of T. The risk under the null model is defined as Ro = j  L ( t , to)dFo(t) where 

to minimises the expected loss with respect to Fo(£). Then, the explained variation is 

defined as the proportional decrease in risk obtained by using the covariates in the model.

explained variation = — — (2. 26)
iio
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where 2?[i?(X)] is the expected value of R ( x ) averaged over the distribution of the Xs,  i.e. 

covariate(s). For the censored survival data, Korn and Simon (1990) proposed alternative 

R(x)  which is loss function with squared error loss censored at To.

Akazawa m easure (1997) ~R2Ak

Akazawa (1997) [2] proposed a similar measure to Korn and Simon’s (1990) class of 

measures. His approach was motivated by the definition of R 2 in normal linear regression 

in equation (2 .6 ) and is defined as:

E?=, £"=1 ^PQ ])2
t tAk —----------------------------- ------------------ . (2.27)

£7=  i(«. -  i  £  t i?i—1

where E[T,\Xi] =  / 0To T d F (T \X it 7b).

O ’Quigley and Flandre m easure (1994) - R q q f

O’Quigley and Flandre (1994) [75] suggested a measure for the Cox PH model that 

compares mean squared Schoenfeld residuals [101] under a proportional hazards model 

to that of the null model. The R 2 in normal linear regression can be defined in terms 

of prediction errors or residuals, equation (2.5). This measure applies this principle to 

the Cox PH model, but it considers Schoenfeld residuals. O ’Quigley and Flandre (1994) 

[75] argued that since the Cox semiparametric model leaves inference depending only 

on the failure time rankings, and being able to predict the failure rankings of all failed 

subjects is equivalent to being able to predict at each failure time which subject is to fail, 

it is sensible to measure the discrepancy between the observed covariate at a given time 

and its expected value under the model. This measure quantifies the predictability of a 

covariate from a given failure time and is given by:

n » 2  /  o \  ^ f a i l u r e s  t j  r j ( ® )  ~  ^ f a i l u r e s  t j  r j ( 0 )  ,
K o q f KP) ~  ------------------------- l 2 7 f y i ---------------------------

Z - f  f a i l u r e s  t j  j  W /

where r(0) and r(0) are Schoenfeld residuals [101] under the full and null models, re­

spectively. In the absence of censoring, the quantity rj({3)/n is a residual sum of

squares, analogous to S S E  in linear regression, and can be viewed as the average dis­

crepancy between the observed covariate and its expectation under the model, whereas 

Yl i=iri ( 0) / 71 is total sum of squares, analogous to S S T  in linear regression. The
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population value of this measure for a single covariate is

2 Var(X) -  ,/0“  V a r(* |t ) f ( t)d t  
R o q f  -  ( 2 M )

where Var(X) -  J0°° Var(X \ t ) f ( t )d t  =  Var (E(X|£)).

X u and O’Q uigley m easure (2001) - R%uOQ

Xu and O’Quigley (2001) [78] further developed O’Quigley and Flandre’s measure (1994) 

to eliminate any dependence of R q q f  upon censoring. They did this by weighting the 

squared Schoenfeld residuals by the increments of consistent estimate of marginal failure 

time distribution function. Their measure is defined as

E fa i lu res  t ,  W ( t j ) r ] ( 0 )  -  ] P f a i l u r e s  t j  

E f a i l u r e s t j  W(tj)r?(0)

where W(tj)  is the jump of the Kaplan-Meier curve at an event time tj.

Measures proposed by O’Quigley and Flandre (1994) and Xu and O ’Quigley (2001) 

[78] exploit partial likelihood estimation method because it provides model-based esti­

mates of the distribution of covariates conditional on survival time. Focusing on a scalar 

covariate, Xu and O ’Quigley (2000) presented an estimate of the distribution of the co­

variate, X i , i = 1, ...,n , conditional on the event occurring at time tj, j  ~  1,..., k , where 

n and k are the number of individuals and number of events, respectively.

Rxuoa(fi )  ~

R oyston m easure (2006) - R 2Royston

Finally, Royston (2006) [88] suggested a measure which is a modified version of a measure 

proposed by O’Quigley et al (2005) [80].

P2 _  PkriiKOVSU* p2 +  (;r2/6)(1 _

where is a measure of explained randomness, presented in the next section, proposed 

by O ’Quigley et al (2005) [80].
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2.3.2 M easures o f explained randomness

The second category contains explained randomness measures. These measures are based 

on the notion of information in information theory. Information has a technical meaning, 

not radically different from the everyday meaning, which is "a numerical quantity that 

measures the uncertainty in outcome of an experiment to be performed" [107]. In other 

words, we can gain information only about matters in which we are to some degree 

ignorant, or uncertain: indeed, information may be defined as that which removes or 

reduces uncertainty. The important implication of this definition is tha t once we are able 

to measure uncertainty, we can also measure information in similar terms.

Several methods have been introduced to quantify the amount of information in the 

context of communication engineering and information theory [38] [104]. Later, these 

methods were applied to statistical theory by discussing the notion of information in an 

experiment. One purpose of experimentation is to reach decisions, another purpose is 

to gain knowledge about the state of nature, e.g. about parameters in the model. The 

knowledge is measured by the amount of information, as described below. In this section, 

we first give a brief overview of information and then present the background to the 

proposed measures of explained randomness/uncertainty before introducing them in the 

last subsection.

Inform ation functions

Scientists in information and communication theory have devised methods to express in­

formation numerically in the same way as distance, time, mass, temperature, etc. Hartley 

(1928) [38] introduced the first information function. He stated tha t the answer to a ques­

tion that can assume the two values ‘yes’ or ‘no’ contains one unit of information, that 

is one bit. Hartley’s formula to measure the amount of information in a set E  which 

contains N  elements is

/ ( £ )  =  log2(iV).

For example, suppose that we toss a symmetric coin then the information content of the 

event 1) having a head, or 2) having a tail is log2(2) =  1 unit of information, a bit. Later, 

Shannon (1948) [104] further developed Hartley’s formula for sets or elements that do 

not occur with equal probabilities. Shannon’s (1948) function was primarily proposed 

to quantify the expected uncertainty associated with an outcome from a set of symbols
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{x j ; j  =  1,..., J} that are received from a source X  according to probability distribution 

Pr(X ). Suppose X  is a random variable with possible values E  = {aq, #2, Let  us 

denote P the probability that X  assumes the value Xk, k =  1, 2 , TV. Shannon (1948) 

[104] proposed the following function to calculate the amount of information:

1(E) = Pi\og2 ^~ + P2 log2 ^ - + ... + Pk \og2 ~  (2.30)
Pi 12 Pk

=  ~ J 2 k i Pi\°%2(Pi)* ^X—\

If Pi =  P2 =  ... =  Pk = 77 then Shannon’s formula reduces to that of Hartley (1928). 

He called this function "entropy" because of the similarities of his proposed function 

with the thermodynamic entropy expression. If X  is a continuous random variable, the 

probability distribution, Pr(X ), and summation notation in equation 2.30 are replaced 

with the density function, f (x ) ,  and integral, respectively.

K ullback-Leibler inform ation gain

Kullback and Leibler (1951) [55] applied Shannon’s information function to statistics and 

introduced the Kullback-Leibler information gain [55] or divergence measure. Let Ho and 

H\  be null and alternative hypotheses for a random variable Y  defined on a sample space y 

with true density f ( y ; oq)- Under Ho, Y  is assumed to follow density f ( y ; a 0) and, under 

Hi,  it is assumed to follow density f(y;f3). Sometimes, we shall want to suppose that 

Hq is nested in H\.  We regard Hq as the true model with true parameter qq. Following 

the Shannon’s formula in 1(E)  above, /(qo|qo) =  Jy log{/(y; ^ 0)} f (y ,  a o)dy is defined as 

the expected information on qq under f(y \c t0), i.e. information at the true parameter 

value. Similarly, the expected information attached to the value j3 when the distribution 

is f ( y , a 0) is I((3\a0,y)  =  jy log{/(y; /?)}/(y; ao)dy. Now, consider how much I (a 0 |q 0) 

exceeds the information attached to some other parameter, /?, value:

I  (do |qg) -  I(P\a0) = [  log { /  (y; ao) / f ( y ;  0)} f ( y \ ) d y  (2.31)
Jy
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This equation is known as Kullback-Leibler information gain [55]. Since log is a concave 

function, Jensen’s inequality implies that

Therefore I ( a 0\a0) — I((3\a0) is always non-negative and /(/3|cto) as a function of (3 attains 

its maximum at the true value j3 = qq- The entity J(e*0|a 0) — /(/3\a0) denotes the 

distance from f{y;{3) to f ( y ;a o ) when f (y ;0 )  is used to approximate f(y\oto). Although 

it is common to refer to Kullback-Leibler information gain [55] as a distance, it is not a 

distance in the usual geometric sense.

Statistical models can be expressed by conditional density in the form of f(y\x; (3) for 

Y  given the observed value x  of X .  If we want to test the null hypothesis Hq : (3 = 0 

against H\ : {3 = f30, the distance between the two models indexed by (3 = 0 and (3 = {30 

can be provided by the Kullback-Leibler information gain J(/?0 |/?o) — -^(0|/30) ■ fio can 

replaced by /?, a consistent estimate of In exponential family models where censoring 

is not present, a standard estimate of information gain will be provided by n~~l times the 

usual likelihood ratio test statistic (Kent (1983) [50], (1986) [51]).

R 2 and Kullback-Leibler inform ation gain

Kullback (1951) [55] pointed out the relationship between the Kullback-Leibler infor­

mation gain [55] and the correlation coefficient. Suppose that Hq and H\  are null and 

alternative hypotheses as follows. Under ifo? X  and Y  have bivariate normal density 

with mean zero, variance ax and ay respectively and pxy correlation, and under H\, X  

and Y  are independent with respective probability densities f \ {x)  and f2(y)- Now the 

information gain may be written as

log{ f (y \ (3 ) l f ( y \»o)}/(y; «o)dy *o)}f(y; )dy
Jy

=  -  log [  f(y\(3)dy =  C 
Jy

I ( a 0\a0) — I((3\a0) =  j '  l o g { f ( x , y ) / f i ( x ) f2(y)} f (x ,y )dxdy

where
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and the marginal densities are

/ l( s )

h ( y )

Kullback (1951) [55] showed that

I{a0\a0) -  I{(3\a0) = f j \ o g { f { x , y ) / f 1(x ) f2(y)} f(x ,y)dxdy = - i l o g ( l  -  p2xy) (2.32)

so that I ( a 0\aQ) — I(j3\a0) is a function of the correlation coefficient pxy only , and ranges 

from 0 to oo as |/91 ranges from 0 to 1.

Kent (1983) [50] generalised equation (2.32) by defining a measure of correlation 

between two random variables. He proposed a measure of correlation for more general 

models as

where T(Hi : Ho) — 2{/(q!o;c*o) — I{j5\a0)} is twice the Kullback-Leibler information 

gain and I(ao ; a 0) is the expected information assuming Ho and /(/?; a 0) is the expected 

information assuming H\.  Note that a factor of 2 is introduced to generalise this measure

Explained random ness m easures in survival m odels

Measures in this category use the relationship proposed by Kent (1983) [50] in equation 

(2.33) to provide a measure of predictive ability in survival models. This category includes 

measures proposed by Maddala (1983) [67], Kent and O’Quigley (1988) [49], Magee (1990) 

[68], Nagelkerke (1991) [71], Verweij and Van Houwelingen (1993) [113], Xu and O ’Quigley 

(1999) [116], and O ’Quigley et al (2005) [80]. Most of the measures in this category have 

been introduced for the Cox PH model, and the main difference between them is in the 

way they construct the Kullback-Leibler information gain [55].

A g = 1 -  exp{-r(i/i : #o)}- (2.33)

since we have factor ^ in equation (2.32). Therefore, the correlation coefficient p2IG has 

the following properties:

1) If X  and Y  are independent, then pjG = 0.

2) 0 ^  pjQ < 1.

51



M addala (1983), M agee (1990), and Nagelkerke (1991) m easures - p\

Maddala (1983) [67] and Magee (1990) [68] proposed two similar measures for the models 

that use maximum likelihood as a criterion of fit. Maddala (1983) proposed

pI ,  =  i  -  i m / L (  o)}2/n

where L(0) and L(0) denote the likelihoods of the fitted and the null models, respectively. 

Magee’s (1988) proposed measure is

2 f 2
Pn = 1 - e x p ^  - ~ ( b  -  W

where Ip and Iq are the log likelihoods of the fitted and the null models, respectively. 

Since Nagelkerke (1991) [71] studied the properties of these measures, they are generally 

attributed to him in the literature. Allison (1995) [3] suggested p2 for survival models, 

including the Cox PH model.

Kent (1986) [51] showed that for the exponential family, an estimate of information 

gain is provided by n _1 times the usual likelihood ratio test statistic. Therefore, p\  is a 

measure of randomness for exponential family models. It is unclear what p\  measures in 

the context of survival models and in particular the Cox PH model, p \  can be written as

2 exp ( - f ip )  -  exp ( - f ig )
** exp ( - I f e )

where exp (~ ~ h )  and exP { ~ n h )  are defined as the randomness of outcome in the null 

model and the randomness of outcome given the covariate. Then p^ can be interpreted 

as the proportion of randomness in the outcome which is explained by the covariate.

Verweij and Houwelingen (1993) [113] proposed a similar measure to p\  in which the 

log likelihoods, Ip and Zo> ate replaced with the cross-validated log likelihood counterparts, 

i.e. cvlp and cvIq.

p2cv = 1 -  exp ^ - ^ ( c v l p  -  cvl0)

X u and O’Q uigley m easure (2005)

Xu and O ’Quigley (2005) [80] suggested a modified measure of explained randomness for 

the Cox PH model. They proposed replacing sample size, n, in p2 by the number of
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events, i.e. effective sample size, k :

p | =  l - e x p | - | ( ^ - / 0) | .

K ent and O ’Q uigley m easures (1988) - pfy & $ y A

Kent and O’Quigley (1988) [49] proposed a different measure of explained randomness 

for the Cox PH model. The Cox PH model in (2.15) can be written as

f(t\X;{3) = ho(t) exp |/LX  — e@x  j  /i0(u )d u | . (2.34)

The underlying distribution remains unknown in the Cox PH model, i.e. the baseline 

hazard ho(t) is completely unspecified, which makes the construction of Kullback-Leibler 

information gain [55] impossible. The measures proposed by Kent and O ’Quigley (1988) 

[49], Xu and O’Quigley (1999) [116], and O ’Quigley et al (2005) [80] make use of properties 

of the Cox PH model, as explained below, to find a way round this problem.

Kent and O’Quigley’s (1988) measure replaces the baseline hazard, ho(t), in the Cox 

PH model with a monotonic function of time to form Kullback-Leibler information gain 

[55]. Any transformation of time which does not change the rank of event or censoring 

times will result in the same parameter estimates in the Cox PH model. Kent and 

O ’Quigley (1988) [49] claimed that since this does not change the parameter estimates 

in the model, it should not change the predictive ability of the model either. Thus, 

any strictly monotonic transformation of time, T* = 0(T), gives the same regression 

coefficient in the Cox PH model as T  does. Kent and O ’Quigley utilized this property of 

the Cox model and defined h ^ t )  = a  exp(p)ta~l for any choice of /x and a. By choosing 

this baseline hazard we ensure that the baseline hazard is proportional to a power of t.

Kent and O ’Quigley (1988) [49] argued that generally ho(t) can be replaced by any 

other strictly monotonic transformation of t , but the expected log likelihood function, 

/(/?; /?) and 1(0; /?), calculations will be too awkward to compute easily. Note that finding 

a suitable transformation would in practice not be possible if no parametric form for 

baseline hazard was assumed. Therefore, if we replace ho(t) in (2.34) with /iq(£), the 

conditional distribution of T* given X  = x, f*(t \X;/3), follows a Weibull distribution:

f*(t \X; ft) = a  exp(/x 4- /?X)£a_1 exp [—ta exp (p. +  @X)\ .
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Now it is possible to construct expected log likelihoods under the full and null mod­

els, 7(/?;/?) and 7(0; /?), and hence the Kullback-Leibler information gain [55], T —

2 {7(/?; /?) — 7(0; /?)}. Time, t , is indirectly involved in the calculation of 7(/?;/?) and 

7(0;/?) and is used only through the estimate of /?, i.e. /?. 7(/?;/?) has a closed form but 

7(0;/?) should be numerically maximised to evaluate the Kullback-Leibler information 

gain [55]. Using equation (2.33) developed by Kent (1983), Kent and O’Quigley (1988)

proposed the following measure of explained randomness/uncertainty for the Cox PH

model:

Pw = 1 -  e x p (- r ) .  (2.35)

Since no explicit formula is available for they proposed an approximation,

, _  V a r y ' s )
Pw'A ~  V arx (/?'x) +  l  (2’36)

which is numerically easier to compute.

Note that replacing the baseline hazard function with h ^ t )  = a exp (y ) ta~ 1 in the 

Cox PH model means tha t the conditional distribution of T  given X  follows a Weibull 

distribution. Therefore Y  = In T* follows a linear regression model:

Y  = ln(T*) =  - o { y  +  j3X) +  ere 

where a = a -1 , e is independent of X ,  Y  has density f{y)  where

f (y )  = ey exp(—ey),

r2i.e. the extreme value (Gumbel) density (Lawless, 1982 [59]) with variance ^  1.645.

In the extreme value (Gumbel) density, cr and y  are scale and location parameters, re­

spectively. Therefore a measure of explained variation for the Cox PH model, based on 

Helland’s measure (1987) in equation (2.23) is:

2 Varx(P'x)
RpM ~  V a rx iP ’x) + 1.645 ‘ (2"i7)

Kent and O’Quigley (1988) [49] suggested that if V arjv(/?/x) is small, there exists the 

following relationship between explained variation measure, 72pM, and explained ran­
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domness measure, Pw A, in the Cox PH model.

Pw,A =  1-645 R% m (2.38)

Xu and O ’Q uigley m easure (1999) - p\ uqq

Xu and O’Quigley (1999) [116] proposed an alternative measure to Kent and O ’Quigley’s 

measure (1988) [49] based on the Kullback-Leibler information gain [55]. They argued 

that this alternative measure is more natural in the context of the Cox proportional haz­

ards regression. An apparently unusual feature of the O’Quigley and Flandre (1994) [75] 

measure of explained variation in section 2.3.1 is that, rather than measuring the ability of 

the covariate to predict time, as we might expect, we measure how close model-based co­

variate predictions are to the observed value of covariate at each failure time. O’Quigley 

and Xu (1999) [116] showed that doing things this way around is, in fact, natural in 

the context of the Cox PH model and amounts to predicting not times themselves, but, 

instead, the time ranks or the ordering of the observations.

Xu and O’Quigley (1999) [116] used the above property and defined an alternative 

Kullback-Leibler information gain [55] to propose a new measure of explained randomness. 

Recall the Cox PH model

f ( t \X; f l )  = ho(t) exp X  — ê x j  ho(u)du

Xu and O’Quigley (1999) [116] indicated that we could equally work with an alternative 

given by

[  [  \og{g(x\t;P)}g(x\t;P)dxdF(t)  (2.39)
JT JX

where F(t) is the marginal distribution function of T, and g(x\t \ .) is the conditional 

density or conditional probability function of X  given T. As before, define the Kullback- 

Leibler information gain [55] as T2(/3) =  2{i2(/3;/?) — h ( 0; /?)} and

PxuOq (&) = 1 -  exp(-r203)). (2.40)

Xu and O ’Quigley (1999) [116] showed that under the proportional hazards model
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the conditional distribution of X  given T, g(x\t',(3), is consistently estimated by

p { x ^ x \ T = t ) = j : {i;x^ {f ,d)

where
,  (f. ^  _  y*(0 eM 0 x i) (0dU

*( ] E r = .^ ( ‘)exp(/3X,) (2'41)

is the conditional probability of choosing individual i, given all the individuals at risk at

time t and that one individual is to be selected to fail. Yi(t) in 7r̂ (£; fi) is at risk indicator

for individual i. The product of the 7TjS over the observed failure times is the partial

likelihood (Cox (1972) [19] and Cox (1975) [18]).

Let t\ < ... < tk be distinct failure times. We estimate the conditional distribution 

of X  given T  by | 7Tj(t;/3) |  , j  = 1 and the marginal distribution of T , F (t), by

the Kaplan-Meier estimate. Let W(tj)  be the jump of the Kaplan-Meier curve at time

tj. Then

T 2 [ 0 )=2 L  J x  log {Sitf}9 { A t ' 0 ) d x d m

can be consistently estimated by

where the outer sum is effectively over those subjects that are in the risk set at time tj. 

The above expression can be shown to be equal to

r S( 0  -  2 ^  .=1 w {h ) -  log u ^ Yt{t) | .

Then using Kent’s (1983) formula, we have:

P xuO Q  — 1 _  exP {-IM /?) J •

The results of Xu and O ’Quigley’s investigation [116] indicate that this measure is 

an approximation to the Kent and O’Quigley measure (1988) [49] and O ’Quigley and 

Flandre measure (1994) [75].
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Survival p redictions, null m odel —  
Survival predictions, full m odel —  

Survival s ta tu s  —

15 CD

ev en t time-'Ti'

Figure 2-3: Schematic presentation of survival status (dotted line), survival predictions 
from the null model (broken line), survival prediction given covariates (solid line) for 
individual i in predictive accuracy measures.

2.3.3 Measures of predictive accuracy

The third category, predictive accuracy measures, includes three main measures proposed 

by Schemper (1990) [95], Graf et al (1999) [31], and Schemper and Henderson (2000) [97]. 

Although they use different mechanisms to evaluate the predictive ability of a survival 

model, they broadly quantify the accuracy of predicted survival probabilities. In normal 

linear regression R2 quantifies how close the model-based predictions are to the observed 

values of the outcome. The proposed measures in this category apply this to survival 

models, but on the survival probability scale rather than the actual time scale. Figure 2- 

3 shows schematically the mechanism that these measures apply to quantify the predictive 

accuracy. The dotted line is the survival status of an individual who survived until event 

time t j ; therefore its survival status is 1 until tj and 0 thereafter.

In these measures, predicted survival probabilities from the null and full models are 

compared with the survival status of individuals, i.e. 1 if alive at time t and 0 otherwise, at 

each time point tj in the observation period which result in the marginal and conditional 

prediction errors, i.e. AB is compared to the AC in figure 2-3. This leads to a measure 

which quantifies relative gain in terms of predictions when using covariates. The main 

difference between these measures is in the specification of the distance function, D, that 

they use to penalise the marginal and conditional prediction errors.
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Schem per m easures (1990) - V\ V2

Schernper’s measure (1990) [95] evaluates predictive accuracy of the model by first av­

eraging the prediction error for subject i over event times, tj where j  — l,...,fc, then 

averaging this summary over all individuals. In this measure, the contribution to the 

distance functions D x  is split into three categories:

___________ Category_________________DXt

1- Failure before event time tj S  (tj\X{)

2- Failure at event time tj 0.5 — S  (tj\Xi)

3- Failure after event time tj 1 — 5 (tj\X{)

Where 5(£j|A^) is the estimated survival probability at time point tj for individual i 

given covariate Xj.  D  is defined in a similar fashion using marginal survival probabilities. 

Schemper’s measure (1990), Vi, is calculated using the following formula.

X j i — l ( f c j  /Lj  fa i lu r e s  t j  fa i lu r e s  tj

l ( j £ 7  H fa i lu r e s  t j  & )

Schemper (1994) [96] also proposed V2 measure similar to V\ which is defined in terms of 

squared sums (j- £ failure31. D ) 2 and (j- Y.iailures tt &x J 2- O ’Quigley et al (1999) [77] 

studied the population characteristics of Schemper measures mathematically.

Graf et al (1999) (T*) &: Schem per and H enderson (2000) VschH m easures

In contrast to Schemper measures (1990) V\ and V2, Graf et al measure (1999) [31] and 

Schemper and Henderson measure (2000) [97] calculate the predictive accuracy of the 

model by first calculating the average prediction error at event time tj, j  = 1,..., k for all 

individuals, then taking a weighted average of this summary over the event times in the 

observation period. These two measures use a weighting scheme to compensate for the 

loss of information due to censoring.

In Graf’s measure (1999), first a particular time point, T*, at which we would like to 

assess the survival probability predictions is specified. The time point should be equal or 

before the last failure time in the data. In this measure, the contributions to the distance 

function, DX(T*), are split into three categories:
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___________ Category D Xi_(T*)_______

1- Failure before T* S  (T*|Xi) /G(T*)

2- Censored before T* 0

3- Failure or censored after T* ( 1 - 5  (T*\Xi))/G(T*)

where S  (T*\Xi) is the estimated survival probability at time point T* for individual i 

given covariate X*, and G(T*) is the estimated survivor function for censoring times. 

Then the average squared distance is calculated

(2.42)
n

i = 1

Compare this with its counterpart calculated from the model without covariate which 

leads to Graf at al measure (1999)

E
Schemper and Henderson measure (2000) [97] is based on a similar principle to Graf et 

al’s measure (1999) [31]. The main difference between them is that in the second category 

where Schemper and Henderson measure (2000) [97] uses the proposed regression model 

to determine the probability of reaching T* if censored earlier. Therefore, the contribution 

to distance function will be as follows

Category DXi (T*)

1- Failure before T* S  (T*|Xf)

2- Censored before T* P  * (1 -  S  (T*|Xi)) +  (1 -  P) * S  (T*\Xi)

3- Failure or censored after T* (1 — 5 (T*|Xj))

where P = S  (T*\Xi) / S  (T\Xi)  is the probability of reaching T * if censored earlier. Unlike 

Graf et al’s measure (1999) [31] which evaluates the predictive accuracy at a time point in 

the study period, i.e. T*, this measure gives a summary measure over all failure times. In 

addition, Graf at al’s measure (1999) averages squared distance over all individuals, but 

Schemper and Henderson’s measure (2000) averages absolute distance, ^ 2_^ j (T*) 

over all individuals at an event time.
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To give a summary measure, a weighted average is taken over all failure times

D Sh ( X )  = ----7 J-1--------=7— ^---- -̂-------- -•  (2.43)
5 Z fa i lu res  tj

Compare this with its counterpart calculated from the model without covariate to give 

an estimate of the predictive accuracy measure.

D s h  ~  D s h ( X)
VschH = --------~------------• (2.44)

D s h

2 .3 .4  O th er p rop osed  m easu res in  surv iva l m o d els

Two measures proposed by Harrell (1986) [35] and Schemper and Kaider (1997) [98] form 

the other category. They do not belong to any of the three main categories discussed 

above. Harrell’s measure (1986) [35] is the proportion of increase in the log likelihood of 

the model given covariates compared with the one from the null model, given by:

>2 Jo h

where lo and I# are the log likelihoods under the null and full model, i.e. model with 

covariates, respectively.

Schemper and Kaider (1997) [98] apply multiple imputation methods to impute the 

censored survival times and make use of a nonparametric measure of correlation, such as 

Spearman correlation coefficient (Spearman (1904) [108]) or Kendall r  (Kendall (1938) 

[47]), to calculate a measure of association between completed or imputed survival times 

and covariates in the Cox PH model. The algorithm that is applied to compute this 

measure is included in Appendix B. We identify this measure as R ^chK throughout this 

thesis.

2.4 D iscussion

Over the course of this chapter we have presented the proposed measures of predictive 

ability for survival models, in particular the measures proposed in the context of the 

Cox PH model. In the linear regression, R 2 is a well known measure of predictive ability. 

Different interpretations of R 2 as a measure of explained variation, explained randomness,
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and predictive accuracy has led to a wide range of measures for survival models.

The diversity of the measures proposed for survival models raises two important ques­

tions: I) what does each of these measures estimate; II) which measures are recommend- 

able for general use in practical applications. To address these questions, we need to 

compare the proposed measures systematically to have a better understanding of their 

performance. This requires a set of criteria against which we can evaluate the proposed 

measures. The criteria should indicate the properties that a measure of predictive ability 

should possess in the context of survival analysis. These criteria will provide us with a 

framework for comparing the proposed measures consistently and help us to investigate 

the behaviour of the measures in similar conditions.

The next chapter presents the criteria that, in our opinion, a measure of predictive 

ability should possess in the context of survival analysis. Then, we compare the proposed 

measures with regard to these criteria. This will suggest the need for further empirical 

studies to investigate the performance of the proposed measures.

61



Chapter 3

Investigation o f the proposed  

measures

3.1 Introduction

As reviewed in the previous chapter, many measures have been proposed to assess the 

predictive ability of survival models. An extensive literature search uncovered only one 

study to evaluate the performance of selected R 2 analogues in survival models. Schemper 

and Stare (1996) [99] reviewed some of the predictive ability measures in survival analysis 

with the conclusion that no particular statistic can be recommended for general use, 

mainly due to the impact of censoring on the measures. They described several properties 

that a measure should have, such as independence from censoring, intuitive interpretation, 

and robustness against model mis-specification. Nagelkerke (1991) also presented some 

properties for a measure in more general models such as consistency with classical R 2 in 

linear regression, intuitive interpretation, dimensionless, i.e. it does not depend on the 

units, and independence of sample size.

In this chapter, we define a set of criteria that a suitable measure of predictive ability 

should possess in the context of survival analysis. These criteria are used as a basis 

to compare the proposed measures. The criteria provide us a framework for choosing 

a suitable measure of predictive ability. Some of the proposed properties have been 

recommended in previous work by Schemper and Stare (1996) [99] and Royston and 

Sauerbrei (2004) [93].
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3.2 P roperties o f a "good" m easure

The properties that a suitable measure of predictive ability should possess can be clas­

sified into two main categories: essential properties; and desirable properties. Essential 

properties are the ones that a suitable measure of predictive ability should possess in 

the context of survival analysis. Satisfying desirable properties could give a measure an 

advantage over the other measures.

3.2.1 Essential properties

I) Independence from censoring:

The expected value of the measure should be approximately independent of the amount 

of censoring. Censoring is one of the basic properties of survival data and it is present 

in almost all practical applications. Therefore, a measure that is unduly affected by the 

amount of censoring is considered unsuitable.

Since one of the aims of this study is to make practical comparisons of the measures, we 

quantify the extent of censoring effect by comparing the average percentage change in the 

expected value of the measures compared to that of non-censored data. We translate the 

resulted figures into 4 categories, each representing the extent of censoring: 1) censoring 

has almost no effect; 2) censoring has a slight effect; 3) censoring has moderate effect; 4) 

censoring has large effect. For further definition of these categories, see section 5.3.

II) Independence from sam ple size:

Sample size should not affect the measure. The measure should converge to the popula­

tion/true value of the measure, if they exist, in both censored and non-censored data.

III) M onotonicity:

a) Param eter m onotonicity: An appropriate measure of predictive ability should

acquire higher values as the effect of prognostic factor, i.e. covariate, on the outcome 

variable becomes stronger. This means that the expected value of the measure does not 

decrease as the absolute value of the parameter estimate in the model increases.
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b) N um ber o f variables m onotonicity: An appropriate measure of predictive ability

should acquire higher values as new prognostic factors, i.e. covariates, are included in 

the model. The number of variables monotonicity means that the expected value of a 

suitable measure of predictive ability should not decrease by adding new covariates.

3.2.2 Desirable properties

A measure of predictive ability which possesses desirable properties could have an advan­

tage over the other measures.

I) Robustness:

In normal linear regression, jf?2 is influenced by the outliers and extreme observations 

( Kvalseth (1985) [56], Montgomery (2001) [69]). The impact of such observations has 

not been studied in the proposed measures of predictive ability for survival models. It is 

worth bearing in mind that unlike linear regression, where there are established methods 

to identify such observations in the model building process and rectify them, no method 

has been universally accepted in survival analysis to identify outliers and extreme ob­

servations. Therefore, a measure that is resistant to such observations might have an 

advantage over the other measures.

n )  Confidence intervals:

Confidence intervals show how much uncertainty is associated with point estimates. A 

measure is preferred if its confidence intervals can be obtained, although using the boot­

strap is always a possibility.

I l l )  Partial R 2:

Partial R? measures the correlation between outcome variable, for example survival time, 

and a covariate when other covariates in the model are held constant with respect to 

the outcome variable and that covariate. It measures the marginal contribution of one 

covariate when all the others are already included in the model. It can help us to examine 

the relative importance of different sets of covariates.
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IV ) A djusted R 2

It is also desirable to provide an adjusted R 2 for the reasons explained in section 2.1.3.

V ) G eneralisability:

Ideally, the measure should be generalisable for different types of survival models. Para­

metric survival models sometimes are considered as alternatives to the Cox PH model, 

and they might give better fit to the data under study. Therefore, a flexible measure can 

be used in these circumstances. Some other areas of extension include flexible parametric 

models proposed by Royston and Parmar (2002) [92], els presented in section 2.2.2.

3.3 Shortcom ings o f som e m easures

An extensive literature search uncovered properties of the proposed measures with re­

gard to the criteria outlined in the last section. One of the objectives in this thesis is to 

recommend one or more measures for general use. When comparing the proposed mea­

sures with regard to the essential properties, the evidence from previous studies suggests 

that some of the proposed measures are unsuitable for survival models. These measure 

generally do not satisfy the essential properties.

We classify the proposed measures of predictive ability into two categories: poten­

tially recommendable measures; and unsuitable measures. Potentially recommendable 

measures are those for which the previous studies do not provide evidence against the 

essential criteria outlined in section 3.2, or the evidence is inconclusive to reach a definite 

conclusion when comparing the measures against these properties.

The class of unsuitable measures includes Korn and Simon (1990) [53], Schemper’s V\ 

and V2 (1990) (1994) [95] [96], Akazawa (1997) [2], Harrell’s likelihood (1984), Maddala 

(1983) [67], Magee (1990) [68], Nagelkerke (1991) [71] and Verweij h  Van Houwelingen 

(1993) [113].

Despite some promising properties presented by Korn and Simon (1990) (1991) [53] 

[54] and Henderson (1995) [42], Korn and Simon’s class of measures (1990) [53] is clas­

sified as unsuitable because the previous studies suggest that the amount of censoring 

has a considerable impact on the measures. Schemper and Stare (1996) [99] performed 

a range of simulation studies on the measures, as well as some others. They gener­
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ated exponentially distributed survival times (/(f) =  Aexp(—Af)) with hazard function 

A =  exp(~X{3),  respectively with (3 set to 0, log(2), log(16) and log(64). For example, 

the results of simulation for (3=log(16) showed the expected values of the measure as

0.35, 0.56 and 0.19 for 0%, 50% and 90% censored data, respectively. In addition, in a 

simulation study Stare (1994) ([109], page 33) showed that the measure is not invariant 

under monotonic transformation of time. Therefore, whilst a monotonic transformation 

of time will not change the parameter estimates in the Cox PH model, Korn and Simon’s 

measure will result in a different value in the Cox PH model.

Schemper’s V\ and V2 measures (1990) (1994) [95] [96] are influenced heavily by the 

degree of censoring. Schemper and Stare (1996) [99] investigated the effect of censoring 

on Vj. The expected value of the measure, resulted from the simulation study with the 

same setting as the Korn and Simon’s measure explained above, were 0.59, 0.46 and 0.11, 

respectively.

Akazawa’s measure (1997) [2] is also classified as unsuitable for two reasons. First, this 

measure is based on the rather strong assumption that the follow-up terminates at some 

prespecified time with "no loss to follow-up". Censoring is one of the basic properties 

of survival data and it is present in almost all practical applications. Accepting the 

assumption of "no loss to follow-up" makes this measure inapplicable in practice for a vast 

majority of studies. Second, this measure is heavily influenced by the degree of censoring. 

Akazawa (1997) [2] performed a simulation study with exponentially distributed survival 

times and one dichotomous covariate for a range of hazard ratios. The results were 

presented in graphs ([2], pages 233 & 234) which suggest that this measure is heavily 

influenced by the amount of censoring.

H arrell’s measure (1986) [37] which is based on likelihood function is another unsuit­

able measure. This measure is slightly influenced by the degree of censoring and heavily 

influenced by the changes in sample size. Stare (1994) [109] performed a simulation study 

on exponentially generated survival data with one discrete covariate. The value of the 

measure for non-censored data was 0.07 for a hazard ratio of 16 which increased to 0.11 

for 50% censored data. The expected value of the measure decreased as the sample size 

increased; the expected value of the measure were 0.11, 0.07 and 0.06 for sample sizes 80, 

800, 4000, respectively.

Nagelkerke’s measure (1991) [71] is also considered unsuitable for survival models. 

O’Quigley et al (2005) [80] generated a large sample (n =  5000) of exponentially dis­
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tributed survival times (/(£) =  Aexp(-Af)) with hazard function A =  exp(—X/3), respec­

tively with set to 0, log(2), log(16) and log(64). The results of simulation for (5— log(16) 

showed the expected value of the measure as 0.68, 0.64, and 0.13 for 0%, 50%, and 90% 

censored data, respectively. The measures proposed by Maddala (1983) [67] and Magee 

(1990) [68], therefore, are heavily influenced by the degree of censoring. Verweij and 

Van Houwelingen’s measure (1993) [113] will have the same drawback since it is very 

similar to Nagelkerke’s measure (1991) [71] with one difference; it uses cross-validated 

log-likelihoods instead of log-likelihoods.

3.4 Tables o f th e  properties o f m easures

Tables 3.1 to 3.5 present potentially recommendable measures and unsuitable measures, 

their properties, and the programs available to compute them. The description of the 

properties are at the bottom of each table. Tables 3.1 and 3.2 present potentially rec­

ommendable measures and their status regarding the essential and desirable properties. 

Unsuitable measures have been rejected on the grounds that they did not satisfy all the 

essential properties outlined in section 3.2.

K ey of the tables

The description of the terms used in the tables are as follows:

• nk: not known - the evidence from previous studies is inconclusive.

•  yes: the measure does possess the desired property.

• no: the measure does not possess the desired property.

67



Table 3.1: Summary of the essential properties of the potentially recommendable mea-
sures of predictive ability in survival analysis___________________________________

Measure category Measures I II III
a b

Helland;Kent & O’ Quigley, nk nk nk nk

O ’Quigley & Flandre (94) nk nk yes yes

Explained variation Xu and O’Quigley (01) yes nk yes yes

Royston Sl Sauerbrei (04) nk nk yes nk

Royston (06) nk nk yes yes

Kent & O ’Quigley (88) yes nk yes yes

Explained randomness Xu & O ’Quigley (99) yes nk yes yes

O’Quigley et al (05) nk nk yes yes

Graf et al (99) nk nk nk nk
Predictive Accuracy

Schemper &c Henderson (00) nk yes yes nk

Other Schemper Sc Kaider (97) yes yes nk nk

I) Independence from censoring: the expected value of the measure should be approximately inde­

pendent of the degree of censoring.

II) Independence from sample size: sample size should not affect the measure.

in) Monotonicity

a) Parameter monotonicity: the measure should not decrease as the absolute value of the para­

meter estimates increase.

b) Number of variables monotonicity: the measure does not go down by adding new covariates 

to the model.



Table 3.2: Summary of the desirable properties of the potentially recommendable mea-
sures of predictive ability in survival analysis______________________________________

Category Measure I II III IV V

Helland;Kent & O’Quigley, nk yes yes yes yes

O’Quigley & Flandre (1994) nk yes nk yes nk

Explained variation Xu and O’Quigley (01) nk yes nk yes nk

Royston & Sauerbrei (2004) yes yes yes yes yes

Royston (2006) nk nk yes yes yes

Kent & O’Quigley (1988) nk yes nk yes nk

Explained randomness Xu & O’Quigley (1999) nk yes nk yes nk

O ’Quigley et al (2005) nk nk nk yes yes

Predictive Accuracy
Graf et al (1999) nk nk nk nk yes

Schemper & Henderson (2000) nk nk nk nk yes

Other Schemper & Kaider (97) nk nk nk nk yes

I) Robustness: the measure should not be unduly affected by outliers and extreme observations, 

i i )  Confidence intervals

in) Adjusted i?2 

IV) Partial R 2

V) Generalisability: the measure should be generalisable for different types of survival models.
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Table 3.3: Summary of the essential properties of the unsuitable measures of predictive
ability in survival analysis____________________________________________________

Category Measure I II III
a b

Explained variation
Korn fa Simon (1990) no nk nk nk

Akazawa (1997) no nk yes nk

Nagelkerke (1991) no nk yes yes

Explained randomness Magee fa Maddala (1990) no nk yes yes

Verweij fa Houwelingen (1993) no nk nk nk

Predictive accuracy Schemper (1990) no no nk nk

Other Harrell (1984) no no yes yes

I) Independence from censoring: the expected value of the measure should be approximately inde­

pendent of the degree of censoring.

II) Independence from sample size: sample size should not affect the measure.

i n )  Monotonicity

a) Parameter monotonicity: the measure should not decrease as the absolute value of the para­

meter estimates increase.

b) Number of variable monotonicity: the measure does not go down by adding new covariates.
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Table 3.4: Summary of the desirable properties of the unsuitable measures of predictive
ability in survival analysis_____________________________________________________

Category Measure I II III IV V

Korn & Simon (1990) nk no nk nk yes
Explained variation

Akazawa (1997) nk no nk nk nk

Nagelkerke (1991) nk nk nk yes yes

Explained randomness Magee &; Maddala (1990) nk nk nk yes yes

Verweij & Houwelingen (1993) nk nk nk yes yes

Predictive accuracy Schemper (1990) nk no nk nk yes

other Harrell (1984) nk no nk yes yes

i)

ii) 

ni)

IV)

V)
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3.5 D iscussion

In this chapter we first set out the criteria that a suitable measure of predictive ability 

should possess in the context of survival analysis. A suitable measure should not unduly 

be affected by the changes in the amount of censoring and sample size. It should also be 

generalisable and monotonic (as explained in section 3.2).

Overall, our investigation of proposed measures of predictive ability led us to a short­

list of measures, i.e. potentially recommendable measures presented in tables 3.1 and 

3.2. Evidence from previous studies helped us to reject some of the measures as potential 

candidates, mainly on the grounds that censoring has a considerable impact on them. As 

it is clear from the tables of the essential and desirable properties, the performance of the 

potentially recommendable measures with respect to some of the properties is still un­

known, which requires further investigation. This constitutes the next stage of this thesis. 

For example, the evidence from previous empirical studies has been mainly inconclusive 

about the extent of censoring effect, specially when comparing different measures.

Further work in this area would include a series of simulation studies using different 

censoring mechanisms for simulating censored time-to-event data, in order to thoroughly 

assess the impact of censoring and its magnitude under different censoring assumptions. 

The influence of sample size on the measures also remains unknown. The simulation study 

also needs to include different sample size conditions and covariate effects to investigate 

their impact on the measures.

The next chapter presents simulation design followed by the assessment of measures 

in each category in the following chapters. The main objective of the simulation study 

is to provide a thorough comparison of the potentially recommendable measures with 

regard to the properties set out in this chapter.
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Table 3.5: Summary of the programs available to calculate the proposed measures of 
predictive ability in survival analysis_________________________________________

Category Measure Program

Korn k  Simon (1990) SAS1

O’Quigley k  Flandre (1994) STATA1, R

Explained variation Xu and O’Quigley (01) STATA1, R

Akazawa (1997) Not Available

Royston & Sauerbrei (2004) STATA

Royston (2006) STATA

Nagelkerke (1991) Any

Magee (1983) k  Maddala (1990) Any

Explained randomness Verweij k  Houwelingen (1993) GAUSS

Kent k  O ’Quigley (1988) STATA1, SAS

Xu k  O’Quigley (1999) STATA1, C

Xu k  O’Quigley (2005) Any

Schemper (1990) SAS

Predictive accuracy Graf et al (1999) R, STATA

Schemper k  Henderson (2000) SAS k  R

Other Harrell (1984) Any

Schemper k  Kaider (1997) SAS k  R

1: program is written by the author
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Chapter 4

Further assessm ent of the  

proposed measures

4.1 Introduction

The classification of proposed measures into the potentially recommendable and unsuit­

able measures in chapter 3 helps us to concentrate on the measures that have, so far, not 

been rejected as the candidate measures of predictive ability in survival models. These 

measures are presented in tables 3.1 and 3.2, together with their properties. The tables 

showed that there are still unresolved issues with regard to the proposed measures, which 

require further investigation. This leads us to the next stage of this study to further in­

vestigate the properties of the potentially recommendable measures. In this chapter, we 

recommend simulation studies to investigate the measures against the criteria for which 

the performance of the measures are still unknown, such as independence of censoring 

and sample size and monotonicity properties, i.e. parameter and number of variables 

monotonicity.

4.2 Lim itations o f previous sim ulation work

Although previous simulation studies have been quite informative, there is a need for 

further investigation to incorporate several needed refinements to more fully scrutinise the 

performance of the measures. First, previous simulation studies [75] [99] [116] [80] - with 

the exception of Schemper and Stare (1996) [99] - have not compared all the alternative
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measures against each other. In our study, we carry out a comprehensive simulation study 

to compare the measures of predictive ability against each other. Second, prior studies 

have not investigated the proposed measures in the context of multiple regression. We 

carry out our study in the context of multiple regression. Third, no prior simulation has 

examined the sampling distribution of the proposed measures under different censoring 

types, censoring proportions, sample sizes, and covariate effects. This is done in the 

current study. Fourth, previous simulations have mainly studied the impact of one kind 

of censoring, i.e. administrative censoring [63], on the measures. We study the impact of 

random censoring [12] and type I censoring at an specific time, r ,  as a result of constant 

follow-up of r  time units for all individuals. Fifth, the impact of covariate skewness 

has not been addressed in the previous studies. This study investigates the impact of 

mild to relatively high skewed covariate distributions on the measures. Sixth, outlier and 

extreme observations deflate or inflate R 2 in normal linear regression (Draper and Smith 

(1998) [21], page 246). No prior study has investigated the impact of such observations 

on the measures. We will carry out simulation studies investigating the impact of such 

observations on the measures.

4.3 Sim ulation stu d y

We propose simulation studies to get a better understanding of the performance and relia­

bility of the potentially recommendable measures of predictive ability for survival models. 

Simulation study provides empirical estimation of the sampling distribution characteris­

tics rather than on theoretical expectations of those characteristics. A simulation study 

offers us an alternative to theoretical investigation of measures where the theoretical 

approach is difficult to implement, or statistical theories simply do not exist.

Although statistical theories are efficient, the validity of statistical theory is usually 

based on some theoretical assumptions that might be violated in the data that we have. 

Therefore, we are sometimes unaware of how much we can trust the theoretical estimates 

and how uncertain are the estimates if some crucial assumptions of the theory have been 

violated. We describe the study design of the simulation studies in this chapter, and 

present the results of simulations in the following chapters.
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4 .3 .1  B a sic  s te p s  o f  th e  s tu d y

We will take the following steps to successfully implement the simulation studies:

• Specify aims and objectives clearly

• Design the simulation study to address the unknowns in tables 3.1 and 3.2

• Generate data

• Compute the measures for survival models

• Obtain and accumulate the measures of predictive ability from each replication in 

survival analysis

• Analyse the accumulated measures

•  Draw conclusions based on the empirical results.

4 .3 .2  A im s an d  o b jec tiv e s

The aims of our simulation studies are to answer questions arising with regard to the 

criteria which were established in chapter 3. That is to address the unknowns in tables

3.1 and 3.2 of chapter 3. The measures are mainly defined in the context of the Cox PH 

regression model. Therefore, the simulation study to investigate the unknowns in table

3.1 to 3.2 will be based on the assumptions of the Cox PH model. This assumption, 

however, affects the generalisability of the findings. Nonetheless, we use the simulation 

studies to disprove the measures that are less favourable when we compare them against 

the criteria we set up in the previous chapter.

4 .3 .3  D a ta  g en era tio n

Data generation is the main part of any simulation study. To investigate the unknowns 

in our simulation study, we initially use techniques that are used to generate survival 

times in the Cox PH regression model. Leemis (1987) [61] and Leemis et al (1990) 

[62] presented the formula for the general relation between the hazard function and the 

corresponding survival time as a tool to generate survival times. Bender et al (2005) [11] 

presented techniques to generate survival times following distributions compatible with 

proportional hazards assumption such as exponential. We follow the procedure described 

by Bender et al (2005) [11].
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4.3 .4  T he effect o f censoring

The impact of different degrees of censoring on the potentially recommendable measures 

in table 3.1 is studied in our simulation studies. The impact of censoring on these mea­

sures has either been unclear or remained unknown in previous studies. The studies on 

the impact of censoring is implemented by considering four levels censoring proportions as 

0%, 20%, 50%, and 80% censoring in the experiments. We will consider two types of cen­

soring: random censoring [12]; and type I or administrative censoring with no staggered 

entry. Random censoring is rather common in clinical studies whereas type I or admin­

istrative censoring is more common in population-based studies as well as animal studies 

where birth cohorts are followed up until a prespecified time point, r . This helps us to 

elucidate the behaviour of the measures in different censoring situations. Mechanisms to 

generate censored survival time observations differ in different types of censoring. They 

are explained in the following section.

G enerating different censoring proportions

Random non-informative right censored data with a specified proportion of censored ob­

servations is generated in a similar manner to the non-censored survival times by assuming 

an exponential distribution for the censoring times but without including any covariates. 

Determining the parameters of the censoring distribution given the censoring probability 

is achieved by iteration. For each simulated survival time, we generate in addition a 

pseudo-random exponentially distributed observation representing the time to possible 

censoring with an specific hazard. Different choices of hazards for censoring distribution 

give 0, 20, 50 or 80 percent censoring on average, respectively.

A simulated survival time is treated as censored if it is greater than the corresponding 

simulated time from the censoring distribution. The survival times incorporating both 

events and censored observations are calculated for each case by combining the non­

censored survival times and the censoring times. We also consider type I or administrative 

censoring at an specific time, r , as a result of constant follow-up of r  time units for all 

individuals.
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4 .3 .5  T h e effect o f  sam ple size

Different sample size conditions are considered to investigate the behaviour of these mea­

sures in different study sizes. The chosen sample sizes range from 200, quite at the low 

end for use with a survival model containing highly censored survival times up to 1000, a 

relatively large sample size. The proposed sample size conditions are 200, 500, arid 1000.

4 .3 .6  M o n o to n ic ity  effect

Increasing parameter effects (parameter monotonicity) will also be studied in the sim­

ulation study. To do this, different sizes of data sets are generated (see section 4.3.5) 

with a covariate with a specific distribution, i.e. normal, lognormal, and heavily skewed 

distributions, and exponentially distributed survival times (f ( t ) ~  Aexp(—\ t )  where 

A =  exp(— (3X)) for a range of /3s. The /3s considered in this study are 0.223, 0.405,

0.693, and 1.386. These values result in hazard ratios of 1.25, 1.5, 2, and 4, respectively 

( HR  =  exp(0)).

4 .3 .7  Survival m od el

The model we consider is the univariate exponential model with distribution function

F(t) = 1 — exp(—A£)

so that

t = F ^ ( u )  = -((lo g (l -  u)) /A)

then, the survival time T  of the Cox PH model can be generated using the following 

formula:

r  =  - ((log(l -  J7))/A0exp(/Mf)))

where A =  Aoexp(/?X) and Ao is the baseline or underlying hazard. The mean and 

variance of exponential distribution are 1/A and 1/A2, and the pth quantile is tp = 

l°g(l — p)-
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4.3 .8  C ovariate d istribution

We study the measures in the context of multiple regression where prognostic index (PI),

i.e. linear predictor, in the model is usually a function of several random variables. By

dimension of the parameter vector (3 increases. However, heavily skewed covariate and 

prognostic index distributions are not uncommon in medical research. For example, the 

number of positive lymph nodes and progesterone receptor in the breast cancer study 

used by Royston and Sauerbrei (1999) [94] are heavily skewed, with skewness 2.8 and 4.8, 

respectively. Furthermore, the prognostic index of the multivariate survival model that 

Royston and Altman (1994) [89] developed for leg ulcer is negatively skewed.

We, therefore, carry out our simulation studies with four covariate distributions. 

These are normal N(0,  1), lognormal LN(0 ,1), and heavily skewed covariates with positive 

and negative skewness of 2.8 and —2.8. Fleishman (1978) [26] proposed a method based 

on polynomial transformation to generate sample data with desired degrees of skewness 

and kurtosis from standard normal distribution. We applied this method to transform 

the standard normal distribution to a positively skewed distribution with skewness=2.8 - 

graph C in 4-1 - and a heavily skewed distribution with skewness=—2.8 - graph D in 4-1. 

Both distributions have mean 0 and variance 1.

4 .3 .9  N u m b ers o f  s im u la tion s

Burton et all (2006) [12] discussed the number of simulations required and presented 

formulae to obtain the optimum number of runs. This depends on the degree of accuracy 

that is required to achieve, the true value of the estimate of interest, and the variability 

of estimate of interest. Burton et al (2006) [12] presented the formula

to determine the number of simulations required, assuming the normality of the estimated

interest we are willing to accept.

For example, if the true value of predictive ability measure from fitting a univariate 

Cox regression is 0.067 with standard deviation of 0.066, then the number of simulations

virtue of the central limit theorem, the prognostic index should tend to Normality as the

Number o f  simulations =

parameter. is the quantile of the standard normal distribution, a 2 is the variance

for the parameter of interest, and 5 is the specified level of accuracy of the estimate of
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Figure 4-1: Covariate distributions considered in the simulation study

required to produce an estimate to within 5 percent accuracy of the true measure value 

with a 5 percent significance level would be 1492.

In this study 16 parameters are being estimated for each measure since there are 

four levels of covariate effect and four covariate distributions. So, the optimum number 

of simulations required for each parameter differs for each condition according to its 

variability. The number of simulations required decreases as the sample size increases 

because the variability of the parameter of interest decreases. We have no information 

about the variability of the parameters of interest in the beginning of our study to obtain 

the optimum number of simulations required. To be consistent, we choose 5,000 for 

the numbers of replications to obtain the expected value of the measures in different 

covariate distributions and to study the censoring and sample size effects. This might be 

computationally expensive, but gives us an insight into the value of the parameters and 

their variability. Given the results obtained in these studies, we will adjust the number 

of simulations later in our studies to be more efficient.
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4.3 .10 A nalysing th e accum ulated sta tistic  o f interest

We report the descriptive statistics of the sampling distribution of the measures under four 

covariate distribution (normal, lognormal, and two skewed distributions), four covariate 

effects (0 =  1.25, 1.5, 2, 4), three sample size conditions (n =  200, 500, 1000), two 

censoring types (random and type I), and four censoring proportions (0%, 20%, 50%, 

and 80% censoring). This defines a total of 384 experimental conditions. However, the 

number of experimental conditions increases to about 500 when we add our studies on 

the robustness and monotonicity properties of the measures to this.

At each experimental condition, the values for each measure will be accumulated 

across all 5,000 simulations. Then the basic descriptive information such as the mean of 

the sampling distribution and standard errors are analysed. In addition, the measures’ 

sample distributions are presented as histograms which graphically illustrate the sampling 

distribution of the measures. This information is presented in tables for each of the 

measures.

4 .3 .11  E va lu ation  o f  th e  p red ic tiv e  a b ility  m easu res

At present, very little is known about the sampling distributions of the measures in differ­

ent censoring conditions. We therefore examined two key components of the performance 

of the measures in each experimental condition: a) mean, b) dispersion. To compare the 

performance of the proposed measures with regard to the amount of censoring, we cal­

culated the difference between the expected value of the measures in different censoring 

conditions from the corresponding non-censored value.

As previously mentioned, since the proposed measures assess different population 

quantities, results to show the censoring effect on the proposed measures are computed 

in the relative form in each experimental condition, as a percentage of the expected value 

of the measures in the corresponding non-censored condition. Then we take the average 

across the experimental conditions. To assess the spread of the measures, we calculate 

the standard deviation of the sampling distribution and the coefficient of variation in each 

experimental condition and take the average over the experimental conditions.
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4.4  Software used

Windows-based Stata and SAS are used to implement the simulations. Then, S tata is 

used to summarise the results and prepare the graphs.

4.5 D iscussion

In this chapter we first presented the shortcomings of the previous empirical studies. The 

last attem pt to compare the proposed measures was done by Schemper and Stare (1996) 

[99]. More measures have been proposed since then which suggests the need for further 

empirical work. Next, we proposed further simulation studies to compare the alternative 

measures against the criteria we proposed in chapter 3. We described the simulation study 

design and provided the justification for choosing different parameters in the simulation 

studies.

In the next three chapters, we present the results of our simulation studies on the three 

main classes of measures and compare them systematically. We present the results of our 

studies on explained variation measures, explained randomness measures, and predictive 

accuracy measures, respectively. The measure proposed by Schemper and Kaider (1997), 

R schKi only measure in the "other" category that has been classified as potentially

recommendable. We include the results of our investigation on this measure in chapter 

7, together with the results of predictive accuracy measures.
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Chapter 5

Investigation of the m easures of 

explained variation

5.1 Introduction

This chapter studies various aspects of potentially recommendable measures in the ex­

plained variation category. The measures are R%M, R o q f> R%uOQi an(  ̂ ^ 2Royston> 

proposed by Helland (1987) [41] and Kent & O’Quigley (1988) [49], O ’Quigley and Flan- 

dre (1994) [75], Xu and O’Quigley (2001) [78], Royston & Sauerbrei (2004) [93], and 

Royston (2006) [88], respectively.

This chapter consists of eight sections. First, the results of simulation studies under 

different covariate distributions and covariate effects are presented using non-censored 

data. This helps us to study the expected value of the measures and investigate the 

impact of different covariate distributions on the measures. Second, the behaviour of the 

measures in different censoring mechanisms is studied in section 5.3. In section 5.4, we 

study the consistency and the sampling distribution of the measures, and discuss the effect 

of sample size on the measures. In section 5.5, the monotonicity properties of the measures 

are investigated. The upper bound of the measures for a range of covariate effects is 

illustrated in section 5.6. The behaviour of the measures in the presence of outlying 

observations is discussed in section 5.7. In section 5.8, the issue of model mis-specification 

in the context of the Cox PH model and some simulation results which elucidate the 

impact of model mis-specification on the measures are presented. A discussion of this 

chapter is presented in the last section.
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5.2 Im pact o f covariate d istribution  on th e m easures

In this section, we evaluate the measures of explained variation under different covariate 

distributions and covariate effects. The aim of this section is to gain an understanding 

of the expected value and the spread of the sampling distribution of the measures across 

all covariate effects and covariate distributions in the absence of censoring. We examine 

the impact of censoring on the measures in section 5.3.

We present the result of simulation studies to evaluate the measures under different 

covariate distributions and covariate effects. In the simulation study, the survival times 

were simulated with four different covariate distributions as described in section 4.3.8,

i.e. normal, lognormal, highly positively skewed, and highly negatively skewed distrib­

utions. The simulations were run for four covariate distributions, four covariate effects 

0  =  {0.223,0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three 

sample size conditions n = {200,500,1000}, with 5,000 replicates in each experimental 

condition.

Tables 5.1 and 5.2 contain the mean and standard deviation of the sampling distri­

bution of the measures by the covariate distribution and covariate effect, averaged over 

three sample size conditions. The first thing to note from table 5.1 is that the measures 

appear to give a good reflection of strength of association as measured by 0  and tend 

to 1 for high, but plausible, values of 0. The measures generally agree with each other 

in normally and, to some extent, lognormally distributed covariates with the values of 

R qqf and R xuOQ sightly  higher and lower. The measures differ substantially

when the covariate distribution is heavily skewed across all covariate effects.

As is evident from table 5.2, the standard deviation (S .D .) of the measures varies 

across different covariate effects and distributions. Large S.D. implies that the sampling 

distribution of the measure is more dispersed, which results in wider confidence intervals 

for the measure. Although the standard deviation is an informative measure of dispersion, 

it is difficult in this case to compare the spread of distribution across different covariate 

effects because the scales of the measures vary across different covariate effects. For 

example, for a normally distributed covariate with 0 = 0.223, the mean and standard 

deviation of the sampling distribution of R 2pM are 0.031 and 0.014, respectively. When 

0 = 1.386, however, they are equal to 0.538 and 0.034, respectively. As seen in this 

example, the spread of the sampling distribution, compared with the mean value, is 

much larger when the covariate effect, 0 , is equal to 0.223. Therefore, standard deviation
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can be used to compare the dispersion of the measures when the covariate effects, /3.s, are 

similar (within the rows in table 5.2).

Table 5.1: Mean of the sampling distribution of explained variation measures by the 
covariate distribution and covariate effect across all sample size conditions, censoring—0%

Covariate Distribution exp(/3) r>‘2
n P M R j y n O Q F R2n X u O Q R2R o ysto n

normal 1.25 0.031 0.031 0.048 0.048 0.030
1.5 0.092 0.092 0.132 0.132 0,086
2 0.227 0.227 0.283 0.283 0.204
4 0.538 0.538 0.574 0.574 0.480

lognormal 1.25 0.031 0.029 0.043 0.043 0.028
1.5 0.093 0.087 0.112 0.112 0.080
2 0.227 0.214 0.248 0.248 0.188
4 0.537 0.514 0.552 0.551 0.451

positively skewed 1.25 0.032 0.021 0.039 0.039 0.026
1.5 0.093 0.059 0.105 0.105 0.069
2 0.226 0.139 0.256 0.256 0.156
4 0.534 0.341 0.597 0.597 0.365

negatively skewed 1.25 0.031 0.023 0.095 0.095 0.033
1.5 0.092 0.062 0.255 0.255 0.092
2 0.225 0.135 0.465 0.465 0.201
4 0.533 0.291 0.728 0.728 0.428

To compare the dispersion of the measures across covariate effects (within the columns 

in table 5.2), it is more logical to use a measure of relative dispersion, or relative variability, 

than a measure of absolute dispersion or absolute variability. A better comparison of the 

spread of distributions can be made by using coefficient of variation (C.V.). Pearson [81] 

1 suggested a formula for the computation of the coefficient of variation

M ean

This is one way of standardising the dispersion of the measures to improve compara­

bility across covariate effects. The coefficient of variation, C.V. is only a good measure 

of dispersion when M ean > 0. Table 5.3 shows the average coefficient of variation of the 

measures across three sample size conditions in the non-censored condition, expressed as 

percentages. The spread of the distribution of measures is similar in the normally distrib­

uted covariate. The distribution of R p M, Rpy, R oqf-> an(  ̂^XuOQ become relatively more 

dispersed as the skewness of the covariate becomes larger. The relative spread of dis­

tribution remains unchanged for R 2Royston in different covariate distributions. Finally, as

Reference taken from Paul L, Boynton, "The Coefficient of Variation as a Tool in Educational Prac­
tice", Peabody Journal of Education (1934), 11(5), 216-224.
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Table 5.2: Standard deviation of the sampling distribution of explained variation mea­
sures by the covariate distribution and covariate effect across all sample size conditions, 
censoring—0% __________________ _______ _____________ ________ ______

Covariate Distribution exp(/3) P M R o q f R X u O Q R2H ouston

normal 1.25 0.014 0.014 0.022 0.022 0.013
1.5 0.024 0.024 0.033 0.033 0.022
2 0.034 0.034 0.040 0.040 0.030
4 0.034 0.034 0.037 0.037 0.033

lognormal 1.25 0.015 0.014 0.019 0.019 0.013
1.5 0.024 0.024 0.029 0.029 0.020
2 0.035 0.034 0.040 0.040 0.028
4 0.038 0.037 0.045 0.057 0.034

positively skewed 1.25 0.016 0.012 0.020 0.020 0.011
1.5 0.028 0.020 0.040 0.040 0.018
2 0.045 0.031 0.074 0.074 0.027
4 0.055 0.043 0.074 0.074 0.037

negatively skewed 1.25 0.016 0.012 0.078 0.078 0.016
1.5 0.031 0.020 0.100 0.100 0.026
2 0.051 0.029 0.091 0.091 0.035
4 0.061 0.039 0.055 0.055 0.039

the covariate effect becomes smaller, the spread of the distribution of measures becomes 

larger. Some of the findings are highlighted below for each measure in this category.

5 .2 .1  H ellan d  (1987) an d  K en t &; O ’Q u ig ley  (1988) m easu re - F(PM

The mean of the sampling distribution of R 2PM varies from 0.031 to 0.538 for different 

covariate effects. The measure is independent of the shape of the covariate distribution. 

The dispersion of the measure decreases as the covariate effect increases. For example, 

the coefficient of variation decreases from 43.4% for (3 = 0.223 (hazard ratio of 1.25) to 

6% for = 1.386 (hazard ratio of 4) when the covariate distribution is normal. There 

is a similar pattern in other covariate distributions, but with bigger dispersion in skewed 

covariate distributions.

5 .2 .2  R o y sto n  and  S au erb rei m easure (2004) - R l

The mean and dispersion of the sampling distribution of R 2D are similar to those of R 2PM 

for normally distributed covariates. The expected value of the measure decreases as the 

covariate distribution becomes asymmetrical. The larger the skewness of the covariate 

distribution, the larger the decrease. For example, for j3 = 1.386 (hazards ratio of 4), the 

expected value of the measure decreases from 0.536 in the normally distributed covariate
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Table 5.3: Coefficient of variation of explained variation measures by the covariate dis­
tribution and covariate effect, expressed as %. Table entries are the average across all 
combinations of sample sizes, censoring=0%.__________________ ________ ______

Covariate Distribution exp(/3) Ft'*
n P M

d ‘2
n O Q F

p 2
11.X u O Q

n ‘2
R o ysto n

normal 1.25 43.4 43.5 42.6 42.6 42.6
1.5 24.4 24.5 23.7 23.7 24.0
2 14.1 14.1 13.5 13.5 14.0
4 6.0 6.1 6.0 6.0 6.5

lognormal 1.25 43.7 44.9 41.0 41.0 42.0
1.5 24.9 25.7 23.7 23.7 23.8
2 14.7 15.2 14.9 14.9 14.3
4 6.6 6.7 7.7 10.3 7.1

positively skewed 1.25 46.1 53.4 46.5 46.5 42.2
1.5 28.4 32.8 35.3 35.3 25.2
2 18.8 21.4 27.3 27.3 16.5
4 9.8 12.0 11.9 11.9 9.5

negatively skewed 1.25 49.0 51.3 79.1 79.1 47.3
1.5 31.7 30.8 37.9 37.9 27.5
2 21.5 20.2 18.7 18.7 16.7
4 10.9 12.8 7.2 7.2 8.6

to 0.514 when the skewness is equal to 1, that is lognormal covariate, and to 0.341 when 

the skewness is equal to 2.8.

This reflects the impact of non-normality of the covariate or the prognostic index (PI)  

on the D  measure [93], which was reported by Royston and Sauerbrei (2004) [93]. They 

showed that on average non-normality of the P I  appears to reduce the D  measure . To 

compute D, first the Cox PH model is fitted. Then the prognostic index of the model, 

f i  X ,  is transform to give standard normal order rank statistics (rankits - formed using 

Blom’s approximation [93]). The rankits are multiplied by a factor of v 8 / t t  to give Zi 

(i = 1, n subjects). Finally a Cox PH model is fitted to these values; D  is the coefficient 

of Z, say a*, from this second model. Royston and Sauerbrei (2004) [93] showed that D 

most accurately measures separation of survival curves when the underlying prognostic 

index values, f ixi ,  are normally distributed. The regression on the Z  in the second model 

is then linear and <r* is an approximately unbiased estimate of a. They explained that 

when the f ixi  are not normally distributed, linearity in the second model breaks down 

[93]. D  still measures separation because a* in the second model still estimates cr, but 

with bias.
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5 .2 .3  O ’Q u ig ley  and F lan d re m easu re (1994) - R q q f

This measure and R 2Xuqq are identical in non-censored data. They seem to have higher 

values than the other measures in this category. The mean of the sampling distribution 

is about 0.048 for (3 =  0.223, and increases to 0.574 for =  1.386. This measure is 

also influenced by the covariate distribution. The impact of covariate distribution on this 

measure seems to depend on the strength of the relationship and the skewness of covariate 

distribution. The dispersion of the measure increases as the distribution of the covariate 

in the model becomes skewed.

5 .2 .4  X u  an d  O ’Q u ig ley  m easu re (2001) - R XuQq

This measure is identical to O’Quigley and Flandre’s measure (1994), R q q f i in non- 

censored data. Thus, it possesses the same properties as the O’Quigley and Flandre 

measure (1994).

5 .2 .5  R o y sto n  m easu re  (2006) - F^oystan

The mean of the sampling distribution of this measure varies from 0.026 to 0.480, depend­

ing on the strength of the relationship and the skewness of the covariate. The dispersion 

of this measure decreases with increasing covariate effect, and the covariate skewness has 

less impact on this measure compared with its impact on the others.

5.3 Im pact o f censoring on th e m easures

The impact of censoring was studied by considering two types of censoring mecha­

nisms, type I, known as administrative censoring, and random censoring, and four cen­

soring proportions. The mechanisms applied for generating each censoring type was 

explained in section 4.3.4. Simulations were run for two types of censoring mecha­

nisms, four censoring proportions, 0%, 20%, 50%, and 80%, four covariate effects /3 =  

{0.223,0.405, 0.693,1.386} representing hazard ratios of (1.25,1.5,2, 4}, and three sample 

size conditions n = (200,500,1000}, with 5, 000 replicates in each experimental condition.

Table 5.4 shows the average percentage difference of measures to the expected value of 

corresponding non-censored data by the covariate distribution and censoring proportion. 

The entries in the table are the average across two censoring types, four covariate effects,



and three sample size conditions, as outlined in section 4.3. Table 5.5 shows the rela­

tive dispersion of the measures expressed as C.V., averaged over the same experimental 

conditions.

Furthermore, table 5.6 displays the impact of censoring type on the expected value 

and dispersion of the measures by covariate distributions. The figures in this table are 

the average across four censoring proportions, four covariate effects, and three sample 

size conditions. Detailed simulation results are presented in Appendix A. The tables in 

Appendix A show the impact of censoring by the covariate distribution, censoring type, 

and censoring proportion in a similar way to table 5.6.

Since one of the aims of this study was to make practical comparisons of the measures, 

we translate the figures in table 5.4 into 4 categories each representing the extent of 

censoring. The categories are:

1) almost no effect: the average percentage change in the expected value of the measure 

is 0% — 9% compared to that of non-censored data.

2) slight effect: the average percentage change in the expected value of the measure is 

10% — 19% compared to that of non-censored data.

3) moderate effect: the average percentage change in the expected value of the measure 

is 20% — 49% compared to that of non-censored data.

4) large effect: the average percentage change in the expected value of the measure is 

more than 50% compared to that of non-censored data.

This classification helps us to interpret the results and easily compare the measures. 

The impact of censoring on each measure is summarised in the following sections.

5 .3 .1  H ellan d  (1987) an d  K en t &; O ’Q u ig ley  (1988) m easu re  - R 2PM

The amount of censoring has the least impact on this measure among the explained 

variation measures. As it appears from table 5.4, the measure increases slightly with 

the amount of censoring. For instance, with 80% censoring and normally distributed 

covariates, the measure is on average 6.3% higher than the value of the measure with the 

corresponding non-censored data. The spread of the sampling distribution of this measure 

also increases as the amount of censoring increases for all covariate distributions. Table 5.6
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Table 5.4: The average percentage difference from the expected value of the measures in 
the corresponding non-censored data by the covariate distribution and censoring propor-

Covariate Distribution % Censored z ? 2
P M R % p S T ......

O O F tijcuOQ
r > 2

R o ysto n

normal 20 0.4 0.4 2.3 1.8 5.3
50 1.6 1.6 6.8 5.6 13.1
80 6.3 6.4 16.0 14.4 26.9

lognormal 20 0.2 4.9 3.5 2.3 10.2
50 1.0 13.5 11.0 8.1 28.0
80 4.0 28.1 25.1 20.6 58.1

positively skewed 20 0.1 13.1 2.9 1.5 16.0
50 0.5 40.2 11.3 7.2 50.1
80 2.2 88.9 30.6 23.6 115.9

negatively skewed 20 1.3 -10,6 -12.3 -9.3 -10.6
50 4.5 -19.7 -19.5 -14.7 -21.1
80 16.7 -21.3 -18.8 -14.3 -24.5

ible 5.5: Coefficient of variation of explained variation measures by the covariate d

ibution and censoring proportion, expressed as %.
Covariate Distribution % Censored p 2

P M R zn D
T> 2

O O F
d 2
n X u O Q R o ysto n

normal 20 23.6 23.7 23.1 23.4 23.9
50 28.4 28.5 27.7 31.8 29.2
80 40.1 40.3 39.1 57.3 42.1

lognormal 20 23.5 24.6 22.9 23.1 23.6
50 27.1 28.8 26.4 27.9 28.3
80 36.4 39.1 35.8 51.8 39.7

positively skewed 20 26.3 31.0 47.2 48.2 24.7
50 28.5 34.6 35.5 43.3 28.5
80 34.6 42.9 37.9 58.4 37.5

negatively skewed 20 31.8 31.6 34.0 37.2 27.8
50 39.3 39.1 39.4 50.3 34.6
80 57.2 56.4 53.5 71.4 50.6

shows that the mean and relative dispersion of the sampling distribution of this measure 

are similar in both censoring types.

5 .3 .2  R o y sto n  an d  S au erb rei m easure (2004) - R l

The impact of censoring on this measure depends on the covariate distribution. In a 

model whose covariate or prognostic index distribution is positively skewed, the measure 

increases as the amount of censoring increases. In contrast, when the covariate is nega­

tively skewed, the measure decreases as the amount of censoring increases. The impact of 

censoring becomes larger as the covariate becomes more skewed. The spread of sampling 

distribution of this measure in censored data is similar to that of R%M with the exception
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Table 5.6: Summary performance of explained variation measures by the covariate dis- 
tribution and censoring mechanism.___________________________________________

Random Censoring Type I Censoring
Measure Covariate Distribution Average Average

% Difference C.V. % Difference C .V
ft 2
n P M normal 2.9 30.9 2.6 30.4

lognormal 2.0 29.4 1.5 28.7
positively skewed 1.3 30.1 0.6 29.4
negatively skewed 7.1 42.4 7.9 43.2
normal 2.9 31.1 2.7 30.6
lognormal 14.4 31.2 16.7 30.5
positively skewed 43.6 36.9 51.2 35.4
negatively skewed -14.6 42.5 -19.8 42.2

p2
n O Q F normal 8.1 30.3 8.6 29.6

lognormal 13.1 28.7 13.3 28.0
positively skewed 16.1 37.4 13.8 43.0
negatively skewed -13.8 44.0 -19.8 40.7

T> 2
X u O Q normal 5.9 45.3 8.6 29.6

lognormal 7.4 40.6 13.3 28.0
positively skewed 7.8 56.9 13.8 43.0
negatively skewed -5.7 65.3 -19.8 40.7

Tjfl
R o yston normal 13.5 31.9 16.7 31.5

lognormal 28.8 30.8 35.4 30.3
positively skewed 55.1 30.7 66.3 29.8
negatively skewed -16.5 37.7 -20.9 37.6

of positively skewed distribution, which is higher than that of Table 5.6 shows that

type I censoring has more impact on the expected value of the measure than random 

censoring. However, the spread of the sampling distribution seems to be similar under 

both random and type I censoring.

5 .3 .3  O ’Q u ig ley  an d  F la n d re  m easure (1994) - R%qF

The impact of censoring on this measure also depends on the skewness of the covariate 

distribution. Table 5.4 makes it clear that while the measure decreases as the amount of 

censoring increases in negatively skewed covariates, it increases as the amount of censoring 

decreases in positively skewed covariates. Table 5.5 shows tha t the spread of the sampling 

distribution increases as both censoring and the covariate skewness increase. For example, 

in positively skewed covariates, the measure is on average 16.1% higher under random 

censoring conditions compared with the value of the measure in the corresponding non- 

censored data. However, it is on average 13.8% lower compared with the expected value 

of the measure in the corresponding non-censored data if the covariate is negatively
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distributed.

5.3.4 X u and O ’Q uigley m easure (2001) - R 2Xuoq

This measure is a modification of O’Quigley and Flandre’s measure (1994) [75], R-oq f- 

As discussed in Xu (1996) [115] and Xu and O’Quigley (2001) [78], to eliminate the 

asymptotic dependence of O’Quigley and Flandre’s measure (1994) [75] on censoring, 

it is necessary to weight the squared Schoenfeld residual in O ’Quigley and Flandre’s 

measure (1994) [75] by increments of any consistent estimate of the marginal failure time 

distribution function. Xu and O’Quigley (2006) [79] explained that the practical impact 

of this weighting on numerical values would typically be small. The results in table 5.4 

emphasise this theory. However, the results of the simulation study show that censoring 

still has a minor effect on this measure and the weighting scheme has not eliminated its 

impact completely.

The weighting scheme diminishes the impact of censoring on this measure compared 

with its impact on O’Quigley and Flandre’s measure (1994) [75]. Nevertheless, the spread 

of the sampling distribution of this measure increases dramatically as the censoring pro­

portion becomes larger. For example, the C.V. of Xu and O’Quigley’s measure (2001) 

[78] in the normally distributed covariate is on average 57.3, where that of O’Quigley 

and Flandre’s measure (1994) [75] is on average 39.1. Table 5.6 shows that this measure 

is identical to O’Quigley and Flandre’s measure (1994) [75] in type I censoring. Ran­

dom censoring has less impact on this measure compared with O ’Quigley and Flandre’s 

measure (1994) [75] in all covariate distributions.

Further assessment of the simulation results revealed an undesirable impact of cen­

soring on this measure. Figure 5-1 demonstrates this finding in more detail. The figure 

consists of four graphs one for each covariate effect. In the graphs, the dots represent 

the estimates of this measure in each replicate and the solid line is the expected value of 

the measure when the covariate is normally distributed from 0% to 90% censoring. As 

it is evident, the expected value of the measure is consistent as the amount of censor­

ing increases across four covariate effects. But the measure cannot be guaranteed to be 

non-negative. In fact, as figure 5-2 demonstrates, the chance that the measure leads to a 

negative value increases as the amount of censoring goes up.
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Figure 5-1: The expected value (solid line) of Xu and O’Quigley measure (2001) by 
the censoring proportion when the covariate is normally distributed, random censoring 
condition, and sample size=1000, Dots are the estimates of the measure in each replicate.
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5.3.5 Royston measure (2006) - H2R(Xystan

Among the measures in this category, performance is the worst with regard to

the impact of censoring. Table 5.4 reveals that the censoring has the biggest impact on 

this measure, compared with other measures in this category, in all censoring proportions 

and covariate distributions. Table 5.6 also shows that type I censoring has more impact 

on this measure than random censoring.

5.4 C onsistency, d is trib u tio n a l shape, and  sam ple size ef­

fect

In this section, we discuss the consistency and the shape of the sampling distribution of 

the measures as well as the effect of sample size on them. First, the characteristic of a 

consistent estimator together with the results of the simulation study to investigate the
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Proportion of replicates resulted in negative value
(Xu & O’Quigley (2001) m easure , n=1000)
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Figure 5-2: Proportion of simulations in which Xu and O'Quigley measure (2001) resulting 
in negative value. The covariate is normally distributed and survival times are randomly 
censored.

consistency of R?D and are presented. Then, the shape of the sampling distribution 

of the measures in the presence of censoring is discussed. Finally, the effect of sample 

size on the measure is studied.

5.4.1 Consistency of the measures

An important characteristic of estimators is consistency. Formally, 9 is a consistent 

estimator of the parameter 9 if and only if Z,iran_,00 Pr  ̂ 9 — 9 < ê j = 1 for every e > 0 

(Mood et al (1974) [70], page 295). Less formally, a consistent estimator is one for which 

the probability that it is arbitrarily close to the parameter converges to 1 as the sample 

size, n , increases without bound. A consistent estimator is not necessarily unbiased in 

finite samples, but as the sample becomes larger and larger, the estimator gets closer 

and closer in value to the parameter of interest (Mood et al (1974) [70], page 295). 

If the measures studied here are consistent under different censoring proportions, their 

bias should decrease toward 0 and the spread of their sampling distributions should 

become smaller and smaller as the sample size increases. Therefore, bias and M S E  of 

the estimators should be investigated.

In this section, we explore the consistency of the measure proposed by Royston and 

Sauerbrei (2004) [93] through some simulation studies. For the Cox PH model, the
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measure is defined as
2 D 2/k ?
^  D 2 j  k 2  4- 1.645

where D is a measure of prognostic separation when the underlying prognostic index 

values f3'Xi, i = 1 , n,  are normally distributed and k = yJWpi: ~  1.60. In the simulation 

study, the survival times were simulated considering a normally distributed covariate, 

N ( 0,1), as described in section 4.3.8. The simulations were run for four covariate effects 

/? =  {0.223,0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three 

sample size conditions n — {200,500,1000}, and two censoring proportions, 0% and 80%, 

with 5000 replicates in each experimental condition. The survival times are randomly 

censored by considering an exponential distribution for censoring times, as described in 

section 4.3.4.

In the above setting, a model with normally distributed covariate, D2/ k 2 is, by defi­

nition, the variance of the prognostic index, {3'Xi, of the model (Royston and Sauerbrei

(2004) [93]). If X  ~  N (0,1) then fl'X i ~  iV(0,/?2); therefore, the population value of the 

R?D for different values of the covariate effect, /3 =  {0.223,0.405, 0.693,1.386}, are 0.029,

0.091, 0.226, and 0.539, respectively.

Table 5.7 displays the results of the simulation study in terms of the estimated bias 

and the estimated \ / M S E  of the R p. The bias is defined as

Bias  =  R 2d — R p

— 2where R D is the empirical mean across 5,000 sampling repetitions used in a given exper­

imental condition
5000 

T52 _  i=1
D 5000 '

The empirical root mean squared error, y / M S E , is defined as

M S E  =  Bias2 -  S E 2

where
/  5000 \ 1/2

S E 4 = 1

5000

95



Table 5.7 shows that the sample estimate Rjjy is unbiased in non-censored data for all cases 

considered. In the censored data, the sample estimate has a slight positive bias for the 

small covariate case, i.e. /3 = {0.223,0.405}, when the sample size is small, i.e. n  =  200; 

otherwise, the sample estimate is unbiased. In terms of M S E , the sample estimate has 

larger M S E  in censored data compared to the non-censored one, as expected. As it is 

evident from the table, the M S E  and Bias of the sample estimate R 2D becomes smaller 

as the sample size, n, increases in both censored and non-censored data. We, therefore, 

can conclude that the sample estimate R 2D is a consistent estimator of R 2D in normally 

distributed covariates.

Table 5.7: Summary of the estimated bias and root mean squared error (RMSE) of the 
estimator of Royston and Sauerbrei measure (2004). Normally distributed covariate and 
randomly censored data.______

&D n 0% censoring 80% censoring
Bias y / M S E Bias V M S E

0.029 200 0.003 0.020 0.014 0.047
500 0.001 0.012 0.006 0.027
1000 0.001 0.008 0.003 0.019

0.091 200 0.003 0.033 0.012 0.069
500 0.001 0.021 0.005 0.043
1000 0.001 0.014 0.002 0.030

0.226 200 0.001 0.046 0.006 0.088
500 0.001 0.029 0.004 0.056
1000 0.000 0.021 0.002 0.039

0.539 200 -0.005 0.047 -0.002 0.080
500 -0.002 0.030 0.000 0.050
1000 -0.001 0.021 0.000 0.035

Similar analysis was performed for the R 2PM to investigate the consistency of this 

measure. The results were very similar to those of R 2D, thus the same conclusion can be 

drawn on R'p^f - In section 5.2, we showed that the mean and dispersion of the sampling 

distribution of R 2D are also similar to those of R 2PM for a normally distributed covariate.

The consistency of other measures in this category were studied before. The measures 

proposed by O’Quigley and Flandre (1994) [75], R qQF , is a consistent estimator of the 

population value, R ^ g F as expressed in equation 2.29, in the absence of censoring ([75] 

and [115]). However, Xu (1996) [115] showed that R qqP depends upon censoring even 

asymptotically in the presence of censoring. Xu (1996) [115] introduced R 2XuOQ and ana­

lytically established its consistency as an estimator of the population value, R q q F . The 

measure proposed by Royston (2006) [88] is a transformation of the explained randomness 

measure proposed by O ’Quigley et al (2005) [80], p\. As pointed out by O ’Quigley et al
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(2005) [80], p \ is consistent in the absence of censoring. But, it converges to a different 

population quantity in censored data. More discussion on the consistency of pf., along 

with other explained randomness measures, is presented in section 6.4 of next chapter. 

In the next section, we present the sampling distribution of the measures for different 

sample sizes, covariate effects, and censoring proportions.

5.4.2 Sam pling distribution of the measures

Generally, simulation results show that for small sample sizes and small covariate effects, 

the sampling distributions of the estimators of explained variation measures exhibit con­

siderable skewness, particularly when censoring is more than 50%. Figure 5-3 is presented 

as an example to depict the distributional properties of the measures. The figure shows 

the sampling distribution of Royston and Sauerbrei’s measure (2004) [93], R by the 

censoring proportion, covariate effect, and sample size. The smooth curves in the fig­

ure are the kernel density estimates in each experimental condition. The survival times 

are randomly censored by considering an exponential distribution for censoring times, 

as described in section 4.3.4. The covariate, or prognostic index in the case of multiple 

regression, of the model is normally distributed and the number of replicates are 5,000 

in each experimental condition.

As seen in figure 5-3, more symmetry is evident as the covariate effect, (5 , and sample 

size, n, become larger. By the time n attains 1,000, however, virtually all distributions 

are approximately bell shaped in small to moderate censoring, i.e. when the censoring 

proportion is not more than 50%. The positive skewness in all distributions is quite 

evident when censoring is heavy and sample size is small. We explored the sampling 

distribution of other measures in this category with the same experimental conditions. 

The shape of the sampling distribution of the measures follows a similar pattern, except 

R xuOQ which results in negative values as censoring increases, as explained in section

5.3.4.

We can also crudely explore the consistency of the estimators graphically over the 

range of n in this study. Sampling distributions of consistent estimators should tend 

towards a spike over the parameter of interest as n becomes ever larger. Intuitively, this 

means that the sampling distribution of a consistent estimator becomes more and more 

concentrated on the parameter of interest as n becomes ever larger. All distributions 

in figure 5-3 appear to exhibit this tendency, although some more so than the others,
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Figure 5-3: Sampling distributions of Royston and Sauerbrei measure (2004) by the co­
variate effect, sample size, and censoring proportions in the normally distributed covariate 
and random censoring condition.
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depending on the censoring proportion.

5 .4 .3  Im p a ct o f  sam p le size  on  th e  m easu res

The results of all simulation studies show that in all explained variation measures sample 

size has an effect when the covariate effect is small and the amount of censoring is high. 

To illustrate this, we tabulated the results of a set of simulation studies with 5, 000 repli­

cates. In the simulation study, the conditional survival times are generated by assuming 

T \X  ~Exponential(exp(/3JV)) where X  ~  iV(0,1) is the covariate.

Table 5.8: Percentage change in the expected value of explained variation measures in 
small and large sample sizes by censoring proportion. The figures in brackets are the 
s tandard deviation of the sampling distribution._________________________________

20% Censoring 80% Censoring
Sample size Sample size

Measure exp {/3) 1000 200 % Change 1000 200 % Change

11P M 1.25 0.030 0.033 9% 0.032 0.044 27%
(0.009) (0.022) (0.019) (0.045)

4 0.539 0.537 0% 0.539 0.538 0%
(0.022) (0.049) (0.034) (0.076)

& D 1.25 0.030 0.033 9% 0.033 0.044 25%
(0.009) (0.022) (0.019) (0.045)

4 0.538 0.534 -1% 0.538 0.537 0%
(0.022) (0.050) (0.035) (0.080)

t>'2
O Q F 1.25 0.047 0.052 10% 0.052 0.072 28%

(0.015) (0.034) (0.030) (0.073)
4 0.584 0.590 1% 0.634 0.647 2%

(0.024) (0.054) (0.039) (0.089)
r>2

n X u O Q 1.25 0.047 0.052 10% 0.052 0.069 25%
(0.015) (0.035) (0.070) (0.120)

4 0.574 0.583 2% 0.614 0.631 3%
(0.024) (0.054) (0.079) (0.131)

E 2R o ysto n 1.25 0.030 0.032 6% 0.033 0.044 25%
(0.009) (0.021) (0.019) (0.046)

4 0.514 0.507 -1% 0.641 0.630 -2%
(0.024) (0.053) (0.045) (0.100)

Random non-informative right censoring was generated as described in section 4.3.4. 

Table 5.8 shows that the measures increase when both sample size and the covariate 

effect are small, i.e. n =  200 and exp(/3) =  1.25, and the amount of censoring is high, i.e. 

80%. This pattern was observed in other simulation studies when we considered skewed 

covariates and a different censoring mechanism, i.e. type I censoring.
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5.5 M onotonicity properties o f th e  proposed m easures

In this section, the parameter and number of variables monotonicity properties of the 

explained variation measures are investigated. In chapter 3, these two properties were 

considered essential for a suitable measure of predictive ability. Parameter monotonicity 

means that the expected value of predictive ability measures should not decrease as the 

absolute value of covariate effect, /?, in the model increases. The number of variables 

monotonicity means that the expected value of a suitable measure of predictive ability 

should not decrease by adding new covariates. This section is divided into two parts, 

describing the two monotonicity properties separately.

5.5 .1  P a ram eter  m o n o to n ic ity

The parameter monotonicity of R qqF and R%uqq h35 been established analytically by 

O’Quigley and Flandre (1994) [75] and Xu (1996) [115]. Furthermore, R%M satisfies this 

property since it is a monotonic function of |/?|. Equation 2.24 can be written as

d2 =  V a r x (^ x )
PM V a r x (^ x )  +  7T2/6

1 _________
/32V a rx (x ) +  7t2/6

which is an increasing function of the covariate effect, /?. Similarly, the measure proposed 

by Royston and Sauerbrei (2004) [93], can be written as

2 D 2/K2
D D 2 / k 2 +  a \

=  ! ______2 L _
D 2 j k 2  +  a 2

where a 2 = ir2/6 for the Cox PH model. This shows that R 2D is an increasing function of 

the D  measure ([93]) which is a monotonic function of |/3| (Royston and Sauerbrei (2004) 

[93]) when the prognostic index of the model, {3'x., is assumed to be normally distributed. 

The measure proposed by Royston (2006) [88], R% ^stmt inherits pi properties of which 

parameter monotonicity is one (section 6.6 or O’Quigley et al (2005) [80]).

Furthermore, the simulation results displayed in table 5.1 show that the expected 

value of the measures increase as the covariate effect becomes stronger in all covariate 

distributions. Moreover, the results of another simulation study, performed to investigate
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the upper bound of the measures for a wide range of covariate effects, presented in section 

5.6, show that the measures are an increasing function of the covariate effect. Thus, all 

of them satisfy this property.

5 .5 .2  N u m b er  o f  variab les m o n o to n ic ity

As it was described in chapter 3, an appropriate measure of predictive ability should 

not decrease as new prognostic factors, i.e. covariates, are included in the model. The 

number of variables monotonicity means that the expected value of a measure of predictive 

ability should not decrease by adding new covariates. In this section, a further simulation 

study was carried out to investigate the impact of adding new but independent covariates 

to the model. The simulation study was carried out for four covariate effects and two 

censoring proportions. The sample size was 500, and 2,000 replicates were generated 

for each experimental conditions. In the simulation, the distribution of survival time is 

generated using the algorithm outlined in section 4.3.9 by assuming only one covariate 

that is normally distributed. Then, two new covariates were generated independently 

and the following models were fitted in each replicate: Model I with only the dependent 

covariate; Model II with the dependent covariate and one independent covariate; and 

Model III with the dependent covariate and two independent covariates.

Table 5.9 displays the differences in the expected values of the measures after fitting 

models II and III compared to model I. The table shows that the expectation of the 

measures do not decrease as new but independent covariates are included in the model 

in both non-censored and censored conditions.

Table 5.10 displays the results of the simulation study, summarised in terms of pro­

portions. The entries in the table are the proportion of simulations in which the measure 

decreased after adding one or two independent covariates to the model. For example, 

when exp(/?) =  1.25 (/? =  0.22) and the amount of censoring is 0%, in about 10% of 2000 

simulations the value of R%M decreased after adding one new independent covariate. The 

proportion of simulations in which the measure decreased fell to 3% after two independent 

covariates were added to the model.

As seen, R^toyaton always increases after adding new covariate to the model. This 

measure is based on the likelihood function which always increases by adding a new 

covariate to the model, regardless of whether the covariate is related to the outcome. It 

is also clear that the performance of R ^ , R qqF , and R%uoq is similar in non-censored
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Table 5.9: Mean difference in the expected value of the measures after adding one or two 
independent covariates to the model in 2,000 simulations, normally distributed covariates.

Measure exp (/?)
Model II Model III

Mean difference to model I 
0% censoring 80% censoring

Mean difference to model I 
0% censoring 80% censoring

n P M 1.25 0.001 0.006 0.003 0.012
1.5 0.001 0.005 0.003 0.011
2 0.001 0.005 0.003 0.009
4 0.001 0.003 0.002 0.006

H i 1.25 0.001 0.006 0.003 0.012
1.5 0.001 0.005 0.003 0.011
2 0.001 0.005 0.003 0.009
4 0.001 0.003 0.002 0.006

p ! 1
n O Q F 1.25 0.002 0.009 0.004 0.018

1.5 0.002 0.007 0.003 0.015
2 0.001 0.005 0.002 0.010
4 0.001 0.002 0.001 0.004

p 2
n X u O Q 1.25 0.002 0.009 0.004 0.019

1.5 0.002 0.008 0.003 0.016
2 0.001 0.004 0.002 0.010
4 0.001 0.002 0.001 0.005

r>T~
R o ysto n 1.25

1.5
2
4

0.001
0.001
0.001
0.001

0.006
0.006
0.005
0.003

0.002
0.002
0.002
0.002

0.012
0.012
0.011
0.006

data. But, R x uoq performs worse in censored conditions, i.e. the chance that the measure 

goes down after adding a new independent covariate to the model is more than the other 

measures.

5.6 U pper bound o f th e measures

In this section, more simulation studies are carried out to investigate the upper bound of 

explained variation measures. In the simulations, the predictor X  is normally distributed 

and the distribution of the conditional survival times are exponentially distributed, i.e. 

T \X  ~ExponentiaI(exp(/3_X’)). Random non-informative right censoring are generated 

by considering an exponential distribution for censoring times as described in section

4.3.4. The simulations are carried out for a wide range of covariate effects from small 

to large, but reasonable, values with 2,000 replicates in each experimental condition. 

Figure 5-4 displays the expected value of the measures from /? =  0.22 (exp(/3) =  1.25) to 

f3 = 5.55 (exp(/3) =  256) for 0% and 50% censoring. In both censoring conditions, the 

expected values of the measures increase with the covariate effect, and they reach values
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Table 5,10: Proportion decrease in measures after adding one or two independent covari- 
ates to the model in 2,000 simulations, normally distributed covariates._____________

Measure exp (/?)
Model II Model III

prop, decreased to model I 
0% censoring 80% censoring

prop, decreased to model I 
0% censoring 80% censoring

p  2
11P M 1.25 0.10 0.07 0.03 0.02

1.5 0.15 0.12 0.06 0.04
2 0.18 0.19 0.09 0.10
4 0.20 0.27 0.09 0.18

& D 1.25 0.18 0.16 0.09 0.05
1.5 0.24 0.20 0.13 0.09
2 0.27 0.26 0.17 0.15
4 0.30 0.34 0.21 0.23

p 2
U O Q F 1.25 0.17 0.16 0.07 0.06

1.5 0.20 0.23 0.11 0.12
2 0.25 0.29 0.16 0.20
4 0.30 0.34 0.22 0.26

n 2
X u O Q 1.25 0.17 0.40 0.07 0.32

1.5 0.20 0.40 0.11 0.33
2 0.25 0.42 0.16 0.36
4 0.30 0.42 0.22 0.35

r>2
R o ysto n 1.25 0.00 0.00 0.00 0.00

1.5 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00

near, but less than, 1. This suggests that, first, the measures have the upper limit of 1 

and, second, they will lead to high values for large, but reasonable, covariate effects, i.e. 

they reach values more than 0.80.

5.7 R obustness of th e  m easures

In this section, we study the impact of extreme and outlier observations on the explained 

variation measures. Barnett and Lewis (1994) [9] defined an outlier as an observation 

(or a set of observations) which appears to be inconsistent with the remainder of that 

set of data. Barnett and Lewis (1994) [9] made a clear distinction between outliers and 

extreme observations and argued that they are not coincident concepts. An outlier obser­

vation may substantially alter the estimate of a parameter, or the outcome of a specific 

test. In contrast, an extreme observation follows the general pattern of the data, but it 

appears in the extremes of the data set. We name both extreme and outlier observations 

''atypical" observations, Barnett and Lewis (1994) [9] also present methods to deal with 

such observations in statistical analysis of data. Some of the proposed procedures exits
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Figure 5-4: Explained variation measures as a function of the covariate effect in the 
model, normally distributed covariate. In the bottom graph, survival times are randomly 
censored according to an exponential distribution for the censoring times.
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to accommodate the atypical observations, while others aim at identifying them.

As Barnett and Lewis (1994) [9] explain, atypical observations do not inevitably "per­

plex" or "mislead"; they are not necessarily "bad" or "erroneous". Rejection of such 

observations is a naive way of dealing with them. As Cook and Weisberg (1980) [17] 

argue the presence of atypical observations does not necessarily imply that they should 

be deleted or down weighted. This can only be justified when such observations have 

arisen from purely deterministic reasons such as mistakes in reading or recording in the 

data (Barnett and Lewis (1994) [9]). Otherwise, they might provide useful information 

about, first, the underlying mechanism that generated the data and, second, the choice
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of the statistical technique or the model applied to analyse the data. For example, if 

atypical observations proved to be discordant on an assumed normal distribution, it is 

more likely that we would have chosen to reject them. However, this action might not be 

justified if an appropriately sophisticated non-normal model incorporated them in a non- 

discordant fashion. Moreover, in the context of clinical research, they might lead us to 

unsuspected prognostic factors of particular importance. New procedures have recently 

been developed in many statistical methods to deal with such observations.

To study the influence of atypical observations on the predictive ability measures, 

Draper and Smith (1998) [21] explained why outliers reduce the R 2 in linear regression. 

Wilcox and Muska (1999) [114] presented a non-parametric alternative to the R 2 in linear 

regression. Rousseeuw and Leroy (1987) [87] presented R?r  (equation 2.12) for robust 

regression.

In the context of survival analysis, the issue of atypical observations have not been 

studied extensively. While there are established methods in normal linear regression mod­

els to deal with atypical observations, the methods to diagnose and deal with such obser­

vations in the context of survival analysis are not well established. Nardi and Schemper 

(1999) [72] proposed new residuals which can be used to detect such observations. P ettitt 

and Bin-Daud (1989) [82] showed that various use of residuals have only limited value in 

reflecting atypical observations and suggested other forms of diagnostic plots. Henderson 

and Oman (1993) [44] introduced a method, akin to Cook distance in linear regression, 

to detect atypical observations in the context of survival analysis. But no method has 

been universally accepted to detect and accommodate such observations in the context 

of survival analysis.

The aim of this section is to show the behaviour of the proposed measures when atyp­

ical observations are present in the data. To do this, we carried out further studies to 

investigate the impact of extreme and outlier observations on explained variation mea­

sures. The outline of the simulation study and the corresponding results are presented in 

the following sections.

The study was carried out for four covariate effects, (p = 0.223,0.405,0.693,1.387), 

four censoring proportions (0%, 20%, 50%, 80%), and three sample size conditions (200,500,1000) 

with 2,000 replicates in each experimental conditions. In the simulation study, the con­

ditional survival times are generated by assuming T \X  ~Exponential(exp(/?X )) where 

X  N (0,1) is the covariate.
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To contaminate the data sets with extreme and outlier observations, we used the 

rule of thumb introduced by Tukey (1977) ([110], page 44). He defined a "mild" outlier 

observation as an observation that lies 1.5 to 3 times outside the interquantile range, IQ R , 

( IQ R  = Qi — Q\ where Q\ and Q3 are the first and third quantile, respectively), and 

an "extreme" outlier observation as an observation that lies more than 3 times outside 

the interquantile range, IQ R. In the simulation study, we created contaminated data 

sets containing one atypical observation by replacing one covariate’s observation with m  

times the standard deviation of the covariate, i.e. m = 1, 2, . . . , 8 . Therefore, according to 

Tukey’s definition of "mild" and "extreme" outlier observations, the data sets in which 

one covariate’s observation is replaced with 3 and 4 contain a "mild" outlier observation, 

whereas the data sets in which one covariate’s observation is replaced with values more 

than 4 contain an "extreme" outlier observation. Finally, we generated the survival times 

as described in section 4.3.9 depending on what type of atypical observation we study, i.e. 

extreme or outlier. The survival time of an extreme observation depends on the outlier 

covariate value. In contrast, the survival time of the outlier observation is independent of 

the outlier covariate. Random non-in formative right censoring with a specified proportion 

of censored observations was created, as described in section 4.3.4.

We only present the result of one experimental condition where the covariate effect, 

/?, is equal to 0.69, sample size is equal to 200, and censoring proportion is 50%. Similar 

results were observed in the other experimental conditions. However, the simulation 

results for the other experimental conditions showed that atypical observations have more 

impact on the measures in small sample sizes than large ones.

5.7 .1  Im p a ct o f  e x tr e m e  ob serva tion s

To generate extreme observations, first the random variable X  ~  N (0,1) was generated. 

Then, X  was contaminated by replacing one observation’s covariate with m  times the 

standard deviation of the covariate, i.e. X  ~  iV(0,1). Finally, conditional survival times 

T\X,  where X  is contaminated covariate, were generated based on the procedure described 

in section 4.3.9. Random non-informative right censoring with a specified proportion of 

censored observations was created, as described in section 4.3.4. The simulation study 

carried out for different m  values as m  = 1,2, ...8.

Figure 5-5 displays the impact of extreme observation on the expected value of ex­

plained variation measures by m * S D , where SD  is the standard deviation of the standard
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Impact of one inf. obs. on explained variation measures
(beta=0.69, n=200, 50% Censoring)
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Figure 5-5: Mean of the sampling distribution of explained variation measures as the 
extreme observation becomes more influential.

normal distribution. For example, ASD in the X  axis represents the condition where one 

observation’s covariate, X  ~  N (0,1), is replaced with 4, and the corresponding value in 

the Y  axis represents the expected value of measures. The expected value of measures in 

the uncontaminated data is represented with 0 * SD  on the X  axis.

If a measure is resistant to the extreme observations, its expected value would not 

change in the presence of such observations. In other words, we expect a flat line across 

the X  axis if the measure is resistant to extreme observations. The graph shows that 

the measure proposed by Royston and Sauerbrei (2004) [93], R2D, is resistant to the 

extreme observation in the data. The graph shows that the expected value of R2D increases 

slightly but remains constant as the observation becomes more extreme. There is a similar 

pattern in Ri2PM and Rj{ryysUm with more impact on the measure in stronger extreme 

observations. Furthermore, the measures proposed by O’Quigley and Flandre (1994) 

[75], R'oqf , aiu-l Xu and O’Quigley (2001) [78], R'x uoqi remain constant in small or 

moderate contamination. But, they increase rapidly when the observation becomes more 

extreme. Similar results were found in other experimental conditions.

5.7.2 Impact of outlier observations

To generate outlier observations, a normally distributed random variable, i.e. X  ~  

7V(0,1), was generated. Conditional survival times T \X  were generated based on the
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procedure described in section 4.3.9. Then, the data was contaminated by replacing one 

observation’s covariate with m times the standard deviation of the covariate. Random 

non-informative right censoring was generated as described in section 4.3.4. In the previ­

ous study, the survival time of the extreme observation depends on the atypical covariate 

value. In contrast, the survival time of the outlier observation in this study is independent 

of the atypical covariate.

This study was also carried out for similar experimental conditions as the study 011 

extreme observations. Figure 5-6 summarises the results of the simulation study in one 

experimental condition. Similar to graph 5-5, we expect a flat line across the X  axis if the 

measure is resistant to outlier observations. The graph demonstrates that the measure 

proposed by Royston and Sauerbrei (2004) [93], R?D, is the only measure that is resistant 

to outliers. The other measures decrease as the outlier contamination becomes stronger.

Impact of one outlier on explained variation measures
(beta=0.69, n=200, 50% Censoring)

a> cm 

3 0
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OSD. +1S.D. +2S.D. +3S.D. +4S.D. +5S.D. +6S.D. +7S.D. +8S.D.
Outlier
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Figure 5-6: Mean of the sampling distribution of explained variation measures as the 
outlier observation becomes more influential.

The justification for the results of this study is that R2PM in equation 2.24 depends 

on the variance of the prognostic index, Var(f3'X),  of the model. Variance is sensitive 

to extreme and outlier observations; therefore, the presence of such observation has an 

impact on the Ri2PM, whereas R!2d based 011 the D measure is not unduly influenced 

by a small number of atypical observations (Royston and Sauerbrei (2004) [93]) in the 

data. The D measure is unaffected by outliers, but also by any monotonic increasing 

transformation of the linear predictor. It is simultaneously a strength and a weakness
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of R p . Both R qqf an(l R'xuOQ dePen<i on the variance of the covariate; therefore, 

they suffer from a similar problem to that of R 2PM. The measure proposed by Royston

(2006) [88], R f̂toystoni is based on the likelihood function, which is not resistant to atypical 

observations.

5.8 Im pact o f m odel m is-specification on th e m easures

To analyse the survival of patients in comparative randomised clinical trials, important 

prognostic factors comprising demographic information such as age, sex, previous medical 

history, and other medical assessments may be included for the adjustment of the treat­

ment effect. Omitting these factors in the survival model can be considered as one type 

of model mis-specification. Lagakos and Schoenfeld (1984) [57] described three types of 

mis-specification of the Cox PH regression models as: omitted or mis-modelled covariates, 

non-proportional treatment hazard functions, and omitted treatment-covariate interac­

tions. The Cox PH model leads to a loss of efficiency as well as a change in the treatment 

effect being estimated if needed prognostic factors are omitted or mis-modelled from the 

analysis of randomised trials (Hauch et al (1998) [39] and Gail et al (1984) [29]). Schmoor 

and Schumacher (1997) [100] also showed the impact of omitting covariates from the Cox 

PH model, and the related issue of modelling a continuous covariate as categorical. Ros- 

thoj and Keiding (2004) [86] studied the impact of model misspecification on some of the 

measures of predictive ability in survival models.

In this section, we examine the impact of two of the most common mis-specifications 

of the model on the measures of explained variation: (i) an important prognostic factor 

is omitted from the analysis; and (ii) the true relationship between the prognostic fac­

tor and the outcome, log relative hazards in the Cox PH model, is ignored. However, 

one might argue that these issues are generally dealt with in the model building stage. 

Nevertheless, understanding the impact of model mis-specification on the measures of 

explained variation gives better insight into the measures.

5 .8 .1  Im p act o f  u n d er -fitt in g  - covariate om ission

We studied the impact of under-fitting on the measures of explained variation through 

a series of simulation studies. In the simulation study, we generated pseudo-random, 

exponentially distributed observations with hazard exp( 1.386 * X \ + 0.693 * X 2 ), i.e.
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Table 5.11: The expected value of explained variation measures for full and under-fitted 
models. Normally distributed covariate(s) and random censoring. The figures in brackets 
are the standard deviation of the sampling distribution.___________________________

Measure Covariates in model 0% Censoring 20% Censoring 50% Censoring

1 1 P M both X \ k X 2 

only X i  *
0.594 (0.028) 
0.418 (0.034)

0.595 (0.029) 
0.432 (0.035)

0.595 (0.032) 
0.454 (0.039)

both X lk X 2 

only X! *
0.592 (0.028) 
0.417 (0.034)

0.593 (0.030) 
0.431 (0.036)

0.593 (0.034) 
0.453 (0.040)

n O Q F both X 1 &X 2 

only X \ *
0.622 (0.029) 
0.491 (0.034)

0.636 (0.032) 
0.515 (0.036)

0.658 (0.036) 
0.553 (0.042)

X u O Q both X 1&1 X 2 

only X i  *
0.622 (0.029) 
0.491 (0.034)

0.627 (0.032) 
0.499 (0.039)

0.640 (0.045) 
0.520 (0.060)

r>‘2
R o ysto n

* = u n d c r - f i t . t

both X xk X 2 

only X i  *
e d  m o d e l

0.534 (0.028) 
0.378 (0.030)

0.570 (0.032) 
0.416 (0.035)

0.627 (0.039) 
0.481 (0.045)

T \ X  '•'-'Exponential(exp(1.386*^1 -l-0.693*X2)), where Xi  ~  iV(0,1), i = 1,2 are the two 

independent covariates. The simulations were carried out in three censoring conditions, 

0%, 20%, and 50%, with 500 sample size and 2, 000 replicates in each experimental 

condition. Random non-informative right censoring was generated as described in section

4.3.4. Then, the measures are computed for the full model, both X \  and X 2 in the model, 

and for the model with only one covariate, X\ .  Results from this study are displayed in 

table 5.11.

The results of simulation studies in section 5.3 indicate that the expected values of 

i?pA/, R |), and R x uoq  are unaffected by the amount of random censoring in the normally 

distributed covariate. We, however, observe that under-fitted models impose bias on these 

measures under different censoring conditions, and the bias depends on the amount of 

censoring. In particular, estimates with the covariates omitted, only X \ in the model, will 

be biased toward zero compared to the estimator with covariates included, both X i k X 2 

in the model. This reflects the similar effect of under-fitting on the estimated parameters 

in the Cox PH model, reported by Gail et al (1984) [29]. It is difficult to quantify 

the impact of underfitting on R qq p  and Rjfoyst&n in the censored condition since the 

simulation studies in section 5.3 showed that even in the full model they increase with 

the amount of censoring.

One implication of this bias is its impact on the partial measures of predictive ability. 

The formulae for a partial R 2, similar to the one defined for the linear models, was 

presented by O ’Quigley and Flandre (1994) [75] and O’Quigley et al (2005) [80]. They
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introduced the following general formula to compute a partial measure:

1 - R 2 ( X u . . . ,Xp) = [ l - f l 2(X ,+ ll ...,X J>|X l l ...,X ,)] (5.1)

where X \ , . . . , X q are covariates in the model and q < p. In the above equation, the 

partial measure of explained variation is R 2 (Xq+i> X P\X \^ ..., X q), i.e. the variation in 

the outcome, survival time, that is explained by the covariates X q+\, . . . ,XP after having 

accounted for the effects of X \ , ..., X q.

In the above study partial R 2s , i.e. R 2 ( X2I-X1), can be computed using the formu­

lae 1 -  R 2( X  1 ^X 2 ) =  [l — i?2(Xi)] [l -  H2(X2 |X i)]. We can observe from the results 

presented in table 5.11 that under-fitting imposes further bias on the measures under 

different censoring proportions which inevitably affects R 2 ( X 2I-X1).

5 .8 .2  Im p act o f  covariate  m is-m o d ellin g

This section studies the implications of covariate mis-modelling for the explained variation 

measures, specially in the presence of random censoring. For this purpose, we carried 

out a set of simulation studies to examine the measures if a covariate is mis-modelled 

in the Cox PH model. The conditional survival times were generated by assuming two 

functional forms for the covariate. Figure 5-7 demonstrates the two models and the linear 

predictor distributions of the corresponding models. In model I, we assumed that the true 

relationship between the covariate and the log hazard ratio is curvature. In model II, the 

functional form of the covariate is similar to that of the number of positive lymph nodes in 

Model III proposed by Sauerbrei and Royston (1999) [94] for breast cancer data discussed 

in section 2.3. The simulations were carried out in three censoring conditions, 0%, 20%, 

and 50%, with 500 sample size and 2,000 replicates in each experimental condition. The 

data generation procedure and models used in the simulation studies are described below 

for both models.

M odel I

In this simulation study, conditional survival times T \ X  ~ E xp o n en tia l(ex p (/i(X ))) are 

generated as described in section 4.3.7 where

f ^ X )  = 0.932 * X  + 0.156 * X 2 +  0.014 * X 3
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Figure 5-7: The true relationship between the log hazard ratio and the covariate (red 
curve), and the linear model (blue line) fitted to the simulated data. Bottom graphs 
show the distribution of prognostic index or linear predictor of the true models.

and X  ~  /V(0,1). Random non-informative right censoring is generated as described in 

section 4.3.4. Then, the explained variation measures are computed for 1) the true model 

and 2) for the mis-specified model where the covariate is modelled as a linear function. 

The results of simulation study are summarised in table 5.12. The entries in the table are 

the expected value and standard deviation of the sampling distribution by the amount of 

censoring.

We can observe that the expected value of Rp M in the true model is rather consistent 

across three censoring proportions. In contrast, it increases with censoring in the mis- 

specified model. As it is apparent from the simulation results, R 2D is resistant to covariate 

mis-modelling since the expected value of R 2D in the true model and the mis-specified 

model coincide. However, the measure increases with censoring in both true and mis- 

specified models. As table 5.12 illustrates, this measure is the only one in this category 

which possesses this property, as long as the relationship between the prognostic index and 

the log hazard ratio is monotonic (see table 5.13 when this relationship is non-monotonic). 

The estimates of R qqF, t i x uOQ' anc* RRoyston are l°wer in mis-specified model compared 

with the corresponding estimates in the true model.
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Table 5.12: The mean and standard deviation of the sampling distribution of the measures

R R o yston

Measure model 0% Censoring 20% Censoring 50% Censoring
R 2P M true model I 

missp. model
0.381 (0.034) 
0.361 (0.034)

0.383 (0.036) 
0.378 (0.037)

0.388 (0.043) 
0.410 (0.044)

R 2 true model I 
missp. model

0.360 (0.033) 
0.360 (0.033)

0.377 (0.037) 
0.377 (0.037)

0.408 (0.044) 
0.408 (0.044)

R 2n O Q F true model I 
missp. model

0.398 (0.040) 
0.375 (0.035)

0.412 (0.043) 
0.397 (0.039)

0.443 (0.053) 
0.439 (0.049)

R2X u O Q true model I 
missp. model

0.398 (0.040) 
0.375 (0.035)

0.402 (0.041) 
0.379 (0.039)

0.416 (0.053) 
0.395 (0.064)

true model I 
missp. model 0.295 (0.030)

0.347 (0.034) 
0.327 (0.035)

0.416 (0.047) 
0.395 (0.049)

Table 5.13: The mean and standard deviation of the sampling distribution of the measures 
for the correctly specified model II and misspecified model._____________________

Measure model 0% Censoring 20% Censoring 50% Censoring
p 2
n P M true model II 

missp. model
0.380 (0.055) 
0.159 (0.033)

0.382 (0.065) 
0.144 (0.031)

0.385 (0.087) 
0.126 (0.031)

n D true model II 
missp. model

0.200 (0.029) 
0.160 (0.030)

0.181 (0.029) 
0.145 (0.028)

0.158 (0.031) 
0.127 (0.029)

p 2
11O Q F true model II 

missp. model
0.639 (0.068) 
0.328 (0.038)

0.623 (0.079) 
0.322 (0.040)

0.589 (0.103) 
0.299 (0.050)

r > 2
n 'X uO Q true model II 

missp. model
0.639 (0.068) 
0.328 (0.038)

0.636 (0.085) 
0.328 (0.041)

0.622 (0.132) 
0.324 (0.073)

R 2R oyston true model II 
missp. model

0.312 (0.034) 
0.192 (0.031)

0.284 (0.035) 
0.180 (0.032)

0.244 (0.040) 
0.153 (0.034)

M odel I I

The simulation structure described above is applied for this study as well, except that 

the data are generated from a model with linear predictor / 2(X) where

f 2 (X ) = 0.668 * X  -  0.413 * X 2 +  0.045 * X 3

and X  ~  N (0,1). Table 5.13 demonstrates that the estimates in the true model and mis- 

specified model differ substantially for all the measures. It is apparent that R \ uqq d°es 

hardly change with the amount of censoring in both the true and mis-specified models. 

The estimates of R?Pm  also does not change for the true model. But other measures 

decrease with increasing amount of censoring in both models. Furthermore, unlike model 

(I) which considered a monotonic function for the covariate, in non-monotonic functions 

results in different values for the true and mis-specified models.
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Figure 5-8: The survival pattern of a two-arm trial under non-proportional hazards. Red 
curve is the survival in the treatment arm, and the black curve is the survival in the 
control arm. In the treatment arm, the hazard changes for those who survived after two 
years.

5.8.3 Non-proportional hazards

In this section, a different simulation study was carried out to study the impact of non­

proportional hazards on explained variation measures. We used the method proposed 

by Barthel et al (2006) [10] to generate survival times under non-proportional hazards 

where the hazards of one arm changes after a specific time in a clinical trails. As they 

argued, the situations may occur in, for example, a two arm trial when a treatment is 

very effective in the beginning but patients experience a levelling off of the treatment 

effect, which in turn brings the survival curves closer together over time or if, such as in a 

trial comparing surgery followed by chemotherapy with surgery alone, the two treatments 

have similar hazards in the beginning which then diverge over time (graph 5-8). In this 

case, the hazard in the treatm ent arm was changed for each patient who had survived two 

years in the trial, which led to a change in the overall hazard ratio from HR1  to HR2.  

This was simulated by first assigning a probability to whether patients experienced an 

event before the time of changing hazard. If not, the exponential survival distribution 

was adapted to incorporate a change in hazards after this point.

Design specifications for all sets of simulations were two years of accrual, two years of 

follow-up, equal allocation to both treatment arms, exponential survival times, one year
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median survival in the control group, and the survival times were censored by assuming 

exponential distribution for censoring times. The simulations were carried out in four 

censoring conditions, 0%, 20%, 50%, and 80%, with 500 sample size and 2, 000 replicates 

in each experimental condition. Simulation results under non-proportional hazards are 

displayed in table 5.14. The entries of the table represented in italics are the expected 

value of the measures when the hazard ratio does not change (i.e. H R 1  = H R 2  = 0.5), 

i.e. when the proportional hazards assumption holds.

The first thing to note from the table is that the expected values of explained variation 

measures appear to be consistent under different censoring proportions when the hazard 

ratio does not change (i.e. HR1 =  HR2 = 0.5). We can observe a slight increase in the 

expected values when the proportion of censored survival times is equal to 80%. Second, 

the value of R 2D is in line with the values of R qqf and R xuOQ w^en the covariate is 

dichotomy, whereas R%M and have smaller values. Third, the impact of non-

proportional hazards on the measures diminishes as the amount of censoring increases.



Table 5.14: Simulation results for non-proportional hazards. HR1 - hazard ratio in favour 
of treatment arm for the first two years in trial. HR2 - hazard ratio after two years in 
trial. Sample size is 500 in all experimental conditions, and survival times are randomly 
censored. The standard deviations are given in brackets

Measure HR1 H R2 0% Cens. 20% Cens. 50% Cens. 80% Cens.

0.5 0.1 0.149 (0.024) 0.137 (0.026) 0.097 (0.028) 0.075 (0.042)
0.5 0.3 0.100 (0.019) 0.094 (0.022) 0.082 (0.027) 0.075 (0.042)

R 2pm 0.5 0.5 0.069 (0.016) 0.069 (0.019) 0.071 (0.024) 0.075 (0.042)
0.5 0.7 0.049 (0.014) 0.053 (0.017) 0.063 (0.023) 0.075 (0.041)
0.5 0.9 0.035 (0.012) 0.041 (0.015) 0.057 (0.022) 0.075 (0.041)

0.5 0.1 0.216 (0.024) 0.199 (0.026) 0.144 (0.028) 0.112 (0.042)
0.5 0.3 0.148 (0.019) 0.14 (0.022) 0.122 (0.027) 0.112 (0.042)

R% 0.5 0.5 0 . 1 0 4  (0.016) 0.105 (0.019) 0.107 (0.024) 0 . 1 1 2  (0 .0 4 2 )
0.5 0.7 0.074 (0.014) 0.081 (0.017) 0.095 (0.023) 0.111 (0.041)
0.5 0.9 0.054 (0.012) 0.064 (0.015) 0.086 (0.022) 0.111 (0.041)

0.5 0.1 0.167 (0.028) 0.162 (0.033) 0.138 (0.04) 0.121 (0.066)
0.5 0.3 0.131 (0.025) 0.129 (0.029) 0.123 (0.039) 0.120 (0.066)

R 2o q f 0.5 0.5 0.101 (0.023) 0 . 1 0 4  (0.027) 0.111 (0.037) 0 . 1 2 0  (0.066)
0.5 0.7 0.077 (0.021) 0.084 (0.026) 0.101 (0.036) 0.120 (0.065)
0.5 0.9 0.057 (0.02) 0.068 (0.024) 0.092 (0.035) 0.120 (0.065)

0.5 0.1 0.167 (0.028) 0.168 (0.032) 0.169 (0.040) 0.120 (0.111)
0.5 0.3 0.131 (0.025) 0.132 (0.027) 0.135 (0.042) 0.115 (0.111)

p2
n X u O Q 0.5 0.5 0.101 (0.023) 0 . 1 0 2  (0.026) 0.106 (0 .0 4 1 ) 0.110 (0.113)

0.5 0.7 0.077 (0.021) 0.077 (0.025) 0.084 (0.039) 0.107 (0.111)
0.5 0.9 0.057 (0.020) 0.058 (0.023) 0.064 (0.037) 0.102 (0.112)

0.5 0.1 0.125 (0.019) 0.129 (0.026) 0.099 (0.030) 0.076 (0.043)
0.5 0.3 0.090 (0.017) 0.090 (0.021) 0.083 (0.028) 0.076 (0.043)

Ft2R o ysto n 0.5 0.5 0.065 (0.015) 0.068 (0.018) 0.072 (0.025) 0.076 (0.043)
0.5 0.7 0.047 (0.014) 0.052 (0.017) 0.064 (0.024) 0.076 (0.042)
0.5 0.9 0.035 (0.012) 0.041 (0.015) 0.057 (0.023) 0.076 (0.042)
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5.9 D iscussion

In this chapter, we studied the measures of explained variation through a set of simulation 

studies. The simulations have been aimed at finding how these measures perform in 

different conditions, addressing the unresolved issues with respect to properties presented 

in tables 3.1 to 3.2 of chapter 3. Furthermore, we studied the impact of model mis- 

specification that might occur in statistical analysis of survival data.

We first evaluated the measures in non-censored data to have an understanding of 

the proposed measures in terms of effect size and spread of the sampling distribution. 

This has revealed the impact of the covariate distribution on these measures. Table 5.1 

showed that R?PM is the only measure that was independent of covariate distribution or 

prognostic index in the Cox PH model. The measure proposed by Royston and Sauerbrei 

(2004), R 2d , depends on covariate distribution; the measure results in lower values if the 

covariate distribution departs from normality. The more the departure from normality, 

the lower the expected value of the measure. The measure decreases about 35% — 45% 

in the skewed covariate distributions considered in this study depending on the covariate 

effect. This reflects the properties of D  measure [93] in a model with a non-normal 

covariate distribution.

Both R qqp and R%uqq depend on covariate distribution; the measures result in 

lower values if covariate distribution is positively skewed and higher values if covariate 

distribution is negatively skewed. For example, in non-censored data when j3 = 1.386, 

the expected values of both measures is 0.597 in covariates with positively skewed dis­

tributions, whereas they increase to 0.728 in negatively skewed distributions. R^oyst^n 

also changes as the covariate distribution alters with no specific pattern evident from the 

simulation studies. However, the change in the expected value of this measure in different 

covariate distributions is not as much as that of R ^, R ^q^, and R?xuOQ-

The impact of censoring was investigated by considering different censoring mecha­

nisms and censoring proportions. Table 5.15 summarises the findings of simulation studies 

presented in section 5.3. For the majority of the measures, the impact of censoring de­

pends on the skewness of covariate distribution in the model. The codes in the table 

show the extent of censoring effect on the measures, with 1 representing almost no effect,

i.e. the average percentage change in the expected value of the measure is 0% — 9% 

compared to that of non-censored data, and 4 representing a large effect, i.e. the average 

percentage change in the expected value of the measure is over 50% compared to that of
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Table 5.15: Summary of censoring effects on explained variation measures by the covariate 
distribution and censoring type. The codes show the extent of censoring effect in different 
situations from almost no effect, 1, to a large effect, 4._____________________________

Censoring Exp. Var. Covariate or Prognostic Index Distribution
type measure Normal Lognormal Pos. skewed Neg. skewed

P M 1 1 1 1

z ? 2n D 1 2 3 2

Random censoring R q q f 2 2 2 2

R 2n X u O Q 1 1 1 1

R 2R o ysto n 2 3 4 2

& P M 1 1 1 1

& D 1 2 4 3
Type I censoring F o q f 2 2 2 3

R -X uO Q 2 2 2 3
r>2

R o ysto n 2 3 4 3

1: A l m o s t  n o  e f f e c t ,  i . e . t h e  a v e r a g e  p e r c e n t a g e  c h a n g e i n  t h e  m e a n  o f s a m p l i n g  d i s t r i b u t i o n  i s  0 % — 9 %

2 :  S l i g h t  e f f e c t . ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i:s 1 0 % - 1 9 %

3 :  M o d e r a t e  e f f e c t ,  i . e . t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  in  t h e  m e a n  o f  tm m p l i n g  d i s t r i b u t i o n  i s  2 0 % —4 9 %

4 :  L a r g e  e f f e c t . ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  iis o v e r  5 0 %

non-censored data. The table indicates that R p ^  is the only measure which is indepen­

dent of censoring in all covariate distributions. It also shows that is the poorest

measure with respect to the impact of censoring.

The sampling distribution of the measures were displayed for different covariate effects 

under different censoring and sample size conditions in section 5.4. Histograms of the 

sampling distribution of the measures indicate that the measure proposed by Royston and 

Sauerbrei (2004) [93], i? |,, can be regarded as a consistent estimator because its sampling 

distribution becomes more concentrated around the expected value as the sample size 

becomes larger in all covariate effects and censoring proportions (figure 5-3) . The figures 

of other measures in this category show similar findings, with the exception of R?xuOQ 

which results in negative values as censoring increases.

Sample size seems to  affect the measures by only a modest amount if the effective 

sample size, i.e. the number of events, A;, is small, i.e. k ~  40 in our simulation studies. 

If the covariate effect is small, i.e. (3 =  0.223, all of the measures increase by about 25% 

when the total sample size and number of events are 200 and 40, respectively.

All of the measures possess the parameter monotonicity property which requires the 

measures to increase as the covariate effect becomes stronger. Although the expected 

values of the measures do not decrease by adding a new covariate to the model, table
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Measure Sample Size Does parameter monotonicity hold?
.. p ! T ......

11 P M no effect1 yes2
R l no effect1 yesz
T7 2
n O Q F
ry‘2

X u O Q
R2R o ysto n

no effect1 
no effect1 
no effect1

yes2
yes2
yes2

1 )  T h e r e  i s  a m o d e r a t e ;  e f f e c t  o f  s a m p l e  size* o n  m e ;a s u r e ; s  o n l y  w h e n  c o v a r i a t e  c ffe e ■t i s  1 .2 5 ,

s a m p l e ;  s i z e  ih 2 0 0 ,  a n d  c e m s o r i u g  p r o p o r t i o n  i s  h i g h ,  i . e . 8 0 % .

2 )  T h e ;  m e a s u r e  i n c r e a s e s  w i t h  i n c r e a s i n g  p a r a m e t e r  e f fe c ■t.

Table 5.16: Summary of sample size effect and parameter monotonicity property of ex­
plained variation measures.

5.10 shows that the R?foyyatcrn is the only measure that is strictly monotonic, i.e. it always 

satisfies the number of variables monotonicity. In all the replicates, R%yySton does not 

decrease as a new covariate is added to the model. Among the measures, R%uqq performs 

the poorest in this regard since the proportion of simulations in which this measure 

decreased after adding one or two independent covariates to the model was the highest 

compared with other measures.

The simulations to study the impact of extreme and outlier observations revealed 

that Rjj is the only measure which remains almost unaffected by such observations. 

Other measures generally increase in the presence of extreme observations, whereas they 

decreased in the presence of outlier observations in the data. The results of our simulation 

studies indicate that in the presence of severe outlier observations, i.e. m = 8 in section

5.7, R 2pm , R 2d , rioQF, RxuOQ’ and R Roy3t<m decrease by about 59%, 6%, 44%, 44%, 

and 38% respectively (the expected values of measures at 8SD  are compared with the 

corresponding values at OSD, no contamination, in figure 5-6), whereas they increase by 

27%, 8%, 55%, 43%, and 18% in the presence of influential extreme observations (figure 

5-5).

All measures attain  values near 1 for large, but plausible, values of covariate effects, 

i.e. (3s. The simulation study presented in section 5.6 shows that the measures are an 

increasing function of (3 when the covariate or PI of the model is normally distributed. 

The rate of increase slows down after (3 — 3.47.

Finally, we studied the impact of model mis-specification on the measures in section

5.8. As described by Lagakos and Schoenfeld (1984) [57], model mis-specification of the 

Cox PH regression models includes non-proportional treatment hazard functions, omitted 

and mis-modelled covariates. Section 5.8.1 demonstrates that omission of influential

119



covariates in a model imposes bias on the measures. Furthermore, covariate mis-modelling 

affects the measures, depending on how severe the departure is from the true functional 

form. The simulation studies showed that R?D is the only measure that results in the same 

value for both the true model and a mis-specified one if the true relationship between 

the covariate and the outcome is monotonic. The impact of non-proportional hazards 

was discussed in section 5.8.3. Table 5.14 demonstrates that all measures are susceptible 

to changes in treatm ent hazards. The susceptibility of the measures to non-proportional 

hazards diminishes as the amount of censoring increases.

In summary, our study showed that R%M is independent of censoring and covariate 

distribution, but it is very sensitive to covariate outliers in the data. R performs well 

generally, but struggles with heavily skewed covariate(s) when the amount of censoring 

is high, i.e. more than 50%. R qqF performs reasonably well in general, but it is not 

a consistent estimator of the population value, RjpQF as exPresse<i in equation 2.29, in 

the presence of censoring. To overcome this, R qqF was further developed to introduce 

R-XuOQ- However, R x uqq  possesses the undesirable property of resulting in negative 

values as censoring increases. Finally, R ’ftoy8t(m has the poorest performance with regard 

to the essential properties outlined in chapter 3 compared with other measures in this 

category. Therefore, the two explained variation measures R?PM and R 2D can be recom­

mended for general use, depending on the skewness of the covariate, or prognostic index, 

of the model and the amount of censoring. R%M is suitable if the amount of censored 

observations in the data is high, i.e. about 70% — 90%, and the covariate, or prognostic 

index, of the model is heavily skewed. The measure proposed by Royston and Sauerbrei 

(2004), R 2d , is preferable if there is an indication of extreme covariate outliers in the data.

The next chapter studies the measures of explained randomness in a similar fashion.
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Chapter 6

Investigation of the measures of 

explained randomness

6.1 Introduction

This chapter studies various aspects of potentially recommendable measures in the ex­

plained randomness category. The measures in this category generally quantify the ran­

domness or uncertainty in the outcome, as defined in equation 2.30 of chapter 2, that 

is explained by prognostic factors in a regression model. The measures are p^,, PxuOQi 

and pf. proposed by Kent and O’Quigley (1988) [49], Xu and O’Quigley (1999) [116], and 

O’Quigley et al (2005) [80], respectively. Since no explicit formula is available for p ^ , 

Kent and O’Quigley (1988) [49] suggested p%̂ A-, in equation 2.36, as an approximation . 

They, however, did not compare p^ a an(  ̂ Pw detail. We include p%/ A in our studies 

in sections 6.2 and 6.3 to elucidate its performance and compare it to the other explained 

randomness measures, p^ A is not intrinsically an explained randomness measure and, 

in principle, is similar to R'p m - The only difference between them is that the variance of 

error term in the definition of in equation 2.24, i.e. ^  ~  1.645, is replaced with 1 

in the definition of Pw a  in equation 2.36.

This chapter has a similar structure to that of chapter 5. We carried out the same 

simulation studies on the above explained randomness measures, hence the study design 

of the simulations for each section is the same as those presented in chapter 5. We, 

therefore, present the results through similar graphs and tables to describe the main 

findings for each measure, and do not explain the simulation study design for each study
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again.

In summary, this chapter addresses the following:

•  The expected value of the measures in non-censored data

• The impact of different covariate distributions on the measures

• The impact of censoring on the measures

•  Consistency, distributional shape, and sample size effect

•  Monotonicity properties of the measures

• The upper bound of the measures

• The impact of extreme and outlier observations on the measures

•  The impact of model mis-specification on the measures

In addition, we evaluated Kullback-Leibler information gain for the Cox PH model, 

and hence developed a new measure of explained randomness for the proportional hazards 

models. Since the main theme of this thesis is to compare the already proposed measures 

of predictive ability in survival models, we only present the new measure in Appendix 

B.8 of this thesis. The last section contains the discussion of this chapter’s findings.

6.2 Im pact o f covariate d istribution  on th e  m easures

In this section, we present the results of our simulation study, carried out to assess 

the measures in the absence of censoring. The study was also carried out to inves­

tigate the expected value and dispersion of measures in different covariate effects and 

covariate distributions. In summary, the simulations were run for four covariate distrib­

utions, four covariate effects /? =  {0.223,0.405, 0.693,1.386} representing hazard ratios 

of {1.25,1.5,2,4}, and three sample size conditions n = {200,500,1000}, with 5,000 

replicates in each experimental condition.

The results of the simulations are summarised in tables 6.1 to 6.3. The first thing 

to note from table 6.1 is tha t the explained randomness measures generally result in 

higher values compared with the corresponding values of the explained variation measures, 

presented in table 5.1. As it is evident from tables 6.1 to 6.3, the measures lead to
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similar results in the normally distributed covariate. In this case, the expected value 

and the relative spread of the sampling distribution, as expressed in terms of the C.F., 

of the measures is similar. The results of the simulation study show that PwA is a 

good approximation to p^  if the covariate is normally distributed, otherwise they differ. 

O’Quigley et al (2005) [80] showed that in the absence of censoring and Px uqq coincide, 

and in censored data  p\ can be considered as a good approximation to p \ uqq- Tables 

6.1 to 6.3 display this theory.

Tables 6.2 and 6.3 show that the spread of the sampling distribution of p P %uqqi  

and p\ are similar in normally, lognormally, and positively skewed distributions. In 

negatively skewed distributions, however, the spread of the sampling distribution of p*v  

and p\y a *s higher than that of p\ and p\ uqq- Some important findings for each measure 

is explained in the following sections.

Table 6.1: Mean of the sampling distribution of explained randomness measures by the 
covariate distribution and covariate effect across all sample size conditions, censoring—0%

Covariate Distribution exp(/3) Pw Pw,A PXuOQ Pk
normal 1.25 0.049 0.050 0.048 0.048

1.5 0.141 0.143 0.134 0.134
2 0.316 0.325 0.296 0.296
4 0.637 0.657 0.602 0.602

lognormal 1.25 0.046 0.050 0.045 0.045
1.5 0.128 0.143 0.125 0.125
2 0.282 0.325 0.275 0.275
4 0.584 0.656 0.575 0.574

positively skewed 1.25 0.042 0.051 0.042 0.042
1.5 0.110 0.144 0.109 0.109
2 0.235 0.324 0.233 0.233
4 0.495 0.652 0.486 0.485

negatively skewed 1.25 0.062 0.049 0.052 0.052
1.5 0.195 0.142 0.142 0.142
2 0.433 0.322 0.292 0.292
4 0.759 0.651 0.552 0.551

6 .2 .1  K en t an d  O ’Q u ig ley  m easu res (1988) - p^  &: p ^ A

This measure varies from 0.049 to 0.637 in the normally distributed covariate. It decreases 

in positively skewed distributions, whereas it increases in negatively skewed distributions. 

In contrast, its proposed approximation, p^VA, is not affected by the changes in the covari­

ate distribution. As it is evident from table 6.3, the spread of the sampling distribution 

of this measure and its approximation, PiyA-> decreases as the covariate effect becomes
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Table 6.2: Standard deviation of the sampling distribution of explained randomness mea­
sures by the covariate distribution and covariate effect across all sample size conditions, 
censoring—0%________________________________________________________

Covariate Distribution exp(^) P w Pw .a PXuOQ Pk
normal 1.25 0.022 0.022 0.021 0.021

1.5 0.034 0.035 0.032 0.032
2 0.041 0.042 0.039 0.039
4 0.032 0.031 0.032 0.032

lognormal 1.25 0.020 0.023 0.020 0.020
1.5 0.030 0.035 0.030 0.030
2 0.036 0.044 0.037 0.037
4 0.031 0.034 0.034 0.033

positively skewed 1.25 0.018 0.024 0.018 0.018
1.5 0.027 0.040 0.028 0.028
2 0.036 0.056 0.037 0.037
4 0.042 0.051 0.047 0.040

negatively skewed 1.25 0.038 0.025 0.025 0.025
1.5 0.079 0.044 0.039 0.039
2 0.105 0.063 0.046 0.046
4 0.070 0.056 0.040 0.040

larger.

6 .2 .2  X u  and  O ’Q u ig ley  m easu re (1999) - p 2X u OQ

Similar findings are observed for this measure, with the exception that this measure leads 

to slightly lower values than pfv  in all the covariate distributions.

6 .2 .3  O ’Q u ig ley  e t  al m easu re (2005) - pi

O’Quigley et al (2005) [80] showed that this measure converges to the same values as 

PxuO Q  m  non-censored data. The summary data presented in tables 6.1 to 6.3 confirms 

this theory. Therefore similar conclusions to those of P%uqq can be drawn for this measure 

in non-censored data.

6.3 Im pact o f censoring on th e m easures

In this section, we study the impact of censoring on the explained randomness mea­

sures through a series of simulation studies similar to those used to assess the impact 

of censoring on the explained variation measures in section 5.3. In summary, the simu­

lations were run for two types of censoring mechanisms, type I and random censoring,
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Table 6.3: Coefficient of variation of explained randomness measures by the covariate 
distribution and covariate effect, expressed as %. Table entries are the average across all 
combinations of sample sizes, censoring—0%.____________________________

Covariate Distribution exp(/3) P w P\V,A PXuOQ Pk
normal 1.25 42.1 42.3 41.7 41.7

1.5 22.8 23.0 22.7 22.7
2 12.2 12.3 12.4 12.4
4 4.7 4.5 5.0 5.0

lognormal 1.25 41.1 42.7 41.8 41.8
1.5 22.3 23.4 22.6 22.6
2 12.2 12.8 12.8 12.8
4 5.1 5.0 5.5 5.5

positively skewed 1.25 41.1 44.9 41.4 41.4
1.5 23.6 26.7 24.1 24.1
2 14.7 16.4 15.0 15.0
4 8.0 7.4 9.5 7.7

negatively skewed 1.25 59.0 47.7 46.1 46.1
1.5 39.9 29.7 25.9 25.9
2 23.5 18.6 14.9 14.8
4 8.8 8.1 6.9 6.8

and four censoring proportions, 0%, 20%, 50%, and 80%, four covariate effects /3 = 

{0.223,0.405, 0.693,1.386} representing hazard ratios of {1.25,1.5,2,4}, and three sam­

ple size conditions n = {200,500,1000}, with 5,000 replicates in each experimental con­

dition. The mechanisms applied for generating each censoring type were explained in 

section 4.3.4 of chapter 4.

Tables 6.4 to 6.6 summarise the results of the simulation study on the proposed 

explained randomness measures. The entries in tables 6.4 and 6.5 are the average over 

two censoring types, four covariate effects, and three sample size conditions. The values 

in table 6.6 are the average across four censoring proportions, four covariate effects, and 

three sample size conditions. The figures in these tables are the average across four 

covariate effects, and three sample size conditions. In summary, it is evident that p^  

and Pw a are least affected by censoring, whereas p\ is most affected by the amount of 

censoring in all covariate distributions.

Detailed simulation results are presented in Appendix A. The tables in Appendix A 

show the impact of censoring by the covariate distribution, censoring type, and censoring 

proportion in a similar way to table 6.6. The impact of censoring on each measure is 

explained in details in the following sections.
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Table 6.4: The average percentage difference from the expected value of explained ran­
domness measures in the corresponding non-censored data by the covariate distribution

Covariate Distribution % Censored Pw P\V,A PXuOQ Pi
normal 20 0.3 0.3 2.7 4.5

50 1.3 1.3 6.0 10.9
80 5.2 5.3 13.5 21.7

lognormal 20 0.2 0.2 5.4 8.9
50 0.8 0.9 14.1 23.7
80 3.0 3.3 31.8 47.2

positively skewed 20 0.1 0.1 8.3 14.3
50 0.3 0.4 25.3 43.0
80 1.5 1.8 62.9 93.6

negatively skewed 20 1.3 1.2 -7.4 -9.8
50 4.1 3.8 -15.7 -19.5
80 13.9 13.6 -22.6 -23.0

5: Coefficient of variation of explained randomness measures by the
tion and censoring proportion, expressed as %.

Covariate Distribution % Censored Pw PW,A PXuOQ pi
normal 20 22.2 22.3 22.9 23.3

50 27.3 27.4 29.1 30.0
80 41.4 41.7 47.3 48.1

lognormal 20 21.4 22.2 23.2 24.0
50 25.1 26.0 30.0 32.3
80 35.5 36.7 50.7 53.8

positively skewed 20 22.5 24.5 25.4 26.5
50 24.7 26.8 33.1 37.5
80 31.4 33.7 59.2 65.9

negatively skewed 20 36.7 30.0 24.4 23.4
50 44.9 38.8 29.2 26.6
80 69.2 64.9 42.6 39.1

6 .3 .1  K en t an d  O ’Q u ig ley  m easures (1988) - p^  &; P\v,a

Censoring has almost no effect on this measure, except in highly censored data, i.e. 80% 

censoring, with negatively skewed covariates. The average percentage change in the ex­

pected value of the measure is generally less than 5% compared with the expected value 

of the measure in the corresponding non-censored data. We observe a slight increase 

in the expected value of the measure in positively skewed covariates with highly cen­

sored data, i.e. 80% censoring; the measure is on average 13.9% higher compared with 

the corresponding non-censored data. Table 6.5 shows that the spread of the sampling 

distribution increases with the amount of censoring, as expected. Random and type I 

(administrative) censoring have similar impact on this measure (table 6.6). The results
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Table 6.6: Summary performance of explained randomness measures by the covariate 
distribution and censoring mechanism.________________________________________

Random Censoring Type I Censoring
Measure Covariate Distribution Average Average

% Difference C.V. % Difference C.V.

Pw normal 2.4 30.6 2.2 30.0
lognormal 1.5 27.8 1.1 26.9
positively skewed 0.9 26.7 0.3 25.7
negatively skewed 6.1 49.8 6.7 50.7

PW,A normal 2.4 30.8 2.2 30.2
lognormal 1.7 28.7 1.3 27.8
positively skewed 1.1 28.9 0.5 27.8
negatively skewed 5.8 44.0 6.5 45.2

PXuOQ normal 1.1 32.3 13.7 34.0
lognormal 4.8 32.0 29.4 37.2
positively skewed 9.6 34.1 54.8 44.4
negatively skewed -9.9 35.1 -19.6 29.1

Pk normal 11.0 33.6 13.7 34.0
lognormal 23.8 36.2 29.4 37.2
positively skewed 45.6 42.5 54.9 44.1
negatively skewed -15.4 30.4 -19.5 29.1

of our simulation study show similar impact of censoring on the approximation of this 

measure, p%/A.

6 .3 .2  X u  an d  O ’Q u ig ley  m easu re (1999) -  p zX uoq

Table 6.4 displays that, overall, P2Xuqq is affected by the amount of censoring. However, 

table 6.6 reveals tha t the effect is mainly as a result of type I censoring, and random 

censoring has almost no effect on this measure since the average percentage difference 

in the expected value of the measure is less than 10% compared to that of non-censored 

data. Therefore PX uqq Perf°rms well in random censoring. In the type I censoring, the 

measure increases rapidly with the amount of censoring in positively skewed covariates, 

whereas it decreases rapidly in negatively skewed covariates. The higher the amount of 

censoring, the larger the impact on the measure. Table 6.5 reveals that the spread of the 

sampling distribution also increases with the amount of censoring.

6.3 .3  O ’Q u ig ley  e t  al m ea su re  (2005) - pi

This measure is affected by both random and type I censoring. It appears that there 

is an interaction between censoring and the covariate distribution in this measure. The
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measure increases with the amount of censoring in positively skewed covariates, whereas 

decreases in negatively skewed covariates. Table 6.6 shows that type I censoring has 

similar impact on this measure to tha t of P 2Xu q q .

6.4 C onsistency, d istrib ution al shape, and sam ple size ef­

fect

In this section, we investigate the consistency and the shape of the sampling distribution 

of the measures of explained randomness, together with the impact of sample size. The 

consistency of the proposed measures, p'^,, p \ u0 q , and p |, are discussed by Kent & 

O’Quigley (1988) [49], Xu & O ’Quigley (1999) [116], and O ’Quigley et al (2005) [80]. 

We first summarise their findings on the consistency of the proposed measures. Then, 

we illustrate the shape of the sampling distribution of the measures in the presence of 

censoring. Finally, the effect of sample size on the measure is studied. The approximation 

of pyy, pyy possesses similar properties to that of R%M and will not be discussed in this 

section.

6.4.1 C onsistency o f the measures

For models beyond the normal linear regression, Kent (1983) [50] proposed a general 

measure of correlation, known as explained randomness measure p2IG, based on the trans­

formation of the Kullback-Leibler information gain [55]

P2ig  =  1 -e x p { -T (£ )}

where T(/3) is twice the Kullback-Leibler information gain [55], as described in section 

2.3.2. Therefore, all the proposed explained randomness measures are a transformation 

of the Kullback-Leibler information gain [55]. The only difference between them is the 

way the Kullback-Leibler information gain, is defined for each measure. The mea­

sures are considered consistent if the estimator of their corresponding Kullback-Leibler 

information gain, T(/?) is consistent.

For the measure proposed by Kent and O’Quigley (1988) [49], p^/, the Kullback- 

Leibler information gain is defined as
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ri(/?)=2X Xlog { 9 w S ) } m x ^ )dtdF{x)

where f*(t\X;/3) = aexp(/x+/3X)iQ_1 exp [—ta exp (/x +  PX)\  and F(x)  is the distribution 

function of the covariate X.  Kent and O ’Quigley (1988) [49] showed that T\((3) can be 

consistently estimated by the fitted information gain

where (3 is the maximum likelihood estimator of (3. Thus, 'p̂ v  =  1 — exp{— T11 (/?)} is a 

consistent estimator of the population value pfy-

For the measure proposed by Xu and O’Quigley (1999) [116], p\ uo q , the Kullback- 

Leibler information gain is defined as

r̂ =2/r /xiog{£Hf
where F(t) is the marginal distribution function of T, and g{x\t \ .) is the conditional 

density or conditional probability function of the covariate, X ,  given T. Xu and O ’Quigley 

(1999) [116] showed that r2(/?) can be consistently estimated by

m  = 2 XL "to XL 2) { g m }
where W(t j )  the jump in the Kaplan-Meier curve at event time tj and

n j W P )  = —
^2Yi(t)exp((3Zi) 
i=i

In the measure proposed by O ’Quigley et al (2005) [80], r 20#) is also defined as

the Kullback-Leibler information gain. However, O ’Quigley et al (2005) [80] proposed an 

alternative estimator for r 2(/?) as

r2,(/3) = I X^log|^p-^|

where <5* = I(Ti < Ci) and k is the number of events. O’Quigley et al (2005) [80] showed 

that in the absence of censoring r2(/3) and T 2 a(&) will converge to the same population
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values, hence both estimators are consistent estimator of They, however, converge

to different quantities in the presence of censoring, but can be anticipated to be close 

(O’Quigley et al (2005) [80]).

O ’Quigley and Flaiidre (2006) [76] claimed that the advantage of Px uq q , which is 

based upon T2(/?), is that it is consistent in both censored and non-censored data and does 

not depend upon censoring. Although pf is not consistent in the presence of censoring, it 

is particularly straightforward to evaluate, being a simple transformation of the partial 

likelihood ratio statistic. The results of our simulation studies, summarised in table 

6.6, indicate that Px uqq is not affected by censoring if the survival times are randomly 

censored, but it results in the same values as pf in the presence of type I or administrative 

censoring.

6.4.2 Sam pling distribution o f the m easures

Figure 6-1 illustrates the sampling distribution of Kent and O ’Quigley measure (1988), 

Pw, from our simulation study, by the covariate effect, sample size, and censoring pro­

portion, with 5, 000 replicates in each experimental condition. The covariate is normally 

distributed and the survival times are randomly censored by considering an exponential 

distribution for censoring times, as described in section 4.3.4.

As in explained variation measures, we crudely explore the sampling distributions of 

the estimators graphically over the range of n in this study. Sampling distribution of con­

sistent estimators should tend towards a spike over the parameter of interest as n becomes 

ever larger. All distributions in figure 6-1 appear to exhibit this tendency. For example, 

for the normally distributed covariate when the covariate effect, /?, is 1.39, the expected 

value of the measure proposed by Kent and O’Quigley (1988), is 0.637 (table 6.1). 

Figure 6-1 demonstrates tha t the distribution of pfy is approximately centred over the 

expected value. The distribution of the measure is clearly becoming more concentrated 

and spiking near this value as sample size increases. The shape of the distribution of the 

measures proposed by Xu and O ’Quigley (1999) and O’Quigley et al (2005) [80], p\ uqq 

and pf. follows a similar pattern , i.e. they display considerable skewness when censoring 

is more than 50%.
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Figure 6-1: Sampling distributions of Kent &; O’Quigley measure (1988) by the covariate 
effect, sample size, and censoring proportions in the normally distributed covariate and 
random censoring condition.
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6.4 .3  Im pact o f  sam ple s ize  on  th e  m easures

Similar to the effect of sample size on explained variation measures, the simulation results 

show that the measures of explained randomness increase slightly when the effective 

sample size, i.e. number of events, is small. We tabulated the results of the simulations 

in table 6.7 where the covariate is normally distributed and the data is randomly censored, 

with 5,000 replicates in each experimental condition. Table 6.7 show that the measures 

increase when both the sample size and the covariate effect are small, i.e. n = 200 and 

exp(/7) =  1.25, and the amount of censoring is high, i.e. 80%. This pattern was observed 

in other simulation studies when we considered skewed covariates and a different censoring 

mechanism, i.e. type I or administrative censoring.

Table 6.7: Percentage change in the expected value of explained randomness measures in 
small and large sample sizes by censoring proportion - random censoring. The figures in 
brackets are the standard deviation of the sampling distribution.__________________

20% Censoring 80% Censoring
Sample size Sample size

Measure exp (/3) 1000 200 % Change 1000 200 % Change

P w 1.25 0.048 0.052 8% 0.052 0.067 29%
(0.015) (0.033) (0.029) (0.066)

4 0.639 0.635 -1% 0.639 0.635 -1%
(0.02) (0.046) (0.03) (0.07)

f>W,A 1.25 0.048 0.053 8% 0.052 0.068 29%
(0.015) (0.034) (0.29) (0.067)

4 0.658 0.655 -1% 0.658 0.655 -1%
(0.002) (0.045) (0.003) (0.007)

PXuOQ 1.25 0.047 0.049 4% 0.046 0.058 26%
(0.014) (0.031) (0.028) (0.061)

4 0.607 0.598 -1% 0.649 0.643 -1%
(0.022) (0.048) (0.078) (0.119)

Pk 1.25 0.048 0.051 6% 0.053 0.068 28%
(0.015) (0.032) (0.03) (0.069)

4 0.635 0.627 -1% 0.746 0.733 -2%
(0.022) (0.049) (0.037) (0.086)

6.5 M on oton ic ity  properties o f th e proposed measures

This section consists of two parts discussing the two monotonicity properties in explained 

randomness measures, as defined in chapter 3. In the second part where we discuss the 

number of variables monotonicity, similar simulation study to that of explained variation 

measures is carried out. The sample size is 500, and 2,000 replicates are generated
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for each experimental condition. In the simulation, the distribution of survival time is 

generated using the algorithm outlined in section 4.3.9 by assuming only one covariate 

that is normally distributed.

6 .5 .1  P a r a m e te r  m o n o to n ic ity

The parameter monotonicity property of p^  and p\ uqq was analytically established 

by Kent & O ’Quigley (1988) [49] and Xu and O’Quigley (1999) [116]. The measure 

proposed by O ’Quigley et al (2005) [80], is similar to p%uOQ *n non-censored data 

[80], hence satisfying param eter monotonicity property. Furthermore, the simulation 

results presented in table 6.1 and graph 6-2 demonstrate that the measures increase as 

the covariate effect becomes stronger.

6 .5 .2  N u m b er  o f  v a r ia b les  m o n o to n ic ity

The number of variables monotonicity means that the expected value of a suitable measure 

of predictive ability should not decrease by adding new covariates to the model. Tables 6.8 

and 6.9 demonstrate the results of similar simulation study as in section 5.5 to investigate 

the number of variables monotonicity of the measures. The following models are fitted 

after generating the data: Model I with one dependent covariate; Model II with only 

dependent covariate and one independent covariate; and Model III with only dependent 

covariate and two independent covariates. The entries in table 6.8 are the differences in 

the expected values of the measures after fitting models II and III compared to model I. 

The table shows tha t the expectation of the measures does not decrease after adding new 

covariates to the model.

Table 6.9 displays the proportion of simulations in which the measures decreased after 

adding one and two independent covariates by covariate effects and censoring proportions. 

Whilst p\ always increases after adding a new covariate to the model in censored and 

non-censored data, P%uqq does not always increase in censored data.

6.6 U pper b ou n d  o f  th e  m easures

In this section, we dem onstrate the upper bound of the measures of explained randomness 

using similar simulation studies to those of section 5.6. Figure 6-2 contains two graphs
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Table 6.8: Mean difference in the expected value of the measures after adding one or two 
independent covariates to the model in 2,000 simulations, normally distributed covariates.

Measure exp(/3)
Model II Model III

Mean difference to model I 
0% censoring 80% censoring

Mean difference to model I 
0% censoring 80% censoring

Pw 1.25 0.002 0.009 0.004 0.018
1.5 0.002 0.008 0.004 0.015
2 0.002 0.005 0.003 0.011
4 0.001 0.002 0.002 0.005

Pw,A 1.25 0.002 0.009 0.004 0.018
1.5 0.002 0.008 0.004 0.016
2 0.002 0.006 0.003 0.011
4 0.001 0.003 0.002 0.005

PXuOQ 1.25 0.002 0.009 0.004 0.019
1.5 0.002 0.008 0.003 0.017
2 0.001 0.007 0.003 0.013
4 0.001 0.003 0.002 0.005

pi 1.25
1.5
2
4

0.002
0.002
0.001
0.001

0.008
0.007
0.005
0.002

0.004
0.003
0.003
0.002

0.016
0.014
0.010
0.004

which summarise the results of simulation studies in both non-censored and censored 

data. In the simulation studies, survival times are exponentially distributed, the covariate 

is normally distributed X  ~  iV(0,1), sample size is 500, and non-informative random 

censoring is generated by considering an exponential distribution for the censoring times 

with 2,000 replicates in each experimental condition. Figure 6-2 displays the expected 

value of the measures from /? =  0.22 (exp(/?) =  1.25) to (3 = 5.55 (exp(/3) =  256) for 0% 

and 50% censoring, it is evident that the expected value of the measures increases as the 

covariate effect becomes larger, and they reach values close to 1 for high but reasonable 

covariate effects.

6.7 R ob u stn ess o f  th e  m easures

In this section, simulation studies analogous to section 5.7 are carried out to investigate 

the impact of "atypical" observations, i.e. extreme and outlier observations as described 

in section 5.7, on the explained randomness measures. Similarly, this section consists 

of two parts which dem onstrate the impact of extreme and outlier observations on the 

measures of explained randomness respectively. The methods we apply to contaminate 

the data with extreme and outlier observations are described in section 5.7. Similarly, 

we present the results of the simulation studies through graphs. In the graphs, the X
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Table 6.9: Proportion decrease in measures after adding one or two independent covariates
the mode' in 2000 simulations, normally distributed covariates.

Model II Model III
Measure exp(/?) prop, decreased to model I 

0% censoring 80% censoring
prop, decreased to model I 

0% censoring 80% censoring
Pw 1.25 0.11 0.07 0.03 0.02

1.5 0.15 0.13 0.07 0.05
2 0.20 0.21 0.11 0.12
4 0.23 0.29 0.13 0.21

Pw,A 1.25 0.10 0.07 0.03 0.02
1.5 0.15 0.12 0.06 0.04
2 0.18 0.19 0.09 0.10
4 0.20 0.27 0.09 0.18

PXuOQ 1.25 0.00 0.12 0.00 0.05
1.5 0.00 0.21 0.00 0.11
2 0.00 0.27 0.00 0.19
4 0.00 0.35 0.00 0.28

Pk 1.25 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00

axis represents the extent of contamination. For example, 5SD  in the X  axis represents 

the condition where one observation’s covariate, X  ~  iV(0,1), is replaced with 5, and the 

corresponding value in the Y  axis represents the expected value of the measures in this 

condition. We present the result of one experimental condition where the covariate effect, 

13, is equal to 0.69, sample size is equal to 200, and censoring proportion is 50%. We 

also carried out simulation studies considering different sample sizes, i.e. 500 and 1000, 

and censoring proportions, i.e. 0%, 20% and 80%. Similar results were observed in other 

experimental conditions. However, the results suggested that both extreme and outliers 

observations have more impact on the measures in small sample sizes than large ones, as 

expected.

6 .7 .1  Im p a ct o f  e x tr e m e  o b serv a tio n s

Figure 6-3 displays the impact of one extreme observation on the expected value of ex­

plained randomness measures. If the measures are resistant to the extreme observations, 

the expected value of the measures would not change in the presence of such observa­

tions. In other words, we expect a flat line across the X  axis if the measure is resistant 

to extreme observations. The graph demonstrates that the measures are not resistant 

to extreme observations, i.e. the covariate and corresponding time move towards the
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Figure 6-2: Explained randomness measures as a function of the covariate effect in the 
model, normally distributed covariate. In the bottom graph, survival times are randomly 
censored according to an exponential distribution for censoring times.
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Explained Randomness Measures, 50% censoring, sample size=500
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Kent & O'Quigley (88) —
Xu & O’Quigley (99) ----
O'Quigley et al (05) -----

App. to Kent & O'Quigley (88) —

Log H azard Ratio

extremes of their respective distributions. The graph indicates that the measures go up 

as one observations becomes more extreme.

6.7.2 Impact o f outlier observations

A similar simulation study was also carried out to demonstrate the impact of outlier 

observations on pfv , PxuOQ' anc* p\- I '1 the simulation studies the data sets are generated 

using the method explained in section 5.7.2. Figure 6-4 demonstrates that the measures 

are largely influenced by such observations in the data. The measures decrease as the 

outlier contamination becomes more severe, with the measure proposed by Kent and
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Figure 6-3: Mean of the sampling distribution of explained randomness measures as the 
extreme observation becomes more influential.

O’Quigley (1988) [49], p\v , most affected among the measures.

6.8 Im p a c t o f  m odel m is-specification  on  th e  m easu res

This section investigates the effect of model mis-specification on the measures. The notion 

of model mis-specification in the context of the Cox PH model was explained in section 5.8. 

This section consists of three parts each describing the impact of under-fitting, covariate 

mis-modelling, and non-proportional hazards on the measures of explained randomness. 

Similar simulation studies to those of section 5.8 are carried out to investigate the issue of 

model mis-specification on the measures; therefore, we do not describe the study design 

in this section again. Likewise, all the simulations are carried out in different censoring 

conditions with 500 sample size and 2,000 replicates in each experimental condition. The 

results are summarised in similar tables to those of section 5.8.

6.8.1 Impact o f under-fitting - covariate omission

Table 6.10 demonstrates the impact of under-fitting 011 the explained randomness mea­

sures. The entries of the table are the expected value and the standard deviation of the 

sampling distribution of the measures for full and under-fitted models. We observe that 

under-fitting imposes bias on p\v , p(VA, and p‘2Xu0 q in censored data, and the bias in-
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Figure 6-4: Mean of the sampling distribution of the explained randomness measures as 
the outlier observation becomes more influential.

creases as the proportion of censored observations increases. For example, p2v and Px uqq 

are fairly consistent in the full model, whereas they are inconsistent in the under-fitted 

model, i.e. they increase with the amount of censoring.

Similar to the measures of explained variation, the implication of this bias is that it 

imposes bias on the estimates of the partial measure of explained randomness suggested by 

Kent and O’Quigley (1988) [49] and O’Quigley et al (2005) [80]. Similar to equation 5.1, 

they suggested the following general formula to compute the partial measure of explained 

randomness

1 - p 2 (X 1 , . . . ,Xp) =  [ 1 - ^ ( * 1 ,  ... ,* ,) ]  [ l - p 2 (Xq+l, . . . ,Xp\XU .. . ,Xq)] (6.1)

where X \ , ..., X q are covariates in the model and q < p. In the above equation, the partial 

measure of explained randomness is p2 (Xq+\ , ..., X P\X \ , ..., X q), i.e. the randomness in 

the outcome, survival time, that is explained by the covariates X q+\ , ..., X v after having 

accounted for the effects of X \ , .... X q.

In the above study, a partial measure of explained randomness p2(X 2I-X1) can be 

computed using the formula 1 — p2 (X\ ,  X 2 ) = [l — p2(X  1)] [l — p2( X 2 )] - The results 

presented in table 6.10 indicate that under-fitting imposes further bias 011 the measures 

under different censoring proportions which inevitably affects p2(2Q |ATi).
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Table 6.10: The expected value of explained randomness measures for full and under­
fitted models. Normally distributed covariate(s) and random censoring. The figures in 
brackets are the standard deviation of the sampling distribution.___________________

Measure Covariates in model 0% Censoring 20% Censoring 50% Censoring

Pw both X xk X 2  

only X \  *
0.687 (0.025) 
0.525 (0.034)

0.688 (0.026) 
0.539 (0.035)

0.688 (0.029) 
0.560 (0.038)

Pw,A both X xk X 2 

only X \  *
0.706 (0.024) 
0.541 (0.035)

0.707 (0.025) 
0.555 (0.035)

0.707 (0.028) 
0.577 (0.038)

PXuOQ both X 1k X 2 

only X l *
0.653 (0.025) 
0.499 (0.032)

0.655 (0.028) 
0.517 (0.035)

0.668 (0.045) 
0.550 (0.050)

Pk

*—mi dor-fit t<

both X i k X 2  

only X i  *
;d m odel

0.653 (0.025) 
0.499 (0.032)

0.685 (0.028) 
0.539 (0.036)

0.733 (0.033) 
0.603 (0.043)

6 .8 .2  Im p a c t o f  co v a r ia te  m is-m o d e llin g

In a similar study to that of section 5.8.2, we investigate the impact of covariate mis- 

modelling on the explained randomness measures, i.e. modelling the covariate, X ,  as 

linear function of log hazard ratio in the Cox PH model where the true functional form 

of the covariate is either "model I", f i ( X ) ,  or "model II", f 2 (X) .  Figure 5-7 in chapter 

5 demonstrates the functional forms of the covariate against the log hazard ratio in the 

Cox PH model. The findings of simulation studies are summarised below for each model.

M odel I

In this model, the true functional form of the covariate in the Cox PH model is:

f i ( X)  = 0.932 * X  +  0.156 * X 2 +  0.014 * X 3

where X  N (0,1). Table 6.11 displays the mean and standard deviation of the sampling

distribution of the measures for true and mis-specified models by censoring proportions. 

This table indicates tha t the measure proposed by Kent and O’Quigley (1988), and its 

approximation, result in different values in both the true and mis-specified models.

It also suggests tha t they are fairly consistent under different censoring proportions in 

the true model. In the mis-specified model, however, they increase as the amount of 

censoring increases. W ith increasing censoring, both PxuOQ an(  ̂Pk increase in both true 

and mis-specified models.
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Table 6.11: The mean and standard deviation of the sampling distribution of the measures

Measure model 0% Censoring 20% Censoring 50% Censoring

P w true model I 
missp. model

0.438 (0.033) 
0.466 (0.035)

0.441 (0.038) 
0.484 (0.038)

0.451 (0.057) 
0.516 (0.044)

Pw,A true model I 
missp. model

0.503 (0.036) 
0.481 (0.037)

0.504 (0.038) 
0.499 (0.039)

0.509 (0.046) 
0.532 (0.045)

PXuOQ

J2

true model I 
missp. model

0.429 (0.032) 
0.407 (0.034)

0.431 (0.035) 
0.425 (0.038)

0.442 (0.050) 
0.461 (0.052)

missp. model 0.407 (0.034) 0.444 (0.040) 0.517 (0.052)

Table 6.12: The mean and standard deviation of the sampling distribution of measures 
for correctly specified model II and misspecified model.________________________

Measure model 0% Censoring 20% Censoring 50% Censoring
....T ............

Pw true model II 
missp. model

0.630 (0.079) 
0.231 (0.044)

0.630 (0.091) 
0.211 (0.042)

0.625 (0.116) 
0.187 (0.042)

P\V,A true model II 
missp. model

0.501 (0.059) 
0.236 (0.045)

0.502 (0.068) 
0.216 (0.042)

0.503 (0.091) 
0.190 (0.043)

2
PXuOQ true model II 

missp. model
0.427 (0.039) 
0.280 (0.040)

0.414 (0.044) 
0.255 (0.038)

0.384 (0.061) 
0.221 (0.044)

2
Pk true model II 

missp. model
0.427 (0.039) 
0.280 (0.040)

0.394 (0.042) 
0.264 (0.042)

0.345 (0.049) 
0.229 (0.047)

M odel II

In this model, the true functional form of the covariate in the Cox PH model is:

f 2 (X ) = 0.668 * X  -  0.413 * X 2 + 0.045 * X 3

where X  ~  N ( 0 , 1). Similarly, table 6.12 contains the mean and standard deviation 

of the sampling distribution of measures for true and mis-specified models by censoring 

proportions. We observe th a t in the true model, both pyy and pyyA are consistent un­

der different censoring proportions, but they decrease in the mis-specified model as the 

amount of censoring increases. The simulation results also show that both P%uQq and 

decrease in true and mis-specified models as the amount of censoring increases.

6 .8 .3  N o n -p ro p o r t io n a l h azard s

In an analogous study to  th a t of explained variation measures in section 5.8.3, we car­

ried out simulation studies to investigate the impact of non-proportional hazards on the 

explained randomness measures. Design specifications for all sets of simulations were
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two years of accrual, two years of follow-up, equal allocation to both treatment arms, 

exponential survival times, one year median survival in the control group, and the sur­

vival times were censored by assuming exponential distribution for censoring times. The 

simulations were carried out in four censoring conditions, 0%, 20%, 50%, and 80%, with 

500 sample size and 2, 000 replicates in each experimental condition.

Simulation results under non-proportional hazards are displayed in table 6.13. The 

entries of the table represented in italics are the expected value of the measures when 

the hazard ratio does not change (i.e. HR1 = H R2 = 0.5), i.e. when the proportional 

hazards assumption holds.

Table 6.13 shows tha t the measures result in similar values in the Cox PH model with 

a dichotomous covariate if the proportional hazards assumption holds. Furthermore, the 

expected value of pyy and Px uqqi presented in italics, appear to be consistent under 

different censoring proportions when the hazard ratio does not change (i.e. H R l = 

HR2  =  0.5). In this case, the expected value of p\ increases slightly with the amount of 

censoring. Finally, the impact of non-proportional hazards on the measures diminishes 

as the amount of censoring increases.



Table 6.13: Simulation results for non-proportional hazards. HR1 - hazard ratio in favour 
of treatment arm for the first two years in trial. HR2 - hazard ratio after two years in 
trial. Sample size is 500 in all experimental conditions, and survival times are randomly
censored. The standard deviations are given in brackets_____________________________

Measure H R l H R 2  0% Cens. 20% Cens. 50% Cens. 80% Cens.

0.5 0.1 0.212 (0.030) 0.195 (0.032) 0.144 (0.037) 0.111 (0.054)
0.5 0.3 0.149 (0.027) 0.140 (0.029) 0.121 (0.035) 0.110 (0.054)
0.5 0.5 0.106 (0.025) 0.106 (0.027) 0.106 (0.034) 0.110 (0.054)
0.5 0.7 0.077 (0.022) 0.082 (0.025) 0.095 (0.033) 0.110 (0.054)
0.5 0.9 0.056 (0.020) 0.065 (0.023) 0.086 (0.031) 0.109 (0.054)

0.5 0.1 0.223 (0.032) 0.204 (0.034) 0.149 (0.039) 0.114 (0.057)
0.5 0.3 0.154 (0.029) 0.145 (0.031) 0.125 (0.037) 0.114 (0.057)
0.5 0.5 0.109 (0.026) 0.109 (0.029) 0.110 (0.036) 0.114 (0.057)
0.5 0.7 0.078 (0.023) 0.085 (0.026) 0.097 (0.034) 0.113 (0.057)
0.5 0.9 0.057 (0.021) 0.067 (0.024) 0.088 (0.033) 0.113 (0.057)

0.5 0.1 0.188 (0.027) 0.174 (0.029) 0.139 (0.039) 0.109 (0.058)
0.5 0.3 0.140 (0.025) 0.131 (0.028) 0.116 (0.035) 0.107 (0.058)

p\uOQ 0.5 0.5 0.103 (0.024) 0.103 (0.026) 0.103 (0.034) 0.104 (0.057)
0.5 0.7 0.076 (0.022) 0.082 (0.025) 0.093 (0.033) 0.102 (0.055)
0.5 0.9 0.056 (0.020) 0.066 (0.023) 0.085 (0.032) 0.101 (0.055)

0.5 0.1 0.188 (0.027) 0.194 (0.033) 0.152 (0.041) 0.116 (0.059)
0.5 0.3 0.140 (0.025) 0.140 (0.030) 0.127 (0.039) 0.115 (0.059)

Pk 0.5 0.5 0.103 (0.024) 0.107 (0.028) 0.111 (0.037) 0.115 (0.058)
0.5 0.7 0.076 (0.022) 0.084 (0.026) 0.099 (0.035) 0.115 (0.058)
0.5 0.9 0.056 (0.020) 0.067 (0.024) 0.089 (0.034) 0.114 (0.058)
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6.9 D iscussion

In this chapter, we studied the measures of explained randomness proposed by Kent and 

O’Quigley (1988) [49], p\v , Xu and O ’Quigley (1999) [116], p\ uoq> and O’Quigley et 

al (2005) [80], pj,. We repeated similar studies to those performed on the measures of 

explained variation, presented in chapter 5. This helped us to understand the behaviour 

of explained randomness measures in similar conditions and to compare the two categories 

consistently.

The results of simulation studies showed that explained randomness measures studied 

in this chapter generally result in higher values than the explained variation measures 

presented in chapter 5. The measures are influenced by the distribution of covariates in 

the model. They generally lead to higher values in negatively skewed covariates and lower 

values in positively skewed covariates. Contrary to the claim by Kent and O’Quigley [49], 

table 6.1 shows that Pw a  no  ̂ a g°°d approximation for p^y if the covariate distribution 

is asymmetric. We also observed that the measures were in agreement if the covariate 

distribution is normally distributed.

The simulation results presented in section 6.3 demonstrate tha t p^  and its approxi­

mation, pfyA,  are least affected and p\  is most affected by the amount of censoring. Also, 

the impact of censoring on the measures depends on the distribution of covariate as seen 

in table 6.14. The codes in the table show the extent of the censoring effect on the mea­

sures of explained randomness, with 1 representing almost no effect and 4 representing 

a large effect. The table indicates that pyr is the only measure which is independent of 

censoring in all covariate distributions, whereas p\  is most affected.

The distributional properties of explained randomness measures were investigated in 

section 6.4.2. The sampling distribution of Kent and O’Quigley’s measure (1988) [49], 

is presented in graph 6-1, for different covariate effects and censoring proportions. 

The sampling distribution of the estimator of p^y display considerable skewness when 

censoring is more than 50%. This graph confirms Kent and O’Quigley’s theory [49] that 

this measure is a consistent estimator; the sampling distribution of the estimator becomes 

more concentrated around the expected value of the measure as the sample size increases. 

The shape of the sampling distribution of other measures follows a similar pattern.

Our simulation studies indicate tha t pfy is the only measure which is consistent un­

der both random and adm inistrative censoring. Sample size has a moderate effect on
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Table 6.14: Summary of censoring effects on explained randomness measures by the 
covariate distribution and censoring type. The codes show the extent of censoring effect 
in different situations from almost no effect, 1, to a large effect, 4.___________________

Censoring Exp. Rand.
------------^  ^  ^ X X ^ W U ,  **

Covariate or Prognostic Index Distribution
type measure Normal Lognormal Pos. skewed Neg. skewed

Pw 1 1 1 1
Random censoring Pw,A 1 1 1 1

PXuOQ 1 1 2 2
pi 2 3 4 2
Pw 1 1 1 1

Type I censoring Pw,A 1 1 1 1
PXuOQ 2 3 4 3
Pk 2 3 4 2

1 : A l m o s t  n o  e f f e c t ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  0 % — 9 %  

2 :  S l i g h t  e f f e c t ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  1 0 % — 1 9 %

3 :  M o d e r a t e !  e f f e c t ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  2 0 % —4 9 %  

4 :  L a r g e  e f f e c t ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  in  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  o v e r  5 0 %

Table 6.15: Summary of sample size effect and parameter monotonicity of the explained
randomness measures._______________________________________________________

Measure Sample Size Does parameter monotonicity hold?
fJ\V no effect1 yes2
p x u o q  no effectl yes2
p \ no effect1 yes2
1 )  T h e r e  i s  a  m o d e r a t e  e f f e c t  o f  s a m p l e  s i z e  o n  m e a s u r e s  o n l y  w h e n  c o v a r i a t e  e f f e c t  i s  1 . 2 5 ,  

s a m p l e  s i z e  i s  2 0 0 ,  a n d  c e n s o r i n g  p r o p o r t i o n  i s  h i g h ,  i . e .  8 0 % .

2 )  T h e  m e a s u r e  i n c r e a s e s  w i t h  i n c r e a s i n g  p a r a m e t e r  e f f e c t . .

the measures whereby they increase by about 25% if both the effective sample size, i.e. 

number of events, and the covariate effect are small (/? =  0.22 in table 6.7).

Graphs presented in section 6.6 illustrate that all measures increase as the covariate 

effect increases, hence satisfying the parameter monotonicity property. Moreover, the 

results of another simulation study presented in table 6.9 indicate that p2 is the only 

measure that is strictly monotonic. Although P 2X u q q  possesses the same property in non- 

censored data, the simulation study showed that when the censoring is 20% and H R  = 4, 

the measure decreases in 35% of replicates as a new covariate is added to the model.

The investigation which was carried out in section 6.7, to elucidate the behaviour of 

the explained randomness measures in the presence of extreme and outlier observations, 

show that the measures are susceptible to such observations in the data. The measures 

increase in the presence of extreme observations, whereas they decrease in the presence 

of outlier observations. However, the results of simulation studies show that the impact
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of extreme observations on the explained randomness measures is not as large as those of 

explained variation measures. For example, in the presence of severe outlier observations, 

i.e. m  =  8 in section 6.7, p^y, p \ uOQi an<̂  Pk decrease by 59%, 44%, and 36% respectively 

(the expected value of the measures at 8SD  are compared with the corresponding values 

at OSD, no contamination, in figure 6-4), whereas they increase by only 10%, 10%, and 

15% in the presence of influential extreme observations (figure 6-3).

The graphs presented in section 6.6 indicate that the measures of explained random­

ness can reach values near 1 in both non-censored and censored data. The measures 

increase as the covariate effect in the models becomes larger.

The impact of three different types of model mis-specification was investigated in 

section 6 .8 . First, the results of the study on the impact of under-fitting, or omitted 

covariates, show that under-fitting imposes positive bias on the measures in the presence 

of censoring; the measures increase with an increasing amount of censoring. Second, 

the simulation study shows tha t the measures are influenced by covariate mis-modelling, 

depending how severe the departure is from the true functional form of the covariate. 

Furthermore, table 6.13 demonstrates that all measures are susceptible to changes in 

treatment hazards. Similar to the impact of non-proportional hazards on the explained 

variation measures, the susceptibility of the measures to non-proportional hazards di­

minishes as the amount of censoring increases. Among the three types of model mis- 

specification, under-fitting is the most common in practice, which has implications for 

the partial measure of explained randomness suggested by Kent and O’Quigley (1988) 

[49] and O ’Quigley et al (2005) [80] - it imposes bias on the proposed partial measure of 

explained randomness in the presence of censoring.

In summary, among the explained randomness measures, the measure proposed by 

Kent and O’Quigley (1988) [49], p^y, performs reasonably well with regard to the essential 

properties outlined in chapter 3. Its approximation, Pw a i Perfc>rms well with respect to 

the essential properties but is not a good approximation for pfy if the covariate distrib­

ution is asymmetric. The measure proposed by Xu and O’Quigley (1999) [116], P2Xu0qi 

performs well with random censoring, but struggles in type I or administrative censoring. 

The results of our study indicate tha t among the explained randomness measures, the 

measure proposed by O ’Quigley et al (2005) [80], pi, performs worst with regard to our 

essential properties.

The next chapter presents similar studies on the proposed predictive accuracy rnea-
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sures and the measure proposed by Schemper and Kaider (1997).
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Chapter 7

Investigation o f th e m easures of 

predictive accuracy

7.1 In troduction

This chapter studies various aspects of potentially recommendable measures in the pre­

dictive accuracy category. The measures in this category quantify the ability of the 

regression model to predict the outcome, i.e. being "alive" or "dead" in the context of 

survival analysis. The two measures are proposed by Graf et al (1999) [31], R q (T *), and 

Schemper and Henderson (2000) [97], VschH■> in this chapter.

We also included the results of similar investigations carried out to evaluate the mea­

sure proposed by Schemper and Kaider (1997) [98], RgchK' Since this measure it is not 

based on either a variation function or the Kullback-Leibler information gain [55], it can 

not be classified as an explained variation or explained randomness measure; neither is 

it a predictive accuracy measure because it does not evaluate the accuracy of the model- 

based survival probability predictions. It, however, uses a non-parametric measure of 

correlation such as Spearman correlation coefficient (Spearman (1904) [108]) or Kendall 

r  (Kendall (1938) [47]) to provide a measure of association between the imputed survival 

times and covariates in the model.

The studies performed on the explained variation and explained randomness measures 

are repeated for the above measures in this chapter, hence the study design in all sim­

ulation studies are similar to those of chapters 5 and 6 . We will not explain the study 

design and only present the results through similar graphs and tables.
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Like the two previous chapters, this chapter addresses the following:

• The expected value of the measures in non-censored data

• The impact of different covariate distributions on the measures

• The impact of censoring on the measures

• Consistency, distributional shape, and sample size effect

• Monotonicity properties of the measures

• The impact of atypical observations on the measures

• The upper bound of the measures

•  The impact of model mis-specification on the measures

As was discussed in section 2.3.3, Graf et al’s measure (1999) [31], R q (T*), evaluates 

the predictive accuracy of the model at a particular time point, T*. In practice, the 

choice of the time point depends on the aim of the study. For example, the aim of the 

study might be to evaluate the performance of the fitted survival model in predicting the 

individual’s status as "dead" or "alive" after T* = 2 years. In the simulation studies, 

however, we considered different time points to elucidate the behaviour of this measure 

at different times. The time points are the 0.10£/i, 0.15th, 0.20th, 0.25th, and 0.50£/i 

quantile of the exponential distribution used to generate survival times, as described in 

section 4.3.7. This corresponds to 5 time points as 7i =  5.27, X2 =  8.13, T3 =  11.16,

T4 =  14.38, T5 =  34.66.

The measures proposed by Schemper and Henderson (2000) [97], VschH, and Schemper 

and Kaider (1997) [98], R'gcflK-> Provide an overall measure of predictive ability.

7.2 Im pact o f covariate d istribution  on th e  m easures

Simulations were carried out to assess the measures of predictive accuracy with non- 

censored data. The study was conducted with the same experimental conditions as those 

of section 5.2, and the results are presented through similar tables. The simulations were 

run for four covariate distributions, four covariate effects /? =  {0.223,0.405, 0.693,1.386} 

representing hazard ratios of {1.25,1.5, 2,4}, and three sample size conditions, {200, 500,1000}, 

with 5,000  replicates for each experimental condition.
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Tables 7.1 to 7.3 summarise the simulation results for different covariate distributions 

and covariate effects in non-censored data. They show the expected value, the standard 

deviation of the sampling distribution, and the relative dispersion of the measures. The 

first thing to note from the table is tha t the predictive accuracy measures, R q (T*) and 

VschH? appear to be lower than the corresponding values of the explained variation and 

explained randomness measures presented in tables 5.1 and 6.1. The only measure in the 

"other11 category proposed by Schemper and Kaider (1997) [98], F ^chK-> seems to be in 

agreement with explained variation measures in the normally distributed covariate. Some 

of the findings are summarised in the following sections for each measure.

Table 7.1: Mean of the sampling distribution of predictive accuracy measures and
Schemper and Kaider’s measure (1997) by the covariate distribution and covariate ef- 
fect across all sample size conditions, censoring=0%________________________________

Covariate Graf et al measure at different time points
distribution exp(/?) m T i ) m T 2 ) m n ) 7%(T4) x za ( n ) VschH p2

JkhK—
normal 1.25 0.006 0.008 0.011 0.013 0.024 0.027 0.036

1.5 0.019 0.028 0.035 0.043 0.073 0.069 0.104
2 0.064 0.087 0.106 0.123 0.176 0.159 0.244
4 0.281 0.319 0.343 0.360 0.403 0.369 0.543

lognormal 1.25 0.007 0.010 0.013 0.016 0.025 0.027 0.034
1.5 0.028 0.038 0.046 0.053 0.073 0.068 0.097
2 0.103 0.122 0.136 0.146 0.168 0.152 0.226
4 0.351 0.363 0.369 0.373 0.373 0.348 0.509

pos. skewed 1.25 0.011 0.014 0.017 0.019 0.025 0.026 0.024
1.5 0.048 0.055 0.060 0.063 0.064 0.061 0.065
2 0.151 0.155 0.155 0.153 0.133 0.125 0.146
4 0.396 0.379 0.363 0.349 0.285 0.264 0.335

neg. skewed 1.25 0.003 0.005 0.007 0.009 0.020 0.025 0.025
1,5 0.009 0.013 0.018 0.023 0.052 0.061 0.069
2 0.020 0.031 0.042 0.053 0.119 0.128 0.157
4 0.061 0.093 0.125 0.157 0.318 0.277 0.361

7 .2 .1  G ra f e t  a l m e a su r e  (1 9 8 8 ) - Rq(T*)

Table 7.1 displays tha t this measure is affected by the covariate distribution, it is reduced 

with negatively skewed covariates. This measure is an increasing function of the covariate 

effect, /3, in all covariate distributions and time points. The measure tend to increase as 

the time point, T*, increases in the normally and lognormally distributed covariates. 

Table 7.3 shows that the dispersion of the measure, as measured by the C.V ., decreases 

as the covariate effect, (3, and T* increase.
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Table 7.2: Standard deviation of the sampling distribution of predictive accuracy mea­
sures and Schemper and Kaider’s measure (1997) by the covariate distribution and co- 
variate effect across all sample size conditions, censoring—0%________________________

Covariate Graf et al measure at different time points
distribution exp(/3) R h iT i) R zn(Ts) i $ ( r 4) W s ) VSchH p2

ShK
normal 1.25 0.008 0.010 0.011 0.012 0.016 0.010 0.019

1.5 0.016 0.019 0.020 0.022 0.025 0.017 0.030
2 0.031 0.033 0.034 0.035 0.035 0.023 0.040
4 0.053 0.048 0.045 0.044 0.041 0.026 0.040

lognormal 1.25 0.011 0.012 0.013 0.014 0.016 0.010 0.018
1.5 0.023 0.024 0.025 0.025 0.025 0.016 0.029
2 0.043 0.041 0.039 0.037 0.034 0.022 0.040
4 0.056 0.050 0.047 0.045 0.041 0.025 0.041

pos. skewed 1.25 0.016 0.016 0.016 0.016 0.015 0.010 0.015
1.5 0.034 0.031 0.029 0.027 0.021 0.015 0.024
2 0.054 0.046 0.042 0.038 0.029 0.020 0.035
4 0.061 0.055 0.050 0.048 0.038 0.025 0.044

neg. skewed 1.25 0.005 0.006 0.008 0.009 0.014 0.010 0.016
1.5 0.008 0.010 0.012 0.013 0.021 0.016 0.026
2 0.012 0.014 0.017 0.019 0.030 0.023 0.037
4 0.020 0.024 0.028 0.031 0.043 0.027 0.046

7 .2 .2  S ch em p er  an d  H e n d e r so n  m easu re  (2 0 0 0 ) - VschH

Table 7.1 shows tha t this measure is an increasing function of the covariate effect, (3. In 

the normally distributed covariate, the expected value of the measure varies from 0.027 

to 0.369 for the range of (3 in the study. This measure is influenced by the covariate 

distribution, it decreases as the covariate distribution becomes asymmetric. Table 7.3 

indicates that the dispersion of the measure decreases as the (3 increases in the model.

7 .2 .3  S ch em p er  an d  K a id er  m ea su re  (1997) - RschK

This measure is the only measure that does not belong to any of the proposed three main 

classes of predictive ability. In the normally distributed covariate, the expected value of 

the measure varies from 0.036 to 0.543 for the range of (3 in the study. The results of 

the simulation study in table 7.1 suggest that this measure is affected by the covariate 

distribution; it decreases as the covariate distribution becomes asymmetric. The measure 

increases as the covariate effect, (3, becomes larger. Table 7.3 displays that the dispersion 

of the measure decreases with increasing covariate effect.
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Table 7.3: Coefficient of variation of predictive accuracy measures and Schemper and 
Kaider’s measure (1997) by the covariate distribution and covariate effect, expressed as 
%. Table entries are the average across all combinations of sample sizes, censoring~0%.

Covariate Graf et al measure at different time points
distribution exp(/3) i f c c n ) *%(T2) *&(T3) J%(T4) m n ) VSchH p2

ShK
normal 1.25 138.1 111.5 96.2 85.8 60.5 36.4 48.7

1.5 79.4 63.7 54.5 47.8 33.1 23.1 27.5
2 46.7 36.5 30.4 26.7 18.8 13.8 15.7
4 17.7 14.3 12.6 11.5 9.7 6.6 7.0

lognormal 1.25 140.8 112.1 95.2 84.8 58.8 35.9 50.8
1.5 77.6 60.5 51.1 44.4 31.9 22.7 28.8
2 40.0 31.5 27.1 24.3 19.1 13.8 16.7
4 15.2 13.1 12.1 11.4 10.4 6.9 7.7

pos. skewed 1.25 139.5 107.3 90.9 80.6 56.1 35.2 60.0
1.5 67.4 53.6 46.1 41.3 31.8 23.0 35.9
2 33.8 28.4 25.6 23.7 20.8 15.0 22.6
4 14.7 13.7 13.1 12.9 12.7 8.9 12.6

neg. skewed 1.25 143.1 117.0 101.5 91.6 65.6 38.0 60.1
1.5 86.4 69.7 60.4 54.0 38.8 25.6 35.9
2 54.9 44.1 38.2 34.2 24.3 16.7 22.3
4 30.7 24.9 21.4 18.8 12.8 9.4 12.1

7.3 Im pact o f censoring on th e  m easures

In this section, we investigate the impact of censoring on R q (T*), VschH? and R$chK 

through a series of simulation studies similar to section 5.3. The results are summarised 

using similar methods to those of section 5.3.

Tables 7.4 to 7.6 summarise the results of the simulation studies. More detailed sim­

ulation results are presented in Appendix A. The tables in Appendix A summarise the 

impact of censoring by the covariate distribution, censoring type, and censoring propor­

tion in a similar way to  table 7.6. The figures in these tables are the average across four 

covariate effects, and three sample size conditions. It is evident from the tables that no 

summary statistic is presented for the Graf et al measure (1999) [31] in 80% censoring. 

We also presented the summary statistics for 4 time points, T\ to T4. To evaluate the 

predictive accuracy of a model using Graf et al measure (1999) [31], the time point of 

interest, T*, should either be smaller than or equal to the last event time in the data. In 

some of the generated replicates, the time points, T\ to T5, were, by chance, larger than 

the last event time in small sample sizes, i.e. n = 200, when the amount of censoring was 

80%. Although exponential distribution was used for the censoring distribution in ran­

dom censoring condition, the risk set, i.e. time to the last event time, became shorter and 

shorter as the proportion of censored observations increased. Similar problem occurred
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for T5 =  34.66 in 50% censoring condition when the covariate effect was j3 = 1.386. This 

caused the program to stop, and we had to carry out the simulations with large sample 

size, i.e. 1, 000, to investigate the performance of this measure in 80% censoring, which 

will be presented later in another table. We, therefore, present the summary statistic in 

4 time points and 2 censoring proportions, i.e. 20% and 50% censoring, for the Graf et 

al’s measure (1999).

Detailed simulation results are presented in Appendix A. The tables in Appendix A 

show the impact of censoring by the covariate distribution, censoring type, and censoring 

proportion in a similar way to table 7.4. The following sections describe the impact of 

censoring on each measure in details.

Table 7.4: The average percentage difference from the expected value of measures in the 
corresponding non-censored data  by the covariate distribution and censoring proportion.

Covariate % Graf measure at different time points
Distribution Censored # & t 2) i% (T4) VschH _R SchK
normal 20 -1.3 -1.8 -2.2 -2.1 -0.6 -0.1

50 -3.1 -4.5 -5.4 -5.4 -8.4 1.0
80 -27.2 5.3

lognormal 20 -0.8 -1.3 -1.5 -1.4 1.0 -0.3
50 -1.9 -3.2 -3.8 -3.4 -2.0 0.6
80 -14.4 3.6

pos. skewed 20 -0.6 -0.8 -0.8 -0.5 2.8 -0.3
50 -1.2 -1.9 -1.9 -1.1 7.9 0.2
80 10.6 1.5

neg. skewed 20 -2.7 -3.4 -4.0 -4.1 -5.6 -0.4
50 -5.9 -8.4 -10.1 -10.6 -21.8 1.7
80 -44.0 11.4

7.3 .1  G ra f e t  a l m e a su r e  (1 9 8 8 ) -

The simulation results indicate that this measure is almost unaffected by the amount of 

censoring in these experimental conditions. Table 7.4 shows that the average percentage 

change in the expected value of the measure is on average less than 10% in most of the 

experimental conditions. Table 7.6 show that the measure is unaffected by the amount 

of censoring in random censoring conditions, but decreases slightly in the type I or ad­

ministrative censoring in all covariate distributions. The relative spread of the sampling 

distribution, indicated in table 7.5 , increases as the amount of censoring increases.

Due to computational issues in small samples as explained before, the performance 

of this measure in 80% censoring condition was not presented in the above tables. We,
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Table 7.5: Coefficient of variation of measures by the covariate distribution and censor­
ing proportion, expressed as %. Table entries are the average across three sample size 
con d i t i o n s . ________________________________________________________________

Covariate % Graf measure at different time points
Distribution Censored m T i ) J%pr3) J%Cr4) VSchH

p‘2
n SchK

normal 20 70.7 56.6 48.4 43.0 21.2 25.7
50 72.3 57.7 49.2 43.8 23.8 29.9
80 30.1 43.6

lognormal 20 68.8 54.4 46.5 41.3 21.1 26.6
50 70.7 55.7 47.4 42.4 24.2 29.6
80 31.2 39.0

pos. skewed 20 64.1 50.9 44.1 39.9 22.1 33.0
50 65.6 52.0 45.2 41.4 28.0 33.9
80 38.8 37.2

neg. skewed 20 78.8 63.8 54.9 49.1 24.2 33.5
50 79.5 64.2 55.0 49.1 34.2 39.7
80 48.4 65.1

therefore, carried out further simulations with large samples, n = 1,000, to examine this 

measure in the presence of heavy censoring. The simulations were run for two censoring 

proportions 0% and 80%, with 5, 000 replicates in each experimental condition. Random 

non-informative right censoring was generated as described in section 4.3.4.

Table 7.7 shows the expected value and standard deviation of the sampling distribution 

of this measure evaluated at T2 =  8.13. It is evident from the table that the expected 

value of this measure is consistent in the presence of heavy censoring across all covariate 

effects and covariate distributions.

7 .3 .2  S ch em p er  &; H e n d e r so n  m easu re  (2000) - VshH

Table 7.6 shows tha t this measure is not influenced by random censoring, except when the 

covariate distribution is negatively skewed, which decreases with the amount of censor­

ing. However, the table suggests tha t there is an interaction between censoring and the 

covariate distribution in the type I or administrative censoring. The measure decreases 

on average in normal, lognormal, and negatively skewed distributions, but it increases 

in positively skewed distributions. Like Graf et al’s measure (1999), the spread of the 

sampling distribution of the measure, expressed as the C.V. in table 7.5, increases with 

the amount of censoring.
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Table 7.6: Summary performance of measures by the covariate distribution and censoring 
mechanism. Note that the entries for the G raf’s measure (1999) do not include 80% 
ce n s o r in g ._________________ _____________________________________

Measure Covariate
Distribution

Random Censoring Type I Censoring
Average 

% Difference C.V.
Average 

% Difference C.V.
K& Tr) normal 1.4 72.7 -5.7 70.3

lognormal 1.7 70.9 -4.5 68.6
pos. skewed 1.3 65.6 -3.1 64.1
neg. skewed -0.2 80.2 -8.4 78.0

O h(T2) normal 1.4 58.8 -7.7 55.4
lognormal 1.4 56.4 -5.9 53.7
pos. skewed 1.2 52.3 -3.8 50.6
neg. skewed 0.3 66.3 -12.1 61.8

G raf’s measure normal 1.1 50.9 -8.7 46.8
(1999) lognormal 1.1 48.6 -6.4 45.3

pos. skewed 1.1 45.6 -3.7 43.7
neg. skewed 0.4 57.9 -14.5 51.9

i £ ( T 4) normal 1.2 45.9 -8.7 40.9
lognormal 1.1 43.6 -6.0 40.1
pos. skewed 1.2 41.7 -2.7 39.6
neg. skewed 1.2 52.8 -15.9 45.3

Schemper & VSchH normal -0.9 30.5 -23.3 19.6
Henderson lognormal 1.5 28.6 -11.8 22.4
(2000) pos. skewed 7.1 29.6 7.1 29.6

neg. skewed -23.9 35.5 -23.8 35.6
Schemper &; ^ShK normal 2.0 33.3 2.1 32.8
Kaider lognormal 1.4 32.1 1.3 31.3
(1997) pos. skewed 0.5 34.9 0.4 34.5

neg. skewed 3.9 45.8 4.6 46.4

7 .3 .3  S ch em p er  & K a id er  m easu re  (1997) - R?SchK

This measure can be considered independent of censoring since the average percentage 

change in the expected value of the measure in both random and administrative censoring 

is less than 10% compared with the corresponding non-censored data (tables 7.4 and 7.6). 

The only exception is when the data is heavily censored, i.e. 80% censoring, and the 

covariate is heavily skewed to the left. In this case, the average percentage change in the 

expected value of the measure is 11.4% compared with the value of the measure in the 

corresponding non-censored data.
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Table 7.7: The expected value and standard deviation (in brackets) of the sampling 
distribution of Graf et al (1999) measure in 0% and 80% censoring by the covariate effect 
and covariate distribution.__________________________________________________

Graf et al measure evaluated at T2 =  8.13
Covariate distribution exp {(3) 0% censoring 80% censoring
normal 1.25 0.008 (0.006) 0.009 (0.007)

1.5 0.027 (0.011) 0.028 (0.014)
2 0.086 (0.020) 0.087 (0.025)
4 0.319 (0.030) 0.319 (0.041)

lognormal 1.25 0.010 (0.007) 0.010 (0.009)
1.5 0.037 (0.014) 0.038 (0.018)
2 0.122 (0.025) 0.123 (0.031)
4 0.363 (0.031) 0.364 (0.041

pos. skewed 1.25 0.013 (0.009) 0.015 (0.012)
1.5 0.054 (0.019) 0.055 (0.022)
2 0.155 (0.028) 0.155 (0.035)

neg. skewed 1.25 0.005 (0.004) 0.005 (0.005)
1.5 0.013 (0.006) 0.014 (0.008)
2 0.031 (0.009) 0.031 (0.011)

7.4 C onsistency, d istributional shape, and sam ple size ef­

fect

This section investigates the consistency and the shape of the sampling distribution of 

the measures as well as the impact of sample size.

7 .4 .1  C o n s is te n c y  o f  th e  m easu res

Both predictive accuracy measures are based on the measures of marginal and conditional 

prediction errors. In G raf et al’s measure (1999) [31], R q (T*), the prediction error is 

quantified by the average of the quadratic differences between an observed outcome, 

survival status, and the model-based survival probabilities, whereas in Schemper and 

Henderson measure (2000) [97] the prediction error is quantified by the average of the 

absolute differences of the same quantities.

In general, the marginal prediction error, D, is determined for a model without 

prognostic factors, and conditional prediction error, D ( X ) t is determined for a model 

with prognostic factors. Both measures provide a measure of predictive accuracy using 

[D — D(X)] / D  which evaluates the relative gain in predictive accuracy provided by the 

the prognostic factors when added to the model. A consistent estimator is the one whose 

estimators of marginal and conditional prediction errors are consistent.
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In G raf’s measure (1999) the marginal and conditional prediction errors at time T*, 

D (T*) and D x  (X*), are defined as

D { T * ) ^ E  (V (T * )-S (T * )y

and

D x  (T*) = E  [ (y  (T*) -  £(X*|X));

where Y  (T*) is the individual survival status at time X*, i.e. equal to 0 if event happened 

before T* and is equal to 1, otherwise. Graf (1998) [30] showed that D x  (T*) in equation 

2.42 of chapter 2 and its marginal counterpart are consistent estimators of D x  (X*) and 

D (T*) in the Cox PH model.

In Schemper and Henderson’s measure (2000), the corresponding population values 

of the marginal and conditional prediction errors, D s h  and D s h (X) ,  are defined as

D SH = 2 f T S (t){ l -  S(t )} f ( t )dt /  l T f ( t )dt  
Jo Jo

and

D s h ( X )  =  2 / EX [S(t\X){ 1 -  S(t\X)}} f  f{t )dt
Jo Jo

where [0, X1*) is the follow-up period. Schemper and Henderson (2000) [97] showed that

the estimator of conditional prediction error, Ds h (X),  equation 2.43 of chapter 2, and

its marginal counterpart, D s h -> are a consistent estimator of the D s h (X)  and D s h -

Finally, Schemper and Raider’s measure (1997) provides a non-parametric measure 

of correlation.

7 .4 .2  S a m p lin g  d is tr ib u tio n  o f  th e  m easu res

Figure 7-1 depicts the sampling distribution of the Schemper and Henderson (2000) [97], 

VschH 1 and Schemper and Kaider (1997) [98], R%ckki measures from the simulation stud­

ies. In the simulations, the covariate is normally distributed with 5,000 replicates in 

each experimental condition. The survival times are randomly censored by considering 

an exponential distribution for censoring times, as described in section 4.3.4. The shape 

of the sampling distribution of both measures are similar to those of explained variation 

and randomness measures in chapters 5 and 6.
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The sampling distribution of the Schemper and Henderson (2000) [97] confirms the 

consistency of the estimator, VschH as defined in equation 2.44, in random censoring 

condition. All distributions in figure 7-1 tend towards a spike over the parameter of 

interest as n  becomes ever larger, as those of Schemper and Kaider measure [98], $ s chK-

The sampling distribution of both measures exhibit considerable skewness, particularly

when the covariate effect is small and censoring is more than 50%. The shape of the 

sampling distribution of Graf et al measure (1999) is similar to those of Schemper and 

Henderson (2000) [97], VschH-

7 .4 .3  Im p a ct o f  sa m p le  s ize  on  th e  m easu res

In a similar simulation study to those of explained variation and explained randomness 

measures, we evaluated the impact of sample size on the three measures studied in this 

chapter. The results are tabulated in table 7.8 which indicate that the measures increase 

slightly when the effective sample size, i.e. number of events, is small. The table shows 

that the measures increase when both sample size and the covariate effect are small, i.e. 

n = 200 and exp(/3) =  1.25, and the amount of censoring is high, i.e. 80%. We observed 

a similar pattern in other simulation studies when we studied skewed covariates and a 

different censoring mechanism, i.e. type I or administrative censoring.

Table 7.8: Percentage change in the expected value of measures in small and large sample 
sizes by censoring proportion. The figures in brackets are the standard deviation of the 
sampling distribution. ______________________________________________________

Measure exp (/?)

20% Censoring

% Change

80% Censoring

% Change
Sample size Sample size

1000 200 1000 200

i%CTi) 1.25 0.005 0.006 20% 0.006 0.008 33%
(0.005) (0.012) (0.006) (0.016)

4 0.282 0.282 0% 0.283 0.283 0%
(0.032) (0.072) (0.039) (0.089)

VSchH 1.25 0.026 0.028 7% 0.026 0.032 22%
(0.007) (0.016) (0.015) (0.032)

4 0.37 0.368 0% 0.347 0.337 -3%
(0.017) (0.037) (0.031) (0.064)

p2
SchK 1.25 0.035 0.039 12% 0.037 0.049 31%

(0.035) (0.039) (0.037) (0.049)
4 0.543 0.539 -1% 0.548 0.545 -1%

(0.543) (0.539) (0.548) (0.545)
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Figure 7-1: Sampling distributions of Schemper and Henderson (2000) and Schemper and 
Kaider (1997) measures by the covariate effect, sample size, and censoring proportions in 
the normally distributed covariate and random censoring conditions.
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7.5 M on oton icity  property o f proposed measures

In this section, we investigate the parameter and number of variables monotonicity prop­

erties of Rg(T*),  VschH> and R%chK in two parts. The first part of this section discusses 

the findings of the simulation studies which confirm the parameter monotonicity of the 

measures. In the second part, the results of another simulation study similar to that of 

explained variation and explained randomness measures are presented.

7.5.1 Param eter m onotonicity

The results of the simulation studies presented in sections 7.2 and 7.6 confirm that all 

three measures increase as the covariate effect becomes stronger. Table 7.1 shows that 

all three measures increase with increasing covariate effects in non-censored data. It is 

evident from the table tha t the measures increase slower in asymmetric covariates than 

normally distributed covariates. Further simulation study presented in section 7.6 shows 

that all three measures are also an increasing function of the covariate effect in censored 

data (Graph 7-2).

7.5.2 N um ber o f variables m onotonicity

The number of variables monotonicity means that the expected value of a suitable measure 

of predictive ability should not decrease by adding new covariates to the model. Tables 7.9 

and 7.10 demonstrate the results of simulations to investigate this property. The entries 

in table 7.9 are the differences in the expected values of the measures after fitting model 

II, i.e. the model with only dependent covariate and one independent covariate, and 

model III, i.e. the model with only dependent covariate and two independent covariates, 

compared to model I, i.e. the model with one dependent covariate. The table shows 

that, in both censored and non-censored data, the expectation of the measures does not 

decrease after adding new covariates.

Table 7.10 displays the proportion of simulations in which the measures decreased 

after adding one and two independent covariates by the covariate effect and censoring 

proportion. The results indicate tha t whilst the expected value of the measures does not 

decrease, all three measures decreased in a certain proportion of replicates after adding a 

new covariate to the model. Schemper and Henderson’s measures (2000), Vs^ h , perform 

better than the two other measures in this regard.
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Table 7.9: Mean difference in the expected value of measures after adding one or two
independent covariates to the model in 2,000 simulations, normally distributed covariates.

Measure exp(£)
Model II Model III

Mean difference to model I 
non-censored censored

Mean difference to model I 
non-censoring censored

H i m ) 1.25 0.000 0.001 0.001 0.001
1.5 0.000 0.001 0.001 0.001
2 0.000 0.001 0.001 0.002
4 0.001 0.001 0.001 0.002

VSchH 1.25 0.001 0.004 0.002 0.008
1.5 0.001 0.004 0.002 0.007
2 0.001 0.003 0.002 0.006
4 0.001 0.002 0.001 0.004

R 2SchK 1.25 0.001 0.007 0.003 0.013
1.5 0.001 0.006 0.003 0.012
2 0.001 0.005 0.002 0.009
4 0.001 0.002 0.001 0.005

7.6 U pper bound o f  th e  m easures

In this section, we demonstrate the upper bound of the measures by applying similar 

simulation studies to section 5.6. In the simulations, survival times are exponentially 

distributed, the covariate is normally distributed X  ~  iV(0,1), sample size is 500, and 

non-informative random censoring was generated by considering an exponential distrib­

ution for the censoring times with 2,000 replicates in each experimental condition. For 

the Graf et al’s measure (1999), we have carried out the simulations in three time points 

Ti =  5.27, T2 = 8.13, and T3 =  11.16.

A comparison of simulation results in section 7.2 with the corresponding sections of 

chapters 5 and 6 clarifies tha t the predictive accuracy measures, R q (T*) and VschH> 

attain lower values than the explained variation and explained randomness measures. To 

examine whether these measures reach values close to 1 in theory, we carried out the 

simulations for a wider range of covariate effect from, i.e. (3 ~  0.22 (exp(/?) =  1.25) 

to f3 = 8.32 (exp(/3) =  4096), than we did for the explained variation and explained 

randomness measures. However, hazards ratios of this magnitude, i.e. H R  = 4096, are 

rare in practical applications.

Figure 7-2 displays the expected value of measures from j3 = 0.22 (exp(/3) =  1.25) 

to /? =  8.32 (exp(/3) =  4096) in 0% and 50% censoring conditions. All three measures 

are an increasing function of the covariate effect. With increasing covariate effect, the 

predictive accuracy measures, R q (T*) and VschH, increase slower than Schemper and
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Table 7.10: Proportion decrease in measures after adding independent covariate(s) to the 
model in 2000 simulations, normally distributed covariates.______________________

Measure exp(/3)
Model II Model III

Prop, decreased to model I 
non-censored censored

Prop, decreased to model I 
non-censoring censored

& G (T 2) 1.25 0.44 0.40 0.41 0.35
1.5 0.43 0.41 0.41 0.37
2 0.42 0.38 0.37 0.35
4 0.41 0.38 0.38 0.34

VSchH 1.25 0.17 0.20 0.07 0.09
1.5 0.16 0.19 0.07 0.09
2 0.15 0.22 0.06 0.12
4 0.14 0.25 0.05 0.15

SchK 1.25 0.32 0.15 0.23 0.06
1.5 0.32 0.19 0.23 0.08
2 0.34 0.21 0.25 0.12
4 0.36 0.30 0.27 0.20

Kaider measure (1997) [98], R ^ ^ k  ■

Both predictive accuracy measures, R q (T*) and VschH? are in agreement for the range 

of the covariate effect studied here. It is evident from figure 7-2 tha t the expected value 

of Graf et al’s measure (1999) in the three time points converges as the covariate effect 

becomes larger; they all reach values near 0.90. The expected value of Schemper and 

Henderson measure (2000), Vs chhi increases in both censored and non-censored data. It 

appears that this measure levels off after =  6.24 (H R  — 512) in non-censored data, 

whereas it still increases in censored data. Schemper and Raider’s measure (1997) [98] 

increases rapidly with increasing covariate effect and reaches values near 1 for large but 

reasonable covariate effects.

7.7 R obustness o f  th e  m easures

Simulations were carried out to investigate the impact of extreme and outlier observations 

on the three measures investigated in this chapter. This section consists of two parts which 

demonstrate the impact of extreme and outlier observations on the measures of predictive 

accuracy, respectively. We show the results of an simulation study carried out for the 

covariate effect j3 = 0.69, sample size =  200, and 50% censoring condition with 2,000 

replicates in each experimental condition. We contaminated the data sets with extreme 

and outlier observations in the same way as we did for the study on the robustness of the 

explained variation measures, which was described in section 5.7, and present the results
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Figure 7-2: Measures as a function of covariate effect in the model, normally distributed 
covariate. In the bottom graph, survival times are randomly censored according to an 
exponential distribution for censoring times.
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7.7.1 Impact of extrem e observations

Graph 7-3 displays the expected value of measures as one observation in the data set 

becomes more extreme. If a measure is resistant to extreme observations, the curve 

which represents the measure is expected to be a flat line across the X  axis. The graph 

demonstrates that the measures are resistant to extreme observations since the expected 

value of the measures remain relatively constant as one of the observations becomes more 

extreme, i.e. the covariate and corresponding outcome value, i.e. time, move towards the
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Impact of one inf. obs. on predictive accuracy measures
(beta=0.69, n=200, 50% Censoring)
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Figure 7-3: Mean of the sampling distribution of two predictive accuracy measures and 
Schemper and Kaider measure (1997) as the extreme observation becomes more influen­
tial.

extremes of their respective distributions.

7.7.2 Impact o f outlier observations

Graph 7-4 displays the results of a similar simulation study to show the impact of outlier 

observations. Similar to graph 7-3, we expect flat lines across the X  axis if the mea­

sures are resistant to such observations. The graph demonstrates that the measures are 

influenced by the outliers in the data set.

Limited simulation studies were carried out for other experimental conditions which 

showed that, in general, outlier observations have more impact on the measures in small 

sample sizes than the large ones.

7.8 Im p a c t o f m o d e l m is-specification  on th e  m easures

This section investigates the effect of model mis-specification on V schfl, and

R'schK■ This section consists of three parts, each examining the impact of under-fitting, 

covariate mis-modelling, and non-proportional hazards on the measures. Simulation stud­

ies similar to those of section 5.8 were carried out to study the issue of model mis- 

specification on the measures; therefore, we do not describe the study design in this
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Impact of one outlier on predictive accuracy measures
(beta=0.69, n=200, 50% Censoring)
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Figure 7-4: Mean of the sampling distribution of two predictive accuracy measures and 
Schemper and Kaider measure (1997) as the outlier observation becomes more influential.

section again. All the simulations were carried out in different censoring conditions with 

500 sample size and 2, 000 replicates in each experimental condition. The results are 

summarised in similar tables to those of section 5.8.

7.8.1 Impact o f under-fitting - covariate omission

Table 7.11 demonstrates the impact of under-fitting on / VschH, and R?gchK- The 

table presents the expected value and standard deviation of the sampling distribution of 

the measures for the full and under-fitted models by the amount of censoring. Unlike 

the explained variation and explained randomness measures, where under-fitting imposes 

further bias on the measures in censored data, the expected value of the measures studied 

in this section remain relatively constant in the under-fitted model across different cen­

soring proportions. The dispersion of the measures in both full and under-fitted models 

increase as the amount of censoring increases.

7.8.2 Impact o f covariate mis-modelling

In a similar simulation study to those of explained variation and explained randomness 

measures, we examine the impact of covariate mis-modelling on Rq (T*), VgchH, anti 

RgchK ' n this section. We repeated the studies to investigate the impact of modelling the
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Table 7.11: The expected value of measures for full and under-fitted models. Normally 
distributed covariate(s) and random censoring. The figures in brackets are the standard 
deviation of the sampling distribution.__________________________________________

Measure Covariates in model 0% Censoring 20% Censoring 50% Censoring
^ ( r 5) both X 1&X2 

only X \ *
0.443 (0.036) 
0.339 (0.035)

0.444 (0.037) 
0.341 (0.036)

0.445 (0.046) 
0.342 (0.046)

VschH both X 1&X2 
only X i *

0.410 (0.022) 
0.297 (0.023)

0.411 (0.023) 
0.302 (0.024)

0.410 (0.026) 
0.311 (0.028)

r>2
SchK

*=muler-fit.tc

both X 1&X2 
only X i *

id inoriol

0.595 (0.033) 
0.470 (0.036)

0.596 (0.034) 
0.473 (0.037)

0.593 (0.036) 
0.478 (0.040)

Table 7.12: The mean and standard deviation of the sampling distribution of measures 
for the correctly specified model I and misspecified model.______________________

Measure model 0% Censoring 20% Censoring 50% Censoring
true model I 
missp. model

0.268(0.033)
0.264(0.034)

0.268(0.035)
0.263(0.036)

0.269(0.042)
0.263(0.045)

VSchH true model I 
missp. model

0.247(0.022)
0.239(0.023)

0.247(0.023)
0.245(0.025)

0.251(0.029)
0.263(0.031)

r>‘Z...............
SchK true model I 

missp. model
0.365(0.037)
0.365(0.037)

0.365(0.039)
0.370(0.039)

0.363(0.046)
0.388(0.044)

covariate, X , as linear function of log hazard ratio in the Cox PH model where the true 

functional form of the covariate is either "model I", i.e. /i(X ) , where

f i { X )  =  0.932 * X  +  0.156 * X 2 +  0.014 * X 3 

or "model II", i.e. f 2 (X) ,  where

f 2 ( X)  =  0.668 * X  -  0.413 * X 2 4- 0.045 * X 3

where X  is normally distributed, X  ~  X (0 ,1). Figure 5-7 of chapter 5 illustrates the 

relationship between both true and linear models and the log hazards ratio.

M odel I

Table 7.12 shows the expected value and standard deviation of the sampling distribution 

of the measures for true and mis-specified models by censoring proportions. The table 

indicates tha t the measure proposed by Graf et al (1999), R q (T*) is consistent in both 

true and mis-specified models, whereas VschH and R^chK increase in the mis-specified 

model as the amount of censoring increases.
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Table 7.13: The mean and standard deviation of the sampling distribution of measures 
for the correctly specified model II and misspeeified model._____________________

Measure model 0% Censoring 20% Censoring 50% Censoring
true model II 
missp. model

0.134(0.026)
0.086(0.026)

0.134(0.027)
0.088(0.026)

0.136(0.031)
0.090(0.029)

VSchH true model II 
missp. model

0.193(0.023)
0.128(0.022)

0.192(0.023)
0.123(0.022)

0.188(0.027)
0.111(0.023)

p T  ' "
n S c h K true model II 

missp. model
0.237(0.037)
0.220(0.037)

0.237(0.038)
0.213(0.037)

0.237(0.041)
0.191(0.037)

M odel I I

Similarly, table 7.13 shows the mean and standard deviation of the sampling distribution 

of the measures for the true and mis-specified models by censoring proportions. Simi­

lar conclusions can be drawn for this case, except that the measures VschH and ^schK 

decrease in the mis-specified model as the amount of censoring increases.

7 .8 .3  N o n -p r o p o r t io n a l h azard s

In an analogous simulation study to those of explained variation measures in section 

5.8.3, we examined the impact of non-proportional hazards on R q (T*): VschH, and R%chK- 

Simulation results under non-proportional hazards are displayed in table 7.14. The entries 

of the table represented in italics are the expected value of the measures when the hazard 

ratio does not change (i.e. H R1 = H R2  =  0.5), i.e. when the proportional hazards 

assumption holds. In this case, R%(T$) and VschH agree and R%chK results in slightly 

higher values. Furthermore, the impact of non-proportional hazards on the measures 

diminishes as the amount of censoring increases.
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Table 7.14: Simulation results for non-proportional hazards. HR1 - hazard ratio in favour 
of treatm ent arm for the first two years in trial. HR2 - hazard ratio after two years in 
trial. Sample size is 500 in all experimental conditions, and survival times are randomly

Measure H R l H R 2 0% Cens. 20% Cens. 50% Cens. 80% Cens.

0.5 0.1 0.051(0.027) 0.056(0.029) 0.068(0.034)
0.5 0.3 0.065(0.025) 0.067(0.027) 0.070(0.034)

&G( n ) 0.5 0.5 0.068 (0.023) 0.069(0.025) 0.070(0.033)
0.5 0.7 0.066(0.021) 0.067(0.024) 0.070(0.033)
0.5 0.9 0.062(0.020) 0.065(0.023) 0.070(0.032)

0.5 0.1 0.091(0.017) 0.089(0.018) 0.072(0.020) 0.051(0.027)
0.5 0.3 0.069(0.015) 0.068(0.016) 0.064(0.020) 0.052(0.028)

VSchH 0.5 0.5 0.055(0.013) 0.056(0.014) 0.056(0.019) 0.052(0.029)
0.5 0.7 0.046(0.012) 0.047(0.013) 0.050(0.018) 0.053(0.030)
0.5 0.9 0.038(0.011) 0.040(0.012) 0.046(0.017) 0.053(0.031)

0.5 0.1 0.118(0.028) 0.116(0.029) 0.103(0.032) 0.089(0.047)
0.5 0.3 0.098(0.025) 0.095(0.025) 0.093(0.031) 0.089(0.046)

RschK 0.5 0.5 0.085(0.024) 0.086(0.024) 0.086(0.030) 0.089(0.046)
0.5 0.7 0.076(0.023) 0.080(0.024) 0.080(0.030) 0.089(0.046)
0.5 0.9 0.069(0.022) 0.070(0.024) 0.076(0.029) 0.088(0.046)
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7.9 D iscu ssion

In this chapter,, we studied the predictive accuracy measures, R q (T*) and VschH» proposed 

by Graf et al (1999) [31] and Schemper and Henderson (2000) [97], and the measure 

proposed by Schemper and Kaider (1997) [98], i ?|chK. We carried out similar simulation 

studies to those of explained variation and explained randomness measures, presented in 

chapters 5 and 6, to compare all the measures consistently.

The results of our simulation studies in section 7.2 imply that R q (T*) and VschH 

are generally lower than the explained variation and explained randomness measures. 

The results of our simulation studies in section 7.2 showed that the expected value of Rq 

depends on the time point tha t is used to evaluate predictive accuracy. If the time point of 

interest is at the beginning of the study where survival probabilities are near 1, we observe 

less variability and eventually low predictive ability. The measure proposed by Schemper 

and Kaider (1997) [98], R 2SchK, is in agreement with the explained variation measures 

if the distribution of the covariate is either symmetric or moderately asymmetric, i.e. 

normal and lognormal distributions.

The results of our simulation studies on the impact of censoring in section 7.3 indicate 

that R q (T*) and R-schK are larSely unaffected by the amount of censoring. The measure 

VschH performs well in random censoring with symmetric or moderately asymmetric 

covariate distributions, otherwise it is affected by the amount of censoring. Table 7.15 

summarises the findings of our simulation studies carried out to investigate the impact of 

censoring on the measures. The codes in the table show the extent of censoring effect on 

the measures, with 1 representing almost no effect, i.e. the average percentage change in 

the mean of sampling distribution is 0% — 9% compared with the expected value of the 

measure in the corresponding non-censored data, and 4 representing a large effect, i.e. the 

average percentage change in the mean of sampling distribution is over 50% (compared 

with the expected value of the measure in the corresponding non-censored data.) The 

tables indicate that R q (T*) performs reasonably well with respect to censoring in all 

experimental conditions.

Consistency and the sampling distribution of measures were investigated in section 

7.4. Our investigation found tha t the measures are consistent in the presence of ran­

dom censoring. The sampling distribution of the Schemper and Henderson (2000) and 

Schemper and Kaider (1997) measures were presented in figure 7-1 for different covari­

ate effects and censoring proportions. Similar to the measures investigated in chapters
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Table 7.15: Summary of censoring effects on predictive accuracy and Schemper and Kaider 
(1997) measures by the covariate distribution and censoring type. The codes show the 
extent of censoring effect in different situations from almost no effect, 1, to a large effect, 
4.____________________________________________________________________________

Censoring P. A. Covariate or Prognostic Index Distribution
type measure Normal Lognormal Pos. skewed Neg. skewed

f l& c n 1 1 1 1
Random censoring VSchH 1 1 1 3

t i s c h K 1 1 1 1
R l (T * ) 1 1 1 2

Type I censoring VSchH 3 2 1 3
R %chK 1 1 1 1

1 : A l m o s t ,  ho e f f e c t . ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  0 % — 9 %

2 :  S l i g h t  e f f e c t ,  i . e .  t h e  a v e r a g e  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  1 0 % — 1 9 %

3 :  M o d e r a t e  e f f e c t ,  i . e .  t h e  a v e r a g e ;  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  2 0 % — 4 9 %

4 :  L a r g e ;  e f f e c t . ,  i.e ;. t h e ;  a v e r a g e  p e r c e n t a g e  c h a n g e  i n  t h e  m e a n  o f  s a m p l i n g  d i s t r i b u t i o n  i s  o v e r  5 0 %

5 and 6, the sampling distributions of both estimators show considerable skewness when 

censoring is more than 50%.

Sample size has a moderate effect on the measures if both number of events and 

covariate effect are small. Table 7.8 indicate that the measures increase by about 22% — 

33% in these circumstances.

Graphs presented in section 7.6 and tables 7.9 and 7.10 indicate that the measures 

satisfy both inonotonicity properties. Furthermore, the investigation which was carried 

out in section 7.7 to examine the impact of extreme and outlier observations shows that 

the measures perform satisfactorily in the presence of extreme values, but they decrease 

in the presence of outlier observations. For example, in the presence of severe outlier 

observations, i.e, m  =  8 in section 7.7, R q {T*), VschH, and $ s chK decrease by about 34%, 

44%, and 23% respectively (the expected value of the measures at 8SD  are compared with 

the corresponding values at OSD, no contamination, in figure 7-4), whereas they increase 

by only 6%, 4%, and 2% in the presence of influential extreme observations (figure 7-3).

The predictive accuracy measures Rq (T*) and VschH, can reach high values, i.e. more 

than 0.80, in theory. The graphs in section 7.6 suggested that we need strong prognostic 

factors to be able to predict the individual’s status as "dead" or "alive" using the survival 

models. The measure proposed by Schemper and Kaider (1997), R%chK, also reaches 

values near 1.

Finally, the impact of three types of model mis-specification was investigated in section
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Table 7.16: Summary of sample size effect and parameter monotonicity of predictive
accuracy and Schemper and Kaider (1997) measures.__________________________

Measure Sample Size Does parameter monotonicity hold?
no effect1 yes2

VschH no effect1 yes2
R% hK______ ,____  no effect1_____________   yes2 ,  ______
1 )  T h e r e  in  a  m c M l e r a t e  e f f e c t  o f  s a m p l e  s i z e  o n  m e a s u r e s  o n l y  w h e n  c o v a r i a t e  e f f e c t  i s  1 .2 5 ,  

s a m p l e  s i z e  i s  2 0 0 ,  a n d  c e n s o r i n g  p r o p o r t i o n  i s  h i g h ,  i . e .  8 0 % .

2 )  T h e  m e a s u r e  i n c r e a s e s  w i t h  i n c r e a s i n g  p a r a m e t e r  e f f e c t .

7.8. Unlike the explained variation and explained randomness measures, R q (T*) results 

in consistent values under different degrees of censoring in models that are either under­

fitted or their covariate is mis-modelled. In under-fitted models, the measures VschH and 

R'schK are consistent under different degrees of censoring. They, however, are inconsistent 

if the covariate is mis-modelled. Similar to the impact of non-proportional hazards on 

the explained variation and explained randomness measures, the susceptibility of the 

measures to non-proportional hazards diminishes as the amount of censoring increases.

In summary, the measure proposed by Graf et al (1999), R q (T*), performs reasonably 

well with regard to the essential properties outlined in chapter 3. It is unaffected by the 

amount of censoring, is consistent, and satisfies the monotonicity properties. Moreover, it 

results in consistent values in the case of model mis-specification. However, this measure 

evaluates the predictive ability of the model at a specific time point, and its value changes 

with the time point of interest. The alternative measure, VgchH, provides an overall mea­

sure of predictive accuracy. This measure performs well in the case of random censoring 

when the covariate is symmetric or moderately asymmetric. Between the two measures, 

R@(T*) is preferred if we can not rely on the model. The measure proposed by Schemper 

and Kaider (1997), R schK» Perf°rms well with regard to the essential properties.

In the last three chapters, we carried out simulation studies to investigate the proposed 

measures of predictive ability in survival models. In the next chapter, we apply them to 

the data sets from real studies.
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Chapter 8

A pplications to  m edical research 

and data analysis

8.1 In troduction

In this chapter, we apply the potentially recommendable measures of predictive ability 

discussed in the last three chapters to real data. We compute the measures for the 

proposed survival models for different diseases. The aims of this chapter are:

I) to illustrate the applications of the predictive ability measures in medical research 

ii) to quantify the predictive ability of available/known prognostic factors

III) to compare the measures in each category systematically in real data sets

IV) to explain the observed discrepancies in the estimates of proposed measures based 

on the results of our investigations in the previous chapters.

This chapter consists of 3 sections. First, a summary of the data sets and the proposed 

regression models are presented. The data sets are chosen from different diseases to 

examine the performance of the proposed measures in various disease types. The data 

sets have a wide range of censoring proportions and sample size conditions.

In the second section, we present the estimates of predictive ability measures with the 

corresponding bootstrap confidence intervals. We apply survival models from literature 

to these data sets. Some of the proposed models have been developed to study the impact 

of a particular treatm ent on the survival of patients, while others have been developed as
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a prognostic model. An im portant characteristic of prognostic models is their consistency 

with basic medical knowledge.

Multivariable fractional polynomial (MFP) approach, introduced by Royston and Alt­

man (1994) [89], is a method which ensures tha t the resulting models are both parsimo­

nious and consistent with basic medical knowledge. It is a strategy in which continuous 

predictors are kept continuous, and nonlinear relationships (if present) are detected and 

modelled appropriately. We apply this approach to the data sets and compare the pre­

dictive ability of the models based on fractional polynomial approach to other proposed 

models.

In medical research, continuous variables are often converted into categorical variables 

by grouping values into two or more categories. In some proposed models, continuous 

prognostic factors, such as age, are introduced into multivariable regression models as cat­

egorical variables. We identify these models as "linear models" in our studies and compare 

their predictive ability to models developed using fractional polynomial approach. We 

only report the estimated predictive ability measures in this chapter; the estimated coef­

ficients and goodness of fit measures of the proposed models are presented in Appendix 

C. We discuss the findings based on the results of the simulation studies in the previous 

chapters. Finally, a discussion of the main points is presented.

8.2 C linical d ata  se ts

In this section, we give a summary of 9 data sets that we use to describe the predictive 

ability measures using real data. The data sets are mainly from clinical trials in breast, 

renal, and prostate cancers, and diseases such as leg ulcer and primary biliary cirrhosis 

(PBC). The data  sets are from studies that were generally carried out by research organ­

isations to investigate the impact of the prognostic factors on the survival of patients in 

the relevant disease types.

8 .2 .1  D a ta  se t  1: v e n o u s  le g  u lcer

The first data set is from a clinical trial which was carried out to evaluate prognostic 

factors in uncomplicated venous leg ulcer healing (Smith et al, 1992 [106]). The data 

consists of several covariates and one outcome variable on 200 individuals. The covariates 

are clinical and biological factors such as age, diastolic blood pressure, height, ankle
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pressure, body weight, presence or absence of deep vein involvement, and treatment 

differences. The outcome variable, survival time, is the number of days from diagnosis to 

complete healing.

Smith et al (1992) [106] fitted a Cox proportional hazards regression model to inves­

tigate the prognostic factors in this study. Royston and Altman (1994) [89] discussed 

two models, M FP I & M FP II in tables 8.1 to 8.8, based on a multivariable fractional 

polynomial (MFP) approach [89]. The MFP algorithm resulted in a model, MFP I, which 

contain five prognostic factors as significant at the 5% level in a multivariable model as 

age, months since onset, initial ulcer area (mm2), diastolic blood pressure (mm Hg), and 

deep vein involvement (1 =  F, 0 =  N). In this model, the covariates age, months since 

onset, and initial ulcer area (m m 2) were subject to an FP1 transformation with powers 

—2, 0, and 0.5. Royston and Altman (1994) [89] suggested an alternative model, MFP 

II, which is biologically more plausible. In this model, only months since onset was sub­

ject to FP1 transformation with power 0. The estimated coefficients and goodness of fit 

measures of both models are presented in Appendix C.

8 .2 .2  D a ta  se t  2: b r e a st ca n cer  I

The second data  set is a sample of 295 women with breast cancer (Van’t Veer et al (2002) 

[112]). Van’t Veer et al (2002) [112] used this data set to develop a 70-gene classifier 

to predict survival in young patients with stage I or stage II breast cancer. The gene- 

expression data  set was derived by researchers from the Netherlands Cancer Institute 

and Rosetta Inpharmatics-M erck using oligonucleotide microarrays (Agilent). Data on 

recurrence-free survival (RFS), defined els the time to a first event, and overall survival 

(OS) were available for all patients. Most of the patients had stage I or II breast cancer; 

165 had received local therapy alone, 20 had received tamoxifen only, 20 had received 

tamoxifen plus chemotherapy, and 90 had received chemotherapy only.

Cheng Fan et al (2006) [25] analysed this data set further and fitted different multi- 

variable Cox proportional hazards models using recurrence-free survival (RFS) and overall 

survival (OS) as two different end points. They first included clinical prognostic factors 

alone in the models, then "70-gene predictor" was added to the model to evaluate the its 

effect on RFS and OS. We identify the models containing only the biological prognostic 

factors as RFS I and OS I, and the models containing both the biological prognostic 

factors and the 70-gene predictor as RFS II and OS II in tables 8.1 to 8,8. The mod­
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els including only biological prognostic factors comprise age (as a continuous variable), 

oestrogen-receptor status (positive vs. negative), tumour grade (1 vs. 2 and 1 vs. 3), 

nodal status (no positive nodes vs. one to three positive nodes and no positive nodes vs. 

more than three positive nodes), tumour diameter (2 cm or less vs. more than 2 cm), and 

treatment received (no adjuvant therapy vs. chemotherapy, hormonal therapy, or both). 

Models RFS II and OS II contain 70-gene predictor as well. We display the estimated co­

efficient and goodness-of-fit measures, which were included in the supplementary material 

in Cheng Fan’s (2006) paper [25], in Appendix C.

8 .2 .3  D a ta  se t  3: b rea st can cer II

The third data set is from German Breast Cancer Study Group which carried out a 

comprehensive cohort study in primary nodes positive breast cancer [102]. Randomised 

and non-randomised patients were eligible, and about two-thirds were entered into the 

randomised part. This study recruited 720 individuals of which 686 had complete infor­

mation, of which 299 experienced the event of interest (RFS). Besides treatment, data 

on other clinical and biological factors such as age, tumour size, number of lymph nodes, 

progesterone and oestrogen respecter status, menopausal status, and tumour grade were 

collected.

The aim of the study was to  investigate the prognostic factors in node positive breast 

cancer and their impact on recurrence-free survival defined as the time from randomisation 

until the earliest occurrence of muscle invasion, distant metastasis, second primary tumour 

or death due to malignant disease. Schumacher et al (1994) [102] applied the Cox PH 

model to study the impact of clinical and biological prognostic factors on recurrence-free 

survival of the patients in this study. They proposed a multivariable regression model 

which was based on the categorisation of continuous predictors such as age and number 

of positive lymph nodes. Their proposed linear model comprises 4 prognostic factors 

tumour grade, number of positive lymph nodes, progesterone respecter, and hormonal 

treatment, all as categorical variables.

Sauerbrei and Royston (1999) [94] further studied this data set and proposed prog­

nostic models based on the M FP approach [94]. We only consider one of their proposed 

models, "model III" from Sauerbrei and Royston (1999) [94]. We applied the measures 

of predictive ability to both the linear model, proposed by Schumacher et al (1994) [102], 

and the MFP model, proposed by Sauerbrei and Royston (1999) [94].
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8.2 .4  D a ta  set 4: p ro sta te  cancer

The fourth data  set is from a well-known trial in patients with advanced prostate can­

cer. The data set with 506 patients has been analysed by Byar and Green (1980) [14] 

and others; the data  may be found in Reference [7]. Missing values in 31 observations 

were replaced with imputations to give complete data for analysis of results from all 506 

patients. We have applied the MFP approach to this data and computed the predictive 

ability measures for the resulting model. The MFP model is comprised of 5 continuous 

prognostic factors: age; standardised weight; acid phosphates; haemoglobin (g—100 ml); 

and size of primary tumour; and 2 binary prognostic factors - performance status and 

history of cardiovascular disease. In this model, only acid phosphates is subject to FP1 

transformation with power 0.

8 .2 .5  D a ta  se t  5: ren a l ca n cer  I

The fifth data set is from MRC RE01 randomised trial comparing interferon-on with 

medroxyprogesterone acetate (MPA) in patients with metastatic renal carcinoma. We 

analysed data from 347 patients that participated in this randomised trial. The data set 

consists of clinical and biological prognostic factors of the patients. Missing values were 

replaced with imputations to give complete data for analysis of results from all patients.

Ritchie et al (1999) [84] studied the effect of two treatments, interferon-c* with medrox­

yprogesterone acetate (MPA), on the overall survival by fitting a multivariable Cox PH 

model on 335 patients and 236 deaths. The model, with deletion of nonsignificant prog­

nostic factors, resulted in a model comprising WHO performance status, haemoglobin, 

white cell count and time from metastasis to randomisation. We apply this model to 

all 347 individuals and compare it with a MFP model in which the variable time from 

metastasis to randomisation is subject to FP1 transformation with power —0.5.

8 .2 .6  D a ta  se t  6: r en a l ca n cer  II

The sixth data set uses data  from patients with progressive metastatic renal cell carcinoma 

who were entered into consecutive clinical trials to receive either (A) IFN-o;2a, IL-2 

(n=102 pts), (B) IFN-Q!2a, IL-2 and 5-FU (n=235 pts) or (C) IFN-a2a, IL-2 and 5- 

FU combined with 13cRA (n=88 pts) (Atzpodien et al, 2003 [8]). Patient treatments 

included radical tum our nephrectomy (n=412), chemotherapy (n=5), immunotherapy
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(n=47), chemoimmunotherapy (n=8), and hormone therapy (n=32).

Royston et al (2006) [91] constructed a prognostic model based on 425 of the patients 

recruited in this study using fractional polynomials considering the overall survival as the 

outcome. Six binary predictors (sex, lung, lymph node, liver, bone, brain/CNS metasta­

sis) and eight continuous predictors (age, time from diagnosis to metastatic disease, num­

ber of m etastatic sites, ESR, C-reactive protein (CRP), haemoglobin, neutrophils, LDH) 

were included in univariate FP analysis. The MFP algorithm selected five prognostic 

factors as significant at the 5% level in a multivariable model: lymph node metastasis, 

liver metastasis, bone metastasis, age, CRP, and neutrophils. Royston et al (2006) [91] 

proposed a model for this data  set based on the MFP approach where C-reactive protein 

was subject to a FP1 transformation with power —2. We used a subset of this data from 

322 individuals and applied the model proposed by Royston et al (2006) to compute the 

measures of predictive ability considering overall survival as outcome. The estimated 

coefficients in the model and goodness of fit statistics are included in Appendix C.

8 .2 .7  D a ta  se t  7: p r im a ry  b iliary  cirrhosis I (P B C  I)

The seventh data set is from a study on primary biliary cirrhosis (PBC) which is a 

degenerative liver disease, often rapidly fatal. In a trial at Mayo Clinic, 312 patients par­

ticipated in the randomised placebo controlled trial of the drug D-penicillamine. Fleming 

and Harrington (1991) [27] presented the data in Appendix D l of [27]. The data set 

contains values on overall survival time (the number of days between randomisation and 

death), assigned treatm ent, age, sex, biochemical measurements, and disease conditions.

Lawless (2003) [60] studied this data set and considered 5 covariates as important in 

predicting survival time. They are: age; oedema, i.e. a variable scaled to take values 

0, 0.5, and 1, respectively, denoting three levels of oedema of increasing severity; serum 

albumin concentration; serum bilirubin concentration; and prothrobin time. Lawless 

(2003) ([60], page 423) fitted a Cox PH model to this data by considering age and oedema 

(both untransformed) and log transformation of the last three covariates, i.e. ln(albumin), 

In (bilirubin), and \n(prothrobin). We applied the predictive ability measures to this 

model.
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8 .2 .8  D a ta  se t  8: p r im a ry  b iliary  cirrhosis II (P B C  II)

The eighth data  set is from another study on primary biliary cirrhosis (PBC). A total 

of 248 patients were randomised to receive either azathioprine or placebo (Christensen 

et al, 1985 [15]). This data set was analysed by Christensen (1985) [15] and later by 

Royston et al (2006) [90]. After removing 41 (17%) of cases with missing values or no 

patient follow-up, data  on 207 patients (105 deaths) in the PBC data set were available 

for analysis.

Royston et al (2006) [90] developed a multivariable prognostic model for overall sur­

vival using the M FP procedure. They selected variables and functions of continuous 

variables by using a nominal p-value of 0.05. The Cox model selected by the MFP proce­

dure comprised cirrhosis, central cholestasis, age (untransformed), and log bilirubin. Age, 

albumin and bilirubin were continuous measurements and the other two were binary. We 

applied the predictive ability measures discussed in the last three chapters to this model.

8 .2 .9  D a ta  se t  9: ly m p h o m a

The last data  set is from a study on diffuse large B cell lymphoma with 240 patients. 

Rosenwald et al (2007) [85] used this data set to develop a 17-gene classifier of over­

all survival for patients with advanced diffuse large B cell lymphoma receiving CHOP 

chemotherapy. A three-level “International Prognostic Index” (IPI) based on both clinical 

and pathological factors is currently used for risk stratification of patients with aggressive 

lymphoma (low risk: IPI 0-1, intermediate: IPI 2-3 and high: IPI 4-5). Dunkler et al 

(2007) [22] evaluated the extent to which the continuous Rosenwald gene score adds to 

the IPI in the prediction of overall survival in 73 patients of the independent validation 

series for which the IPI values were available. They computed VschH for this data set, 

along with other data  sets, to study how effective gene expression profiling is in providing 

accurate predictions of the survival of individual patients. We computed the measures 

for two models: model I, including only IPI, and model II, including both IPI and the 

17-gene classifier, to evaluate the predictive ability of the proposed gene classifier.

8.3 T he estim a tes  o f th e  m easures in real data

In this section, the estimates of predictive ability measures computed for the above data 

sets are presented. Table 8.1 presents the models applied to evaluate the predictive ability
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Table 8.1: Summary of the models applied to the data sets, model Chi-squared and 
degrees of freedom, skewness and kurtosis of the prognostic indices resulting from the 
fitted resgression models.________________________________________________ _

Study Model Model
x2

d.f. Sample
Size

%
Censored

P I .
Skewness

P I .
Kurtosis

Leg ulcer M FP I 119.89 5 200 0.52 -2.12 10.21
M FP II 113.74 5 200 0.52 -5.29 36.73

Breast RFS I 50.51 8 295 0.60 -0.01 2.46
cancer I RFS II 72.62 9 295 0.60 -0.16 1.92

OS I 60.61 8 295 0.73 -0.24 2.19
OS II 77.64 9 295 0.73 -0.29 1.79

Breast linear 122.9 5 686 0.56 -0.31 3.07
cancer II MFP 153.11 6 686 0.56 0.21 3.88
Prostate MFP 77.41 7 506 0.30 0.40 3.05
Renal I linear 122.71 6 347 0.07 0.68 6.02

MFP 132.69 6 347 0.07 0.81 4.96
Renal II MFP 43.9 1 322 0.15 0.36 2.63
PBC I Lawless 199.13 5 312 0.60 0.98 3.60
PBC II Royston 136.81 5 207 0.49 0.31 2.57
Lymphoma Model I 7.55 2 73 0.34 -0.49 1.32

Model II 17.64 3 73 0.34 -0.19 2.11

measures. The table contains the x2 statistic for each model and the respective degrees 

of freedom. It also consists of the number of individuals in each data set and censoring 

proportion. The last two columns are the skewness and kurtosis of the prognostic index 

(P I), i.e. linear predictor, resulting from the fitted models. Graphs 8-2 to 8-8, presented 

at the end of this chapter, are histograms of the prognostic index in each model. Tables

8.2 to 8.7 present the estimated predictive ability measures for each model in the different 

data sets. We discuss the results of each category in the following sections.

8 .3 .1  E st im a te s  o f  e x p la in e d  var ia tio n  m easu res

Table 8.2 presents the estimates of explained variation measures and the corresponding 

95% bootstrap confidence intervals in different studies. From the results of our simulation 

studies, we expect the measures to  agree with each other if the prognostic index of the 

model is normally distributed with the values of R qqF and R 2X uQq slightly higher and 

R?Rcfyst(m lower. We also expect them to differ as the prognostic index of the model 

becomes asymmetric. The results of our simulation studies also showed that Rj^ is the 

only measure tha t is resistant to the extreme and outlier observations in the data.

Table 8.2 shows tha t the measures differ substantially if the distribution of the prog­

nostic index is heavily skewed. For example, in both M F P  I  and M F P  I I  models fitted
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Table 8.2: The estimates of explained variation measures for different studies. The figures 
in brackets are the bootstrap confidence intervals.

Study Model ■ r>2 
21P M F$d p2

n O Q F & X u O Q R 2R oyston

Leg ulcer M FP I 0.77 0.54 0.82 0.83 0.60
(0.64-0.87) (0.44-0.66) (0.71-0.91) (0.71-0.91) (0.49-0.72)

M FP II 0.94 0.52 0.92 0.93 0.58
(0.80-0.98) (0.44-0.65) (0.80-0.98) (0.81-0.98) (0.46-0.71)

Breast RFS I 0.24 0.23 0.34 0.33 0.25
cancer I (0.16-0.39) (0.16-0.39) (0.24-0.53) (0.21-0.51) (0.17-0.43)

RFS II 0.32 0.29 0.48 0.44 0.34
(0.23-0.50) (0.23-0.46) (0.36-0.64) (0.30-0.62) (0.24-0.53)

OS I 0.41 0.35 0.54 0.30 0.41
(0.30-0.67) (0.25-0.54) (0.38-0.80) (0.02-0.77) (0.30-0.62)

OS II 0.51 0.41 0.68 0.36 0.50
(0.40-0.73) (0.31-0.58) (0.55-0.87) (0.07-0.88) (0.40-0.70)

Breast linear 0.24 0.22 0.34 0.35 0.24
cancer II (0.17-0.32) (0.16-0.29) (0.26-0.45) (0.24-0.47) (0.18-0.32)

MFP 0.27 0.28 0.37 0.38 0.29
(0.21-0.35) (0.21-0.35) (0.30-0.46) (0.30-0.48) (0.23-0.38)

Prostate MFP 0.13 0.13 0.18 0.16 0.13
(0.09-0.20) (0.09-0.21) (0.13-0.27) (0.11-0.26) (0.09-0.19)

Renal I linear 0.25 0.24 0.34 0.34 0.22
(0.20-0.35) (0.19-0.31) (0.28-0.47) (0.27-0.46) (0.18-0.29)

MFP 0.27 0.26 0.37 0.36 0.24
(0.21-0.36) (0.20-0.33) (0.29-0.46) (0.30-0.47) (0.19-0.31)

Renal II M FP 0.11 0.11 0.14 0.13 0.10
(0.05-0.18) (0.05-0.19) (0.07-0.23) (0.06-0.22) (0.04-0.16)

PBC I Lawless 0.56 0.65 0.69 0.65 0.70
(0.48-0.65) (0.55-0.74) (0.59-0.79) (0.56-0.76) (0.60-0.80)

PBC II Royston 0.58 0.61 0.65 0.63 0.62
(0.47-0.67) (0.50-0.70) (0.56-0.76) (0.53-0.75) (0.50-0.74)

Lymph. Mod. I 0.10 0.09 0.16 0.13 0.09
(0.02-0.28) (0.02-0.30) (0.03-0.42) (0.02-0.41) (0.02-0.29)

Mod. II 0.23 0.23 0.32 0.27 0.21
(0.11-0.42) (0.11-0.40) (0.14-0.59) (0.08-0.54) (0.10-0.42)
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for leg ulcer data, where skewness=—5.29 and kurtosis=36.73, we observe large variation 

and unexpectedly high values in the estimates of some measures. Further assessment of 

this data revealed that there are some extreme observations in one covariate, i.e. "initial 

ulcer area" which inflate the measures substantially, with the exception of R 2D. Figure 

8-1 consists of two scatter plots of survival time and log hazard ratio versus FP1 trans­

formation of this variable in M F P  I  model. It is evident that there are some censored 

observations at the extremes of the distribution of this covariate.

To uncover the influence of extreme observations on the measures, we carried out 

further analysis by removing these observations from the data, a total of 5. Since these 

observations are censored, the estimated coefficients in the corresponding Cox PH models 

are almost the same as the models fitted to the complete data, as seen in Appendix C. We 

refitted both M F P  I  and M F P  I I  models to 195 observations; graphs in figure 8-3 show 

the prognostic indices of the two models. We computed explained variation measures to 

assess the predictive ability of the two models after removing the extreme observations. 

Table 8.3 presents the results with the 95% confidence intervals. The results confirm the 

conclusions of the simulation studies; the measures are in better agreement with Rqqf' 

a n d  R X u O Q  fiighcr and R 2Royston lower.

Figure 8-1: Survival time (left) and log hazard ratio (right) versus initial ulcer area with 
FP1 transformation of 0.5 using model MFP I for leg ulcer data.
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• event time * censored tim

For practical purposes, we suggest using a measure from the 5 candidate measures of 

explained variation to evaluate the predictive ability in each study. Generally, R x uqq 

can not be recommended since it is not guaranteed to be non-negative. In contrast, the 

simulation studies showed that this measure is more likely to result in negative values as 

censoring increases. We also do not recommend RIRaySt(m due to its poorer performance 

with regard to the essential properties. Below, we present a measure in each study as a

180



Table 8.3: The estimates of explained variation measures in the leg ulcer data after 
removing the censored observations with extreme values.

Measure category Measure M F P  I  model M F P  I I  model

RpM 0.65
(0.53-0.77)

0.75
(0.59-0.88)

&D 0.53
(0.40-0.64)

0.50
(0.39-0.63)

Explained variation R-oqf 0.73
(0.62-0.85)

0.78
(0.65-0.90)

J tX u O Q 0.73 0.78
(0.43-0.74) (0.64-0.90)

R o y s to n 0.56 0.54
(0.44-0.66) (0.42-0.67)

candidate measure of predictive ability.

In both models for the leg ulcer study we recommend Rj^ because there are some 

extreme observations in the data tha t are inflating the other measures. It can be concluded 

that the available prognostic factors explain about 50% of the variation in the outcome.

In breast cancer I study, R%M and R?D agree in both RFS I, which includes only clinical 

and biological factors, and RFS II, which includes 70-gene predictor as well. In this study 

R'qqf an<3 $xuOQ are both higher and FpRaystan lower. For this study we recommend R 2D 

for both RFS I and RFS II since the prognostic index of both models is nearly symmetric 

and the data is not heavily censored. In summary, the clinical and biological factors in 

this model explain about 23% of the variation in the recurrence-free survival of cancer 

patients. This increases to 29% when we add a genetic factor to the model, i.e. 70-gene 

predictor. Van’t Veer et al (2002) [112] promised prediction of cancer outcome from 

this gene-expression classifier which immediately generated the impression of a major 

breakthrough. However, the results of our analysis could not confirm this breakthrough 

since the clinical factors together with this gene-expression classifier explain only 29% of 

the variation in the recurrence-free survival of breast cancer patients.

In a similar study on overall survival of the same patients, we recommend R 2PM for 

both OS I and OS II models. Royston and Sauerbrei (2004) [93] showed that R 2D decreases 

when the covariate or the prognostic index of the model is short tailed. This is due to the 

effect of short-tailed covariates on the D  measure [93]. Therefore, we recommend R PM 

as the candidate measure in this study. It is evident that the 70-gene predictor increases 

the variation explained in the overall survival, but not substantially. Note the difference 

in the estimates of R qqf  and R XuOQ for this modei> be. 0.68 and 0.36 for the OS II. Xu
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and O ’Quigley (2001) [78] claimed that R qqf and R xuOQ should be close in practice. 

The estimates, however, show that they differ substantially in this case. Moreover, the 

wide bootstrap confidence intervals for R Xuo q j (0.07,0.88), reflects the findings of our 

simulation studies in chapter 5.

For breast cancer II study, R%M and R?D agree in both linear and MFP models. 

However, we recommend R?D since it is resistant to outlier and extreme observations. The 

MFP model has better predictive ability than a linear model where continuous covariates, 

e.g. age, have been entered in the model as categorical variables. This shows that 

classifying continuous a prognostic factor into a dichotomy, trichotomy, or more groups 

diminishes its predictive ability. We can see a similar effect in the renal cancer I study; 

the predictive ability of M FP model is higher than the linear model.

For lymphoma study, R PM and R?D agree in both model I and model II. Therefore

the three-level “International Prognostic Index” (IPI) explains 10% of the variation in

the survival of patients with large-B-cell lymphoma. This increases to only 23% after

including the 17-gene classifier to the model. Despite the increase in explained variation, 

this tells us that much remains to be known about the disease. The difference in estimates 

of R qqf and R%(uOQi indicates the inconsistency of R \ uqq> specially in model II where 

the estimates differ noticeably.

As a candidate measure of explained variation, we recommend R?D in prostate, renal 

cancer I, renal cancer II, and PBC II studies. In PBC I study, we recommend R%M since 

the censoring proportion is more than 50% and the prognostic index of the model is close 

to lognormal distribution. The simulation studies showed that R p  increases with the 

amount of censoring in this case.

8 .3 .2  E s t im a te s  o f  e x p la in e d  ran d om n ess m easures

Table 8.4 presents the estimates of explained randomness measures and the corresponding 

95% bootstrap confidence intervals in different studies. The table indicates that Pw A, 

PxuOQ' and Pk generally agree, with the exception of leg ulcer study. In this study the 

estimates of p ^  and Pw ,a  are much higher than those of p2Xuoq and pi- This reflects 

the results of simulations studies presented in table 6.1 which showed that p^y results in 

higher values if the covariate or prognostic index of the model is heavily skewed to the left. 

The presence of extreme observations in the leg ulcer data, as explained above, inflates 

p\yA in a similar way to R%M since they both depend on the variance of prognostic index
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of the model.

To uncover the influence of extreme observations on the explained randomness mea­

sures, we carried out further analysis similar to the one on explained variation measures 

by removing 5 extreme observations in the leg ulcer data set. We refitted both M F P  I  

and M F P  I I  models to 195 observations and evaluated the measures. Table 8.5 presents 

the results with the 95% confidence intervals. The results show that all explained ran­

domness measures decrease. However, the decrease in the estimates of p^  and P\yA are 

more noticeable; they decreased about 10% after removing 5 extreme observations. We 

recommend the estimates of p^  as the indication of the explained randomness of the 

models in all data  sets except the leg ulcer study. In this study, it is difficult to evaluate 

the randomness that is explained by the covariate in the model due to the presence of 

extreme observations.
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Table 8.4: The estimates of explained randomness measures for different studies. The 
figures in brackets are the bootstrap confidence intervals.

Study Model Pw Pw,A PXuOQ Pk
Leg ulcer M FP I 0.90 0.84 0.70 0.71

(0.78-0.95) (0.73-0.92) (0.60-0.81) (0.60-0.81)
M FP II 0.99 0.96 0.69 0.69

(0.93-0.99) (0.85-0.99) (0.58-0.79) (0.59-0.79)
Breast RFS I 0.33 0.34 0.34 0.35
cancer I (0.24-0.51) (0.24-0.51) (0.23-0.52) (0.24-0.54)

RFS II 0.42 0.44 0.46 0.46
(0.33-0.59) (0.35-0.60) (0.35-0.63) (0.36-0.63)

OS I 0.52 0.53 0.51 0.54
(0.38-0.74) (0.41-0.77) (0.38-0.71) (0.43-0.73)

OS II 0.61 0.63 0.62 0.63
(0.51-0.82) (0.51-0.82) (0.52-0.78) (0.52-0.79)

Breast linear 0.34 0.34 0.33 0.34
cancer II (0.26-0.46) (0.26-0.44) (0.25-0.43) (0.26-0.44)

M FP 0.36 0.38 0.37 0.40
(0.29-0.47) (0.30-0.48) (0.30-0.46) (0.30-0.48)

Prostate M FP 0.18 0.20 0.19 0.20
(0.13-0.27) (0.14-0.29) (0.13-0.29) (0.14-0.29)

Renal I linear 0.33 0.36 0.31 0.32
(0.26-0.44) (0.28-0.46) (0.25-0.40) (0.26-0.40)

MFP 0.33 0.37 0.33 0.34
(0.27-0.42) (0.30-0.48) (0.26-0.42) (0.28-0.42)

Renal II M FP 0.16 0.17 0.15 0.15
(0.08-0.25) (0.08-0.27) (0.07-0.24) (0.07-0.24)

PBC I Lawless 0.60 0.68 0.71 0.80
(0.53-0.68) (0.60-0.76) (0.60-0.80) (0.71-0.87)

PBC II Royston 0.65 0.69 0.76 0.73
(0.56-0.74) (0.60-0.78) (0.59-0.79) (0.63-0.82)

Lymph. Mod. I 0.15 0.15 0.14 0.15
(0.04-0.37) (0.03-0.40) (0.03-0.37) (0.03-0.38)

Mod. II 0.32 0.33 0,30 0.31
(0,15-0.53) (0.15-0.54) (0.14-0.52) (0.15-0.54)

Table 8.5: The estimates of explained randomness measures in the leg ulcer data after 
removing the censored observations with extreme values.

Measure category Measure M F P  I  model M F P  I I  model

Pw 0.79
(0.69-0.88)

0.0.91
(0.78-0.97)

P\V,A 0.77
(0.66-0.85)

0.86
(0.72-0.95)

Explained variation n2PXuOQ 0.67
(0.56-0.79)

0.66
(0.54^0.77)

pi 0.69
(0.57-0.79)

0.66
(0.55-0.78)



Table 8.6: The three time points (in days) at which the predictive ability of the models 
are evaluated using the Graf et al’s measure (1999) for each study.

Study Three time points
Ti t 2 n

Leg ulcer 33 54 86
Breast cancer I (RFS) 618 1078 1986
Breast cancer I (OS) 931 1386 2109
Breast cancer II 426 646 1105
Prostate 289 715 1142
Renal I 85 223 455
Renal II 291 554 1061
PBC I 597 1083 2071
PBC II 456 1024 1744
Lymphoma 201 420 1114

8.3.3 E stim ates o f predictive accuracy measures and R%chK

In this section, we present the estimates of predictive accuracy measures and R%chK 

proposed by Schemper and Kaider (1997). We evaluate the measure proposed by Graf 

et al (1999), R q (T) at three time points in each study. The time points are the 0.25th, 

0.50th, and 0.75th quantile of the time to the last event in each study. Table 8.6 displays 

the time points, in days, in each study. For practical purposes, it is worth bearing in 

mind that the choice of time point will be application-specific. In some studies, there 

might be clinically relevant fixed time point, such as five-year survival being used as the 

effectiveness of a specific treatm ent, e.g. chemotherapy.

Table 8.7 shows the estimated values and the 95% bootstrap confidence intervals of 

the measures. The estimates of predictive accuracy measures R q (T*) and VschH are 

lower than the corresponding explained variation and explained randomness measures. 

The estimates are the highest in the leg ulcer and PBC I and II studies with about 40%. 

The estimates of predictive accuracy measures in most of the other studies are below 

20%. This indicates the limited ability of the available clinical and biological prognostic 

factors in predicting the individual status of patients in terms of experiencing the event 

of interest by means of the Cox PH regression model.

As it was observed in the simulation studies, the estimates of R^(T*) increases with 

increasing T* in most of the studies. The estimates of R q (T*) and VschH are fairly close 

for the fitted models in each study which indicates that the gain in terms of predictive 

accuracy is very limited even after using a more representative model, i.e. models based 

on MFP approach. The estimates of RgchK are much higher than the predictive accuracy

185



measures. The results indicate that this measure is in agreement with the explained 

variation measures studied in chapter 5, as shown in the simulation studies.

The estimates of Rq(T*) and VschH f°r the models for the breast cancer I and lym­

phoma studies confirm our previous findings that the gene-expression classifiers, i.e. 70- 

gene predictor in breast cancer and 17-gene predictor in lymphoma, have limited predic­

tive ability. For example, the estimates of Rq(Ts) and VgchH for the OS I model in breast 

cancer study, i.e. model with only clinical prognostic factors, are 0.20. They increase to

0.23 and 0.24 when we add the gene-expression classifier to the model. The predictive 

accuracy of both models increased, but not substantially. This contradicts the conclu­

sion made by Van’t Veer et al (2002) [112] that this gene-expression classifier is strongly 

predictive of the survival of breast cancer patients characterised in this study.
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Table 8.7: The estimates of predictive accuracy measures and Schemper and Kaider 
measure (1997) for different studies. The figures in brackets are the bootstrap confidence 
intervals.

Study Model Graf measure at three time points
i& ( i i )  m T i )  m n ) VschH RSohEL_

Leg ulcer M FP I 0.23 0.33 0.46 0.39 0.62
(0.08-0.37) (0.18-0.42) (0.33-0.57) (0.30-0.47) (0.50-0.73)

M FP II 0.22 0.32 0.46 0.38 0.62
(0.08-0.33) (0.19-0.43) (0.34-0.57) (0.30-0.46) (0.50-0.73)

Breast RFS I 0.12 0.12 0.17 0.14 0.29
cancer I (0.04-0.17) (0.04-0.19) (0.09-0.24) (0.10-0.3) (0.18-0.44)

RFS II 0.12 0.14 0.23 0.19 0.39
(0.04-0.18) (0.06-0.21) (0.14-0.30) (0.15-0.28) (0.30-0.52)

OS I 0.13 0.17 0.20 0.20 0.46
(0.03-0.21) (0.07-0.26) (0.10-0.28) (0.14-0.31) (0.32-0.63)

OS II 0.11 0.17 0.23 0.24 0.54
(0.02-0.18) (0.07-0.25) (0.12-0.31) (0.18-0.37) (0.45-0.70)

Breast linear 0.09 0.13 0.17 0.16 0.28
cancer II (0.05-0.13) (0.08-0.18) (0.11-0.22) (0.12-0.20) (0.22-0.35)

MFP 0.12 0.16 0.20 0.18 0.30
(0.07-0.18) (0.10-0.21) (0.14-0.25) (0.14-0.23) (0.24-0.38)

Prostate MFP 0.06 0.11 0.10 0.10 0.15
(0.02-0.10) (0.06-0.15) (0.05-0.14) (0.07-0.14) (0.10-0.24)

Renal I linear 0.21 0.27 0.18 0.19 0.35
(0.13-0.28) (0.20-0.33) (0.10-0.24) (0.15-0.24) (0.29-0.45)

M FP 0.24 0.27 0.19 0.20 0.37
(0.16-0.31) (0.21-0.34) (0.11-0.26) (0.16-0.24) (0.30-0.46)

Renal II MFP 0.11 0.13 0.05 0.09 0.15
(0.06-0.16) (0.08-0.19) (0.01-0.12) (0.05-0.13) (0.09-0.24)

PBC I Lawless 0.38 0.47 0.47 0.40 0.54
(0.19-0.52) (0.38-0.58) (0.34-0.57) (0.34-0.48) (0.47-0.64)

PBC II Royston 0.34 0.35 0.43 0.41 0.61
(0.16-0.49) (0.20-0.47) (0.38-0.55) (0.33-0.49) (0.51-0.70)

Lymph. Mod. I 0.05 0.11 0.09 0.08 0.15
(0.01-0.10) (0.01-0.18) (0.06-0.20) (0.01-0.19) (0.02-0.36)

Mod. II 0.16 0.22 0.24 0.17 0.31
(0.02-0.24) (0.05-0.34) (0.07-0.38) (0.09-0.34) (0.16-0.53)
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8.4 D iscu ssion

In this chapter, we applied the predictive ability measures studied in chapters 5 to 7 to real 

data sets from different diseases. Our main objective was to illustrate the application of 

these measures in medical research. It is important for medical investigators to realise that 

even strong and highly significant regression coefficients associated with prognostic factors 

of outcome may not automatically translate into sufficiently accurate prediction or close 

determination of individual outcome values of patients. Gains from the use of prognostic 

factors can only be demonstrated by the use of a suitable measure of predictive ability, 

but not by means of large hazard ratios, nor by their corresponding p-values. This issue 

often is not taken into account and even partly explains why so many identified prognostic 

factors "fail" particularly when used to predict outcomes for individual patients.

Furthermore, we have shown how to study the clinical importance of new genetic 

factors in addition to clinical characteristics of the patients. The results suggest that de­

termining the patients outcome is very limited even after considering the gene classifier in 

breast cancer I study. As mentioned before, the early papers promising prediction of can­

cer outcome from this gene classifier generated the impression of a major breakthrough. 

Our results could not confirm such a breakthrough.

Our second objective was to compare the measures with real data sets and provide 

justification for the observed discrepancies in the estimates of measures. We compared 

the measures and recommended a measure for practical applications in each study. The 

measures within explained variation and explained randomness groups are broadly in 

agreement if the distribution of the prognostic index of the model is approximately normal.

Table 8.8 presents the skewness and kurtosis of prognostic indices of the fitted models 

together with the range of estimated values in explained variation and explained random­

ness categories. It is evident tha t the measures in each class result in similar values if 

the skewness and kurtosis of the prognostic index of the model is close to that of normal 

distribution (i.e. skewness=0 and kurtosis=3). The estimated values in each category 

differ substantially when the skewness and kurtosis of the prognostic index of the model is 

far from normality. Finally, the limitations of the proposed measures make it impossible 

to recommend one measure for all the studies.

By applying the measures to linear, where the continuous covariates transformed to 

categorical variable, and M PF models, we showed the application of the measures in star-
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Table 8.8: The range of explained variation and explained randomness estimates for each 
s t u d y . _________________________________________________________

Study Model P.I. P.I. Range in Range in
Skewness Kurtosis E.V . measures E.R. measures

Leg ulcer M FP I -2.12 10.21 0.29 0.20
M FP II -5.29 36.73 0.42 0.30

Breast RFS I -0.01 2.46 0.10 0.02
cancer I RFS II -0.16 1.92 0.19 0.04

OS I -0.24 2.19 0.24 0.02
OS II -0.29 1.79 0.32 0.02

Breast linear -0.31 3.07 0.13 0.01
cancer II M FP 0.21 3.88 0.11 0.04
Prostate MFP 0.40 3.05 0.05 0.02
Renal I linear 0.68 6.02 0.12 0.05

MFP 0.81 4.96 0.13 0.04
Renal II MFP 0.36 2.63 0.04 0.02
PBC I Lawless 0.98 3.60 0.14 0.20
PBC II Royston 0.31 2.57 0.07 0.11
Lymphoma Model I -0.49 1.32 0.07 0.01

Model II -0.19 2.11 0.11 0.02

tistical practice. The results showed that the models developed using MFP approach have 

better predictive ability. Therefore, as Royston et al (2006) [90] indicated, dichotomising 

continuous covariates diminishes the overall predictive ability of the models.
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Figure 8-2: Distributions of the prognostic index in the MFP I (left) and MFP II (right)
models for leg ulcer study.
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Figure 8-3: Distributions of the prognostic index in the MFP I (left) and MFP II (right) 
models for leg ulcer study after removing the censored observations with extreme covariate 
values.
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Figure 8-4: Distributions of the prognostic index in the RFS I (top left), RFS II (top
right), OS I (bottom left), and RFS II (bottom right) models for breast cancer I study.
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Figure 8-5: Distributions of the prognostic index in the linear (left) and MFP (right) 
models for breast cancer II study.
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Figure 8-6: Distributions of the prognostic index in the linear (left) and MFP (right) 
models for renal cancer I study.
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Figure 8-7: Distributions of the prognostic index in the models for prostate cancer (left) 
and renal cancer II (right) studies.
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Figure 8-8: Distributions of the prognostic index in Fleming (left) and Royston (right) 
models for the PBC I and II studies.
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Figure 8-9: Distributions of the prognostic index in the model I (left) and model II (right) 
for the lymphoma study.

PI In the Model I for Lym phoma study

<N

o
L in e a r  p red ic tion

PI in the Model II for Lymphoma study

192



Chapter 9

Sum m ary and conclusions

9.1 Sum m ary

Several measures have been proposed to evaluate the predictive ability of survival models 

in the last two decades and their properties have not been adequately evaluated. The 

presence of censoring in survival data and its effect on the proposed measures adds another 

dimension to the complexity of the measures. There has not been a consensus of opinion 

on what the "best" measure is. This thesis was a study of these measures with the aim 

of recommending one or more measures for practical applications. The thesis consisted 

of four major parts which concentrated on the following issues:

1) the need for predictive ability measures and the measures for survival models

2) critical review of the proposed measures and the need for further research

3) presenting the results of simulation studies on the proposed measures

4) applications of the measures in prognostic modelling.

In the first part, chapters 1 and 2, we discussed the need for predictive ability measures 

and described its application in medical research. We gave a review of an equivalent 

measure of predictive ability in linear regression, R 2, and presented some mis-applications 

of R 2 in practical data  analysis. We explained why R 2 is not a goodness of fit measure and 

does not provide sufficient information for model selection. Then, we gave an overview of 

the proposed measures of predictive ability for survival models, mainly for the Cox PH 

model, by classifying them into three main categories:
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I) explained variation measures

II) explained randomness measures 

III) predictive accuracy measures.

The classification of proposed measures into three major groups has been a main 

theme of this thesis. The theoretical underpinning and conceptual differences of the 

proposed measures has led us to this classification. We have also identified two other 

measures that could not be classified into one of the three main classes. These comprised 

an "other” category.

In the second part, chapters 3 and 4, we provided the framework for examining the 

proposed measures. To study the measures systematically, we defined two sets of proper­

ties, i.e. essential and desirable, that a measure of predictive ability should possess in the 

context of survival analysis. Chapter 3 described the essential and desirable properties 

of a suitable measure of predictive ability for survival models. Some of the criteria are 

based on or closely related to those proposed by Schemper and Stare (1996) [99] and 

Royston and Sauerbrei (2004) [93] for a "good" measure of explained variation. The 

essential properties of a suitable measure are independence of censoring, independence 

of sample size, and parameter and number of variables monotonicity. In our opinion, 

these are the properties that a measure of predictive ability should possess in the context 

of survival analysis. The desirable properties include robustness, generalisability, the 

availability of straightforward confidence intervals, and partial and adjusted measures. 

We then considered the measures which have been proposed against the essential crite­

ria. The shortcomings of some measures with respect to essential properties led us to a 

short-list, called potentially recommendable measures, requiring further investigation of 

properties. From a to tal of 10 potentially recommendable measures, 5 were classified in 

the explained variation category, 3 in the explained randomness category, and 2 in the 

predictive accuracy category. We also included one measure from the "other" category 

in our investigations because it was potentially recommendable.

In chapter 4, we set out the need for further investigation of the potentially rec­

ommendable measures and proposed comprehensive simulation studies to explore the 

measures further. The rest of chapter 4 presented the simulation design and different 

parameters involved in the simulation studies. Mostly, the simulation studies were uni­

variate in character. In the simulation studies, we considered 4 covariate distributions
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with different skewness to model potentially different distributions of the prognostic in­

dex of the multiple regression model. We put more emphasis on the normally distributed 

covariate because by virtue of the central limit theorem the prognostic index of a mul­

tiple regression model, which is usually a function of several random variables, tends to 

Normality as the dimension of the parameter vector /? increases. In the next section, we 

will discuss the findings of the simulation studies.

9.2 F indings o f  th e  sim ulation studies

In the third part of this thesis, chapters 5 to 7, we presented the results of simulation 

studies on three classes of predictive ability measures, i.e. explained variation measures, 

explained randomness measures, predictive accuracy measures, and the measure proposed 

by Schemper and Kaider (1997) [98], R?schK' The performance of the measures with 

respect to the criteria outlined in chapter 3 is summarised below.

9 .2 .1  E x p la in ed  v a r ia tio n  m easu res

In chapter 5, we carried out simulation studies on 5 potentially recommendable measures 

in the explained variation category. The measures proposed by Korn and Simon (1990) 

[53] and Akazawa (1997) [2] were excluded from our studies because previous simulation 

studies provided us with sufficient evidence that these measures are affected by the amount 

of censoring.

The results of the simulation studies, presented in chapter 5, show that the explained 

variation measures are influenced by the distribution of covariate or prognostic index in 

the case of multiple regression, with the exception of R%M. The results also indicate 

that R xuOQ (Xu an^ O ’Quigley (2001) [78]) and I ^ xn/Stan (Royston (2006) [88]) perform 

poorly with respect to censoring. The measure proposed by Xu and O’Quigley (2001), 

R%uoq > can not guaranteed to be non-negative, and is heavily influenced by

the degree of censoring. Therefore, we reject these two measure. The measure proposed 

by O’Quigley and Flandre (1994), R qqfi *s slightly affected by the amount of censoring 

but performs reasonably well in general with respect to the other essential properties. 

Both R qqf  and R \ uqq possess parameter and variable monotonicity properties. But, 

R xuOQ Perf°rms poorly in censored conditions since the chance that it decreases after 

adding a new independent covariate to the model is more than for the other measures.
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Moreover, R qqF and its modification, FPXuOQ-> quantify the variation in the covariate 

which is explained by the survival time. This makes both measures, Rqqf an(  ̂ XuOQ> 

counter-intuitive.

The results of the simulation studies indicate that two measures R2PM (Helland (1987) 

[41] and Kent & O ’Quigley (1988) [49]) and R?D (Royston & Sauerbrei (2004) [93]) 

satisfy the essential criteria. The results of our simulation studies, however, revealed 

some limitations of R?PM and R?D with respect to the desirable properties. The results 

indicate that R pM is influenced by the presence of extreme or outlier observations since 

it depends on the variance of the prognostic index of the model. Rp is not influenced by 

extreme and outlier observations, but is affected by the covariate distribution. Therefore, 

if the distribution of one (or some) prognostic factor(s) in a study is either contaminated 

with outliers or skewed, the value of R?PM and R|> may be considerably different from 

what would have been achieved had the outlier contamination or skewness not been 

present. Furthermore, our simulation results showed that all of the explained variation 

measures increase with the amount of censoring in under-fitted models.

9 .2 .2  E x p la in ed  ra n d o m n ess  m easu res

In chapter 6, we presented the results of simulation studies on 3 potentially recommend­

able measures in explained randomness category. Explained randomness measures com­

prise an alternative class of measures. These measures are essentially founded on the 

concept of information, and the way information is quantified in communication theory 

(Shannon (1948) [104]). Kullback and Leibler (1951) [55] applied this concept to statistics 

and established the relationship between information gain [55] and R 2 in linear regression.

The shortcomings of explained randomness measures proposed by Nagelkerke (1991) 

[71], Magee (1990) [68], Maddala (1983) [67], and Verweij and Van Houwelingen (1993) 

[113] with respect to essential properties has led us to the 3 potentially recommendable 

measures in the explained randomness category, proposed by Kent and O’Quigley (1988) 

[49], Xu and O’Quigley (1999) [116], and O’Quigley et al (2005) [80].

The results of the simulation studies, presented in chapter 6, show that the explained 

randomness measures, i.e. p ^ ,  PXuOQ’ anc  ̂ Pk-> are influenced by the distribution of 

covariate or prognostic index in the case of multiple regression. The results indicate that 

among the randomness measures, p\ (O’Quigley et al (2005) [80]) performs the worst with 

regard to censoring and because of this is not recommended as a candidate measure of
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explained randomness. The measure proposed by Xu and O’Quigley (1999) [116], p\ uqQ'> 

performs well in random censoring conditions.

The measure proposed by Kent and O’Quigley (1988) [49], and its approximation 

Pw,A are almost unaffected by the amount of censoring and generally satisfy the essen­

tial properties. The results also show that Pw a  is not a good approximation to p ^  if 

the covariate distribution is asymmetric. Two measures of explained randomness, 

and PxuOQi performed well with respect to the essential properties; but, p\ uqq is not 

straightforward to interpret since it evaluates the randomness in the covariate, which is 

explained by survival time.

The results of further simulation studies indicate limitations in all of the explained 

randomness measures similar to those of They are all affected by extreme and

outlier observations. Also, the measures increase with the amount of censoring in under­

fitted models.

9 .2 .3  P r e d ic t iv e  a ccu ra cy  m easu res &; R?SchK

In chapter 7, we presented the results of simulation studies on predictive accuracy mea­

sures and the measure proposed by Schemper and Kaider (1997) [98], R?schk ' We excluded 

Schemper’s Vi and measures (1990) (1994) [95] [96] from our studies because previous 

studies showed that these two measures are influenced to a major extent by the amount 

of censoring.

The results in chapter 7 indicate that R q (Graf et al (1999) [31]), VschH (Schemper 

and Henderson (2000) [97]), and Ft^chK (Schemper and Kaider (1997) [98]) are affected 

by the covariate distribution. The results show that R q and R^chK Perf°rm well in both 

random and type I censoring. Also, VschH is not affected by random censoring if the 

covariate is normally distributed or skewed to the left, whereas it is affected by type I 

censoring. All three measures possess parameter monotonicity properties. Among the 

three measures, however, R q performs the worst with regard to the number of variables 

monotonicity since the chance tha t it decreases after adding new independent covariate 

to the model is more than for the other measures. All three are sensitive to outliers and 

extreme observations in the data. Moreover, VschH and R%chK increase with the amount 

of censoring if the covariate in mis-modelled, whereas the expected value of Rq does not 

change with increasing censoring.
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9 .2 .4  C om p arison  o f  th ree groups o f  m easures

In summary, the results of our simulation studies have revealed that the expected values 

of explained randomness measures are higher than the corresponding values of explained 

variation and predictive accuracy measures. They have also shown that predictive ac­

curacy measures result in lower values than the measures in the other categories. The 

expected value of I$schK agrees with the corresponding value of explained variation mea­

sures. All the measures increase with increasing covariate effect and appear to have an 

upper bound of less than 1. Predictive accuracy measures, however, reach high values,

i.e. more than 0.80, only if the covariate effect is unrealistically high. The sampling dis­

tribution of all measures showrs considerable skewness when censoring is more than 50%. 

We have also learned th a t for all the measures, when there is a weak association between 

the covariate and the outcome and the amount of censoring is high, the sample estimator 

has a positive bias.

Finally, we update table 3.1 of chapter 3 after our investigation and present it in table 

9.1. It is evident from this table tha t our investigation has led us to reach new conclusions 

about the properties of some measures. For example, based on previous investigations, 

in table 3.1 we concluded tha t Xu & O’Quigley (1999) measure [116], PxuOQ’ was *n" 

dependent of censoring. However, our investigations showed that this measure is affected 

by type I or adm inistrative censoring. Regarding the desirable properties of the poten­

tially recommendable measures presented in table 3.2, we only carried out investigation 

on the robustness property of these measures. Thus we have not updated this table in 

this section.
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Table 9.1: Summary of the essential properties of potentially recommendable measures
of predictive ability in survival analysis after our investigation______________________

Measure Measure Proposed by I II III
Category a b

r>2
11 P M Helland; Kent & O’Quigley (1988) yes yes5 yes yes

R qqf O ’Quigley & Flandre (1994) no yes5 yes yes
Explained
Variation R X u O Q Xu & O’Quigley (2001) yes2 yes5 yes yes

R l Royston &; Sauerbrei (2004) no3 yes5 yes yes

D 2
R o y s to n Royston (2006) no yes5 yes yes

Pw Kent & O’Quigley (1988) yes yes5 yes yes
Explained
Randomness n 2P X u O Q Xu & O’Quigley (1999) no4 yes5 yes yes

Pk O ’Quigley et al (2005) no yes5 yes yes

Predictive R q Graf et al (1999) yes yes5 yes yes
Accuracy

VschH Schemper & Henderson (2000) no1 yes5 yes yes

Other ry2
SchK Schemper & Kaider (1997) yes yes5 yes yes

K ey o f th e  ta b le
I) Independence of censoring; II) Independence of sample size
Ill-a) Parameter m onotonicity III—b) number of variables monotonicity

yes: the measure does possess the desired property
no: the measure does not possess the desired property

1) This measure is largely independent of random censoring if the covariate is normally distributed 

or skewed to the left

2) The expected value of this measure does not change with censoring but results in negative values

3 ) This measure is independent of censoring if the covariate is normally distributed

4) The expected value of this measure does not change with censoring in random censoring conditions 

with normal covariates

5) Sample size has a m oderate effect, i.e. positive bias, when there is a weak association and censoring 

is high
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9.3 A p p lication s o f th e m easures in medical research

In the last part of this thesis, chapter 8, we applied the measures to data sets from different 

disease types to quantify the predictive ability of available/known prognostic factors. We 

applied the measures to different models and discussed the observed discrepancies in 

the estimated values of the measures based on the results of simulation studies. Two 

important findings resulted. First, the measures within each category are broadly in 

agreement if the distribution of the prognostic index of the model is approximately normal. 

Second, the estimated values of R qqF and its modification R x uOQ t îe study °f overall 

survival for breast cancer study I differ substantially in heavily censored data. The 

results of simulation studies on *n chapter 5 indicated that this measure behaves

inconsistently in heavily censored data; the probability that it results in negative values 

increases with increasing censoring.

In summary, the results of our analysis on real data sets indicate that the measures 

within each category differ substantially when the censoring is high or the distribution of 

the prognostic index of the model is far from normality.

9.4 R ecom m end ation s for practice

One of the aims in this study was to recommend a small number of measures for general 

use. We have classified the measures into three main categories. This classification is a 

broad but conceptual one. In this section, we first summarise the conceptual differences 

of the three classes of measures. We then suggest two measures in the explained variation 

category for general use.

In practice, an im portant question might be raised: which class of measures should 

one use to quantify the predictive ability in survival models? The choice of the measure 

depends on the clinical aim of the study. Two quite different goals can be sought in clinical 

research. These are the goal of understanding and the goal of prediction. Theoretically, 

explained variation measures are used if the goal is understanding and predictive accuracy 

measures are used if the goal is prediction. However, the performance of some measures 

might make them less useful in practical applications.

Explained variation measures generally quantify how much of the variation in the out­

come variable is explained by the predictors in the model. Predictive accuracy measures
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evaluate the predictions made in terms of model-based survival probabilities, with and 

without covariates, and compare them with the survival status of individuals at time t*. 

This leads to a measure which shows the relative gain in terms of the accuracy of estimated 

survival probability in predicting the individuals’ status as "dead" or "alive" when using 

prognostic factors information compared with when not using them. Explained variation 

measures can be used to quantify the clinical significance of the prognostic factors in the 

model, whereas predictive accuracy measures can help researchers where they need to 

know the ability of the prognostic factors in predicting an individuals’ status, for exam­

ple, 2 years after the start of study. Explained variation measures are intuitive and easy 

to explain to researchers in medical research, whereas it is more difficult to interpret the 

estimates of R q or VschH-

Explained randomness comprises an alternative class of measures. These measures are 

founded on the way information is quantified in communication theory (Shannon (1948) 

[104]). Kullback and Leibler (1951) [55] applied this concept to statistics and established 

the relationship between information gain [55] and R 2 in linear regression. However, 

the interpretation of these measures is a challenge in models other than linear regression 

since they generalise the relationship between the information gain and R 2, presented by 

Kullback and Leibler (1951) [55]. Nevertheless, they can be interpreted as the information 

in the outcome, as defined in information theory, which can be potentially recovered by 

the prognostic factors in the model.

In the next sections we present our recommended measures and provide justification 

for the recommendations.

9 .4 .1  E x p la in ed  v a r ia tio n  m easu res - recom m en d ed

We recommend explained variation measures in general and in particular R?PM and Ri2D 

for general use. First, they are interpretable and easy to explain to clinicians compared 

with measures in the other two groups. For example, an estimate of 0.20 for R 2PM means 

that 20% of the variation in the outcome is explained by the prognostic factors in the 

model. It is more difficult to interpret the same estimate of explained randomness or 

predictive accuracy measures.

Second, they offered good performance in our studies and mostly satisfied the essential 

criteria defined in chapter 3. The amount of censoring and censoring mechanism do not 

affect R 2pm . This also applies to R 2D if the distribution of the prognostic index of the
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model is not skewed. Other measures are either influenced by the censoring mechanism 

or affected by the follow-up period, with the exception of and R?schK’

Third, RjyM and R 2D have traceable statistical properties and can be consistently 

estimated, whereas the statistical properties of explained randomness measures and pre­

dictive accuracy measures are difficult to establish, especially in the context of multiple 

regression models.

Fourth, the estimates of R PM and R2D appear to give a good reflection of strength of 

association as measured by the covariate effect, /3, and tend to 1 for high, but plausible, 

values of /?.

Fifth, R%m  and R?D are based on the same principle thus can be used for sensitivity 

analysis. We recommend computing both R?PM and R ĵ  for any study. If there is a large 

discrepancy between them, say more than 10%, we suggest investigating the data under 

study for the potential reasons such as the presence of outlier observations or highly 

skewed prognostic index. Our simulation studies indicate that R?D can not be larger than 

R 2Pm  except in heavily censored data where the prognostic index of the model is highly 

skewed, or in cases where the data contains some outlier observations which affect R ^ m -

Sixth, both R%m and R ^  can be generalised for use in the flexible parametric models 

proposed by Royston and Parmar (2002) [92].

Finally, R 2f) has the advantage that it can be used in a model validation context which 

is an important part of prognostic modelling.

9 .4 .2  E x p la in ed  ran d om n ess m easures - n ot recom m en d ed

We do not recommend explained randomness measures for the following reasons. First, as 

explained in the last section, the proposed explained randomness measures use the rela­

tionship between the correlation coefficient of two normally distributed random variables 

and Kullback-Leibler information gain [55] to define the proposed explained randomness 

measures for survival models. Despite all the promising properties of these measures, the 

explained randomness measures lack clear interpretation.

Second, the results of our investigation indicate that the measure proposed by Kent 

and O ’Quigley (1988), p ^ , is the only measure which has performed satisfactorily with 

respect to the essential criteria. In this measure, the baseline hazard in the Cox PH model 

is replaced with a specific function of time to form the Kullback-Leibler information gain
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[55]. The procedure, however, is not straightforward and inference for the resulting 

estimate is even less so (O’Quigley (2008) [74]).

Third, is complex to calculate. Although a very simple approximation, p ^ ,  was 

suggested, our simulations studies showed that p%/ A is not a good approximation if the 

prognostic index of the model is non-normal.

Fourth, the measures in this category lack generalisability. The measures P%uqq and 

p | accommodate time-dependent covariates in the context of the Cox PH model. However, 

all three measures p(^, Pxuoq> and pf are based on specific properties of the Cox PH 

model which makes them difficult, if not impossible, to be generalised to other types of 

survival models, e.g. flexible parametric models proposed by Royston and Parmar (2002) 

[92].

9 .4 .3  P r e d ic tiv e  a ccu racy  m easures - not recom m en d ed

The main drawback in both predictive accuracy measures, R q and VschH > 'ls their depen­

dence on the follow-up period. This limits their applications, specially when comparing 

studies with different follow-up periods.

Furthermore, our simulation studies as well as analysis of real data in chapter 8 

indicate that predictive accuracy measures are generally lower than explained variation 

and explained randomness measures. The lower values in predictive accuracy measures 

are expected since they capture the uncertainty in a binary outcome, i.e. event status 

as being "dead" or "alive", accounted for by a model rather capturing the uncertainty 

about the survival time itself. In other words, at each event time a binary outcome is 

evaluated which leads to lower values of predictive ability, due to the loss of information. 

This approach is similar to the R 2 analogues for logistic regression [20] that compare 

discrete observed values (typically zero and one for a dichotomous dependent variable) 

with predicted probabilities that result from applying logistic regression.

The only measure in the "other" category proposed by Schemper and Kaider (1997), 

R?SchK, performed well with regard to the essential criteria. It is, however, a non- 

parametric measure of association, numerically complex, and not affording clear inter­

pretation.
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9.5 Conclusions and outlook

This thesis has studied the measures of predictive ability proposed for survival models, 

with a particular emphasis on measures proposed for the Cox PH model. It has explained 

their use in medical research, and systematically compared their performance with respect 

to a set of criteria.

As described by the authors of the measures, most of them possess promising proper­

ties. They, however, have shortcomings as addressed in this thesis. Therefore, there is not 

a single measure of predictive ability that can be universally recommended. Nonetheless, 

findings from our studies present a good though not unassailable case for preferring the 

explained variation category in general and two of the measures specifically, i.e. R%M 

and i?!,, over the other predictive ability measures applicable to survival models.

Finally, we have summarised the conclusions of our studies in some flow diagrams 

which can be used as a guide to choose the right measure. The flow diagram in fig­

ure 9-1 guides users to choose the right explained variation measure(s). No measure is 

recommended when the prognostic index of the model is asymmetric and outliers are 

present. This condition is highlighted with a question mark in the diagram. This can be 

an area for further research. We have also prepared similar diagrams for the potentially 

recommendable measures in the explained randomness and predictive accuracy category 

(Figures 9-2 and 9-3). They can be used as a guide in choosing the right measure if one 

wants to use them.

204



distribution

present

Approximately
symmetric

Not present

Asymmetric

Outliers and 
Extremes

present

Outliers and 
Extremes

Explained
Variation
measures

Not present

Figure 9-1: Flow diagram recommending an explained variation measure. Question mark: 
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Figure 9-2: Flow diagram recommending an explained randomness measure.
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Figure 9-3: Flow diagram showing when the predictive accuracy measure proposed by
Schemper and Henderson (2000) is recommended.

9.5.1 Future research

For further research we would like to expand on several studies:

1) Future simulations in this area could consider a wide variety of models to investigate 

performance of the proposed measures when many more covariates are introduced. 

Future work could explore models with varying numbers of regressors which re­

flect more realistic conditions to see if the measures fare better or worse in more 

cumbersome models.

2) In the explained randomness measure p%v , proposed by Kent and O’Quigley (1988), 

the baseline hazard in the Cox PH model is replaced with a monotonic function 

of time to form the Kullback-Leibler information gain. Kent and O’Quigley (1988) 

argued that any monotonic transformation of time can be used. We would like to 

see how this measure behaves with another monotonic function of time and compare 

it with Pw-

3) The results of the simulation studies showed that in the presence of censoring omit­

ting influential covariate(s) imposes bias on the explained variation and explained 

randomness measures as well the estimated betas in the Cox PH model. We would 

like to investigate how to handle this difficult issue.
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4) From a practical point of view, we would like to investigate the application of 

measures in model validation. While some progress has been made in this area by 

Royston (2006) [88] using some of the measures, expanding this to more complicated 

model validation using other measures requires further work.

5) We proposed a new measure of explained randomness, p2eu;, in Appendix B.8. 

The results of our investigation showed that this measure results in higher values 

compared with the other explained randomness measures when the covariate effect 

is high. Further investigation is required to investigate why this measure is higher 

than others in similar settings.

6) We investigated the impact of extreme and outlier observations by contaminating 

each data set with one atypical observation. We could extend the simulation studies 

where the outlying observations come from a certain distribution.

A number of areas have been identified in which the work in this thesis can be ex­

tended. These include the following:

7) Generalisability of the measures that have performed satisfactorily is one of the 

main areas that could be investigated. Royston and Sauerbrei (2004) [93] have 

proposed extensions to for more flexible survival models. The performance 

of their proposed measures requires further investigation. Also, extending other 

measures requires further work.

8) The theoretical properties of the new explained randomness measure, p2ew, in Ap­

pendix B .8 require further investigation.

9) Extension of the promising measures to partial and adjusted measure(s), similar to 

adjusted-R2 in linear regression, is another area which would benefit from further 

investigation.
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Appendix A

Sim ulation results by covariate 

distribution, censoring type, and 

censoring proportions

In this section, we present the results of simulation studies in more details. This section 

shows simulation results to study the impact of censoring on: I) explained variation 

measures; II) explained randomness measures; and III) predictive accuracy measures and 

RgchK- The results are shown in similar tables to those of 5.6, 6 .6 , and 7.6. The tables 

indicate the performance of the measures in different covariate distributions, censoring 

mechanisms and censoring proportions. The figures in these tables are the average across 

four covariate effects, and three sample size conditions.
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Table A.l: Summary performance of the explained variation measures proposed by Kent 
and O’Quigley (1988) and Royston and Sauerbrei (2004) by the covariate distribution, 
censoring mechanism, and censoring proportion.________________________________

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V. % Difference C.V.
w .........11PM normal 20 0.1 23.7 0.2 23.5

50 0.5 28.6 0.5 28.1
80 1.7 40.5 1.4 39.7

lognormal 20 0.1 23.7 0.1 23.4
50 0.4 27.5 0.3 26.8
80 1.2 36.9 0.9 35.8

pos. skewed 20 0.1 26.5 0.0 26.1
50 0.3 28.9 0.1 28.1
80 0.9 35.1 0.5 34.0

neg. skewed 20 0.4 31.3 0.4 32.2
50 1.1 38.7 1.5 39.9
80 4.7 57.0 5.1 57.4

normal 20 0.1 23.8 0.2 23.6
50 0.5 28.7 0.5 28.3
80 1.9 40.7 1.5 40.0

lognormal 20 4.2 24.7 5.5 24.4
50 11.9 29.1 14.2 28.4
80 24.0 39.6 26.3 38.6

pos. skewed 20 12.8 31.5 15.9 30.5
50 40.0 35.4 47.6 33.7
80 88.5 43.8 97.7 41.9

neg. skewed 20 -8.3 31.6 -13.3 31.7
50 -19.7 39.2 -26.3 39.0
80 -28.0 56.9 -31.5 55.9
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Table A.2: Summary performance of the explained variation measures proposed by 
O ’Quigley and Flandre (1994) and Xu and O’Quigley (2001) by the covariate distrib- 
ution, censoring mechanism, and censoring proportion.__________________________

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V. % Difference C.V.
r>2
H'Oq f normal 20 2.2 23.3 2.6 22.9

50 6.2 28.0 7.1 27.4
80 13.0 39.5 13.4 38.7

lognormal 20 3.1 23.0 2.9 22.8
50 9.5 26.8 9.8 25.9
80 21.3 36.5 21.5 35.2

pos. skewed 20 2.7 34.4 0.7 32.2
50 8.9 38.9 7.2 36.7
80 24.1 39.0 22.0 60.1

neg. skewed 20 -4.7 36.6 -9.6 31.4
50 -10.7 41.1 -15.5 37.8
80 -14.3 54.2 -16.6 52.8

t>‘2
n X u O Q normal 20 0.7 23.8 2.6 22.9

50 3.3 36.1 7.1 27.4
80 9.6 76.0 13.4 38.7

lognormal 20 0.6 23.4 2.9 22.8
50 3.3 29.9 9.9 25.9
80 12.8 68.3 21.6 35.2

pos. skewed 20 0.1 36.4 0.7 60.1
50 0.3 54.3 7.2 32.2
80 10.1 80.1 22.0 36.7

neg. skewed 20 -1.1 43.1 -9.6 31.4
50 -4.3 62.7 -15.5 37.8
80 -9.2 90.1 -16.6 52.8

Table A.3: Summary performance of the explained variation measure proposed by Roys­
ton (2006) by the covariate distribution, censoring mechanism, and censoring proportion.

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V. % Difference C.V.
ry‘2

R oyston normal 20 5.5 24.0 7.9 23.8
50 14.7 29.4 18.7 29.0
80 28.6 42.4 33.1 41.9

lognormal 20 9.7 23.7 13.2 23.5
50 28.5 28.6 35.2 28.0
80 60.2 40.0 68.5 39.3

pos. skewed 20 15.2 25.0 19.3 24.4
50 50.0 29.0 59.9 28.0
80 117.3 38.1 131.0 36.8

neg. skewed 20 -7.0 27.7 -10.9 27.9
50 -18.4 34.6 -24.5 34.6
80 -28.4 50.9 -31.0 50.3
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Table A.4: Summary performance of the explained randomness measure proposed by Kent 
and O’Quigley (1988) by the covariate distribution, censoring mechanism, and censoring 
proportion._________

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V. % Difference C.V.

Pw normal 20 0.1 22.1 0.1 21.9
50 0.4 26.6 0.4 26.2
80 1.4 37.6 1.1 36.8

lognormal 20 0.1 21.4 0.1 21.0
50 0.3 24.9 0.2 24.2
80 1.0 33.6 0.7 32.6

pos. skewed 20 0.1 22.5 0.0 22.1
50 0.2 24.8 0.1 24.1
80 0.7 30.8 0.3 29.7

neg. skewed 20 0.4 35.5 0.3 36.2
50 0.9 41.3 1.1 42.0
80 3.2 54.8 3.3 54.7

Table A.5: Summary performance of the explained randomness measures proposed by Xu 
and O’Quigley (1999) and O’Quigley et al (2005) by the covariate distribution, censoring 
mechanism, and censoring proportion.________________________________________

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V. % Difference C.V.
" ...

PXuOQ normal 20 -0.1 22.4 6.3 22.2
50 0.3 28.2 14.3 27.0
80 4.8 44.0 24.3 38.6

lognormal 20 0.1 22.0 10.8 21.9
50 2.3 26.7 27.5 26.0
80 15.4 41.6 50.5 36.0

pos. skewed 20 0.2 23.5 16.0 23.2
50 3.5 26.9 47.2 26.1
80 30.3 40.8 95.8 33.7

neg. skewed 20 -2.6 26.8 -10.0 26.3
50 -9.1 35.5 -21.9 32.7
80 -23.5 56.8 -27.8 47.4

Pk normal 20 4.2 22.5 6.3 22.2
50 11.1 27.4 14.3 27.0
80 21.1 39.2 24.3 38.6

lognormal 20 7.7 22.2 10.8 21.9
50 22.1 26.6 27.5 26.0
80 44.6 36.8 50.6 36.0

pos. skewed 20 12.6 23.5 16.2 22.9
50 39.7 27.0 47.6 25.9
80 86.4 34.8 96.2 33.5

neg. skewed 20 -6.2 26.1 -9.9 26.3
50 -16.3 32.6 -21.8 32.7
80 -25.4 47.9 -27.7 47.4
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Table A.6: Summary performance of the predictive accuracy measures proposed by Graf 
et al (1999) and Schemper and Henderson (2000) by the covariate distribution, censoring 
mechanism, and censoring proportion. Note that the entries for the Graf’s measure (1999)

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V. % Difference C.V.
4 ( T 4) normal 20 0.1 43.5 -2.2 44.4

50
80

0.4 45.8 -7.0 46.7

lognormal 20 0.2 41.4 -1.4 42.3
50 0.5 43.6 -4.2 44.1
80

pos. skewed 20 0.3 39.6 -0.4 40.4
50 0.5 41.6 -1.0 41.8
80

neg. skewed 20 -0.2 50.0 -7.2 51.9
50 0.5 52.7 -23.6 55.2
80

VschH normal 20 0.2 21.5 -1.0 21.1
50 0.1 26.5 -13.8 25.4
80 -6.9 42.8 -44.3 36.6

lognormal 20 0.2 21.0 2.3 20.8
50 1.5 25.0 -0.3 24.9
80 2.2 37.6 -18.4 37.0

pos. skewed 20 3.3 21.5 3.3 21.4
50 12.0 26.4 11.9 26.3
80 24.3 37.5 23.9 37.6

neg. skewed 20 -6.2 25.4 -6.2 25.3
50 -25.0 43.0 -24.6 43.0
80 -50.0 83.2 -50.4 83.5

Table A.7: Summary performance of the measure proposed by Schemper and Kaider 
(1997) by the covariate distribution, censoring mechanism, and censoring proportion.

Random Censoring Type I Censoring
Measure Covariate % Average Average

Distribution Censored % Difference C.V % Difference C.V
jd‘2

SckK normal 20 -0.3 25.8 0.1 25.2
50 0.1 29.3 0.2 28.7
80 1.7 39.7 1.7 39.1

lognormal 20 -0.4 26.8 -0.1 26.2
50 -0.1 29.2 -0.1 28.7
80 1.3 36.7 1.2 35.8

pos. skewed 20 -0.4 32.9 -0.1 32.6
50 -0.2 33.4 0.0 33.5
80 0.6 36.2 0.5 35.5

neg. skewed 20 -0.5 33.4 -0.1 33.1
50 0.1 37.9 0.5 38.3
80 3.8 54.2 4.5 54.5



Appendix B

M ore details on some of the  

proposed measures

B .l  Royston and Sauerbrei D  measure (2004)

Royston and Sauerbrei (2004) [93] define the D  measure as follows. Suppose the data on 

n individuals are denoted by (£i,<5i, X i) ,..., (£m <5n, X n) where for the ith individual U is 

the observed time, Si is 1 if the event of interest is experienced at ti or 0 otherwise (right 

censoring), and is the covariate vector of prognostic factors. The Cox model may be 

written as

In X{) = In Ao(ti) hi

where hi — fi'Xi is the prognostic index (PI) for the ith individual. Consider the distri­

bution of the PI values. Defining order statistics h ^  < ... < h ^  we may quite generally 

write

h(i) = (J> + gih -f- 5i (B.l)

where ui is the ith expected standard Normal order statistic (rankit) in a sample of size 

n. Ordering the data on the hi and substituting for h ^  in B .l we have (in an obvious 

notation)

In A(£(q, X ^ ) =  In Ao(£(q) +  ^  +  crui +  Si

So far we have assumed no specific distribution for the hi. Let us now suppose that the 

hi are Normally distributed N(fj,,a2). The parameter is the standard deviation (S.D .) of
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the PI values and is a natural measure of separation. By definition, the regression of the 

/i(i) on the Ui is linear with E (h ^ )  = fj, +  crui and E(si) = 0. To a first approximation, 

let us ignore the random perturbation % and set i = 0. Then

In A(£(i),X (i)) ~  lnA0(i(i)) +  (B.2)

Under the Normality assumption, the special Cox model B.2 is (approximately) linear 

in the U{. On fitting it to the data, the constant is absorbed into the baseline hazard 

function and the regression coefficient, &* say, will estimate a. Royston and Sauerbrei’s 

proposed measure D is defined as

D = Ktj* (B.3)

where k =  y/ 8 /n  — 1.60.

B.1.1 Interpretation

D  is log hazard ratio comparing two equal-sized prognostic groups based on dichotomising 

a continuous prognostic index (fl'X).



B.2 R ( X )  and R o  in Korn and Sim on measure (1990)

The measure proposed by Korn and Simon (1990) is

Jib -  Ex [R(X)}explained variation =
Ro

The calculation of R(X)  and Ro for loss function with squared error loss censored at To 

is presented below. For this loss function there are essentially two predictions possible: 

survival less than To or survival greater than or equal to Tq. One way to think about this 

loss function is that the time axis has been transformed so that the interval [To, oo) has 

been collapsed to the point T q . From the definition of expected risk

and

poo
R (X i )=  /  ( t * - t xl)2 dF(t\Xi)

Jo

poo
Ro=  ( t* -t )2df(r)

JO

where t* = min(£, To), tXi =  E(T* \ Xi). To estimate these quantities we should replace 

F(t\Xi)  and the optimal predictor with their respective estimates, therefore

roc.
R(Xi)  =  /  (min(£,To) — E(T*\Xi))2 dF(t\Xi) 

Jo
fTo _ roc ^

= /  ( t - E ( T * \ X i) fd F ( t \X i) +  /  { T a - E i T ^ X ^ f d F ^ X i )
Jo JTn

and t =  E(T*) are the optimal predictors which are obtained as follows.

roc
E ( T * \ X i ) =  mm(t,T0 )dF(t\Xi)

Jo
pTo poo

= /  tdF(t\Xi)+  /  TcdF(t\Xi)
Jo Jt„

= f  tdF(t\Xi) +  T0(l -  F(T0|
Jo

n T̂o 

0

and similarly £(T*) =  / 0T° tdF(t) + T0( 1 -  F(T0)) where 5(T0 |Jfi) =  1 -  F(T0\Xi) and 

S(To) =  1 -  F(To). Expanding this and replacing E(T* \ Xi) = /0T° tdF(t\Xi) + 2o(l -  

F(To\Xi)) will result in

R (Xi) = f  °t2 dF(t  | Xi) + t2 S(T0  | Xi) -  \ f  °tdF (t | Xi) + T0S (T0 | X  
Jo Jo

(BA)
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where

^  n
Ro is also obtained in a similar manner by replacing F  (t \ Xi) with Fo(t) = -  F(t\xi)

i=l
and S  (To | Xi)  with S ( T 0) =  £ £  S ( T 0\xi).

i = 1

If a parametric model is used for survival data, then the explained risk will be a func­

tion of the unknown parameters. Substitution of consistent estimates of these parameter 

estimates will result in a consistent estimate of the explained risk. For example for the 

two-group exponential model with parameters and A2 where n 1 =  712 — \  depending

on whether Xi = 1 or Xi =  2, the explained risk is: explained risk ~  ^
4A2 + 4A2
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B .3 Schemper and Kaider m easure (1997)

Schemper and Kaider (1997) [98] proposed a measure, I$gchK, based on Spearman correla­

tion coefficients and Kendall r  between survival times and covariates. They apply Rubin’s 

multiple imputation method to augment censored survival times with random residual 

life times to make all survival times uncensored. Several such "augmented" data sets 

are generated and correlation between survival times (observed or completed/imputed) 

and independent variables are calculated using either Spearman correlation coefficients 

or Kendall r  for each data set then an average is taken. The algorithm is as follows.

1 We observe a sample data as (£j, Xi), i =  1,..., n, and estimate the parameters and 

baseline survival function So(t) for Cox’s model with standardised covariate vector 

x. Note that So(t) is only defined for t < t*(t* denotes the maximum observed 

uncensored life time).

2 Therefore we need to calculate an expected So(t) for t > £*, denoted by S^ t ) .  To 

estimate S ^ t ) ,  Schemper and Kaider (1997) [98] proposed a linear function which 

is fitted to the points (£*, 5o(£*)) and (dt*, 0) where d is a constant whose value can 

be chosen anything greater than 1, but for numerical reasons they recommend d =  

2. therefore Sq(£)

^o(0  =

where £>o =  £o(£*)jrr and b\ =  — . Due to assumed proportional

hazards also the individual survival functions, Si(t) — So(t)exp^ Xi  ̂ (for t < t*) and 

Sf(t) = 5o(£)exp̂ ^  (for t > t*) are now completely defined.

3 Next is to impute each censored survival time £? become an uncensored time U 

according to the following procedure:

3.1 Draw a random number u*, uniformly distributed in the interval [0, 5*(£f)] 

where Si{tf) = Sa{tf fxip̂ Xi\  Note that cumulative survival probabilities for 

t > t% are uniformly distributed in the interval [0, £*(££)] and that we draw m 

from one of these cumulative survival probabilities.

3.2 Then we follow the next steps to calculate ti.

3.2.1 If Ui ^  Si(t*) then ti =  tj for which S{(tj) ^  Ui ^  Si(tj+1) (tj denotes the 

ordered uncensored survival times).
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3.2.2 If Ui < Si(t*) then ^  =  [exp((logiii)/exp(/3a:i)) — 6q]/^i with 60 and b\ cal­

culated in step 2. The latter expression follows from equating SQ(ti)exp^ Xi  ̂ — 

(60 +  M ;)exp(fc> to m.

4 Calculate a measure of correlation, R%ct,K , using Spearman’s correlation rs(T, X )  or 

Kendall’s r(T, X) where T  stands for either an observed or an imputed uncensored 

survival time.

o

5 Repeat steps 3 and 4 m  times and then average R^chKs obtain R s chK* m  

suggested to be m  ^  3.
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B.4 Akazawa Measure (1997)

Akazawa (1997) [2] proposed a measure which is derived from the squared product- 

rnoment correlation; it can be interpreted as an adaptation of multiple correlation co­

efficient for normal linear model to the survival time regression model. He named his 

measure "MEVa". MEVa was proposed to calculate measure of explained variation in 

censored survival data with no loss to follow-up.

To explain his measure, let n be individuals entering a study at random over time 

and that the follow-up terminates at some prespecified time with no loss to follow-up. 

Let us consider the survival time setting. T =  min(Xy, Tc) is the observed time, Tf is the

survival time and Tc is the right censoring time. Let Xi be covariate vector for individual 

i. He defined three statistics e*, e and T  to use in his measure. He adapted equation (??) 

in simple linear regression to decomposed Ti — T  into three components. In this method 

ei, e and T  are e* =  E[Ti\Xi,Tc], e = J  £  e* and t = ± £  Ti where E[.\Xi,Tc] is the
i= 1 i—1

conditional expectation given X{ and Tc. Since Ti — T  = (Ti — ei) + (e* — e) -f (e — T), 

this follows

Tt T t T t TL TV

I  £ m - T ) 2 = \  Y J(Ti-ei? + l-  J > - 8 ) a+£ J > - e )
i— 1 i— 1 i=l i— 1 i— 1

(B.5)

Using the weak law of large numbers under suitable regularity conditions,
  n n
T  — e — ► 0 and ^ E  "  n E  ei' —^ 0 as n — ► +oo, in probability. Therefore,

i=1 7=1
n    n

the expression (B.5) can be written asymptotically as d ^ ( J -  — T ) 2 — ► -  ^~2{T{ — £i) 2 +ni —l

n (ei ~  e)2 as n — * +oo, in probability.
i=l

Thus, the mean of total sum of squares about the mean of Ti is asymptotically de­

composed into two parts: the means of the sum of squares about the mean and the sum 

of squares due to regression. Let ti (i = 1, ...,n) denote the observed time-on-study and 

t the mean of ti. Then, the measure of explained variation is defined as

—

The conditional expected time e* lived in the time interval [0, 2o] is estimated using 

the following expressions:
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rTc roc
E(T) = /  Tf dF(t) +  /  TcdF{t) 

Jo Jtc

and if we assume that F(u\Xi,To) is the conditional distribution of Ti = min(T/,To) 

defined on [0, To) so that F{u\X^ To)—F{u\Xi) on [0, T q), and F(u\Xi) =  1 on [To, oo) 

then we can write:

E[T\Xh Tc}= f  C udF(u\Xh Tc) = I udF(u\Xi: Tc) +  TC{1 -  F(Tc. \ X l} Tc)} 
Jo Jo

r Tc-
uF(u\Xu Tc) \ f  -  /  F(u\Xi,Tc)du + Tc{ l - F ( T c- \X i ,T c)}

Jo

I  °{1 -  F(u\Xh Tc)}du 
Jo

where Tc_ is just the time before Tc. To calculate M E V a  in Cox proportional hazards 

regression model, the survival function (1 — F(Tf\Xi,Tc)) will be estimated by Link’s 

methods (1984) [64], provided that the proportional hazards assumption holds.
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B.5 Harrell measure (1986)

Harrell (1986) [37] defined a measure of explained variation for survival data. He intro­

duced
2 log£ ( 0 ) - l o g £(6) , .

R hl ~  log £ (0) - log £* (B'T)

as measure of explained variation for more general models where logL(O) — log L(b) is

likelihood ration test (L R ) and L* is the best (lowest) likelihood, so log L(0) — log L* is

the amount of log-likelihood that is capable of being explained by the model. The lowest 

(best) possible log-likelihood for the Cox PH model is zero, so log L* is zero in equation 

(B.7) for Cox model. He also introduced a measure similar to adjusted R 2 where the 

measure is penalised by the number of parameters in the model as

2 L R  -  2p
R a d j - H L  -  _21og£(0)-  (B-8)

The parameters in this measure are p, the number of parameters estimated and LR = 

2(log L(b) —log T(0)). L(b) and L(0) are likelihoods of model with and without covariates. 

If the model LR  is less than 2p, Lt̂ ld-_HL is set to 0.
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B.6 Kent and O’Quigley measure (1988)

Heinzl (2000) [40] explored Kent and O’Quigley measure (1988), and introduced a 

SAS procedure to compute this measure. His proposed algorithm is presented below. The 

Cox proportional hazards model in (2.15) can be written as

f(t\X-,0) = ho(t)exp!.0X - e P x  ^  ho(u)du\ . (B.9)

Kent and O’Quigley (1988) [49] used p2G =  1 — exp(—T(/30)) as a measure of explained 

variation where r(/?0) =  2{/(/30;/30) — /(0;/30)} and

I ( fcPo)= f  f  \og{f (t \x]P)}f( t \x;P 0 )dtdG(x) (B.10)
Jx  Jt

where G(x) is the distribution function of X.  In practice /30 will be replaced by the 

maximum likelihood estimator f3. Assuming no censoring a standard estimate of infor­

mation gain will be provided by n ” 1 times the usual likelihood ratio test (Kent 1983 

[50]). An alternative estimate, having similar statistical properties, is provided by the 

fitted information (Kent 1986 [51]) in which /(/3;/3), for ft =  0 and (3 = (3 are estimated 

by
/(/?;/3) =  1  /  log{f{t\xr,0)}f(t \xi;p)dt.  (B .ll)

n l= tJT

The distribution of X  has been replaced by its empirical distribution in (B .ll) . Kent 

and O’Quigley used (B .ll) to form /(/?;/?) and / ( 0;/9) and then calculate p 2G . The detail 

of the procedure is explained below.

The problem with the Cox model is that the baseline hazard function ho(t) in (2.34) 

is completely unspecified. This makes it impossible to form I((3\f3) in (B .ll). To tackle 

this obstacle, Kent and O’Quigley used the following property of The Cox model. The 

inference and estimation of the parameters in the Cox model, as the result of using partial 

likelihood, is based on the survival time ranks not the actual survival times; therefore, 

any ’squeezing’ or ’stretching’ of the time axis does not change the results of the Cox 

regression model. It should neither change the result of a measure of dependence based 

on Cox regression model. Thus, any strictly monotone transformation of T, T* = 4>(T) 

gives the same Cox regression coefficient as T. Kent and O’Quigley utilized this property 

of the Cox model and defined h ^ t )  = a exp(fi)ta ~ 1 for any choice of p and a. By choosing 

this baseline hazard we can be ensured that the baseline hazard is proportional to power

222



of t. Therefore, if we replace ho(0 in (2.34) with (£), the conditional distribution T* 

given X  =  x, f*(t\X;fi),  follows a Weibull distribution

f*(t\X;fi) = aexp(p  +  f iX ) ? * - 1  exp [ - ta exp(p  +  $ X ) \ , 

and Y  =  In T* follows a linear regression model

Y  = ln(T*) =  — cr(/i +  PX)  +  (B.12)

where a =  o r 1 and £ is independent of X and has density f(y)  where

f(y)  = ey exp(—ey),

i.e. the extreme value (Gumbel) density (Lawless, 1982 [59]) with variance ^ ( l )  =  1.645. 

a and p are scale and location parameters, respectively. Note that finding a suitable 

transformation would in practice not be possible if no parametric form for baseline hazard 

was assumed. Let 9 = (/?, fi, a2) denote the parameters of the model. Let 9\ = (/3l5 /xl5 a2) 

denote the true value of the parameters, generally with j31 ^  0. Define 9i to be the value 

of 9 maximising the expected log likelihood, analogous to f T log {f(t\xi; j3)} f(t\xi; (3)d im  

(B .ll) , Jy \og({f(y\x‘,9)}f(y\x;6i)dy  over 9 satisfying H0. Here f(y \x;di)  = a f{ay  + n + 

j3X) with a = (j_1.

Consider two hypothesis Hq : 9o = (0, vLt0> cr§) and H\ : 9\ = It can be

shown that p2G does not depend on the choice of fill a2, they can be given arbitrary values. 

To make it as simple as possible, the best choice is and cri =  1 which corresponds to 

a constant baseline hazards function equal to one for H\.  The main problem is to find 

the estimator 9q = (0 ,/x0>^o)- the appropriate values for and &o > 0 have to be 

computed.

It is obvious that the vector of the true model parameter values 9\ is the 9 maximising 

Jy\og({f(y\x;9)}f(y\x;9i)dy  over all 9 satisfying H\. Therefore

+oo
log({/(y|*;0)}/(yk;0i)dj/ =  f  ^f(oiy + p + /3X)a1 f ( a 1y + p 1 + /31X)dy

— GO

= log(a) +  — 7 ;(1) +  6 - exp(fe)7 (— +  1)Ot\ Ql

where b =  p +  fix — (^-)(mi ~ fi\x) and y(.) and 7;(.) denote the gamma function and 

its derivative, respectively. This nonstandard notation is chosen to avoid confusion with
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symbol T, which is already used for denoting information gain. The constant 7X(1) =- 

0.577215...—"0(1) is the negative value of Euler’s constant. Now we can estimate the 

measure of dependence between T  and X  , pw  — 1 — exp(—r) . Assume that for a study 

with n patients censored survival data have been observed with survival times £*, censoring 

indicator c*, and p-dimensional covariate vector Xi, i — 1, ..,n. Fitting a Cox regression 

model under H\ to the data, that is, using all p covariates yields estimated vector fi of 

regression coefficients. For calculating we consider 9\ = (/3,0,1) as true parameter 

values. Thus, r  =  T{ H\ : Hq\#i, Gn(x)}, where Gn(x) denoted the empirical distribution 

of X  putting mass 1/n at each of data points. To compute the estimator 9q =  (Op , p$, So)t  

the empirical expected log likelihood 1(9; 9{) = ^ ^  f  \og({f (y\x; 9)}f(y\x; 9\)dy has to
i—1

be numerically maximised with respect to p and ck, a > 0. Taking partial derivatives and 

setting them to zero finally yields an explicit solution for /r0i

1 xn „ — 
p 0  = -  log(7 (S0 +  1)) -  log{ exP ( -S 0XiP))

i—\

and an implicit solution for Sq,

( (a)  := 0(1) -  0 (a) +  £  z,- =  0
i=i exp(—azj) 

j =i

where Zj = xifi — x{3, i = 1 , n and the vector x contain mean values of the p covariates. 

Heinzle (2000) showed how to solve numerical equation £(a) using (a) Newton-Raphson 

and (b) simple grid search. After we have found a numerical solution for So, we can 

compute r  =  2 j/(# ; 0i) -  1(9; 0q)} and

Pw — 1 -  exP (-P ) (B.13)

where f  =  2[(1- 3 0)^(1) +  log{7 (S0)} +  log{^ £  exP(
i— 1
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B.7 Verweij and Van Houwelingen measure (1993)

Verweij and Houwelingen (1993) [113] proposed a similar measure to Magee’s measure, 

F?lr  — 1 — exp(—̂ (/(/3) — Z(0)), in which the log-likelihood, /(/?), is replaced with the 

cross-validated log-likelihood, cvl.

The contribution of observation i to the log-likelihood can be defined as

where is the log-likelihood when observation i left out. The value of ft that

maximises is denoted by /3(_q.

If the components of the likelihood are independent h{P) simply equals the contribu­

tion of the ith component and

m = m .£■—̂t — 1

Then the cross-validated log-likelihood cvl is defined by

c v l  =

cvl can be considered as a measure of predictive value since for a given model cvl measures 

how well every observation i can be predicted using the other observations. For the 

computation of the cross-validated likelihood cvl, the coefficients /?(_*) are required. They 

are estimated by fitting n models, each with n — 1 observations.

Verweij and Houwelingen (1993) [113] used cvl to define a cross-validated measure of 

explained variation in future data as

R 2cv =  1 -  exp [ - - ( c v l  -  cvlnuii)
\  n
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B.8 A new measure of explained randomness for P H  m od­

els

The measures of explained randomness p^,, Pxu0 Q> anc  ̂ Pk make use of the properties 

of the Cox PH model [19] to quantify the predictive ability of the model. They are all 

based on the Kullback-Leibler information gain in equation 2.33, as discussed in section 

2.3.2. Since the baseline hazard remains unspecified in the Cox PH model, the proposed 

explained randomness measures either replace the baseline hazard with a monotonic func­

tion of time, as in or work with the distribution of covariate(s) given time, as in p \ uoq 

and p |, to form the Kullback-Leibler information gain.

However, Ebrahimi and Kirmani (1996) [23] showed that Kullback-Leibler information 

gain ([55]) is independent of time for the proportional hazards models. We, therefore, 

develop the Kullback-Leibler information gain for the Cox PH model, and hence a new 

measure of explained randomness for the proportional hazards models.

The Cox PH model is defined as

A(£|a;) =  A(£). exp^'a;)

and for simplicity in the maths operations consider a  =  exp(/3fx). Thus, the density 

function can be written as

f(t \x) = A(£) expj/^a; — a. f  A(u)du}
Jo

where

u S(t) = exp{— f  A(u)du] «S’(£|a;) =  S(t)a 
Jo

A(t) = (  A(u)d 
Jo

m =  -

S'(t )  
S ( t) A(£|:r) = 5"(£|£) 

S^lx) '

The Kullback-Leibler information gain is



KL

and estimated information gain (Kent & O’Quigley (1988) [49]) for fitted density for T  

given X  is

1 n /,oc f ( t \x )
estimated I f ( t \x i) \n (—— * )dt.n £ ^ i = i j 0

Therefore

K L  = I

=  io  / (  l ) M  m s ( t )  )dt

K L  =  [  f ( t \ x ) \ n ( ^ ~ ) d t +  f  f ( t \x ) \n (S{ t \x ) )d t -  f  f( t \x)  \n(S(t))dt
Jo Jo Jo

I  (I)

POO

/  /(i|a:)ln(S'(i|^))di (II)
Jo

rO O

/  /(£|z)ln(S(£))d£ (III)
Jo

a ) = f f m  ,n(^ x p ( ^ ) ) ) d f = 0 ,x j ~ m x ) d t = 0 ,x
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roc
(II)  +  (III)  = /  lf(t\x) In(S(t)a) -  f ( t \x ) ln(S(t))] dt

Jo
oo

[ / ( t | z ) (a ) ln (S ( t ) ) - / ( t | z ) ln (S ( t ) ) ]d t
roc

= /  (a — l)(/(t|x).ln(S(J))<It 
Jo

/•OO

=  ( a - I )  f(t \x)An(S(t))dt  (IV)
Jo

poo
/ f(t\x)An(S(t))dt  

Jo

roc
I X(t\x).S(t\x)An(S(t))dt 

Jo
r  p m

Jo
s{tlxy S m M S ( t ) ) d t

roo
= /  -S'( t \x) . \n(S(t ))dt

Jo
roo

= -  {S(t)a)'.\n(S(t))dt
Jo

roo
= -  aS’i^Sl tp- ' . ln iSi tyd t

Jo
S(t) = z dz = S'(t)dt £:[0, oo[

k f 1za~1An(z)dz 
Jo

— a

z : {  1 ,0 [

J  vdu = uv — J  udv v = ln(z) d,v — —  du = za 1dz u =
a

=  a .  I —( - z aAn(z)\ -  C - z a~ld^ \lo Jo a  J

= a . ( ^ z aAn(z)
o a.a

= a. ( —1“ . ln(l) — —0“.ln(0) ) -  a. ( — 1“ -  —  0‘
1 a a } \ a.a a.a

In the above equation, ^0“ . ln(0) is of indeterminate form, so we should investigate
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the limit

We can write this limit as

l[mya.\n(y).
y—► 0

lirn yaAn(y) =  lim 
o y—>o

which is now in the form oo/oo, and hence the L’Hopital’s Rule applies:

lim =  lim     = lim - a . y a = 0v-o i  x - o — i y-o

hence

a. I i . l Q.0 -  i . o )  — a. ( —  0 I =a  a j  \  a .a

1 \  1=  —a.
a .a  y a

thus

K L  =  /?'# — 1 +  — — fi'x - 1 4 -  exp(-0 'x)  
a

and the estimated information gain (Kent & O’Quigley (1988) [49]) is

estimated K L  = — p'xi — 1 +  exp(—/? acO] (B.14)
n '*=1 L J

where i = 1, 2, ...n, is the covariate, and /5 is the maximum likelihood estimator of 

the parameter in the model. In the case of multiple regression, Xi will be replaced with 

prognostic index, i.e. linear predictor, of the model to compute estimated information 

gain.

Finally, using the relationship between the Kullback-Leibler information gain and 

the measures of predictive ability proposed by Kent & O’Quigley (1988) [49], presented 

in equation (2.33), a new measure for the non-stratified proportional hazards model is 

defined as
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New measure p2new =  1 -  exp | - 2  YY 1 ^ x i  -  1 +  exp(-/3 ^ j  .

If the covariate, X , is normally distributed, N (0 ,1), the expected value of K L  with 

respect to X  is

Ex (KL)  = 0 E(X )  -  1 + EX [exp(—/3x)]

where

1 r°°
Ex [exp(-/3X)] =  -==  /  e~? x e~x  /2dX

V 2 ^ T  J —o o

i r°°  
^ 2 7T J -  o o

- x V2-f3x dX
%/27T J—oo

(*+^)2 , fl2' 
2 ~  2

V ^ / -

O O

e
o o

£  I (x+a>2
=  e  2 —  /  e  2 d A

V2?r 7-c- o o

3£
e 2

since E'(X) — 0 , therefore

£x~JV(o,i)(^£) =  “ 1 +  e 2 .

Then a measure of explained randomness for the univariate model where A  ^  iV(0,1) is

Xei" pL»pr~w(o,i) =  1 -  exp j - 2  ^ -1  +  J j  .

The new measure can be evaluated for different /3 values in this univariate model as 

follows

Hazard Ratio p New p%ew{x̂ N(0il) p2w p2WA p \ uOQ p\

1.25 0.223 0.049 0.049 0.050 0.048 0.048

1.5 0.405 0.157 0.141 0.143 0.134 0.134

2 0.693 0.419 0.316 0.325 0.296 0.296

4 1.386 0.960 0.637 0.657 0.602 0.602
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B.8.1 E xtension to  the stratified Cox PH  m odel

Kullback-Leibler information gain in equation 2.33 can be modified for the stratified Cox 

PH model. In the stratified model, the Kullback-Leibler information gain in equation 

2.33 can be measured by twice the weighted average of the stratum-specific information 

gains

m Ug f°° f { t \ x , s ) SJ^
K L = L a=l^ J 0  /(*!».«)

By repeating the same maths operations, similar equation to B.14 can be derived for 

the stratified Cox models where, for example, the variable X 2 is split into strata which 

are represented by the m-level-factor S

= i  K L  U l l i  ^ ' Xai ~ 1 +

where s = 1, 2, ...,m  and ns is the number of observations in strata s. For the strati­

fied Cox PH model, K L S replaces K L  in p^ew to provide a new measure of explained 

randomness for the stratified Cox PH model.

In summary, a measure of explained randomness for the Cox PH model can be de­

fined without replacing the baseline hazard with a monotonic transformation of time, as 

in or reversing the role of outcome and covariate, as in p\ uqq■ In normally distrib­

uted covariates, the new measure p%ew is in agreement with other explained randomness 

measures in small to moderate covariate effects, but it results in much higher values if 

the covariate effect is large, i.e. 1.386. This new measure is independent of censoring, 

intuitive, and can be modified for the stratified Cox PH model.
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Appendix C

Models fitted to data sets in 

chapter 8

C .l M odels fitted to  leg ulcer study data set

C .1.1  M F P  I m odel:

. f ra c g e n  u lc a r e a  0 .5  

. f ra c g e n  m thson 0 , r e p la c e  

. f ra c g e n  age -2

. s tc o x  ag e_ l m thson_l u l c a r e . l  d ia s tb p  deepppg, nohr

No, o f s u b je c ts  = 

No. o f f a i l u r e s  = 

Time a t  r i s k  =

200

97

14232

Log l ik e l ih o o d  = -387 .77022

Number o f obs 200

LR c h i2 (5 )  

Prob > ch i2

119.89

0 .0000

_ t  Coef. S td . E r r .  z P > |z | [957, Conf. I n te r v a l ]

 +--------------------------------------------------------------------------------------------------

a g e . l  26.04694 7 .32928 3 .55  0.000 11.68182 40 .41207

m th so n .l - .4 5 0 5 7  .1030608 -4 .3 7  0.000 - .6 5 2 5 7  -.2485791
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u l c a r e . l  - 8 . 4 9 7 4 3  1 . 4 6 8 7 4  - 5 . 7 9  0 . 0 0 0  - 1 1 . 3 7 6 1 2  - 5 . 6 1 8 7 5 9

d ia s tb p  - .0 1 8 8 4  .0081183 -2 .3 2  0 .020  - .0 3 4 7 6  -.0 0 2 9 3 5 3

deepppg - .5 8 6 0 3  .2096234 -2 .8 0  0 .005  - .9 9 6 8 9  - .1 7 5 1 8 2 4

C .1.2  M F P  I m odel after rem oving 5 ex trem e observations:

. s tc o x  age_ l m thson_l u lc a r e _ l  d ia s tb p  deepppg, nohr

No. of s u b je c ts  = 195 Number o f obs = 195

No. o f f a i l u r e s  = 97

Time a t  r i s k  = 13620

LR c h i2 (5 ) 109.81

Log l ik e l ih o o d  = -387 .7683 Prob > ii

CM•Ho 0 .0000

_ t C oef. S td . E r r . z P > lz | [95% Conf . I n te r v a l ]

a g e_ l 26.04648 7.329038 3 .55 0 .000 11.68183 40 .41113

m thson_1 - .45053 .103060 -4 .3 7 0 .000 -.6 5 2 5 2 - .2 4 8 5 3

u lc a r e _ l  -8 .49398 1.470568 -5 .7 8 0 .000 -11 .37625 -5 .6 1 1 7 2

d ia s tb p  -.0 1 8 8 4 .008118 -2 .3 2 0 .020 - .0 3 4 7 5 - .0 0 2 9 3

deepppg -.5 8 6 0 4 .209622 -2 .8 0 0 .005 -.9 9 6 8 9 - .1 7 5 1 9

C .1 .3  M F P  II m odel:

. s tc o x  age m thson_l u lc a r e a  d ia s tb p  deepppg, nohr

No. o f s u b je c ts  

No. o f f a i l u r e s  

Time a t  r i s k

200

97

14232

Number of obs

Log l ik e l ih o o d  = -390 .84948

LR ch i2 (5 ) 

Prob > c h i2

200

113 .74

0.0000
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_ t C o e f. S td . E r r . z P > |z | [95% Conf . I n te r v a l ]

age -.0212034 .0087131 -2 .4 3 0 .015 - .0 3 8 0041261

m thson_l -.4391165 .1029093 -4 .2 7 0 .000 - .6 4 0 -.2 3 7 4 1 8

u lc a r e a -.0016209 .0003338 -4 .8 6 0 .000 -.0 0 2 2 7 5 -.0 0 0 9 7

d ia s tb p -.0178674 .0080573 -2 .2 2 0 .0 2 7 -.0 3 3 6 5 9 4 -.0 0 2 0 8

deepppg -.5714134 .2100124 -2 .7 2 0 .007 -.9830302 -.1 5 9 8 0

C .1 .4  M F P  II m od el after rem oving 5 ex trem e observations:

. s tc o x  age m thson_l u lc a r e a  d ia s tb p  deepppg, nohr

No. o f s u b je c t s  = 195 

No. o f f a i l u r e s  = 97 

Time a t  r i s k  = 13620

Number o f obs = 195

LR c h i2 (5 ) 103.64

Log l ik e l ih o o d  = -390 .84948 Prob > c h i2  = 0 .0000

_ t C oef. S td . E r r . z P > lz | [95% Conf. I n te r v a l ]

age -.0212034 .0087131 -2 .4 3 0 .015 -.0 3 8 2 8 0 8 -.0041261

m thson_l -.4391165 .1029093 -4 .2 7 0 .0 0 0 -.6 4 0 8 1 5 -.23 7 4 1 8

u lc a r e a -.0016209 .0003338 -4 .8 6 0 .000 -.0 0 2 2 7 5 -.0009667

d ia s tb p -.0178674 .0080573 -2 .2 2 0 .027 -.0 3 3 6 5 9 4 -.0020753

deepppg -.5714134 .2100124 -2 .7 2 0 .007 -.9 8 3 0 3 0 2 -.1597966

C.2 M odels fitted to  breast cancer I study data set

. s t s e t  r f s  r f s s t a t
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C.2.1 R FS I model:

. s tc o x  age e r  g ra d d l gradd2 s iz e  noddl nodd2 t h e r l ,  noh r

No. o f s u b je c ts  = 295 Number o f obs = 295

No. o f f a i l u r e s  = 118

Time a t  r i s k  = 24975.06033

LR c h i2 (8 )  = 50 .51

Log l ik e l ih o o d  = -597 .04107  Prob > c h i2  = 0 .0000

_ t t C o ef. S td . E r r . z P > lz | [95% C onf. I n te r v a l ]

age I -.0522733 .0162416 -3 .2 2 0.001 -.08 4 1 0 6 3 -.0204404

e r  I -.4389279 .219263 -2 .0 0 0 .045 -.8686755 -.0091802

g ra d d l I .8948001 .3107595 2 .8 8 0 .004 .2857227 1.503878

gradd2  I .9299319 .3194396 2 .91 0 .004 .3038419 1.556022

s iz e  I .3372146 .1943897 1 .73 0.083 -.0437823 .7182114

nodd l I .2771259 .3082003 0 .9 0 0 .369 -.3269356 .8811873

nodd2 I .8061004 .3546643 2 .27 0 .023 .1109712 1.50123

t h e r l  I -.5869892 .3056888 -1 .9 2 0 .055 -1 .1 8 6 1 2 8 .0121498

C .2 .2  R FS II m odel:

. s tc o x  age e r  g ra d d l gradd2 s iz e  noddl nodd2 t h e r l  gene70 , no h r

No. o f s u b je c t s  = 295 Number o f obs -  295

No. o f f a i l u r e s  = 118

Time a t  r i s k  = 24975.06033

LR c h i2 (9 )  = 7 2 .6 2

Log l ik e l ih o o d  = -585 .98855 Prob > ch i2  = 0 .0000

_ t I C oef. S td . E r r .  z P > lz | [95% Conf. I n te r v a l ]
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age I -.0447666 .0162788 -2 .7 5 0 .006 -.0 7 6 6 7 2 5 -.01 2 8 6 0 7

e r  I -.1565484 .2169731 -0 .7 2 0 .471 -.5 8 1 8 0 7 9 .2687111

g ra d d l I .4479252 .3270106 1 .37 0.171 -.1 9 3 0 0 3 9 1.088854

gradd2 1 .2809455 .3421952 0 .8 2 0 .412 -.3 8 9 7 4 4 8 .9516358

s iz e  I . 3665994 .1943658 1.89 0 .059 -.01 4 3 5 0 5 .7475493

noddl I .1836802 .3037698 0 .60 0 .545 -.41 1 6 9 7 7 .7790581

nodd2 I .781884 .3649559 2 .1 4 0 .0 3 2 .0665835 1.497184

t h e r l  I -.6095437 .3082959 -1 .9 8 0 .048 -1 .2 1 3 7 9 3 -.0052948

gene70 1 1.236802 .2822552 4 .3 8 0 .000 .6835923 1.790012

C .2.3  OS I m odel:

. s t s e t  os o s s t a t

. s tc o x  age e r  g ra d d l gradd2  s iz e  noddl nodd2 t h e r l ,  noh r

No. o f s u b je c ts  = 295 Number o f obs = 295

No. of f a i l u r e s  = 79

Time a t  r i s k  = 27838.31012

LR c h i2 (8 )  = 60.61

Log l ik e l ih o o d  = -387.99393 Prob > ch i2 0.0000

_ t 1 C o e f. S td . E r r . z P > |z | [95% Conf. I n te r v a l ]

age I -.0402315 .019744 -2 .0 4 0 ,042 -.0 7 8 9 2 9 -.0 0 1 5 3 4

e r  I -.8276249 .2504392 -3 .3 0 0.001 -1 .3 1 8 4 7 7 -.3367731

g ra d d l | 1 .460347 .54231 2 .69 0.007 .3974392 2.523255

gradd2 I 1.785506 .5409229 3 .30 0.001 .7253168 2.845696

s iz e  I .4154089 .2417264 1.72 0.086 -.0 5 8 3 6 6 .8891839

noddl | .0624291 .4063887 0 .15 0.878 -.7 3 4 0 7 8 .8589362

nodd2 | .6153807 .4397907 1.40 0.162 -.2 4 6 5 9 3 2 1.477355

t h e r l  | -.2107752 .3912291 -0 .5 4 0.590 -.9775701 .5560197
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C.2.4 OS II model:

. s tc o x  age e r  g rad d l gradd2 s iz e  nodd l nodd2 t h e r l  gene70 , noh r

No. of s u b je c ts  = 295 Number of obs = 295

No. o f f a i l u r e s  = 79

Time a t  r i s k  = 27838.31012

LR c h i2 (9 )  = 7 7 .6 4

Log l ik e l ih o o d  = -379 .47708  Prob > c h i2  = 0 .0000

_ t  1 C oef. S td . E r r . z P> 1 z J [95% Conf. I n te r v a l ]

age 1 -.0338659 .0196702 -1 .7 2 0 .085 -.0 7 2 4 1 8 7 .004687

e r  I -.5339754 .2475778 -2 .1 6 0.031 -1 .0 1 9 2 1 9 -.0487317

g ra d d l I .9378675 .5580181 1 .68 0.093 -.1 5 5 8 2 7 8 2.031563

gradd2  I 1.04331 .5623386 1.86 0 .064 -.05 8 8 5 3 6 2.145473

s iz e  I .4569345 .2413038 1.89 0 .058 -.0 1 6 0 1 2 3 .9298812

noddl I .0125814 .3975092 0 .0 3 0 .975 -.76 6 5 2 2 4 .7916852

nodd2 I .6759106 .4547843 1 .49 0 .137 -.21 5 4 5 0 2 1.567271

t h e r l  I - .2929577 .3955662 -0 .7 4 0 .459 -1 .0 6 8 2 5 3 .4823379

gene70 1 1.550349 .4322426 3 .5 9 0 .000 .7031692 2.397529

C.3 M odels fitted to breast cancer II study data set

. d e s c r ib e  hormon x l  x2 x3 x4 x5 x6 x7 re c tim e  c e n sre c

obs: 686 German b r e a s t  c a n c e r  d a ta s e t

s to ra g e  d i s p la y  v a lu e

v a r ia b le  name ty p e  fo rm at la b e l  v a r i a b le  l a b e l
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hormon b y te %12.0g Therapy Hormonal T herapy

x l b y te %9. Og Age

x2 b y te %14.0g menop M enopausal s t a t u s

x3 i n t %9. Og Tumour s i z e

x4 b y te %9. Og Tumour g rad e

x5 b y te %9. Og Number o f p o s i t i v e  nodes

x6 i n t %9.0g P ro g e s te ro n e  r e c e p to r

x7 i n t %9. Og E s tro g e n  r e c e p to r

re c tim e i n t %9. Og R ecu rren ce  f r e e  s u r v iv a l

c e n sre c b y te %9. Og cencode C en so rin g  I n d ic a to r

. s t s e t  re c tim e  c e n sre c

. f ra c g e n  x l  -2  - . 5  

. f ra c g e n  x6 .5 

. gen x5a=cond(x5>=3,1 ,0 )

. gen x5b=cond(x5>=9,1 ,0 )

. gen x4a=cond(x4>=2,1 ,0 )

. gen x5e= exp(-0 .12*x5)

C .3.1  Linear m odel:

. s tc o x  x4a x5a x5b x6_l hormon, nohr

686

122.90 

0.0000

No. o f s u b je c ts  = 686 Number o f obs

No. o f f a i l u r e s  = 299

Time a t  r i s k  = 771400

LR c h i2(5)

Log l ik e l ih o o d  = -1726 .7229  Prob > ch i2

-"t I C oef. S td . E r r .  z P > |z l [95% Conf. I n te r v a l ]

  --------------------------------------------------------------------------------------------------------------
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x4a I .60101 .24902 2 .41 0 .016 .1129398 1.08908

x5a 1 .5943838 .1376574 4 .32 0 .000 .3245803 .8641874

x5b I .601952 .1441665 4 .1 8 0 .000 .3193909 .8845131

x6a I -.0570375 .0111694 -5 .1 1 0 .000 -.0 7 8 9 2 9 2 -.0351459

hormon 1 -.3842406 .1252575 -3 .0 7 0 .002 -.6 2 9 7 4 0 8 -.1387405

C .3.2 M F P  m odel:

. s tc o x  x l_ l  x l_2  x4a x5e x6_l horm on, nohr

No. of s u b je c ts  = 686 Number o f obs 686

No. of f a i l u r e s  = 299

Time a t  r i s k  = 771400

LR c h i2 (6 ) 153.11

Log l ik e l ih o o d  = 1711.6186 Prob > ch i2 0.0000

_ t I C o ef. S td . E rr z P > lz | [95% C onf. I n te r v a l ]

x la  I 1.742153 .3301373 5 .2 8 0.000 1.095095 2.38921

x lb  I -7 .817902 1.749447 -4 .4 7 0.000 11.24675 -4 .389049

x4a I .5174351 .2493739 2 .07 0 .038 .0286713 1.006199

x5e I -1 .981213 .2268903 -8 .7 3 0.000 2.425909 -1 .536516

x6a I -.0581884 .0110946 -5 .2 4 0.000 .0799335 -.0364433

hormon I -.3944998 .128097 -3 .0 8 0 .002 .6455653 -.1434342

C.4 M odel fitted to prostate cancer study data set

o b s : 506 Bone p r o s t a t e  d a ta

s to ra g e d is p la y v a lu e

v a r ia b le  name ty p e fo rm at la b e l v a r i a b le  l a b e l
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ap i n t  %8.0g Acid p h o sp h a ta se

p f  b y te  7#8.0g Perfo rm ance s t a t u s

S o rte d  by:

. f ra c g e n  ap 0

. s tc o x  ap_ l p f age wt hx hg s z , nohr

No. of s u b je c ts  = 506 Number of obs - 506

No. o f f a i l u r e s  = 356

Time a t  r i s k  = 18551

LR c h i2 (7 ) 77 .41

Log l ik e l ih o o d  = -1990 .015 Prob > c h i2  = 0.0000

_ t | C o ef. S td . E r r . z P > |z | [95% Conf. I n te r v a l ]

ap_ l 1 .0642943 .0325554 1 .97 0 .048 .000487 .1281017

Pf 1 .3785905 .1595785 2 .37 0 .018 .0658224 .6913585

age 1 .0211054 .0083726 2 .5 2 0 .012 .0046954 .0375154

wt | -.0108855 .0043808 -2 .4 8 0 .013 -.0 1 9 4 7 1 8 -.0022993

hx I .4718573 .110972 4 .2 5 0 .000 .2543562 .6893584

hg 1 -.0068701 .0029825 -2 .3 0 0.021 -.0 1 2 7 1 5 6 -.0010245

sz  | .0164314 .0043956 3 .7 4 0 .000 .0078162 .0250467

C.5 M odels fitted to  renal cancer I study data set

d e s c r ib e  t_m t who2 who3 haem iw ccl t r t

s to r a g e  d is p la y  va lu e

v a r ia b le  name ty p e  fo rm at la b e l  v a r i a b le  l a b e l
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t_mt in t  %8.0g Days from d iag n o sis  of

m e ta s ta s is  t o  ra n d o m isa tio n

who2 b y te  %8.0g WHO PS 1

who3 b y te  %8.0g WHO PS 2

haem f l o a t  %9.0g HAEMOGLOBIN

iw ccl f l o a t  %9.0g

t r t i n t  %8. Og t r t _  TREATMENT

C.5.1 Linear model:

. s tc o x  i t_ m tl  who2 who3 ihaem l iw ccl t r t , nohr

No. of s u b je c ts  = 347 

No. of f a i l u r e s  = 322 

Time a t  r i s k  = 4507.752957

Number o f obs = 347

LR c h i2 (6 ) 122.71

Log l ik e l ih o o d  = -1552.1855 Prob > c h i2 = 0.0000

_ t | C o ef. S td . E r r . z P > |z | [95% C onf. I n te r v a l ]

t_ m tl I -.0003498 .0002028 -1 .7 3 0 .084 -.0007473 .0000476

who2 I .2527672 .1396847 1.81 0.070 -.0210097 .5265441

who3 I .833791 .1657898 5 .0 3 0 .000 .5088489 1.158733

haeml I -.2152997 .0345636 -6 .2 3 0 .000 -.2830431 -.1475563

wccl 1 .0696692 .0132308 5 .2 7 0 .000 .0437374 .095601

t r t  j -.3491271 .113224 -3 .0 8 0 .002 -.5 7 1 0 4 2 -.1272122

C.5.2 MFP model:

. f ra c g e n  i t_ m tl  - . 5

. s tc o x  i t_ m tl_ l  who2 who3 ihaem l iw cc l t r t ,  noh r
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No. o f s u b je c ts  = 347

No. of f a i l u r e s  = 322

Time a t  r i s k  = 4507.752957

Number of obs 347

Log l ik e l ih o o d  = -1547.1966

LR c h i2 (6 )  

Prob > ch i2 =

132.69

0 .0000

_ t | C o e f. S td . E r r . z P > |z | [95% Conf I n te r v a l ]

t_ m tl_ lI .0441056 .0108671 4 .0 6 0 .000 .0228065 .0654047

who 2 I .2855838 .1378819 2 .07 0 .038 .0153402 .5558274

who3 I .8871175 .1639929 5 .41 0 .000 .5656974 1.208538

haeml I -.2067895 .0344722 -6 .0 0 0 .000 .2743538 -.1392252

wccl I .06934 .0132359 5 .2 4 0 .000 .0433981 .095282

t r t  I - .3338317 .1130017 -2 .9 5 0 .003 -.55 5 3 1 1 -.1123525

C.6 M odels fitted to renal cancer II study data set

. f ra c g e n  crp> -2

. des age_ t lk _ t  l i v e r _ t  bone_t n e u tr_ u l c rp _ t

s to ra g e d is p la y v a lu e

v a r  name ty p e form at la b e l v a r i a b le  l a b e l

age b y te %8. Og

lk b y te 7.8. Og lk lymph node m e ta s ta s is

l i v e r b y te 7.8. Og l i v e r l i v e r  m e ta s ta s is

bone b y te 7.8. Og bone bone m e ta s ta s is

n e u tr_ u l i n t 7.8. Og n e u tr o p h i ls

crp i n t 7.8. Og c r p - p r o te in
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. stcox age lk  l iv e r  bone neu tr_u l crp , nohr

No. o f s u b je c ts  = 322 Number o f obs = 322

No. of f a i l u r e s  = 274

Time a t  r i s k  - 10399.67147

LR c h i2 (6 )  = 48 .78

Log l ik e l ih o o d  = -1365.6732 Prob > ch i2  = 0 .0000

_ t | C o ef. S td . E r r . z P > lz l [95*/B Conf . I n te r v a l ]

age I -.0206172 .0072866 -2 .8 3 0 .005 -.0348986 -.0063358

lk  1 .3321942 .1306681 2 .54 0.011 .0760894 .588299

l i v e r  I .3162244 .1725015 1.83 0 .067 -.0 2 1 8 7 2 4 .6543211

bone I .6104281 .1528271 3 .99 0 .000 .3108925 .9099636

n e u tr_ u l .0001386 .0000361 3 .8 4 0 .000 .0000678 .0002094

c rp _ l  I -8 .035771 3.726544 -2 .1 6 0 .031 -15 .33966 -.7318786

C.7 M odel fitted to  PB C  I study data set

. gen c e n s= c o n d (s ta tu s= = 2 ,1 ,0 )

. gen age_y=age/365.25  

. gen lnalbum in= log (a lbum in )

. gen l n b i l i r = l o g ( b i l i r )

. gen ln p ro _ tim e= lo g (p ro _ tim e)

. s t s e t  tim e cens

. s tc o x  age_y edema ln a lb u m in  l n b i l i r  ln p ro _ tim e , no h r

No. o f s u b je c ts  = 312 Number o f obs = 312

No. o f f a i l u r e s  = 125

Time a t  r i s k  = 625985
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LR chi2(5) = 199.13

Log l ik e l ih o o d  = -540 .41244 Prob > c h i2  = 0 .0000

_ t I C o ef, S td . E r r . z P > 1zI [957a C onf. I n te r v a l ]

a g e .y  . 033266 .0086598 3.84  0.000 .0162933 .0502391

edema . 784686 .2991328 2 .62  0.009 .1983967 1.370976

ln a lb u m i -3.053267 .7240783 -4.22 0.000 -4.472434 -1.634099

l n b i l i r  .879207 .0987322 8.90 0.000 .6856962 1.072719

ln p ro _ tim  3.015681 1.023797 2.95  0.003 1.009076 5.022286

C.8 M odel fitted to  P B C  II study data set

. s t s e t  tim e  dead

. d e s c r ib e  age b i l i r c i r r h  c e n t r a l  t r e a t

s to ra g e d is p la y v a lu e

v a r ia b le  name ty p e fo rm at l a b e l  v a r i a b le  l a b e l

age f l o a t  7,9. Og Age

b i l i r f l o a t  7,9. Og B i l i r u b in

c i r r h i n t  7,8. Og C ir r h o s i s  [ l= y es]

c e n t r a l i n t  7,8. Og C e n tra l  c h o le s t a s i s  [ l= y es]

t r e a t i n t  7,8. Og T reatm en t

. f ra c g e n  b i l i r  0

. s tc o x  age b i l i r _ l  c i r r h  c e n t r a l  t r e a t ,  nohr

No. o f s u b je c ts  = 207 Number o f obs = 207

No. o f f a i l u r e s  = 105
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Time a t  r i s k  = 313913

LR c h i2 (5 )  = 136.81

Log l ik e l ih o o d  = -422.14087 Prob > ch i2  = 0 .0000

C oef. S td . E r r . z P > lz | [95% Conf. I n te r v a l ]

age .046440 .0109895 4 .2 3 0 .000 .024901 .067979

b i l i r _ l 1.078658 .1300643 8 .2 9 0 .000 .823736 1.333579

c i r r h .924442 .214637 4 .31 0 .000 .503761 1.345123

c e n t r a l .769449 .2657023 2 .90 0 .004 .248683 1.290217

t r e a t -.498985 .2016777 -2 .4 7 0 .013 -.8 9 4 2 6 6 -.1 0 3 7 0 4

C.9 M odel fitted to  lymphom a study data set

C.9.1 M odel I:

. s tc o x  ip i_ d d l  i p i ._dd2, nohr

No. o f s u b je c t s  = 73 

No. o f f a i l u r e s  = 48 

Time a t  r i s k  = 332.0099985

Log l ik e l ih o o d  = -176 .8355

Number o f obs

LR c h i2 (2 )  

Prob > c h i2

73

7 .55

0 .0229

_ t  C o e f. S td . E r r . z P > |z f [95% C onf. I n te r v a l ]

ip i_ d d l  .9873513 

ip i_ d d 2  .8289193

.458733 

.348052

2 .1 5  0 .031  

2 .3 8  0 .017

.0882512 1.88645 

.1467487 1.51109
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C.9.2 M odel II:

. s tc o x  ip i_ d d l  ip i_ d d 2  o u tc o m e _ p re d ic to r_ sc o re , nohr

No. o f s u b je c ts  = 73 Number of obs = 73

No. o f f a i l u r e s  = 48

Time a t  r i s k  = 332.0099985

LR c h i2 (3 ) 17 .64

Log l ik e l ih o o d  = -171 .79222 Prob > c h i2  = 0 .0005

_ t C oef. S td . E r r . z P > |z | [95% Conf. I n te r v a l ]

ip i_ d d l 1.042206 .4620482 2 .26 0 .024 .136608 1.947804

ip i_ d d 2 .718093 .3509191 2 .0 5 0.041 .030305 1.405883

gene_17 .719341 .2268566 3 .1 7 0 .002 .274710 1.163972
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