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Abstract

NK cell function is regulated by Killer-cell Immunoglobulin-like Receptors (KIR) some 

of which recognise class I Major Histocompatibility Complex molecules. KIRs have 

been shown to exhibit a high degree of functional diversity which is generated at several 

levels. However, the functional relevance of this diversity remains largely unknown. 

This thesis describes our approach towards elucidating the functional relevance of KIR 

diversity. To study this we first compiled all known KIR sequences into a database. We 

developed bioinformatics tools to facilitate the study of these sequences and have made 

both the tools and database publicly accessible online. Subsequent efforts were directed 

towards investigating the structural impact of KIR polymorphism by means of 

molecular modelling software. The results that were generated by this approach have 

provided information with regards to the ligand binding properties of most activating 

KIR proteins. In addition, we have also developed a KIR gene typing system capable of 

detecting all known KIR genes as well as the alleles of five of the KIR proteins for 

which a ligand has been described. We have implemented this KIR typing system to 

three different sample panels: a reference panel of more than 100 B-lymphoblastoid cell 

lines (BLCL), a family based KIR haplotype segregation study and a cohort of 141 

unrelated donor (UD) haematopoietic stem cell transplant pairs. Our investigations have 

allowed us to generate the largest KIR typing reference panel, to characterise the KIR 

profile of a Mexican Mestizo population and to investigate the clinical relevance of 

KIRs in UD-Haematopoietic Stem Cell Transplantation (HSCT). Our results 

demonstrate that the beneficial effect of NK alloreactivity in the Graft-versus-Host 

direction as predicted by Ruggeri’s algorithm cannot be applied to the UD-HSCT 

setting. In addition, I describe our findings relating to the clinical role of KIR genes and 

alleles in the UD-HSCT cohort.
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Chapter 1

Chapter One

Introduction

1.1 The Immune System and its origins

The immune system is a specialised network of cells and tissues that enable the 

organism to maintain its integrity by fending off microbial pathogens and limiting the 

dissemination of malignantly transformed cells. The immune system of humans and 

higher vertebrates consists of two main parts: an innate component capable of 

establishing immediate responses and an adaptive component capable of generating 

prolonged and highly specific responses. In addition, each of these immune system 

components relies on cellular and humoral effectors to function. Defensive mechanisms 

capable of distinguishing between self and non-self have been developed by all living 

multi-cellular organisms as a way to preserve their integrity. Microbial infections have 

represented the greatest threat to the integrity of all living organisms. Therefore, the 

development of a highly specialised system capable of recognising and eliminating such 

pathogenic incursions was of great biological importance during the early phases of the 

evolution of life on Earth. Multi-cellular organisms have evolved different types of 

physical, chemical and cellular mechanisms of self-preservation and of non-self 

eradication which are referred to collectively as the immune system.

The immune system enables organisms to preserve their integrity by protecting them 

against assimilation by other aggressive organisms (avoiding cell fusion), by protecting 

them from damage and aiding in the repair of damage, by protecting them from 

pathogenic incursions as well as by protecting them against endogenous cellular 

incursions which stray away from the organisms well being (tumours).

There is vast evidence supporting the idea that defensive mechanisms were evolved 

early on during the evolution of life on Earth. The first protective adaptation of early
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organisms probably involved the use of physical barriers to separate self from non-self. 

Evidence of physical protective barriers include the siliceous shell produced by diatoms, 

the fibrous bark covering some plants, the cuticle of nematodes, the exoskeleton of 

arthropods and later on in evolution the use of scales in reptilians and subsequent 

development of a keratinised skin layer by mammals.

In addition to this physical barrier approach, most early multi-cellular plants, animals, 

fungi and protists also developed a chemical arsenal of soluble substances capable of 

stopping pathogen invasions. This earliest form of humoral immunity evolved soon 

after the eukaryote explosion and around 1.6 to 2.1 billion years ago (Knoll 1992). 

Evidence of this humoral mechanism is seen amongst organisms as distant from human 

being as plants and amoebas. Most green plants have evolved the use of defensins to 

protect them from invading pathogens (Sharma and Lonneborg 1996), a similar 

mechanism is used by entamoebas to prevent bacterial infections (Boisson et al. 2003) 

and several types of land based snails use agglutinins in a similar manner (Ishiyama and 

Yamaguchi 1966), see figure 1.1.

Later on and with the appearance of protostomes, many multicellular organisms refined 

the existing humoral defences by organising them into proteolytic cascades (Pinter and 

Friedrich 1988; Udvardy 1993). However, it is not until Echinoderms emerge that the 

proteolytic cascades resemble the Complement System of higher vertebrates (discussed 

below) (Smith et al. 1996). Similarly, early protostomes developed novel types of 

specialised antigen receptors such as Toll receptors (Pujol et al. 2001) as well as the 

ancestors of the Immunoglobulin Super Family of receptors (Ig-SF) (Williams 1984; 

Harrelson and Goodman 1988). Although the origin of the immunoglobulin V-domain 

has been traced back to the origins of the animal kingdom (Blumbach et al. 1999), 

V -dom ain genes only achieve high diversity with the appearance of the 

cephalochordates (Cannon et al. 2002).

Although the constitutive defence mechanisms that comprise innate immunity arose 

more than 1.5 billion years ago, it is not until 600 million years later that bilaterians 

evolve cells specifically dedicated to the protection of their integrity (immunocytes) 

(Dameshek 1963; Bussard and Hannoun 1965).
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Several members of the lophotrocozoa branch of the protostomes have been shown to 

possess phagocytic cells capable of ingesting microbial pathogens (such as the 

hemocytes of the land snail) (Vostal 1969) or pathogen infected cells (such as the 

coelomocytes of the earthworm) (Hess 1970; Hostetter and Cooper 1972). Primordial 

lymphocytes have been found in several echinoderms (Manolescu and Micu 1982) and 

lymphocyte populations emulating B and T cell functions have been demonstrated in 

both hagfish and lampreys (Hansen and Zapata 1998; Zapata and Amemiya 2000). 

Nevertheless, it is not until gnathostomes (jawed vertebrates) appear on Earth, between 

380 and 450 million years ago, that innate immunity is complemented with a novel, 

complex, highly sophisticated and fine-tunned defensive system known as adaptive 

immunity (Terzian and Stahler 1960).

The main features of the adaptive immune system are first seen in cartilaginous-fish 

(sharks and rays) with the emergence of the Major Histocompaibility Complex (MHC) 

(Kandil et al. 1996), the adoption of a compartmentalised immune system (Zapata 

1981) and with the generation of present day T-cell receptor (TCR) and 

immunoglobulin diversity (mainly the result of transposon invasion) (Charlemagne et 

al. 1998; Litman et al. 1999; Bengten et al. 2000).

The immediately effective innate immune response constitutes the first line of defence 

against pathogenic incursions and cellular transformation for most living vertebrates. In 

fact, as shown in figure 1.1, the innate immune system remains the only line of defence 

for more than two million species and more than 20 phyla of invertebrates (Rinkevich 

2004). Many of the chemical and cellular features of this system are shared amongst 

these organisms and between plants and fungi (Schulenburg et al. 2004). In the majority 

of cases, the innate immune system limits the progression of the immune insult and 

dispenses with a need for adaptive immune responses. Even in the rare cases where the 

participation of the adaptive immune system is required, the innate immune system is 

capable of guiding the T and B cell responses by modulating dendritic cell migration to 

secondary lymphoid organs (Mailliard et al. 2003). Therefore the innate immune system 

is not only capable of responding to immune challenges during the prolonged periods 

required to activate the adaptive responses but also involved in dictating the time of 

initiation and direction of the adaptive immune response. These findings suggest that
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the innate immune system, despite being the ancestral immune system, has not been 

made redundant by the appearance of the adaptive immune system but plays a 

fundamental role in human immune responses and survival. In the following paragraphs 

I describe the main features of the human adaptive and innate immune systems.

1.2 The Adaptive Immune System

The human immune system is a much more sophisticated version of the immune system 

seen in the first jawed vertebrates. As mentioned previously, jawed vertebrates were the 

first organisms to possess compartmentalised immune systems. The emergence of 

organs and tissues that are specifically dedicated to immune functions (lymphoid 

organs) is also a hallmark of adaptive immunity (Hansen and Zapata 1998; Zapata and 

Amemiya 2000).

Human lymphoid organs are classified into central (primary) lymphoid organs involved 

in the generation of immune effector cells and into peripheral (secondary) lymphoid 

organs involved in immune surveillance. Central lymphoid organs include the 

embryonic yolk sack, the foetal liver as well as the adult thymus and bone marrow. 

Peripheral lymphoid organs include the lymph nodes, spleen, the Gut-Associated 

Lymphoid Tissue (GALT) which includes the tonsils, adenoids, appendix and Peyer’s 

patches, the Bronchial-Associated Lymphoid Tissue (BALT) as well as the Mucosal- 

Associated Lymphoid Tissue (MALT). The central and peripheral lymphoid organs are 

linked via the circulatory system as well as by an intricate network of vessels known as 

the lymphatic system. The bone marrow is of particular importance as it is the main 

source of immune effector cells in adults. Immune effector cells are generated in the 

bone marrow through a process known as haematopoiesis. All of the cellular 

components of blood originate from haematopoietic stem cells present in the bone 

marrow, including the oxygen transporting erythrocytes, the blood clotting 

thrombocytes as well as the lymphoid and myeloid effector cells of the innate and 

adaptive immune systems (Aschkenasy 1960).
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1.2.1 Cellular effectors of the Adaptive Immune System

Whereas the innate immune system employs several different types of leucocytes to 

carry out its functions (see below), the adaptive immune system relies on highly 

specialised lymphocytes called B and T cells. These lymphocytes are produced by bone 

marrow stem cells and are responsible for the two main effector mechanisms of the 

adaptive immune system, the humoral and cellular components. The lymphocytes of the 

adaptive immune response employ antigen-specific receptors which achieve high levels 

of diversity through the rearrangement of their genes.

The humoral component of the adaptive immune system relies on B-lymphocytes. 

Primed B-lymphocytes mature into plasma cells that express and secrete highly specific 

immunoglobulins commonly known as antibodies. These immunoglobulins inactivate 

antigens mainly by neutralisation, opsonisation and complement fixation (discussed 

below). An antigen, initially defined as a substance capable of stimulating antibody 

generation, is currently defined as any molecule capable of eliciting an immune 

response. Antibodies are directed towards eliminating extra-cellular pathogens or 

soluble toxins produced by them.

The cellular component of the adaptive immune response relies on T-lymphocytes 

which although originate in the bone marrow, undergo education and maturation in the 

thymus. T-lymphocytes are involved in cell-mediated immune responses against 

several types of intra-cellular pathogens including bacteria, parasites and virus. Two 

functionally distinct types of T-lymphocytes are known to exist, phenotypically 

distinguished by their surface expression of CD4 and CD8 molecules. CD8 expressing 

T-lymphocytes, also known as cytotoxic T-lymphocytes (CTL) are directly involved in 

the killing of pathogen-infected cells (O'Rourke and Mescher 1992) while CD4 

expressing T-lymphocytes are involved in the activation of macrophages (TH1 subset), 

B-lymphocytes (TH2 subset) (Mosmann and Coffman 1989) and CTL’s (Fleischer et al. 

1986).

To carry out these functions, T-lymphocytes make use of a highly specific antigen 

receptor and member of the Ig-SF known as the T-Cell Receptor (TCR). Two types of
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TCR are known to exist, the apTCR expressed by most T-lymphocytes, and the y&TCR 

expressed by a minority of T-lymphocytes. Most T-lymphocytes use the a|3TCR to 

recognise antigenic peptides, however, the role of the y&TCR in antigen-recognition 

remains unclear. The apTCR is a membrane-bound heterodimer of aand  p heavy 

chains. The membrane-distal domains of each heavy chain form the variable region of 

the TCR (the V a and Vp domains), while the membrane-proximal domains of each 

heavy chain form the constant region of the TCR (the C a and Cp domains).

1.2.2 The Major Histocompatibility Complex and HLA molecules

Unlike antibodies, the TCR is not able to recognise antigens on their own. 

T-lymphocyte receptors are only able to recognise antigens that have been captured by 

other cells known as Antigen Presenting Cells (APC). These antigens are presented by 

APC to T-lymphocytes by means of antigen-presenting proteins of the Major 

Histocompatibility Complex (MHC) known in humans as HLA molecules, in a process 

known as MHC restriction (Zinkernagel and Doherty 1974). Two structurally similar 

classes of HLA molecules carry out different functions, HLA class I molecules present 

peptides generated endogenously in the cytosol of cells, whereas HLA class II 

molecules present exogenous peptides originating from intracellular vesicles. In 

addition, dendritic cells can capture exogenous antigens and present them via the HLA 

class I pathway in a process known as cross-presentation. Depending on the type of 

antigen that is captured (self versus foreign antigens), this process can lead to either the 

deletion of autoreactive CD8 T cells (cross-tolerance) (Kurts et al. 1997; 

Merkenschlager et al. 1999) or to the stimulation of cytotoxic immunity (cross-priming) 

(Bevan 1976). The TCR:HLA interaction also involves the recognition of other co­

receptors to take place, such as CD4 and CD8 molecules. CD8 expressing T- 

lymphocyte a|3TCR interact with HLA class I molecules, whereas CD4 expressing T- 

lymphocyte a|3TCR interact with HLA class II molecules (McMichael 1980; Salter et 

a l  1989).

HLA molecules are also members of the Ig-SF and are the most polymorphic germline 

encoded proteins present in humans. Six isoforms of HLA class I molecules are known 

to exist including the classical HLA-A, -B, -C and the non-classical HLA-E, -F and -G.
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HLA class I molecules are expressed by most nucleated cells and thrombocytes. HLA 

class I molecules are composed of a single membrane-bound glycoprotein heavy chain 

associated to a smaller p2-microglobulin. Whereas the heavy chain component is 

characterised by a high level of polymorphism, the p 2-microglobulin unit is 

monomorphic and encoded in a different chromosome (15q21). The HLA-A, -B and -C  

heavy chains are highly polymorphic, whereas the heavy chains of HLA-E, -F and -G  

only exhibit limited polymorphism. The extracellular domains of the HLA class I heavy 

chain are designated c^, a 2 and a 3, from the most membrane-distal domain to the most 

membrane-proximal domain, respectively. The tertiary structure formed by the a } and 

a 2 domains is such that a peptide-binding groove is formed between them (Bjorkman et 

al. 1987a; Bjorkman et al. 1987b). This peptide-binding groove is delimited by two 

a-helices, one from the a! domain and the second from the a 2 domain. The floor of the 

peptide-binding groove is generated by a p-pleated sheet formed by both the a 2 and a 2 

domains. The HLA class I peptide-binding groove can accommodate peptides that are 

between eight and 10 amino acid residues long. Whereas classical HLA class I proteins 

are involved in the presentation of endogenous peptides, the non-classical HLA-E is 

involved in the presentation of nonameric peptides derived from the leader sequence of 

other class I HLA proteins. HLA-E allows the immune system the capacity to monitor 

the overall expression of HLA proteins by means of other lymphocytes (described 

below). The function of HLA-F remains unknown. However, HLA-F and HLA-G have 

been proposed to protect the foetus from maternal immune recognition by being the 

predominantly expressed HLA proteins on foetal extravillous cytotrophoblast (FEC) 

cells (Ellis et al. 1989). The MHC class I-related chains A and B (MICA and -B ) 

proteins do not associate to p2-microglobulin nor present antigenic peptides. They are 

expressed by stressed gastro-intestinal epithelial cells and act as heat shock proteins. 

These MHC-related proteins have been shown to interact with ySTCR expressing 

intraepithelial T-lymphocytes (Fodil et al. 1996).

Five isoforms of HLA class II molecules are known to exist: HLA-DR, -DQ, -DP, -DM 

and -DO. HLA class II molecules are expressed only by immune cells and endothelial 

cells. HLA class II molecules are membrane-bound heterodimers of a  and p heavy 

chains. The level of polymorphism exhibited by these chains varies amongst the 

different isoforms. Both the a  and p heavy chains possess two extracellular domains.
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The most membrane-distal domain of the a  chain is known as the domain while the 

membrane-proximal domain is the a 2 domain. Similarly, the most membrane-distal 

portion of the |3 chain is the Pj domain, while p2 is the most membrane-proximal portion 

of the molecule. The two membrane-distal domains of the a  and p heavy chains form a 

similar peptide-binding groove as that described for HLA class I molecules (Stem et a l  

1994). The HLA class II peptide-binding groove is delimited by two a-helices, one 

formed by the membrane-distal d j domain and a second one formed by the 

membrane-distal Pj domain. The floor of the peptide-binding groove is generated by a 

P-pleated sheet formed by both the Pj and p2 domains. The HLA class II 

peptide-binding groove can accommodate longer peptides (between 12 and 24 amino 

acid residues) than the HLA class I peptide-binding groove. The TCR binds both HLA 

class I and class II molecules with a similar orientation. The binding of HLA class I 

molecules by apTCR depends on the interaction of the V a  and Vp domains of the TCR 

with the a t and a 2 domains of the HLA molecule, respectively. The binding of HLA 

class II molecules by apTCR depends on the interaction of the V a and Vp domains of 

the TCR with the pt and a! domains of the HLA molecule, respectively. In both cases, 

this orientation allows the TCR to “see” the peptide being presented (Ding et al. 1998).

The HLA proteins are encoded in the MHC region located on chromosome 6 (6p21.3) 

(Trowsdale 1995). The MHC region contains in excess of 220 genes, 40% of which 

encode proteins with immune functions. These include the class I genes, the HLA class

II genes as well as the MICA and MICB genes (The MHC sequencing consortium 

1999). The HLA encoding portion of the MHC spans approximately 4 million bases 

(Mb) and is divided into three regions: the class II region (most centromeric), the class

III region and the class I region (most telomeric). The class II region contains the genes 

encoding for HLA class II molecules and the class I region contains the genes encoding 

for the HLA class I molecules. The class III region contains several types of genes, 

including those encoding the proteins of the complement system (discussed below). A 

prototypical class I gene is comprised of 8 exons which together span approximately 

1100 base-pairs (bp). Exon 1 encodes the leader peptide, exon 2, 3 and 4 encode the a lf 

a 2 and a 3 protein domains, exon 5 encodes the transmembrane region and exons 6 and 7 

together encode the cytoplasmic portion of the HLA molecule. The polymorphism of 

HLA class I molecules is mostly concentrated on exons 2 and 3 (Parham et a l  1988).
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The MHC represents the most polymorphic genetic system known to exist in higher 

vertebrates (Marsh et al. 2000). The polymorphism exhibited by this gene complex 

constitutes the hallmark of the adaptive immune system and is achieved by selection for 

diversity exerted by pathogen pressures (Hughes and Nei 1988). More than 1800 HLA 

alleles have been described as of November 2004, and more than 500 of them have been 

described for the most polymorphic HLA-B locus (personal communication; S.G.E. 

Marsh).

1.3 The Innate Immune System

Adaptive immunity is a highly refined and complex component of the immune system 

capable of eliciting strong and efficient responses against pathogens with extreme 

specificity and duration. However, this sophisticated branch of the immune system only 

comes into play after the pathogen has breached innate barriers to infection. The innate 

arm of the immune system is comprised of germ-line encoded mechanical, chemical, 

cellular and humoral barriers to infection.

The first innate barriers that any pathogen must breach to establish an infection is the 

physical boundary marked by the epithelial lining that isolates us from the outer 

environment. These epithelial surfaces include the skin as well as the mucous 

epitheliums of the gastrointestinal, respiratory and genitourinary tracts. In addition to 

the mechanical restrictions imposed by these cell layers, the chemical and biological 

properties of the secretions of these tissues impose another innate barrier to infection. If 

a pathogen manages to breach these first defences, it will go on to face a biological 

army of cells and molecules capable of limiting and usually ending the pathogenic 

incursion.

Pathogens that breach the mechanical barriers imposed by the epithelial surfaces of the 

body trigger the activation of the humoral arm of the innate immune system represented 

mainly by natural antibodies as well as by the factors of the complement system. The 

complement system derived its name from the fact that it is complementary to the effect 

of antibacterial antibody activities. The complement system comprises a large group of 

plasma proteins that opsonise and permeate pathogen membranes and help to induce a
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localised inflammatory response. Opsonisation refers to the modification of pathogen 

membranes that facilitate their ingestion or destruction by some cellular components of 

the innate immune system (Potter and Stollerman 1961).

The innate immune system also relies on a cellular component to defend the organism 

from invading pathogens. This cellular component relies on the activity of phagocytes, 

granulocytes and a special type of lymphocyte known as the Natural Killer (NK) cell. 

Phagocytes constitute the first line of cellular defence employed by the innate immune 

system. Granulocytes (also known as polymorphonuclear leukocytes) are bone marrow 

derived cells, and the dominant type of white blood cell present in blood. The biology 

of NK cells will be discussed later in this chapter.

Phagocytes are a long-lived (months to years), specialised set of leukocytes derived 

from bone marrow granulocyte/monocyte progenitor cells. They are specially adapted to 

the ingestion and digestion of pathogens, foreign particles and cellular debris. 

Phagocytes can either be circulating in peripheral blood (monocytes) or exist as 

residents of particular tissues (macrophages). Specialised tissue phagocytes include the 

microglia of the central nervous system, alveolar macrophages, liver Kupffer cells, 

splenic macrophages, kidney mesangial phagocytes, resident macrophages of the lymph 

nodes, synovial A cells of the joints and peritoneal macrophages. These tissue 

macrophages are activated by pathogens in two ways: by the direct detection of 

pathogen related antigens by means of pattem-recognition receptors as well as by the 

indirect detection of ‘Danger Signals’ derived from tissue damage. Innate immunity 

employs germ-line encoded and non-rearranging antigen receptors to recognise 

common features of large pathogen groups (Ozinsky et al. 2000). These ‘non-specific’ 

receptors are specially adapted to rapidly discriminate self from non-self without the 

time lag dictated by their clonal expansion. The recognition of these ‘infection beacons’ 

stimulates tissue macrophages to secrete cytokines and chemokines, which include: 

interleukin-1 (IL-1), IL-6, IL-12, Tumour Necrosis Factor (TNF)-a and IL-8. These 

cytokines are released into the circulation and further strengthen the immune response 

to pathogen incursions in three ways: they initiate a localised inflammatory response; 

they recruit circulating leucocytes to the infection site and they initiate an induced 

innate immune response mediated by better equipped immune cells, such as
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peripherally circulating granulocytes and NK cells. In addition, damaged tissue, 

especially virally infected cells, secrete abundant amounts of Interferon (IFN)-a and 

IFN-(3, cytokines which recruit NK cells to the site of infection and activate them.

Neutrophils are the most common type of immune effector cell encountered in 

peripheral blood, where they comprise nearly 90% of all leukocytes. They participate in 

the phagocytosis of pathogens and damaged cells. Their cytoplasmic granules contain 

different types of enzymes capable of disrupting bacterial cell walls such as nuclease, 

lipase, phospholipase, a-amylase, elastase, collagenase, lysozyme, myeloperoxidase 

and cationic proteins.

Eosinophils comprise between 2 and 5% of peripherally circulating leukocytes. 

Although mainly seen as circulating leukocytes, they can also be common residents of 

certain tissues exposed to constant pathogen incursions such as the gastrointestinal, 

respiratory, urinary and reproductive epitheliums. Their granules contain several 

products including enzymes such as acid-phosphatase, glucuronidase, cathepsins, 

ribonuclease, histaminase, aryl sulphatase and peroxidase. They are functionally capable 

of phagocytosis, they regulate mast cell activity and are involved in the innate immune 

response against organisms (like helminthes) that exceed the phagocytic capacity of 

other granulocytes.

Basophils and Mast cells together comprise between 0.2 and 1% of peripherally 

circulating leukocytes. Their granules contain heparin, histamine, decarboxylase, 

histidine, dehydrogenase and diaphorase. Heparin prevents the formation of a blood clot 

while histamine has the ability to increase vascular permeability. Cytokines produced 

by basophils further enhance the recruitment of other leukocytes to the infection site. 

Mast cells are almost never peripherally circulating leukocytes, they are mainly found 

in lymph nodes, spleen, bone marrow, peripheral nervous system, endocrine glands and 

throughout the skin.

Natural Killer cells are lymphocytes and the most sophisticated of the cellular 

components of the innate immune system. NK cells have the ability to lyse susceptible 

target cells without prior sensitization by means of Antibody Dependent Cellular

37



Chapter 1

Cytotoxicity (ADCC) (Trinchieri 1989) and natural cytotoxicity and are key producers 

of immunoregulatory cytokines such as IFN-y (Mond and Brunswick 1987).

1.4 Natural Killer Cells
Natural Killer (NK) cells are cytotoxic effector lymphocytes of the innate immune 

system which do not rearrange T-cell receptors or immunoglobulin genes and do not 

express antigen-specific cell-surface receptors (Trinchieri 1989).

NK cells are bone marrow derived, large granular lymphocytes more voluminous than 

B or T-lymphocytes that are present in peripheral blood. They were initially identified 

by their ability to spontaneously kill tumour cells without prior sensitisation 

(Herberman et al. 1975a; Kiessling et al. 1975a; Kiessling et al. 1975b). NK cells 

comprise approximately 10% of all peripheral blood lymphocytes and number 

approximately 64,000 cells/mL in the peripheral blood of healthy individuals (Miller 

2002). NK cells are capable of carrying out two main effector functions: cell 

cytotoxicity and cytokine secretion. Phenotypically NK cells express CD56 cell surface 

molecules (a neural-cell adhesion molecule isoform whose function in NK cells remains 

unknown) and lack the CD3 cell surface marker (involved in TCR signal transduction) 

(Lanier et al. 1989; Moretta et al. 1989b).

1.4.1 Natural Killer cell phenotype and subsets

Natural Killer cell populations, in a similar fashion to T cells, have been shown to be 

heterogeneous with respect to surface antigen expression. Two phenotypic subsets 

defined by the cell-surface expression-density of CD56 (figure 1.2) have demonstrated 

distinctive functional roles (Nagler et al. 1989; Caligiuri et al. 1990; Baume et al. 1992; 

Cooper et al. 2001a).

The majority, 90%, of the circulating NK cells are CD56D,m and CD16Bnght and represent 

the effector population responsible for natural cytotoxicity and Antibody Dependent 

Cellular Cytotoxicity (ADCC) (Moretta et al. 1990a; Moretta et al. 1990b). In contrast, 

only 10% of the circulating NK cells are CD56Bright, 60% of which are also CD16Negadve, 

the remaining 40% expressing low levels of CD16 (CD16Dim). The CD16Dim/negative subset 

acts as a reserve pool of NK cells as it is capable of proliferating vigorously but have
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limited cytotoxic capacity. CD 16 is a low-affinity crystallisable region (Fc) y receptor 

and constitutes the only Fc receptor expressed by NK-cells (Trinchieri 1989). CD16 

binds to antibody-coated (opsonised) targets and has the capacity to trigger activating 

signals by means of Immunoreceptor Tyrosine-based Activation Motifs (ITAM) located 

on associated protein subunits. These CD 16 expression differences are responsible for 

the differential participation in ADCC of the two NK cell subsets, as will be discussed 

below.

The two NK cell subsets express similar levels of receptors for monocyte-derived 

cytokines which include IL-1, IL-10, IL-12, IL-15 and IL-18 (Carson et al. 1994; 

Fehniger et al. 1999; Wang et al. 1999). However, the NK cell subsets differ in the 

expression of IL-2 receptor, c-kit receptor expression, MHC-receptor repertoire 

(Killer-cell Immunoglobulin Receptors and C-Type Lectin-like Domain receptors), 

chemokine receptor and adhesion molecule expression. These differences relate to the 

differential proliferative responses, cytotoxic activities and trafficking profiles of the 

two NK cell subsets (Cooper et al. 2001b).

The differential expression of chemokine receptors and adhesion molecules by the two 

subsets of NK cells is indicative of differential trafficking. The fact that the CD56Bnght 

subset expresses high levels of L-selectin (CD62L) and Chemokine Receptor 7 (CCR7) 

is suggestive of secondary lymphoid tissue homing, where these NK cells might be 

involved in the regulation of the adaptive T and B cell responses. In contrast, CCR7 and 

L-selectin expression in the CD56Dim subset is negligible, a difference that is suggestive 

of differential trafficking (Frey et al. 1998; Campbell et al. 2001). This functional 

dichotomy of NK cell subsets is reminiscent of the regulatory CD4 and effector CD8 

population subsets observed in T-lymphocytes, respectively (Robertson 2002).

The distinction of these CD56Bnght and CD56Dim subsets can only be carried out with 

confidence in resting NK cells, as the expression of the CD56 antigen is up-regulated 

after the activation of the CD56Dim subset, achieving similar expression levels to that of 

the CD56Bnght subset (Robertson et al. 1990; Caligiuri et al. 1993). Resting NK cells of 

both subsets exhibit different levels of cytotoxicity, cytokine production and 

proliferation, and these functional properties can be augmented by stimulating them
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with IL-2, a process which is known as the Lymphokine-Activated Killer (LAK) 

phenomenon (Miller 2002).
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Figure 1.2. Functional and phenotypic subsets of NK cells. The two phenotypic and functionally 

distinct subsets of human NK cells express different levels of CD56 antigen, adhesion molecules, MHC- 

receptors, cytokine receptors and other co-receptors. These differences relate to their differential 

trafficking, proliferative responses and cytotoxic activities.
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CD56Bright Natural Killer Cells

The NK cells of the CD56Bnght subset comprise approximately 10% of the population 

circulating in peripheral blood and have been considered by some researchers to be the 

precursors to the CD56Dim subset. Resting NK cells of the CD56Bnght subset possess 

negligible levels of CD 16 expression. They are characterised functionally by their 

potent capacity to proliferate but weak cytolytic activity. The high-proliferative activity 

of the CD56Bnght subset is a consequence of their expression of the high-affinity afty 

heterotrimeric IL-2 receptor (Caligiuri et al. 1990). The resting NK cells of this subset 

proliferate vigorously and secrete copious amounts of IFN-y when stimulated with IL-2 

alone or IL-2 or IL-15 in combination with IL-12. The fact that CD56Bnght NK cells do 

not require a co-stimulus to initiate their proliferative response to IL-2 is consistent with 

their immediate and non-specific involvement in early immune responses (Cooper et al. 

2001a). These functional features of CD56Bnght NK cells are suggestive of an 

immunoregulatory role similar to that observed in CD4 T-lymphocytes (Cooper et al. 

2001b).

CD56Dim Natural Killer Cells

CD56Dim cells comprise approximately 90% of the NK cells circulating in the peripheral 

blood. They express low levels of the CD56 antigen but high levels of CD 16. The NK 

cells of this subset are the mediators of ADCC. They correspond to a more mature and 

effector subset of NK cells than the CD56Bnght subset. These NK cells exhibit potent 

cytolytic activity but possess a lower capacity to proliferate and secrete cytokines in 

comparison to the CD56Bnght subset (Lanier et al. 1986). The lower proliferative 

capacity of this subset is dictated by the expression of the low-affinity |3y common 

chains of the IL-2 receptor. The cells of this subset also express the IL-15 receptor, the 

stimulation of which leads to increased cytotoxicity, proliferation and cytokine 

secretion (Caligiuri et al. 1990; Carson et al. 1994). However, these cells produce 

relatively little IFN-y after stimulation with IL-2 or IL-15 in combination with IL-12 

(Robertson 2002). The CD56D,m NK cell subset is functionally similar to the terminally 

differentiated effector CD8 T-lymphocytes (Robertson and Ritz 1990). Interestingly, 

approximately 30% of the CD56Dim subset of NK cells expresses the CD8 co-receptor
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(Miller et al. 1992a). However, the CD8 co-receptor present on CD56Dim NK cells is 

predominantly composed of a  chains, whereas that of CTL is composed of both a  and (3 

chains (Baume et al. 1990).

Uterine CD56Bright Natural Killer Cells

Although CD56Bnght cells comprise only 10% of peripherally circulating NK cells, they 

comprise the main population of lymphocytes present in human endometrial mucosa, 

where they comprise approximately 70% of the decidual leukocytes (King et al. 2000). 

The uterine CD56Bnght NK (uNK) cells exhibit similar levels of cytokine production and 

cytotoxicity as those observed in peripherally circulating CD56Bnght NK cells. However 

uNK cells differ from peripherally circulating CD56Bnght NK in that the former are 

regulated by reproductive hormones (particularly by the Leutenising Hormone) and are 

probably involved in the control of trophoblast invasion (King et al. 1989; Ho et al. 

1996).

1.4.2 Lineage commitment and development of Natural Killer Cells

NK cells are derived from bone marrow CD34+ hematopoietic progenitor cells and 

require cytokines present in the bone marrow environment to mature. The development 

of CD56Bnght NK cells requires NK progenitors to adopt a CD34+IL-2/IL-15R|3+CD56' 

intermediate phenotype which then evolves into a mature CD56+ NK cell in response to 

IL-15. However, this is not thought to occur for the CD56dim population of NK cells, 

whose lineage development remains unknown (Fehniger et al. 1999).

Phenotypic and functional NK cell differentiation can be accomplished in vitro by 

culturing adult bone marrow stem cells in direct contact with allogeneic bone marrow 

stroma and IL-2 (Miller et al. 1992b; Miller et al. 1994). In humans, IL-15 produced by 

bone marrow stromal cells and macrophages has been shown to be a crucial factor 

determining NK cell development and survival (Carson et al. 1994). In fact IL-15 was 

initially described as being the bone-marrow-derived product responsible for the 

differentiation of haematopoietic cells into NK cells in vitro (Mrozek et al. 1996). IL-15
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has also been shown to stimulate the differentiation of CD56Bnght NK cells from cord 

blood CD34+, foetal liver CD34+CD38+/' and thymocyte progenitors (Fehniger and 

Caligiuri 2001). However, a certain degree of stroma-free differentiation of NK cells 

has also been documented, provided stem cell progenitors receive supplemental 

primitive acting factors (Silva et al. 1994; Yu et al. 1998). These primitive acting 

factors (Flt3 ligand, c-kit ligand stem cell factor and IL-3) are thought to enhance NK 

cell development by interacting with their receptors present in some NK cell progenitors 

(Miller et al. 1994; Miller et al. 1999). Other factors that might be involved in the 

development of the NK cell lineage include the transcription factors Id3 (Jaleco et al. 

1999; Rivera et al. 2000), Ets-1 (Barton et al. 1998) and TCF-1 (Ohteki et al. 1996).

In contrast, CD56DimNK cells have never been generated in vitro (Cooper et al. 2001a). 

Several possibilities have been postulated as likely developmental pathways for these 

CD56Dim NK cells. These include: 1) the existence of a different, currently unknown 

progenitor; 2) the requirement for other co-stimulus or contacts for the development of 

a common CD56Bnght and CD56Dim progenitor and 3) the differentiation of CD56Bnght 

cells into CD56Dim NK cells by means of an unknown mechanism (Cooper et al. 2001a). 

Based on in vitro studies of NK cell development from lineage-negative CD34 stem 

cells, it is currently thought that the acquisition of CD56 expression is an early event 

which is followed by the expression of CTLD receptors, other activating receptors as 

well as of the CD 16 marker, whereas the expression of KIR has been suggested to be a 

late differentitation event (Perussia et al. 2005).

1.4.3 Biological roles for Natural Killer Cells

Antibody-Dependent Cellular Cytotoxicity

In humans, Antibody-Dependent Cellular Cytotoxicity (ADCC) is mediated by a 

complex of receptors which include the membrane bound IgG-binding receptor 

FcyRIIIA (CD 16) which is non-covalently associated to disulfide linked hetero- and 

homodimmers of CD3£ and FceRIy (Vivier et al. 1991). ADCC results from the 

recognition of IgG-coated target cells by the CD 16 Fc receptor present in NK cells. IgG 

antibodies bind to pathogen-derived antigens present in the surface of target cells. NK 

cell recognition of these antibody-coated target cells triggers their cytotoxic activity
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leading to the release of granules containing perforin and granzyme B (Cordier et a l  

1976). ADCC plays an important role in protective immunity against viral infections by 

inhibiting viral replication and cell-to-cell infection by killing virally infected cells 

before the maturation and budding of viral particles (Shore et al. 1976; de Noronha et 

a l  1977; Hildreth et a l  1999).

Natural cytotoxicity

Natural cytotoxicity is only exhibited by NK cells and is an MHC-unrestricted 

antibody-independent killing mechanism involved in the elimination of tumour and 

pathogen infected target cells (Katz et a l  1982; Heslop and McNeilage 1983). The 

cytolytic activity exhibited by NK cells differs from that mediated by a typical CTL in 

that NK cell mediated cytotoxicity is spontaneous, occurs in the absence of prior 

sensitisation to an antigen, and is not MHC restricted (Herberman 1987). The events 

that lead to the killing of susceptible targets by NK cells include recognition, signalling 

and the release of cytoplasmic granules containing perforin and granzyme B (Gismondi 

et a l  2000; Funk et a l  2003). Perforin disrupts the cell membrane of target cells and 

provides physical entry to the granzymes which induce target cell apoptosis (Brahmi et 

a l  2001; Jovic et a l  2001). NK cell cytotoxicity is currently believed to be mediated by 

the balance of signals generated by activating and inhibitory receptors and enhanced by 

adhesion and costimulatory molecules (Achdout et a l  2003).

Several findings have additionally suggested a crucial role for adhesion molecules in the 

induction of target killing by NK-cells. As such, target cell lysis by NK cells has been 

shown to be inhibited by blocking-antibodies directed at adhesion molecules such as 

P2-integrin and Intra-Cellular Adhesion Molecule 2 (ICAM-2) (Renard et a l  1997).

Cytokine production and regulatory functions o f Natural Killer Cells

NK cells produce IFN-y, TN F-a, TNF-P, IL-10, IL-13, Granulocyte-Macrophage 

Colony Stimulating Factor (GM-CSF), Macrophage Inflammatory Protein (M lP )-la  

and M IP-ip abundantly in response to stimulation by monocyte derived cytokines 

(Carson et a l  1994; Fehniger et a l  1999). In fact, NK cells are the primary source of
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IFN-y during the initial phases of infection and before the onset of the adaptive 

response, a characteristic that enables NK cells to skew the adaptive immune response 

towards a TH1 pattern (North et al. 1997). As mentioned previously, TH1 cells comprise 

a subset of CD4 T-lymphocytes that are capable of activating macrophages. The main 

cell subset involved in the production and secretion of immunoregulatory cytokines is 

the CD56Bnght subset (Cooper et al. 2001b). NK cell-derived cytokines play critical roles 

in the establishment of early immune responses against obligate intracellular pathogens 

(Gazzinelli et al. 1993; Unanue 1997; Louis et al. 1998).

Different combinations of monokines stimulate the production of different NK 

cell-derived cytokines. IL-18 together with IL-12 stimulates the NK cells of this subset 

to produce abundant amounts of IFN-y but not of other cytokines. Conversely, the 

combination of IL-12 and IL-15 enhance NK cell production of IL-10, M IP-la, M IP-ip 

and TNF-a. (Fehniger et al. 1999). This finding together with the fact that only 

particular cytokines are produced by monocytes in response to the type of infectious 

agent encountered, are suggestive of pathogen specific cytokine production by the 

cellular components of the innate immune system.

Missing Self Hypothesis

The Missing Self Hypothesis was first introduced in the mid 1980s as an explanation of 

the mechanisms involved in the hybrid resistance phenomenon (Moretta et al. 1993; 

Lanier and Phillips 1996; Karre 1997). The hybrid resistance phenomenon (figure 1.3) 

refers to the rejection of parental (F0) (A,-) or (B,-) bone marrow grafts by FI (A,B) 

hosts (where A and B represent different MHC genotypes), a situation which was 

thought to defy the conventional laws governing transplantation biology (Cudkowicz 

and Bennett 1971b; Cudkowicz and Bennett 1971a).
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Figure 1.3. Hybrid resistance phenomenon. MHC-heterozygous offspring (FI) reject paternal (FO) 

MHC-homozygous bone marrow grafts but tolerate skin grafts originating from the same parent.

According to the Missing Self Hypothesis (figure 1.4) NK cells eliminate MHC class 

I-deficient target cells which have lost or downregulated the expression of MHC due to 

oncogenic or viral pathogenic incursions.
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Figure 1.4. Missing Self Hypothesis. NK cells which recognise a cognate MHC ligand are inhibited 

from killing the target cell (upper panel). In contrast, the activating signals generated by other receptors 

present in NK cells which fail to recognise a cognate MHC ligand lead to the killing o f the target cell 

(bottom panel).
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Unlike T cells, ‘Missing Self’ elicited killing by NK cells is not MHC-restricted in the 

classical sense as NK receptor binding of MHC is not specific for particular groups of 

MHC-peptide complexes. However, ‘Missing Self’ elicited NK killing of targets does 

depend on MHC expression levels, as it is triggered by NK cells failure to recognise a 

cognate MHC ligand (Karre et al. 1986). T and NK-cell immune responses represent 

complementary effectors of the cellular immune response where MHC:peptide 

complexes elicit T-cell responses, whereas NK-cell responses are activated by the loss 

of expression of MHC proteins.

Natural Killer Cells in anti-tumour responses and surveillance

A role for NK cells in the rejection of transformed cells was suggested soon after the 

characterisation of this lymphocyte subset (Herberman et al. 1975a; Herberman et al. 

1975b) and subsequently supported by in vitro studies in mice (Kiessling et al. 1975a; 

Kiessling et al. 1975b). As mentioned previously, the Missing Self Hypothesis was 

brought forth as a likely explanation for these findings. The implications of this 

hypothesis were subsequently supported by in vitro studies comparing the cytotoxic 

activity of NK cells against tumour cell lines expressing normal and low levels of class 

I MHC (Ljunggren and Karre 1985; Piontek et al. 1985). Transformed cells can lose 

MHC expression as a consequence of genetic instability and mutations, oncogenic-virus 

immune evasion strategies and as a consequence of the disruption of the cellular 

machinery. MHC-loss or downregulation by tumours is advantageous to the tumour as 

it provides a means to escape immune detection by CTLs (Glas et al. 2000). However, 

the description of numerous reports of NK cell mediated elimination of tumours 

expressing normal levels of class I MHC suggested the existence of additional tumour 

recognition pathways (Nishimura et al. 1988; Leiden et al. 1989; Pena et al. 1990).

NK cell recognition of tumours is currently thought to depend on four different 

mechanisms. The downregulation or complete loss of MHC expression by tumour cells 

rendering them incapable of inhibiting the NK cell attack; NK cell recognition of 

unspecific danger signals induced on tumours; the recognition of tumour specific 

antigens by activating receptors present in NK cells; and a combination of the first three 

mechanisms.
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The first possibility, that relating to the loss of self, has been supported by the 

description of inhibitory receptor expression by NK cells (Moretta et al. 1993; Colonna 

and Samaridis 1995; Wagtmann et al. 1995a). The second possibility, that relating to 

the induction of danger signals in tumours, has been supported by the description of NK 

cell receptors capable of recognising stress induced proteins such as MICA (Bauer et al.

1999). And finally, the third mechanism has recently been supported by the description 

of activating receptor expression on NK cells which are not thought to involve 

MHC-recognition (Sivori et al. 1997; Vitale et al. 1998; Pende et al. 1999). Despite the 

presence of different tumour recognition pathways, a unified signal cascade triggered by 

the recognition of susceptible targets has been postulated which culminates in the 

mobilisation and release of lytic granules containing perforin and granzyme B by the 

NK cell (Djeu et al. 2002).

Of special oncological interest is the lectin-like NKG2D homodimer, which associates 

with the Phosphatidyl-inositol-3 (PI-3) kinase-activator DAP10. This NK receptor is 

broadly expressed on NK cells, yST cells, macrophages and CD8 a[3T cells (Smyth et 

al. 2001). This receptor has the ability to interact with a diverse family of MHC class 

I-related ligands not involved in peptide presentation, which are induced by cellular 

stress (such as MICA). Although the expression of these NKG2D ligands is low on the 

normal adult tissues, the increased expression of MICA and MICB proteins has been 

widely documented in many tumour types. The expression of these ligands by tumour 

cells elicit NK cell mediated cytotoxicity and cytokine production. (Groh et al. 2002; 

Pende et al. 2002; Salih et al. 2002).

Natural Killer Cells in anti-pathogen responses

NK cells have been demonstrated to be critical elements in the early immune response 

to a large variety of intracellular pathogens. Of particular interest are the anti-viral 

responses, which have been extensively studied (Scharton-Kersten et al. 1995; Scott 

and Trinchieri 1995). The description of NK cell mediated responses against cells 

infected with intracellular bacteria such as Listeria (Holmberg and Ault 1984; Unanue 

1996; Andersson et al. 1998), Salmonella (Pinola and Saksela 1991; Pinola and Saksela 

1992; Jason et al. 2000) and Legionella (Blanchard et al. 1988; Rechnitzer et al. 1989)

48



Chapter 1

in humans have shown that NK cells play an important role in the innate immune 

response to bacterial pathogens as well. The role of NK cell responses in such bacterial 

infections has been further supported by experimental NK dependent lysis of bacteria 

infected-cells and bacterial growth-inhibition (Klimpel et al. 1986; Katz et al. 1990) as 

well as by the description of NK selective deficiencies associated with recurrent 

polymicrobial infections (Slifka et al. 2000; Brown et al. 2001; Ogata et al. 2001). A 

role for NK cells in anti-pathogen responses has been demonstrated experimentally for 

Toxoplasma gondii, Listeria monocytogenes and Leishmania major in murine models 

(Fehniger et al. 1999; Alland et al. 2001; Billings et al. 2001; Vankayalapati et al. 

2002). NK cells have been shown to participate in anti-pathogen responses in four ways 

(figure 1.5).

Pathogen infected cell. NK Cell

Up-regulatlon of stress 
induced molecules 
(MICA/B orULBPs)

E.coli
Heat Shock 

Promoter 
elements^- CTLDs

Down-regulation of 
Classical Class I MHC 
molecules.

Herpes virus

Natural i 
Killing

TAP inhibitor
KIRs

Influenza virus

vExpression of pathogen 
denved proteins on cell 
surface

Hemaggluti nin NCRs

FcyRIII
(C D 16)

ADCC

IgG

Perforin/Granzyme B
Cytokines

Figure 1.5. NK cell mediated anti-pathogen responses. NK cells can limit the magnitude o f initial 

pathogen incursions in four ways. By recognising stress induced molecules expressed by infected cells 

typically by C-type lectin-Like Domain receptors, by failing to recognise "self' as a consequence of 

pathogen induced CTL evasion strategies, by directly recognising pathogen derived proteins on the 

surface o f infected cells as well as by means o f ADCC.

The first way in which NK cells can limit pathogen incursions relates to the classical 

definition of Missing Self, and the result of the downregulation of MHC class I 

molecules which intracellular pathogen-infected cells undergo as a consequence of a
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direct cytopathic effect or the presence of pathogen "stealth" gene products which 

specifically interfere with the MHC class I processing (Glas et al. 2000; Maier et al. 

2001). The use of this pathway by NK cells has been further supported with the 

description of viral-TAP inhibitor ICP47 of Herpes Simplex Virus (HSV) and the MHC 

class I-downregulating US 11 protein of Human Cytomegalovirus (HCMV). Bacterial 

downregulation of mononuclear phagocyte cell surface MHC expression has also been 

described in Salmonella, Yersinia and Chlamydia pneumoniae infections (Brutkiewicz 

and Welsh 1995; Kirveskari et al. 1999; Caspar-Bauguil et al. 2000). As expected for 

rapidly evolving viruses subjected to Cytotoxic T Lymphocyte (CTL) selective 

pressures, Human Immunodeficiency Virus (HIV-1) has also devised a way to elude 

CTL responses by downregulating host-cell's MHC expression (Cohen et al. 1999; 

Scott-Algara and Paul 2002). The nef gene product of HIV-1, is known to decrease 

HLA-A and -B  expression levels but not those of HLA-C by accelerating the surface 

endocytosis rate in a highly selective manner which depends on the cytoplasmic tail 

region of the class I proteins involved (Cohen et al. 1999). NK receptors specific for 

HLA-A and HLA-B allotypes have been defined (Colonna et al. 1992; Litwin et al. 

1994; Pende et al. 1996), and based on this, one should expect to find NK cell clones 

capable of generating potent responses against these HLA-A and -B deficient 

HIV-infected cells.

A second way in which NK cells can limit pathogen incursions is by secreting cytokines 

which modulate the subsequent adaptive immune response. IFN-y production by NK 

cells plays a critical role at activating macrophages and at inducing resistance to 

intracellular pathogen infections in other cells (Johnson et al. 2000; Lee et al. 2000; 

Gao et al. 2001; Zhang et al. 2001a; Deniz et al. 2002; Lieberman and Hunter 2002). 

NK cells have the potential to recognise specific "danger signals" expressed on the cell- 

surface of stressed cells. An example of this type of recognition involves NKG2D 

binding of the non-classical MICA and MICB (Spies 2002; Tieng et al. 2002; Jinushi et 

al. 2003) and the GPI-linked UL-16 Binding Proteins (ULBPs) (Pende et al. 2002) 

belonging to the extended MHC class I family. The expression of ULBPs or MICA/B 

molecules on the surface of NK resistant target cells confers susceptibility to NK 

dependent lysis. Such interactions result in the activation of NK cells and stimulate 

cytokines and chemokines production and release, proliferation, cytotoxic activity and
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upregulating the expression of other activating receptors on the NK cell surface 

(Cosman et al. 2001; Kubin et al. 2001; Sutherland et al. 2002). Nevertheless, some 

pathogens and in particular HCMV, have evolved strategies to evade NK cell 

recognition and activation by producing ULBP and MICA/B mimicking proteins such 

as UL-16, which blocks this interaction and enables the virus-infected cell to evade NK 

cell lysis. Although NK cells exhibit aggressive cytotoxic activity against susceptible 

targets without the need of costimulatory cytokines, their exposure to IFN-a, IFN-p or 

IL-12 has been shown to increase such cytotoxicity 20- to 100-fold (Sareneva et al. 

2000; Une et al. 2000; Matikainen et al. 2001; Thornton et al. 2001; Zhang et al. 2001b; 

Hodge et al. 2002; Nguyen et al. 2002). IL-12 together with TNF-a can also stimulate 

NK cells to produce large amounts of IFN-y, a cytokine known to play a crucial role at 

limiting some infections. The fact that NK cells constitute the main source of IFN-y 

during the first days of infection and before an effective CTL response has been 

achieved has been demonstrated experimentally in viral (Vitale et al. 2000; Cerboni et 

al. 2001; Nguyen et al. 2002) , bacterial (Ramarathinam et al. 1993; Kawakami et al.

2000) and parasitic (Antunez and Cardoni 2000; Artavanis-Tsakonas and Riley 2002) 

infections.

The third way by which NK cells contribute to anti-pathogen incursions is thought to be 

a consequence of the direct recognition of pathogen-derived structures on the surface of 

the infected cell. The use of this "direct recognition" pathway by NK cells has been 

clearly supported by clinical and experimental findings. The recent discovery of NK 

receptors capable of recognising pathogen-derived structures (Influenza Virus 

hemagglutinin and hemagglutinin-neuraminidase of the Sendai Virus) present on the 

cell-surface of infected cells has expanded the potential functional roles of NK cells and 

receptors (Mandelboim et al. 2001). A similar finding related to anti-bacterial responses 

evolved from observations of healthy individuals who had been in close contact with 

Mycobacterium tuberculosis infected patients and who had never developed a positive 

tuberculin skin test, this suggests a possible innate immune response prior to CTL 

recognition of the pathogen. Subsequent studies revealed the existence of NK cell- 

mediated lysis of Mycobacterium tuberculosis infected monocytes which had not 

downregulated their expression of MHC class I molecules, a response which did not 

seem to be a consequence of enhanced production of IL-18 or IFN-y (Vankayalapati et
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al. 2002). The description of these NK cell pathogen-specificities raises the question 

whether certain NK receptors are involved in the recognition of other pathogens of 

clinical relevance or whether the extensive polymorphism of the NK receptor families 

that have been described so far is the result of pathogen pressures and as such confer 

susceptibility or protection to them.

A fourth way in which NK cells have the ability to eliminate pathogen-infected cells is 

through ADCC. NK cells recognise the Fc portion of IgG antibody molecules, present 

on the surface of infected cells, through FcyRIII (CD 16) (Farag et al. 2002). This 

receptor forms part of the Ig-superfamily and is also expressed on macrophages and 

mast cells and as such does not represent a cytotoxic pathway exclusive of NK cells.

The fact that some viral pathogens have evolved strategies to evade both CTL and NK 

cell mediated responses suggests that these two cellular based arms of immunity exert 

strong selective pressures on these pathogens. This finding suggests a critical role for 

NK cells and one which might prove to be of equal importance to that represented by 

CTL responses (Reybum et al. 1997).

Roles for Natural Killer Cells in implantation biology

Because mammalian embryos possess paternal histocompatibility antigens which are 

different from those present in the mother, they can be thought of as being a 

semi-allogeneic graft. The classical concept explaining the maternal tolerance of fetal 

endometrial implantation has relied on the existence of a clearly defined physical 

boundary preventing the passage of cells in either direction. However, it has now been 

documented that the placenta constitutes a partial barrier which allows certain degree of 

bidirectional cell trafficking (Hunziker et al. 1984).

Human decidualisation is accompanied by the accumulation of a subset of NK cells 

which is phenotypically similar to the peripherally circulating CD56Bnght NK cell subset, 

as discussed previously. However, uNK cells differ from peripherally circulating 

CD56Bnght NK cells in that uNK cells are predominantly activated, lack CD 16 antigen 

and CD62L (L-selectin) expression and are subject to reproductive hormone regulation
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(King et al. 1996). Several functional features of uNK cells have been thought to 

support the idea that they are somehow involved in the regulation of trophoblast cell 

invasion during mammalian blastocyst implantation (Croy et al. 2003). Trophoblast 

cells are derived from fetal tissues and are responsible for the great majority of the 

implantation events which lead to the formation of a mature placenta. These events 

include: invasion of the maternal decidua, erosion of maternal capillaries and formation 

of the intervillous space which will ultimately allow nutrients to reach the developing 

embryo and gaseous exchange to occur (Trundley and Moffett 2004). Trophoblast cells 

do not express the two main classical MHC class I antigens, HLA-A or HLA-B nor 

MHC class II molecules (even after stimulation with IFN-y). Only three MHC class I 

proteins have been shown to be expressed by human trophoblast cells: the classical 

class I HLA-C protein and the non-classical HLA-G, and HLA-E proteins (Ellis et al. 

1989; Boucraut et al. 1993; Chumbley et al. 1993). Interestingly, human NK cells have 

been shown to possess inhibitory receptors for each of these three HLA proteins (King 

et al. 2000), further supporting their involvement in implantation.

Current understanding suggests an important but as yet undefined role for uNK cells in 

human reproduction based largely on the spatio-temporal associations that exist 

between uNK cells and human implantation. However, the biological importance of 

these associations remain uncertain and controversial (Helige et al. 2001).

A role for Natural Killer Cells in immune tolerance

Discrimination of self by the immune system's lymphocytes is just as essential to the 

preservation of our own tissues as recognising foreign products, especially important 

once an immune system develops aggressive strategies to destroy other cells, such as 

the easily activated CTL and NK cells. In the case of T cells, the presence of antigen 

specific clones expressing inhibitory NK receptors in healthy individuals further 

supports the notion that inhibitory receptors control T cell tolerance to some peripheral 

antigens (Huard and Karlsson 2000). For the NK cells, signalling through MHC- 

specific inhibitory receptors might be a possible mechanism by which they remain self- 

tolerant. Inhibitory receptors transduce their signals to the NK cell by means of a SH2- 

containing protein tyrosine phosphatase (SHP-1). A reduction in SHP-1 activity has
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been associated to NK abnormalities, which result in defective natural killing. An 

important role for SHP-1 in self-tolerance induction (Eriksson et al. 1999; Lowin-Kropf 

and Held 2000) has been suggested based on the possibility that both inhibitory and 

activating receptors might share a common SHP-1 pathway. Similarly, the blocking of 

the MHC-KIR interaction is sufficient to enable NK cells to kill normal cells, further 

supporting the importance of the inhibitory receptors at avoiding NK auto-aggression.

This hypothesis is also supported by the fact that every single human NK cell expresses 

at least one inhibitory receptor (which may be either KIR or NKG2) with specificity for 

a self-MHC molecule. Although MHC class I molecules do not seem to be required for 

the generation of a mature NK cell population tolerant to self, it has been shown to 

influence individual NK cell KIR repertoires (Shilling et al. 2002b). Perhaps the best- 

studied scenario in which NK cells have been linked to tolerance is that of implantation 

biology. During implantation, a fine balance is achieved in order to allow normal 

trophoblast invasion of the uterine decidua that will ultimately ensure an adequate blood 

perfusion for the developing embryo. The control of this invasion is thought to rely on 

the distinctive population of uNK cells. The result of these interactions ultimately 

decides the fate of the developing embryo. Another NK receptor which might play an 

important role at inducing NK cell tolerance is the CTLD heterodimer CD94/NKG2 

receptor, which has shown to bind specifically to HLA-E molecules. This is mainly 

based on the observation that the recruitment of HLA-E at the surface of a transfected 

mouse cell by the addition of synthetic peptide ligands provides protection from lysis by 

NK cells expressing this CTLD (Long 1998).

1.4.4 Natural Killer Cell receptors

Unlike the rearranging B and T cell receptors, NK cell receptors are preformed and 

non-rearranging, their variability being a direct consequence of the genetically defined 

subset of genes present for each family. These gene subsets are later modulated during 

NK cell development into complex expression patterns (Shilling et al. 2002b). It is this 

preformed receptor repertoire which constitutes the hallmark of innate immunity and 

which allows NK cells to control pathogen incursions or cellular transformation early
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on during the prolonged period required for the clonal expansion of antigen-specific B 

and T cells (Brown et al. 2001).

NK cell activity, and more importantly NK cytotoxicity, is not modulated by the 

expression of a single membrane-bound receptor but rather the result of the integration 

of both activating and inhibitory signals originating in receptors of different gene 

families. It is the balance of these integrated signals that dictates the functional activity 

of NK cells. Given the current knowledge regarding NK cell receptors, it seems very 

unlikely that a single NK receptor will be responsible for the diverse biological 

properties attributed to NK cells. NK cell activity is regulated by at least three different 

types of receptors belonging to two different receptor families (figure 1.6). Two of these 

receptors, the Killer-cell Immunoglobulin-like Receptors (KIR) and C-Type Lectin-like 

Domain (CTLD) receptors, regulate NK cell functions by monitoring the expression of 

MHC products. A third type of receptor group, the Natural Cytotoxicity-triggering 

Receptors, is thought to be expressed exclusively by NK cells and stimulate their 

cytotoxicity by providing additional activating signals.

The first two types of receptors enable NK cells to discriminate between healthy cells 

and pathogen infected, or tumour cells, by monitoring the expression levels of MHC 

molecules. These two NK receptors are structurally distinguished as belonging to the 

Ig-SF, (KIR), or as members of the mannose-binding lectin-superfamily, (CTLD 

receptors).
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Figure 1.6. Natural Killer-cell Receptors and their Ligands. HLA-A, -B, -C and -G  allotype subsets 

are recognised by KIR proteins expressed by NK cells. NK receptors names in red text are inhibitory 

whereas activating receptor names in blue are indicative of activating functions. Members of the CTLD 

family of receptors (NKG2A-F) recognise non-classical HLA allotypes as well as stress induced 

MHC-related products. Although NCR1 has been shown to recognise pathogen derived proteins for 

Sendai Virus and Human Influenza Virus hemagglutinins, the specificity of NCR2 and NCR3 has not 

been described.

Both superfamilies include both inhibitory and activating receptor variants, which have 

the capacity to inhibit or activate NK cell activity as a consequence of binding to their 

cognate MHC-ligands. In addition to their distinctive structures, these two families 

complement each other's MHC-specificities. Lectin-like receptors recognise HLA-E 

and MICA, whereas KIR molecules recognise specific HLA-A, -B, -C and -G  allotype 

subsets (Colonna et al. 1992; Litwin et al. 1994; Wagtmann et al. 1995b; Dohring and 

Colonna 1996; Pende et al. 1996; Biassoni et al. 1997).

Inhibitory receptors prevent NK cells from killing targets with normal MHC expression 

levels. NK cells are only liberated from this restraint after failing to recognise the 

presence of cognate MHC ligands. Positive signals generated by activating receptors 

have been less well characterised. These activation signals can be generated by a large 

number of receptors which include members of different gene families. Some of the 

known activating receptors expressed by NK cells include CD2 (Bolhuis et al. 1986),
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CD16 (Lanier et al. 1988), NKR-P1 (Bix and Locksley 1995), 2B4 (Nakajima and 

Colonna 2000), NCR1-3 (Bottino et al. 2000), KIR and some CTLD receptors 

(Robertson 2002). It is currently thought that signalling through inhibitory receptors 

overrides the activation processes generated by activating receptors on the same cell. 

This has been explained, at least partially, by a lower ligand-binding affinity for 

activating receptors, which is several times weaker than that of their inhibitory 

counterparts (McCann et al. 2002).

Killer-cell Immunoglobulin-like Receptors

Investigations carried out on mice (Karre et al. 1986; Karre 1995) and humans (Moretta 

et al. 1989a; Moretta et al. 1989b) allowed KIR proteins expressed on NK-cells to be 

identified as the mediators of the events underlying the ‘Missing Self’ Hypothesis. The 

first two KIR proteins to be identified were the 58 kDa proteins with HLA-C 

specificity, currently known as KIR2DL1-3 (formerly called CD158a, CD158bl and 

CD158b2, respectively) (Moretta et al. 1990a; Moretta et al. 1990b; Colonna and 

Samaridis 1995).

KIR proteins possess two or three extracellular Ig-like domains. They are the most 

polymorphic receptors present on NK cells and are also found on a small population 

(8%) of T cells known as Natural Killer T (NKT) cells. KIR interact with a wide range 

of MHC class I allotypes and their inhibitory signals can override both natural 

cytotoxicity and ADCC lytic programs (Renard et al. 1997). A more detailed 

description of KIR gene and protein characteristics, as well as of their functional 

properties is given below.

Natural Cytotoxicity-triggering Receptors

Natural Cytotoxicity-triggering Receptors (NCRs) are non-MHC-binding activating 

receptors belonging to the Ig-superfamily but not related to KIR. These Ig-like receptors 

are currently known as NCR1, NCR2 and NCR3 (their previous designations being 

based on their electrophoretic migration size: NKp46, NKp44 and NKp30, respectively) 

and are only expressed by NK cells (Pende et al. 1999). NCR1-3 proteins are similar

57



Chapter 1

but not direct homologues of each other. In humans, they are encoded by genes located 

in two different chromosomes, 19ql3.42, 6p21.1 and 6p21.3, respectively 

(http://www.ncbi.nlm.nih.gov/LocusLink).

NCR1 is a 46 Kilo-Dalton (kDa) type I transmembrane glycoprotein composed of a 33 

kDa protein backbone. This protein possesses two extracellular C2-type Ig-like 

domains, a transmembrane region possessing a positively charged amino acid residue 

and a cytoplasmic region which does not contain signalling motifs. Its signalling 

function is accomplished by association to CD3£ and FccRy polypeptides (Vitale et al. 

1998; Cantoni et al. 1999a). Monoclonal antibody (mAb) cross-linking of this receptor 

induces NK cells to mobilise Ca++ and enhances their cytotoxicity and cytokine 

production (Sivori et al. 1997). This receptor has been shown to be involved in the NK 

cell killing of different targets including normal and abnormal MHC-expressing tumour 

cells of autologous, allogeneic and xenogeneic origin (Pessino et al. 1998; Sivori et al. 

1999).

NCR2 is a 44 kDa glycoprotein characterised by the presence of a single extracellular 

V-type domain and a membrane-proximal portion which exhibits an open conformation 

similar to that observed in hinge-like sequences. Its transmembrane region possesses a 

charged amino acid, a feature which allows this NCR to associate to KARAP/DAP12 

signal-transduction molecule (Cantoni et al. 1999a). This NCR is not expressed by 

freshly isolated peripherally circulating NK cells but induced after IL-2 stimulation, 

therefore it can be regarded as being a highly specific cell marker for activated human 

NK cells (Bottino et al. 2000). NCR2 is the best likely candidate responsible for the 

increased cytotoxicity of LAK cells (Miller 2002). NCR3 corresponds to a 30 kDa 

glycoprotein expressed by both resting and activated NK cells but absent in other 

peripherally circulating blood lymphocytes. Its surface expression correlates to that of 

NCR1 with which it is thought to co-operate in the induction of cytotoxicity against 

target cells. NCR3 is of special interest due to its capacity to elicit the killing of tumour 

cell targets in an NCR1/NCR2 independent manner (Bottino et al. 2000).
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C-Type Lectin-like Domain Receptors

The C-Type Lectin-like Domain (CTLD) family of receptors is comprised of at least 

five structurally related receptors, four activating (NKG2C, NKG2D, NKG2E and 

NKG2F) and one inhibitory (NKG2A). These receptors are classified as members of the 

C-type lectins because their extracellular regions resemble carbohydrate-binding 

domains (Chambers et al. 1993). However, their function in NK cells is not related to 

the binding of carbohydrates (Boyington et al. 1999).

Despite the structural similarity to other CTLD receptors, NKG2D differs from them in 

many ways. Firstly, it is more distantly related to them (approximately 70% identity) in 

comparison to the similarity shared by NKG2A, NKG2C, NKG2E and NKG2F (more 

than 90%). Secondly, NKG2A, NKG2C, NKG2E and NKG2F associate to CD94 

(another CTLD member also known as KLRD1) forming disulfide-bonded 

heterodimers (Perez-Villar et al. 1995), whereas NKG2D is present in the NK cell 

surface as a homodimer (Wolan et al. 2001). Thirdly, NKG2D proteins differ from 

NKG2A, NKG2C, NKG2E and NKG2F heterodimers in their ligand-binding 

specificities. NKG2A, NKG2C, NKG2E and NKG2F receptors bind the non-classical 

HLA-E molecules presenting nonameric peptides derived from the leader sequence of 

HLA-A, -B , -C  and -G  (Braud et al. 1998; Braud and McMichael 1999; Brooks et al.

1999). As happens for other NK cell activating receptors, the binding of HLA-E by the 

activating NKG2/CD94 receptors is ten times weaker than the binding of this same 

ligand by the inhibitory NKG2A/CD94 (Vales-Gomez et al. 1999). However, NKG2D 

is of special interest as a result of its binding to the stress-induced MICA and MICB as 

well as to the virally encoded UL-16 binding proteins (Bauer et al. 1999; Cosman et al. 

2001). Finally, NKG2A and NKG2C are expressed differentially by the CD56 NK cell 

subsets, however, NKG2D is expressed by every NK cell and also present in y6 T cells 

as well as CD8+ a p  T cells.

In addition, NKG2D differs from the other activating CTLD receptors in that it 

associates to DAP10 adaptor molecules, whereas NKG2C, NKG2E and NKG2F possess 

a positively charged transmembrane residue which allows them to associate to DAP12 

(Lanier et al. 1998). The NKG2/CD94 heterodimeric receptors are thought to indirectly 

evaluate HLA class I molecule expression by monitoring the expression levels of
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HLA-E, a different and complementary approach to that employed by KIR proteins 

(LaBonte et al. 2004). Conversely, the functional roles for NKG2D receptors rely on the 

recognition of ligands which are mostly expressed by malignant cells (Cosman et al. 

2001; Groh et al. 2002). In addition, NKG2D binds MICA with a stronger affinity than 

the binding of HLA-C by inhibitory KIR, a finding which suggests a crucial role for this 

receptor at modulating NK cell activity (Li et al. 2001).

1.5 Killer-cell Immunoglobulin-like Receptors

1.5.1 KIR proteins

KIR protein structure

KIR proteins possess characteristic Ig-like domains on their extracellular regions, which 

in some KIR proteins are involved in HLA class I ligand binding. They also possess 

transmembrane and cytoplasmic regions which are functionally relevant as they define 

the type of signal which is transduced to the NK cell. KIR proteins can have two or 

three Ig-like domains (hence KIR2D or KIR3D) as well as short or long cytoplasmic 

tails (represented as KIR2DS or KIR2DL). Two domain KIR proteins are subdivided 

into two groups depending on the origin of the membrane distal Ig-like domains present 

(figure 1.7 panel A). Type I KIR2D proteins (KIR2DL1, KIR2DL2, KIR2DL3, 

KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4 and KIR2DS5) possess a membrane-distal 

Ig-like domain similar in origin to the KIR3D D1 Ig-like domain but lack a DO domain. 

This D1 Ig-like domain is encoded mainly by the fourth exon of the corresponding KIR 

genes. The Type II KIR2D proteins, KIR2DL4 and KIR2DL5, possess a membrane- 

distal Ig-like domain of similar sequence to the DO domain present in KIR3D proteins, 

however, Type II KIR2D lack a D1 domain.
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Figure 1.7. KIR protein structures. The structural characteristics of two and three Ig-like domain KIR 

proteins are shown in panels A and B, respectively. The association of activating KIR to adaptor 

molecules is shown in green, whereas the ITIM of inhibitory KIR are shown as red boxes.

Long cytoplasmic tails usually contain two Immune Tyrosine-based Inhibitory Motifs 

(ITIM) which transduce inhibitory signals to the NK cell. Short cytoplasmic tails 

possess a positively charged amino acid residue in their transmembrane region which 

allows them to associate with a DAP 12 signalling molecule capable of generating an 

activation signal (Vilches and Parham 2002).

Exceptions to this are KIR2DL4, KIR3DL2 and KIR3DL3 which contain only one N- 

terminus ITIM (figure 1.7 panel B). In addition, KIR2DL4 also possesses a charged 

residue (arginine) in its transmembrane domain, a feature which allows this receptor to 

elicit both inhibitory and activating signals (Rajagopalan et al. 2001). KIR control the 

response of human NK cells by delivering inhibitory or activating signals upon 

recognition of MHC class I ligands on the surface of potential target cells (Vilches et al. 

2000a).
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KIR proteins vary in length from 306 to 456 amino acid residues. Although the 

differences in protein length are mostly the consequence of the number of Ig-like 

domains present, cytoplasmic region length diversity is also an influencing factor 

(figure 1.8). The leader peptide of most KIR proteins is 21 amino acid residues long. 

However, the presence of a different initiation codon generates a correspondingly 

longer leader peptide in KIR2DL4 proteins (Selvakumar et al. 1996).

The DO Ig-like domain present in Type II KIR2D proteins, although encoded by a 

similar exon 3 to that present in KIR3D genes, is two amino acid residues longer than 

that present in KIR3D proteins (Colonna and Samaridis 1995; Wagtmann et al. 1995a). 

The D1 domain of Type I KIR2D and of KIR3D proteins is 102 amino acid residues 

long, while the D2 domain of all KIR proteins is 98 amino acid residues long (Colonna 

and Samaridis 1995). The length of the stem region varies from the 24 amino acid 

residues present in most KIR proteins, to only seven amino acid residues in the 

divergent KIR3DL3 protein (Torkar et al. 1998). The transmembrane region is 20 

amino acid residues long for most KIR proteins, but one residue shorter on KIR2DL1 

and KIR2DL2 proteins as a result of a three base pair deletion in exon 7 (Colonna and 

Samaridis 1995; Wagtmann et al. 1995a). Finally, the cytoplasmic region of KIR 

proteins exhibits greater length variations, ranging from 23 amino acid residues in some 

KIR3DS1 alleles to the 116 amino acid residues present in KIR2DL4/5 proteins 

(Colonna and Samaridis 1995; Selvakumar et al. 1997; Valiante et al. 1997).
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Figure 1.8. KIR protein domain and region lengths. The main structural characteristics of KIR 

proteins are shown where the domains and regions are represented as boxes of different colours according 

to the key at the bottom of the figure. The length of each domain or region is shown in digits above their 

corresponding box.

KIR protein signalling

The signalling pathways used by KIR proteins to regulate NK cell activity are still not 

entirely known (figure 1.9). However, the presence of structural features in KIR 

proteins which are similar to those of other well characterised receptors provides clues 

as to the pathways involved. As such, the transduction of inhibitory signals by KIR 

proteins with long cytoplasmic tails relies on the presence of intracellular ITIM, a 

similar mechanism to that employed by two other unrelated inhibitory receptors: 

FcyRIIB and gp49Bl (Renard et al. 1997).
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Figure 1.9. K IR  protein signalling. The inhibitory and activating signalling pathways of two KIR2D 

proteins are shown numbered from 1 to 4 in red and green, respectively. KIR2DS transmembrane region 

possesses a positively charged amino acid which enables it to associate to an ITAM bearing DAP12 

adaptor molecule (shown in green).

Human inhibitory KIR proteins possess one or two intra-cytoplasmic ITIM 

characterised by the conserved I/VxYxxL/V amino acid sequence originally described 

in the FcyRIIB protein (Amigorena et al. 1992; Muta et al. 1994; D’Ambrosio et al.

1995). The amino acid positions of ITIM are numbered according to their localisation 

with respect to the tyrosine residue. As such, the first amino acid residue present in the 

ITIM is designated Y,2. As seen in figure 1.8, the phosphorylation of the tyrosine 

residue of these amino-acid motifs leads to their recruitment of SH2 domain-bearing 

Src Homology Protein tyrosine phosphatase 1 and 2 (SHP-1 and -2) (Burshtyn et al. 

1996; Campbell et al. 1996). The SHP-1/2 tyrosine phosphatase is thought to inhibit the 

NK cell cytolytic machinery by interfering with several downstream processes which 

include: inhibition of lipid raft polarisation and aggregation, interruption of F-actin 

polymerisation, disruption of actin-cytoskeleton rearrangement and translocation of 

microtubule-organising centre (MTOC), blocking the up-regulation of cell adhesion 

molecule expression as well as by preventing the release of cytolytic granules and
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cytokines (Vyas et al. 2004). The inactivation of the C-terminus ITIM of KIR3DL2 as a 

consequence of a Y.2 substitution for a serine residue, together with the expression of 

this KIR protein as a homodimer suggests that close proximity of the two functional 

ITIMs is a requirement for inhibitory signalling (Renard et al. 1997). Interestingly, it 

has been proposed that inhibitory signalling by KIR requires the formation of co­

aggregates with activating receptors bearing protein tyrosine kinases (such as FceRI) so 

as to allow for the phosphorylation of the ITIM present in KIR (Blery et al. 1997).

Unlike inhibitory signalling, activating signalling by KIR has been less well 

characterised. However, activating KIR as well as NCR and CTLD activating receptors 

share structural similarities with the Ig B-lymphocyte receptor and TCR which help 

explain their signalling properties. Most importantly, all of these activating receptors 

lack intrinsic enzymatic activities and as such require other Immune Tyrosine-based 

Activating Motif (ITAM)-bearing transmembrane adaptor molecules (like CD3£, 

FceRIy and KARAP/DAP12) to generate an activating signal (Colucci et al. 2002). KIR 

proteins with short cytoplasmic tails lack ITIM but possess a positively charged 

transmembrane amino acid residue which enables them to associate non-covalently with 

cytoplasmic DAP12 molecules and generate activating signals (Campbell and Colonna 

1999; Snyder et al. 2003). The activating signalling pathway which has been proposed 

for KIR (figure 1.8) requires the phosphorylation of DAP12 ITAM tyrosine residues by 

an Src protein tyrosine kinase. The phosphorylation of these ITAM allows Syk or ZAP- 

70 protein tyrosine kinases to dock and ultimately activate the cytolytic machinery of 

NK cells (Rabinowich et al. 1996; Paolini et al. 2001).

KIR protein expression

KIR proteins are expressed by NK cells and a small, approximately 8%, subset of CD8 

lymphocytes (Ferrini et al. 1994). KIR are expressed differentially by the two NK cell 

subsets (see figure 1.2). They are present on more than 85% of the CD56Dim cells 

whereas they are expressed on less than 10% of the CD56Bnght NK cells (Bottino et al.

1996). KIR protein expression can be up-regulated in the CD56Dim cell subset by 

stimulating NK cells with IL-2 (Grzywacz et al. 2002; Kikuchi-Maki et al. 2003).
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In an individual as a whole, the KIR genotype is equivalent to KIR phenotype as most 

KIR genes which are available to the individual will be expressed. However, on an 

individual cell basis, NK cells express only some of the KIR genes which are present in 

their genome (figure 1.10) (Ciccone et al. 1992; Valiante et al. 1997). An exception to 

this is the ubiquitous presence of KIR2DL4 proteins in all human NK cells, a feature 

which is exclusive to this KIR molecule (Uhrberg et al. 1997; Valiante et al. 1997). The 

clonal distribution of the remaining KIR proteins relies on their expression in a 

successive and stochastic manner by individual NK cells, a process which is thought to 

be stopped only by the expression of an inhibitory KIR protein capable of recognising 

self (figure 1.10). This model allows NK cells to accumulate varying numbers of both 

activating and inhibitory KIR while still providing them with an inhibitory receptor for 

self (Shilling et al. 2002b). Although HLA-expression ultimately defines the extent of 

the accumulated KIR repertoire on any given NK cell, MHC-dependent education of 

NK cells for tolerance to self seems to play a minimal role at determining KIR 

repertoire diversity (Gumperz et al. 1996b).

This clonal distribution of expressed KIR is mainly dictated by stochastic genetic 

mechanisms, as evidenced from the observation that KIR co-expression frequencies 

correspond to the product of the individual frequencies for the KIR concerned (Raulet et 

al. 2001). The stochastic mechanism regulating the expression of KIR genes, however, 

is not genetically encoded. This idea has been supported by the description of highly 

conserved KIR gene promoter regions. Instead KIR gene expression is the result of 

epigenetic mechanisms acting to induce CpG-island methylation and repression of 

transcription (Santourlidis et al. 2002; Chan et al. 2003). The KIR repertoire diversity 

generated by this process is stably maintained throughout life, it is unaffected by 

pathogenic challenges and passed down to successive NK cell clone generations within 

an individual (Moretta et al. 1990a; Moretta et al. 1990b; Litwin et al. 1993). This 

process of combinatorial KIR expression is thought to take place early on during NK 

cell development, however, the exact place and time where this occurs remains 

unknown.
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Figure 1.10. KIR combinatorial expression and repertoire diversity. The accumulated expression of 

KIR proteins in each of the six representative NK cell clones is shown based on the combinatorial 

expression process described previously in the text. The KIR repertoire that is present in the individual 

bearing these six NK cell clones is shown on the box to the right of the figure.

The expression of some KIR genes and alleles however is affected by intrinsic genetic 

defects which lead to their non-transcription, this being the case of the KIR 

pseudogenes KIR2DP1 and KIR3DP1 and of some KIR2DL5 alleles (Vilches et al. 

2000d). Furthermore, some structurally intact KIR genes are transcribed but only 

expressed at low levels on the surface of NK cells for reasons which remain unknown, 

as happens for KIR3DL3 (Long et al. 2001). In addition to this, recent discoveries have 

shown that amino acid polymorphisms of particular KIR proteins lead to either their 

cytoplasmic retention or to the formation of soluble variants (as has been shown for the 

KIR3DL 1*004 and KIR2DS4*003 proteins). KIR3DL 1*004 is not expressed in the NK 

cell surface due to the presence of an amino acid polymorphism which disrupts the
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proper folding of the DO domain (Pando et al. 2003). In a similar manner, 

KIR2DS4*003 proteins are transcribed but not expressed on the cell surface due to the 

disruption of their protein sequence (due to a 22 bp deletion in exon 5) after the D2 

domain. The absence of transmembrane and cytoplasmic domains together with the 

high frequency of this allele in human populations has suggested the possibility that this 

deviant KIR protein might be secreted by NK cells (Maxwell et al. 2002).

KIR recognition and binding o f classical HLA class I  proteins

The existence of KIR with MHC binding properties was suggested as a consequence of 

observations relating to NK cell killing of HLA class I-deficient B lymphoblastoid cell 

lines which could be reversed by transfecting these cell lines with certain HLA class I 

genes (Shimizu and DeMars 1989; Storkus et al. 1989a; Storkus et al. 1989b). These 

findings have been subsequently confirmed by studies employing flow cytometric 

methods and soluble KIR proteins to stain cells expressing different HLA class I 

molecules (Wagtmann et al. 1995b; Dohring and Colonna 1996; Biassoni et al. 1997), 

and more recently with the description of KIR: HLA molecular crystal structures derived 

from X-ray diffraction methods (Maenaka et al. 1999b; Boyington et al. 2000; Fan et 

al. 2001).

Type I KIR2D recognise HLA-C allotypes (Moretta et al. 1993), the Type II KIR2DL4 

recognise HLA-G (Cantoni et al. 1999b) and KIR3D proteins recognise HLA-A and -B 

allotypes. KIR2DL1 recognises HLA-C allotypes with Lys80 (for example: HLA-Cw2, 

HLA-Cw4, HLA-Cw5 or HLA-Cw6), these HLA-C allotypes are said to possess C2 

specificity and are also called group 2 allotypes. KIR2DL2 and KIR2DL3 recognise 

HLA-C allotypes with Asn80 (for example: H LA -Cw l, HLA-Cw3, HLA-Cw7 or 

HLA-Cw8), which are said to possess C l specificity and also called group 1 allotypes 

(Mandelboim et al. 1997). KIR3DL1 recognises HLA-B allotypes with a Bw4 motif on 

their a-helix (for example: HLA-B13, HLA-B38 and HLA-B51) (Gumperz et al. 

1996a), and KIR3DL2, has been shown to recognise HLA-A3 and - A l l  allotypes 

(Dohring et al. 1996b). Although the specificities of KIR2DL1-3, KIR2DL4, KIR3DL1 

and KIR3DL2 have been defined (figure 1.11) the other KIR specificities currently 

remain uncertain.
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The binding of HLA-C allotypes by KIR2DL1 and KIR2DL2/3 proteins involves 

interactions between the C-terminus of the domain and the N-terminus of the a 2 

domain of the HLA molecule with the D1 and D2 domains of the KIR molecule. The 

binding of HLA-A and -B  molecules by KIR3D involves interactions between the 

membrane-proximal extra-cellular D1 and D2 domains of the KIR molecule with the 

a , and a 2 domains of the HLA molecule, respectively.

H LA -C  H LA -C  H LA -B

(C 2  S p e c ) (C IS p e c )  H L A -G  (B w 4 S p ec ) H LA -A 3 /A 11

15 nm

K IR 2D L1 K IR 2D L2 K IR 2 D L 4  K IR 3D L1 K IR 3D L 2

K IR 2D S 1 K IR 2D L 3  K IR 3D S 1?

K IR 2D S 2?

Figure 1.11. Killer Immunoglobulin-like Receptor Ligands. Two-domain KIR recognise HLA-C 

allotypes, where KIR2DL1 exhibits C2 specificity while KIR2DL2 and KIR2DL3 have C l specificity. 

KIR2DL4 recognises the non-classical HLA-G molecule. KIR3DL1 recognises HLA-B allotypes with a 

Bw4 m otif and KIR3DL2, has been shown to recognise HLA-A3 and - Al l  allotypes in a peptide 

dependent manner. The binding of HLA-C allotypes o f C l specificity by KIR2DS2 and o f HLA-B Bw4- 

bearing allotypes by KIR3DS1 has not been demonstrated. The synaptic cleft formed by KIR:HLA 

interactions is estimated to be approximately 15 nm wide (McCann et al. 2003).

However, the binding of KIR3D to their HLA ligand has been shown to require the 

presence of an intact membrane-distal DO domain, which acts as an enhancer of the 

interaction (Khakoo et al. 2002). The description of the crystal structures of KIR2D 

proteins, both on their own (Maenaka et al. 1998; Snyder et al. 1999; Saulquin et al. 

2003) and as a complex with their HLA ligands (Maenaka et al. 1999b; Boyington et al.

rtmrwrnrYYr nnnnTirTiririririT wwifiniTnTirinrno wnrinniTrin^^
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2000; Fan et al. 2001), has helped resolve the nature of the chemical interactions that 

are responsible for their specificities (figure 1.12). As such, these studies have shown 

that six Ig-binding loops of the KIR protein participate in the binding to HLA. All of 

these Ig-binding loops contain negatively charged amino acid residues, a feature which 

allows these KIR to interact with the mainly electro-positive HLA surface.

KIR2DL2

KIR2DL2

P e p t id e

HLA-CW3

Beta2-microglubulin

(B)

Figure 1.12. X-ray diffraction derived KIR crystallographic structures. The crystallographic 

molecular structure of KIR2DL1 and KIR2DL2 complexed with their corresponding HLA ligands are 

shown in panel A and B, respectively. For each panel, the KIR and HLA molecules participating in the 

complex formation are shown in red and blue, respectively. The p2-microglobulin is shown in orange and 

the accessory KIR and HLA molecules which do not participate in the binding but provide crystal lattice 

packaging are shown in magenta (Boyington et al. 2000; Fan et al. 2001).

The binding of HLA by activating KIR is thought to be several times weaker than the 

binding provided by inhibitory KIR (Biassoni et al. 1997; Vales-Gomez et al. 1998; 

Winter et al. 1998), an idea that could partially explain the domination of inhibitory 

over activating signals (Vales-Gomez et al. 1998). The amino acid sequence similarities 

that exist between activating KIR and KIR2DL1-3 are suggestive as well of their

KIR2DL1

P e p tid e

HLA-Cw4

B eta2 -m icroglobulin

P e p tid e

HLA-Cw4

B eta2 -m ic rog lobu lin
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binding of similar ligands. As such, KIR2DS1, KIR2DS3 and KIR2DS5 might possess 

similar binding preferences to those exhibited by KIR2DL1 proteins, whereas KIR2DS4 

is more similar to KIR2DL2 (Vilches and Parham 2002).

In addition, recent discoveries have shown that in some cases, the peptide present in the 

HLA binding groove can modulate the affinity of KIR:HLA interactions. This has been 

described for the KIR3DL2 binding of HLA-A3/A11 allotypes (Hansasuta et al. 2004) 

and also shown to influence the binding of KIR2DL1 (Maenaka et al. 1999a), 

KIR2DL2 (Boyington et al. 2000) and KIR3DL1 (Malnati et al. 1995) to their 

corresponding MHC-ligands.

1.5.2 KIR nomenclature

Although the naming of genes is the responsibility of the Human Genome Organisation 

Nomenclature Committee (HUGO 2003), agreement was reached during the 13th 

International Histocompatibility Workshop and Conference meeting of the WHO 

Nomenclature Committee for Factors of the HLA System that a separate group should 

coordinate the naming of KIR alleles (Marsh et al. 2003).

The naming of KIR genes and alleles is based on the nomenclature guidelines which 

have been used successfully for the HLA system. KIR gene names (figure 1.13) are 

based on the molecular structures of their corresponding proteins (Long et al. 1996). 

After the KIR acronym a single digit followed by a D (for domain) indicates the number 

of Ig-like domains present (i.e.: KIR2D or KIR3D). This is followed by a letter 

indicating the presence of either a short (S) or long (L) cytoplasmic tail (i.e.: KIR2DS 

or KIR2DL). A final digit indicates the number of the gene encoding a protein with this 

structure (i.e.: KIR2DL1, KIR2DL2 and KIR2DL3). The case of duplicated genes with 

similar structures and sequences is further resolved in the gene name by means of a 

final letter (i.e.: KIR2DL5A and KIR2DL5B).
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Figure 1.13. Interpretation of KIR Nomenclature.

For the naming of KIR alleles, the gene name is followed by a separator, an asterisk, 

followed by the numerical allele designation. The first three digits of the numerical 

allele designation distinguish between alleles which possess different amino acid 

sequences. The next two digits distinguish between alleles of identical amino acid 

sequences but different DNA sequences for their coding region. Finally, the last two 

digits distinguish between alleles which possess DNA sequence differences outside of 

their coding regions (promoters or introns).

1.5.3 KIR genes

The genomic organisation o f KIR genes and the Leukocyte Receptor Complex

The KIR gene family consists of 15 genes (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, 

KIR2DL5A, KIR2DL5B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, 

KIR3DL1, KIR3DL2, KIR3DL3 and KIR3DS1) and two pseudogenes (KIR2DP1 and 

KIR3DP1) encoded within a 100-200 Kb region of the Leukocyte Receptor Complex 

(LRC) located on chromosome 19 (19ql3.4) (Trowsdale 2001). The LRC constitutes a 

large, 1 Mb, and dense cluster of rapidly evolving immune genes (Khakoo et al. 2000) 

which contains genes encoding other cell surface molecules with distinctive Ig-like 

extra-cellular domains (figure 1.14). These genes include, from centromere to telomere, 

Sialic acid binding Immunoglobulin-like Lectins (SIGLEC), Immunoglobulin-like 

Transcripts (ILT) and Leukocyte-Associated Immunoglobulin-like Receptors (LAIR), 

FcaR  as well as the Natural cytotoxicity-triggering Receptor 1 (NCR1) (Wilson et al. 

2000; Trowsdale et al. 2001). In addition the LRC contains genes encoding CD66
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family members such as the carcino-embryonic antigen (CEA) genes as well as the 

genes encoding the transmembrane adaptor molecules DAP 10 and DAP 12 (Hsu et al. 

2002a).

DAP

19p13.3 4 -1  M b KIR3DL3 - 1 5 0  Kb

CD6619p13 2 - KIR2DL3

19p13.13 -

19p13.12 -

KIR2DP1
19p13.11 -\

SIGLEC

KIR2DL1
19p12

FcGRT19p11 KIR3DP1

19p11
ILT

19q12
KIR2DL4

19q13.11 - LAIR

KIR3DL119q13.12 -

19q13.13
ILT

19q13.2 - | 

19q13.31 -f
19q13.32 4

KIR
KIR2DS4

19q13.4

FcuR
KIR3DL219q13.43 4 NCR1

LR CC h ro m o s o m e  19 G ro u p  A H a p io ty p e

Figure 1.14. Leukocyte Receptor Complex (19ql3.4) and a KIR hapiotype. KIR genes are encoded 

within a 150 Kb stretch of the 1 Mb long LRC in chromosome 19. The LRC also contains the genes 

encoding DAP adaptor proteins, CD66 antigens as well as SIGLEC, FcGRT, ILT, LAIR, FcaR  and 

NCR1 receptors. A prototypical group A KIR hapiotype is shown in the right portion of the figure, where 

blue boxes indicate framework genes, light blue boxes pseudogenes (KIR3DP1 is also a framework 

gene), red boxes indicate inhibitory KIR and green boxes represent activating KIR genes.

KIR haplotypes structures

KIR genes are organised within the LRC into haplotypes, which have been shown to 

exhibit extensive variation in the number and type of KIR genes present (figure 1.14 

and 1.15). All known KIR haplotypes are flanked at their centromeric end by KIR3DL3 

and at their telomeric end by KIR3DL2 and together with the centric KIR3DP1 and 

KIR2DL4 they constitute the framework genes (Martin et al. 2000; Wilson et al. 2000;
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Vilches and Parham 2002). The framework genes limit two regions of variable KIR 

gene content where the remaining KIR genes are located. All KIR genes are arranged in 

a head to tail fashion approximately 2.4 Kb apart from each other (Hsu et al. 2002a).

Based on their gene content two kinds of KIR haplotypes, A and B, have been described 

(figure 1.15). Originally these hapiotype groups were distinguished using restriction 

fragment length polymorphism (RFLP), based on the presence of a ~24 Kb Hindlll 

fragment (present in group B haplotypes and later correlated to the presence of the 

KIR2DL5 gene) (Uhrberg et al. 1997; Vilches and Parham 2002). However, these 

hapiotype groups are currently distinguished by the number of activating and inhibitory 

KIR genes present. According to this new KIR hapiotype group definition, group B 

haplotypes possess different combinations of KIR2DL5, KIR2DS1, KIR2DS2, 

KIR2DS3, KIR2DS5 and KIR3DS1 genes, whereas group A haplotypes possess a 

single activating gene, KIR2DS4, as well as four inhibitory genes encoding proteins 

representing the main HLA class I specificities, KIR2DL1, KIR2DL3, KIR3DL1 and 

KIR3DL2 (Marsh et al. 2003).

Group B haplotypes possess a greater variability in the number of genes present. They 

possess a greater number of activating KIR (i.e. KIR2DS1, KIR2DS2, KIR2DS3, 

KIR2DS5 and KIR3DS1) and can incorporate inhibitory KIR genes which are known to 

be absent in group A haplotypes (i.e. KIR2DL2 and KIR2DL5) (Uhrberg et al. 2002). 

KIR genotyping techniques used in family segregation analysis have defined at least 20 

distinct group B haplotypes (Gomez-Lozano et al. 2002; Hsu et al. 2002b; Uhrberg et 

a l  2002).

Many KIR haplotypes have been defined by family segregation studies (Gomez-Lozano 

et al. 2002; Shilling et al. 2002a; Uhrberg et al. 2002). The haplotypic organisation of 

KIR genes and alleles which has been proposed in family segregation studies has also 

been supported by full genomic sequencing of three KIR haplotypes (AC011501, 

AL133414 and AY320039) as well as through gene order mapping (Hsu et al. 2002a).
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30L23013 20S2 2DL2/3 2DL5B 2DS3/5 2DP1 2DL1 30P1 2DL4 3DL1/S1 2DL5A 2DS3 2DS5 2DS1 2DS4

T e lo m e reC e n tro m e re

Figure 1.15. KIR hapiotype diversity. The structures of group A and group B KIR haplotypes shown in 

this figure were identified by at least two separate studies involving family segregation analysis (Gomez- 

Lozano et al. 2002; Shilling et al. 2002a; Uhrberg et al. 2002), genomic sequencing (A C 011501, 

AY320039 and AL133414) and gene-order analysis (Hsu et al. 2002b). Blue boxes indicate framework 

genes, light blue boxes pseudogenes (KIR3DP1 is also a framework gene), red boxes indicate inhibitory 

KIR and green boxes represent activating KIR genes.

The introduction of high resolution typing approaches and their use in family 

segregation studies, has demonstrated that KIR haplotypes are further diversified by 

allelic variations, as shown in figure 1.16. More than 22 and 15 allelic variants of group 

A and B haplotypes, respectively, have been shown to exist in Caucasoid populations 

(Shilling et al. 2002a). It is expected that future studies directed towards analysing the 

allelic content of non-Caucasoid populations will further increase the number of allelic 

variations of known haplotypes, as well as expose novel gene arrangements.
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9 *002/006 *002 *004 *00510 •0 0 2 /0 0 6 •002 *005 *001/00911 *001 •0 0 3 •001 *001/00912 *001 *003 •0 0 2 /0 0 3 /0 0 6 /0 0 7 /0 0 8 *001/009
13 *001 •0 0 3 * 0 0 2 /0 0 3 /0 0 6 /0 0 7 /0 0 8 •002
14 •001 *003 •0 0 2 /0 0 3 /0 0 6 /0 0 7 /0 0 8 *006
15 •001 *003 * 0 0 2 /0 0 3 /0 0 6 /0 0 7 /0 0 8 *008
16 *001 *003 •0 0 2 /0 0 3 /0 0 6 /0 0 7 /0 0 8 *010
17 *001 *003 *004 *003
18 *001 *003 •0 0 4 *011
19 •001 •0 0 3 •004 *01220 *001 •0 0 3 •0 0 5 •0 0 1 /0 0 921 *001 *003 *005 *01022 *006 *005 *004 *003

Figure 1.16. Allelic variations of KIR haplotypes. The allele associations observed for group A KIR 

haplotypes are taken from a study based on family segregation analysis (Shilling et al. 2002a).

KIR gene organisation

KIR genes vary in length from 4 to 16 Kb (full genomic sequence) and can contain four 

to nine exons (figure 1.17). KIR genes are classified as belonging to one of three 

groups according to their structural features: 1) Type I KIR2D genes, which encode two 

extra-cellular domain proteins with a D1 and D2 conformation; 2) The structurally 

divergent Type II KIR2D genes which encode two extra-cellular domain proteins with a 

DO and D2 conformation and finally; 3) KIR3D genes encoding proteins with three 

extra-cellular Ig-like domains (DO, D1 and D2) (Vilches and Parham 2002).

Type I KIR2D genes, which include the pseudogene KIR2DP1 as well as KIR2DL1-3 

and KIR2DS1-5 genes, possess eight exons as well as a pseudoexon 3 sequence 

(Colonna and Samaridis 1995; Wagtmann et al. 1995a; Vilches et al. 2000a). This 

pseudoexon is inactivated in Type I KIR2D due to a nucleotide substitution located on 

the intron 2-exon 3 splice-site, its nucleotide sequence exhibits a high-degree of 

identity to KIR3D exon 3 sequences and possesses a characteristic three base pair 

deletion, (Vilches et al. 2000b). Within the Type I KIR2D group of genes, KIR2DL1 

and KIR2DL2 differ from KIR2DL3 in that the later possesses a longer exon 7
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sequence. Similarly, within Type I KIR2D, KIR2DL1-3 differ from KIR2DS1-5 only in 

the length of their cytoplasmic tail encoding region on exon 9. The KIR2DP1 

pseudogene structure differs from that of KIR2DL1-3 in that the former has a shorter 

exon 4 sequence, due to a single base pair deletion (Vilches et al. 2000d).

Type II KIR2D genes include KIR2DL4 and KIR2DL5. Unlike KIR3D and Type I 

KIR2D, Type II KIR2D characteristically lack exon 4. Additionally, Type II KIR2D 

genes differ from Type I KIR2D genes in that the former possess exon 3, while Type I 

KIR2D genes have an untranslated pseudoexon 3 sequence in its place (Selvakumar et 

al. 1996; Vilches et al. 2000d). Within the Type II KIR2D genes, KIR2DL4 is further 

differentiated from KIR2DL5 (as well as from other KIR genes) by the length of its 

exon 1 sequence. In KIR2DL4, exon 1 was found to be six nucleotides longer and to 

possess a different initiation codon than that present in the other KIR genes. This 

initiation codon is in better agreement with the ‘Kozak transcription initiation consensus 

sequence’ (Kozak 1986) than the second potential initiation codon present in other KIR 

genes (Selvakumar et al. 1996).

KIR3D genes possess nine exons and include KIR3DL1, KIR3DS1, KIR3DL2 as well 

as KIR3DL3 genes. KIR3DL2 nucleotide sequences are the longest of all KIR genes 

and span 16,256 bp in full genomic sequences and 1,368 bp in cDNA. Within the 

KIR3D group, the four KIR genes differ in the length of the region encoding the 

cytoplasmic tail on exon 9 (Colonna and Samaridis 1995; Dohring et al. 1996a; Torkar 

et al. 1998). The cytoplasmic tail encoding region can vary from a total lack of exon 9 

in some KIR3DS1 sequences, to the 210 base pair long KIR3DL2 exon 9 sequence. 

Additionally, KIR3DS1 differs from KIR3DL1/2 in that the former has a shorter exon 8 

sequence. KIR3DL3 differs from other KIR sequences in that it completely lacks exon 

6. The most extreme KIR gene structure difference observed was that of KIR3DP1 

(Vilches et al. 2000c). This gene fragment completely lacks exons 6 through 9, and 

occasionally also exon 2. The remaining portions of the gene which are present (exon 1, 

3, 4 and 5) share a high level of sequence identity to other KIR3D sequences, in 

particular to KIR3DL3 sequences.
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Figure 1.17. KIR gene organisation and structural characteristics. KIR genes sharing similar 

structural organisation have been grouped accordingly, while KIR genes with structural peculiarities are 

shown on their own. Exons are represented as blue boxes, their size in base pairs is shown in digits above 

them. The pseudoexon 3 and the deleted KIR3DP1 exon 2 is shown in red. The brackets at the bottom of 

the diagram illustrate the way in which the exons code for each protein domain and region.

The way that the exons participate in the encoding of KIR proteins is shown in figure

1.17. The 34 bp long exon 1 together with the 36 bp long exon 2 encode the leader 

peptide of KIR proteins. The 285 bp long exon 3 present in KIR3D and type II KIR2D 

genes encodes the membrane distal (DO) Ig-like domain and is silenced by splice-site 

polymorphism in Type I KIR2D genes. A 300 bp long exon 4 present in KIR3D and 

type I KIR2D genes, but absent in type II KIR2D, encodes the middle (D l) Ig-like 

domain of KIR proteins. Exon 5 is 294 bp long and encodes the membrane-proximal 

(D2) domain of all known KIR proteins. The 51 bp long exon 6 sequence encodes the 

stem region of KIR proteins and is classically absent in KIR3DL3 genes. Exon 7 is 102 

bp long in KIR2DL1/2 but 105 bp long in the other KIR genes, and encodes the 

‘carboxy’ end of the stem region, the entire transmembrane region as well as the 

‘amino’ end of the cytoplasmic region. A 53 bp long exon 8 encodes 18 amino acids of
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the cytoplasmic region (residues 348-365) of most KIR proteins, and finally, exon 9 

encodes the remainder of the cytoplasmic region of KIR proteins, and can vary in length 

from total absence in some KIR3DS1 sequences to 270 bp long in Type II KIR2D 

(Vilches et al. 2000d).

Origin o f KIR gene diversity

The diversity of the KIR system of proteins is a consequence of several levels of 

organisational complexity, as is also seen in genes of the adaptive immune system 

(Trowsdale and Parham 2004). These organisational levels include: the existence of 

KIR allelism (polymorphism), the existence of different types of KIR genes (polygeny) 

and the presence of multiple haplotypes with different KIR gene arrangements 

(polyhaplotypic). In addition to these genetically encoded mechanisms, KIR gene 

diversity is further increased as a result of epigenetic mechanisms (such as DNA 

methylation) which influence KIR gene expression (Santourlidis et al. 2002; Chan et al. 

2003).

The Ig-SF is the most ancient and extensive gene group which has arisen through 

multiple gene duplication events that lead to proteins with different functional roles 

(Trowsdale and Parham 2004). Fifteen different types of KIR genes and two 

pseudogenes have been recognised. The 15 KIR genes encode for seven activating KIR 

proteins and eight inhibitory proteins. In addition, most KIR genes exhibit moderate to 

high-levels of allelic variation (Shilling et al. 2002a). KIR genes have been shown to be 

polymorphic and more than 91 sequences representing alleles of the seventeen genes 

have been described (Marsh et al. 2003). The number and type of KIR genes present on 

a given hapiotype varies considerably as mentioned previously. Most importantly, 

human KIR haplotypes have been shown to possess different numbers of activating KIR 

genes. The way in which allelic polymorphism further diversifies the haplotypic 

variations shown in figure 1.16 has recently been demonstrated by high-resolution 

studies (Shilling et al. 2002a).

KIR gene and hapiotype diversity is the result of similar genetic mechanisms acting on 

different scales. Present day KIR gene diversity is thought to have originated from the
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occurrence of multiple gene duplications events followed by intragenic duplication of 

exons, exon deletions and intergenic recombination events (Hughes 2002a). The 

duplication of KIR genes provided the immune system with the capability to evolve 

innovative properties rapidly, by liberating the duplicate gene to adopt novel functional 

properties whilst still preserving the function of the original gene (Hughes 2002b). The 

presence of KIR genes within a tight cluster is currently thought to provide them with 

the capacity to evolve novel gene variants and gene associations by facilitating the 

occurrence of recombination events. In addition, the maintenance of a clustered set of 

KIR genes is suggestive of a need to ensure functional combinations of genes and 

alleles are present on the same hapiotype and inherited as a group. An idea that is also 

supported by the fact that linkage disequilibrium is seen across the KIR region (Parham 

2003).

The diversity of KIR hapiotype gene content is similarly thought to arise from both 

intergenic asymmetric and homologous recombination events. The asymmetric 

recombination events arise as a consequence of the high sequence homology that exists 

between the compact KIR intergenic regions (approximately 2.4 Kb) (Wilson et al.

2000). However, homologous recombination is particularly favoured within a peculiar 

14 Kb long region located between KIR3DP1 and KIR2DL4 genes, as shown in figure

1.18, panel B (Wilson et al. 2000; Yawata et al. 2002a). It is currently thought that the 

KIR encoding region is divided by this homologous recombination hot spot into two 

halves. Where asymmetric recombination events within each of these two KIR encoding 

regions diversify their gene and allele content, and homologous recombination events 

between these two separate halves give rise to the many KIR haplotypes seen today 

(Trowsdale et al. 2001; Hsu et al. 2002a; Hsu et al. 2002b; Yawata et al. 2002a).

The occurrence of these genetic events has recently surfaced in relation to the hybrid 

origin of KIR2DL2. Recent data has demonstrated that this gene exhibits high sequence 

identity to KIR2DL3 within the extra-cellular domain encoding portion of the gene, 

while the remaining transmembrane and cytoplasmic tail encoding region share higher 

sequence identity to KIR2DL1. A finding which suggest that KIR2DL2 might have 

arisen as a consequence of an asymmetric recombination event as shown in figure 1.18, 

panel A (Wilson et al. 2000).
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(A)

(B)

Figure 1.18. Recombination events leading to the expansion and contraction of KIR haplotypes.

Asymetric recombination events are thought to be responsible for the hybrid origin of KIR2DL2 gene as 

shown in panel A. The duplication of a large span of the KIR region encompassing KIR2DL4 and 

KIR3DL1 is also thought to be the consequence of unequal crossing-over events (panel B).

Unfortunately, the evolution of hybrid KIR genes and alleles through these intergenic 

recombination and duplication events has a tendency to confuse the use of terms like 

‘genes’ and ‘alleles’. To this respect, recent segregation studies carried out in families 

have shown how KIR sequences previously thought to be different genes based on 

cytoplasmic tail length differences may actually represent alleles based on the observed 

inheritance behaviour (Shilling et al. 2002a). This is the case of KIR3DS1 and 

KIR3DL1, which differ by only 6-12 amino acid residues. Interestingly, no interaction 

of KIR3DS1 with Bw4 motif bearing HLA-B alleles has been demonstrated to date 

(Vilches and Parham 2002).

The driving force behind KIR gene evolution is thought to be pathogen-mediated 

selection. However, it remains unclear whether these pathogen-pressures are transmitted 

to the KIR system by means of an indirect route involving restrictions imposed by the 

adaptive immune system on NK cells or by a direct effect selecting for KIR-dependant 

NK cell advantages (Khakoo et al. 2000).
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KIR diversity in human populations

In the previous paragraphs I have described some of the several levels of KIR diversity 

that exist in a single individual. However, KIR diversity possesses yet another level of 

complexity demonstrated only by comparing ethnically and geographically distinct 

human populations. The fact that KIR gene, allele and hapiotype frequencies vary 

amongst human populations supports the idea that KIR diversity might be the result of 

natural selection and a consequence of exposure to pathogenic challenges. As such, the 

KIR genotype profiles of several human populations have been shown to differ amongst 

them, including Caucasoids of North America, Europe and Australia (Uhrberg et al. 

1997; Witt et al. 1999; Crum et al. 2000; Norman et al. 2001; Toneva et al. 2001; 

Uhrberg et al. 2002; Cook et al. 2003), Japanese (Yawata et al. 2002b), Vietnamese 

(Toneva et al. 2001), Thai (Norman et al. 2001; Norman et al. 2002), North Indian 

Hindu (Norman et al. 2002; Rajalingam et al. 2002), Punjabi, Memon and Ismaili 

Karachi (Norman et al. 2002), Australian Aboriginal (Toneva et al. 2001), West African 

(Norman et al. 2002) and Palestinian (Norman et al. 2001) populations, as shown in 

figure 1.19. The comparison of these studies hints at the existence of distinctive 

differences in KIR genotype frequencies amongst human populations, as well as 

population specific genotypes (Yawata et al. 2002a).
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Figure 1.19. KIR gene phenotypic frequencies amongst twelve different populations. The phenotypic KIR gene 

frequencies expressed as the percentage of individuals are shown. The Mexican population included in this figure is 

further discussed in Chapter 7. Figure adapted from the data provided by several population studies of KIR gene 

frequency (Uhrberg et al. 1997; Witt et al. 1999; Crum et al. 2000; Norman et al. 2001; Toneva et al. 2001; Norman 

et al. 2002; Rajalingam et al. 2002; Uhrberg et al. 2002; Yawata et al. 2002b; Cook et al. 2003).

82



Chapter 1

In a similar manner human populations have also been shown to exhibit KIR hapiotype 

differences. Group A haplotypes comprise the most frequent hapiotype found in the 

majority of the populations studied so far and consists of eight KIR genes: KIR3DL3, 

KIR2DL1, KIR2DP1, KIR2DL3, KIR3DP1, KIR2DL4, KIR3DL1, and KIR3DL2. This 

hapiotype group has been shown to be present in approximately 55% of individuals in 

Caucasoid populations, approximately 30% of which have also been shown to be 

homozygous for such a hapiotype (Uhrberg et al. 1997). These group A haplotypes are 

present with a higher frequency in Vietnamese populations (64.4%) (Toneva et al.

2001) and are highest amongst individuals of Japanese origin (76%), in which more 

than 50% of the individuals are homozygous for group A haplotypes (Yawata et al. 

2002b).

Group B haplotypes have been shown to be present in approximately 45% of the 

individuals comprising Caucasoid populations, a similar frequency to that of group A 

haplotypes (Hsu et al. 2002a). However, the frequency of group B haplotypes has been 

shown to be lower (less than 40%) in Vietnamese and Japanese populations, in which 

less than 3% of the population are B homozygotes (Toneva et al. 2001; Yawata et al. 

2002b). In contrast, individuals homozygous for group B haplotypes achieve their 

highest frequency in Australian aborigines (26.7%) (Toneva et al. 2001).

1.5.4 Functional relevance of KIR

KIR in anti-pathogen responses

KIR proteins are involved in anti-pathogen responses mainly within the first pathway of 

NK cell anti-pathogen responses described in the previous section (see figure 1.5). A 

classic example relates to NK cell-mediated responses against herpesvirus. In vitro 

experiments have demonstrated the downregulation of HLA-C molecules in Herpes 

virus-infected cells and the subsequent triggering of NK cell cytotoxic responses against 

them (Kunder et al. 1993; Zdravkovic et al. 1994; Huard and Fruh 2000). However, 

other associations of KIR with anti-pathogen responses, protection to infection and 

protection from progression to chronic infection are less well understood.
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KIR3DL2 *002 has been found to be associated to strong NK cell-mediated responses, 

such as IFN-y production, against red blood cells infected with the intracellular parasite 

Plasmodium falciparum (Artavanis-Tsakonas and Riley 2002; Artavanis-Tsakonas et al. 

2003). Although it is not clear what differentiates this KIR3DL2 allele from other 

alleles of the same gene, nor how an inhibitory receptor might be promoting NK cell 

activation. Although the authors consider the possibility that this association might in 

fact be due to another gene found in linkage disequilibrium with KIR3DL2*002, recent 

discoveries regarding an influence of the HLA-bound peptide on the binding properties 

of KIR3DL2 by might provide an alternative explanation to this (Khakoo et al. 2004). 

The analysis of these findings in the context of the recent description of differential 

binding affinity of KIR3DL2 to HLA-A3/11 ligands which depend on the type of 

peptide being presented by the HLA molecule could provide an explanation. It is 

conceivable that the presence of parasite-derived peptides on the HLA-A molecule 

might disrupt KIR3DL2 binding, a scenario that could in theory be interpreted by the 

NK cell as loss-of-self and therefore elicit NK cell activation.

Another, probably more important, example of KIR involvement in anti-viral responses 

relates to KIR3DS1 in the context of Human Immunodeficiency Virus 1 (HIV-1) 

infections. Initial studies had shown that HIV-1 infected individuals that were 

homozygous for HLA-Bw4 allotypes were significantly associated to lower viral loads 

(HIV-1), slower progression to AIDS and with their ability to maintain normal CD4 T 

cell counts (FIores-Villanueva et al. 2001). Subsequent analysis of the KIR profile of 

HIV-1 infected patients led to the description of an association of KIR3DS1 and certain 

HLA-Bw4 motif bearing alleles (HLA-Bw4 allotypes bearing an isoleucine residue in 

position 80) to slower progression to AIDS. This is thought to arise as a consequence of 

the activation of NK cells and subsequent elimination of HIV-infected cells (Martin et 

al. 2002a). It is not believed, however, that this protective effect of KIR3DS1 in 

cooperation with Bw4 bearing HLA-B alleles is HIV specific. This notion is supported 

by the recent description of the successful resolution of Hepatitis C Virus (HCV) 

infection by individuals expressing both KIR3DS1 and HLA-Bw4 allotype (Khakoo et 

al. 2004). In addition, this last study also demonstrated that individuals having weakly 

interacting inhibitory-KIR and HLA pairs (i.e.: KIR2DL3 and group 1 HLA-C 

allotypes) are more likely to resolve the HCV infection than individuals with other
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KIR-HLA-C combinations. This biological advantage is thought to render these 

individuals more capable of resolving HCV infections rather than progressing to 

chronic forms of the infection.

Roles for KIR in implantation biology

Human trophoblast cells are characterised by their distinctive pattern of MHC 

expression which is limited to the expression of classical class I HLA-C and non- 

classical HLA-G and HLA-E proteins (King et al. 2000). Interestingly, human NK cells 

have been shown to possess inhibitory receptors for each of these three HLA proteins 

(King et al. 2000). This finding together with the characterisation of the unique uNK 

cell subset of CD56Bnght cells suggested the possibility that NK cells might participate in 

the regulation of human implantation.

As NK cells are the predominant leukocytes present in implantation sites during the first 

trimester, a role for this particular interaction regarding maternal tolerance to the foetus 

has been proposed. The unique ability that KIR2DL4 has at recognising a non-classical 

HLA class-I molecule is thought to be the result of this KIR’s characteristic divergent 

structure (Vilches and Parham 2002). This KIR is encoded by a framework gene and is 

thought to be expressed by all NK cells (Rajagopalan and Long 1999). Recent findings 

have suggested an activating role for this KIR by stimulating IFN-y production (Asjo et 

al. 1977). The mechanism by which NK cells recognise anembryonic pregnancies is 

thought to be the result of either the lack or downregulation of KIR specific for Foetal 

Extravillous cytotrophoblast (FEC)-expressed HLA-C allotypes or the upregulation of 

activating CTLDs (Chao et al. 1999). Conversely, it is possible that certain NK 

repertoires may influence the susceptibility to other types of implantation disorders such 

as eclampsia. Eclampsia is the life-threatening situation that evolves as a consequence 

of abnormal invasion of the maternal decidua by FECs. Although some studies relating 

to KIRs in this particular scenario have ruled out any association between gene content 

and clinical outcome (Witt et al. 2002), decidual NK cells have been shown to possess 

distinctive phenotypes and NK receptor profiles in comparison to those present in 

peripheral NK cells within the same individual (Chao et al. 1999).
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HLA-G and KIR2DL4 represent a unique NK receptor/ligand interaction which has 

shown to play an important role in embryonic implantation. Although current 

knowledge has shown that the best candidate for HLA-G binding is KIR2DL4, HLA-G 

has also been shown to inhibit NK cells through Immunoglobulin-like transcripts 

(ILT-2) (Navarro et al. 1999) and by CD94:NKG2A recognising HLA-E presenting the 

leader peptide of HLA-G (Braud et al. 1998).

KIR in autoimmunity

Although the presence of weak inhibitory interactions between KIR and their cognate 

ligands has shown to be beneficial in the context of pathogen incursions, they may also 

be responsible for NK cell participation in autoimmune disorders. In patients with 

rheumatoid arthritis, KIR2DS2 was shown to be expressed by the expanded 

CD4+CD28nu11 T cells involved in endothelial damage. It is thought that interactions 

between KIR2DS2 and its cognate HLA ligand, in the absence of the inhibitory 

KIR2DL2/3, modulate the participation of CD4+CD28nu11 T cells in autoimmune 

processes by favouring the activation of autoreactive T cells (Yen et al. 2001).

The participation of KIR in the pathogenesis of autoimmune disorders has been further 

demonstrated by at least two additional studies. The first study relates to a role for KIR 

involvement in the physiopathology of psoriatic arthritis (Martin et al. 2002b). This 

study demonstrated that KIR2DS1 and KIR2DS2 in the absence of their corresponding 

inhibitory receptor ligands, group 2 and group 1 HLA-C allotypes, respectively, 

decreased the activation threshold of NK or other lymphocytes. Similar results have 

been observed in the context of yet another autoimmune disorder, Psoriasis Vulgaris, in 

which KIR2DS1 and group B haplotypes in general were associated significantly to the 

occurrence of the disease (Suzuki et al. 2004). Nevertheless, it remains unclear how 

cells that express these activating KIR participate in the physiopathology of these 

disorders.

1.5.5 KIR typing techniques

The characterisation of KIR genes in human populations has employed several distinct 

molecular typing approaches to describe their presence. The first comprehensive KIR
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typing method that was described used a Reverse Transcriptase-Polymerase Chain 

Reaction (RT-PCR) employing oligonucleotide primer pairs which were sequence 

specific for polymorphic positions unique to each one of the twelve KIR genes known 

to exist at the time. Subsequent adaptation of the oligonucleotide primer pairs enabled 

their use in genomic DNA samples in a PCR-Sequence Specific Priming (PCR-SSP) 

typing technique by the same research group (Uhrberg et al. 1997). With the description 

of novel KIR genes and alleles, this typing approach was later complemented with the 

addition of oligonucleotide primer pairs directed towards detecting the presence of 

novel KIR genes (Vilches et al. 2000c).

The discovery of the extent of KIR gene polymorphism led to the implementation of 

high-resolution typing approaches capable of detecting the alleles of some KIR genes 

(those thought to be more functionally relevant). PCR-SSP based typing techniques 

directed towards detecting the alleles of KIR3DL1 and KIR3DL2 (Gardiner et al. 2001) 

as well as of KIR2DL1 and KIR2DL3 (Shilling et al. 2002a) genes were developed.

Another typing approach that has shown to be as capable as PCR-SSP based techniques 

at defining KIR gene and allele profiles has been the PCR-Sequence-Specific 

Oligonucleotide Probing (PCR-SSOP) (Crum  et al. 2000). However, this typing 

approach has not been adopted by most research groups involved in KIR typing as it is 

more time consuming and requires specifically dedicated equipment which is not 

needed for PCR-SSP based approaches. Another methodology implemented for KIR 

typing by a single research group involves the use of capillary electrophoresis based 

Single-Stranded Conformation Polymorphism (SSCP) screening (Witt et al. 2000). 

However, this typing approach is much more expensive and has not proved capable of 

achieving higher resolution than the PCR-SSP or PCR-SSOP based approaches.

1.6 Haematopoietic Stem Cell Transplantation

Haematopoietic Stem Cell Transplantation (HSCT) constitutes a curative therapeutic 

modality for a wide range of malignant and non-malignant diseases. HSCT is indicated 

for the treatment of malignant diseases such as Acute Myeloid Leukaemia (AML), 

Acute Lymphoid Leukaemia (ALL), Chronic Myeloid Leukaemia (CML),
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Myelodysplastic Syndrome (MDS), Chronic Lymphocytic Leukaemia (CLL), Multiple 

Myeloma (MM), Hodgkin’s Disease (HD) and Non-Hodgkin’s Lymphoma (NHL) and 

also considered a curative treatment for non-malignant diseases like Thalassaemia, 

Severe Combined Immunodeficiency (SCID) and inborn errors of metabolism 

(Gratwohl et al. 2002).

Allogeneic transplants are regarded as being more effective than autologous transplants 

given that allogeneic transplants elicit stronger Graft versus Leukaemia (GvL) effects 

which translate into a lower incidence of disease relapse (Weiden et al. 1981). The use 

of HLA-matched sibling donors as the source of stem cells is regarded as the best 

allogeneic transplant modality available for most diseases as it provides a relatively 

acceptable balance of GvL effects and Graft versus Host Disease (GvHD) (Anasetti et 

al. 1989). More recently, the use of unrelated donors (UD) for HSCT has demonstrated 

to be a feasible alternative to the use of related donors as only 30% of the patients 

requiring a HSCT will have an HLA matched sibling (Foroozonfar et al. 1977; O'Reilly 

et al. 1977; Madrigal et al. 1997).

The success of HSCT seen today is the result of the improved understanding of the 

molecular mechanisms involved, refinement of the tissue typing techniques as well as 

due to the establishment of large volunteer unrelated donor registries. The Anthony 

Nolan Trust (ANT) was the first unrelated donor registry to be established and remains 

the largest bone marrow registry in the UK and the third largest in the world (personal 

communication; S. Cleaver ANT).

Chemo- or radiotherapy based conditioning regimens are employed to eradicate the 

disease and to ablate hosts immune cells so as to immunosuppress the recipient in 

preparation for the haematopoietic stem cell graft. The establishment of an early and 

robust myeloid engraftment constitutes an essential pre-requisite to a successful clinical 

outcome of HSCT (Rihn et al. 2004). The speed and quality of engraftment is 

influenced by the degree of HLA matching existing between donor and recipient, 

recipients CMV status, donor sex, infused cell dose, origin of stem cells, conditioning 

regimen and Graft-versus-Host Disease prophylaxis (Kernan et al. 1993; Davies et al. 

2000; Favre et al. 2003).
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The process by which the donor-derived dendritic, T and B cells replenish the 

recipient’s immune system is called immune reconstitution. This process involves both 

expansion of immunocompetent cells present in the graft as well as the maturation and 

education of stem cells present in the graft into mature lymphocytes (Isaacs and Thiel 

2004; Peggs and Mackinnon 2004). NK cells are the first donor-derived lymphocytes to 

reconstitute and represent the main lymphocyte population present in the recipient 

during the first 40 days post-transplant (Lowdell et al. 1998). Engraftment and immune 

reconstitution are severely compromised in the presence of complications.

The main complication of UD-HSCT is graft-versus-host disease, the extent of which 

depends mainly on the degree of HLA matching achieved (Billingham 1966). It is 

classed as being acute Graft-versus-Host Disease (aGvHD) when it is diagnosed within 

the first 100 days post-transplant and chronic Graft-versus-Host Disease (cGvHD) 

thereafter. Current approaches directed towards decreasing the intensity of GvHD 

involve the use of T-cell depleted grafts (Ho and Soiffer 2001).

Other early complications of UD-HSCT are mostly the result of endothelial lesions 

caused by the conditioning regimen or peri-transplant use of pharmacologic agents and 

include veno-occlusive disease (VOD), thrombotic thrombocytopenic purpura (TTP) 

and haemolytic-uraemic syndrome (HUS) (Nurnberger et al. 1998). Other transplant 

related complications include those caused by pathogens, mainly due to CMV (Prentice 

et al. 1994; Ljungman 2002). The degree of clinical complications following an 

UD-HSCT depend on HLA matching, the conditioning regimen to which the recipient 

was subjected, age of the recipient, the treatments to which the recipient has been 

subjected prior to transplantation as well as on the patient’s virological status (Nichols 

2003).

1.6.1 Relevance of HLA in Haematopoietic Stem Cell Transplantation

Immune responses elicited by HLA incompatibility between donors and recipients 

represent a major barrier to the successful implementation of HSCT and of particular 

concern when using unrelated donors (Foroozonfar et al. 1977; O'Reilly et al. 1977). 

HLA matching represents one of the most important factors determining the outcome of
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HSCT aside of the recipients diagnosis and stage at time of transplant, age, conditioning 

and pharmacological interventions. Matching for five main HLA loci: HLA-A, -B, -C, 

-DRB1 and -DQB1, also referred to as a 10/10 match, has been known to be associated 

to a favourable clinical outcome of HSCT.

During the last decade, the application of high-resolution typing methods has revealed 

that allele-level HLA matching significantly improves transplant outcome (Petersdorf et 

al. 1998; Petersdorf et al. 2001; Morishima et al. 2002; Petersdorf et al. 2003; 

Flomenberg et al. 2004). Mismatching for HLA-A, -B, -C and -DRB1 has been 

associated to a higher incidence of failed engraftment and the incidence of aGvHD rises 

in the presence of increasing numbers of HLA class I , class II or combined mismatches 

(Petersdorf et al. 2003). Finally, HLA-A, -B, -C and -DRB1 mismatches have also been 

associated to a decrease in patient survival after HSCT (Flomenberg et al. 2004). 

Nevertheless, a certain degree of HLA mismatching might be desirable so as to elicit 

potent donor-lymphocyte mediated anti-leukaemic responses (GvL) (Barret 1991; 

Barrett and van Rhee 1997; Munker et al. 2002).

1.6.2 Relevance of NK cells and KIR in Haematopoietic Stem Cell 

Transplantation

The relevance of NK cell function in the haematopoietic stem cell transplantation 

setting is fundamentally based on the fact that KIR have been shown to bind to specific 

MHC ligands and are capable of mediating NK cell alloreactivity.

Role o fNK cells in HSCT engraftment

NK cells are the first donor lymphocytes to recover and comprise more than 80% of the 

peripherally circulating lymphocytes during the first three months after HSCT (Reittie 

et al. 1989; Lowdell et al. 1998). Approximately 70% of these early NK cells belong to 

the CD56Bnght CD 16Dim/NegatIve subset (Jacobs et al. 1992). This finding, together with the 

ability of NK cells to respond immediately and potently to activating signals triggered 

through many receptors, has suggested that the recipient’s immunological protection 

during the early post-transplant period depends mainly on donor-derived NK cell 

activity.
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That early post-transplant donor-derived NK cells may contribute to and encourage the 

engraftment and survival of haematopoietic stem cells has been suggested by a recent 

study demonstrating improved patient survival in the presence of early full donor NK 

cell chimerism (Baron et al. 2004). Similarly, other studies have demonstrated a higher 

incidence of graft failures associated to NK cell donor chimerism levels below 75% at 

20 days post-transplant (Bornhauser et al. 2001). These graft rejection mechanisms 

appeared to be mediated by host-derived NK cells (as they involved non-myeloablative 

conditioning regimens) acting in a similar manner to the NK alloreactivity dependent 

rejection event described in the murine hybrid resistance model (figure 1.3). In support 

of the idea that host NK cells can mediate the rejection of haematopoietic stem cell 

grafts is the ability of NK cells to survive radiation-doses which would otherwise kill 

other lymphoid cells (Gray et al. 1989; Uchida et al. 1989b; Uchida et al. 1989a). This 

scenario could arise as a result of suboptimal or fractionated total body irradiation (TBI) 

approaches.

Role o f NK cells in Graft-versus-Host Disease

Although a function for NK cells has been described in mediating GvHD in 

bone-marrow transplantation, it remains unclear whether NK cells play a role in 

Graft-versus-host (GvH) reactions to somatic cells (Maier et al. 2001). In fact, most 

studies have shown that, at least under standard immunosuppressive therapy, 

alloreactive NK cells do not play a major role in solid organ allograft rejection (Oertel 

et al. 2001). Interestingly, the same murine hybrid resistance model highlights this 

phenomenon as well. As mentioned previously, FI hybrids rapidly reject paternal cells 

of a haematopoietic lineage but tolerate the presence of paternal solid organ grafts 

(figure 1.2). This haematopoietic lineage-restricted NK cell killing is thought to depend 

on the presence of adhesion molecule expression by targets (such as LFA-1) (Schmidt 

et al. 1985; Hart et al. 1987; Donskov et al. 1996; Barao et al. 2003). Although a case 

has been reported in which NK cells were observed in GvHD skin lesions after 

allogeneic HSCT, the phenotype of these cells did not entirely match that of classical 

NK cell subsets (Acevedo et al. 1991). Although current knowledge does not support 

the idea that NK cells possess the ability to initiate GvHD, it does not rule out the
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possibility that NK cells might participate in GvH events after they have been initiated 

by CTLs.

NK cell alloreactivity, however, has been shown to be associated with protection from 

GvHD (Ruggeri et al. 1999). Umbilical cord blood transplants (UCBT) have been 

widely accepted as an alternative source of stem cells. The incidence of GvHD after 

UCBT has been noted to be lower than that resulting from other sources used (Chargui 

et al. 2000). Recent findings seem to suggest that the low incidence of GvHD observed 

after UCBT may be partially due to early NK cells suppressing the activity of effector 

cells known to cause GvHD or by regulating the activity of APCs (Brahmi et al. 2001).

Role o f NK cells in Graft-versus-Leukaemia reactions

The accumulating evidence of NK cell-mediated anti-tumour activity against malignant 

cells of different lineages supports the possibility that NK cells might be capable of 

mediating anti-tumour responses in vivo and after HSCT (Smyth et al. 2000; Basse et 

al. 2001; Gansuvd et al. 2002). In fact, allogeneic transplantation provides the best 

evidence of NK cell involvement in anti-tumour responses (Costello et al. 2004).

As mentioned previously, NK cells are known for their ability to recognise and 

eliminate tumour cells that have downregulated the expression of MHC molecules. This 

together with the description of HLA expression defects on several haematological 

malignancies have suggested that NK cells might be involved in the eradication of 

minimal residual disease after HSCT (Garrido et al. 1995; Seliger et al. 2002; Chang et 

al. 2003). Furthermore, NK cell anti-tumour activity has been demonstrated in vitro 

against a variety of haematological malignancies (Ruggeri et al. 2002; Hu 2003; 

Costello et al. 2004).

In addition to the MHC-dependent killing of tumours by NK cells, other studies have 

shown NK cell mediated killing of haematological tumours expressing normal levels of 

HLA (Frohn et a l  2002), a property of NK cells that can be enhanced by stimulating 

them with IL-2 (Goodman et al. 1998). It has also been shown that optimal NK cell 

killing of haematological malignancies is only achieved in the presence of small tumour
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burdens, a finding which mimics the viral-burden requirements demonstrated for NK 

cell responses to HCV (Khakoo et al. 2004).

Role o f NK cells in protection from infectious complications after HSCT

NK cells have been known to participate in the elimination of pathogen-infected cells as 

mentioned previously. Human Herpes Simplex Virus (HSV), CMV and Epstein-Barr 

Virus (EBV) infections are particularly common pathogens during the first months after 

HSCT, whereas bacterial pathogens (such as S. pneumoniae and H. influenzae) are more 

common in the late post-transplantation period (Cordonnier 2004). The ways by which 

NK cells participate in post-transplant anti-pathogen responses are the same as 

described previously.

Relevance o f KIR in HSCT

Recent studies regarding the behaviour of NK cells in HSCT have generated 

controversial and sometimes conflicting results, perhaps explained by differences in the 

conditioning regimens used, infused cell doses, transplant modality and the use of post­

transplant immunosuppression.

The first study dedicated towards resolving the impact of KIR proteins on HSCT was 

published in 1999 (Ruggeri et al. 1999). In this study 60 patients with leukaemia (22 

with ALL, 25 with AML and 13 with CML) that were subjected to haploidentical 

haematopoietic stem cell transplantation were classified into three groups based on the 

inferred KIR-mediated NK cell alloreactivity potential. The graft was subjected to 

extensive T cell depletion and CD34+ cell purification, additionally, none of the patients 

received immunosuppressive agents following transplant. The NK alloreactivity 

potential was assigned based on the comparison of the KIR-ligand epitopes present in 

each of the patient-donor pairs as assessed by HLA-C and HLA-B serological typing. 

Twenty pairs were classified into the group with GvH potential as their recipients failed 

to express the KIR epitopes present on their corresponding donors. Seventeen pairs 

were classified as having Host versus Graft (HvG) alloreactivity potential as the donors 

failed to express the KIR epitopes present in their corresponding recipients. Finally 23
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pairs were classified into the group without KIR mediated NK cell alloreactive potential 

as recipients and donors possessed the same KIR epitopes.

This study demonstrated that KIR epitope-mismatched pairs with KIR mediated NK 

cell alloreactivity in the GvH direction confers a biological advantage characterised by 

the enhancement of engraftment and eliciting of potent GvL effects in the case of 

myeloid diseases. This benefit of KIR mismatching is derived from the lack of relapse 

events and graft rejection episodes in recipients with myeloid malignancies and GvH 

NK-alloreactive potential. However, relapse was observed in pairs of this GvH 

alloreactive group when the recipients were affected by lymphoid malignancies, a 

difference which has been attributed to differential expression of cell adhesion 

molecules by lymphoid and myeloid cells. In addition, this study carried out in vitro 

experiments which demonstrated that the conditioning regimen employed in these 

patients (TBI, Thiotepa, Anti-thymocyte immunoglobulin and fludarabine) effectively 

destroyed host NK cells and that donor derived alloreactive NK cells were anergised in 

vivo after the fourth month post-transplant (thought they fail to suggest an explanation 

for this). These results generated great interest in the immunological and transplant 

community as they provided an explanation for events which had not been entirely 

explained by HLA mechanisms or matching. However, the potential use of these 

findings was limited as they had been described in the haploidentical setting, a 

transplant modality which is not as commonly used as the HLA-matched unrelated 

donor approach.

Subsequent studies attempted to demonstrate the suitability of Ruggeri’s algorithm in 

recipients of unrelated donor bone marrow transplants (BMT) (Davies et al. 2002). This 

study employed 175 recipients of UD-BMT for which the HLA-A, -B, -C and -DRB1 

profiles had been typed by molecular methods to allele level. Of the 175 recipients, 58 

had CML, 35 had ALL and 14 had AML, the remaining 68 cases included recipients 

with other types of leukaemia as well as non-malignant diseases. The recipients were 

classified as belonging to one of the two groups: 1) those with KIR ligand 

incompatibility in the GvH direction (113 pairs), and 2) those without KIR ligand 

incompatibility (62 pairs). This study failed to demonstrate a benefit arising from 

KIR-mediated GvH NK alloreactivity and, in contrast to Ruggeri’s findings,
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demonstrated a statistical trend towards increased incidence of aGvHD grades II -  IV in 

GvH NK alloreactive cases. In addition, when KIR ligand compatibility was restricted 

to the analysis of recipients with myeloid diseases, KIR epitope-matched recipient- 

donor pairs were associated to better survival. These contradictory findings could not be 

explained by the authors and were dismissed as being the result of differences in the 

conditioning regimens, infused cell doses, transplant modality and post-transplant 

immunosuppression usage.

A third study was carried out to test Ruggeri’s findings in the UD-HSCT setting 

employing 130 recipients transplanted for haematological malignancies (Giebel et al. 

2003). Recipients were classified into those with KIR-mediated GvH NK cell 

alloreactive potential (20 patients) and those without GvH alloreactive potential (110 

patients). This transplant cohort used TBI, cyclophosphamide and thiotepa based 

myeloablative conditioning for recipients with lymphoid malignancies and 

combinations of busulphan and cylophosphamide with melaphalan for myeloid patients. 

Additionally the recipients of this cohort received post-transplant GvHD prophylaxis. 

The results of this study demonstrated three significant findings: 1) The post-transplant 

overall survival at 4.5 years of recipients with KIR-ligand incompatibility was 85% 

whereas only 48% of the recipients without KIR-ligand incompatibility were alive at

4.5 years post-transplant, a survival difference which was not related to the degree of 

HLA compatibility. 2) The disease free survival (DFS) of patients with KIR-ligand 

incompatibility was of 87%, whereas recipients without KIR-ligand incompatibility had 

a DFS of only 39%. When the analysis of the KIR-ligand incompatibility was restricted 

to the recipients with myeloid malignancies a similar statistical trend was observed with 

regards to overall survival. Recipients with KIR-ligand incompatibility had an overall 

survival of 100% whereas recipients without KIR-ligand incompatibility had an overall 

survival of only 45%. 3) This study also demonstrated a lower incidence of graft 

rejection episodes in the context of KIR-ligand incompatibility. In general terms this 

study successfully reproduced the initial results generated by Ruggeri, demonstrating a 

decrease in aGvHD grades III-IV, a decrease in relapse (especially seen in myeloid 

malignancies) as well as better overall survival and disease-free survival in the context 

of GvH alloreactive donor derived NK cells. These findings supported the idea that 

KIR-ligand incompatibility represents a biological advantage that could be translated

95



Chapter 1

into the UD-HSCT setting. The similarities of the results generated in this third study to 

those presented by Ruggeri are thought to relate to the use of similar levels of infused 

stem cells during transplant.

All of these studies, however, suffer from the drawback of not addressing KIR 

polymorphism directly as well as disparities at KIR loci and alleles. In this respect, a 

fourth study using a genotyping approach on a small sample cohort (75 recipients) has 

suggested that mismatching for activating KIR genes (especially KIR2DS3) in the GvH 

direction might in fact be related to the occurrence of GvHD when associated to HLA 

class I mismatches (Gagne et al. 2002; Bishara et al. 2004).

Future studies directed towards defining donor-recipient differences of individual KIR 

allele variants as well as differences in KIR protein expression, coupled to CTLD and 

NCR data will be needed in order to fully exploit the therapeutically benefits arising 

from the use of alloreactive NK cells in the HSCT setting.

1.7 Thesis objectives

This thesis describes our efforts directed towards furthering our understanding of KIR 

gene diversity and its functional relevance. In the following chapters I will describe the 

creation of a KIR sequence database, a tool that has allowed us to analyse the 

distribution of KIR polymorphism and develop an innovative, KIR gene typing system. 

In addition, I will describe our novel approach to the analysis of KIR polymorphism. 

This approach employs bioinformatics tools and molecular modelling software to 

translate the linear features observed in the protein alignments into three-dimensional 

representations of KIR polymorphism. It is envisaged that this approach will allow us to 

infer some functional implications of KIR polymorphism. I will also be describing our 

development of a comprehensive and high-resolution KIR gene typing system, the 

application of which has allowed us to characterise the KIR gene and allele diversity of 

a large panel of widely available B-lymphoblastoid reference cell lines. In addition, this 

thesis aims to further our knowledge of the levels of KIR diversity seen in human 

populations by applying our KIR typing system to an as yet un-characterised Mexican 

Mestizo population. Finally, the ultimate goal of this thesis is to describe the clinical
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relevance of KIR genes and alleles in the common transplant modality using unrelated 

donors as a source of haematopoietic stem cells. In the final chapter of this thesis I will 

describe the results of the application of our KIR gene typing system to a large panel of 

unrelated recipients and donors of HSCT, results that undoubtedly will have a great 

impact on the decisions taken by the transplant physicians.
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Chapter Two

Materials and Methods

2.1 KIR nucleotide sequence alignments
2.1.1 Nucleotide sequence inclusion criteria

The sequences included in these alignments were retrieved from the European 

Molecular Biology Laboratory (EMBL) nucleotide sequence database or from the 

National Center for Biotechnology Information (NCBI) genetic sequence database 

(GenBank) by means of the accession numbers given in the original publications where 

each KIR gene and/or allele was described as shown in table 2.1.

2.1.2 ClustalX alignment procedure and considerations

Sequences were subjected to the ClustalX algorithm (version 1.83, www.embl- 

heidelberg.derchenna/clustal/darwin) running on an Apple Macintosh OS X platform 

(Apple, Cupertino, CA, USA). This algorithm (Chenna et al. 2003) was used to carry 

out accurate and robust multiple nucleotide sequence alignments based on a progressive 

pair wise alignment strategy developed by Feng, Doolittle and Taylor (Feng and 

Doolittle 1987; Taylor 1988). Manual intervention was necessary, as the gap penalty of 

this algorithm did not allow for the inclusion of type II KIR2D sequences given their 

structural divergence. These sequences were aligned manually using the BBedit text 

processor (version 6.1.2), (Bare Bones Software, Inc. Bedford, MA, USA) considering 

ClustalX aligned type I KIR2D sequences as a guide. After all the KIR sequences had 

been aligned in this manner, sequences were then reformatted to show sequence 

unanimity using an in house tool.
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Table 2.1. KIR allele name and accession number of sequences included in alignments

Sequence Name Accession No. Sequence Name Accession No,

KIR2DL 1*001 L41267 KIR2DS4*002 AF285440
KIR2DL 1*002 U24076 KIR2DS4*003 AJ417554
KIR2DL1*00301 U24078 KIR2DS5*001 L76672
KIR2DL1*00302 AF285431 KIR2DS5*002 AF208054
KIR2DL 1*004 AF022045 KIR2DS5*003 AF272389
KIR2DL 1*005 AF285432 KIR3DL 1*00101 X94262, U30274, L41269
KIR2DL2*001 U24075 KIR3DL 1*00102 AF262968
KIR2DL2*002 L76669 KIR3DL 1*002 U31416, U30273
KIR2DL2*0G3 AF285434 KIR3DL 1*003 AF022049
KIR2DL2*004 AF285433 KIR3DL 1*00401 AF262970
KIR2DL3*001 U24074, L41268 KIR3DL1*00402 AF262969
KIR2DL3*002 L76662 KIR3DL 1*005 AF262971
KIR2DL3*003 L76663 KIR3DL 1*006 AF262972
KIR2DL3*004 U73395 KIR3DL 1*007 AF262973
KIR2DL3*005 AF022048 KIR3DL 1*008 AF262974
KIR2DL3*006 AF285435 KIR3DL 1*009 AJ417556, AJ417557
K1R2DL4*00101 X99480 KIR3DL2*001 L41270
KIR2DL4*00102 AF034771 KIR3DL2*002 X94374, U30272
KIR2DL4*00201 X97229 KIR3DL2*003 X94373, L76665
K1R2DL4*00202 AF034772 KIR3DL2*004 X93595
KIR2DL4*003 U71199 KIR3DL2*005 L76666
KIR2DL4*004 AF002979 KIR3DL2*006 AF262966
KIR2DL4*005 AF034773 KIR3DL2*007 AF262965
KIR2DL4*006 AF285436 KIR3DL2*008 AF262967
KIR2DL4*007 AF276292 KIR3DL2*009 AF263617
KIR2DL5A*001 AF204903, AF217485, AL133414 KIR3DL2*010 AY059418
KIR2DL5B*002 AF217486 KIR3DL2*011 AY059419
KIR2DL5B*003 AF217487 KIR3DL2*012 AY059420
KIR2DL5B*004 AF260138-41 KIR3DS1*010 L76661
KIR2DL5(KIR2DLX 1) AF271607 KIR3DS1*011 X97233
KIR2DL5(KIR2DLX2) AF271608 KIR3DS1*012 U73396
KIR2DS 1*001 X89892 KIR3DS1*013 AF022044
KIR2DS 1*002 AF022046 KIR3DS1*014 AJ417558
KIR2DS 1*003 X98858 KIR3DL3*001 AF072407-10
KIR2DS 1*004 AF285437 KIR3DL3*00201 AC006293, AF204909-11
KJR2DS2*001 U24079, L41347 KIR3DL3*00202 AF204912-14
KIR2DS2*002 X89893 KIR3DL3*003 AL133414
KIR2DS2*003 AJ002103 KIR3DL3*004 AF352324
KIR2DS2*004 AF285438 KIR3DP 1*001 AF204915-17
KIR2DS2*005 AF285439 KIR3DP 1*002 AL133414
KIR2DS3 *00101 L76670 KIR3DP1*00301 AF204918-20
K1R2DS3*00102 X97231 KIR3DP1*00302 AC011501
KIR2DS3*00103 AP022047 KIR2DP1*001 AF204906-08
KIR2DS4*00101 U24077, AJ417555, AF002255, X94609 KIR2DP1*002 AC011501
KIR2DS4*00102 L76671

2.1.3 Sequence Alignment Unanimity Reformatting and Translation Tool 

(SAURT)

The Sequence Alignment Unanimity Reformatting Tool (SAURT) Perl script was 

developed and made available locally as a Common Gateway Interface (CGI) script on 

the Anthony Nolan Research Institute intranet. SAURT highlights the regions of 

sequence unanimity of all sequences to the KIR3DL2*001 reference sequence, 

grouping nucleotides into their corresponding codons as well as translating the
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nucleotide alignments into their corresponding amino acid alignments. The 

reformatting criteria used by this script conforms to the standardised guidelines devised 

for HLA and adopted for KIR alignments, where asterisks (*) indicate positions where 

sequence is unavailable but thought to exist and identity to the reference sequence 

KIR3DL2*001 is shown by a hyphen (-).

2.1.4 Criteria used for nucleotide sequence translation and definition of protein 

domains and regions

The nucleotide alignments derived from the ClustalX procedure were edited in BBedit 

in order to delete insertions, deletions, gaps and regions of unavailable sequence as well 

as the sequences representing non-expressed genes and alleles. Edited sequences were 

then loaded into SAURT and translation parameters enabled and reading frame selected. 

The resulting protein alignments were also subjected to the previously described 

annotation criteria.

2.1.5 Phylogenetic comparison of KIR sequences

The consensus amino acid sequences of nine representative KIR mature proteins were 

generated manually and subjected to the online ClustalW  (version 1.82, 

www.ebi.ac.uk/clustalw) algorithm running on a remote server. The Neighbor-joining 

Method (Saitou and Nei 1987) employing 1000 bootstrap values and distance correction 

option of this online sequence analysis tool was employed to carry out pairwise 

sequence comparisons and reconstruction of phylogenetic trees. Phylogenetic trees 

generated by this procedure were visualised by means of the open source TreeView X 

program (version 0.4.1, R.D.M. Page, darwin.zoology.gla.ac.uk/~rpage/treeviewx) 

running on an Apple Macintosh OS X platform (Apple, Cupertino, CA, USA). For the 

protein domain specific phylogenetic comparisons, sequences subjected to the 

previously mentioned algorithm were restricted in length to that of the region of 

interest.
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2.2 Generation of molecular models of the distribution of KIR 
protein polymorphism

2.2.1 Crystallographic Molecular Structures used

The crystallographic models of KIR2DL1 and KIR2DL2 proteins coupled to their HLA 

ligands were retrieved from the Research Collaboratory for Structural Bioinformatics 

website (www.rcsb.org/pdp/) by means of the Brookhaven Protein Data Bank (PDB) 

code given in the original publications, 1IM9 (Fan et al. 2001) and 1EFX (Boyington et 

al. 2000), respectively. These crystal structures were obtained by X-ray diffraction 

methods at a resolution of 2.8 and 3.0 A respectively, and downloaded as Brookhaven 

PDB files. The crystal structure files include the molecular coordinates for the extra­

cellular domains (D1 and D2) of the KIR protein interacting with its corresponding 

HLA-C ligand. The extra-cellular domains of the HLA-C ligand ( a lf a 2 and a 3 

domains), the nonamer peptide present in its binding groove as well as the associated 

P2-microglobulin chain are also represented in these crystal structures.

The PDB coordinate files were displayed and manipulated by employing the 

open-source Pymol Molecular Graphics Program (version 0.97, DeLano Scientific, San 

Carlos, CA, USA, www.pymol.org) running on an Apple Macintosh OS X platform 

(Apple, Cupertino, CA, USA).

2.2.2 Criteria used for the mapping of polymorphic KIR residues

Polymorphic site mapping of each KIR protein was restricted to their extra-cellular 

immunoglobulin-like domains, as they have been shown to be involved in the 

interaction with their HLA-ligands. In the case of Type I KIR2D, this corresponded to 

the D1 and D2 domains, whereas in Type II KIR2D this corresponded to the DO and D2 

domains. For KIR3D proteins, polymorphic site mapping was restricted to the 

membrane-proximal domains corresponding to D1 and D2, in accordance with recent 

data relating to the binding of HLA-ligands by three-domain KIR (Khakoo et al. 2002). 

The polymorphic amino acid residues of each KIR loci were mapped to the KIR 

crystallographic model with greatest sequence identity. In this way, KIR2DL1,
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KIR2DS1, KIR2DS3, KIR2DS5, KIR2DL4, KIR2DL5, KIR3DL2 and KIR3DL3 were 

mapped unto a KIR2DL1 crystal structure, while KIR2DL2, KIR2DL3, KIR2DS2, 

KIR2DS4, KIR3DL1 and KIR3DS1 were mapped to a KIR2DL2 crystal structure. The 

amino acid sequence of each of the KIR loci was first aligned with the sequence of the 

KIR molecule given in the PDB file in order to translate the position of the polymorphic 

residues into the crystal structure. The sequence comparison was limited by the length 

of the amino acid sequence available in the PDB file, which spans from residue 101 to 

residue 295 of the alignments provided in Appendix A.

The Expert Protein Analysis System (ExPASy) proteomics server of the Swiss Institute 

of B ioinform atics (SIB) protein secondary structure m odeling tool 

(swissmodel.expasy.org) was use to confirm the correct conversion of the amino acid 

sequences of the KIR proteins which have not been crystallised into the crystal 

structures of those that have. This procedure required the submission of the extra­

cellular amino acid sequences of the KIR proteins of interest to the first approach mode 

algorithm (Guex and Peitsch 1997; Schwede et al. 2003) using a KIR2DL3 model (PDB 

ID: 1B6U) (Maenaka et al. 1999) as a template. The resulting theoretical structures 

were visualized using Pymol, their amino acid residue types and positions being 

compared to those inferred in the KIR protein polymorphism mapping deduced from the 

alignments, as mentioned previously in this section.

2.2.3 Definition of ligand-binding loops

The amino acid residues of KIR proteins which make up the ligand-binding loops 

described as being involved in the recognition of HLA ligands (Fan et al. 2001) were 

defined by selecting the KIR residues found within a distance of 4A from the putative 

HLA ligand. This process identified amino acid residues of the KIR protein directly 

involved in the KIR-ligand interaction (corresponding to direct contact residues shown 

highlighted in red on Appendix A). A subsequent expansion of the selection criteria to 

include KIR residues found within 4A of the five residues initially identified allowed 

me to consider the effect of substitutions in the vicinity of the residues involved directly 

in KIR-ligand interactions (corresponding to influential residues shown highlighted in 

yellow on Appendix A).
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2.3 DNA extraction procedure, standardisation, storage and 

characteristics

DNA for all samples used in this study, with the exception of the Mexican Mestizo

family samples (see below), was extracted by the salting-out method (Laitinen et al.

1994) according to the following protocol:

1) 14 ml of red cell lysis buffer (lOmM Tris pH 8.0, 5mM MgCl2 and ImM NaCl) were 

added to 1-2 ml of whole blood and incubated at room temperature for 10 minutes.

2) The cell lysate was then centrifuged for 10 minutes at 3500 rpm and the supernatant 

discarded, allowing for approximately 0.5ml of residual volume to remain, into 

which the pellet was resuspended by vortexing. This process was repeated multiple 

times until a clear supernatant was obtained.

3) The pellet was then resuspended in 240 pL of distilled water and 80 pL of proteinase 

K stock buffer containing lOmM Tris, lOmM EDTA and 50 mM NaCl by repeat 

pipetting and then exposed to digestion by adding 30 pL of 10 mg/ml Proteinase K 

(Flowgen, Ashby de la Zouch, Leicestershire, UK) and 20 pL of 10% Sodium 

Dodecyl Sulphate (SDS) and incubated at 55°C for 1 hour.

4) The digested lysate was then transferred to a 1.5 ml microcentrifuge tube (Eppendorf 

AG, Berkhausenweg, Hamburg, Germany), 100 pL  of 5M NaCl added and 

subsequently vortexed vigorously.

5) The solution was then centrifuged for 5 minutes at 13000 rpm and the supernatant 

transferred to a 1.5 ml microcentrifuge tube containing 1 mL of ice chilled 99% 

Ethanol for DNA precipitation.

6) DNA precipitate was spooled unto a sterile glass Pasteur pipette and washed with 

70% Ethanol before being allowed to air dry for up to 1 hour.

7) Dried DNA was then resuspended in 50 -  100 pL of double-distilled sterile water.
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All DNA samples were standardised to a working concentration of between 50 and 200 

ng/p,L the DNA quality being assayed through triplicate spectrophotometric 

measurements at 260 and 280 nm on a Shimadzu UV-1202 spectrophotometer 

(Shimadzu Columbia, MD, USA). DNA and protein concentrations were determined 

directly from their ultraviolet absorbance without colorimetric operations. The formula 

used for quantitation was applied automatically to the samples being read. DNA 

samples were stored at -20°C until used and aliquots containing 50 -  200 ng/pL 

prepared for use as working dilutions, which were stored at +4°C until used. The 

number of freeze/thaw cycles was kept to a minimum.

2.3.1 Characteristics of the 10th International Histocompatibility 

Workshop (IHW) B-lymphoblastoid cell-line (BLCL) DNA panel

DNA was extracted from 99 Epstein-Bar Virus (EBV) transformed B-lymphoblastoid 

(BLCL) cell lines belonging to the 10th IHW cell panel (Yang et al. 1989). The 

standardisation and optimisation of this PCR-SSP typing system employed a cell line, 

PP, which had previously been extensively studied by sequencing of cDNA clones 

obtained from a healthy donor and for which the presence of KIR genes had been 

determined by cloning and sequencing of cDNA (Valiante et al. 1997).

2.3.2 Characteristics of the Mexican Mestizo DNA samples

DNA was extracted by means of QIAamp DNA midi extraction column kit (Qiagen 

Ltd, Crawley, West Sussex, UK) from whole blood samples derived from 150 

individuals (62 unrelated) comprising 32 Mexican Mestizo families. These samples 

were collected in Mexico City by several Family Medicine Units coordinated by the 

Clinical Epidemiology Unit of the Biochemical Medical Research Unit (Unidad de 

Epidemiologia Clinica de la Unidad de Investigacion Medica en Bioquimica), (Centro 

Medico Nacional Siglo XXI, Mexico City, Mexico) between the years of 2000 and 

2001. Ethical approval and permision for the use of these samples in the KIR typing 

study was granted by the ethics review committee appointed by the Comite de 

Investigacion del Hospital de Especialidades. This family panel includes five randomly
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selected control families as well as 27 families with at least one family member with a 

clinical history of type II diabetes mellitus.

2.3.3 Characteristics of the Anthony Nolan Research Institute (ANRI) 

Patient-Donor Pair (PDP) cohort

Whole blood samples (10 ml) for DNA extraction were collected from both recipients 

and donors using EDTA as an anticoagulant (2 mg/ml). Samples were transported by 

courier and processed within two days. Samples were subjected to buffy coat/plasma 

separation by means of centrifugation at 515 rpm for five minutes and DNA extracted 

by the salting-out method previously described. Informed consent was obtained by the 

harvest or transplant physician at each individual centre prior to obtaining the donor 

samples requested. Patient samples were obtained from the transplant centre when the 

patient was admitted to begin their conditioning regimen. Approval for the project was 

sought from the Multi-centre Research Ethics Committee (MREC). A proposal, as well 

as MREC application, were submitted and full approval for the project was obtained. In 

line with the guidelines, a patient information sheet and consent form were supplied to 

the local investigator with every request for a blood sample

2.4 PCR-SSP KIR typing and subtyping technique

2.4.1 KIR typing approach and methodology

Genomic DNA based Polymerase Chain-reaction Sequence Specific Priming 

(PCR-SSP) generic typing of KIR2DL2, KIR2DS1, KIR2DS2, KIR2DS3 and 

KIR2DS4 was performed using gene specific primer pairs as described by Uhrberg 

(Uhrberg et al. 1997), while the KIR2DS5 generic typing was performed using the 

modified oligonucleotide primer described by Vilches (Vilches et al. 2000) as shown in 

table 2.2. The sequences and positions of the oligonucleotide primer pairs used in this 

genotyping approach are as detailed by Uhrberg and as shown in table 2.3. The 

sequences of the internal control oligonucleotides is given in table 2.4, and a detailed 

description of the thermocycling programs used in this genotyping approach is given in 

table 2.5.
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Table 2.2. PCR components and conditions used with Uhrberg’s genotyping technique

MgCI, dNTPs Target Control Taq DNA Control Type Program

2DL2 1.6 mM 50pM 1 pM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-4

2DS1 2 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS2 1 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS3 2.8 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS4 2.5 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS5 1.76 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

Table 23 . Oligonucleotide sequences and positions as described by Uhrberg

Primer Sequence Position f

F2DL2 5-CCA TGATGG GGT CTC CAA A-3' 156

R2DL2 5'-GCC CTG CAG AGA ACC TAC A-3’ 243

F2DS1 5-TCT CCA TCA GTC GCATGA A/G-3' 165

R2DS1 5'-AGG GCC CAG AGG AAA GTT-3' 258

F2DS2 5'-TGC ACA GAG AGG GGA AGT A-3' 140

R2DS2 5-CAC GCT CTC TCC TGC CAA-3’ 214

F2DS3 5-TCA CTC CCC CTA TCA GTT T-3’ 185
R2DS3 5-GCA TCT GTA GGT TCC TCC T-3' 266
F2DS4 5-CTG GCC CTC CCA GGT CA-3' 111

R2DS4 5-GGA ATG TTC CGT TGA TGC-3’ 250

F2DS5 5-AGA GAG GGG ACG TTT AAC C-3' 142

R2DS5 5-GCC GAA GCA TCT GTA GGC-3' 269
F3DS1 5'-GGC AGA ATA TTC CAG GAG G-3' 58

R3DS1 5-AGG GGT CCT TAG AGA TCC A-3' 138

+ - According to the nucleotide alignment provided in Appendix B.

Table 2.4. Sequences of internal control primers used in Uhrberg’s genotyping technique

Primer Sequence Reference

MICA Fwd 5-CAG ACT TGC AGG TCA GGG GTC CCG-3'
(Mendoza-Rincon etal. 1999)

MICA Rev 5-CAA TGA CTC TGA AGC ACC AGC ACT-3'
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Table 2.5. PCR conditions used with Uhrberg’s genotyping technique

KIR-4 Time Cycles

95 °C 2 minutes 1

95 °C 20 seconds

565 °C 45 seconds

72 °C 1.5 minutes

95 °C 20 seconds

2858 °C 45 seconds

72 °C 1.5 minutes

72 °C 7 minutes 1

4 °C 5 minutes 1

KIR-5 Time Cycles

95 °C 2 minutes 1

95 °C 20 seconds

1469 °C 35 seconds

72 °C 1.5 minutes

95 °C 20 seconds

1967 °C 35 seconds

72 °C 1.5 minutes

72 °C 7 minutes 1

4°C 5 minutes 1

The subtyping of KIR2DL1, KIR2DL3, KIR3DL1 and KIR3DL2 was performed 

according to the PCR components and conditions described by Shilling (table 2.6) and 

employing the same oligonucleotide primer pairs as described in the corresponding 

publication (table 2.7) (Shilling et al. 2002). Local optimisation of the subtyping 

technique incorporated the use of control oligonucleotide pairs not included in the 

original method as detailed on table 2.8. The thermocycling programs were as in the 

original protocol. However, the optimisation of the total number of steps for the KIR- 

HIGH program was deemed necessary, as shown in the KIR-HI program on table 2.9.

Table 2.6. Optimised PCR components for Shilling’s subtyping technique

MgCI, dNTPs Target Control Taq DNA Control Type

2DL1 2.5 mM 50pM 0.5 mM 0.06 pM 0.35 units 100 ng MICA exon 4

2DL3 1.32 mM 50pM 0.5 mM 0.1 pM 0.35 units 50 ng MICA exon 4

3DL1 1.32 mM 50pM 0.5 pM 0.06 pM 0.35 units 50 ng HLA-DQ

3DL2 1.4 mM 50mM 0.5 pM 0.03 pM 0.35 units 50 ng HLA-DQ
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Table 2.7. Oligonucleotide sequences and positions as described by Shilling

Gene Primer Sequence Position+

2DS1REV 5-AGG GCC CAG AGG AAA GTT-3' 257
F2DL1A 5'-GCC CAC CCA GGT CC-3' 111
F2DL1B 5-TCC TGG CCC ACC CAG GTC G-3' 111
F2DL1C 5-GCA GCA CCA TGT CGC TCT TGT-3' -17
F2DL1D 5'-GCA GCA CCA TGT CGC TCT TGG-3' -17
F2DL1E 5-AGA GAC AGT CAT CCT GCA G-3' 122
F2DL1F 5-AGA GAC AGT CAT CCT GCA A-3' 122
F2DL1G 5-ACT CAC TCC CCC TAT CAG G-3' 185
2DL1REV 5-GTC ACT GGG AGC TGA CAC-3' 185

F2DL3A 5-CAG AAA ACC TTC CCT CCG-3' 106
F2DL3B 5'-GGT CAG ATG TCA GGT TTC-3' 130
R2DL3C 5'-GGC CTC TGA GAA GGG T-3' 392
R2DL3D 5’-GCC TCT GAG AAG GGC-3' 392
R2DL3E 5-GCA GTG ATT CAA CTG TGT G-3' 378
R2DL3F 5-CAG TGA TTC AAC TGT GCA-3' 377
R2DL3A 5-TGG GCC CTG CAG AGA A-3’ 245
F2DL3D 5'-CCT TCA TCG CTG GTG CTG-3' 344

F3DL1A 5-TAC AAA GAA GAC AGA ATC CAC A-3' 47
F3DL1B 5-TCC CAT CTT CCA TGG CAG AT-3' 54
F3DL1C 5-CAG ACA CCT GCA TGT TCT C-3' 321
F3DL1D 5-GGT TCT GTT ACT CAC ACC T-3' 182
R3DL1A 5-AGA GTG ACG GAA GCC A-3' 273
R3DL1B 5-GAG CTG ACA ACT GAT AGG A-3' 182
R3DL1C 5-TCA GGG TCT TGT TCA TCA GAA-3' 366
R3DL1D 5-TCA GGG TCT TGT TCA TCA GAG-3' 366
R3DL1E 5-GGA GCT GAC AAC TGA TAG GG-3' 182
R3DL1F 5-TAG GTC CCT GCA AGG GCA A-3' 166
R3DL1G 5-GTA CAA GAT GGT ATC TGT AG-3' 401
F3DL1E 5'-TCT TCG GTG TCA CTA TCG-3' 31
F3DL1F 5'-CTC CTT CAT CTC TGG TA-3' 343

F3DL2A 5-CTT CTT TCT GCA CAG AGA T-3' 137
F3DL2B 5-CTT CTT TCT GCA CAG AGA G-3' 137
R3DL2A 5-GGG GTT GCT GGG TGT-3' 87
F3DL2C 5'-TCA CTG GGT GGT CGG-3' 87
F3DL2D 5'-ACC CAG CAA CCC CC-3' 92
F3DL2E 5-CAC CCA GCA ACC CCG-3' 92
F3DL2F 5-TGA GGA CCC CTC ACG-3' 145
F3DL2G 5-TGA GGA CCC CTC ACA-3' 145
R3DL2B 5-CCT GGA CAG ATG GTA GG-3’ 231
R3DL2C 5-CCC TGG ACA GAT GGT AGA-3’ 231
R3DL2D 5-GAT CCA ACT GTG CGT ACA-3' 376
R3DL2E 5-GAT CCA ACT GTG CGT ACG-3' 376
F3DL2H 5-CAG CAC TGT GGT GCC TCA-3' 20
R3DL2F 5-TCC TGATTT CAG CAG GGT-3' 111
F3DL2I 5-CAG CAC TGT GGT GCC TCG-3' 20
R3DL2G 5-TCC TGA TTT CAG CAG GGG-3’ 111
R3DL2H 5'-TTC CCT GGA CAG ATG GTA G-3' 279
F3DL2J 5-GGG CCT GGC CAC TCA-3' 2
R3DL2I 5-TCC TGA TTT CAG CAG GGG C-3’ 13
F3DL2K 5-CGG TCC CTT GAT GCC TGT-3' 167
F3DL2L 5'-TAT CTG CAG ACA CCT GCA-3' 319

+ - Numbering according to the nucleotide alignment provided in Appendix B.
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Table 2.8. Oligonucleotide sequences of internal control oligonucleotide primers

Primer Sequence Reference

MICA Fwd 5’-CAG ACT TGC AGG TCA GGG GTC CCG-31
(Mendoza-Rincon etal. 1999)

MICA Rev 5-CAA TGA CTC TGA AGC ACC AGC ACT-31
HLA-DQ Fwd 5'-ACT GAC TGG CCG GTG ATT CC-31

(Senju etal. 1992)
HLA-DQ Rev 5-AGA GGG GCG ACG CCG CTC ACC-31
HLA-A Fwd 5-GGG AGG AGC GAG GGG ACC SCA G-31

(Cereb etal. 1995)
HLA-A Rev 5*-GGA GGC CAT CCC CGG CGA CCT ATA GGA GAT GGG G-31

Table 2.9. Thermocylcing programs used with Shilling's subtyping technique

Program Temperature

KIR-NT KIR-LOW KIR-HIGH KIR-HI Time Cycles

95 °C 95 °C 95 °C 95 °C 1 minutes 1

97 °C 95 °C 95 °C 95 °C 20 seconds

562 °C 60 °C 68 °C 68 °C 45 seconds

72 °C 72 °C 72 °C 72 °C 1.5 minutes

95 °C 95 °C 95 °C 95 °C 20 seconds

26+60 °C 58 °C 64 °C 64 °C 45 seconds

72 °C 72 °C 72 °C 72 °C 1.5 minutes

72 °C 72 °C 72 °C 72 °C 7 minutes 1

4°C 4 °C 4°C 4 °C 5 minutes 1

+ - KIR-HI employs 30 cycles in the second step program.

Step

1

2

3

4

5

6

7

8

9

The genotyping of five additional KIR genes (KIR2DL5, KIR3DS1, KIR3DL3, 

KIR2DP1 and KIR3DP1) involved the design and implementation of novel 

oligonucleotide primer pairs as shown in table 2.10. The optimised PCR components 

and conditions are further detailed on tables 11 and 12. These genotyping reactions 

employed internal control oligonucleotide primer pairs as detailed on table 2.11, the 

sequences of which have previously been detailed in table 2.8.
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Table 2.10. Novel genotyping oligonucleotide primer sequences and positions

Oligonucleotide Sequence Position+

F2DL2B 5-CCA TGA TGG GGT CTC CAA G-3' 156

F2DL5 5’-CAT TCT GAT TGG GAC CTC AGT GGC T-3’ 327

R2DL5 5-ATA TGT CAC CTC CTG AGG GTC TTG A-31 369

F3DS1 5’-GGC ACC CAG CAA CCC CA-3' 92

R3DS1 5’-CAA GGG CAC GCA TCA TGG A-3’ 163

F3DL3 5-CCT CTC TGC CTG GCC CG-3’ 15

R3DL3 5’-GTG ACC ATG ATC ACC ACA-3’ 91

F2DP1 5’-TCT GCC TGG CCC AGC T-3’ 16

R2DP1 5’-GTG TGA ACC CCG ACA TCT GTA C-3’ 71

F3DP1 5-TCT GCC TGG CCC AGC C-3’ 16

R3DP1 5’-TGC TGA CCA CCC AGT GAG GA-3’ 81

* - Numbering according to the nucleotide alignment provided in Appendix B.

Table 2.11. Optimised PCR components for use in novel genotyping technique

MgCI, dNTPs Target Control Taq DNA Control Type Program

2DL5 2.4 mM 50pM 1 mM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-2

3DS1 2.4 mM 5 0 m M 1 mM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-2

3DL3 0.8 mM 50pM 1 pM 0.6 pM 0.35 units 50 ng HLA-A KIR-1

2DP1 1.6 mM 5 0 m M 1 mM 0.24 pM 0.35 units 50 ng HLA-A KIR-3

3DP1 1.2 mM 50 m M 1 pM 0.32 pM 0.35 units 50 ng MICA exon KIR-3

Table 2.12. Optimised PCR components for use in novel genotyping technique

Programs

KIR-1 KIR-2 KIR-3

95 °C 95 °C 95 °C

95 °C 95 °C 95 °C

63 °C 66 °C 69 °C

72 °C 72 °C 72 °C

72 °C 72 °C 72 °C

4°C 4 °C 4 °C

Time Cycles

2 minutes 1

20 seconds

3035 seconds

40 seconds

7 minutes 1

5 minutes 1

The development of a KIR2DL4 PCR-SSP subtyping array of oligonucleotide pairs was 

undertaken in order to refine the existing KIR typing technique and to allow for the 

detection of the allelic variants of all KIR proteins known to be involved in the binding
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of HLA molecules. For this reason, oligonucleotide primer pairs for the discrimination 

of all known KIR2DL4 allelic variants were designed based on the alignments given in 

Appendix B, and as shown in table 2.13. The optimised PCR conditions are further 

detailed on Chapter 4 and described in table 2.14. The thermocycling conditions of this 

subtyping technique are further detailed on table 2.15.

Table 2.13. KIR2DL4 subtyping oligonucleotide primers and positions

Oligonucleotide Sequence Position+

2DL4-F1 5-GTG GTC AGG ACA AGC CCT TCT G-3’ 10

2DL4-F2 5-CCA GGT CTA TAT GAG AAA CCT TCG CTT A-3' 206

2DL4-F3 5-AGC-GCT -GT G-GT G-CCT-CA-3' 20

2DL4-R1 5’-GGG GGA GTG CGG GTG AA-3' 77

2DL4-R2 5’-CTT TCC TCA CCT GTG ACA GAA ACA G-3' 291

2DL4-FF 5-AGC ACA CGC AGG GAC CA-3’ 72

2DL4-FG 5-CCT CAT TAG CCC TCT GAC CCC T-3’ 66

2DL4-FH 5’-GGA ACA GTT TCC TCA TTA GCC CTC-3’ 64

2DL4-FI 5-CAC GTG ACT CTT CGG TGT CAC TG-3’ 30
2DL4-RA 5’-GGT CAC TCG CGT CTG ACC AT-3' 282

2DL4-RB 5’-TGG GTC ACT CGS GTC TGA CCA C-3’ 282

2DL4-RC 5-CGA ACC GTG GGG CCC A-3' 209
2DL4-RD 5-GGA CAA GGT CAC GTT CTC TCC TGT-3’ 215
2DL4-RD' 5’-GAC AAG GTC ACG TTC TCT CCT GC-3' 215
2DL4-RE 5’-CCT AAG TTC ATG GGC TTC CCC T-3' 237

+ - Numbering according to the nucleotide alignment provided in Appendix B.

Table 2.14. Optimised PCR components of the KIR2DL4 subtyping technique

MgCI, dNTPs Target Control Taq DNA Control Type Program

2DL4A*-I 1.6 mM 50pM 0.5 pM 0.1 pM 0.35 units 60 ng MICA exon 4 KIR-5

2DL4I* 1.2 mM 50pM 0.5 pM 0.1 pM 0.35 units 60 ng MICA exon 4 KIR-5
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Table 2.15. Optimised PCR conditions of the KIR2DL4 subtyping technique

KIR-5 Time Cycles

95 °C 2 minutes 1

95 °C 20 seconds

1469 °C 35 seconds

72 °C 1.5 minutes

95 °C 20 seconds

1967 °C 35 seconds

72 °C 1.5 minutes

72 °C 7 minutes 1

4 °C 5 minutes 1

All modifications to existing protocols, as well as the development of the novel 

genotyping and subtyping techniques are further discussed in detail in Chapter 4.

2.4.2 Preparation of PCR-SSP oligonucleotide working mixes

Stock dilutions at 100 pM for each oligonucleotide batch used were prepared based on 

the information given by the manufacturer (Alta Bioscience, The University of 

Birmingham, Edgbaston, Birmingham, UK) using double-distilled sterile water. These 

stocks were placed on a horizontal roller for 24 hrs and kept frozen at +4°C until use. 

Working dilutions calculated at 25 pM were prepared for each individual 

oligonucleotide using double-distilled sterile water. Oligonucleotides to be used in the 

same reaction were pooled together and kept frozen at +4°C until use. Before being 

used, PCR-SSP working mix volumes were calculated for the number of samples to be 

typed, these PCR-SSP working mixes were kept in 200 pL PCR tube strips, tightly 

capped and kept frozen at + 4°C until aliquoting into typing strips.

2.4.3 Preparation of Xylene Cyanol loading buffer

An agarose gel loading-buffer was especially optimised for use with amplicons of 

different sizes by reducing the amount of the component dye so as not to obstruct the 

intensity of target amplicons under ultraviolet illumination. This optimised loading
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buffer was prepared by adding 0.1 g of Xylene Cyanol and 7.5 g of Ficoll 400 to 50 mL 

of double-distilled sterile water. The mix was vortexed vigorously and placed on 

horizontal rollers overnight until completely dissolved. The solution was then filtered 

through a 0.2 pm filter disc employing a 50 mL syringe. The dark green solution turns 

bright blue when mixed with salt-bearing water such as PCR product. This solution was 

then stored at room temperature.

2.4.4 Preparation of DNA molecular weight m arker ladder

A working dilution of DNA ladder (O .lpg /pL) was prepared by adding 330 p L  of 

double-distilled sterile water to the 220 p L  of 0 .25pg /pL  DNA Molecular Weight 

M arker XIV provided by the manufacturer (F. Hoffmann-La Roche Ltd, Basel, 

Switzerland) (figure 2.1). Subsequently, 180 pL  of Xylene Cyanol loading buffer was 

added to the 550 pL of DNA ladder working dilution and the entire contents placed on 

horizontal rollers for five minutes. The filtered DNA ladder was kept at room 

temperature for up to 2 months without a significant loss of band intensity, and then 

discarded.

bg nq/4el

  2000 -------  468

  1900 -------- 24

  1000 -------- 113

  500 -------  109

  400  -------  39

  300 -------- 29

  200 -------  19

  100   26

1.5%
A garose

Oel

Figure 2.1. DNA molecular size marker. The position of 16 reference fragments after migrating through 

1.75% Agarose is shown, where the three brightest bands represent, from top to bottom, the 2000, 1000 

and 500 bp fragments.
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2.4.5 Preparation of DNA-Taq Polymerase Mix

DNA-Taq Polymerase mixes were calculated and prepared according to the number of 

reactions to which each DNA sample would be subjected. The DNA-Taq mix for each 

sample was calculated based on “single reaction requirements” of 0.07 pL of Taq 

Polymerase (Bioline Ltd, London, UK), 0.25 pL of 100 ng/pL DNA and 5 pL of 

double-distilled sterile water. In this way, if a sample was to be subjected to KIR2DL1 

subtyping, which employs seven different oligonucleotide pairs, the DNA-Taq Mix 

would be composed of 40 pL of water, 0.56 pL of Taq Polymerase and 2 pL of DNA 

(provided an extra reaction is considered to compensate for pipetting errors). The 

preparation of DNA-Taq mixes was left to the latter stages of the PCR-SSP typing 

setup, and prepared once the PCR-SSP oligonucleotide working mixes had been 

dispensed.

2.4.6 PCR-SSP KIR typing strip preparation

KIR PCR-SSP typing and subtyping strip preparation was carried out on ice. Labels 

indicating KIR loci and primer mix involved, as well as DNA identification, were 

always used. PCR-SSP oligonucleotide working mixes were thawed no more than 30 

minutes in advance and 7.18 pL of each working mix subsequently dispensed into their 

corresponding PCR tube according to the subtyping or genotyping array involved. 

Subsequently, 5.32 pL of the DNA-Taq mix was dispensed into each of the PCR tubes 

using a multi-channel pipette and according to the sample and typing array distribution. 

Care was taken to ensure that no contact with the previously dispensed PCR-SSP 

oligonucleotide mix occurred so as to prevent accidental primer mix carry-over and the 

occurrence of false-positive amplifications or anomalous banding patterns. KIR PCR- 

SSP typing/subtyping trays and strips were covered temporarily with 96 well tissue 

culture plate lids (Becton Dickinson UK Ltd, Oxford, UK) before and after the addition 

of the DNA-Taq Mix so as reduce evaporation and prevent contamination of their 

contents. Finally, PCR tubes were then tightly capped and placed directly into the 

thermocyclers (MJ Research, Inc. Waltham, MA, USA). An even pressure being 

applied to the top of the PCR tubes during thermocycling by the use of a heated lid.
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2.4.7 Thermocycling conditions

The thermocycling programs to which Uhrberg’s genotyping PCR reactions were 

subjected to are given in table 2.5. The thermocycling conditions employed for 

KIR2DL1, KIR2DL3, KIR3DL1 and KIR3DL2 subtyping arrays were as described by 

Shilling and shown in table 2.9. The thermocycling conditions of the novel genotyping 

technique involving KIR2DL5, KIR3DS1, KIR3DL3, 2DP1 and 3DP1 are given in 

table 2.12. Those of the newly developed KIR2DL4 subtyping array are shown in table 

2.15. A summary of the optimised PCR components and conditions for all the 

genotyping and subtyping techniques described previously is shown in table 2.16.

Table 2.16. PCR components, conditions and amplicon characteristics for each KIR gene

MgCI, dNTPs Target Control Taq DNAf Control Type Program5 Target Size*
2DL1 2.5 mM 50pM 0.5 uM 0.06 pM 0.35 units 100 ng MICA exon 4 Shilling Variable
2DL2 1.6 mM 50pM 1 pM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-4 1800 bp
2DL3 1.32 mM 50pM 0.5 gM 0.1 pM 0.35 units 50 ng MICA exon 4 Shilling Variable
2DL4A*-I 1.6 mM 50uM 0.5 gM 0.1 pM 0.35 units 60 ng MICA exon 4 KIR-5 Variable
2DL4I* 1.2 mM 50gM 0.5 pM 0.1 pM 0.35 units 60 ng MICA exon 4 KIR-5 1800 bp
2DL5 2.4 mM 50pM 1 uM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-2 735 bp
2DP1 1.6 mM 50gM 1 pM 0.24 pM 0.35 units 50 ng HLA-A KIR-3 204 bp
2DS1 2 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5 1800 bp
2DS2 1 mM 50uM 0 5 uM 0.12pM 0.35 units 50 ng MICA exon 4 KIR-5 1750 bp
2DS3 2.8 mM 50gM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5 1800 bp
2DS4 2.5 mM 50pM 0.5 gM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5 2000 bp
2DS5 1.76 mM 50gM 0.5 uM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5 1800 bp
3DL1 1.32 mM 50pM 0.5 pM 0.06 pM 0.35 units 50 ng HLA-DQ Shilling Variable
3DS1 2.4 mM 50pM 1 pM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-2 1728 bp
3DL2 1.4 mM 50pM 0.5 pM NONE 0.35 units 50 ng HLA-DQ Shilling Variable
3DL3 0.8 mM 50pM 1 pM 0.6 pM 0.35 units 50 ng HLA-A KIR-1 270 bp
3DP1 1.2 mM 50gM 1 pM 0.32 pM 0.35 units 50 ng MICA exon 4 KIR-3 231 bp

1 - Represents lowest optimal threshold.
1 - Shilling’s subtyping arrays use different thermocycling programs as shown on table 2.9. 
* - The size of the different amplicons generated by the subtyping arrays varies.

2.4.8 Post-PCR sample preparation

Typing strips or trays were removed from the thermocyclers and spun down for one 

minute at 2000 rpm. Caps were carefully removed and PCR strips or trays temporarily 

covered with 96-well tissue culture plate lids. Subsequently, 4 pL of Xylene Cyanol 

loading buffer were added to the post-PCR reaction product, the PCR strips or trays 

being briefly spun at 2000 rpm and carefully vortexed before loading unto agarose gels.
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2.4.9 Agarose gel preparation and usage

This KIR SSP-typing technique required the use o f large (24 x 30 cm) agarose gel tanks 

employing an array of 12 combs of 26 wells each. The electrophoresis tanks used for 

this purpose were especially adapted for high-throughput PCR-SSP based HLA typing 

methods. These adaptations m axim ise the num ber o f available wells, facilitate the 

loading of samples given the spatial distribution o f the com b’s teeth (which readily 

accommodate multi-channel pipettes), and minimize the amount o f agarose gel used 

(figure 2.2).

(A) (B)

Figure 2.2. Agarose gel electrophresis equipment and well array. The equipment employed for 

agarose gel electrophoresis (panel A) includes gel tank and powerpack (on the right of panel A), plO and 

p20 multipettes (shown on bottom left) as well as pipette tips (upper left) and loading buffer (between 

pipettes and tips). The gel array includes 12 rows of 26 wells as shown on panel B.

Agarose gels o f 1.5% concentration were used as they provided the best DNA 

separation range for both large (up to 2.2 Kb) and small (below 250 bp) fragments 

generated by the genotyping and subtyping techniques involved. Agarose gels at 1.5% 

were prepared by adding 7.5 g o f electrophoresis grade agarose (Invitrogen Ltd, Paisley, 

UK) to 500 mL of lx Tris-Borate-EDTA (TBE) Buffer. This mix was vortexed for five 

minutes and subsequently placed in the microwave oven for 2 minutes or until the 

agarose solution had begun to boil. The solution was allowed to cool down while 

stirring, to approximately 50°C before adding 25 pL of Ethidium Bromide (0.5 mg/ml). 

The entire contents of the agarose solution were poured into the sealed tray and allowed
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to set for 45 minutes at room temperature while protecting it from direct air drafts. Two 

litres of IX  TBE were prepared for use as electrophoresis buffer by adding 100 pL  of 

Ethidium Bromide (0.5 mg/ml). This electrophoresis buffer was used for approximately 

20 runs (or for the duration o f one week) taking care to mix it thoroughly before each 

run. The entire contents (~15 pL) of the post-PCR reaction with loading buffer were 

loaded into the corresponding wells by means of a multi-channel pipette, (plO or p20), 

(Gilson, Inc. Middleton, WI, USA), 3 pL  of DNA ladder was subsequently loaded and 

the gel subjected to 140 Volts direct current (VDC) for 45 minutes.

2.4.10 Agarose gel documentation

PCR amplicon quality and yield was visualised and documented by means of a Gel Doc 

1000 single wavelength (312 nm UV-B) m ini-transillum inator (Bio-Rad Laboratories 

Ltd, Hemel Hampstead, Herts, UK) and Charged Coupled Device (CCD) camera using 

a W ratten 2a filter and 2X m agnification lens. Tw o exposure tim es were always 

recorded, a dark frame showing the brightest product bands, and an integrated frame (up 

to 0.4 second integration) for the visualisation of low product yields (figure 2.3).

piksMIfi
Figure 2.3. Agarose gel documentation of KIR2DL1 subtyping reactions. A dark frame (shown on 

left) facilitates the discrimination of co-amplification products based on band intensity, whereas, the 

integrated frame shown on the right (in this case a 0.2” exposure) facilitates the visualization of target 

bands of low intensity. Labels A through G at the top of each image indicate the individual reactions 

which compose the KIR2DL1 subtyping array. A 100 base pair (bp) ladder is shown at the far left of each 

image, the brightest visible bands being, from top to bottom, 2000 bp, 1000 bp and 500 bp long.

2.4.11 Interpretation of PCR-SSP banding patterns and gene/allele assignment

The interpretation of KIR gene and allele content was based on the size of the expected 

amplicons as well as on their band intensity. The interpretation of genotyping reactions 

was straightforward and considered positive if a target amplicon of the expected size
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was observed. In general terms and using good quality DNA, a positive band should be 

as intense as the main (500 bp) bands present in the DNA ladder buffer. A reaction was 

deemed positive even in the absence of control bands when target am plicons were 

present. A reaction lacking both target and control amplicons was considered to have 

failed. The interpretation of the banding patterns generated by the subtyping arrays 

relied on the use of allele matrices for the corresponding KIR loci as shown below. 

These matrices facilitate the designation of the alleles present on the samples based on 

the am plicon intensity and size. A llele com binations for K IR 2D L1, K IR2D L3, 

KIR3DL1 and KIR3DL2 were assigned by correlating the positive and negative 

reaction patterns to the reference matrices shown in table 2.17.

Table 2.17. Shilling’s subtyping reference m atrices for PCR-SSP banding pattern  in terp reta tion

jgaBU-tMsi•90'
J3SL•oo?J22L•oos
J 0 0 6 .
J0 0 7 _
•go*

.,*919

J21L

PCR Condifons

Forward primer

KIR2DL1 alleles

•005

Reverse primer
Amphcon s u e

PCR Conditions

A B C D E F 6
F2DL1G F20L1A F2DL1B F2DC1C F2DL1D F20L1E F2DL1F

0.26
2DL1REV 

0 .2 6  I 2 .2  I 2.2  I 0 .23

HIGH

Forward pnm er

KW20L3 alleles

•0 0 2 ^ 0 0 6
J 0 0 3 .

•0Q 4 /-0 0 5
2DC2vl Rec

Reverse primer
Amplicon s ire

PCR Condrtions

A 8 c 0  I E • G
F20L3A F2DL3B F20L30 F20L3C

R2DL3A R2DL3C R20L3D R20C3E R20L3F

Forward pnm er

KIR30L1 alleles

• 0 0 2 /3 /6 /7 /8

•00402

Reverse pnmer

PCR Condrtions

A B C 0 E F 1 G
F3DL1A F30C1B F3DL1C F3DL1D F3DL1E F3DL1F

R30L1E R30L1F R3DL1G R30L1A R3DL1B R3DL1C R30L10
1.6 1.7 0 .8 1.8 1.6 0.7 0 .7

A a C 0 E F G H 1 1 J K 1 L M N
F30L2A F30L2B F30C2J F30L2C F 301.20 F30L2E F30L2F f30L2G F30L2K F30L2L F30L2H F30L2I

R3DL2G

Notes: Amplicon size is given in Kb and shaded boxes indicate presence of target amplicon.

118



Chapter 2

2.4.12 Description of a computer based script for the high-throughput assignment 
of KIR allele and haplotype profiles (KAHAT)

For the screening of large number of samples, a world wide web based CGI script was 

created, the KIR Allele and Haplotype Assignment Tool (KAHAT). This CGI relied on 

a database of possible combinations of known allele banding patterns and is capable of 

using both text and binary files or data entered directly by the user for high-throughput 

PCR-SSP type interpretation as shown in figure 2.4. The KAHAT is capable of giving 

the possible haplotype matches for a number of allele combinations according to the 

haplotype data published by Shilling et al (Shilling et al. 2002).

2.4.13 Quality control and calibration

The specificities of all oligonucleotide primer stocks were checked upon receipt from 

the manufacturer by testing with a cell line of previously determined KIR type. All 

primer mixes were batch tested before being frozen in suitably sized aliquots. Quality 

assessments of oligonucleotide primer mixes and reagent batches were carried out after 

thawing and periodically thereafter. Similarly, thermocyclers were checked periodically 

for block uniformity by amplifying 96 identical KIR2DL2 reactions in a 96-well plate 

and checking for even amplification of both control and target bands. Thermocycler 

maintenance and calibration was carried out at least every six months, and quality 

control runs every two months. Pipettes used for the PCR setup procedure (P10, P20, 

P100 and P200) were calibrated every 3 months, and periodically checked if pipetting 

abnormalities were suspected. Additional quality control assessments included follow- 

up DNA spectrophotometric measurements.
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Search KIR Primer Patterns 

Enter primer pattern here
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Figure 2.4. Online KIR allele and Haplotype Assignment Tool (KAHAT). The upper most part of the 

image shows the input screen and tick-box menu for manual input as well as the text box section where 

multiple amplification patterns can be introduced in binary format. The bottom portion of the image 

depicts the output for the three first samples, and includes the allelic variants present for each cell as well 

as the haplotype number according to Shilling (Shilling et al. 2002).
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2.4.14 KIR haplotype assignment criteria used in Mexican Mestizo families

The KIR haplotype assignment of samples belonging to the 10th IHW BLCL panel was 

based on the high-resolution haplotype patterns published by Shilling (Shilling et al. 

2002). Approximations of the haplotypes found within a sample were based on the most 

common allele associations described by Shilling (Shilling et al. 2002) and making the 

least number of assumptions. KIR gene and allele frequency was calculated by direct 

counting in the unrelated individuals.

The assignment of KIR haplotypes in Mexican Mestizo families was based on the 

observed segregation patterns of individual KIR alleles following the criteria proposed 

by Shilling et al. The possible haplotype combinations were first adapted to known 

high-resolution haplotypes and novel haplotypes inferred only when the first approach 

was not possible. The inheritance of KIR3DP1, KIR2DL4, KIR3DL3 and KIR2DP1 

genes could not be ascertained as they were found to be present in all individuals tested. 

KIR haplotype assignment was facilitated by the KIR haplotyping script previously 

discussed. For this, the amplification patterns for KIR2DL1, KIR2DL3, KIR3DL1 and 

KIR3DL2 genes were manually introduced and compared by the script to previously 

described high-resolution haplotype combinations. Allele associations which were not 

resolved by the script were subjected to human interpretation and adapted to the most 

closely related haplotype framework available.

Within each family, segregation of KIR alleles was determined and used to define KIR 

haplotypes. Assumptions made to facilitate assignments of certain KIR alleles and loci 

included the following:

1) As KIR3DL3, 2DP1, 3DP1, KIR2DL4, KIR2DL5, and KIR3DL2 were found in all 

individuals examined in this study, partial haplotypes defined here could presumably 

be extended to include them.

2) Individuals having only one allele for KIR2DL1 and KIR2DL3 were assumed to be 

homozygous for both KIR unless segregation analysis discriminated between homo- 

and hemizygosity at these loci.
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3) Haplotypes were assumed to include either KIR2DL1/2DL3 or KIR2DL2, but not 

both (with the exception of one family that was shown to have a novel haplotype).

4) KIR3DS1 was assumed to segregate as an allele of KIR3DL1.

5) KIR2DS4 was assumed to be present on haplotype, having no other KIR2DS genes.

2.5 Criteria used in the testing of the Ruggeri KIR ligand-ligand 
model

A total of 308 patients who received unrelated Haematopoietic Stem Cell Transplants 

(HSCT) in the UK during the period of 1996 to 2003 were used to test the validity of 

the KIR ligand-ligand model suggested by Ruggeri (Ruggeri et al. 1999; Ruggeri et al. 

2002) as it only requires knowledge of the HLA-C and HLA-B typing results. The 

donor in all cases was provided by the Anthony Nolan Trust. HLA typing was 

performed, for both donor and recipient samples, in the Anthony Nolan Research 

Institute by other members of the laboratory (Neema Mayor, Bronwen Shaw and 

Andrea Pay). HLA typing employed DNA based molecular methods achieving allele 

level resolution for HLA-A, -B , -C, -DRB1, -DQB1 and -DPB1. This cohort included 

106 recipients with Acute Myeloid Leukaemia (AML), 98 with Chronic Myeloid 

Leukaemia (CML) and 104 with Acute Lymphoid Leukaemia (ALL). Cases were 

classified into one of three categories based on the methodology proposed by Ruggeri 

(Ruggeri et al. 1999) for the differences observed between recipients and donors in 

HLA-C and HLA-B allotype specificities. Cases in which the transplant recipients 

failed to possess at least one of the donor’s KIR epitopes were classified as having a 

potential for NK-cell mediated Graft-versus-Host (GvH) alloreactivity. Cases in which 

the donors failed to possess at least one of the recipient’s KIR epitopes were classified 

as having a potential for NK-cell mediated Host-versus-Graft (HvG) alloreactivity; and 

finally, cases in which both the donor and recipient had the same KIR epitopes were 

classified as having no potential for NK-cell mediated alloreactivity.
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2.6 Criteria used in the evaluation of KIR matching in UD-HSCT

A total of 141 patients who received unrelated Haematopoietic Stem Cell Transplants 

(HSCT) in the UK during the period of 1997 to 2003 were used to test the validity of 

the KIR receptor-receptor model proposed by Gagne (Gagne et al. 2002). The donor in 

all cases was been provided by the Anthony Nolan Trust. HLA typing was performed, 

for both donor and recipient samples, in the Anthony Nolan Research Institute by other 

members of the laboratory (Neema Mayor, Bronwen Shaw and Andrea Pay). HLA 

typing employed DNA based molecular methods achieving allele level resolution for 

HLA-A, -B , -C, -DRB1, -DQB1 and -DPB1. This cohort included 43 recipients with 

Acute Myeloid Leukaemia (AML), 31 with Chronic Myeloid Leukaemia (CML), 39 

with Acute Lymphoid Leukaemia (ALL), 21 with other haematological malignancies 

and seven with other non-malignant haematological disorders. Cases were classified 

into one of four categories based on the methodology proposed by Gagne for the KIR 

genotype differences observed between recipients and donors. Cases in which the 

transplant recipient contained additional KIR genes to those present in its corresponding 

donor were classified as having a potential for NK-cell mediated HvG alloreactivity. 

Cases in which the donor contained additional KIR genes to those present in its 

corresponding recipient were classified as having a potential for NK-cell mediated GvH 

alloreactivity. Similarly, cases in which the recipient and donor possessed identical KIR 

genotypes were classified as having no alloreactive potential, and those in which the 

genotypes were completely different were classified as having a potential for both GvH 

and HvG alloreactivity.

2.7 Criteria used in the testing of the KIR receptor-ligand model

A total of 141 patients who received unrelated Haematopoietic Stem Cell Transplants 

(HSCT) in the UK during the period of 1997 to 2003 were used to evaluate the clinical 

significance of the presence of KIR genes and alleles and their matching status on the 

outcome of HSCT. The donor in all cases had been provided by the Anthony Nolan 

Trust and together with its corresponding recipient, had DNA based allele level HLA 

typing data generated by molecular methods for HLA-A, -B, -C, -DRB1, -DQB1 and 

-DPB1. This cohort included 43 recipients with Acute Myeloid Leukaemia (AML), 31
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with Chronic Myeloid Leukaemia (CML), 39 with Acute Lymphoid Leukaemia (ALL), 

21 with other haematological malignancies and seven with other non-malignant 

haematological disorders.

2.8 Statistical methodology used

KIR and HLA frequency comparisons between healthy controls and specific disease 

groups of patients employed a two-sided Fisher’s exact test and multivariate logistic 

regression tests for independence using the SPSS Production Facility (version 11.0.2, 

SPSS, Inc. Chicago, IL, USA), significance being established at p < 0.05. Phenotypic 

KIR gene and allele frequencies were defined as the percentage of individuals bearing at 

least one copy of each gene or allele. Pearson’s %2 or Fisher’s exact test were used to 

compare the observed KIR gene and allele frequency differences between patients and 

donors in the context of engraftment, occurrence of acute Graft-versus-Host disease 

(aGvHD) and of aGvHD grade. Multinomial logistic regression tests for independence 

employed the significant findings as covariates. Time to engraftment, time to chronic 

Graft-versus-Host disease (cGvHD), time to relapse, overall survival (OS), Disease Free 

Survival (DFS) and Transplant Related Mortality (TRM) were all estimated using the 

Kaplan-Meier method. Log-rank test statistics were used to evaluate the univariate 

effects of KIR genes and alleles on each of the Kaplan-Meier analyses and Cox 

regression analysis used as a test of independence for significant findings. Kaplan- 

Meier analysis of early events employed the Breslow test (Kalbfleisch and Prentice 

1980). Known confounding factors such as HLA-matching as well as for differences 

between Myeloid and Lymphoid disease groups were adjusted by means of analysis 

restriction and Mantel-Haenszel stratification.
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Chapter Three

Analysis of KIR polymorphism by the 

generation of a nucleotide and amino acid 

KIR sequence database

3.1 Introduction

KIR proteins which are known to bind HLA-A and -B molecules have recently been 

shown to be highly polymorphic (Gardiner et al. 2001). However, it remains unknown 

if and how this polymorphism influences the functional properties of KIR proteins. 

Nearly 20 years ago, the HLA community faced a similar dilemma, where, although the 

basic features of class I molecules had been defined, a limited knowledge on the level, 

nature and relevance of HLA polymorphism prevailed. These issues began to be 

addressed by the HLA research community after the publication of the first HLA 

sequence analysis (Parham et al. 1988). In a similar manner, before we can embark on 

defining the functional relevance and clinical roles of KIR genes, haplotypes, genotypes 

and proteins, we considered that the creation of a well validated, curated and 

comprehensive compilation of KIR sequences was necessary.

In this chapter we describe the creation of this database and provide some interesting 

findings derived from the analysis of the sequence alignments. Furthermore, the 

establishment of this KIR sequence database has provided us with a valuable tool on 

which to base: 1) the analysis of the distribution of KIR polymorphism (described in 

chapter 4), 2) the development of a comprehensive KIR typing system (described in 

chapter 5), 3) the analysis of the differences that exist between human populations with 

regards to their KIR genotype (described in chapter 7) as well as 4) the interpretation of
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the clinical and functional associations observed in the study of the relevance of KIR 

genes in Haematopoietic Stem Cell Transplant recipients (as described in chapter 8).

3.2 Generation of KIR nucleotide sequence alignments

3.2.1 Nucleotide sequence inclusion criteria

The sequences incorporated into the alignment include all known alleles of the different 

KIR genes for which complete cDNA sequences or full genomic sequences were 

available at the time of compilation. These sequences were retrieved from the European 

Molecular Biology Laboratory (EMBL) nucleotide sequence database or from the 

National Center for Biotechnology Information (NCBI) genetic sequence database 

(GenBank) by means of the accession numbers given in the original publications where 

each KIR gene and/or allele was described and as listed in table 1.1 of Chapter 2. The 

integrity of the sequences included was checked and where discrepancies were found 

between reported sequences, the original authors were contacted where possible, and 

necessary amendments to published sequences were incorporated into the alignment. 

Partial cDNA and splice variant sequences were not included in this alignment, as 

further information for them was deemed necessary.

In addition to the allele sequences which were officially recognised and named by the 

KIR Nomenclature Committee, two additional sequences KIR2DL5(KIR2DLXa) 

(AF271607) and KIR2DL5(KIR2DLXb) (AF271608) have been included in the 

KIR2DL5 gene group, as it is currently unclear as to whether they represent alleles of 

the KIR2DL5A or KIR2DL5B genes. Additional information on the officially named 

sequences including accession numbers and publication details can be found in the KIR 

Nomenclature Report (Marsh et al. 2003).

3.2.2 Nucleotide sequence alignment criteria and considerations

The KIR3DL2*001 allele sequence was chosen as a reference sequence for these 

alignments, as this sequence provides a long KIR sequence with a high level of 

nucleotide identity and structural homology to the majority of other KIR. The existence
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of a different initiation codon in KIR2DL4 sequences upstream to that present in other 

KIR required the use of a KIR2DL4 reference sequence for codons -22  and -23. 

Similarly, the presence of a longer sequence for exon 9 of this KIR gene required the 

use of a KIR2DL4 reference sequence downstream of the KIR3DL2*001 reference 

sequence stop codon (codon 435 in the alignments provided on Appendix A and B).

Minimum gaps in the sequence and insertions, indicated by a period (.), have been 

included in the alignment of sequences with differing length, in such a way as to 

maintain the reading frame and produce a human readable document. Such gaps were 

employed for the KIR3DP1 exon 2 deletion, the three base pair deletion characteristic 

of type I KIR2D pseudoexon 3 sequences (codons 21 and 22), the type II KIR2D gap 

separating exon 3 from exon 5 (codons 98 to 198), the single base pair deletion found in 

KIR2DP1 exon 4 sequences (codon 183), the 22 base pair deletion found in the 

KIR2DS4*003 allele’s exon 5 sequence (codons 226 to 233), the KIR3DL3 exon 6 

deletion, the three base pair deletion present in KIR2DL1 and KIR2DL2 exon 7 

sequences (codon 335), the compensating gap for the single base pair insertion present 

at position 348 of some KIR3DS1 alleles, the KIR3DS1 exon 8 double base pair 

deletion (codon 361) as well as the four base pair deletion present in type II KIR2D 

exon 9 sequences (spanning codons 417 and 418).

The nucleotide alignment numbering given in this chapter denotes codons beginning at 

+1 for that encoding the first amino acid residue of the mature protein after signal 

sequence cleavage. Codons encoding the signal sequence are numbered backwards from 

- 1.

As most of the KIR nucleotide sequences are derived from cDNA sources, no attempt 

was made to include intronic data. However, the pseudo-exon 3 sequences for type I 

KIR2Ds have been included in the nucleotide alignment, where available, as their 

sequences show a high level of identity to the exon 3 sequences of KIR3D and type II 

KIR2D sequences, and their inclusion is of use to researchers designing oligonucleotide 

primers or probes based on these alignments. Likewise, nucleotide sequences before the 

start codon and after the stop codon have not been included in these alignments 

although they might be available in the source data. Although an effort was made to
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include only full-length sequences in these alignments, this was not possible in all 

cases. In some instances the sequencing strategy and inherent difficulty of employing 

cDNA as template has not allowed for the full characterisation of the upstream regions 

of some alleles.

3.2.3 ClustalX alignment procedure and considerations

This alignment procedure allows us to show identity to a reference sequence and 

translate the nucleotide sequences into their corresponding protein sequences. 

Sequences retrieved from EMBL and GenBank were adapted to the FAST A format, 

intron sequences where present were removed, and the sequence span restricted to the 

coding regions between the start and the stop codon. The sequence comparison was 

done by using a combination of Clustal (Thompson et al. 1994) and manual analysis. 

Sequences were subjected to the ClustalX algorithm (version 1.83, www.embl- 

heidelberg.de/~chenna/clustal/darwin) on a local computer running an Apple Macintosh 

OS X platform (Apple, Cupertino, CA, USA). Manual intervention was necessary, as 

the gap penalty of this algorithm did not allow for the inclusion of type II KIR2D 

sequences given their structural divergence. After all KIR sequences had been aligned 

in this manner, sequences were then reformatted to show sequence unanimity using an 

in house formatting tool, SAURT.

3.2.4 Sequence reformatting for unanimity with SAURT

SAURT is a specifically written Perl script developed and made available locally as a 

Common Gateway Interface (CGI) script on the Anthony Nolan Research Institute 

intranet. SAURT highlights the regions of sequence unanimity of all sequences to the 

KIR3DL2*001 reference sequence, grouping nucleotides into their corresponding 

codons as well as translating the nucleotide alignments into their corresponding amino 

acid alignments. The reformatting criteria used by this script conforms to the 

standardised guidelines devised for HLA and adopted for KIR alignments, where 

asterisks (*) indicate positions where sequence is unavailable but thought to exist and 

identity to the reference sequence KIR3DL2*001 is shown by a hyphen (-). After the
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sequences had been aligned and reformatted, their intron/exon boundaries were 

annotated based on previously described criteria (Vilches et al. 2000b) and indicated 

with a pipe (I). Additionally, exon and codon number labels were added to facilitate 

their interpretation. The final product of these procedures corresponds to the KIR 

nucleotide alignment given in Appendix B.

3.2.5 Criteria used for nucleotide sequence translation

Only KIR gene sequences for which translation has been documented were considered 

for inclusion into these alignments. The sequences representing KIR2DL5A*001 and 

2DL5B*003 alleles were included amongst the translated proteins as their expression 

has been documented (Vilches et al. 2000a). The remaining KIR2DL5 sequences are 

currently not thought to be expressed and have not been included in the translated 

alignment. However, the sequences representing KIR2DL5(2DLX) have been included 

in the protein sequence alignments as their expression profiles have not been 

characterised to date. The nucleotide alignments derived from the ClustalX procedure 

were edited in order to delete insertions, deletions, gaps and regions of unavailable 

sequence as well as the sequences representing non-expressed genes (such as KIR2DP1 

and KIR3DP1) in such a way as to prevent incorrect translation due to frame shifts.

These edited sequences were then loaded into SAURT for translation, as described in 

Chapter 2, and subsequently reformatted for unanimity to the reference sequence (also 

KIR3DL2*001). Subsequent editing of the translated protein sequences required the re- 

introduction of gaps (marked as periods in the alignments provided in Appendix A) to 

allow the alignment and comparison of all KIR protein sequences. This procedure 

entailed the introduction o f a 95 amino acid residue gap into the type I KIR2D 

sequences corresponding to the location of the DO domain of KIR3D sequences. Thus 

enabling the comparison of the similarly placed D1 and D2 domains of both KIR2D and 

KIR3D proteins. In a similar fashion, the structurally divergent type II KIR2Ds required 

the introduction of a 99 amino acid residue gap so as to allow for a proper comparison 

of the DO and D2 domains of these KIR to other KIR proteins. Additionally, a 17 amino 

acid residue gap, spanning positions 295 to 312, was introduced into KIR3DL3 

sequences as they lack the exon encoding the corresponding stem region.
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The protein alignments also use the annotation criteria previously described for 

nucleotide alignments. In the alignments provided in Appendix A, protein domains have 

been marked with a pipe (|) based on previously described criteria (Vilches et al. 

2000b), asterisks (*) indicate positions where sequence is unavailable but thought to 

exist, periods (.) indicate necessary gaps introduced to maintain and allow for 

comparative alignment. The numbering of the codons o f the mature protein, after 

cleavage of the signal sequence begins at +1, while the signal sequence is numbered 

backward from -1. Identity to the reference sequence KIR3DL2*001 is shown by a 

hyphen (-) and stop codons are indicated by an X. The final product of these procedures 

corresponds to the KIR amino acid alignment given in Appendix A.

3.3 General sequence alignment overview

3.3.1 General overview of the nucleotide sequence alignment

A total of 89 DNA sequences are present in the KIR nucleotide alignment, representing 

the allelic variants of the 17 known KIR genes. The combined length of the exons of 

individual KIR genes varied from 913 to 1368 bp (KIR3DP1 and KIR3DL2, 

respectively). The number of allelic variants observed within a gene was shown to vary 

from two to 12 (KIR2DP1 and KIR3DL2, respectively). This and the following section 

will describe the main differences that were shown to exist between the sequences of 

different KIR genes as well as the possible genetic mechanisms which gave rise to this 

diversity. Section 3.3.4, below, includes a description of the differences observed in the 

allelic variants of each KIR gene.

The structural features that distinguish the different KIR genes as discussed in Chapter 

1, for Type I and II KIR2D and KIR3D genes, are illustrated in these alignments. In 

addition to seeing the large-scale deletion events which encompass entire exons, such as 

those observed in KIR3DL3 and KIR3DP1 genes, the alignments also allow us to 

visualise the differences between closely related genes. For example the presence of a 

three base pair deletion in KIR2DL1 and KIR2DL2 exon 7 sequences (codon 335), a 

feature which is not observed in the closely related KIR2DL3 gene. Additionally, other
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gene specific features were identified in these alignments, distinguishing particular KIR 

genes from others. Examples of such features include the single base pair deletion 

observed in KIR2DP1 exon 4 sequences (codon 183), the double base pair deletion of 

KIR3DS1 exon 8 (codon 361) as well as the four base pair deletion present in type II 

KIR2D exon 9 sequences (spanning codons 417 and 418). More importantly, these 

nucleotide alignments reveal the way in which polymorphic sites are distributed 

throughout the many exons of a KIR gene, a characteristic of KIR genes that will be 

further detailed and discussed in section 3.4.

3.3.2 Evidence of the genetic mechanisms responsible for the generation of KIR 

diversity

The analysis of the nucleotide sequence alignments provides suggestive evidence of the 

genetic mechanisms underlying the generation of KIR gene diversity. Examples of such 

features include the existence of similar gene organizations, the existence of high- 

sequence identity between different KIR genes and the sharing of sequence motifs 

amongst them.

The existence of a uniform KIR gene organization, evidenced by the number, size and 

position within a gene of the individual exons, supports the idea that the number of KIR 

genes seen today is the result of multiple gene duplication events. This idea is also 

supported by other features of the KIR family of genes within the LRC, mainly, their 

presence in a dense cluster and in a tandem array as well as the high sequence identity 

that exist between their intergenic regions. As such, KIR haplotype diversity is currently 

thought to be the result of homologous recombination events. Asymmetric 

recombination events occurring between homologous intergenic sequences are currently 

thought to be responsible for the expansion/contraction of the number of KIR genes 

present on a haplotype (Martin et al. 2003). The existence of high-sequence identity 

between different KIR genes together with their sharing of sequence motifs is also 

suggestive of evolution throughout gene duplication events. The presence of shared 

sequence motifs between different KIR genes was also demonstrated in these 

alignments, highlighting the relatedness that exists between the various KIR sequences.
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The analysis of these shared sequence features provides clues into the different genetic 

mechanisms involved in the generation of the diverse KIR gene family. As such, the 

mosaic pattern arising from the shuffling of exon motifs between different KIR genes 

was clearly demonstrated to be a main diversifying mechanism. An example of this 

mechanism relates to the sequence similarity that exists between Type I KIR2D 

pseudoexon 3 sequences and the third exon of KIR3D genes.

The observation of KIR genes sharing features of two different KIR genes is indicative 

of the effect of a recombination event encompassing different KIR genes which leads to 

the origin of a hybrid KIR gene. This is the case of KIR2DL2, a gene whose 

centromeric portion shares sequence identity to KIR2DL3 but whose telomeric portion 

shares sequence identity to KIR2DL1 (Vilches and Parham 2002). This mechanism has 

been suggested by other studies to be the major driving force generating new KIR genes 

throughout the evolution of the KIR gene family (Rajalingam et al. 2003). Further 

evidence in support of the idea that new KIR genes arise from recombination events 

involving existing KIR genes was provided by the description of a KIR3D gene in 

chimpanzees which shares features of the KIR3DL1 and 3DL2 genes present in humans 

(Khakoo et al. 2000). Although these findings provide a clue as to the fundamental 

genetic mechanisms driving KIR gene diversity, they do not provide evidence to the 

way natural selection has acted on NK cells (or other lymphocytes expressing KIR) to 

guide this evolution.

3.3.3 General overview of the amino acid sequence alignment

The amino acid alignments include 81 sequences and represent 15 different KIR genes. 

The complete KIR protein sequences were found to vary in length from 306 to 456 

amino acid residues, the lengths of the mature proteins, after leader peptide cleavage, 

ranging from 285, in KIR2DS proteins, to 435 amino acid residues, in KIR3DL2 

proteins. Although the differences in protein lengths are mainly the consequence of the 

differing number of Ig—like domains and the cytoplasmic tail length variations, a 

substantial amount of length variation was also shown to be the consequence of the 

gene specific insertions/deletions mentioned in the previous section. As such, these
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insertions/deletions dictate the observed variations of the transmembrane region and 

cytoplasmic tail domain of Type I KIR2D, leader sequence variations of Type II KIR2D 

as well as the cytoplasmic tail variations observed in some KIR3D proteins, as shown in 

figure 3.1.
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Figure 3.1. Variation in KIR protein length. The protein domains and regions of KIR proteins are 

represented as boxes of different colours. The length of each domain and region in amino acid residues is 

shown in digits above their corresponding box.

The number of protein variants within a gene was shown to vary from 12 in KIR3DL2 

to a single KIR2DS3 protein. Functional implications of which are discussed on the 

following section.

3.3.4 Allelic variations of KIR nucleotide and amino acid sequences

KIR2DL1

The six KIR2DL1 allele sequences analysed displayed 13 polymorphic nucleotide 

positions corresponding to codons -17, 111, 122. 209, 249, 257. 258, 266. 277, 311, 

341, 358 and 408. Nine of these polymorphic nucleotide positions were translated into
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amino acid substitutions, giving rise to five different protein sequences (underlined 

codon numbers represent synonymous substitutions from here on). The mature proteins 

encoded by these alleles were 327 amino acid residues long and had conserved 

transmembrane regions, their polymorphism being concentrated in their leader peptides, 

D1 and D2 Ig-like domains, as well as in their stem and cytoplasmic regions.

KIR2DL2

The four KIR2DL2 allele nucleotide sequences differed at 19 positions, encompassing 

18 different codons (codons 111, 130, 136, 156,161, 262, 269, 295, 310, 311, 350, 3M, 

363. 364, 365, 392, 408 and 412). Eleven of these polymorphic nucleotide positions are 

translated into amino acid substitutions, giving rise to four different proteins. The 

mature proteins encoded by these alleles are 327 amino acid residues long and have 

conserved leader peptides and transmembrane regions and exhibit variation in their D1 

and D2 Ig-like domains, as well as in their stem and cytoplasmic regions.

KIR2DL3

The six KIR2DL3 alleles differed at 11 positions, corresponding to codons -13, 106, 

130, 145, 154. 268, 303, 316, 377, 378, and 392. Eight of these polymorphic nucleotide 

positions were translated into amino acid substitutions, giving rise to six different 

proteins. The mature proteins encoded by these alleles were 320 amino acid residues 

long and had conserved D2 Ig-like domains and transmembrane regions. Their 

polymorphism was concentrated on the leader peptides, D1 Ig-like domain as well as in 

their stem and cytoplasmic regions.

KIR2DL4

The nine KIR2DL4 alleles differed at 20 positions corresponding to codons 30, 64, 66, 

72, 78, 209, 215, 237, 282, 286, 306, 331, 334, 348, 446, 418, 421, 447 and 448. Nine 

of these polymorphic nucleotide positions were translated into amino acid substitutions, 

giving rise to seven different proteins. The mature proteins for these KIR genes are 354 

amino acid residues long, they have invariant leader peptides, stem and 

trans-membrane regions. Their polymorphism is restricted to the DO and D2 Ig-like
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domains and cytoplasmic regions. A single nucleotide deletion in codon 348 leads to a 

premature stop codon 11 residues into the cytoplasmic domain of KIR2DL4*007 gene, 

giving rise to a truncated protein which is 104 amino acid residues shorter than the rest 

of the KIR2DL4 proteins, thereby lacking its corresponding ITIM.

K1R2DL5

KIR2DL5 genes contain eight exons and span approximately 9.3 Kb of DNA. They are

1.5 Kb shorter than KIR2DL4 genes, mainly due to length differences in introns 1, 4 

and 5. KIR2DL5 sequences have shown to be encoded by two highly similar genes, 

most probably the result of a recent gene duplication event. KIR2DL5A is the most 

telomeric of the two genes and includes the KIR2DL5A*001 allele, whereas 

KIR2DL5B includes KIR2DL5B*002, KIR2DL5B*003 and KIR2DL5B*004 alleles 

(Gomez-Lozano et al. 2002). Both of these genes have been analysed here jointly, along 

with the KIR2DLX1 and KIR2DLX2 sequences, based on their nucleotide sequence 

similarity. Both KIR2DLX1 and KIR2DLX2 sequences have not been included in the 

KIR Nomenclature Committee’s official listing of KIR genes as they have not yet been 

characterised as belonging to either the KIR2DL5A or KIR2DL5B genes. The overall 

nucleotide alignments show at least nine polymorphic nucleotide positions 

corresponding to codons -16 , -1, 4, 16, 79, 86, 95, 252, 274. These polymorphic 

nucleotide positions have the potential to give rise to four different protein sequences, 

nevertheless, only two of these allelic variants have shown to be transcribed, 

KIR2DL5A*001 and KIR2DL5B*003. The two KIR2DLX sequences have remarkable 

similarity to other KIR2DL5 sequences and appear to represent new KIR2DL5 alleles. 

The two KIR2DLX sequences differ from each other by two non-synonymous 

nucleotide substitutions in codons 220 and 355 and from other KIR2DL5 sequences at 

four nucleotide positions, corresponding to codons -16, 220, 355 and 390. These 

KIR2DLX sequences have the potential to encode a mature protein 354 amino acid 

residues long. Although the nucleotide sequences of the non-expressed variants, 

KIR2DL5B*002 and KIR2DL5B*004, do not exhibit obvious structural defects which 

could impede their expression, 5' promoter polymorphisms related to transcription 

factor and transcription regulatory element binding have been shown to have mutations 

leading to their non-transcription (Vilches et al. 2000a; Vilches et al. 2000b). The non­
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expressed KIR2DL5B*002 and KIR2DL5B*004 differ by at least six nucleotides in 

codons 4, 16, 79, 86, 252 and 274. The two expressed KIR2DL5 variants, 

KIR2DL5A*001 and KIR2DL5B*003, differ at three nucleotide positions, and are all 

translated into amino acid substitutions, corresponding to codons -16, -1 and 95. The 

mature protein for the expressed variants is 354 amino acid residues long and only 

exhibits variation in the leader peptide and DO Ig-like domain (Vilches et al. 2000a; 

Vilches et al. 2000b).

KIR2DS1

The four KIR2DS1 allele sequences differ at five nucleotide positions, corresponding to 

codons -18, 151. 165, 185 and 311. Four of these polymorphic nucleotide positions are 

translated into amino acid substitutions giving rise to four different proteins. The mature 

proteins were found to be 283 amino acid residues long and to possess invariant D2 

Ig-like domains, transmembrane and cytoplasmic regions. Polymorphic residues were 

identified in the leader peptide, D1 Ig-like domain and stem region of these proteins.

KIR2DS2

The five KIR2DS2 nucleotide sequences differ at 23 different positions corresponding 

to 21 different codons (codons -2 , 311, 315, 317, 318. 319. 320, 328, 329, 330. 331. 

332, 343. 344, 345, 349. 350, 355, 357. 364 and 370). Thirteen of these nucleotide 

positions were translated into amino acid substitutions, and give rise to five different 

proteins. The mature KIR2DS2 proteins are 283 amino acid residues long and have 

invariant D1 and D2 Ig-like domains and stem regions. The polymorphic amino acid 

residues present in these proteins were located in their leader peptide as well as in their 

trans-membrane and cytoplasmic regions. The KIR2DS2*005 allele sequence was 

found to possess an interesting distribution of polymorphic motifs, where the first six 

exons were found to share sequence motifs with other KIR2DS2 alleles whereas the 

nucleotide sequence from exon seven to nine shared a greater level of nucleotide 

identity to KIR2DS3 alleles. This suggests that this allele is the result of a 

recombination event between the 5' portion of a K1R2DS2 gene and the 3' portion of a 

KIR2DS3 allele. Consequently, the protein encoded by this allele possesses 

extra-cellular regions which are very similar to other KIR2DS2 proteins but whose
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transmembrane and cytoplasmic regions are identical to those present in KIR2DS3 

proteins.

KIR2DS3

The three KIR2DS3 nucleotide sequences exhibit polymorphic nucleotide positions in 

codons 361 and 368, none of which result in amino acid substitutions. As such, the 283 

amino acid residues long proteins encoded by the three constituent alleles are identical.

KIR2DS4

The four allelic variants of KIR2DS4 differ at five nucleotide positions, corresponding 

to codons 169, 176, 220, 237 and 252. The recently described KIR2DS4*003 allele has 

an identical nucleotide sequence to KIR2DS4*001 however, the former possesses a 22 

base pair deletion within exon 5 extending from codon 226 to the first nucleotide of 

codon 233. The deletion shifts the reading frame of the translated protein after the 225th 

residue, giving rise to a structurally divergent KIR protein 218 amino acid residues 

long, whereas the mature protein of the other KIR2DS4 sequences is 283 amino acid 

residues long.

KIR2DS5

The nucleotide sequences of the three KIR2DS5 alleles differ at eight nucleotide 

positions and affect seven codons (codons -20, 187, 206, 218, 253, 259 and 269). Six of 

these polymorphic nucleotide positions are translated into amino acid substitutions, 

giving rise to three different protein sequences. The mature proteins are 283 amino acid 

residues long and have invariant D1 Ig-like domain, stem, transmembrane and 

cytoplasmic regions as well as polymorphic leader peptides and D2 Ig-like domains.

KIR3DL1

The nucleotide sequences representing the eleven KIR3DL1 alleles differ at 29 

positions, corresponding to codons -20, -9, 2, 7, 20, 31,44, 47, 54, 58, 86, 92, 161. 182, 

197. 223. 238, 273, 277, 283, 312, 319, 320, 321, 343, 354, 366, 373 and 377. Eighteen 

of these polymorphic nucleotide positions are translated into amino acid substitutions
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giving rise to nine different proteins. The mature proteins contain 423 amino acid 

residues and present polymorphic residues throughout the protein domains and regions.

KIR3DL2

The twelve KIR3DL2 allele nucleotide sequences differ at 16 different positions, 

corresponding to codons -18, 18, 19, 20, 87, 92, 111, 131, 137, 145, 207, 231, 277, 376 

and 401. Twelve of these polymorphic nucleotide positions are translated into amino 

acid substitutions, giving rise to twelve different proteins. The mature protein is 434 

amino acid residues long and has invariant leader peptide, stem and trans-membrane 

regions. KIR3DL2 proteins possess polymorphic DO, D1 and D2 Ig-like domains as 

well as cytoplasmic regions.

KIR3DSJ

The nucleotide sequences of the five KIR3DS1 alleles differ at six positions in five 

codons (codons -20, 20, 138. 145 and 207). Three of these polymorphic nucleotide 

positions are translated into amino acid substitutions giving rise to five different 

proteins. The mature proteins for KIR3DS 1*010 and KIR3DS 1*014 alleles are 366 

amino acid residues long, where as the mature protein length of KIR3DS 1*011, *012 

and *013 alleles is 361 amino acid residues long. The length difference is the result of 

the insertion of an additional adenosine base at the 3' end of exon 7. This insertion 

creates a shift in the reading frame which leads to a premature stop codon in 

KIR3DS1*011, *012 and *013 alleles.

KIR3DL3

The five KIR3DL3 alleles characteristically lack exon 6, which codes for a part of the 

stem region in other KIR molecules. These alleles differ at nine nucleotide positions 

corresponding to codons 31, 35, 97, 115. 147, 238. 247. 317 and 320, four of which are 

translated into amino acid substitutions. The mature KIR3DL3 protein sequence is 389 

amino acid residues long and exhibits invariant leader peptide sequence, D2 Ig-like 

domain and cytoplasmic region. The polymorphic residues of KIR3DL3 proteins are 

represented by single polymorphic positions located in the DO and D1 Ig-like domain as 

well as their stem and transmembrane regions.
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KIR3DP1

The four KIR3DP1 sequences only possess exons 1 through 5, which together with the 

presence of aberrant reading frames, render them unable to encode a functional 

membrane bound receptor. The nucleotide sequences of the four KIR3DP1 alleles differ 

at three positions, corresponding to codons = 1,16 and 237. KIR3DP1*003 alleles are 

distinguished from KIR3DP1*001 and KIR3DP1*002, by a 1473 bp deletion that 

includes exon 2 and most of the flanking introns (Vilches et al. 2000b). KIR3DP1*001 

differs from KIR3DP1*002 by two nucleotides, both of which are non-synonymous 

(codons -1 and 237).

KIR2DP1

The KIR2DP1 sequences, represent pseudogenes with aberrant reading frames. They 

resemble type I KIR2D due to the presence of pseudoexon 3 and its canonical 3-bp 

deletion. This gene is characterised by the presence of a single nucleotide deletion in 

exon 4 (codon 183) which leads to a shift in the reading frame and to the emergence of 

a premature termination codon in exon 5 (codon 219) (Vilches et al. 2000b). The 

nucleotide sequences of the two KIR2DP1 alleles differ from each other by nine 

nucleotide substitutions which affect eight codons (codons 81, 21, 130. 137, 139. 154, 

230 and 249).

3.4 Distribution of KIR polymorphism

3.4.1 Distribution of KIR nucleotide polymorphism

KIR gene polymorphism is evenly distributed throughout the entire coding region of the 

gene and encompasses all of the exons that compose these genes (figure 3.2). The 

distribution of polymorphic sites in other gene complexes can provide information as to 

the functional requirements for either conserved or polymorphic regions of their 

encoded proteins. As such, most of the classical HLA class I gene polymorphism is 

concentrated within exons 2 and 3, which encode the polymorphic peptide-binding 

groove. However, the nature of the distribution of KIR gene polymorphism does not 

allow for such functional inferences to be made.
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Figure 3.2. Distribution of KIR gene polymorphism. The location of polymorphic nucleotides present 

within the four main inhibitory KIR loci is shown in tick marks. Exon sequences are shown as blue boxes 

and pseudoexon 3 sequences in red. The distribution of polymorphic sites in the HLA-A locus has been 

included for comparative purposes.

The number of polymorphic nucleotide positions present on KIR genes varies from two, 

in KIR2DS3, to 29, in KIR3DL1. On average, KIR genes possess 12 polymorphic 

nucleotide positions, which comprise approximately 1% of the coding nucleotide 

sequence. On average, 60% of these polymorphic nucleotide positions translate into 

non-synonymous substitutions at the protein level. Figure 3.3 illustrates the level of 

nucleotide and amino acid polymorphism of each KIR gene, as well as the ratio of 

nucleotide polymorphisms which are translated into protein differences. The analysis of 

the number of polymorphic sites present on KIR genes (top graph of figure 3.3) 

highlights two main findings. First, most of the KIR genes exhibit a similar level of 

nucleotide and amino acid polymorphism. Secondly, activating KIR are less 

polymorphic than the inhibitory KIR genes and proteins. These findings are suggestive 

of the existence of a biological constraint determining the conservation of activating 

KIR proteins, possibly due to the existence of an invariant ligand. However, these 

findings could also be interpreted to be the result of the low number of allelic variants 

that have been described for activating KIR. In contrast, the analysis of the number of
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polymorphic nucleotide positions which lead to non-synonymous protein changes (P/D 

ratio) suggests the opposite of the previously stated hypothesis (as seen in the bottom 

graph of figure 3.3). These findings demonstrate that amongst most activating KIR, 

approximately 80% of the polymorphic nucleotide positions translate into amino acid 

residue changes. This is suggestive of a functional requirement for polymorphic 

activating KIR proteins. However, functional inferences cannot be made as to the 

relevance of these findings as the ligand for the activating KIR concerned have not been 

determined. Although the previous statements are true for most activating KIR, 

KIR2DS2 represents a unique case as it is the most polymorphic activating KIR, 

possessing a similar degree and ratio of polymorphism as its inhibitory counterpart, 

KIR2DL2. The analysis of the P/D ratios of KIR genes presented in the bottom graph 

of figure 3.3 illustrates four main findings. Firstly, KIR2DS3 is represented by a single 

protein. Secondly, the structurally divergent KIR, which include Type II KIR2D and 

KIR3DL3, possess the highest level of synonymous substitutions of all KIR genes 

except KIR2DS3. Thirdly, KIR2DL2 and KIR3DL1 exhibit a similar P/D ratio to that 

present in their activating counterparts, KIR2DS2 and KIR3DS1. And finally, 

Activating KIR have the highest non-synonymous substitution ratio of all KIR, except 

KIR3DL2, the only inhibitory KIR with a similar P/D ratio.

2DS1 2052 2053 2054 2055 3DL1 30L2 30L3 JDS I

Figure 3.3. K IR  nucleotide and  am ino acid polym orphism  level. The number of polymorphic 

nucleotide and amino acid positions is shown in blue and green dots, respectively. The red triangles 

indicate the ratio of nucleotide polymorphisms which translate into non-synonymous substitutions. The 

average of each parameter is given as a horizontal line.
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3.4.2 Distribution of KIR amino acid polymorphism

The amino acid sequences of the different KIR protein domains and regions were 

analysed to establish both functional and evolutionary relationships. For this purpose, 

only the amino acid sequences of the extra-cellular, transmembrane and cytoplasmic 

domains and regions were considered. These protein regions have shown to be 

responsible for the main functional characteristics of KIR proteins, defining their ligand 

binding properties as well as the type of signal evoked. The analysis of the sequence 

features shared by the different KIR proteins involved the use of phylogenetic 

comparisons of the main KIR group consensus sequences. These comparisons were 

carried out on both full-length mature protein sequences, as well as in a domain and 

region specific manner.

The phylogenetic comparison of the full-length protein structure of nine representative 

KIR protein sequences (figure 3.4) was in agreement to previously published data and 

distinguishes three distinct KIR lineages (Khakoo et al. 2000). These three lineages 

include Type I KIR2D proteins (bottom cluster in figure 3.4), the structurally divergent 

Type II KIR2D (middle cluster in figure 3.4) as well as the KIR3D protein cluster (top 

cluster on figure 3.4).

Within the type I KIR2D cluster, KIR2DL2 proteins are shown to be more closely 

related to KIR2DL1 proteins than to KIR2DL3. This was unexpected given the greater 

sequence similarity that exists between KIR2DL2 and KIR2DL3 proteins than that 

observed between KIR2DL1 and KIR2DL2. This was subsequently proven to be the 

result of the deletion of codon 335 in KIR2DL1 and KIR2DL2 proteins, as the 

introduction of codon 335 into the KIR2DL2 protein corrected its placement next to 

KIR2DL3.

In the phylogram presented in figure 3.4, activating KIR are shown to be more closely 

related to Type I KIR2D than to KIR3D proteins, as expected. KIR2DS2 was shown to 

share greater sequence identity to KIR2DS4 than to any other activating KIR, as such, 

these two KIR are located on the same branch of the phylogram. In a similar manner, 

KIR2DS1 and KIR2DS5 sequences were also shown to share greater sequence identity
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between them than to any other activating KIR, reason for which they are placed on the 

same phylogram branch.

Within the Type II KIR2D, the KIR2DL5 genes are shown to share greater sequence 

identity between them than to KIR2DL4 proteins. However, the clustering of these three 

proteins into the same branch of the phylogram demonstrates their overall structural 

relatedness.

The top portion of figure 3.4 shows the phylogenetic relationships that exist between the 

four KIR3D representative sequences. Within this cluster, KIR3DL3 is shown to be the 

most divergent protein. This is the result of the characteristic deletion of exon 7 in 

KIR3DL3 proteins (Torkar et al. 1998). In addition, the existence of greater sequence 

identity between KIR3DL1 and KIR3DS1 proteins results in their placement on the 

same branch of the phylogram tree, and together sharing sequence identity to KIR3DL2 

proteins.
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Figure 3.4. KIR protein phylogram. This phylogram demonstrates the structural relationships that exist 

between the full-length mature KIR proteins. Three clusters are seen, Type I KIR2D, Type II KIR2D and 

KIR3D. A consensus amino acid sequence for each of the fifteen expressed KIR genes was used for this 

comparison.
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The protein domain and region specific phylogenetic comparisons of the different KIR 

protein sequences are described in greater detail in the following sections relating to the 

differences observed in the extra-cellular domains, transmembrane region and 

cytoplasmic tails.

Extra-Cellular Domain Sequence Differences

The amino acid sequence similarities that exist between the different extra-cellular 

Ig-like domains of KIR proteins are shown in figure 3.5. The comparison of the amino 

acid sequences of DO domains of Type II KIR2D and KIR3D proteins, which spans 

amino acid positions 1 through 97 of the alignments provided in Appendix A, 

demonstrates the existence of a high level of sequence identity between KIR3DL1, 

KIR3DS1 and KIR3DL2 proteins (panel A, figure 3.5). Within this KIR3D branch, the 

KIR3DS1 DO domain is shown to be more similar to that of KIR3DL1 in comparison to 

the DO domain present in KIR3DL2 proteins. A feature which supports the idea that 

KIR3DL1 and KIR3DS1 might in fact be related to each other as alleles of the same 

locus (Crum et al. 2000; Gardiner et al. 2001). The structurally divergent KIR are 

shown as a separate cluster on the bottom part of the DO phylogram, where Type II 

KIR2D are shown to be more closely related between them than to other KIR proteins. 

KIR3DL3 proteins have been allocated an independent branch from Type II KIR2D as a 

consequence of the DO domain length difference demonstrated previously on figure 3.1.
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Figure 3.5. KIR Ig-like domain phylograms. The sequence similarities observed for each of the Ig-like 

domains DO, D1 and D2 of the different KIR proteins are shown in panel A, B and C, respectively. A 

consensus amino acid domain sequence for each KIR loci was used in these three comparisons.
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The comparison of the amino acid sequences representing the D1 domain distinguish 

Type I KIR2D from KIR3D proteins, as shown in panel B of figure 3.5. The D1 domain 

amino acid sequence spans amino acid positions 96 through 198 of the sequence 

alignments provided in Appendix A. We can see from the phylogram the existence of a 

high degree of sequence identity amongst Type I KIR2D proteins, clearly distinguishing 

the D1 domain of these KIR from that present in KIR3D proteins. The Type I KIR2D 

cluster is further subdivided into two major groups. The first group encompasses 

domain sequences which are closely related to KIR2DL1, and includes KIR2DS1, 

KIR2DS3 and KIR2DS5. The second group encompasses D1 domain sequences similar 

to KIR2DL2, including KIR2DL3 and KIR2DS2. The KIR2DS4 D1 domain is shown 

as an independent branch given the sequence differences to other Type I KIR2D 

proteins. This phenomenon has also been demonstrated by other research groups 

(Khakoo et al. 2000), and possibly related to the age of this gene, which has also shown 

to have an orthologue in chimpanzees. Within the KIR3D cluster, shown in the lower 

portion of the D1 domain phylogram, KIR3DL1 and KIR3DS1 sequences are shown to 

share a high level of sequence identity between them as well in relation to KIR3DL2 D1 

domain sequences, whereas, KIR3DL3 sequences are shown to be clearly distinct from 

them and the most divergent in nature for this domain.

The phylogram depicting the relationships of the D2 domain amino acid sequences 

(spanning amino acid positions 199 through 295 of the sequence alignments provided in 

Appendix A) of all KIR proteins is shown in panel C of figure 3.5. Unlike the previous 

two phylograms, the comparison of the D2 domain sequences does not produce clearly 

distinct identity clusters. Although some common clusters are present, such as that for 

the structurally divergent Type II KIR2D and KIR3DL3 proteins, their close association 

to other KIR proteins of clearly distinct gene lineages suggests that this might simply be 

the result of a relatively uniform domain.

Transmembrane Region Sequence Differences

The analysis of the amino acid sequences representing the transmembrane region of 

KIR proteins (amino acid positions 320 to 339) did not reveal any disruption of the 

hydrophobicity pattern. Positively charged amino acid residues were observed within
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this region, and have been highlighted in red on the alignments provided in Appendix 

A. The transmembrane region of KIR proteins was found to be virtually conserved 

amongst Type I KIR2D and KIR3D proteins bearing long cytoplasmic tails, however, 

different from those present in the structurally divergent type II KIR2D and type I 

KIR2D proteins with short cytoplasmic tails. Lysine was found to be present as the 

positively charged amino acid residue in activating variants of KIR3D and Type I 

KIR2D proteins (residue 328), whereas, arginine was the positively charged residue 

present in Type II KIR2D proteins, albeit at a different location (residue 323).

Cytoplasmic Tail Sequence Differences

Immunotyrosine-based Inhibitory Motifs (ITIM) were identified at two different 

positions in KIR proteins, an amino-terminal ITIM located in positions 375 to 380, and 

a carboxy-terminal ITIM placed in positions 405 to 410 (shown in magenta highlight on 

Appendix A). ITIM sequences were found to be present in nine different KIR genes. 

Although most of these KIR proteins possessed both the amino- and carboxy-terminal 

ITIMs, the three domain KIR3DL2, and KIR3DL3 as well as the structurally divergent 

KIR2DL4, KIR2DL5A and KIR2DL5B possessed a single amino-terminal ITIM. The 

sequence of the amino-terminal ITIM was shown to differ in KIR2DL1/2 proteins from 

the sequence present in the other KIR proteins (residue 378), however, this does not 

disrupt the consensus I/V-X-Y-X-X-L/V motif (Vilches et al. 2000b). Interestingly, the 

consensus sequence motif was shown to be disrupted in the carboxy-terminal ITIM of 

both KIR2DL5A/B and KIR3DL2 proteins, in which the first residue of the consensus 

ITIM is replaced by a threonine and serine residue, respectively. Although the amino 

acid residue located at position Y-2 has been shown to play a crucial role by allowing 

SHP-1 to associate to KIR proteins, it cannot be ruled out that the substitution of 

isoleucine/valine for serine/threonine in these two KIR proteins might allow for an 

alternate molecule with similar signaling capacity to bind to these KIR (Burshtyn et al. 

1999).

The type of amino acid replacements observed within the ITIM of the inhibitory KIR 

was also analysed in the context of the physio-chemical properties of the amino acid 

residues. Four amino acid replacements were observed within the ITIM, three of these

146



Chapter 3

residues involving conservative replacements for the three classification categories, one 

in KIR2DL1 (residue 408), one in KIR2DL2 (residue 408) and one in KIR2DL3 

(residue 378). A fourth amino acid substitution found in position 376 of KIR3DL2 was 

classified as a conservative replacement based on charge and as non-conservative 

substitution based on the latter two categories. Although the amino acid substitution 

observed in the amino-terminal ITIM of KIR3DL2 proved to be non-conservative for 

polarity and volume as well as for hydrophobicity, the fact that this replacement does 

not affect the consensus motif suggests that such a substitution does not affect the 

capacity of KIR3DL2*007/010/011 alleles to transduce a proper inhibitory signal.

3.5 Establishment of a KIR nucleotide and amino acid sequence 

database

The Immuno Polymorphism Database (IPD) was developed in 2003 to provide a 

centralised system for the study of polymorphism in genes of the immune system. The 

IPD project was established by the HLA Informatics Group of the Anthony Nolan 

Research Institute in close collaboration with the European Bioinformatics Institute. 

The IPD currently encompasses four main sections: the KIR Sequence Database, the 

non-human Major Histocompatibility Complex Sequence Database, the Human Platelet 

Antigens Sequence Database as well as the European Searchable Tumour Line Database 

(ESTDAB).

The creation of the IPD-KIR Sequence Database was undertaken as a collaborative 

project between the Anthony Nolan Research Institute, Stanford University Medical 

School and the European Bioinformatics Institute. The IPD-KIR Sequence Database 

provides a centralised repository for human KIR nucleotide and amino acid sequences 

(figure 3.6) and contains a suite of tools which facilitate the exploration, acquisition and 

submission of related sequence data. The IPD-KIR Sequence Database currently 

provides a KIR sequence alignment tool based on the nucleotide and sequence 

alignments presented in Appendix A and B.
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This website also includes a KIR Nomenclature section which offers KIR gene specific 

in fo rm atio n  on a lle le  n am es, p rev io u s d e s ig n a tio n s , ce lls  seq u en ced , 

EM BL/G enBank/D D B J accession num bers as well as references to the original 

publications. The IPD-KIR website also provides a Sequence Submission Tool which 

allows researchers to submit sequences directly to the KIR Nomenclature Committee as 

well as a File Transfer Protocol (FTP) site for the retrieval o f sequences in FASTA and 

PIR formats (ftp.ebi.ac.uk/pub/databases/ipd/kir/).

L-EBI
About EH

Nucleotide influences

D a ta b ases
*»0 ■ KIR SEQUENCE DATABASE

IE KIR S e q u e n c e  D a ta b a se
K *» Alignment Toot

Nomenclature

hapiotypes

Submissions

Downloads

»>0

W here d iscrepanc ies h av e  an sen  betw een reported se q u e n c e s  and  th o se  s to red  in th e  d a ta b a se  the original au thors h av e  been  
co n ta c ted  w here possib le  an d  n e c e s sa ry  am endm en ts to  published se q u e n c e s  h av e  been  incorporated into this alignm ent Future 
sequencing  may identify errors m th is list an d  the N om enclature Com m ittee would w elcom e any  ev idence  that helps to  m aintain the 
accu racy  a t th e s e  s e q u e n c e  alignm ents

IPO - KM Sequence D atabase Alignment Tool

Select Locus : jZOLI - j help

Select the feature to a lig n : |  Nucleotide - COS J  v j Help

Enter any sp ec Ac seq u en ces required
Nucleotide COS 
Protein - Signal P eptide Heto

Enter the reference seq u en ce :
' P rotein - M ature Protein 

Protein - Full le n q th  Protein «ilB

Select how you wwlt to view any m ism atches | Show  m ism a tc h es  betw een se q u e n c e s  wj help

N ucleotide nucleotide seq u e n ce  displayed in blocks of 10 bases •  Help

Do you want to om« a is le s  unsequenced tor thM region Show  all alleles wj Help

Proceed with the atgnm enl Align Seq uence Now R ese t Form

Help with S equence  Alignments

Figure 3.6. IPD-KIR Sequence Database Alignment Tool. Drop down option boxes are provided for 

the desired KIR locus, alignment type, output format and annotation of alignments. Help sections for all 

options are also available, as well as links to other sections and tools.

KIR nucleotide and amino acid sequences have been made publicly available from the 

IPD-K IR Sequence D atabase, w hich can be accessed via the w orld wide web at 

www.ebi.ac.uk/ipd/kir.

3.6 Discussion

Before em barking on this project, the KIR sequence data was available only in the 

original publications in which they were described or as individual sequence files in the
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generalist sequence databases. I have made every effort to search the literature and these 

databases and assemble KIR nucleotide and protein sequence alignments, to use as a 

basis for the studies presented in this thesis.

The analysis of KIR nucleotide and amino acid sequence alignments has demonstrated 

the relationships which exist between both genes and alleles of the KIR cluster within 

the LRC and enhanced our understanding of their similarities and differences. The 

nucleotide alignments in particular, when considered as the end product of KIR gene 

evolution, illustrate the possible mechanisms which have been involved in the 

generation of KIR gene and protein diversity. In this context, two major driving forces 

behind KIR gene diversity become apparent, extensive gene duplication events leading 

to the acquisition of multiple genes, and unequal crossing-over events which have 

further diversified KIR genes and hapiotypes by reorganising their constituent parts.

Within these two mechanisms, the existence of gene duplication events is probably the 

most important, and certainly the one most responsible for the current state of KIR gene 

diversity. As such, the sequence similarity present between the different KIR genes 

considered in these alignments supports the idea that extensive and possibly repetitive 

tandem gene duplication events gave rise to the expansion of the gene content present in 

the ancestral KIR cluster. As an indirect result of this idea, the presence of KIR genes in 

such a conserved cluster is in fact an indication of their biological importance, as gene 

clustering is currently thought to be a requirement for maintaining the integrity of genes 

with crucial biological roles (as happens for other immune genes as well as for the 

genes encoding the oxygen-transporter globin) (Wystub et al. 2004). Subsequently, and 

as a consequence of the existence of closely related sequences generated through gene 

duplication, unequal crossing-over events subjected KIR genes to intergenic 

recombination of exons, thereby generating the different gene organisations and protein 

structures observed today. Similarly, unequal crossing-over events had the potential to 

contract or expand the size of the KIR cluster as a consequence of mispaired 

chromosomes giving rise to non-reciprocal recombinants, ultimately defining the KIR 

haplotype patterns currently seen (Martin et al. 2003).
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Additionally, several findings related to the characteristics of particular KIR genes give 

an idea of the time scale in which the LRC has evolved, supporting the idea that the 

KIR gene cluster has a relatively recent evolutionary origin and is currently undergoing 

continuous change. The first finding in support of continuing evolution of the KIR 

cluster relates to the duplication event which gave rise to KIR2DL5A and KIR2DL5B 

genes. Over time, an identical tandem duplicate of a gene will have a tendency to 

diverge from the progenitor gene as a result of the independent accumulation of random 

mutations in both sequences. The fact that KIR2DL5A and KIR2DL5B sequences share 

a high level of nucleotide sequence identity is suggestive of a relatively recent 

duplication event of KIR2DL5 genes. Another example of this idea relates to 

pseudogene KIR2DP1 specific findings. Over time, a mutation inactivated gene no 

longer subjected to natural selection (such as KIR2DP1 or pseudoexon 3 sequences) 

will tend to accumulate further mutations, and as a consequence, to diverge more 

rapidly from other KIR genes in the cluster. As such, my findings relating to 

pseudogene and pseudoexon sequence conservation amongst KIR genes is indicative of 

a recent outburst of both gene duplication events and gene/exon silencing mutations.

These nucleotide alignments also draw attention to other genetic mechanisms involved 

in the generation of present day KIR diversity. The presence of recurring amino acid 

substitutions in multiple alleles and, in some cases, between KIR genes is reminiscent 

of the patchwork polymorphism observed in HLA (Gardiner et al. 2001). Similarly, the 

consequences of small point-mutations leading to the silencing of otherwise intact genes 

(such as happens for KIR2DP1) as well as those of large scale deletion events 

encompassing entire exons (such as that observed in KIR3DL3 genes) were also shown. 

These alignments also reveal the unusual manner in which polymorphic positions are 

distributed along individual KIR loci. The distribution of polymorphic site in both genes 

and proteins can be indicative of functional relevance. As such, HLA proteins are 

positively selected for changes in their peptide binding grooves, a feature which 

provides them with the capability of presenting ever-changing pathogen specific 

antigenic peptides. On the contrary, amino acid changes which impact on other protein 

domains and regions will usually be selected against as a consequence of a requirement 

to conserve relatively constant functions in the context of a relatively conserved ligand 

or interacting molecule.
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The interpretation of the distribution of KIR protein polymorphism however, was not as 

straightforward as in HLA proteins. Firstly, unlike HLA class I or class II genes, where 

most of the functional polymorphism is restricted to two or one exon(s), respectively, 

KIR gene polymorphism was found to be randomly distributed along the entire length 

of the genes, encompassing virtually every protein domain and region. Secondly, 

although KIR proteins have been shown to recognise certain HLA allotypes, and as 

such a tendency towards maintaining conserved KIR proteins within a locus would be 

expected, our current limited knowledge of KIR protein binding specificities, along 

with the absence of likely candidates ligands for a great number of KIR molecules 

limits the functional predictions which can be made for the distribution of KIR 

polymorphism. One possible explanation for this random distribution of KIR gene 

polymorphism is that the observed polymorphisms are simply the result of accumulated 

point mutations that do not interfere with the function of the protein and therefore have 

not been selected against. Nevertheless, some KIR gene groups did exhibit conserved 

exons. Although this finding on its own does not permit us to infer functional 

properties, it does however suggest a functional requirement for the conservation of 

these regions. Similar constraints relating to the interpretation of the polymorphism 

present in the allelic variants of certain KIR genes exist. Although the low number of 

alleles present in the most polymorphic KIR loci (KIR3DL1 and KIR3DL2) has been 

explained in the context of the relatively recent evolutionary origin of this gene cluster, 

it is very likely also the result of the relatively low number of individuals that have been 

sampled and examined at the DNA sequence level.

The true level of KIR gene polymorphism will be known once population studies 

targeting greater sample sizes are carried out, and the functional implications of such 

polymorphism either defined by disease association studies, retrospective HSCT studies 

and hypothesis driven cellular biology or proteomic approaches. The identification of 

certain KIR alleles with particular polymorphisms which might affect its functional 

role, such as KIR2DS2*003, KIR2DL4*007 and KIR2DS4*003 may be of use in 

understanding the importance of KIR gene polymorphism in clinical studies relating to 

disease susceptibility and incidence of malignancies and pathogenic incursions as well 

as in the transplant setting.
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The publication of the first HLA sequence analysis (Parham et al. 1988) and the 

availability of an online repository of HLA sequences (www.ebi.ac.uk/imgt/hla) 

(Robinson et al. 2003) has provided the scientific community with a valuable tool that 

has not only helped to explain the relevance of HLA polymorphism, but also stimulated 

the advancement of the field. In a similar fashion, researchers involved in the study of 

KIR genes and products will undoubtedly benefit from the existence of a publicly 

accessible KIR related information repository such as that provided by the IPD-KIR 

Sequence Database. In addition to this, the publication of this KIR sequence database 

(Garcia et al. 2003) has already been of a benefit to the KIR research community as it 

has served as a reference to the recently published KIR Nomenclature report (Marsh et 

al. 2003).
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Chapter Four

KIR Protein Modelling and 

Polymorphism Mapping

4.1 Introduction

The definition of the crystal structure of some KIR proteins has provided useful 

information with regards to their protein structure as well as to the molecular basis of 

KIR:HLA interactions. The analysis of these molecular structures has furthered our 

understanding of the functional significance of strategically placed amino acid residues, 

such as those present in the ligand-binding site of KIR proteins. In addition, the 

comparison of the molecular structure of two different KIR:HLA complexes has 

demonstrated the existence of relatively conserved docking characteristics which 

suggest that they could be generalised to those of other KIR:HLA interactions. 

Although the molecular structures of three different KIR proteins (KIR2DL1, KIR2DL2 

and KIR2DS2) have been resolved to date, the structures of 11 other expressed KIR 

proteins remain unknown. The comparison of the molecular structures that have been 

defined for these KIR proteins has allowed functional inferences to be made with 

regards to the amino acid differences and similarities. However, no attempt has yet been 

undertaken to translate these functional features to those of other ‘non-crystallised’ KIR 

proteins. In this chapter I address these issues by using molecular modelling software 

and other bioinformatics tools to translate the amino acid features of unresolved KIR 

proteins into the three-dimensional template based on the existing crystal structures. It is 

envisioned that the generation of these KIR protein molecular models will provide an 

insight into the way polymorphic residues are distributed in KIR proteins as well as 

providing clues to their functional significance.
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4.2 KIR Protein Modelling

The description of the crystallographic structures of KIR proteins and of the KIR:HLA 

interaction has not only provided a molecular model on which to make functional 

inferences of KIR sequence polymorphism, but also confirmed and provided direct 

evidence regarding the functional relevance of certain strategically placed amino acid 

residues. Although the existence of such crucial amino acid positions had been explored 

and detailed through site-directed mutagenesis studies, the characterisation of the 

protein structure has provided a physical basis for the interpretation and comparison of 

the functional properties of the different KIR proteins.

Recent publications have described the crystal structure of four different KIR proteins, 

including the inhibitory KIR2DL1 (Fan et al. 2001), KIR2DL2 (Boyington et al. 2000) 

and KIR2DL3 (Maenaka et al. 1999b) as well as the activating receptor KIR2DS2 

(Saulquin et al. 2003). Two of these crystallographic studies, those relating to KIR2DL1 

and KIR2DL2, provide additional information on how these KIR proteins bind to their 

cognate ligands HLA-Cw4 and HLA-Cw3, respectively (Snyder et al. 1999).

4.3 Description of KIR Crystallographic Models

The asymmetric unit represented in the KIR2DL1 crystal structure (figure 4.1 panel A) 

is comprised of a single KIR protein forming a complex with an HLA-Cw4 molecule, 

with a second HLA-Cw4 molecule providing the crystal lattice packaging. In panel A of 

figure 4.1, the extra-cellular domains (D2 and D l) of the KIR2DL1 protein are shown 

in red whereas the interacting HLA-Cw4 ligand is shown in blue. The nonameric 

peptide present in the HLA-Cw4 peptide binding groove is shown in green while the 

second HLA-Cw4 molecule which provides the packaging is represented in magenta, 

finally, the j32-microglobulin chains are shown in orange (Fan et al. 2001).

The asymmetric unit of the KIR2DL2 crystal (figure 4.1 panel B) represents the 

extra-cellular Dl and D2 domains of two KIR2DL2 proteins. The KIR protein which is 

shown to be binding to the HLA ligand is represented in red, while the additional KIR 

protein which provides the crystal lattice packaging is represented in magenta. The
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extra-cellular a ,, a 2 and a 3 domains of the HLA-Cw3 ligand are shown in blue, the 

nonameric peptide present in the binding groove represented in green, while the 

P2-microglobulin chain is shown in orange. Both the KIR2DL1 and HLA-Cw4 crystal 

and the crystal structure of KIR2DL2 and HLA-Cw3 are represented in an orthogonal 

orientation and at a 1:1 stochiometric molar ratio (Boyington et al. 2000).

KIR2DL2

KIR2DL2

Peptide

HLA-CW3

Beta2-microglubulin

(B)

Figure 4.1. Description of the asymmetric units depicted in the crystallographic models. The

molecular structures of KIR2DL1 and KIR2DL2 coupled to their HLA-Cw4 and HLA-Cw3 ligands as 

presented in their respective crystals are shown on panel A and panel B, respectively. Figures adapted 

from the PDB files cited in the original publications (Boyington etal. 2000; Fan et al. 2001).

The amino acid sequence of the extra-cellular domains of the KIR proteins represented 

in both crystallographic models is identical to that of the *001 allele of the 

corresponding gene. These sequences extend from the first residue of the D 1 domain of 

KIR proteins, to the end or to the start of the stem region, K1R2DL1 and KIR2DL2, 

respectively, as shown in the alignments given in figure 4.2.

KIR2DL1

P e p tid e

HLA-Cw4

B eta2-m icrogioD uhn

P e p tid e

HLA-Cw4

Beta2-m croglobulin

155



Chapter 4

(A)

(B)

Figure 4.2. Sequence coverage of KIR protein crystallographic structures. The amino acid sequences 

of KIR2DL1*001 (A) and of KIR2DL2*001 (B) are shown with protein domain and region markings (in 

red). The amino acid sequence and numbering o f the extra-cellular domains of the KIR protein 

represented in each crystal structure are highlighted in yellow.

4.4 Characterisation of the KIR:HLA Interface

The orientation of KIR2DL1 and KIR2DL2 with regards to the HLA-Cw4 and -Cw3 

protein is such that the Dl and D2 domains of the KIR proteins interact with the 

a-helices of the a] and a 2 domains of the HLA molecule, respectively. This domain 

orientation is similar to that exhibited by the V a and Vp domains of the TCR in the 

context of TCR:HLA interactions (Garcia et al. 1999). The projection of both the KIR 

and TCR footprints on the HLA molecule surface revealed a partial overlapping of 

contact residues, as shown in figure 4.3. Approximately 18 amino acid residues of the 

KIR protein lie less than 4A from the HLA surface, and are considered to interact 

directly with residues present on the surface of the HLA molecule.
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(A) (B)

Figure 4.3. KIR and TCR projected footprint on the HLA molecule. The HLA (blue) and peptide 

(green) residues which establish contact with the KIR and TCR proteins (panel A and panel B, 

respectively) are shown in red on the ribbon diagrams. The rendering given in panel A employed an 

HLA-Cw3 protein coupled to a KIR molecule (Boyington et al. 2000), while that of panel B used a 

crystal structure of an HLA-A2 protein coupled to a TCR molecule (G arboczi et al. 1996). The 

corresponding HLA amino acid residue numbering is based on the mature HLA protein sequence.

The KIR protein establishes direct contact with 12 HLA residues (figure 4.3 panel A), 

seven of these residues are present in the a-helix of the a , domain, while the remaining 

five are located on the a-helix of the a 2 domain of the HLA protein. Additionally, the 

KIR footprint also involves residue interactions with the carboxy-terminal end of the 

peptide (residue 8) presented in the HLA binding groove (Malnati et al. 1995; Peruzzi et 

al. 1996). Similarly, the TCR was shown to establish direct contact with 16 HLA 

residues (figure 4.3 panel B), ten of them located on the a 2 domain helix and six of 

them located on the a ,  domain helix (Garboczi et al. 1996). However, the TCR 

establishes contacts with most of the central portion of the peptide presented by the 

HLA molecule. The footprint which the KIR and TCR project on the HLA protein was 

demonstrated to partially overlap, involving two residues of each alpha helix as well as 

the carboxy-terminal end of the bound peptide. This finding is highly suggestive of the 

existence of mutually exclusive binding affinities for HLA of both KIR and TCR 

receptors.
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A comparison of the physical properties of the KIR2DL1 and KIR2DL2 surface 

residues which contact their respective HLA ligand has allowed me to demonstrate the 

type of molecular mechanisms which govern such interaction. The manner in which 

KIR2DL1 and KIR2DL2 proteins dock with their HLA ligand is very similar if not 

identical, as shown on the ribbon diagrams illustrated on panel A of both the KIR2DL1 

and KIR2DL2 models shown in figure 4.4.

The physiochemical properties of most of the amino acid residues involved in 

establishing contact with the HLA ligand were found to be similar between these two 

KIR proteins (residues 140, 166, 167, 199, 200, 201, 227, 228, 230, 276, 278 and 279 

shown on panel B of both the KIR2DL1 and KIR2DL2 models given in figure 4.4). 

However, amino acid residue differences between these two KIR proteins (residues 165 

and 139 on figure 4.4 panel B), as well as the use of different amino acid residue 

positions to establish the HLA-contact (residues 116 and 229 on figure 4.4 panel B), 

provides these KIR proteins with the ability to discriminate between HLA-C 

specificities.

These findings have shown that although these two KIR proteins exhibit a similar 

docking orientation and use similar amino acid residues to establish contacts with their 

HLA ligand, the use of amino acid residues with distinct physiochemical properties 

provides them with different functional properties. The HLA C group 1 and group 2 

specificities discriminated by these KIR proteins were shown to be achieved by means 

of clearly distinct physical interactions between the amino acid residues present in the 

KIR and HLA protein contact surfaces. In KIR2DL1, an electronegative surface hosts 

an electropositive complementary area present on HLA-Cw4. However, the formation 

of hydrogen bonds was shown to be the main interaction governing KIR2DL2 binding 

to HLA-Cw3 (Fan et al. 2001).

158



Chapter 4

KIR2DL1 KIR2DL2

Figure 4.4. Comparison of the amino acid residue usage between KIR2DL1 and KIR2DL2. The

ribbon diagrams shown on panel A demonstrate the KIR:HLA docking orientation as viewed from under 

the HLA p-sheet for KIR2DL1 and KIR2DL2 proteins. KIR proteins are shown in red ribbon diagrams 

while the HLA molecule is represented in blue. Panels B and C of both KIR2DL1 and KIR2DL2 sections 

illustrate the physiochemical properties of the KIR and HLA contact residues, respectively, as discussed 

in the preceding text. Panel B of both the KIR2DL1 and KIR2DL2 models, is a space filling model 

illustrating the different physiochemical properties of the KIR amino acid residues involved in the 

KIR:HLA interaction. Panel C o f both models, is a space filling model illustrating the different 

physiochemical properties of the HLA amino acid residues involved in the KIR:HLA interaction. Dark 

grey spheres represent residues not involved in the binding interaction, light grey spheres represent 

hydrophobic residues, red indicates electro negatively charged residues, blue indicates electro positively 

charged residues, magenta indicates the presence of aromatic residues and finally, cyan represents amino 

acid residues with polar properties.
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4.4.1 Definition of KIR Protein Ig-binding loops

Previous studies based on crystallographic data had identified six Ig-binding loops 

present in the KIR protein that were involved in establishing contacts with the HLA 

protein (Boyington et al. 2000; Fan et al. 2001). As we intended to base our analysis on 

the structural properties defined by the crystallographic models rather than on the 

results of previous publications, we employed a progressive expansion of selection 

criteria to identify the Ig-binding loops of the KIR protein that are involved in 

establishing these contacts, as described in Chapter two. I was able to identify the six 

loops known to be involved in the recognition of HLA by KIR proteins. This first step 

of the expansion process involved the selection of KIR residues found within 4A of the 

HLA molecule. This procedure allowed me to define five and six Ig-binding loops for 

the KIR2DL1 and KIR2DL2 proteins, respectively. These contact regions were shown 

to possess residues directly involved in the binding of HLA ligands (shown in red 

highlight on the alignments provided on Appendix A as well as on the molecular model 

depicted on figure 4.5).

Figure 4.5. KIR Ig-binding loops. The ribbon diagrams show three views of the Ig-binding loops of 

both KIR2DL1 and KIR2DL2 proteins (A-F). Amino acid residues in direct contact with the HLA 

molecule are shown in red, while the positions of residues which might influence the binding properties 

of KIR proteins have been highlighted in yellow.

In this process of selecting the Ig-binding loops of KIR proteins, the influence of 

neighbouring residues to those establishing direct HLA-contacts was also taken into
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account by expanding the selection criteria to include residues in the KIR molecule 

within 8A of the HLA molecule (shown highlighted in yellow on the alignments 

provided in Appendix A as well as on the molecular model depicted on figure 4.5).

Although the overall position of the contact residues for KIR2DL1 and KIR2DL2 

proteins were shown to be very similar, as shown in table 4.1, differences in position 

usage and amino acid residue characteristics were demonstrated. As such, KIR2DL1 

proteins use three amino acid residues to establish direct contact (primary contact 

residues) with their HLA ligands that are not used by KIR2DL2 proteins (position 163 

of loop C, position 229 of loop E and position 282 of loop F). Conversely, KIR2DL2 

proteins employ two amino acid residues not employed by KIR2DL1 proteins to 

establish primary contacts with their ligands (position 116 of loop A and position 165 of 

loop C). Even greater variation in the number and position of influential residues exist 

between these two KIR proteins, as detailed in table 4.1.

Table 4.1. Amino acid residue composition of KIR Ig-Binding loops

KIR2DL1

Primary Influential

None 116

139-140 136,138, 141 & 142

163, 166 & 167 164, 165 & 168

KIR2DL2

Primary Influential

116 115 & 117

139-140 136,138, 141 & 142

165-167 162-164 & 168

199-201 198 & 202

227-230 225, 226 & 231

276, 278, 279 & 282 274, 275, 277, 280 & 281

None None

199-201 196, 198 & 202

227, 228 & 230 225,226, 229 & 231

276, 278 & 279 275, 277, 280-282 & 284, 285

None 247, 250 & 255

The Ig-binding loops selected by this process encompass six of the eight amino acid 

positions which have been described by mutagenesis studies as having profound effects 

on the binding of HLA-C by KIR2DL proteins (positions 139, 140, 165, 200, 201 and 

230) (Mandelboim et al. 1996; Winter and Long 1997; Winter et al. 1998). The 

consensus motif for each of these Ig-binding loops was used to highlight the potential 

Ig-binding loops present in other KIR proteins for which a crystal structure has not been
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resolved (as shown on the alignments provided in Appendix A) explaining the 

differences in highlighting observed between KIR2DL1 and KIR2DL2 proteins.

4.4.2 Ig-binding loop characteristics of the different KIR proteins

As mentioned previously, the ligands for only a small number of KIR proteins have 

been resolved, including those of KIR2DL1 and KIR2DL2/3 (Wagtmann et al. 1995; 

Dohring and Colonna 1996; Fan et al. 1996; Biassoni et al. 1997; Long et al. 1997; 

Moretta et al. 1997; Reyburn et al. 1997; Winter and Long 1997; Winter et al. 1998; 

Vales-Gomez et al. 1999), KIR3DL1 (Colonna et al. 1992; Litwin et al. 1994; Gumperz 

et al. 1995; Lanier et al. 1995; Gumperz et al. 1997; Valiante et al. 1997; Kurago et al. 

1998), KIR3DL2 (Pende et al. 1996; Hansasuta et al. 2004) and KIR2DL4 proteins 

(Cantoni et al. 1999; Ponte et al. 1999; Rajagopalan and Long 1999).

In addition, the specificity of two activating KIR proteins has been partially resolved by 

some studies, such is the case of KIR2DS1 and KIR2DS2. Although KIR2DS1 and 

KIR2DS2 have been shown to bind group 2 and group 1 HLA-C allotypes, respectively, 

their affinity has been shown to be weaker than that exhibited by their inhibitory 

counterparts (Biassoni et al. 1997; Vales-Gomez et al. 1998; Winter et al. 1998). This 

might also be the case for KIR3DS1 protein recognition of HLA-B allotypes bearing a 

Bw4 motif (Gardiner et al. 2001). For the remaining KIR proteins, their ligand has not 

yet been resolved.

In the following section I compare the physiochemical properties of the ligand-binding 

site of expressed KIR proteins whose ligand has not yet been defined to those of KIR 

proteins for which a ligand has been shown to exist. With this approach I wish to define 

the potential HLA-ligand of some KIR proteins based on the existing evidence derived 

from the crystallographic and amino acid sequence analysis. In the following 

paragraphs the KIR2DS1, KIR2DS3 and KIR2DS5 proteins are compared to KIR2DL1 

as their extracellular domains exhibit greater homology to those present in this protein 

in comparison to KIR2DL2. Similarly, KIR2DL3, KIR2DS2 and KIR2DS4 proteins are 

compared to KIR2DL2 as their extracellular domains exhibit greater homology to this
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protein in comparison to KIR2DL1. Finally, the KIR3DS1 protein is compared to 

KIR3DL1 for the same reasons.

Although this comparative analysis has allowed me to identify physiochemical 

similarities which could relate to similar binding properties for some KIR protein pairs, 

the predicted binding affinities and specificities do not exclude the existence of a 

completely different, non-HLA, ligand for some KIR proteins.
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Ig-Binding Loop Differences Between KIR2DL1 and KIR2DS1

Six amino acid differences were shown to exist in the extra-cellular domains of 

KIR2DL1 and KIR2DS1 proteins, two of them located on the Dl domain (positions 165 

and 185) and the remaining four being located on D2 domain (positions 209, 249, 258 

and 277), as shown in figure 4.6. Only two of these amino acid differences were shown 

to exist in the Ig-binding loops of the KIR protein structure (positions 165 and 277). In 

loop C of KIR2DL1 proteins, position 165 is represented by a threonine residue, which 

differs from the lysine residue observed in KIR2DS1 proteins in both polarity and 

hydrophobicity. Conversely, position 277 of loop F is represented in KIR2DL1 proteins 

by a histidine, whereas KIR2DS1 possesses an arginine residue in its place. Both 

histidine and arginine possess similar hydrophilic properties, however, their polarity is 

different. The differences in the electrostatic properties of both amino acid substitutions 

in KIR2DS1 proteins, coupled to the previous description of the importance of 

electrostatic interactions in KIR2DL1 binding of HLA-Cw4, might explain the weaker 

binding of HLA-C by KIR2DS1. The residues present at these positions of KIR2DS1 

proteins posses an overall positive charge, which would face an overall positive surface 

present in HLA-Cw4-like allotypes. As such, these interactions might weaken the 

electrostatic attraction between KIR2DS1 and HLA-C.

Figure 4.6. Amino acid residue differences between KIR2DL1 and KIR2DS1 protein ectodomains.

Ribbon diagram depicting the amino acid residue differences (yellow) observed between KIR2DL1 and 

KIR2DS1 proteins. The extra-cellular domains of the KIR protein are shown in red, and the peptide 

(green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig-binding loops are 

also shown in blue.
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Ig-Binding Loop Differences Between K1R2DL1 and KIR2DS3

The comparative analysis carried out between KIR2DL1 and KIR2DS3 proteins 

revealed the existence of 15 amino acid residue differences, six of them located on the 

Dl domain and nine of them located on the D2 domain of the KIR protein represented 

in figure 4.7. Four of these amino acid residues involved Ig-binding loop residues 

(positions 139, 165, 197 and 226). In two instances (positions 139 and 197) the amino 

acid replacements observed in KIR2DS3 proteins reflect a change of properties. 

KIR2DL1 proteins posses non-polar hydrophobic residues at positions 139 and 197 

(methionine and isoleucine), whereas the KIR2DS3 protein possesses polar and 

amphiphilic residues (threonine in both cases). Position 165 is represented by threonine 

in KIR2DL1 proteins, whereas, KIR2DS3 proteins have an arginine at such position, 

which is considered to possess a charge and to be hydrophilic, unlike threonine. Finally, 

position 226 is represented by an arginine residue in KIR2DL1, whereas KIR2DS3 

possesses tryptophan at this position.

21*

209

296 

249

226

o2

Figure 4.7. Amino acid residue differences between KIR2DL1 and KIR2DS3 protein ectodomains.

Ribbon diagram depicting the amino acid residue differences (yellow) observed between KIR2DL1 and 

KIR2DS3 proteins. The extra-cellular domains of the KIR protein are shown in red, and the peptide 

(green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig-binding loops are 

also shown in blue.

Tryptophan is considered to be a polar and amphiphilic residue which by possessing a 

cyclic structure might also result in different interactions with the putative HLA-ligand.
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In general terms, the surface of KIR2DS3 proteins was shown to be more polar and 

amphiphilic with respect to the KIR2DL1 surface, which is suggestive of KIR2DS3 

possessing a similar HLA ligand to KIR2DL1, an interaction which could presumably 

be stronger than that of KIR2DS1 to its ligand.

Ig-Binding Loop Differences Between K1R2DL1 and KIR2DS5

The comparison of the amino acid residue differences observed between KIR2DL1 and 

KIR2DS5 proteins revealed the existence of 17 replacement sites (figure 4.8). KIR2DL1 

was found to differ from KIR2DS5 proteins at seven positions located in the Dl 

domain, and at ten positions located in the D2 domain. Three of these replacement sites 

involved residues which make up the Ig-binding loops (positions 139, 142 and 277). 

Although most of the residue replacements represent conservative substitutions based 

on hydrophobicity, the three substitutions lead to changes in overall charge distribution. 

These three positions are represented by methionine, aspartic acid and histidine residues 

in KIR2DL1, and threonine, histidine and arginine residues in KIR2DS5.

Figure 4.8. Amino acid residue differences between KIR2DL1 and KIR2DS5 protein ectodomains.

Ribbon diagram depicting the amino acid residue differences (yellow) observed between KIR2DL1 and 

KIR2DS5 proteins. The extra-cellular domains of the KIR protein are shown in red, and the peptide 

(green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig-binding loops are 

also shown in blue.
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Overall, the amino acid residues found in KIR2DS5 increase the polar content of the 

interacting residues with respect to KIR2DL1 proteins, achieving a similar distribution 

of surface properties to K1R2DS1 and K1R2DS3 proteins. In fact, it was also 

demonstrated that 14 of the 16 primary HLA-contact residues (those defined as being at 

a distance less than 4A from the HLA ligand) of KIR2DL2 were conserved amongst 

KIR2DL1, KIR2DL3, KIR2DS1, KIR2DS3 and KIR2DS5, suggesting similar HLA 

ligand specificities for these KIR proteins.

Ig-Binding Loop Differences Between KIR2DL2 and K1R2DL3

Three amino acid differences between these two proteins were observed, two in the Dl 

domain, and one on the D2 domain (figure 4.9). None of these amino acid replacements 

affect any of the Ig-binding loops, as such, the binding specificity and affinity of 

KIR2DL3 proteins should not differ from KIR2DL2. The KIR2DL2 amino acid 

residues involved in the binding of its HLA-Cw3 ligand were shown to be conserved in 

KIR2DL3 proteins, consistent with the hypothesis that both receptors recognise the 

same HLA allotypes. However, it can not be ruled out that the amino acid differences 

observed in the membrane proximal portions of the KIR molecule might have an impact 

on putative oligomerisation properties of these KIR proteins and/or to the establishment 

of other protein contacts.

Figure 4.9. Amino acid residue differences between KIR2DL2 and KIR2DL3 protein ectodomains.

Ribbon diagram depicting the amino acid residue differences (yellow) observed between KIR2DL2 and 

KIR2DL3 proteins. The extra-cellular domains of the KIR protein are shown in red, and the peptide 

(green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig-binding loops are 

also shown in blue.
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The footprint of KIR2DL2 on the HLA-Cw3 protein encompasses 12 amino acid 

residues involving both the a x and a 2 domain helices of the HLA protein, as shown in 

panel A of figure 4.3. Most of these HLA amino acid residues are known to be 

conserved amongst the existing HLA-C alleles, despite their localisation within the 

polymorphic a-helices of the HLA-C heavy chain. The only polymorphic amino acid 

residue present in this region of the HLA protein is position 80 located on the 

dj domain helix. This particular HLA-C residue is of up-most importance as it defines 

the allotype specificity discriminated by KIR2DL1 and KIR2DL2/3 proteins. With few 

exceptions, this position is represented by an asparagine residue in group 1 specificity 

allotypes (HLA-Cw3), whereas group 2 specificity allotypes (HLA-Cw4) possess a 

lysine residue at this position, as shown on table 4. 2 (Robinson et al. 2003).
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Table 4. 2 Amino acid residue present in position 80 of known HLA-C alleles

HLA-C Position 
allele 80

HLA-C
allele

Position
80

HLA-C
allele

Position
80

Cw*0102 N
Cw*0103 N
Cw*0104 N
Cw*0105 N
Cw*0106 N
Cw*0107 N
Cw*0108 N
Cw*0109 N

>*030202
>*030301
>*030302

Cw*030303
Cw*030401
0*030402
Cw*0305
Cw*0306

/*0311 
> *0312  
> *0313
> * 0 3 1 4

Cw*0315 K

Cw*0401010 K 
Cw*0401010 K 
Cw*040102 K 
Cw*0403 K 
Cw*0404 K 
Cw*0405 K 
Cw*0406 K

Cw*0407
Cw*0408
Cw*0409N
Cw*0410
Cw*0501
Cw*0502
Cw*0503
Cw*0504

>*070101 
> *070102 

/♦07020101 
>*07020102 

^*0703 
■*070401 
Cw*070402 

■ > *0705

Cw*0710
Cw*0711
Cw*0712
Cw*0713
Cw*0714
Cw*0715
Cw*0716
0 * 0 7 1 7
Cw *080101
Cw*080102
Cw*0802
Cw*0803
Cw*0804

K
K
K
K
K
K
K
K

Cw*020201 K Cw*0505 K
Cw*020202 K Cw*0506 K
Cw*020203 K 0 * 0 6 0 2 K
Cw*020204 K 0 * 0 6 0 3 K
Cw*020205 K 0 * 0 6 0 4 K
Cw*0203 K 0 * 0 6 0 5 K
Cw*0204 K 0 * 0 6 0 6 K
Cw*0205 K 0 * 0 6 0 7 K
0^*030201 0 * 0 6 0 8 K

Cw*0307 K Cw*0706 N
Cw*0308 N 0 * 0 7 0 7 K
0 * 0 3 0 9 I n
Cw*0310 K 0 * 0 7 0 9 K

/*0805 
/*0806 
'*0807 

>*0808 
> *0809  

^ 120201 
/*  120202 
'* 120203 

>*120301 
>*120302

Cw* 120401 
Cw* 120402 
Cw*1205 
Cw* 1206 
Cw*1207 
Cw* 1208 
Cw* 140201 
Cw* 140202 
Cw*1403 
Cw*1404 
Cw*1405
Cw* 150201 K
Cw* 150202 K
Cw*1503 K
Cw* 1504 K
Cw* 150501 K
Cw* 150502 K
Cw* 1506 K

0 * 1 5 0 8 K
Cw* 1509 K
0 * 1 5 1 0 K
0 * 1 5 1 1 K

0 * 1 6 0 2 K

0 * 1 7 0 1 K
0 * 1 7 0 2 K
0 * 1 7 0 3 K
0 * 1 8 0 1 K
Cw* 1802 K

NOTE: Group 1 HLA-C allotypes have been highlighted in red.
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Ig-Binding Loop Differences Between KIR2DL2 and KIR2DS2

In a similar fashion to the KIR2DL3 findings, most of the KIR2DL2 residues involved 

in the binding of the HLA-Cw3 ligand were shown to be conserved amongst KIR2DS2 

proteins, with the exception of the previously mentioned phenylalanine to tyrosine 

substitution present in KIR2DS2. The KIR2DL2:HLA-Cw3 interface is largely 

dominated by hydrophobic interactions between a cluster of residues present in both the 

KIR and HLA molecules. The comparative analysis of the amino acid residue 

differences that exist in the extra-cellular domains of KIR2DL2 and KIR2DS2 proteins 

revealed three differences, two located on the Dl domain and one on the D2 domain of 

the KIR protein (figure 4.10). A single amino acid difference was observed in Ig- 

binding loop B (position 140). This position is present in KIR2DL2 proteins as 

phenylalanine, whereas KIR2DS2 proteins possess a tyrosine residue at this position. 

Such an amino acid replacement incurs in non-conservative changes of both charge, 

volume and hydrophobicity, as phenylalanine is a non-polar hydrophobic residue, whilst 

tyrosine is a polar amphiphilic residue.

F igu re  4.10. A m ino acid  re s id u e  d ifferences betw een K IR 2D L2 an d  K IR2D S2 p ro te in  

ectodom ains. Ribbon diagram depicting the amino acid residue differences (yellow) observed between 

KIR2DL2 and KIR2DS2 proteins. The extra-cellular domains of the KIR protein are shown in red, and 

the peptide (green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig- 

binding loops are also shown in blue.
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As mentioned previously, position 140 of KIR2D proteins is responsible for their HLA- 

C specificity. KIR2DS2 proteins constitute the only two domain KIR with tyrosine at 

such a strategic site, disrupting the KIR2DL2:HLA-Cw3 hydrophobic interactions. The 

presence of such a radical amino acid change in an otherwise KIR2DL2-like protein 

could on its own modify the binding specificity of this peculiar protein and explain the 

difficulty at demonstrating its binding of HLA-C allotypes.

Ig-Binding Loop Differences Between KIR2DL2 and KIR2DS4

The comparison of the extra-cellular domain amino acid sequences of KIR2DL2 and 

KIR2DS4 demonstrated the existence of 17 amino acid differences, ten of them located 

on the Dl domain and seven of them located on the D2 domain of the protein (figure 

4.11). Five amino acid residue differences were observed in the Ig-binding loops of the 

KIR proteins, two on loop B, two on loop C and one on loop F, corresponding to 

positions 141, 142, 166, 167 and 279, respectively. The two replacements observed in 

loop B involved a lysine and aspartic acid to asparagine substitution. Although such a 

substitution was demonstrated to be conservative for hydrophobicity, it led to non­

conserved changes of charge and volume. This substitution differentiates the charged 

loop C residues observed in KIR2DL2 from the polar loop residues observed in 

KIR2DS4 proteins. Additionally, positions 166, 167 and 279 involve a glutamine to 

proline, aspartic acid to valine and a serine to alanine replacement in KIR2DS4 proteins. 

These last three amino acid replacements distinguish the polar and charged surface of 

KIR2DL2, from the non-polar surface seen in KIR2DS4 proteins. As such, it is highly 

unlikely that KIR2DS4 proteins have a similar ligand specificity as that described for 

KIR2DL1 or KIR2DL2. This finding therefore supports the possibility that KIR2DS4 

proteins might either bind a different HLA molecule or an entirely different non-MHC 

ligand.
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141-142

Figure 4.11. Amino acid residue differences between KIR2DL2 and KIR2DS4 protein 

ectodomains. Ribbon diagram depicting the amino acid residue differences (yellow) observed between 

KIR2DL2 and KIR2DS4 proteins. The extra-cellular domains of the KIR protein are shown in red, and 

the peptide (green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig- 

binding loops are also shown in blue.

Ig-Binding Loop Differences Between KIR3DL1 and KIR3DS1

The comparison of the extra-cellular domains of KIR3DL1 and KIR3DS1 proteins 

revealed the existence of five amino acid residue differences amongst them, involving 

four Dl domain positions and one D2 domain positions (figure 4.12). Four amino acid 

differences were shown to exist in the Ig-binding loops of these proteins, one located on 

loop B, two located on loop C and one located on loop D, corresponding to positions 

138, 163, 166 and 199, respectively. Although the substitution of a glycine residue 

present in KIR3DL1 in position 138, for a tryptophan residue on KIR3DS1 did not 

modify the hydrophobicity of the region, this amino acid change did lead to the non­

conservative substitution of a non-polar residue for a polar residue, thereby potentially 

disrupting the ligand binding properties of KIR3DS1. A similar finding relates to the 

substitution of a proline residue on position 163 of KIR3DL1 for a serine residue 

observed in KIR3DS1, further increasing the polarity of both loop B and C in 

KIR3DS1. It could be suggested, however, that the impact of this last replacement on 

the binding properties of KIR3DS1 could be somewhat compensated for by the non- 

conservative substitution of leucine by arginine, which increases the net charge of loop 

C in KIR3DS1 proteins. Finally, the substitution at position 199 entails a semi­
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conservative substitution of the proline residue observed in KIR3DL1 for a leucine 

residue in KIR3DS1, which slightly increases the hydrophobicity of loop D. Together 

these findings make it difficult to infer the functional impact on the binding properties 

of KIR3DS1, although most of the changes are non-conservative, the overall 

distribution of charge does not differ radically from the surface properties of K1R3DL1 

proteins. Nevertheless, other interactions have also been proposed to dictate the binding 

properties of other KIR proteins. Although the existence of these interactions have not 

been fully resolved for either KIR3DL1 or KIR3DS1, it is very likely that the surface 

differences that exist between these two proteins might distinguish them as possessing 

different binding affinities, if not specificities. Currently, there is no evidence 

suggesting that KIR3DS1 binds HLA-B allotypes bearing the Bw4 motif (Vilches and 

Parham 2002).

Figure 4.12. Amino acid residue differences between KIR3DL1 and KIR3DS1 protein  

ectodomains. Ribbon diagram depicting the amino acid residue differences (yellow) observed between 

KIR3DL1 and KIR3DS1 proteins. The extra-cellular domains of the KIR protein are shown in red, and 

the peptide (green) bearing HLA-C ligand shown in blue. The KIR residues which comprise the Ig- 

binding loops are also shown in blue.

The similarities in the potential ligand binding properties that exist between KIR2DS2 

and KIR2DL2 and between KIR3DS1 and KIR3DL1 proteins have recently been 

supported by clinical studies in the context of infectious diseases (Martin et al. 2002a) 

and autoimmune disorders (Martin et al. 2002b).
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4.5 KIR allele polymorphism mapping

In order to describe the presumed functional relevance of KIR protein polymorphism, 

the polymorphic amino acid residues of KIR molecules were mapped and the potential 

effects that these might have on the binding of their putative HLA ligands analysed. 

Although most of the KIR-HLA interactions involve conserved residues within the 

contact regions of both KIR and HLA molecules, the presence of any amino acid 

polymorphism within this region could prove to be important in defining differential 

binding specificities. Only KIR genes which are expressed and those with 

polymorphism in the extracellular domains within the expressed KIR genes have been 

included. Although the HLA-specificity for some of the KIR proteins shown here has 

been demonstrated, the KIR2DS3, KIR2DS4, KIR2DS5, KIR2DL5 and KIR3DL3 

ligands have yet to be described. In the case of these last two KIR proteins, the HLA 

molecule is shown as a putative ligand only and for comparative purposes.
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4.5.1 KIR2DL1 amino acid polymorphism mapping

Five polymorphic residues were mapped onto the crystal structure of a KIR2DL1 

molecule interacting with an HLA-Cw4 ligand (figure 4.13). Only one of these 

polymorphic sites (residue 277 in the protein alignment) is located less than 8 A from 

the a 2 domain helix of the HLA-C molecule. The remaining four polymorphic residues 

are too distant from the HLA molecule to play any role in its binding. The position of 

these polymorphic residues is such that the HLA-C specificity is preserved amongst 

these KIR proteins, as it does not affect methionine 139. Position 139 has been shown to 

be responsible for the discrimination of the HLA-C C2 specificity of KIR2DL1 

proteins, as discussed previously. The substitution of the histidine residue observed in 

*001, *002, *003 and *005 alleles by an arginine at position 277 in the *004 allele 

entails a non-conservative replacement of a polar amino acid for a charged one, the 

hydrophobicity being conserved. Similarly, the substitution of proline 249 present on 

*001, *002, *003 and *005 alleles by the threonine residue observed in the *004 variant 

incurs in a change of characteristics of the F loop from non-polar to polar. Together, 

these two polymorphisms set the *004 allelic variant of KIR2DL1 apart from other with 

respect to their surface characteristics. However, although the presence of these two 

amino acid residues on a same allelic variant suggests the existence of a difference in 

binding affinity or of protein function, this has yet to be established.

Figure 4.13. Polymorphic amino acid positions observed in KIR2DL1 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DL1 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.2 KIR2DL2 amino acid polymorphism mapping

Five polymorphic amino acid residues were mapped to a KIR2DL2:HLA-Cw3 crystal 

structure. Three of these polymorphic residues lie in the D1 domain and two in the D2 

domain of the KIR molecule (figure 4.14). Since none of these polymorphic sites are 

within the HLA-binding region of the KIR molecule, it is very unlikely that they affect 

the binding of HLA-C molecules directly. None of these polymorphic positions affect 

lysine 139 of the KIR2DL2 molecule, which has been shown to determine the Cl 

specificity of this KIR, as discussed previously. Position 136 is represented in the *004 

allelic variant by a threonine residue which possesses polar features, however, the 

remaining KIR2DL2 alleles possess a charged and hydrophilic arginine residue at this 

position. As such, the polymorphism observed at position 136 could possibly distort the 

overall structure and physiochemical characteristics of loop B, and modify the binding 

characteristics of *004 allelic variant.

Figure 4.14. Polymorphic amino acid positions observed in KIR2DL2 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between K1R2DL2 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.

176



Chapter 4

4.5.3 KIR2DL3 amino acid polymorphism mapping

The KIR2DL3 polymorphic amino acid residues were mapped to a KIR2DL2 crystal 

structure given the greater similarity which exists between the extracellular domains of 

KIR2DL3 and KIR2DL2 in comparison to KIR2DL1. Additionally, the polymorphic 

site mapping was further confirmed by comparing the previously generated map to the 

crystal structure of KIR2DL3 (Maenaka et al. 1999b). Three polymorphic residues lying 

in the D2 domain were shown to exist (figure 4.15). No polymorphic sites were shown 

to exist in the Ig-binding loops of the K1R2DL3 proteins, additionally, lysine 139 of this 

was also shown to be conserved, further supporting the idea that KIR2DL2 and 

KIR2DL3 share similar ligand binding properties. The presence of two polymorphic 

residues (positions 130 and 145), however, could potentially define distinctive co­

aggregation properties for KIR2DL3*004 and KIR2DL3*005, with regards to the 

postulated but unconfirmed KIR-to-KIR establishment of contacts related to their 

oligomerisation.

Figure 4.15. Polymorphic amino acid positions observed in KIR2DL3 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DL3 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.4 KIR2DL4 amino acid polymorphism mapping

Although the sequence similarity of the D2 domains of all KIR proteins enable their 

comparison and mapping to those provided in the crystal structure, the differences that 

exist between the D1 domain of the KIR2DL1 crystal structure and the DO domain of 

type II KIR2Ds did not allow for an accurate comparison to be made. The mapping of 

the polymorphic amino acid residues of KIR2DL4/5 relied on the alignment of the 

membrane-proximal domain (D2) of these KIR to that of KIR2DL1 (used as a crystal 

model for this purpose), forcing the alignment of the D1 domain of KIR2DL1 and the 

DO domain of KIR2DL4/5. This approach was subsequently confirmed by the 

SwissModel First Approach Mode (Schwede et al. 2003) accomplished by submitting 

the KIR2DL4*00101 amino acid sequence using a KIR2DS2 template. Seven 

polymorphic amino acid residues of this structurally divergent KIR were mapped 

(figure 4.16), two of these residues (positions 215 and 209) are found in the D2 domain 

and five in the DO domain (residues 30, 64, 72, 78, 286). Two of these polymorphic 

residues are located within the HLA-binding region of the KIR molecule (residues 72 

and 286), the closest of which (residue 72) lies only 6.5 A away from the a , domain 

helix of its HLA ligand. Position 72 is represented in the *007 allelic variant of 

KIR2DL4 by a polar and hydrophilic asparagine residue, whereas the remaining alleles 

of this protein possess a polar tyrosine residue.

Figure 4.16. Polymorphic amino acid positions observed in KIR2DL4 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DL4 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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Consequently such substitution is unlikely to cause a difference in the binding 

properties of this allele with regards to the other KIR2DL4 variants. A similar finding 

relates to the amino acid replacement seen in position 286, which represents a 

conservative substitution of the proline residue observed in alleles *002, *004, *005, 

*006 and *007 for the alanine residue observed in the *001 and *003 allelic variants.

4.5.5 KIR2DL5 amino acid polymorphism mapping

The mapping of KIR2DL5 polymorphic residues followed the same guidelines given for 

KIR2DL4. A single amino acid residue substitution distinguishes the two KIR2DL5 

expressed variants (figure 4.17). Such substitution is located on the DO domain and 

more than 8A away from the putative HLA interface. The impact of such amino acid 

substitution on the functional properties of KIR2DL5 proteins could be proposed to be 

minimal.

Figure 4.17. Polymorphic amino acid positions observed in KIR2DL5 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DL5 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.6 KIR2DS1 amino acid polymorphism mapping

Two polymorphisms were mapped (positions 165 and 185), both of which are located in 

the D1 domain (figure 4.18), one of them being located on loop C. All but one of the 

residues present in the HLA binding region are conserved between KIR2DL1 and 

KIR2DS1. The substitution of the threonine residue present in position 65 in KIR2DL1 

by a lysine in KIR2DS1 proteins may be responsible for the diminished affinity of 

KIR2DS1 for its HLA-C ligand (Vilches and Parham 2002). A valine is present in 

position 185 of all KIR2DL1 proteins but only present in KIR2DS 1*004, whereas the 

remaining KIR2DS1 alleles have a leucine at this position. Although the *001 variant 

protein has a unique substitution at position 165 (loop C) which distinguishes this 

variant from other KIR2DS1 alleles, such a substitution is conserved for both charge 

and volume as well as for hydrophilic characteristics. The presence of conserved 

features does not support the existence of functionally different binding properties for 

KIR2DS1 alleles.

Figure 4.18. Polymorphic amino acid positions observed in KIR2DS1 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DS1 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.7 KIR2DS4 amino acid polymorphism mapping

Three polymorphic residues were mapped to a KIR2DL2 model based on the amino 

acid sequence similarity between these two KIR proteins (figure 4.19). Two 

polymorphic residues were found in the D1 domain (residues 169 and 176), and one in 

the D2 domain (residues 220). Although two of these polymorphic sites were found to 

be located more than 8 A away from the potential HLA ligand interaction site, the 

polymorphic position 169 was shown to involve influential residues of loop C. This 

position was shown to be represented in the *002 allele protein by a threonine residue, 

whereas the *001 and *003 allelic variants possessed an alanine residue at this site. 

Such an amino acid replacement was found to be conservative for hydrophobicity but 

non-conservative for polarity. As such, KIR2DS4*002 variant proteins have an 

increased polarity of loop C with regards to the other KIR2DS4 variants. Whether this 

increase in polarity translates into differential binding properties is unknown, as the 

ligand for KIR2DS4 has yet to be resolved, as well as the type of interactions most 

likely to be involved.

Figure 4.19. Polymorphic amino acid positions observed in KIR2DS4 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DS4 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.8 KIR2DS5 amino acid polymorphism mapping

The observed amino acid polymorphisms were mapped to a KIR2DL1 crystal structure 

based on amino acid sequence similarity between these two KIR proteins. Five 

polymorphic residues were found in the D2 domain of this KIR, none of them involving 

residues less than 8A from the putative HLA molecule’s a 2 domain helix (figure 4.20). 

It is interesting to note that all of the protein polymorphism observed in this map is 

restricted to the D2 domain, while the D1 domain remains completely conserved. This 

structural feature of KIR2DS5 suggests the existence of evolutionary constraints 

limiting the amount of variation observed in the D1 domain. Whether such a feature is 

related to the binding of co-stimulatory or accessory molecules by the D1 domain of 

these proteins, or related to the formation of KIR-to-KIR aggregates remains unknown 

but a possibility.

Figure 4.20. Polymorphic amino acid positions observed in KIR2DS5 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR2DS5 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.9 KIR3DL1 amino acid polymorphism mapping

The polymorphic residues of these KIR proteins were mapped to the KIR2DL1 crystal 

structure because it shares greater sequence identity amongst the extra-cellular portions 

considered. Four polymorphic sites were mapped (figure 4.21), one located in the D1 

domain of the KIR molecule (residue 182) and three in the D2 domain (residues 238, 

277 and 283). One of these residues was shown to be located within loop F of the 

MHC-binding region of KIR protein (residue 277). The type of replacement observed at 

this position was classed as being non-conservative for both charge and volume as well 

as for hydrophobicity. This position is represented in the *006 protein by a non-polar 

cysteine residue whilst the remaining KIR3DL1 alleles possess a charged and 

hydrophilic arginine residue at this position. As such, this replacement might in effect 

be translated to distinctive binding properties distinguishing the KIR3DL 1*006 protein 

from the others.

Figure 4.21. Polymorphic amino acid positions observed in KIR3DL1 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR3DL1 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.10 KIR3DS1 amino acid polymorphism mapping

The polymorphic residues of these KIR proteins were mapped to the KIR2DL1 crystal 

structure for reasons of sequence similarity detailed above for KIR3DL1 proteins. Three 

polymorphic positions were mapped, two located in the D1 domain (positions 138 and 

145) and a single one in the D2 domain of the KIR3DS1 protein (position 207) as 

shown on figure 4.22. Although none of these positions directly affect the Ig-binding 

loops known to participate in the binding of its MHC-ligand, the proximity of residue 

138 to one of these binding loops might influence the binding characteristics of 

KIR3DS 1*014. This position is represented in *014 proteins by a glycine residue with 

non-polar characteristics, while the remaining KIR3DS1 proteins possess a polar 

tryptophan residue at this position. In addition to the charge and polarity difference 

observed at this position, this replacement is also characterised by a radical change of 

amino acid side chain size. As such, this replacement is suggested to affect the binding 

properties of this allelic variant with regards to the other KIR3DS1 and KIR3DL1 

proteins.

Figure 4.22. Polymorphic amino acid positions observed in KIR3DS1 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR3DS1 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.11 KIR3DL2 amino acid polymorphism mapping

Six polymorphic residues were mapped to a KIR2DL1 crystal structure (figure 4.23), 

three of them being located in the D1 domain (residues 111, 137 and 145) and three 

located in the D2 domain of the KIR protein (residues 207, 231 and 277). Only a single 

residue (position 277) lies in a loop thought to participate in MHC-binding. This 

replacement is represented in *009 variant proteins by a polar histidine residue, whereas 

the remaining KIR3DL2 proteins possess a charged arginine residue at this position. 

This substitution changes the overall, charge distribution of the KIR3DL2 surface and 

as such might lead to differential binding characteristics for the KIR3DL2*009 protein.

Figure 4.23. Polymorphic amino acid positions observed in KIR3DL2 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR3DL2 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.
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4.5.12 KIR3DL3 amino acid polymorphism mapping

A single polymorphic residue position was mapped onto a KIR2DL1 crystal structure 

(position 147) and shown to be distant from the putative MHC-binding region (figure 

4.24). The functional role of these KIR proteins remains unknown and their 

transcription levels have been previously demonstrated to be well below the detectable 

limit of standard RT-PCR in peripheral blood mononuclear cells (Torkar et al. 1998; 

Vilches et al. 2000; Norman et al. 2002). The extra-cellular domains of this KIR protein 

share greater similarity to KIR3DL1 proteins than to KIR3DL2 proteins. Similarly, the 

overall Ig-binding motifs present in this KIR protein show the greatest level of sequence 

divergence when compared to those present in other KIR proteins, thereby suggesting 

drastically different binding properties for KIR3DL3 proteins.

Figure 4.24. Polymorphic amino acid positions observed in KIR3DL3 protein ectodomains. Ribbon 

diagram depicting the amino acid residue differences (yellow) observed between KIR3DL3 alleles. The 

extra-cellular domains of the KIR protein are shown in red, and the peptide (green) bearing HLA-C 

ligand shown in blue. The KIR residues which comprise the Ig-binding loops are also shown in blue.

4.6 Discussion

The studies described in this chapter were carried out to investigate the functional 

relevance of the diversity exhibited by KIR genes. The application of powerful 

bioinformatics tools to the analysis of the physiochemical features of KIR proteins has 

allowed me to make functional inferences for KIR proteins whose crystal structure and
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ligands have not yet been resolved. This study constitutes the first approach of its kind 

directed towards resolving the functional relevance of KIR polymorphism based on the 

interpretation of the three-dimensional distribution of the physiochemical properties of 

KIR proteins.

Of the 17 KIR genes that are known to exist, 15 have been shown to be expressed. The 

ligands of six of these expressed KIR proteins (all of which are inhibitory KIR) have 

been resolved and all have been shown to be HLA class I molecules. The binding of 

HLA ligands by KIR proteins was initially established by studies demonstrating the 

resistance to NK cell killing of HLA transfected cells that were originally HLA class I- 

deficient and susceptible to NK cell killing (Wagtmann et al. 1995; Valiante et al. 1996; 

Colonna 1997; Long et al. 1997; Moretta et al. 1997). Subsequently, these findings have 

been supported by flow cytometric analysis (Dohring and Colonna 1996; Biassoni et al. 

1997), native gel electrophoresis (Fan et al. 1996), surface plasmon resonance 

(Maenaka et al. 1999a; Vales-Gomez et al. 1999; Vales-Gomez et al. 2000), and more 

recently, with the description of X-ray diffraction crystallographic structures of 

KIR2DL1 and KIR2DL2 binding their corresponding HLA-C ligands (Boyington et al. 

2000; Fan et al. 2001). However, the ligands of the remaining nine expressed KIR 

proteins have not yet been resolved.

In this study we hypothesised that the comparison of the structures of the different KIR 

proteins may allow us to provide direct evidence of the existence of potential ligands for 

those KIR proteins whose ligands have remained unknown. To do this, we translated the 

analysis of the interactions that dictate the recognition of the HLA ligands by KIR2DL1 

and KIR2DL2 proteins to the remaining KIR proteins whose crystal structure and ligand 

have yet to be resolved.

As all the known KIR ligands had been previously shown to be HLA molecules, our 

study was focused on characterising the HLA binding properties of KIR proteins. This 

relied on the comparison of the physiochemical properties of the ligand binding regions 

of the different KIR proteins. Nevertheless, our results do not exclude the possibility 

that some KIR proteins may possess the capacity to recognise non-HLA ligands or HLA 

ligands other than those which have so far been described. This is especially true for
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KIR2DL5 and KIR3DL3 proteins, whose divergent sequence and structure did not 

allow us to establish similarities to other KIR proteins and therefore infer their potential 

ligands.

Our results have shown that the extracellular domain sequence homology that exists 

between some KIR proteins is suggestive of similar binding properties, which may 

indicate the existence of a similar ligand. This was the case of KIR2DS1, KIR2DS3 and 

KIR2DS5, whose extracellular ligand binding region is very similar to that of 

KIR2DL1; of KIR2DS2 and KIR2DS4 whose ligand binding region is similar to that of 

KIR2DL2; and of KIR3DS1 whose ligand binding region is similar to that of KIR3DL1. 

In some cases our findings have been supported by existing data suggesting the 

existence of similar ligands to those of their inhibitory KIR counterparts, like those of 

KIR2DS1, KIR2DS2 and KIR3DS1 (Martin et a l  2002a; Vilches and Parham 2002; 

Cook et a l  2003). However, direct evidence in support of the potential ligands of 

KIR2DS3, KIR2DS5 and KIR2DS4 proteins had never been provided before our study 

was carried out.

The KIR:HLA interface is characterised by the existence of a high-level of charge and 

shape-complementarity, unlike the TCR:HLA interface which arises mainly from 

hydrogen bonding, hydrophobic as well as van der Waals interactions. The fact that the 

KIR footprint partly overlaps that of the TCR, coupled to the higher shape- 

complementarity observed in the KIR:HLA interface, may explain recent findings with 

regards to the displacement of TCR:HLA complexes when KIR proteins are also 

present in the same TCR expressing cell. If these findings and hypothesis were to hold 

up, novel functional roles for lymphocytes expressing these two types of MHC- 

receptors, such as NKT cells and other recently discovered lymphocyte subpopulations 

(Duan et a l  2003), may further explain events surrounding malignant diseases or 

broaden our knowledge of post-transplantation events.

The observed similarities in the extra-cellular structure of most KIR proteins, together 

with the description of a relatively conserved docking angle of KIR2D proteins to their 

HLA ligands, supports the idea that such a docking orientation might be generalised to 

KIR3D:HLA interactions. As such, previous site-directed mutagenesis studies have
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demonstrated the important roles that the D1 and D2 domains of KIR3D proteins play 

in the binding of their HLA ligands, suggesting a similar domain orientation. However, 

these same studies also emphasise the requirement of an intact DO domain in order to 

conserve the functionally relevant binding properties of KIR3D proteins (Khakoo et al. 

2002). Although the importance of this membrane-distal domain of KIR3D proteins was 

suggested to involve several possibilities relating to both KIR:HLA and KIR:KIR 

interactions, current limitations in bioinformatics prevent the modeling and 

establishment of functionally relevant assumptions with regards to the importance of 

this domain.

Although initially thought to be solely dependent on KIR:HLA interactions, the 

recognition of HLA molecules by KIR proteins can also be influenced, albeit 

minimally, by the peptide occupying the binding groove of the HLA molecule. This 

modulation of ligand recognition is thought not to be peptide specific, as different types 

of peptides can either enhance or decrease the affinity of KIR proteins for their HLA 

ligand (Mandelboim et al. 1997; Rajagopalan and Long 1997; Zappacosta et al. 1997). 

In addition, the influence of the peptide on ligand recognition varies amongst the 

different KIR:HLA pairs. For example, the KIR2DL2 binding of group 1 HLA-C 

allotypes involves interactions with the carboxy-terminal end of the HLA bound-peptide 

(figure 4.3) (Boyington et al. 2000). However, the KIR2DL1 binding of group 2 HLA-C 

allotypes does not involve interactions with the peptide (Fan et al. 2001). Recent studies 

have also shown that some KIR:HLA interactions are more susceptible to the influence 

of HLA-bound peptides, as happens with the recognition of HLA-A3/11 allotypes by 

KIR3DL2 (Hansasuta et al. 2004). Together, these findings support the possibility that 

NK cells might in fact be capable of recognising intracellular pathogen-infected cells as 

a consequence of the displacement of self-peptides by a pathogen-derived peptide and 

the subsequent loss of the interaction of the HLA molecule with its corresponding 

inhibitory KIR. It is interesting to speculate an important role for KIR gene 

polymorphism in the context of these peptide-interactions, where certain alleles of a 

KIR gene might be more susceptible to the influence of a viral peptide and allow NK 

cells a way of achieving increasing power to discriminate self from non-self. 

Interestingly, several KIR alleles exhibit polymorphic amino acid residues which by

189



Chapter 4

their proximity to the carboxy-terminal end of the peptide may participate in these 

interactions. These alleles include KIR2DL1*004, KIR3DL1*006 and KIR3DL2*009.

Yet another functional role for KIR gene polymorphism, perhaps more important than 

that dictating KIR:peptide interactions, relates to KIR genes exhibiting polymorphic 

residues in the Ig-binding loops which change the HLA-ligand binding properties of 

their proteins. Several examples of these allelic variants have been shown to exist, 

including alleles of KIR2DL1, KIR2DL2, KIR2DL3, KIR2DS4, KIR3DL1, KIR3DS1 

and KIR3DL2. Hypothetically, some of these alleles may provide NK cells with the 

capability to respond differently to their ligands, whether this response becomes a 

biological advantage or disadvantage to the individual will require us to analyse the 

clinical associations of these alleles in the context of the HSCT setting described in 

Chapter 8 of this thesis.

Another interesting finding derived from the analysis of the distribution of KIR gene 

polymorphism relates to KIR proteins which exhibit conserved extracellular domain 

properties. A total of 109 amino acid replacements were observed when the analysis 

included the full-length protein sequences of the expressed KIR genes. Analysis of the 

full-length protein sequences indicated that 70% of the replacements observed and 

classified according to their charge were conservative in comparison to only 53% and 

65% being conserved when classification was based on polarity/volume and 

hydrophobicity, respectively suggesting a requirement to maintain a conserved overall 

charge distribution in KIR proteins. This finding is interesting because it suggests a 

requirement to maintain the integrity of a functionally relevant region of the protein. 

This requirement for conserved protein regions has been discussed in the previous 

chapter for the stem, transmembrane and cytoplasmic regions of KIR proteins, where 

the signalling properties and their membrane-expression depends on the existence of 

these conserved sequences.

The fact that the HLA region involved in the contact with the KIR consists mainly of 

conserved amino acid residues within an otherwise polymorphic region enables 

individual KIR proteins to recognise multiple self HLA class I proteins, a hallmark 

feature of the innate immune system. The recognition of such conserved residues
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enables NK cells to rapidly recognise and react to the presence or absence of self, and 

thereby dispense with the need of an adaptive strategy based on the rearrangement of 

genes and subsequent clonal expansion. Similarly, and in the particular case of 

KIR2DL2 and KIR2DL3 proteins, the KIR amino acid residues involved in the binding 

of the HLA-Cw3 molecule were shown to be more conserved in the D2 domain than in 

the D1 domain. This peculiar conservation of physical features mimics the relatively 

conserved protein region of the a 2 domain helix of its HLA class I counterpart, 

suggesting an HLA-driven evolution of KIR proteins. The existence of this feature, 

however, does not undermine the capability of KIR proteins to achieve a higher level of 

resolution for self-recognition, as happens with allotype discrimination, for such 

property might be governed by a spatially distinct protein region.

Additionally, our description of conserved extracellular domains (as happens with 

KIR2DL1, KIR2DL3, KIR2DL5, KIR2DS1, KIR2DS5 and KIR3DL3) raises the 

possibility that these domains may be involved in the recognition of another, as yet 

undetermined, conserved structure. This possibility gains further strength from the 

recent description of KIR:KIR interactions occurring during the formation of the NK 

cell immune synapse, where the formation of KIR aggregates plays a crucial role in NK 

cell immune surveillance (Davis et al. 1999; Boyington et al. 2000; Davis 2002; 

McCann et al. 2002). Alternatively, the existence of such conserved domains may also 

provide KIR proteins with the capacity to recognise membrane-bound proteins other 

than KIR and HLA proteins, a possibility that remains to be explored.

Our analysis of the functional relevance of KIR diversity has been based on inferring 

the impact that certain polymorphic residues have on the structural and physiochemical 

properties of the neighbouring protein regions. However, it should be noted that some 

amino acid substitutions occurring at positions which are thought not to be of functional 

importance (i.e.: those distant from the ligand binding regions of the KIR protein), 

might have a profound impact on other protein properties by affecting their folding 

kinetics. This possibility has recently been supported by a study describing an 

association of extracellular domain polymorphisms with a low surface expression of a 

KIR protein variant (Pando et al. 2003). In this study, two extracellular substitutions 

present in the DO and D1 domain were shown to disrupt the folding of the
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KIR3DL1*004 protein, a feature which is thought to prevent the protein from being 

expressed on the cell surface. The results of this study, therefore, raise the possibility 

that other polymorphic amino acid positions discarded in our study as irrelevant, may in 

fact have an important functional impact. This possibility could not be addressed with 

our approach and current bioinformatics tools, nevertheless, it is envisaged that future 

developments of more powerful protein refolding software may allow this issue to be 

resolved.

Although KIR2DL4 shares a similar domain organisation to that exhibited by KIR2DL5 

proteins, the presence of a high level of amino acid sequence divergence between their 

extra-cellular domains together with the lack of similarity in the Ig-binding loop amino 

acid residue composition, suggest the existence of differential binding affinities for 

these two KIR proteins. The existence of protein structure differences between these 

two structurally divergent KIR, such as the presence of a charged residue in the trans­

membrane region of KIR2DL4, is likewise suggestive of clearly distinctive functional 

properties. As such, KIR2DL4 has been shown to be a functionally divergent KIR 

protein as well, capable of inhibiting NK cell mediated cytotoxic activity whilst 

preserving the capacity of eliciting IFN-y production upon binding a cognate ligand 

(Rajagopalan et al. 2001). However, KIR2DL5 possesses all the structural features 

related to an entirely inhibitory function (Vilches et al. 2000).

This study was carried out to further our knowledge with regards to the molecular basis 

of KIR:HLA interactions as well as to explain the impact of KIR polymorphism on such 

interactions and other potential functional properties of KIR proteins. The description of 

the polymorphic residues present in the regions involved in the KIR:HLA interaction 

has revealed the molecular intricacies and mechanisms which underlie such interaction 

and define the functional impact of such polymorphic sites on NK cell activity. The 

results generated in this study with regards to the distribution of KIR gene and allele 

polymorphism might provide direction and a physical basis for the design of novel 

typing approaches based on serology and highlight the existing difficulties encountered 

with current approaches. These limitations further establish DNA based typing methods 

as the most suitable approach for evaluating KIR differences between individuals.

192



Chapter 5

Chapter Five

Development of a high-resolution and 

comprehensive KIR gene typing system

5.1 Introduction

The first KIR genotyping technique (Uhrberg et al. 1997) was based on the knowledge 

of only 36 different sequences, comprising 12 different KIR genes. When our study was 

initiated, nearly five years after Uhrberg’s original definition of human KIR diversity, 

many novel KIR genes and many more KIR alleles had been defined. To date, 17 

different KIR genes are known to exist, represented by over 100 different nucleotide 

sequences. As our ultimate goal was to define the functional relevance of KIR gene 

polymorphism in several clinical scenarios such as HSCT, it was deemed necessary to 

evaluate the existing KIR gene typing techniques in the context of the knowledge 

gained through the analysis of the KIR sequence alignments described in chapter 3. 

Consequently, we developed an innovative and updated PCR-SSP based KIR gene 

typing system that incorporates novel primer pairs to reflect recent discoveries of KIR 

genes and alleles. In addition, our KIR typing system exceeds the capabilities of 

previous typing approaches by allowing us to detect the alleles of the five KIR genes 

which have been shown to bind and interact with HLA proteins. Our KIR gene typing 

system possesses additional advantages over other typing approaches, such as PCR- 

SSOP or SBT, because of its ability to identify the cis- or trans- relationship between 

polymorphisms and so reduce the level of ambiguity which is inherent in these other 

techniques. We consider this KIR gene typing system to be the best suited for our 

purposes and interests and it would also be easy to incorporate into a clinical typing 

laboratory if this was deemed necessary.
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This chapter describes the development and demonstrates the robustness and 

applicability of our KIR gene typing system. The application of this typing approach in 

family and population studies will further our knowledge of the true extent of KIR gene 

diversity in humans, while its application in disease association studies and in the 

analysis of KIR matching in HSCT patient-donor pairs will help resolve the functional 

relevance of KIR gene and allele polymorphism.

5.2 Optimisation of the SSP-PCR KIR typing technique described 

by Shilling

Two publications have recently described oligonucleotide primer pairs for use in the 

PCR-SSP subtyping of KIR genes whose products have been shown to bind 

HLA-ligands. These PCR-SSP techniques characterise the allelic variants present in 

KIR2DL1 and KIR2DL3 (Shilling et al. 2002) as well as those of KIR3DL1 and 

KIR3DL2 genes (Gardiner et al. 2001) as modified by Shilling (Shilling et al. 2002). 

The implementation of these subtyping techniques required the optimisation and 

adaptation of PCR components and conditions to local resources. The optimisation of 

these techniques employed a cell line, PP, for which the KIR profile had been resolved 

to the sequence level (Uhrberg et al. 1997). The reproducibility and specificity of the 

oligonucleotide primer pairs employed in these techniques were subsequently 

confirmed by comparing the subtyping results of widely available cell lines to those 

generated by other research groups, as detailed in Chapter 6. The subtyping techniques 

enabled the discrimination of 34 different KIR alleles, 26 of them unambiguously by 

recognising allele-specific nucleotide polymorphisms, as shown in table 5.1.
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Table 5.1. Oligonucleotide sequences and positions as described by Shilling

Gene Primer Sequence Position+

2DS1REV 5'-AGG GCC CAG AGG AAA GTT-3' 257
F2DL1A 5-GCC CAC CCA GGT CC-3' 111
F2DL1B 5'-TCC TGG CCC ACC CAG GTC G-3' 111
F2DL1C 5-GCA GCA CCA TGT CGC TCT TGT-3’ -17
F2DL1D 5-GCA GCA CCA TGT CGC TCT TGG-3’ -17
F2DL1E 5-AGA GAC AGT CAT CCT GCA G-3' 122
F2DL1F 5-AGA GAC AGT CAT CCT GCA A-3’ 122
F2DL1G 5’-ACT CAC TCC CCC TAT CAG G-3’ 185
2DL1REV 5-GTC ACT GGG AGC TGA CAC-3' 185

F2DL3A 5-CAG AAA ACC TTC CCT CCG-3' 106
F2DL3B 5'-GGT CAG ATG TCA GGT TTC-3' 130
R2DL3C 5'-GGC CTC TGA GAA GGG T-3’ 392
R2DL3D 5-GCC TCT GAG AAG GGC-3’ 392
R2DL3E 5'-GCA GTG ATT CAA CTG TGT G-3' 378
R2DL3F 5-CAG TGA TTC AAC TGT GCA-3' 377
R2DL3A 5'-TGG GCC CTG CAG AGA A-31 245
F2DL3D 5-CCT TCA TCG CTG GTG CTG-3' 344

F3DL1A 5'-TAC AAA GAA GAC AGA ATC CAC A-3' 47
F3DL1B 5'-TCC CAT CTT CCA TGG CAG AT-3' 54
F3DL1C 5-CAG ACA CCT GCA TGT TCT C-3' 321
F3DL1D 5-GGT TCT GTT ACT CAC ACC T-3' 182
R3DL1A 5'-AGA GTG ACG GAA GCC A-3’ 273
R3DL1B 5-GAG CTG ACA ACT GAT AGG A-3' 182
R3DL1C 5-TCA GGG TCT TGT TCA TCA GAA-3' 366
R3DL1D 5-TCA GGG TCT TGT TCA TCA GAG-3' 366
R3DL1E 5'-GGA GCT GAC AAC TGA TAG GG-3' 182
R3DL1F 5'-TAG GTC CCT GCA AGG GCA A-3’ 166
R3DL1G 5'-GTA CAA GAT GGT ATC TGT AG-3' 401
F3DL1E 5'-TCT TCG GTG TCA CTA TCG-3' 31
F3DL1F 5'-CTC CTT CAT CTC TGG TA-3' 343

F3DL2A 5'-CTT CTT TCT GCA CAG AGA T-3' 137
F3DL2B 5'-CTT CTT TCT GCA CAG AGA G-3' 137
R3DL2A 5-GGG GTT GCT GGG TGT-3' 87
F3DL2C 5'-TCA CTG GGT GGT CGG-3' 87
F3DL2D 5'-ACC CAG CAA CCC CC-3’ 92
F3DL2E 5-CAC CCA GCA ACC CCG-3' 92
F3DL2F 5'-TGA GGA CCC CTC ACG-3’ 145
F3DL2G 5-TGA GGA CCC CTC ACA-3' 145
R3DL2B 5-CCT GGA CAG ATG GTA GG-3’ 231
R3DL2C 5-CCC TGG ACA GAT GGT AGA-3' 231
R3DL2D 5'-GAT CCA ACT GTG CGT ACA-3' 376
R3DL2E 5'-GAT CCA ACT GTG CGT ACG-3' 376
F3DL2H 5'-CAG CAC TGT GGT GCC TCA-3’ 20
R3DL2F 5'-TCC TGA TTT CAG CAG GGT-3' 111
F3DL2I 5'-CAG CAC TGT GGT GCC TCG-3' 20
R3DL2G 5'-TCC TGA TTT CAG CAG GGG-3' 111
R3DL2H 5'-TTC CCT GGA CAG ATG GTA G-3' 279
F3DL2J 5'-GGG CCT GGC CAC TCA-3' 2
R3DL2I 5'-TCC TGA TTT CAG CAG GGG C-3' 13
F3DL2K 5'-CGG TCC CTT GAT GCC TGT-3' 167
F3DL2L 5-TAT CTG CAG ACA CCT GCA-3' 319

- Highlighted in yellow on the alignments provided in figure 5.2.
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A limitation of Shilling's original protocol was the absence of an internal positive 

control within each PCR reaction. The inclusion of an internal control is considered 

essential to ensure all elements of the PCR are present and provides evidence for this in 

the absence of PCR product for a specific KIR amplicon. Due to the differing sizes of 

the KIR amplicons which needed to be visualised, it was necessary to use primers for 

three different positive controls, each of a different product size. Oligonucleotide primer 

pairs specific for a 979 bp HLA-A fragment (Cereb et al. 1995), for a 530 bp MICA 

exon 4 fragment (Mendoza-Rincon et al. 1999) and for a 214 bp HLA-DQB1 exon 2 

fragment (Senju et al. 1992) were evaluated for inclusion as positive control primer 

pairs in each KIR subtyping reaction. The sequence and corresponding reference for 

each of these control oligonucleotide pairs is given in table 5.2.

Table 5.2. Oligonucleotide sequences of internal positive control oligonucleotide primers

Primer Sequence Reference

MICA Fwd 5-CAG ACT TGC AGG TCA GGG GTC CCG-3'
(Mendoza-Rincon etal. 1999)

MICA Rev 5-CAA TGA CTC TGA AGC ACC AGC ACT-3'
HLA-DQ Fwd 5-ACT GAC TGG CCG GTG ATT CC-3'

(Senju etal. 1992)
HLA-DQ Rev 5-AGA GGG GCG ACG CCG CTC ACC-3’
HLA-A Fwd 5-GGG AGG AGC GAG GGG ACC SCA G-3'

(Cereb etal. 1995)
HLA-A Rev 5'-GGA GGC CAT CCC CGG CGA CCT ATA GGA GAT GGG G-3'

The optimisation of these internal positive control oligonucleotide pairs involved testing 

the effect that each control primer pair had on the target amplicon yield as assayed on 

ethidium bromide stained agarose gels. Subsequent efforts were directed towards 

balancing the amplification yields of both target and control amplicons and involved the 

titration of the primer pairs to identify the optimum concentration.

Of the three control primer pairs evaluated, the MICA exon 4 oligonucleotide primer 

pair was shown to be the best suited for use in KIR2DL1 and KIR2DL3 subtyping 

reaction strips, as shown on panels A and B of figure 5.1. However, the most suitable 

oligonucleotide primer pair for use as an internal control in KIR3DL1 and KIR3DL2 

reactions was that amplifying an HLA-DQ exon 2 fragment, as shown on panels C and 

D of figure 5.1.
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Control
(M ICA)

Control
(M ICA)

(C)

L 1 2 3 4 5 6 7

Control
(HLA-DQ)

(D)

L 1 2 3 4 5 6 7 8 9 1011 12 13 14

Control
(HLA-DQ)

Figure 5.1. KIR subtyping electropherograms depicting internal control bands. Panels A, B, C and

D show the K1R2DL1, KIR2DL3, KIR3DL1 and K1R3DL2 amplification patterns, respectively. Lanes 

labelled with numbers indicate the primer pairs used in each subtyping reaction, the expected position of 

their amplicons being indicated in white frames. Frames encompassing a band are positive for that 

reaction, empty ones being negative. For each subtyping electropherograms a DNA molecular weight 

marker is shown in lane “L”, which provides a ladder of bands which differ by 100 bp. Three small 

arrows to the left of lane “L” indicate the position, from top to bottom, of the 2000, 1000 and 500 bp 

reference bands. Control bands on panels A and B correspond to a 530 bp MICA exon 4 fragment and 

those of panels C and D correspond to a 214 bp HLA-DQ exon 2 fragment. Well number 4 in panel B is 

an example of a failed reaction, both target and control amplicons are absent

The PCR amplification conditions employed for the subtyping of KIR2DL1, KIR2DL3, 

KIR3DL1 and KIR3DL2 genes were as described in the original publication and as 

shown in table 5.3. The thermocycling conditions of the ‘HIGH-program’ originally 

described by Shilling (Shilling et al. 2002) were optimised by increasing the number of
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cycles as shown under the KIR-HI program in table 5.3, in order to boost the 

amplification yield of the first primer pair of the KIR3DL1 subtyping array.

Table 5.3. Thermocylcing programs used with Shilling’s subtyping technique

Program Temperature

KIR-NT KIR-LOW KIR-HIGH KIR-HI Time Cycles

95 °C 95 °C 95 °C 95 °C 1 minutes 1

97 °C 95 °C 95 °C 95 °C 20 seconds

562 °C 60 °C 68 °C 68 °C 45 seconds

72 °C 72 °C 72 °C 72 °C 1.5 minutes

95 °C 95 °C 95 °C 95 °C 20 seconds

26f60 °C 58 °C 64 °C 64 °C 45 seconds

72 °C 72 °C 72 °C 72 °C 1.5 minutes

72 °C 72 °C 72 °C 72 °C 7 minutes 1

4 °C 4 °C 4 °C 4 °C 5 minutes 1

+ - KIR-HI employs 30 cycles in the second step program.

The remaining PCR components, which include MgCl2, dNTP, target oligonucleotide 

primer, Taq polymerase and DNA concentrations remained the same as described in the 

original protocol, and as shown in table 5.4.

Table 5.4. Optimised PCR components for Shilling’s subtyping technique

MgCI2 dNTPs Target Control Taq DNA Control Type

2DL1 2.5 mM 50pM 0.5 pM 0.06 pM 0.35 units 100 ng MICA exon 4

2DL3 1.32 mM 50pM 0.5 pM 0.1 pM 0.35 units 50 ng MICA exon 4

3DL1 1.32 mM 50pM 0.5 pM 0.06 pM 0.35 units 50 ng HLA-DQ

3DL2 1.4 mM 50pM 0.5 pM 0.03 pM 0.35 units 50 ng HLA-DQ

5.3 Optimisation of the SSP-PCR KIR genotyping technique 

described by Uhrberg

The KIR genotyping oligonucleotide primer pairs designed by Uhrberg (Uhrberg et al. 

1997) (Table 5.5) were subjected to scrutiny by mapping their positions into an updated 

alignment of KIR nucleotide sequences, as shown in red highlight on figure 5.2.
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Table 5.5. Oligonucleotide sequences and positions as described by Uhrberg

Primer Sequence Position +

F2DL2 5-CCA TGA TGG GGT CTC CAA A-3' 156
R2DL2 5'-GCC CTG CAG AGA ACC TAC A-3' 243
F2DS1 5-TCT CCA TCA GTC GCATGA A/G-3' 165
R2DS1 5'-AGG GCC CAG AGG AAA GTT-3' 258
F2DS2 5-TGC ACA GAG AGG GGA AGT A-3’ 140
R2DS2 5-CAC GCT CTC TCC TGC CAA-3’ 214
F2DS3 5-TCA CTC CCC CTA TCA GTT T-3* 185
R2DS3 5'-GCA TCT GTA GGT TCC TCC T-3' 266
F2DS4 5'-CTG GCC CTC CCA GGT CA-3’ 111
R2DS4 5-GGA ATG TTC CGT TGA TGC-3’ 250
F2DS5 5'-AGA GAG GGG ACG TTT AAC C-3' 142
R2DS5 5-GCC GAA GCA TCT GTA GGC-3' 269
F3DS1 5-GGC AGA ATATTC CAG GAG G-3' 58
R3DS1 5-AGG GGT CCT TAG AGA TCC A-3' 138

+ - Highlighted in red on the alignments provided in figure 5.2.

The KIR2DL2 generic oligonucleotide primers described by Uhrberg (Uhrberg et al. 

1997), employ a forward primer (located on codon 156 of figure 5.2) which is capable 

of binding to the *001, *002 and *003 variants but not to the more recently described 

KIR2DL2*004 allele. The reverse primer, (located on codon 243 of figure 5.2), was 

shown to be specific for all KIR2DL2 sequences. As such, this primer pair is incapable 

of detecting the presence of the *004 variant of KIR2DL2. The KIR2DL2 generic 

primer pairs described by Uhrberg (Uhrberg et al. 1997) were complemented by the 

addition of a novel forward oligonucleotide primer (see table 5.8) specific for the 

KIR2DL2*004 variant not detected by the original primer pairs. The characteristics of 

this novel *004 specific oligonucleotide primer (size, position and mean Tm) were 

similar to those of the original generic primers (as shown in green highlight in figure 

5.2, codon 156), so as to include this novel oligonucleotide into the existing PCR 

components and conditions described by Uhrberg. Initial attempts to detect the presence 

of the *004 variant in an isolated manner involved the screening of the 10th IHW cell 

line panel. We failed to demonstrate the presence of this allele in this cell line 

collection. Nevertheless, this novel oligonucleotide primer has been included into the
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original KIR2DL2 generic mix, creating a multiplexed KIR2DL2 genotyping approach, 

which was shown not to interfere with the correct typing of known KIR2DL2 cells.

Conversely, the 3' end of the forward primer-binding site, as described by Uhrberg for 

KIR2DS1 genotyping, shares sequence identity to KIR2DS3 sequences. The 3' end of 

the reverse primer (located on codon 258 of figure 5.2) described for the K1R2DS1 gene 

also sharing sequence identity to KIR3DP1 sequences, and to a lesser degree, to 

KIR3DL3 sequences. The binding sites of the KIR2DS2, KIR2DS3 and KIR3DS1 

oligonucleotide primer pairs devised by Uhrberg (Uhrberg et al. 1997) were shown to 

be specific for their corresponding genes only. The PCR components and conditions 

were optimised for local use as described in Tables 4.6 and 4.7.

Table 5.6. Optimised PCR components for use with Uhrberg’s genotyping technique

MgCI2 dNTPs Target Control Taq DNA Control Type Program

2DL2 1.6 mM 50pM 1 mm 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-4

2DS1 2 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS2 1 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS3 2.8 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS4 2.5 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5

2DS5 1.76 mM 50pM 0.5 pM 0.12 pM 0.35 units 50 ng MICA exon 4 KIR-5
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Figure 5.2. Oligonucleotide Primer Binding Site Map. The binding sites of the oligonucleotide primers described by Uhrberg are shown in red highlight, subtyping 
oligonucleotide primer pairs described by Shilling in yellow and locally developed genotyping and subtyping oligonucleotide primer pairs being shown in green.
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Figure 5.2. Continued.
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Chapter 5

Although the forward KIR2DS4 oligonucleotide primer devised by Uhrberg (Uhrberg et 

al. 1997) (located on codon 111 of figure 5.2), was shown to be specific for this gene, 

the reverse primer was shown to be based on a sequence motif similar to that present in 

KIR2DL4, 2DL5 and 3DL3 genes.

The KIR2DS5 gene was until recently, represented by a single cDNA sequence, on 

which Uhrberg designed his generic oligonucleotide primer pair. Although the forward 

primer (located on codon 142) is still capable of annealing with gene specificity to all 

known KIR2DS5 sequences, the reverse primer (codon 269) was shown to only bind the 

KIR2DS5*001 variant. The KIR2DS5 generic typing was optim ised to include a 

modified reverse oligonucleotide primer as described by Vilches (Vilches et al. 2000). 

The am plicon  sizes generated  by the K IR2D L2, K IR2D S1-5 and KIR3DS1 

oligonucleotide pairs em ployed in this PCR-SSP technique on genomic DNA are of 

approximately 1.8 Kb, as shown on figure 5.3.

L 1 2 3 4 5 6 L 1 2 3 4 5 6

- - .  Controls u m (MICA)

(A) (B)

Figure 5.3. KIR2D genotyping based on U hrberg ’s oligonucleotide prim er pairs. The lanes labelled 

1 - 6 show the amplicons of KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5 and KIR2DL2 

genotyping reactions, respectively, for the original setup (panel A) as well as for the optimised setup 

employing internal positive control primers (panel B). A DNA molecular weight marker is present in 

lanes labelled “L”, and provides a ladder of bands which differ by 100 bp. Three small arrows to the left 

of lane “L” indicate the position, from top to bottom, of the 2000, 1000 and 500 bp reference bands. 

Control band on panel B correspond to a 530 bp MICA exon 4 fragment. These electropherograms were 

generated using the cell line MZ070782.

Finally, U hrberg’s KIR3DS1 generic oligonucleotide primer pairs (located on codons 

58 and 138 of figure 5.2) were shown to have additional limitations which compromised 

the am plification of the KIR3DS 1*014 allele (which exhibits polym orphism in the 

prim er binding sites), w hilst being capable of binding to KIR3DL1*009, thereby
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leading to false positives. Consequently, the use of this primer pair was abandoned, 

replacing it with a novel KIR3DS1 generic oligonucleotide primer pair as described in 

the following section and shown in table 5.8.

The optimisation of these genotyping reactions employed 10th IHW B-lymphoblastoid 

cell lines for which the genotypes had lately been resolved by other research groups (L. 

Guethlein, C. Vilches and D. Middleton, personal communication), as discussed in 

Chapter 6. In a similar manner to the incorporation of internal control primer pairs 

discussed in the previous section for Shilling’s technique, primer pairs specific for 

HLA-A, MICA and HLA-DQB1 fragments were evaluated for inclusion into each 

genotyping reaction. The optimisation of these internal control oligonucleotide pairs 

involved testing the effect that each individual control oligonucleotide primer pair had 

on target amplicon yield as assayed on ethidium bromide stained agarose gels. 

Subsequent efforts directed towards balancing the amplification yields of both target 

and control amplicons involved the titration of control oligonucleotide primer pair 

concentration. Of the three control oligonucleotide primer pairs used, the MICA exon 4 

oligonucleotide primer pair was shown to be the best suited for use as in the genotyping 

reaction strips of KIR2DS1-5, as it did not interfere with the amplification of targets 

(shown on panel B of figure 5.3). The optimised PCR components for each of these 

genotyping reactions are further detailed in table 5.6. Similarly, the thermocycling 

conditions of Uhrberg’s (Uhrberg et al. 1997) genotyping primer pairs were 

subsequently subjected to optimisation for use in our thermocyclers, involving only 

increases in cycle numbers as shown in table 5.7.

Table 5.7. Optimised PCR conditions for use with Uhrberg’s genotyping technique

Step

1

2

KIR-4 Time Cycles

95 °C 2 minutes 1

95 °C 20 seconds

565 °C 45 seconds

72 °C 1.5 minutes

95 °C 20 seconds

2858 °C 45 seconds

72 °C 1.5 minutes

72 °C 7 minutes 1

4 °C 5 minutes 1

KIR-5 Time Cycles

95 °C 2 minutes 1

95 °C 20 seconds

1469 °C 35 seconds

72 °C 1.5 minutes

95 °C 20 seconds

1967 °C 35 seconds

72 °C 1.5 minutes

72 °C 7 minutes 1

4 °C 5 minutes 1
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The use of genotyping oligonucleotide primer pairs was deemed unnecessary for 

KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1 and KIR3DL2, as these genes would be 

assayed with a subtyping approach.

5.4 Development of novel genotyping oligonucleotide primer pairs

The need to design novel oligonucleotide primer pairs for the generic amplification of 

other KIR genes was deemed necessary due to the limitations previously described for 

the existing pairs. The development of these novel primers involved the modification of 

existing oligonucleotide pairs to allow for the detection of novel alleles of known KIR 

genes, such being the case of KIR2DS5 and KIR3DS1. Additionally, the design of 

novel primer pairs has also considered the inclusion of KIR genes which were not 

known to exist at the time of Uhrberg’s publication, this being the case of KIR2DL5, 

KIR2DP1, KIR3DP1 and KIR3DL3 genes (Table 5.8). The primer pairs described in 

the following sections represent an updated PCR-SSP genotyping technique based on 

currently known KIR gene diversity.

Table 5.8. Novel genotyping oligonucleotide primer sequences and positions

Oligonucleotide Sequence Position+

F2DL2B 5-CCA TGA TGG GGT CTC CAA G-3’ 156

F2DL5 5’-CAT TCT GAT TGG GAC CTC AGT GGC T-3’ 327

R2DL5 5’-ATA TGT CAC CTC CTG AGG GTC TTG A-3' 369

F3DS1 5’-GGC ACC CAG CAA CCC CA-3’ 92

R3DS1 5-CAA GGG CAC GCA TCA TGG A-3’ 163

F3DL3 5-CCTCTC TGC CTG GCC CG-3' 15

R3DL3 5’-GTG ACC ATG ATC ACC ACA-3’ 91

F2DP1 5’-TCT GCC TGG CCC AGC T-3’ 16

R2DP1 5-GTG TGA ACC CCG ACA TCT GTA C-3’ 71

F3DP1 5-TCT GCC TGG CCC AGC C-3’ 16

R3DP1 5-TGC TGA CCA CCC AGT GAG GA-3’ 81
+ - Highlighted in green on the alignments provided in figure 5.2.

The design of the novel genotyping oligonucleotide pairs has been based on the 

nucleotide sequence alignments provided in figure 5.2. General considerations on which 

the design of these primers was based include: a) oligonucleotide primers lengths of 

approximately 16 to 25 bp; b) a calculated mean annealing temperature (Tm) of
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approximately 50 to 65°C (according to the online Tm calculation tool found at 

alces.med.umn.edu/rawtm.html); c) an approximate guanine-cytosine content of 40- 

60%; d) avoiding sequences that would lead to secondary structure conformations; and 

e) the V  end of all oligonucleotide sequences being specific for all of the alleles of the 

target loci in question and mismatched for other alleles of that locus. The binding sites 

and oligonucleotide sequence of these novel primers is given in table 5.8 and shown in 

green on the alignments shown in figure 5.2.

5.4.1 2DL5 genotyping oligonucleotide primer pairs

The forward primer designed for the generic amplification of KIR2DL5 is 25 bp long 

and has a calculated Tm of around 68.7°C. The binding site of this oligonucleotide was 

shown to be KIR2DL5 specific and located on exon 7 (codons 319 to 327). The reverse 

primer consists of a 25 bp long oligonucleotide with a calculated Tm of around 64.3°C. 

The binding site of this primer is KIR2DL5 specific and located on exon 9 (codons 369 

to 377). This oligonucleotide primer pair amplifies a 735 bp fragment in the presence of 

KIR2DL5, which includes parts of exon 7 and 9, a 462 bp long intron 7 as well as the 

98 bp long intron 8.

5.4.2 3DS1 genotyping oligonucleotide primer pairs

The forward primer designed for the generic amplification of KIR3DS1 is 17 bp long 

and has a calculated Tm of around 66.7°C. The binding site of this oligonucleotide was 

shown to be present in all KIR3DS1 alleles as well as the KIR3DL1*009 variant, and 

located on exon 3 (codons 86 to 92). The reverse primer consists of a 19 bp long 

oligonucleotide with a calculated Tm of around 66.5°C. The binding site of this primer 

is KIR3DS1 specific and located on exon 4 (codons 163 to 168). This oligonucleotide 

primer pair amplifies a 1728 bp fragment in the presence of KIR3DS1, which includes 

parts of exon 3 and 4, as well as a 1488 bp long intron 3.
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5.4.3 3DL3 genotyping oligonucleotide primer pairs

The forward primer designed for the generic amplification of KIR3DL3 is 17 bp long 

and has a calculated Tm of around 65.5°C. The binding site of this oligonucleotide was 

shown to be present in all KIR3DL3 alleles, and located on exon 3 (codons 9 to 15). 

The reverse primer consists of an 18 bp long oligonucleotide with a calculated Tm of 

around 53.3°C. The binding site of this primer is KIR3DL3 specific and located on exon 

3 (codons 91 to 98). This oligonucleotide primer pair amplifies a 270 bp fragment of 

exon 3 in the presence of KIR3DL3.

5.4.4 2DP1 genotyping oligonucleotide primer pairs

The forward primer designed for the generic amplification of KIR2DP1 is 16 bp long 

and has a calculated Tm of around 61.6°C. The binding site of this oligonucleotide was 

shown to be KIR2DP1 specific and located on exon 3 (codons 11 to 16). The reverse 

primer consists of a 22 bp long oligonucleotide with a calculated Tm of around 61.5°C. 

The binding site of this primer is KIR2DP1 specific and located on exon 3 (codons 71 

to 78). This oligonucleotide primer pair amplifies a 204 bp fragment of exon 3 in the 

presence of KIR2DP1.

5.4.5 3DP1 genotyping oligonucleotide primer pairs

The forward primer designed for the generic amplification of KIR3DP1 is 16 bp long 

and has a calculated Tm of around 64.7°C. The binding site of this oligonucleotide was 

shown to be present in all KIR3DP1 alleles as well as the KIR2D pseudoexon 3 

sequences, and located on exon 3 (codons 11 to 16). The reverse primer consists of a 20 

bp long oligonucleotide with a calculated Tm of around 65.3°C. The binding site of this 

primer is KIR3DP1 specific and located on exon 3 (codons 81 to 87). This 

oligonucleotide primer pair amplifies a 231 bp fragment of exon 3 in the presence of 

KIR3DP1.
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5.5 PCR component and condition optimization for the novel 

genotyping oligonucleotide primer pairs

The optimisation of the newly developed oligonucleotide primer pairs was undertaken 

in three steps.

1) An initial trial PCR aimed at enhancing the amplification of target fragments of the 

expected size and irrespective of the primer specificity achieved (development PCR).

2) The fine-tuning of the PCR components and conditions, which was carried out by 

subjecting DNA samples of known KIR profiles to different reagent ratios and 

thermocycling programs. The main aim of this procedure being to optimise the target 

band yield and to increase the specificity achieved.

3) The optimisation of the PCR reactions for the inclusion of internal control band 

oligonucleotide primer pairs.

These development and optimisation steps involved the use of cell lines belonging to 

the 10th IHW B-lymphoblastoid panel for which their KIR gene content had previously 

been described (L. Guethlein and C. Vilches, personal communications). The cell lines 

CF996, MZ070782, WT51 and WT47 were used as positive controls for both KIR2DL5 

and KIR3DS1 genes, and the cell lines TAB089, JBUSH, KAS116 and PP, being used 

as negative controls for these same genes. These same cell lines were used as positive 

controls for the KIR2DP1, KIR3DP1 and KIR3DL3 genes, as they had previously been 

shown to be present in more than 95% of the DNA samples assayed so far (C. Vilches, 

personal communication).

The initial PCR trials employed reagent ratios and thermocycling conditions aimed at 

ensuring the amplification of the expected target bands, allowing for some non-specific 

amplification. This approach employed a 12.5 pL development PCR reaction at high 

MgCl2 concentrations and excess concentrations of dNTPs, Taq polymerase, DNA and 

oligonucleotide primer pairs (Table 5.9).
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Table 5.9. Development PCR components and conditions

PCR Components

Reagent Concentration

MgCI, 4 mM

dNTPs 60|jM

Target 0.8 pM

Taq 0.4 units

DNA 200 ng

PCR Conditions

Step Temperature Time Cycle

1 95 °C 2 minutes 1

2 95 °C 20 seconds

283 60 °C 35 seconds

4 72 °C 40 seconds

5 4°C 5 minutes 1

Similarly, the thermocycling conditions were based on a generic program employing an 

annealing temperature reflecting the average calculated Tm (60°C) of all 

oligonucleotides. The development PCR thermocycling conditions were as follow: an 

initial denaturing step at 95°C for 2 minutes followed by 28 cycles of 95°C for 20 

seconds, 60°C for 35 seconds and 72°C for 40 seconds. The results of this first approach 

enabled the identification of appropriate amplicons and thus demonstrated the working 

status of three oligonucleotide pairs (KIR2DL5, KIR2DP1 and KIR3DL3), the results 

for KIR3DP1 and KIR3DS1 were inconclusive and required further optimisation 

directed towards eradicating products of non-specific amplification (see below).

The initial PCR trials were then followed by subsequent optimisation of the PCR 

thermocycling conditions for all of the oligonucleotide pairs. This optimisation process 

allowed the fine-tuning of both PCR components and conditions for each individual 

oligonucleotide pair to maximise target band yield and minimise background noise in 

the form of non-specific amplicons. This optimisation phase consisted of subjecting the 

development PCR to different PCR components ratios, mainly focused around MgCl2 

titrations, as well as to different thermocycling conditions, mainly focused on variations 

of the annealing temperatures used.

To ascertain the optimal MgCl2 concentration at which the genotyping primer pairs 

would achieve the best specificity and sensitivity, each reaction was subjected to a 

range of different MgCl2 concentrations. This was undertaken in two approaches 

depending on the availability of cell lines capable of being employed as positive and 

negative controls. First, for the KIR2DL5 and KIR3DS1 genes, a sufficient number of
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available cell lines had previously been shown to possess or lack their expression 

(Uhrberg et al. 1997). As such, the optimisation of the ideal MgCl2 concentration for the 

genotyping reactions of these genes was made easier. Secondly, as K1R2DP1, KIR3DP1 

and KIR3DL3 have been shown to be present in most KIR haplotypes described to date, 

the lack of cell lines capable of being used as negative controls did not allow us to 

employ the first approach. Consequently, a second approach was adopted to optimise 

the MgCI2 concentration of the genotyping reactions of these last three KIR genes. This 

second approach was directed towards resolving the lowest usable MgCl2 concentration, 

so as to prevent the am plification of non-specific products and facilitate the future 

detection of samples which do not possess any of these genes (Figure 5.4).

Figure 5.4. MgCl2 titration electropherogram. MgCl2 titration results of KIR3DL3, KIR2DP1 and 

KIR3DP1 (panels A, B and C, respectively) as assayed on 1.5% agarose running at 140 VDC for 40 

minutes. For each panel a DNA molecular weight marker is shown in lane “L”, which provides a ladder 

of bands which differ by 100 bp. Three small arrows to the left of lane “L” indicate the position, from top 

to bottom, of the 2000, 1000 and 500 bp reference bands. Lanes numbered 1-8 represent varying MgCL 

concentrations (from 2 to 3.75 mM, in 0.25 mM increments). The expected size of the target amplicons 

for each panel is indicated by an arrow on the right side of the electropherograms. The white frames 

surrounding target bands indicate the optimal MgCL concentration for each genotyping primer pair.

Occasionally, optimal amplicon yields would be achieved after the MgCl2 titration, as is 

shown for KIR2DP1 in figure 5.4 (Panel B). N evertheless and even in these cases, 

every oligonucleotide primer mix was still subjected to the thermocycling optimisation 

process, the optimal PCR conditions for each prim er pair only being established 

afterwards.
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The optimisation of the PCR conditions involved subjecting the previously optimised 

PCR reaction to a series of five different thermocycling programs (A-F in table 5.10 and 

figure 5.5) and aimed at defining the optimal annealing temperature at which each 

genotyping oligonucleotide primer pair worked.

Table 5.10. Thermocycling programs used in the optimisation of PCR conditions

Program and Temperature

| Step | A B C D E F Time Cycles

95 °C 95 °C 95 °C 95 °C 95 °C 95 °C 2 minutes 1

95 °C 95 °C 95 °C 95 °C 95 °C 95 °C 20 seconds

2856 °C 60 °C 62 °C 64 °C 66 °C 69 °C 35 seconds

72 °C 72 °C 72 °C 72 °C 72 °C 72 °C 40 seconds

4 °C 4°C 4°C 4 °C 4 °C 4°C 5 minutes 1

A generic single step PCR program based on that described by Uhrberg (Uhrberg et al. 

1997) was used. This approach allowed us to select the appropriate conditions at which 

the balance of target and any non-specific product amplification was optimal, as shown 

for the KIR2DL5 example given in figure 5.5.
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Positive Controls Negative Controls

L 1  2 3 4 5 6 7 8

(A) - 4 -

(B) 2

(C) 2
4 -

(D) 2
■

— —

as
4 -

(E) 2
4 -

(F)  2 4 -

Figure 5.5. O ptim isation of PC R  conditions. Differences in target band yield for the KIR2DL5 

genotyping primer when subjected to different thermocycling programs working at annealing 

temperatures of 56, 60, 62, 64, 66 and 69° C (A -  F, respectively). For each panel a DNA molecular 

weight marker is shown in lane “L”, which provides a ladder of bands which differ by 100 bp. Three 

small arrows to the left of lane “L” indicate the position, from top to bottom, of the 2000, 1000 and 500 

bp reference bands. Lanes numbered 1-4 include positive control DNA samples while lanes 5-8 include 

negative control DNA samples. The expected size of the target amplicons is indicated by a large arrow on 

the right side of the electropherograms. A white frame surrounds target bands of optimal yield.

Finally, each genotyping reaction was then subjected to further optimisation in order to 

include internal controls. Several oligonucleotide pairs to be used as internal controls 

were tested including a 530 bp long MICA exon 4 fragment, a 979 bp long HLA-A 

fragment and a 230 bp long HLA-DQB1 fragment (as previously described in table 5.2.
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All o f these internal control oligonucleotide pairs were tested for each genotyping 

reaction at eight different concentrations (1.5, 3, 4.5, 6, 7.5, 9, 10 and 12.5 pM).

L 1 2 3 4 5

Figure 5.6. O ptim ised PCR and in ternal control bands. The lanes labelled 1 - 5 show the amplicons 

of KIR2DL5, 3DS1, 3DL3, 3DP1 and 2DP1 genotyping reactions, respectively. A DNA molecular 

weight marker is present in lane “L”, and provides a ladder of bands which differ by 100 bp. Three small 

arrows to the left of lane “L” indicate the position, from top to bottom, of the 2000, 1000 and 500 bp 

reference bands. Internal positive control bands are shown inside white frames and correspond to a 530 

bp MICA exon 4 fragment (lanes 1, 2 and 4) or to a 979 bp HLA-A fragment (lanes 3 and 5).

The optimised PCR components for the novel genotyping oligonucleotide primer pairs 

is given in table 5.11, and where the thermocycling programs used are further detailed 

in table 5.12.

Table 5.11. Optim ised PCR com ponents for use in novel genotyping technique

M gC I2 dN TPs Targ et Control Taq DNA C ontrol Type Program

2D L5 2. 4 mM 50pM 1 pM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-2

3DS1 2.4 mM 50pM 1 pM 0.24 pM 0.35 units 50 ng MICA exon 4 KIR-2

3DL3 0.8 mM 50pM 1 pM 0.6 pM 0.35 units 50 ng HLA-A KIR-1

2DP1 1.6 mM 50pM 1 pM 0.24 pM 0.35 units 50 ng HLA-A KIR-3

3DP1 1.2 mM 50(jM 1 pM 0.32 pM 0.35 units 50 ng MICA exon 4 KIR-3
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Table 5.12. Optimised PCR components for use in novel genotyping technique

Programs

KIR-1 KIR-2 KIR-3

95 °C 95 °C 95 °C

95 °C 95 °C 95 °C

63 °C 66 °C 69 °C

72 °C 72 °C 72 °C

72 °C 72 °C 72 °C

4°C 4 °C 4 °C

2 minutes 1

20 seconds

3035 seconds

40 seconds

7 minutes 1

5 minutes 1

5.6 Development of a KIR2DL4 PCR-SSP subtyping oligonucleotide 

primer array

The KIR typing oligonucleotide pairs discussed previously allowed us to detect the 

presence or absence of 11 KIR genes and to evaluate the alleles present in four 

additional KIR loci. The development of an allele level typing technique arose from the 

need to describe the functional impact of KIR polymorphism on the binding of HLA by 

KIR proteins encoded in these four KIR loci. As mentioned in Chapter 1, KIR2DL1 

exhibits C2 specificity and recognises HLA-C allotypes with Lys80, whereas KIR2DL2 

and KIR2DL3 have C l specificity and recognise HLA-C allotypes with Asn80 

(Mandelboim et al. 1997). Similarly, KIR3DL1 recognises Bw4 HLA-B allotypes 

(Colonna et al. 1992) whereas KIR3DL2 has been shown to recognise HLA-A3 and 

- A l l  allotypes (Pende et al. 1996; Khakoo et al. 2000). Additionally, other research 

groups have established the recognition of HLA-G by KIR2DL4 (Cantoni et al. 1998; 

Rajagopalan and Long 1999). The development of a KIR2DL4 subtyping approach was 

deemed necessary as we were interested in resolving the functional significance of 

KIR2DL4 diversity. KIR2DL4 is the third most polymorphic KIR gene, represented by 

nine different alleles. In addition to this, KIR2DL4 gene diversity is of particular 

interest to us due to two exceptional characteristics which we think are of functional 

significance. Firstly, KIR2DL4 is a framework gene present on all known KIR 

haplotypes, and secondly, KIR2DL4 proteins have been shown to be expressed by all 

NK cells, unlike other KIR genes which are subjected to combinatorial expression 

patterns. For this reason, oligonucleotide primer pairs for the discrimination of all
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known KIR2DL4 allelic variants were designed based on the alignments given in figure 

5.2.

5.6.1 General considerations

The development of the 15 oligonucleotide primers (Table 5.13) followed the general 

oligonucleotide primer design considerations described in section 4.3. Most KIR2DL4 

allelic variants can be distinguished from one another by the polymorphic sites present 

in exons 3 and 4, as further detailed on Chapter 3 and illustrated in figure 5.7. Suitable 

gene polymorphisms were identified for use as generic and allele specific binding sites 

for PCR amplification as shown in blue and green arrows in figure 5.7, respectively.

Table 5.13. KIR2DL4 subtyping oligonucleotide primers and positions

Oligonucleotide Sequence Position+

2DL4-F1 5-GTG GTC AGG ACA AGC CCTTCT G-3’ 10

2DL4-F2 5-CCA GGT CTA TAT GAG AAA CCT TCG CTT A-3’ 206

2DL4-F3 5-AGC-GCT-GTG-GTG-CCT-CA-3’ 20

2DL4-R1 5’-GGG GGA GTG CGG GTG AA-3’ 77

2DL4-R2 5’-CTT TCC TCA CCT GTG ACA GAA ACA G-3’ 291

2DL4-FF 5’-AGC ACA CGC AGG GAC CA-3' 72

2DL4-FG 5-CCT CAT TAG CCC TCT GAC CCC T-3’ 66

2DL4-FH 5’-GGA ACA GTT TCC TCA TTA GCC CTC-3’ 64

2DL4-FI 5-CAC GTG ACT CTT CGG TGT CAC TG-3’ 30

2DL4-RA 5-GGT CAC TCG CGT CTG ACC AT-3’ 282

2DL4-RB 5’-TGG GTC ACT CGS GTC TGA CCA C-3’ 282

2DL4-RC 5’-CGA ACC GTG GGG CCC A-3’ 209

2DL4-RD 5’-GGA CAA GGT CAC GTT CTC TCC TGT-3’ 215

2DL4-RD' 5'-GAC AAG GTC ACG TTC TCT CCT GC-3’ 215

2DL4-RE 5’-CCT AAG TTC ATG GGC TTC CCC T-3’ 237

f - Highlighted in green on the alignments provided in figure 5.2.

Five KIR2DL4 specific oligonucleotide primers were designed to amplify these exons 

(F1-F3 and Rl-2), both as individual exons as well as in a single large amplicon 

including the 873 bp long intron 3. Each of these KIR2DL4 generic oligonucleotide 

primers were then evaluated in combination with ten allele specific oligonucleotide 

primers, for their inclusion in the PCR-SSP KIR2DL4 subtyping array.
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Exon 1 E xon 2 E xon 3

4 0  36 285

K1R2DL4
G en*

Intron 3

873

E xon 4 Exon 5 Exon 6 Exon 7 Exon 8

I  I  I  I
51 105 53

FI (10)1—|  
F3 (20) J— 

R  (30)

1R1 (77)

FH (64)l— ► 

FG ( 6 6 > >
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<4 RC (209)

<4 H R O (215)
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4 — IRE (237)

4 RA (282) 

<4 RB (282)

Figure 5.7. KIR2DL4 gene organisation and oligonucleotide binding sites. The exons are shown as 

blue boxes, their number and size being shown at the top of each box. Tick marks over exons indicate 

polymorphic sites. Blue arrows represent generic primer positions, whereas green arrows indicate allele 

specific primer positions. Primer names are shown in bold letters and the position of their 3 ' end being 

indicated in red numbers enclosed by parentheses.

5.6.2 PCR component and condition optimisation

In total 15 different oligonucleotide primer pair combinations were evaluated for 

inclusion in the final KIR2DL4 subtyping array (table 5.14). Initial testing did not allow 

the amplification of any fragment in which the FI forward sense primer was used 

(located on codon 10 of figure 5.2), possibly the result of a higher annealing 

temperature than that calculated or a consequence of the formation of primer secondary 

structures. Consequently, this forward oligonucleotide primer was replaced by F3, 

(located 30 base pairs downstream of FI as shown in figure 5.2 and illustrated on figure 

5.7). Subsequent trials with the F3 oligonucleotide primer allowed the amplification of 

fragments of the expected size (shown in table 5.14 as primer pairs in upper case).
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Table 5.14. KIR2DL4 oligonucleotide primers pairs tested

P a ir ’ J L i k J K a b c  | d & a A B C D D’ E F G H I r A’

Forward F1 F2 F1 F3 F3 F1 F3 FF FG FH FI FI F2

Reverse R1 R2 R2 R1 R2 RA RB RC RD RD' RE RA RB RC RD | RD’ RE R2 RB RA

00101

00102
00201
00202

size (bp) | 230 | 290 ] 1452 | 220 1442 1446 1446 1206 1227 1227 1296114161141611176 11197 11197 1266 1261 1283 1289 1392 1377 282

f - Oligonucleotide primer pairs given in upper case and yellow highlight were used in the final KIR2DL4 

typing, whereas those in lower case were discarded. Shaded boxes indicate positive amplification.

The 15 oligonucleotide primer pairs were jointly subjected to PCR component and 

condition optimisation, employing the available representative cell lines of KIR2DL4 

alleles (F. Williams, personal communication). A single-cycle thermocycling program 

was employed for the optimisation of the KIR2DL4 subtyping oligonucleotides. The 

oligonucleotide primer pairs were subjected to a series of seven different thermocycling 

programs whose annealing temperatures differed by 3°C (Table 5.15). These 

thermocycling programs included annealing temperatures both above and below the 

expected annealing temperature calculated on oligonucleotide primer characteristics 

(program D in table 5.15).

Table 5.15. Thermocycling programs used in the optimisation of PCR conditions

Step

1

2

3

4 

8

A B C D E F G Time Cycles

95 °C 95 °C 95 °C 95 °C 95 °C 95 °C 95 °C 2 minutes 1

95 °C 95 °C 95 °C 95 °C 95 °C 95 °C 95 °C 20 seconds

3054 °C 57 °C 60 °C 63 °C 66 °C 69 °C 72 °C 35 seconds

72 °C 72 °C 72 °C 72 °C 72 °C 72®C ~i 72 °C 1.5 minutes

72 °C 72 °C 72 °C 72 °C 72 °C 72 °C 72 °C 7 minutes 1

4 °C 4 °C 4°C 4°C 4 °C 4 °C 4°C 5 minutes 1
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At the same time, each oligonucleotide primer pair was subjected to varying amounts of 

M gCl2 ranging from 0.8 mM to 2.2 mM final concentrations (as shown for primer pair 

D' on figure 5.8). These M gCl2 concentrations were chosen based on initial trials using 

the generic primers only, which were shown to generate more than optimal yields at 

high M gCl2 concentrations (2.2 mM). This M gCl2 concentration was used as the 

baseline for the titration, and decreasing amounts of M gCl2 in 0.2 mM steps were 

considered.

L 1  2 3 4 5 6 7 8

(A) -

(B) -

(C) -

Figure 5.8. MgCl, titration of D' oligonucleotide primer pair. The results of the cell lines E4181324, 

EJ32B and JBUSH are shown (panels A, B and C, respectively). Lanes numbered 1-8 represent the 

MgCl, concentrations used varying from 0.8 mM (lane 1) to 2.2 mM (lane 8) in 0.2 mM. A DNA 

molecular weight marker is present in lane “L”, and provides a ladder of bands which differ by 100 bp. 

Three small arrows to the left of lane “L” indicate the position, from top to bottom, of the 2000, 1000 and 

500 bp reference bands. A large arrow to the right of the elctropherogram indicates the expected target 

amplicons size (1227 bp). Cell lines E4181324 and EJ32B were expected to be positive for this band 

while JBUSH was known to be negative. The target amplicons yield and specificity at the optimal MgCl2 

concentration is shown in a white frame.

The optimisation of each oligonucleotide primer pair employed two cell lines for which 

the expected amplicon should be present, as well as, where available, two cell lines 

known to be negative for the same amplicon. The lack of adequate reference cell lines 

expressing some KIR2DL4 alleles (such as *00101, *003, *004, *006 and *007)
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required a different approach towards optimisation. The optimisation of the ideal MgCl2 

concentration of the primer pairs for which no positive cell lines was available required 

the use of cell lines which had been shown not to express these alleles. This approach 

was directed towards resolving the highest possible MgCl2 concentration at which these 

primer pairs would not generate non-specific products.

The final optimised PCR reaction employed a 1.6 mM concentration of MgCl2 for all of 

the oligonucleotide primer pairs, with the only exception of the FI' pair, which was 

shown to achieve greater specificity when used at a 1.2 mM MgCl2 concentration (as 

shown in table 5.16). The optimised PCR components for the KIR2DL4 subtyping 

assay are summarised in table 5.16. Subsequent optimisation steps aimed at refining the 

specificity of the D and D' primer pairs involved the introduction of two new reverse 

oligonucleotide primers. Additional mismatches were added to the 3' ends of these 

oligonucleotide primers in order to prevent the co-amplification observed with the 

previous two reverse primers used (Primers KIR2DL4-RD and KIR2DL4-RD' shown 

in table 5.13). The introduction of these new oligonucleotide primer pairs achieved a 

higher specificity for their respective alleles and did not require additional optimisation 

of the PCR components and conditions.

Table 5.16. Optimised PCR components of the K1R2DL4 subtyping technique

MgCl, dNTPs Target Control Taq DNA Control Type Program

2DL4AM 1.6 mM 50pM 0.5 mM 0.1 pM 0.35 units 60 ng MICA exon 4 KIR-5

2DL4I* 1.2 mM 50pM 0.5 pM 0.1 pM 0.35 units 60 ng MICA exon 4 KIR-5

In table 5.16, MgCl2 refers to the final concentration used in the PCR reaction expressed 

in mM, Target refers to the final concentration of the gene specific oligonucleotide 

used, Control Type refers to the type of internal control oligonucleotide primer pair 

used, its final concentration expressed in pM being shown in Control, Program refers to 

the thermocycling program used as detailed in table 5.17.

The target band yield of the oligonucleotide primer pairs used in the KIR2DL4 

subtyping array was further optimised subsequently by modifying the thermocycling 

program to include a second amplification boost cycle, as shown in table 5.17. An
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example of an agarose gel run of the optimised KIR2DL4 subtyping system on a cell 

line which possesses three KIR2DL4 alleles is given in figure 5.9 in which the target 

amplicons of six oligonucleotide primer pairs is shown.

Table 5.17. O ptim ised PCR conditions of the KIR2DL4 subtyping technique

Step KIR-5 Time Cycles

1 95 °C 2 minutes 1

2 95 °C 20 seconds

143 69 °C 35 seconds

4 72 °C 1.5 minutes

5 95 °C 20 seconds

196 67 °C 35 seconds

7 72 °C 1.5 minutes

8 72 °C 7 minutes 1

9 4 °C 5 minutes 1

L > > B C

LUbQ

F g  h  i r

1  4""*

Figure 5.9. KIR2DL4 subtyping resu lt of cell line E4181324. The subtyping result for the cell line 

E4181324 shows the amplification yield and the size of the amplicons generated with the B, D, D \  E, I 

and 1’ priimer pairs. The position of the 530 bp fragment corresponding to the internal control is indicated 

with a large arrow to the right of the figure and seen in reactions A, A ’, C, F, G and H. A DNA molecular 

weight marker is present in lane “L”, and provides a ladder of bands which differ by 100 bp. Three small 

arrows to the left of lane “L” indicate the position, from top to bottom, of the 2000, 1000 and 500 bp 

reference bands.

5.7 Discussion

In chap ter 3, the nature o f KIR gene polym orphism  and the way that such 

polymorphism is distributed within each gene was described. A closer analysis of the 

KIR nucleotide sequences highlights the lim itations that this d istribu tion  of 

polymorphism imposes on the adoption and development of molecular typing methods

227



Chapter 5

for the characterisation of KIR gene diversity. Similarly, the implementation of RFLP 

analysis revealed the existence of two major KIR haplotype groups, which are currently 

thought to be of functional importance (Uhrberg et al. 1997). However, these 

approaches lack the capacity to discriminate the fine level of sequence variation that 

KIR genes are currently known to possess. PCR-SSP based approaches have 

consistently demonstrated to be the molecular typing methods best suited for use in the 

characterisation of KIR gene diversity. This approach has proven to be a fast, 

reproducible, robust, economically viable technique capable of achieving high- 

resolution typings and of managing high sample throughput. PCR-SSP based techniques 

are capable of assaying polymorphisms present in any exon of the KIR genes and can 

be successfully applied to archived DNA samples for typing. Of particular usefulness is 

the capacity of PCR-SSP to resolve cis- or trans- relationships that exist between two 

different motifs, a known limitation of other subtyping approaches including PCR- 

SSOP and SBT. Importantly, this approach is capable of incorporating novel 

oligonucleotide primer pairs to reflect the description of novel gene variants.

As such, the design of the generic oligonucleotide primer pairs used in the KIR 

genotyping technique devised by Uhrberg (Uhrberg et al. 1997) was based on the 

alignment of only 36 KIR sequences known at the time, comprising 12 different KIR 

genes. Nearly five years after Uhrberg’s original description of human KIR gene 

diversity, 17 different KIR loci are known to exist (Marsh et al. 2003), represented by 

approximately 100 different nucleotide sequences (Garcia et al. 2003). Consequently, 

this genotyping approach was updated to reflect these additions and further optimised to 

enhance the specificity of the oligonucleotide primers used. The subtyping techniques 

recently described for the main inhibitory genes which encode HLA-binding KIR 

(Gardiner et al. 2001; Shilling et al. 2002) required only minor optimisation procedures 

directed towards adapting this technique to local instruments and reagents.

In addition to this, the typing technique described in this chapter also involved the 

development of novel KIR genotyping and subtyping oligonucleotide primer pairs 

directed towards making our approach more comprehensive and capable of screening 

for the presence of all known KIR genes. Five novel oligonucleotide primer pairs were
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designed and implemented for the detection of three KIR genes (KIR2DL5, KIR3DS1, 

KIR3DL3) as well as for two KIR pseudogenes (KIR3DP1 and KIR2DP1).

In this chapter I have described the development and optimisation of a subtyping 

approach capable of defining the presence of most KIR2DL4 alleles. We think that the 

subtyping of this gene, the third most polymorphic amongst KIR, will allow us to 

describe its functional significance. Also, as we were implementing subtyping 

approaches for KIR genes known to bind HLA proteins (Shilling et al. 2002), the 

adoption of a subtyping approach for KIR2DL4 was deemed necessary given current 

knowledge with regards to its binding of HLA-G molecules (Cantoni et al. 1998; Ponte 

et al. 1999; Rajagopalan and Long 1999). The subtyping technique developed for this 

purpose employs ten oligonucleotide primer pairs to describe the presence of nine 

KIR2DL4 alleles. Again, the establishment of the KIR nucleotide sequence alignments 

presented on chapter 3 assisted in the design of the novel oligonucleotide primer pairs, 

enabling the identification and selection of useful nucleotide motifs. During the 

development of these novel genotyping and subtyping oligonucleotide primers an 

important limitation was encountered relating to the availability of reference cell lines 

to which a novel oligonucleotide could be optimised, issue which will be further 

discussed in the following chapter.

The typing methodology that has been described in this chapter is especially suited for 

population genetics applications, as it allows a rapid, comprehensive and highly 

sensitive means of assessing KIR gene diversity. Additionally, it is envisaged that the 

application of this comprehensive and high-resolution KIR gene typing technique in 

both clinical association studies as well as in HSCT patient-donor pairs will further our 

knowledge on the functional relevance of KIR gene diversity. Similarly, it is expected 

that the high-resolution approach used in these applications will enhance our sensitivity 

at discriminating subtle associations between KIR variants and clinical outcome.
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Chapter Six

Characterisation of KIR gene diversity of the 

10th International Histocompatibility 

Workshop B-lymphoblastoid cell line 

reference panel

6.1 Introduction

In developing a com prehensive KIR typing technique, the lack of reference material in 

the form  o f genom ic DNA sam ples has been a m ajor obstacle. A t the time that this 

study was initiated only one well characterised cell line was available to us with which 

to confirm  the specificities of the prim er mixes used in our PCR-SSP typing protocol. 

The issues raised by the lack o f well characterised  control m aterial have been 

highlighted in the previous chapter.

During the 10th International H istocom patibility W orkshop (IHW), the HLA community 

established a panel of 107 B-lym phoblastoid cell lines (Yang et al. 1989). This panel of 

cell lines was extensively characterised for HLA by serological, biochem ical and 

m olecular m ethods at that time. Since then these cells have been HLA typed to allele 

level resolution in most cases and have been sequenced for many of their HLA genes. 

The cells included in the panel are mostly homozygous for the HLA region and in many 

cases are also consanguineous. They have provided an excellent source of control 

material for the HLA community and have been widely distributed.

230



Chapter 6

We aim to address this lack o f reference material for those investigators involved in 

KIR typing, by carrying out the first detailed study of the KIR profiles of the 107 cell 

lines belonging to the 10th IHW  cell panel. In addition to this, it is envisaged that the 

characterisation of the KIR gene and allele profiles present in this reference panel will 

help research groups establish and optimise existing KIR typing techniques and develop 

new ones by providing representative cell lines for most of the KIR genes, alleles, 

genotypes and inferred haplotypes known to date. In addition, it is our aim that the 

characterisation of the KIR profile of this reference panel can be em ployed as a quality 

assessm ent tool of use to laboratories involved in the KIR typing of clinical samples.

6.2 KIR typing results

6.2.1 Overview of KIR typing results

A total of 102 samples representing 98 individual cell lines from  the 10th IHW  cell panel 

and an external control cell line (PP) were tested for the presence o f 17 KIR genes and 

38 KIR alleles, their KIR profiles being presented in table 6.1. The cell line PP was 

included as an external control as the KIR profile of this cell line has been resolved by 

sequencing of cDNA clones (Uhrberg et al. 1997).

The KIR typing results enabled the description of cell lines representative of all KIR 

genes and most KIR alleles. Allele level of resolution was achieved for five KIR genes, 

including KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1 and KIR3DL2. Tw enty-four of 

the 28 alleles detectable with the PC R -SSP technique described by Shilling (Shilling et 

al. 2002) were observed in this panel. A dditionally, five of the ten K IR2DL4 alleles 

detectable with the locally developed subtyping technique were also seen in this panel. 

The KIR allele profile of the five subtyped genes was unequivocally defined for more 

than 92% of the cell lines of this panel.
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Table 6.1. KIR gene and allele content in the 10th International Histocompatibility Workshop cell line panel.

20LS 2DS1 20S2 2DS3 2DS41 20SS I 2DP1 30L3 30P1

002/006.004/005 00102 00/0/ 001.002/003/006/007/006 001/069 002 1.5 or 2.3001.002

01 102 002/3/6/7/8.

U0202/OOS 006.007004/005.

00207/005. 001/009.010 •9 20

002/003/006/007/006. 005Negative

001.004020020, 003.012 or 001/009.005

OOSJMM (*0201 .00 5 <->402 (Ml . 003,012 or 001/009.005

003,004 00102.005 002/003/006/007/008. 001/009,007 or 006,010

00201.005 00401 005 001/009.003

KAS011 00102,005 002/003/006/007/006. 006.010 or 001/009.007 24.11 or 25.4

002/006.004/005 00202 001/009.

00102,00201.005 002/Of* J/006/007/008 . 004 02E4181324 003.012 or 001/009,005

00102.005 002/003/006/007/006,005003,004 001/009,002

002/003/006/007/006,005 001/009.00/

002/003/006/007/006.00500102,005 001/009,

00102,005 002/003/006/007/006,- Caucasoid • Italy, Europe

002/003/006/007/006, 002,007 12.33

L0061765 001.00402004/005. 001,002/006 00201/00202, 001/009,003

00202/005 001/009.

(10201 005 00608 005,007

002/003/006/007/006. 00500 1 02 w 010.012

002/006, 00202/005. 006.010 or 001/009.007

001.002/006 00202/005,- 001/009,

002/003/006/007/006,-

001.005002/006, 00202/005. 010,011

002.003 002/003/006/007/006. 005 001/009,00200102 00!

PF97S67 002.003 002/003/006/007/006.005001.002/006 00102,005 002,010

u n i 00402,001.002/006 00201.00-

002/006,- 00202/005,-

Caucasotd - England. Europe002 02/005, 001/009.010 19 20

001,002/006 007 01.00 5 00402. <>05 (Xi-

001,002/006 002/003/006/007/006,0040200102.00701

00 1 , Caucasoid • Italy. Europe002/003/006/007/006,005 001/009,002

00102.00701 12.16002/003/006/007/006,00402

002.003 001.007/006 <X*107. 002/003/006/007/006,- 001/009,002 4,12or 5.11

Cmemm nw. E m m001/009,

002.003 001,002/006 00201 /0 0 2 0 2 5*0 1 .0041 003,012 or 001/009.005

002.003 001.002/006 00202/005. 001,005 001/009.-

001 001/009,-001,002/003/006/007/008

00201,005 Caucasoid - Italy. Europe006.011 or 003,00700401.

003,004 001.002/006 00/07/005. 006.010 or 001/009.007



Table 6.1. Continued.
2052 I 2DS3riP.-'Ol '

H
oo?o?/^.s

OC?0?/OOS,003.004

00H)/.00?G/003,004

' h ii.. 00202/003,

00102,00202

00102,005

Of; 102 <0201

00202

00201 00 5" O'*.

00201/00202003.004

00202/005,

001,002/006 00202/005,

00102,004/005, Negrtive

0 0201 /0 0 2 0 2

002/0<X ,

00102,005001,005 001.002/006

00102,005002,003 001.002/006

00202/005,004/005,

00102.00 5003,004

002 02/005,-

00202/005004/005, Negative

00102,005

00202/005,

00202/005,

00201,005

00102,00201

-

00102,005

•X»?02/()05.001,003 001.004/005

00202/005

00202 '005.

i K n  2

0 0102 ,
002/006,-

00102,005

T ’ 527 00102.005

00202/006

001.003 001.004/005 00102,005

002,003 001,002/006 0 0201 /0 0 2 0 2

00102,005

00202/005.-

KK30L1 1 3DS1 1 KR30L2 | 3DL3 | 30P1 |
1 -

ETVfdOTY

| Negative

1

1 006,010 or 001/009,007 Caucasoid - Prance, Europe

005,- 007,010 Caucasoid - Germen/ltaftan, Europe

I 002/003/006/007/006,- 007.- Caucasoid • Rely, Europe

| ° ° S-- 001/009,- 9.- Caucasoid - Prance, Europe

001,002/003/006/007/008 001/009,- 10,11 Caucasoid - Scandnavia, Europe

1 002/003/006/007/006,005 001/009,002 12,19 Caucasoid • En^and. Europe

002/003/006/007/006, 00402 002,003 12,16 Caucaeoid - Sardfcsa, Europe

001,00402 010,011 17,27 Caucasoid • Denmark, Europe

00401,005 001/009,003 Caucasoid - South Africa, Southern Africa

00402,001 001/009,003 10,31 Caucasoid • Anssh. North America

Negative
■ 006,007 24,35 Oriental • Japan. Asia

005,* j
"

1 006,010 or 001/009,007 9.25 Caucasoid • Scartdnavia. Europe

I 002/003/006/007/006.- 002,- Caucasoid - France, Europe

001.00402 001/009,003 10,16 Caucasoid • Germany, Europe

002/003/006/007/008.- 001/009,006 4,30 Caucasoid • Jewoh

002/003/006/007/006.- 001/009,002 Black - Unknown, Africa

002/003/006/007/006,005 001/009,002 5,19 or 9,12 Caucasoid • North America

| Negative ( 007.- 33,37 Caucasoid - Austrafta

002/003/006/007/006,- 002,006 Caucasoid - Italy. Europe

Negative 007.- Caucasoid - Netherlands, Europe

I Negative 007,- Caucasoid - Italy. Europe

002/003/006/007/006.- 002,007 35,15 American Indan - Warao, South America

005,- 9 007,010 20.33 Caucasoid - Netherlands, Europe

001,005 001/009,010 19,20 Oriental - Japan, Asia

005,00402 003,010 or 001/009,011 17,19 or 16,20 Caucasoid - Scandnavia, Europe

002/003/006/007/006, 00402

■

002,005 Caucasoid - Italy. Europe

002/003/006/007/006,- 002,007 Caucasoid - Denmark, Europe

1 005,00402
□ 003,012 or 001/009.005 Caucasoid - Netherlands. Europe

005,- m 007,010 20,25 American Indian - Warao, South America

1 005.- 010,- 20,- American Indan - Warao, South America

002/003/006/007/008,005 002,010 12,20 Oriental - Japan, Asm

002/003/006/007/006,- 002.- 12.- Oriental - Japan, Asia

002/003/006/007/006,-

002/003/006/007/006,-
_

001/009,002

002,007

4.5

12,25

Caucasoid - Netherlands, Europe 

Oriental • China, Asia

002/003/006/007/006,- 1 002,007 Oriental - Hong Kong Chinese, Asm

1 Negative 006,007 Caucasoid - North America

002/003/006/007/008,005 001/009,002 2.19 Caucasoid - Ashkenaa Jew

001.00402 003,012 or 001/009,005 8,10 Caucasoid - Germany, Europe

002/003/006/007/006, 005 001/009,002 19,26 Caucasoid - Australia

001,00402 003,012 or 001/009,005 Caucasoid - Italy, Europe

1 001,00401 006,010 or 001/009.007 Caucasoid - Australia



Table 6.1. Continued.

I0R2DL1 20L2 20S1 2DS2 7DS* 2DS4 ZDS 5 ZDP1 KIM;-I 3DL3 3 DPI

00202/005, 001,00401 006,010 or 001/009,007

00202/005, 001/009,PF04015

001 oz.oos -*•. I ,.,,.. 00/  0 100 0 2 /0 0 6

002/003/006/007/006. 005 002.011AAM.L 003,004

002/006 00201,005 002/003/006/007/006,00402 006,011 or 003,007

002/006.- 002/003/006/007/000, 001/009.002

002,004 004/005, uOZOl 00 s WHNM 006,010 or 001/009,007

00202/005 -004/005, 006,010 or 001/009,007

00102.005 002/003/006/007/006,005 001/009,002

001/009,

00102- 002/008/006/007/006, 001/009,

• k .-k v 002/003/006/007/006,-

00202/005. 007,010

00202/005,

001/102/006 00102,00201 002/003/006/007/006,00402003,004 006,011 or 003,007

00102.005 002/003/006/007/006,-002,004 002/006, O01 '009 002

00102.00202 002/003/006/007/006. 001/009.002

004100 ■ Negative 00201.005 002/003/006/007/006,00402

rx.ioz oo', 002/003/006/007/008.003.004 006,010 or 001/009,007

00102, 002/003/006/007/006

Hp ETHNcmr

Caucasoid • Franca, Europe

Caucasoid • France, Europe

Caucasoid - Germany. Europe

Caucasoid - Australia

Caucasoid - En^and. Europe

« , Caucasoid - Germany, Europe

Caucasoid - France, Europe

Caucasoid - Germany. Europe

I 1 U I Caucasoid - En^and. Europe

. 0 , Caucasod - North America

"

Caucasoid - Austrafta

American indan - Warao. South America

20.25 American mdan - Warao. South Amenca

- American mdan - Warao, South America

Caucasoid • Netherlands, Europe

Oriental • Japan, Asia

11.12 Caucasoid - Entfand, Europe

Caucasoid - Ashkenaa Jew

1 Caucasoid • Tamil, mda. Asia

Oriental - Japan, Asia

NOTE: Black boxes indicate presence of gene and white boxes indicate absence of gene. Column titled H p indicates the inferred 

haplotype based on the designations given by Shilling (Shilling eta /. 2002). Cells homozygous for the KIR region are highlighted in 

yellow, NT= Not tested.
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6.2.2 KIR gene and allele phenotypic frequencies

The phenotypic frequency of the observed KIR genes and alleles was calculated so as to 

describe the characteristics of this reference panel to allow a comparison with the KIR 

profile of this data set to the KIR profiles generated for smaller sets of data by other 

research groups published since our study was completed. The frequency with which 

each KIR gene and allele was observed in the 10th IHW reference panel is given in table 

6 .2 .

Five KIR genes were shown to be present in all samples assayed, four of which are 

framework genes known to be present in all known KIR haplotypes. The fifth gene that 

was shown to be present in all of the cell lines of this reference panel was KIR2DL1. 

This is a very interesting finding as KIR2DL1 is not a framework gene. Our results 

provide evidence that KIR2DL1 is present in most, if not all, human KIR genotypes and 

strongly suggests a critical role for this gene in human immunity. This reference panel 

includes representative cell lines of all five known KIR2DL1 alleles known to date. 

However, as some allele combinations of KIR2DL1 (as well as KIR2DL3, KIR2DL4, 

KIR3DL1 and KIR3DL2) could not be unambiguously discriminated, they are given 

here as strings. In these cases, only one allele of those shown in the string has been 

detected. In addition, our typing results provide representative cell lines bearing 

homozygous combinations of each one of these KIR2DL1 alleles. The most common 

KIR2DL1 alleles observed in this reference panel were *003, *002 and *004, which 

were present in approximately 75%, 30% and 15% of the samples tested, respectively.

KIR2DL2 was shown to be present in 45% of the cell lines comprising this reference 

panel. Roughly 55% of the cell lines expressing KIR2DL2 also expressed KIR2DS2. 

All of the cell lines that were shown to be KIR2DL2 negative expressed KIR2DL3. 

More than 93% of the cell lines of this reference panel expressed the KIR2DL3 gene. 

Five of the six KIR2DL3 alleles known to date were observed in this panel, and our 

typing results provide representative cell lines bearing homozygous combinations of 

each one of these KIR2DL3 alleles. The most common KIR2DL3 allele observed in this 

reference panel was *001 which was present in 75 % of the samples tested, followed by 

*002/006 and *004/005, which were present in nearly 35% and 5% of the samples 

tested, respectively.
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Table 6.2. KIR gene and allele frequencies in the IHW reference panel

K IR 2D L5

Gene Allele Phenotypic
frequency

KIR2DL1 *001 0.50

*002 0.29

*003 0.75

*004 0.16

*005 0.05

*004/005 0.07

KIR2DL2 All f 0.45

K1R2DL3 *001 0.76

*002/006 0.32

*003 0.0

*004/005 0.05

KIR2DL4 *00101 0.0

*00102 0.46

*00201 0.20

*00202 0.11

*003 0.0

*004 0.0

*005 0.35

*006 0.01
*007 0.0

*00202/005 0.28

*00202/006 0.02
*00201/00202 0.02

All 0 .48

KIR3DL1 *001 0.17

*002/003 /006 /007 /008 0.47

*00401 0.05
*00402 0.24

*005 0.40

KIR3DS1 A lC 0.36

KIR3DL2 *001/009 0.36

*002 0.34

*003 0.07
*004 0.0
*005 0.06

*006 0.06
*007 0.23
*008 0.01

*010 0.15
*011 0.03
*012 0.01

KIR2DS1 A llf | 0 .34 |

KIR2DS2 A ll* 0.25

| KIR2DS3 A ll* 0.24

KIR2DS4 a i c 0.91

| KIR2DS5 A ll1 0.31

KIR3DP1 A ll1 1.00

KIR3DL3 A i r 1.00

KIR2DP1 | A i r 0.98

f - Generic oligonucleotide pairs amplify all known KIR alleles within a gene.
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The KIR2DL3 subtyping results demonstrated the presence of KIR2DL3 negative cell 

lines in seven instances, all of which were shown to be positive for KIR2DL2. This 

finding supports the existence of an allelic relationship between these two KIR genes. 

However, we found the presence of two KIR2DL3 alleles in nearly 9% of the KIR2DL2 

positive samples, which suggests that in some cases, they are present in KIR haplotypes 

as two separate genes. Whether these findings relate to the existence of two paralogous 

genes with similar sequences, as happens with KIR2DL5A and KIR2DL5B (Gomez- 

Lozano et al. 2002), the expected profile of two different KIR genes or the result of a 

novel KIR2DL2 or KIR2DL3 allele, remains uncertain. The recent description of 

duplicate copies of KIR genes on the same haplotype also raises the possibility that 

these findings might indeed reflect the existence of a novel haplotype bearing both 

KIR2DL2 and KIR2DL3 genes (Williams et al. 2003a; Williams et al. 2003b).

All of the cell lines of this reference panel expressed the KIR2DL4 gene. Five of the 

nine KIR2DL4 alleles known to date were identified in this reference panel. Our 

subtyping results provide representative cell lines bearing homozygous combinations of 

four of these alleles. In this reference panel, the most common KIR2DL4 alleles were 

*00102, *005 and *00201 which were present in 46%, 35% and 20% of the cell lines, 

respectively.

I did not discriminate between alleles of the closely related KIR2DL5A and KIR2DL5B 

genes. KIR2DL5 was shown to be present in less than 50% of the cell lines tested. 

Although the individual activating KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5 and 

KIR3DS1 genes were seen in less than 36% of the cell lines, KIR2DS4 was shown to be 

present in nearly 91% of the cell lines of this reference panel.

Approximately 91% of the cell lines of this reference panel expressed the KIR3DL1 

gene. This reference panel includes representative cell lines for all of the KIR3DL1 

alleles known to date. Our typing results provide representative cell lines with 

homozygous combinations of all of these KIR3DL1 alleles. The most common 

KIR3DL1 alleles were *002/003/006/007/008 and *005, which were present in 47% 

and 40% of the cell lines of this reference panel, respectively. Interestingly, our results 

provide evidence supporting the idea that KIR3DL1 and KIR3DS1 are related to each
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other as alleles of the same gene, as eight out of nine KIR3DL1 negative cell lines were 

shown to possess KIR3DS1. In addition, in some cell lines, the inferred haplotype 

structure can accommodate the presence of KIR3DS1 and a single KIR3DL1 allele, 

thereby supporting this allelic relationship (i.e. COX and PEI 17). Nearly 37% of the 

cell lines of this reference panel were shown to express KIR3DS1. Approximately 80% 

of these KIR3DS1 expressing cell lines did not possess KIR3DL1 alleles. However, 

nearly 20% of the cell lines expressing KIR3DS1 also expressed two KIR3DL1 alleles 

(cell lines E4181324, WJR076, EJ32B, STEINLIN, MLF, ARBO and FPAF). Although 

this finding might be seen as a contradiction to the previously mentioned allelic 

relationship, it provides strong evidence in support of an asymmetric recombination 

event leading to the duplication of the ancestral KIR3DL1/S1 loci on some haplotypes. 

The importance of this finding gains further support from our data as some of the cell 

lines expressing both KIR3DS1 and KIR3DL1 genes were additionally shown to 

express three KIR2DL4 alleles (a neighbouring gene on KIR haplotypes), as shown in 

figure 6.1. In this reference panel the KIR3DL1/3DS1/2DL4 gene duplication was 

observed in one cell line (E4181324).

Ancestral
haplotype

Recombinant
haplotype

3DL3 2DP1 2DL1 3DP1 2DL4 3DL1 2D S4 3DL2

2DP1 2DL1 3DP1 2DL4

Figure 6.1. Recombination event leading to the KIR3DL1/3DS1/2DL4 gene duplication. Asymetric 

recombination events are thought to be responsible for the duplication of a large span of the KIR region 

encompassing KIR2DL4 and KIR3DL1) (Martin et al. 2003; Williams et al. 2003b).

KIR3DL2 is another framework gene which was resolved to allelic resolution. The most 

common KIR3DL2 allele group observed in our study was *001/009 which was shown 

to be present in approximately 35% of the samples tested, followed by *002 and *007, 

which were present in approximately 35% and 23% of the samples tested, respectively. 

We observed the majority of the KIR3DL2 alleles known to date in this reference panel
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and our results provide representative cell lines bearing homozygous combinations of 

five of these KIR3DL2 alleles.

The KIR2DP1 pseudogene was observed in more than 97% of the cell lines comprising 

this reference panel. Three cell lines were shown to be negative for this pseudogene 

(MADURA, PF04015 and BOB). The fact that two of these cell lines (MADURA and 

PF04015) do not express KIR2DL3 and possess a single KIR2DL1 allele, suggests that 

the absence of KIR2DP1 might be related to the unequal crossing-over event which 

gave rise to the hybrid KIR2DL2 gene (see figure 1.15). This interesting finding 

provides a reference cell line lacking this ubiquitous pseudogene on both haplotypes as 

well as direct evidence of the ongoing evolution of the KIR cluster within the LRC. The 

framework genes KIR2DL4, KIR3DL2, KIR3DL3 and the KIR3DP1 pseudogene were 

shown to be present in 100% of the cell lines tested.

The phenotypic frequencies of KIR genes observed in this reference panel closely 

resemble those of Caucasoid populations as shown in figure 6.2 (Uhrberg et al. 1997; 

Norman et al. 2001; Toneva et al. 2001). This finding was not surprising given that 

most of the cell lines which comprise this panel are of Caucasoid origin as indicated in 

table 6.2. Although the phenotypic frequencies of inhibitory KIR genes are very similar 

between this reference panel and those of Caucasoid populations, the frequencies of 

activating KIR genes exhibit greater variations. The frequency of activating KIR genes 

was lower amongst the IHW panel cell lines than those observed in the Caucasoid 

populations studied. This is was partly due to the fact that the IHW panel is comprised 

of cell lines of many different ethnic backgrounds. However, most activating KIR genes 

were seen at lower frequency in this reference panel even when only cell lines of 

Caucasoid origin were considered. When the analysis of phenotypic frequencies is 

restricted to cell lines of Caucasoid ethnicity, the frequencies achieve greater similarity 

to those of open Caucasoid populations.
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■ Caucasoid
■ IHW
□ IHW-Caucasoid

2DL1 2DL2 2DL3 2DL4 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 2DP1 3DL1 3DS1 3DP1 3DL2 3DL3

Figure 6.2. KIR gene phenotypic frequencies of the IHW cell line panel and those of a Caucasoid 

population. The phenotypic frequencies are expressed as a percentage of the individuals bearing a KIR 

gene. The KIR gene phonotypic frequencies for the Caucasoid population were taken from previously 

published data (Uhrberg et al. 1997; Norman et al. 2001; Toneva et al. 2001).

The phenotypic frequency of KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1 and 

KIR3DL2 alleles amongst the cell lines of this reference panel were shown to be similar 

to those described for a Caucasoid population by us (see Chapter 8).

6.3 Observed KIR genotypes

The analysis of the KIR genes present in the 10th IHW cell line reference panel was 

undertaken in order to describe the genotypes present, and correlate them with those 

which have been described by other studies. Twelve novel gene arrangements were 

discovered amongst the cell lines of this panel (table 6.3). These new KIR genotypes 

represent variations of genotypes that have previously been described and include cell 

lines of both Caucasoid ethnicity as well as cell lines with other ethnic backgrounds.

The most common novel KIR genotype is #12, which was present in nearly 4% of the 

IHW cell lines. This was also the fourth most common genotype observed in the entire 

10th IHW reference panel. This genotype is characterised by the lack of the inhibitory 

KIR2DL5 gene and the activating KIR2DS1, KIR2DS3, KIR2DS5 and KIR3DS1 

genes. This genotype structure has never before been described and was observed in 

three cell lines of Caucasoid origin as well in a cell line of North American Hispanic 

origin (MGAR).
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Another interesting novel KIR genotype is genotype #14, which was observed in a 

single cell line derived from a Warao American Indian (LZL). This genotype lacks the 

activating KIR2DS1, KIR2DS2, KIR2DS5 and KIR3DS1 genes. This new genotype is 

interesting as it lacks the activating counterparts of the three main inhibitory KIR genes 

that recognise HLA-C and HLA-Bw4 allotypes. The remaining novel KIR genotypes 

are interesting in that they were all seen in cell lines of Caucasoid origin, suggesting 

that KIR diversity, even in this well characterised population, is higher than initially 

thought.

The 33 KIR genotypes observed in the 10th IHW reference panel also include 

representatives of previously defined genotypes as shown in table 6.3. The most 

frequent genotype, which is present in 34% of the cell lines of this panel, possesses only 

seven KIR genes and two pseudogenes (genotype #1). This genotype is characterised by 

the presence of a single gene encoding for an activating protein (KIR2DS4) and 

represents individuals homozygous for group A haplotypes. Subsequent studies carried 

out since our characterisation of the 10th IHW panel KIR diversity have shown that this 

genotype is present in approximately 27% of all human populations (Yawata et al. 

2002). The second most common genotype observed in the IHW cell line panel is 

genotype #5 which has the same KIR genes present as the previous genotype and in 

addition has KIR2DL5, KIR2DS1, KIR2DS5 and KIR3DS1. This genotype was present 

in approximately 11% of the cell lines and possesses the same gene organisation as the 

fourth genotype described by Yawata (Yawata et al. 2002). The third most frequent 

KIR genotype observed was genotype #10, which was present in almost 5% of the cell 

lines. This genotype has the same KIR gene organisation as that present in genotype #1, 

additionally bearing KIR2DL2.

The fifth most common genotypes were genotypes #18 and #31, which were present in 

nearly 3% of the cell lines studied, The structure of these two genotypes correlates to 

the structure of the third and sixth genotypes described by Yawata (Yawata et al. 2002). 

The sixth most common genotypes encountered were present in nearly 2% of the cell 

lines assayed and included genotypes #4, #7, #8, #16, #28 and #33.
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The genotypes shown in table 6.3 are grouped according to the number of KIR genes 

starting from the most common and simple genotype arrangement observed. Genotypes 

have been numbered consecutively in the first column and their similarity to previously 

published genotypes indicated in the last column, according to the nomenclature used 

by Yawata (Yawata et al. 2002). Gene arrangements that do not match the structure of 

previously characterised KIR genotypes are indicated in the far right column by ‘New’. 

The frequency of the genotype within the 10th IHW cell line panel is shown on the 

penultimate column and given as the percentage of cells possessing each genotype.
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Table 6.3. KIR genotypes of the IHW cell line panel

Gt#* 2DL1 2DL2 2DL3 2DL4 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 2DP1 3DL1 3DS1 3DL2 3DL3 3DP1 % ' Ywt'

m 34.0 1

3 1.0 New

3 1.0 New

3 1.9 24

3 10.7 4

3 1.0 7

3 1.9 30

3 18

3 1.0 14

3 4.9 36

3 1.0 2

3 3 9 New

3 1.0 New

3 1.0 New

3 1.0 New

3 1.9 New

3 1.0 New

3 2.9 3

3 1.0 New

fO O 1.0 32

3 1.0 33

3 1.0 New

3 1.0 34

3 1.0 New

3 1.0 71

3 1.0 New

3 1.0 48

3 1.9 8

29 1.0 10

[_3oJ 1.0 13

0 2.9 6

1.0 41

0 1.9 5

* - Local genotype numbering.
NOTE: Blue boxes indicate presence of gene, white boxes indicate absence of gene. 
T - Genotype numbering is based on Yawata (Yawata etal. 2002).
1 - Genotype frequency observed in 10th IHW cell line samples.
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6.4 Inferred KIR haplotypes

It was possible to infer the presence of some KIR haplotypes based on common gene 

and allele associations. In doing this we were able to describe representative cell lines 

for KIR haplotypes that had previously been described by family segregation analysis 

(Shilling et al. 2002). Approximately 60% of the cell lines of the 10th IHW were 

informative with regards to this, as shown on table 6.4. The assignment of haplotypes 

followed the criteria described by Shilling (Shilling et al. 2002) and considered allele 

combinations of KIR2DL1, KIR2DL3, KIR3DL1 and KIR3DL2 genes as well as 

genotyping data for KIR2DL2, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4 

and KIR2DS5. The haplotype assignments shown for some cells on table 6.1 have not 

been substantiated by segregation analysis and should therefore be taken as examples of 

cell lines with similar KIR gene and allele combinations consistent with those described 

as haplotypes in the family segregation study previously mentioned.

Group A haplotypes were observed in homozygous combinations in nearly 40% of the 

cells assayed (i.e. cell line SA), whereas homozygous group B haplotypes were 

observed in less than 5% of the samples (i.e. cell line WT51). This distribution of KIR 

haplotypes is very similar to that observed in Caucasoid populations (Shilling et al. 

2002). Forty-six cell lines were found to be homozygous for group A haplotypes but 

heterozygous for their allele content (e.g. YAR). Only seven cell lines were shown to be 

homozygous for group B haplotypes, none of them being homozygous at the allele level 

(e.g. TISI). Finally, 47 cell lines were found to have heterozygous A and B haplotype 

content with varying allelic combinations (e.g. DEM).

In addition, the haplotypes found to be predominant in previous studies (haplotypes 12 

and 19, respectively, according to the numbering given by Shilling) were also shown to 

be the most common haplotypes present in this cell line panel. Ambiguous haplotype 

combinations were observed in four IHW cell lines (KAS011, JBUSH, SLE005 and 

BTB). The haplotypes present in these cell lines were not included in the calculation of 

the haplotype frequency given in table 6.4.
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Table 6.4. KIR haplotypes of the IHW cell line panel

Haplotype8 Number of 
cell lines % * Ambiguous

combinations

#19 14 25.0 2
#12 13 23.2 2
#20 10 17.9 1
#10 7 12.5 0
#25 7 12.5 1
#8 6 10.7 0
#11 5 8.9 2
#5 4 7.1 2
#9 4 7.1 1
#16 4 7.1 1
#4 3 5.4 2
#33 3 5.4 0
#24 2 3.6 1
#28 2 3.6 0
#35 2 3.6 0
#2 1 1.8 0
#15 1 1.8 0
#17 1 1.8 0
#26 1 1.8 0
#27 1 1.8 0
#30 1 1.8 0
#31 1 1.8 0
#37 1 1.8 0

8 - Haplotype designation based on Shilling (Shilling et al. 2002).

* - Haplotype frequency in the IHW cell line panel from a total of 56 cell lines for which haplotypes 

could be assigned.

Additionally, the fact that 42% of the IHW cell lines do not possess KIR gene/allele 

combinations matching those of previously described haplotype structures, further 

increases known KIR haplotype diversity. This suggests that KIR diversity is far more 

extensive than initially anticipated, whereby almost any combination of genes and 

alleles is possible. As more studies undertake the high resolution typing of KIR alleles, 

a better understanding of the true extent of diversity of these genes will be achieved.

6.5 Definition of KIR homozygous cell lines

As the majority of the cell lines that comprise the 10th IHW cell panel were initially 

selected on the basis that they were homozygous for their HLA region, and that many 

were also consanguineous, it was expected that approximately 6% of them would also 

be homozygous for the LRC. The description of these KIR homozygous cell lines was
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deemed important as they would provide an excellent reference material on which to 

evaluate novel typing approaches without the influence of other confounding alleles and 

provide excellent material in which to carry out full genomic sequencing of their KIR 

region (Geraghty, D.E et al; direct PAC sequence submission for WT47, AY320039). 

Eleven potentially KIR homozygous cell lines were described (SA, DUCAF, SPOOIO, 

TUBO, WVB, WT47, SPL, HID, EMJ, MT14B and LKT3), shown highlighted in 

yellow on table 6.1.

The KIR gene and allele combinations observed in these homozygous cell lines allowed 

us to infer the structure of their KIR haplotypes. Two of the eleven KIR and HLA 

homozygous cell lines (WVB and WT47) possessed novel KIR haplotypes which have 

not been described previously. Although the KIR gene and allele combination observed 

in the WT47 cell line allowed us to classify it as a group B haplotype, the haplotype 

structure present in the WVB cell line exhibited features of both group A and group B 

haplotypes.

The group B haplotype seen in the WT47 cell line is new in that it shares features of 

two known group B haplotypes described by Shilling (haplotypes #33 and #37) 

(Shilling et al. 2002). This inferred haplotype lacks KIR2DL3 and KIR3DL1 but 

possesses all activating KIR genes (except KIR2DS4). The WT47 cell line was derived 

from a European Caucasoid individual. The novel haplotype seen in the WVB cell line 

was observed in a cell line of Caucasoid ethnicity and corresponds to the novel KIR 

genotype #22 shown in table 6.3. This novel KIR haplotype deviates from known 

haplotype structures in that it possesses attributes of both group A and group B 

haplotypes. Some features of this novel KIR haplotype, like the presence of KIR2DL2, 

lack of KIR3DL1 and presence of KIR3DS1, are reminiscent of group B haplotypes. 

However, the type and number of activating KIR genes present in this haplotype 

(presence of KIR2DS4 and lack of KIR2DS1, KIR2DS2, KIR2DS3 and KIR2DS5) are 

similar to the structure of group A haplotypes. In addition to this, the KIR3DL2 allele 

present in this haplotype has previously only been observed in group B haplotypes but 

not in group A haplotypes (Shilling et al. 2002).
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The remaining nine KIR and HLA homozygous cell lines were shown to represent 

group A haplotypes. The most common group A haplotypes encountered were 

haplotypes #12 and #19, designation based on Shilling (Shilling et al. 2002), which 

were present in three and two cell lines, respectively. The remaining group A 

haplotypes observed in the IHW panel were each present in a single cell line and 

include haplotypes #20, #11, #10 and #9, haplotype designation based on Shilling 

(Shilling et al. 2002).

6.6 A KIR typing Multi-laboratory evaluation of reference cells

As part of the 13th IHW a comparison of KIR genotyping data for a subset of the 10th 

IHW cell panel was undertaken so as to evaluate the reproducibility of the results 

generated and robustness of the techniques currently employed by four different 

laboratories. As the data generated by us for this large dataset was presented during the 

13th IHW conference, we were invited to collaborate in this study by supplying the KIR 

typing profiles of a small subset of cells.

The participating laboratories included the Anthony Nolan Research Institute; the 

Department of Clinical Immunology and Biochemical Genetics, Royal Perth Hospital, 

Australia; the Memorial Sloan Kettering Cancer Center, New York, USA; the Northern 

Ireland Histocompatibility & Immunogenetics Laboratory and the University Hospital 

Immunology Service, Clfnica Puerta de Hierro, Spain. Four of these laboratories 

employed a PCR-SSP based technique while the fifth used a PCR-SSOP approach 

(Crum et al. 2000). Each laboratory was asked to type the same 20 BLCL for the 

presence of 12 KIR genes. Only results submitted by more than three laboratories were 

included in this analysis.

The consensus results for the 20 BLCL KIR genotyping data generated by the five 

laboratories is presented in table 6.5. Complete concordance to our data was met by the 

four participating laboratories for 16 of the cell lines. However, discrepant results were 

observed for five KIR genes, four of them involving activating KIR.
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Table 6.5. Multi-laboratory evaluation of IHW cell line KIR profiling

Cell name Cell#
JBUSH 9035
TAB089 9066
BTB 9067
KAS116 9003
SAVC 9034
PLH 9047
E4181324 9011
PE117 9028
BOLETH 9031
OLL 9071
EJ32B 9085
HOR 9053
PITOUT 9051
LBUF 9048
WT100BIS 9006
RML 9016
CF996 9104
T7527 9077
CB6B 9059
WT47 9063

2DL1 2DL2 2DL3 2DL4 2DL5

1
N OTE: B oxes in blue indicate presence o f gene, white boxes indicate absence.
®  = Typing discrepancies between laboratories.

First, we had previously demonstrated that the cell line WT100BIS expressed 

KIR2DS1, a finding that was successfully reproduced by all of the other participating 

laboratories with the exception of the Northern Ireland group. As the Northern Ireland 

group is the only participating laboratory that does not use a PCR-SSP approach to KIR 

typing, this discrepant result might be a reflection of the limitations/differences of their 

PCR-SSOP approach.

Second, we had previously demonstrated that the PITOUT and WTIOOBIS cell lines did 

not express the K1R2DS2 gene. Similar results for these cell lines were subsequently 

generated by the Australian and Spanish groups, however, the American and Northern 

Ireland groups failed to reproduce our results.

Third, we had previously demonstrated that the WTIOOBIS cell line did not express the 

KIR2DS3 gene, a finding which was subsequently reproduced by the Australian group. 

However, the results generated by the American and Northern Ireland groups differed 

from ours, as they detected the presence of the KIR2DS3 gene in this cell line.

Fourth, we had previously demonstrated the presence of KIR2DS5 in the PITOUT cell 

line. The KIR2DS5 genotyping results generated for this cell line by the Australian and
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Spanish group were identical to our results. However, the Northern Ireland group failed 

to demonstrate the presence of this activating KIR gene in this cell line. As both the 

Australian and Spanish groups employ the same KIR2DS1, KIR2DS2, KIR2DS3 and 

KIR2DS5 specific primer pairs as we have described in our KIR typing system, these 

discrepancies are likely to be a result of primer specificity differences.

Finally, we had previously demonstrated through our subtyping approach that the 

CF996 cell line did not express any of the nine KIR3DL1 alleles known to exist. All of 

the participating laboratories failed to generate a similar result. The fact that our seven 

reaction subtyping approach to KIR3DL1 subtyping did not identify a single allele for 

KIR3DL1 suggest that the positive result discovered by the other groups might be a 

consequence of the presence of a KIR3DS1 variant with similar motifs to those present 

in KIR3DL1 and recognised by their genotyping primers. This possibility is further 

supported by the fact that we had demonstrated the presence of KIR3DS1 in this cell 

line, a KIR gene that has been shown to behave as an allele of KIR3DL1.

6.7 D iscussion

The use of our PCR-SSP KIR typing system in the cell lines of the 10th IHW panel 

allowed us to unequivocally characterise the KIR gene and allele profile of more than 

90% of the samples. The quality of the available DNA did not allow us to determine the 

allele profiles of some KIR genes for the remaining 8% of the cell lines.

In some instances, the presence of certain alleles masked the presence of other alleles of 

the same gene. This allele masking was only observed for certain alleles of KIR2DL1 

and KIR2DL4. Our subtyping approach did not enable us to discriminate the presence 

of KIR2DL1*005 alleles in cell lines shown to possess KIR2DL1*004. Consequently, 

such KIR2DL1 subtyping ambiguities are designated *004/005. Similarly, our 

technique was not capable of discriminating the presence of KIR2DL4*00202 alleles in 

the presence of KIR2DL4*005, 2DL4*006 and 2DL4*00201. These KIR2DL4 

subtyping ambiguities are designated *00202/005, *00202/006 and *00201/00202, 

respectively. In addition, KIR2DL4*00102 alleles can also be masked by the presence 

of KIR2DL4*003 alleles, however, this did not pose a problem as we did not identify
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any KIR2DL4*003 positive cell line. The existence of subtyping ambiguities for 

KIR3DL2 as discussed by Shilling (Shilling et al. 2002), did not allow us to state the 

presence of either of two allelic combinations. Consequently, the KIR3DL2 typings 

were given as two possibilities of allele combinations for each of the 22 ambiguous 

typings encountered (i.e. the KIR3DL2 subtyping of cell line HOM-2 can be a 

combination of either *003, *012 or *001/009, *005 alleles).

The 10th International Histocompatibility Workshop panel of EBV-transformed 

B-lymphoblastoid cell lines was originally devised as a collection of reference cells 

with known HLA typings for the optimisation of existing HLA-typing methodologies 

as well as for the development of novel techniques. The comprehensive characterisation 

of the HLA profile of these cell lines has established the 10th IHW cell line panel as a 

fundamental tool of widely available reference material which has enhanced our 

knowledge of HLA-diversity and of its functional relevance. The cell lines which 

comprise this reference panel were selected to include homozygous representatives of 

most HLA antigens, many of which were derived from the offspring of consanguineous 

matings.

Although several attempts have been made to define the KIR gene diversity present in 

small subsets of cell lines, some of them belonging to the 10th IHW panel (Uhrberg et 

al. 1997; Toneva et al. 2001; Hsu et al. 2002; Uhrberg et al. 2002; Cook et al. 2003), 

our study represents the most extensive and comprehensive analysis of KIR gene 

diversity in a panel of widely available reference cell lines for which their HLA content 

has also been resolved at high-resolution. This study is extensive by providing the KIR 

typing results of 102 different cell lines and it is comprehensive by providing KIR 

typing results for the 17 KIR genes known to exist. Additionally, although other 

research groups have defined the allelic content of a small subset of the 10th IHW panel 

(Halfpenny et al. 2004; Keaney et al. 2004; Maxwell et al. 2004; Williams et al. 2004), 

our study represents the first attempt to achieve allelic levels of resolution for the five 

KIR genes which have been shown to bind HLA class I antigens. Overall, the KIR 

genotyping results generated by other research groups after we had characterised the 

KIR profile of this large panel were more than 98% concordant with our data (Gomez- 

Lozano and Vilches 2002; Hsu et al. 2002; Cook et al. 2003).

250



Chapter 6

The application of the PCR-SSP KIR typing technique described in the previous chapter 

on this panel of reference cell lines has provided us with the opportunity to assess its 

robustness and reproducibility, confirming the capabilities of this typing approach at 

managing high-sample throughputs. Moreover, the comparison of the success rates 

achieved with different PCR-SSP approaches, as described in the multi-laboratory 

evaluation, further supports the usefulness and reliability achieved by our technique.

The KIR typing of the 10lh IHW BLCL reference panel has proved valuable at defining 

the full extent of KIR gene diversity, providing control cell lines which are 

representative of all KIR genes and most alleles defined to date, as well as being 

representative cell lines of known KIR genotypes and haplotypes. This collection of 

KIR profiles contains cell lines capable of being used as positive controls for all of the 

KIR genes and for most of the KIR alleles described to date, as well as negative 

controls for KIR2DL2, KIR2DL3, KIR2DL5, KIR2DS1, KIR2DS2, KIR2DS3, 

KIR2DS4, KIR2DS5, KIR2DP1, KIR3DL1 and KIR3DS1. The KIR alleles that were 

not observed in this cell line panel include: KIR2DL3*003, KIR2DL3*005, 

KIR3DL2*004, KIR3DL2*009, KIR2DL4*00101, KIR2DL4*003, KIR2DL4*004, - 

KIR2DL4*007 and KIR2DL4*008. Similarly, as some KIR alleles were not 

discriminated unambiguously (those present as allele groups and indicated by strings of 

alleles), it is probable that some of the alleles included in the typing strings are not 

present in this reference panel.

As many of the cell lines represented in this panel are both homozygous for their HLA 

region and of consanguineous origin, we expected approximately 6.25% of these cells 

lines to additionally be homozygous for their KIR encoding region. Our description of 

eleven cell lines with homozygous KIR typings, representing more than 10% of the 

entire IHW panel, exceeded the initially expected number. We hypothesise that this 

apparent excess of homozygous cell lines might be the result of either the existence of 

novel KIR alleles not distinguished by our current subtyping oligonucleotide arrays, or 

a consequence of heterozygosity at other KIR loci for which we are not achieving allelic 

resolution. As such, the future inclusion of subtyping oligonucleotide arrays for the 

remaining KIR genes may decrease the number of truly KIR homozygous cell lines 

present in this panel. These KIR and HLA homozygous cell lines, although mostly of
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Caucasoid ethnicity, include two cell lines of Oriental origin as well as two cell lines of 

American Indian ethnicity.

Interestingly, the KIR gene and allele phenotypic frequencies observed in this panel 

were shown to be similar to those previously described for Caucasoid populations. 

Additionally, KIR genotype and haplotype structure similarities between the cell lines 

of this panel and those described in Caucasoid populations (Shilling et al. 2002) were 

also shown to exist. This is not surprising however, as the great majority of the cell lines 

included in this panel have a Caucasoid origin and have not been selected for their LRC 

or for any feature residing on chromosome 19.

The discovery and description of 12 novel KIR genotypes in this reference panel further 

expands our perspective of the true extent of KIR diversity, suggesting the existence of 

novel combinations of KIR genes and alleles to those that have been defined, or 

previously considered to be possible. This concept is further supported by the recent 

description of cell lines with unusual features such as the KIR3DL1/3DS1/2DL4 gene 

duplication event. Together these findings highlight the complexity of the mechanisms 

involved in the generation and evolution of KIR gene diversity.

The KIR profiles presented in this study will undoubtedly benefit the research 

community in the future as a highly detailed reference panel in a similar manner to the 

impact that the establishment of the 10th IHW BLCL reference panel had on the HLA 

community.
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Chapter Seven

Characterisation of KIR gene diversity in 

Mexican Mestizo families

7.1 Introduction

In the third chapter of this thesis I described and analysed the KIR gene diversity 

generated by sequence variations. Within a single individual, KIR diversity is a 

consequence of haplotypic variations, differential transcription, alternative splicing, 

post-translational modifications and combinatorial expression (Yawata et al. 2002b). At 

the species level, KIR diversity is further increased as a consequence of population 

differences in the type and frequency of KIR genes, alleles, genotypes and haplotypes. 

Human populations can exhibit different frequencies of KIR genes and alleles, 

genotypes as well as haplotypes. These population differences have been attributed to 

natural selection driven by pathogen pressures and MHC constraints (Vilches and 

Parham 2002). Although the KIR gene diversity of several populations has been 

extensively studied, Caucasoids are currently regarded as the best characterised human 

population for KIR gene content.

In this chapter I set out to further our knowledge of KIR gene diversity by 

implementing our PCR-SSP KIR typing approach on a cohort of Mexican Mestizo 

families. With this study we aim to characterise the KIR gene diversity present in an as 

yet undocumented population. These results will then be compared to those that have 

been described in other population studies to identify similarities and/or differences 

between them. Most importantly, the analysis of KIR gene family segregation patterns 

will allow us to increase our understanding of KIR haplotype structures and diversity.

253



Chapter 7

7.2 KIR typing results

7.2.1 Overview of typing results and family structures

KIR typing was carried out on 150 individuals comprising 31 different Mexican 

Mestizo families and 62 unrelated individuals. Mestizos are defined as individuals with 

a mixed racial ancestry. Mexican Mestizos have descended from European and Native 

Amerindian ancestors (Kostyu and Amos 1981). Five of these families were composed 

of healthy individuals living in Mexico City, whereas the remaining 26 families had at 

least one member with a clinical history of type 2 Diabetes Mellitus. The average 

number of offspring was three, ranging from one to six. KIR typing involved screening 

for the presence of 17 KIR genes, and achieved allele levels of resolution in four of 

them (KIR2DL1, KIR2DL3, KIR3DL1 and KIR3DL2). All of the samples analysed 

were shown to possess KIR2DL1, KIR2DL3, KIR3DL2, KIR2DL4 and KIR3DL3 

genes as well as the KIR2DP1 and KIR3DP1 pseudogenes. The presence of 

KIR2DL 1*005, KIR2DL3*003 and KIR3DL2*004, *006 and *012 alleles was not 

observed in this population.

7.2.2 KIR gene and allele frequency distribution

Estimation of KIR gene and allele phenotypic frequencies was used for comparisons 

against other population studies of KIR diversity. The distribution of KIR gene and 

allele frequencies observed amongst the 62 unrelated individuals who make up the 

parental members of the 31 families (F0) are shown in table 7.1. This table shows the 

frequency of each KIR gene and allele amongst the 62 unrelated individuals as well as 

in the 124 haplotypes considered. Six KIR genes were found to be present in all the 

samples tested. Four of these KIR genes are known to be framework genes and as such 

were present in all known haplotypes, as shown by the 100% incidence rate amongst the 

124 haplotypes analysed. The remaining two KIR genes, which were observed in all the 

Mexican Mestizo samples assayed, were KIR2DL1 and 2DL3. Both KIR2DL1 and 

KIR2DL3 genes have been shown to be present in more than 90% of the individuals 

tested in previous studies (Uhrberg et al. 1997) and reflects their ubiquity. The 

remaining eleven KIR genes were present in this Mexican Mestizo population with
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varying phenotypic frequencies, ranging from 13% (for KIR2DS3) to 97% (for 

KIR2DS4).

Table 7.1. KIR gene and allele genotypic and phenotypic frequencies observed amongst 62 

unrelated Mexican Mestizo individuals.

G ene A llele G enotyp ic  
F requency  ‘

P h en otyp ic  

F requency *

KIR2DL1 *001 0.02 0.05
*002 0.09 0.2

*003 0.7 0.9

*004 0.06 0.1

*005 0.0 0.0

KIR2DL2 A l l * 0.2 0.4

KIR2DL3 *001 0.7 0.9
*002/6 0.1 0.2

*003 0.0 0.0

*004/5 0.02 0.05

KIR2DL4 A l l f 1.0 1.0

KIR2DL5 A l l + 0.2 0 .4

| KIR3DL1 *001 0.07 0.1
*002/3/6 /7 /8 0.6 0.8

*004 0.1 0.2

*005 0.06 0.1

| KIR3DS1 A l l + 0.2 0.3

KIR3DL2 *001/9 0.1 0.2
*002 0.5 0.8

*003 0.05 0.1

*004 0.0 0.0

*005 0.02 0.05

*006 0.0 0.0

*007 0.2 0.3

*008 0.02 0.03

*010 0.1 0.2

*011 0.02 0.05

*012 0.0 0.0

| KIR2DS1 A l l + 0.2 0.3

| KIR2DS2 A l l f 0.2 0 .4

| KIR2DS3 A l l+ 0.06 0.1

| KIR2DS4 A ll * 0.7 0.9

| KIR2DS5 A l l * 0.2 0.3

| KIR3DP1 A l l * 1.0 1.0

| KIR3DL3 A l l f 1.0 1.0

KIR2DP1 A l l f 0.8 1.0

§ - From a total o f 124 observed haplotypes.
* - From a total o f 62 unrelated individuals. 
f - Generic oligonucleotide pairs amplify all known 
KIR alleles within a gene.
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The distribution of the KIR gene frequencies observed amongst the unrelated 

individuals of our Mexican Mestizo population is shown in figure 7.1, which also 

illustrates the distribution of KIR gene frequencies of eleven additional populations 

previously described. These other population studies include Caucasoid populations 

from the UK, Germany and France (Uhrberg et al. 1997; Norman et al. 2001; Toneva et 

al. 2001), Palestinians (Norman et al. 2001), Thais (Norman et al. 2001), Africans 

(Norman et al. 2002), Karachi South Asians and descendants of South Asians residing 

in Trinidad (Norman et al. 2002), Vietnamese (Toneva et al. 2001), North Indian 

Hindus (Rajalingam et al. 2002), Afro-Caribbeans (Cook et al. 2003), Japanese 

(Yawata et al. 2002b) and Australian Aborigines (Toneva et al. 2001) populations. The 

phenotypic frequency of KIR2DL5, 2DP1, 3DP1 and 3DL3 genes present in our 

Mexican Mestizo population could not be compared to those present in non-Caucasoid 

populations as the presence of these KIR genes was not tested in these studies. 

KIR2DL4 and 3DL2 genes were found to be present in 100% of the individuals of most 

populations shown in figure 7.1.

The KIR gene phenotypic frequencies observed in Mexican Mestizos were shown to 

exhibit greater similarity to Afro-Caribbean, Japanese, Caucasoid, Thai, Vietnamese 

and African populations than to the other populations included in the comparison. 

Amongst these, the Mexican Mestizo population was found to be most similar to the 

Afro-Caribbean population, with which it shared similar phenotypic frequencies for 

nine KIR genes. This was followed by similarities to Japanese, Caucasoid/Thais, 

Vietnamese and African populations, in which the phenotypic frequencies of eight, 

seven, six and five KIR genes were shared, respectively. In contrast, Mexican Mestizo 

KIR gene frequencies were shown to be less similar to North Indian, Karachi, 

Palestinian and Australian aboriginal populations. These findings are very interesting as 

they support current thinking with regards to the migration events that have led to the 

peopling of the Americas (Zegura 1984; Steele and Powell 1992; Horai et al. 1993).
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I Mexican ■Caucasoid □  Vietnamese ■Thai EJapanese ■  African □  Trinidad □  Karachi DN . Indian BAfro-Carib □  Palestinian □  Aborigines

Figure 7.1. KIR gene phenotypic frequencies amongst nine different populations. KIR2DL5, 2DP1, 3DP1 and 3DL3 phenotypic frequencies were only available for 
Mexican Mestizo and Caucasoid populations. The KIR gene phenotypic frequencies of the 11 populations other than the Mexican were taken from their corresponding 
publications (Uhrberg etal. 1997; Norman etal. 2001; Toneva etal. 2001; Norman etal. 2002; Rajalingam etai\ 2002; Yavvata etal. 2002b; Cook etal. 2003).
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The KIR phenotypic frequencies present in the Mexican Mestizo population were 

compared to those of Caucasoids in a more detailed analysis as the KIR profile of this 

second population has also been resolved to allelic levels and comprises the best 

characterised population for KIR gene diversity. The KIR gene phenotypic frequencies 

present in Mexican Mestizo unrelated individuals were shown to be similar to those 

described in Caucasoid populations originating from the USA (Uhrberg et al. 2002), 

Australia (Witt et al. 1999), the UK (Norman et al. 2001) and Northern Ireland (Crum 

et al. 2000). However, statistically significant differences in the gene frequency of 

KIR2DS3 and KIR3DL1 genes between Mexican Mestizos and Caucasoid populations 

were shown to exist (p = 0.008 and p = 0.0056, respectively). The phenotypic frequency 

of KIR2DS3 was shown to be lower amongst Mexican Mestizo individuals in 

comparison to Caucasoid individuals. Similarly, the KIR2DL5 phenotypic frequency 

differences observed between Mexican Mestizo and Caucasoid individuals were 

suggestive of a trend towards a lower frequency in Mexican Mestizo individuals (p = 

0.0663). Conversely, the phenotypic frequency of KIR3DL1 was shown to be higher 

amongst Mexican Mestizos in comparison to Caucasoid individuals. Interestingly, the 

frequencies of these KIR genes in Mexican Mestizos were shown to be similar to those 

of African individuals. Although several small waves of African migration have 

occurred during the last century, we think that these similarities are more likely to 

reflect similar levels of pathogenic challenges for both populations than a genetic 

relationship originating from racial admixture (Jimenez et al. 2002; Ashbolt 2004; Osrin 

et al. 2004).

7.3 KIR genotypes encountered

The eight different KIR genotypes that were observed amongst the F0 individuals are 

shown in table 7.2. The most common genotype observed was also found to be the most 

common in the four study populations compared by Yawata (Yawata et al. 2002b). The 

frequency of this genotype in our population (41.9%) was similar to that observed in 

East Asian populations and higher than its frequency in Caucasoid (31.2%), West Asian 

(14.9%) and African (35.5%) populations (Y aw ata et al. 2002b). Similarly, the 

frequency of this genotype amongst Mexican Mestizos was shown to be higher to that 

of Australian Aborigines (22.4%) (Toneva et al. 2001). Conversely, the frequency of
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this genotype amongst the unrelated Mexican Mestizo individuals was lower than that 

described in a Vietnamese population (64.4%) (Toneva et al. 2001). This genotype 

corresponds to a homozygous combination o f  two group A haplotypes and is 

characterised by the presence o f  five inhibitory genes encoding KIR with specificity for 

the four main HLA specificities but only one activating KIR gene.

T able 7.2. KIR genotypes observed in M exican M estizo unrelated individuals

[ G t’ j |^2DL1 2DL2 2DL3 2DL4 2DL5 3DL1 3DS1 3DL2 2DS1 2DS2 2DS3 2DS4 2DS5 3DL3 3DP1 Freq'

□ 
m  

m  
m  

s  

s  a 
a

4 1 .9  %

17.7 %1
14.5%

9.7 %

9 " 9

3 .2 %

1.6 %

NOTE: Blue boxes indicate presence of gene, white boxes indicate absence. 
f - Genotype numbering is based on Yawata (Yawata et al. 2002a).
5 - Genotype frequency observed amongst unrelated individuals.

The second most frequent genotype observed in our population (genotype 4) was shown 

to be present at a higher frequency (17.7%) than that observed in any other population 

studied so far. This genotype was found to be present in 9%, 1.2% and 4.2% of 

Caucasoid, Palestinian and Thai individuals, respectively (Norman et al. 2001). It 

contains equal numbers of activating and inhibitory KIR genes and includes the HLA-C 

binding pair KIR2DL1/S1 as well as the HLA-Bw4 binding pair KIR3DL1/S1. The 

third most frequent genotype (genotype 2) was present in 14.5% of the unrelated 

individuals o f  this population and at a similar frequency as that o f  Caucasoid 

populations (14.9%). It possesses the same KIR genes present in the first and most 

common genotype but differs from it in that it also has KIR2DL2 and 2DS2 genes. Both 

genotypes represent a heterozygous combination of a group A and group B haplotype.
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The fourth most frequent genotype present in our population (genotype 8) was observed 

at three times the frequency with which it is found to exist in any other of the 

populations studied. It also represents a heterozygous combination of group A and B 

haplotypes and is characterised by the lack of a single activating KIR gene, KIR2DS3. 

The fifth and sixth most common genotypes observed in our study (genotypes 3 and 5) 

were present at a similar frequency as that of West Asian populations. Interestingly, the 

sixth most com m on genotype pattern observed in Mexican Mestizo individuals 

(genotype 5 in table 7.2), in which all KIR genes are present, was found to have a 

similar frequency to that of Vietnamese individuals (3.4%) but lower than the frequency 

of this genotype in both Caucasoid and Australian Aborigine populations (Toneva et al.

2001). Genotypes 4, 2, 8, 3 and 5 represent combinations of both group A and B 

haplotypes, and possess the same inhibitory KIR with HLA binding specificities, but 

varying numbers o f  activating KIR genes. The seventh most com m on genotype 

observed in our population (genotype 28) is characterised by the lack of KIR2DS3 and 

2DS4 activating KIR genes, and was found to be present in less than 1% of Caucasoid 

and Thai individuals (Norman et al. 2001). The eight most common genotype observed 

in our study (genotype 17) was seen in 1.6% of the Mexican Mestizo individuals and 

had previously been described by Witt (Witt et al. 1999). Although the frequency of this 

genotype amongst Mexican Mestizos is similar to that described by Witt (W itt et al. 

1999), it was found to be lower than that of Caucasoid, Vietnamese and Australian 

A borigine populations ( T o n e v a  et al. 2001). G enotypes  28 and 17 represent 

homozygous group B haplotypes and are characterised by the existence of variable 

numbers of inhibitory KIR genes (especially of the HLA-B specific KIR3DL1), as well 

as by the existence of variable numbers of activating KIR, although they classically lack 

KIR2DS4.

7.4 KIR haplotypes encountered

Group A and group B KIR haplotypes have been defined in all of the human 

populations which have been analysed so far, however, their individual frequencies 

have been shown to vary amongst different populations (Vilches and Parham 2002). 

The KIR haplotypes present in Caucasoid populations have been defined to the allele 

level by high-resolution KIR typing techniques applied to family studies (Shilling et al.
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2002). High-resolution approaches directed towards defining the allele content of the 

KIR haplotypes present in other population groups have not yet been carried out. This 

study of the KIR haplotypes present in our Mexican Mestizo population was undertaken 

as a way to further our knowledge on the impact of KIR gene and allele diversity on 

haplotype variations. It is envisaged that our high-resolution approach will further 

extend the level of haplotypic variation known to exist in human populations. Similarly, 

this study is directed towards the demonstration of population differences in haplotype 

diversity which might provide evidence of the functional relevance of certain KIR gene 

and allele associations.

Within each Mexican Mestizo family, the segregation of KIR alleles was determined 

and used to define KIR haplotypes. All of the 31 families studied were informative in 

this regard. The structure and KIR gene/allele content of 300 haplotypes was resolved, 

124 of them amongst unrelated individuals, as shown in table 7.3 and in Appendix C. 

The segregation patterns of three families resulted in typing ambiguities which led to 

two possible haplotype combinations. The interpretation of these ambiguous haplotype 

com binations was based on the simplest com bination possible according to the 

haplotype structures previously defined (Shilling et al. 2002). Novel KIR haplotypes 

were proposed to exist only after exhausting the possible combinations of known 

haplotypes, they are designated herein as haplotypes bearing the ‘Mex” prefix followed 

by a consecutive number. Known KIR haplotypes are designated according to the 

nomenclature used by Shilling (Shilling et al. 2002). The analysis of the KIR gene and 

allele combinations observed amongst F0 individuals allowed us to detect the presence 

of 20 group A and 17 group B haplotypes (table 7.3). O f the 20 group A haplotypes 

observed, 13 had been previously described by other family studies (Shilling et al. 

2002).
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Table 7.3. KIR haplotypes of Mexican Mestizo unrelated individuals
I U l ,  1 2DL1 I 2DL2 I 2DLJ I 2DL8 I 3DL1 1 3DS1 1 3DL2 1 2DS1 1 2DS2 11 2DS3 1 2DS4 1 2DSS 1■

Qfl2CflQg n m ro p 9
*002/006
nn7rnn6 Q07/3/B/7m

no?/*no6 001/*009
002/3/6/7/B
002/3/6/7/6

QQ2/3/&/Z/B
002/3/6/7/6
002/3/6/7/a

002/3/6/7/8

002/3/6/7/B

mnmiz
002/3/6/7/6
002/3/6/7/6
002/3/6/7/6

002/*006
007 3/6/78
002/3/6/7/8
no?/3/6/7/a

002/3/6/7/8

002/3/6/7/6
*002/006 *00402

002/3/6/7/8

002/3/6/7/6
004/*006 002/3/6/7/8

002/3/6/7/8 001/*009
002/3/6/7/6

Q02/3/6/ZZ8
002/3/6/7/6
002/3/6/7/B
002/3/6/7/6
002/3/6/7/8

004/*005 001/*009

002/3/6/7/6

002/3/6/7/8
002/3/6/7/8

002/3/6/7/6

002/3/6/7/8

002/3/6/7/6

002/3/6/7/6

002/3/6/7/8
002/*006 0 0 1 "009

QQ2/2/&/Z/8
002/3/6/7/B

002/3/6/7/B
002/3/6/7/8

001/*Q09Q01Q2
002/3/6/7/8

002/3/6/7/8

002/3/6/7/8
001/*009

002/3/6/7/B

002/3/6/7/8

002/*006 002/3/6/7/8
002/006 00402
002/* 006

002/3/6/7/6

*002/3/6/7/8

002/3/6/7/8

002/3/6/7/8

002/3/6/7/6
0047*005 002/3/6/7/8

002/3/6/7/8
002/3/6/7/6

*002/3/6/7/8 OOirOQ9
*002/3/6/7/8
*002/3/6/7/6
002/3/6/7/8

*002/3/6/7/6
002/3/6/7/8
002/3/6/7/6

*002/3/6/7/8
002/3/6/7/8
002/3/6/7/8
002/3/6/7/8

002/*006 002/3/6/7/8
002/3/6/7/B
002/3/6/7/8
002/3/6/7/6
002/3/6/7/8 Q01/*QQ9
002/3/6/7/6

002/3/6/7/B

*002/3/6/7/8
002/3/6/7/8

- The unrelated individual identification tag correlates to the table presented in Appendix C.
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The remaining seven group A haplotypes represent novel haplotype structures which 

differ from those previously described due to the allelic combinations present.

With regards to group B haplotypes, eight group B haplotypes of those described by 

Shilling were observed (Shilling et al. 2002), and novel haplotype structures for nine 

additional group B haplotypes are proposed. Of these nine novel group B haplotypes, 

six represent allelic variations of previously described haplotypes while three novel 

haplotypes represent novel gene combinations which have not been encountered 

previously.

In total, 96% of the unrelated individuals were shown to possess group A haplotypes, 

whereas only 58% possessed group B haplotypes. Approximately 40% of the unrelated 

individuals were shown to possess homozygous combinations of group A haplotypes, 

whereas only 3% of the unrelated individuals were shown to be homozygous for group 

B haplotypes. The comparison of the haplotype frequencies present in Mexican Mestizo 

and Caucasoid populations (Uhrberg et al. 1997; Uhrberg et al. 2002) reveals four 

relevant findings. The proportion of unrelated individuals with group B haplotypes in 

any combination is constant between Mexican Mestizos and Caucasoids (58% and 60%, 

respectively). The proportion of individuals homozygous for group A haplotypes was 

identical (40%) between these two populations. The proportion of unrelated individuals 

which had group A haplotypes in any combination was higher amongst Mexican 

Mestizos in comparison to Caucasoids (96% and 75%, respectively). Lastly, the 

proportion of unrelated individuals which were group B homozygous was lowest 

amongst Mexican Mestizos in comparison to Caucasoids (3% and 25%, respectively). 

These last two findings are also reflected in the KIR gene phenotypic frequency 

comparison carried out in the previous section. The increased frequency of group A 

haplotypes and the decreased frequency of group B homozygous haplotypes amongst 

Mexican Mestizos does not fit the previously proposed idea that activating KIR 

constitute a biological advantage related to resistance to pathogen incursions due to the 

latitudinal pathogen species diversity gradient. The decreased occurrence of group B 

haplotypes amongst the Mexican Mestizo individuals could, however, be interpreted as 

being the result of a founder population effect or more likely to reflect the influence of 

relatively recent migrations and further genetic admixture (Yawata et al. 2002b).
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The most common KIR haplotype combinations observed in the Mexican Mestizo 

population were (12,-) and (12,25), which were present in eight unrelated individuals 

each, followed by combinations bearing novel haplotype arrangements such as (12, 

M ex l6 )  and (12, Mex05), both of which were seen in three unrelated individuals. The 

most common haplotypes observed in our total study population were #12 (n=128), #20 

(n=l 1) and #6 (n=10) for group A haplotypes and #25 (n=23) and #33 (n=15) for group 

B haplotypes. The frequency with which these haplotypes were seen in Mexican 

Mestizo families was similar to that described for the Caucasoid families studied by 

Shilling (Shilling et al. 2002).

7.4.1 Identification of novel KIR haplotypes

Of the 31 families studied, 13 had haplotypes with previously described gene and allele 

combinations, the remaining 18 families having previously described haplotypes in 

combination with novel haplotypes (table 7.4). The most common novel haplotypes 

observed amongst unrelated individuals were Mex05 present in three individuals; and 

MexlO, M ex l6 ,  M e x l4  and M ex09 present in two individuals each. The family 

segregation patterns on which the assignment of such haplotypes was based is given in 

figures 7.2 and 7.3, which illustrate the KIR gene and allele profile of the members of 

the representative families as well as their pedigree. Segregation analysis of M e x l l  

haplotype did not allow us to determine the presence/absence of KIR2DL1*003 and 

KIR2DL3*001 and/or the possibility of a similar haplotype organisation to haplotype 

M exl2. However, as KIR3DL2 allelism has been shown to contribute to the diversity 

of other haplotype structures, the M e x l l  haplotype shown is thought to be the most 

likely association of KIR genes and alleles as it represents a variation of the M ex l2  

haplotype observed in three individuals.

The novel group A haplotypes encountered in this study (table 7.4 and figure 7.2) were 

all a consequence of  K IR3D L2 diversity, corresponding to known haplotype 

organisations of KIR2DL1, KIR2DL3, KIR3DL1 and KIR2DS4 in association to new 

combinations of KIR3DL2 alleles. The haplotype diversity which arises from KIR3DL2 

polymorphism extends the number of known group A haplotypes (Shilling et al. 2002)

264



Chapter 7

to 29 and further illustrates the contribution of KIR allelic variants to haplotype 

diversity.

Regarding the novel group A haplotypes, MexOl haplotype was shown to be a variant 

of haplotype 2 as described by Shilling (Shill ing  et al. 2002) in association to a 

KIR3DL2*001 allele. Similarly, Mex02 and Mex03 haplotypes represent KIR3DL2 

allelic variations of haplotypes 7 and 8 as described by Shilling (Shilling et al. 2002) in 

which the substituting KIR3DL2 alleles are *001 and *011, respectively. In a similar 

manner, M ex04 and Mex05 haplotypes represent allelic variations of haplotype 10 

described by Shilling (Shilling et al. 2002), in which the substituting KIR3DL2 alleles 

are *007 and *010 allele, respectively. Mex06 was also shown to be an allelic variant of 

haplotypes 16-18 described by Shilling (Shilling et al. 2002) in which the new 

KIR3DL2 allele is *001. Finally, Mex07 haplotype was shown to be a KIR3DL2 allelic 

variation of haplotypes 19 and 20 described by Shilling (Shilling et al. 2002) in which 

the substituting allele was KIR3DL2*002.
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Table 7.4. KIR gene and allele organisation of novel haplotypes
G roup A

Haplotype 20L1 2DL2 2DL3 2DL5 3DL1 3D51 3DL2 2DS1 2DS2 2DS3

1 *001 *004/*005 *001 *001/*009

2 *001 *004/*005 *002/3/6/7/8 *002

MaxOI *001 *004/*005 *002/3/6/7/8 *001

3 *002 *002/*006 "001 *001/*009

4 *002 *002/*006 *002/3/6/7/8 *ooiroo9

6 *002 *002/*006 *002/3/6/7/8 *002

• *002 *002/*006 *002/3/6/7/8 *008

Max02 *002 *002/006 *00402 *001

7 *002 *002/*006 *004 *003

0 *002 *002/*006 *004 *005

M«x03 *002 *002/006 *00402 *011

0 *002 *002/*006 *005 *001/*009

10 *003 *001 *001 *ooiroo9

Max04 *003 *001 *001 *007

MaxOS *003 *001 *001 *010

11 *003 •001 *002/3/6/7/8 *001/*009

12 *003 *001 *002/3/6/7/8 *002

13 *003 *001 *002/3/6/7/8 *006

14 •003 *001 *002/3/6/7/8 *008

1f *003 *001 *002/3/6/7/0 ‘010

MaxOS *003 *001 *00402 *001

16 *003 *001 *004 *003

17 *003 *001 *004 *011

18 *003 *001 *004 *012

18 *003 *001 *005 *001/*009

20 *003 *001 *005 *010

Max07 *003 *001 *005 *002

21 *005 *004/*005 *002/3/6/7/8 *001/*009

22 *005 *006 *004 *003

G roup B

TOTAL OF GRO U P A

Haplotype 2DL2 2DLS 3DS1 2DS1 2DS2 2DS4

I
oo4/*oos

002T006

*001/*009

002/3/6/7/0

002/3/6/7/8

002/3/6/7/8

002/3/6/7/8

002/3/6/7/8

002/3/6/7/8

002/3/6/7/8

002/006 00402

*001/*009

002/3/6/7/8 001/*009

30L1/2v

TOTAL OF GROUP B

FAMILIES

Shilling M axican Indiv 1

1 1 2

1 1 1

0 1 3

3 2 8

1 0 0

3 1 3

1 2 10

0 1 2

2 0 0

4 1 4

0 1 3

2 2 4

2 0 0

0 1

0 3 6

2 3 6

5 29 128

1 0 0

3 0 0

1 3 8

0 4

2 4 9

1 0 0

1 0 0

4 2

1 3 11

0 1

1 0 0

1 0 0

Shilling M axican Indiv *

1 0 0

3 1 2

4 11 23

1 1 1

1 1 1

5 3 5

0 3

0 3

1 2 5

1 0 0

0 2 3

0 1

0 1 3

1 1 3

0 1 2

1 0 0

1 5 15

0 2 4

0 1 3

1 0 0

1 0 0

1 0 0

1 0 0

0 3 9

Note: Black boxes indicate presence of gene, hyphens indicate absence.
§ - Number of Mexican Mestizo unrelated individuals in which the haplotype was observed.
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Figure 7.2. Family segregation patterns and pedigrees of novel group A haplotypes. The number 

given on the left column identifies unrelated individuals. The individuals representing the progeny within 

a family are indicated by p". KIR haplotype designations are based on those described by Shilling 

(Shilling et al. 2002) and novel haplotypes are labelled ‘M ex’ and highlighted in red. Shaded boxes 

indicate presence o f  gene, hyphens (-) indicate their absence. Pedigree symbols are for illustrative 

purposes only as the sex o f the offspring was unknown.
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With regards to the nine novel group B haplotypes discovered in this population (table 

7.4), six proved to represent allelic variations o f  previously described gene 

arrangements as discussed previously for group A haplotypes. As such, Mex08 and 

Mex09 haplotypes were considered to be variations of haplotype 28 as described by 

Shilling (Shilling et al. 2002) in which the substituting KIR3DL2 alleles are KIR3DL2 

*001/009 and *011, respectively. Similarly, haplotypes MexlO, M e x l l  and M ex l2  

were considered to be allelic variations of haplotype 30 as described by Shilling in 

Caucasoids (Shilling et al. 2002) in association to K IR3DL2*001/009, *010 and *002 

alleles, respectively. Finally, haplotype M ex l4  was seen to be a variant of haplotype 33 

as described by Shilling in Caucasoids (Shilling et al. 2002) in association to a 

KIR3DL2*010 allele.

Three novel group B haplotypes were also identified and shown to possess gene 

arrangements which were different from previously described haplotype structures 

(table 7.4 and figure 7.3). In this respect, haplotype M ex l3  was shown to possess a 

similar structure to haplotype 31 as described by Shilling for Caucasoids (Shilling et al.

2002) but differs from it in that the form er possesses K IR 2D L 3*002/006 while 

haplotype 31 is not associated to the presence of KIR2DL3. Similarly, haplotype M exl5  

was shown to be very similar in structure to haplotype 33 as described in Caucasoids 

(Shilling et al. 2002), however differs from it in that M ex l5  also possesses a KIR2DL1 

and KIR2DL3 gene. Finally, haplotype M e x l6  demonstrated to be the most radical 

deviation from known haplotype structures observed in our study population. This 

haplotype contains a relatively sim ilar structure to haplotype 37 described in 

Caucasoids (Shilling et al. 2002), however, the presence of five additional KIR genes 

clearly distinguishes this novel haplotype from others. Importantly, this novel haplotype 

was shown to possess the greatest number of activating KIR ever published, lacking 

only KIR2DS4.

The results shown here for the novel group A haplotypes conform to previous 

observations defining the existence of linkage disequilibrium between KIR2DL1 and 

KIR2DL3 alleles. However, the linkage disequilibrium that is thought to exist between 

KIR3DL1 and KIR3DL2 alleles indicated by other studies was not supported when 

considering the newly discovered group B haplotypes. Instead, we observed a trend
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similar to that described for group A haplotypes in which most of the diversity is a 

consequence of K IR3D L2 allelism. Similarly, the novel haplotype associations 

described in our study are consistent with those previously noted for other gene and 

allele associations such as those relating to KIR3DS1 associations with KIR3DL2*007, 

of KIR2DS1 with KIR2DS5, of KIR3DL1 with KIR2DS2 as well as of KIR2DL2 with 

KIR2DS2.
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Figure 7.3. Family segregation patterns and pedigrees of novel group B haplotypes. The number 

given on the left column identifies unrelated individuals. The individuals representing the progeny within 

a family are indicated by pn. KIR haplotype designations are based on those described by Shilling 

(Sh illing et al. 2002) and novel haplotypes are labelled ‘M ex’ and highlighted in red. Shaded boxes 

indicate presence o f  gene, hyphens (-) indicate their absence. Pedigree symbols are for illustrative 

purposes only as the sex o f the offspring was unknown.
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7.5 Discussion

This study constitutes the first attempt to characterise the KIR gene diversity present in 

a non-Caucasoid population at high levels of resolution. It is also the first attempt to 

characterise the KIR gene diversity present in a Mexican Mestizo population by means 

of a comprehensive, high-throughput molecular typing approach. The implementation 

of our PCR-SSP KIR gene typing technique to a large cohort of Mexican Mestizo 

families has allowed us to define the segregation patterns of individual KIR genes and 

to infer the structure of the underlying haplotypes present. The results generated by this 

study have increased our knowledge of KIR gene diversity at a population level. In 

addition, the analysis of the differences in KIR gene diversity which characterise each 

human population has provided us with clues as to the functional relevance of KIR gene 

diversity.

Overall, the KIR genotypes and haplotypes observed in this M exican Mestizo 

population were found to be similar to those described by previous studies on other 

populations. These similarities support the existence of a relatively conserved KIR 

haplotype organisation as well as the linkage disequilibria associations of KIR genes 

and alleles which have been proposed by other studies. Examples of these features 

include similarities in the type and frequency of the most commonly observed KIR 

genotype and haplotype. However, the description of population specific traits unique to 

Mexican Mestizos further supports the idea that they represent a clearly distinct human 

population, in spite of their genetic admixture. Examples of these population specific 

traits include the KIR gene phenotypic differences observed for KIR2DS3 and 

KIR3DL1 and the lower frequency of group B haplotypes. Findings which were 

surprising given that activating KIR (of which group B haplotypes have more) had been 

regarded as conveying a biological advantage against pathogen incursions. It had been 

anticipated that if any KIR gene frequency deviation were to be discovered in the 

Mexican population it would probably involve an increase in activating KIR and 

probably a decrease in inhibitory KIR, a scenario which would render most NK cells 

and other KIR expressing lymphocytes biased towards activation. This activation bias 

was thought to be advantageous in the particular case of Mexican Mestizos given the 

high level of exposure to pathogen challenges thought to be present throughout their
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evolution, a hallmark of the latitudinal pathogen species diversity gradient (Guernier et 

al. 2004). According to this latitudinal pathogen gradient, human populations occupying 

territories below parallel 40, or those nearest to the equator, have greater exposure to 

human pathogens than populations living at higher latitudes (Ashford 2000). Our 

description of similar KIR gene, genotype and haplotype group frequencies between 

Mexican Mestizo and East Asian and North African populations, supports the idea that 

these populations might in fact be subjected to similar levels of pathogenic challenges. 

This raises the question as to whether these population similarities are the result of the 

evolutionary relationships that have been described for these populations or a 

consequence of pathogen driven natural selection of KIR genes, or most probably, a 

combination of these two possibilities.

Further research directed towards determining the main groups of pathogens involved in 

the proposed modelling of KIR evolution is required before the second possibility can 

be explored. The KIR gene and genotype frequency comparisons carried out between 

several populations allowed us to provide further evidence in support of the peopling of 

the Americas and origin of the Mexican Mestizo population.

The present day Mexican Mestizo population is considered to be the result of genetic 

admixture between native Amerindian, European and North African populations which 

has occurred since the Spanish Conquest of 1521 (Alvarado-de la Barrera et al. 2000). 

However, it is also currently known that the native Amerindian population was itself a 

genetic admixture resulting from the migration waves which led to the peopling of the 

Americas (Arnaiz-Villena et al. 2000; Gomez-Casado et al. 2003). Our findings are in 

agreement with current knowledge regarding the genetic background of Mexican 

Mestizos. Firstly, the similarities observed between Mexican Mestizo and Japanese, 

Thai and Vietnamese populations support the idea that a migration wave originating in 

Mongolia and Northern China which crossed the Bering Land Bridge was involved in 

the founding of the native Amerindian Clovis ancestor population around 12000 to 

20000 years ago (Merriwether et al. 1996). Secondly, the influence of the admixture 

that occurred after the Spanish Conquest is seen in the similarity that exists between the 

Mexican Mestizo and Caucasoid populations (Alvarado-de la Barrera et al. 2000). In 

addition to these events, present day Mexico plays host to increasing numbers of non-
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American populations, mostly represented by East Asian, North African, European and 

South-American immigrants, whose genetic contribution might also be reflected on the 

previously described KIR gene frequency similarities (Mexican National Institute of 

Geography, Statistics and Informatics; Census 2001 data: www.inegi.gob.mx). Our 

findings provide evidence of the existence of KIR profile similarities between Mexican 

Mestizos and Caucasoid populations, a feature that supported current thinking with 

regards to the origin of Mexican Mestizos. However, future studies directed towards 

defining the KIR profile of native Amerindian populations will be required in order to 

fully support the idea that the KIR profile of Mexican Mestizos is the result of this 

genetic admixture.

The fact that the overall phenotypic frequencies observed in our population were very 

similar to those found in East Asian groups, especially to those of Japanese, Vietnamese 

and Thai populations, further supports the theory that Native Amerindians came from 

Asia through the Bering Land Bridge between 12,000 and 20,000 years ago (Salzano 

1984; Szathmary 1984; Rothhammer and Silva 1989). This idea has also been supported 

by three different genetic studies em ploying the com parison of HTLV-1 strain 

sequences (Leon et al. 1996), Alu repeat profiling of populations (Novick et al. 1998) as 

well as mitochondrial DNA sequence comparisons (Horai et al. 1993; Szathmary 1993; 

Lalueza Fox 1996; Bonatto and Salzano 1997b; Bonatto and Salzano 1997a; Lalueza- 

Fox et al. 2001; Schurr and Sherry 2004).

The analysis of the family segregation patterns of KIR genes allowed us to infer the 

structure of KIR haplotypes in this population. Probably the most interesting results 

generated in this study involve the definition of novel KIR haplotype organisations for 

both group A and B haplotypes. Two of the novel group B haplotypes (M exl3  and 

M e x l5 )  appear to have K IR2DL1, K IR2DL2 and KIR2DL3 within the same 

chromosome, an interesting finding given that current thinking suggests that KIR2DL2 

is the result of an unequal cross-over event between KIR2DL3 and KIR2DL1 and can 

be considered an allele of KIR2DL3 (Vilches and Parham 2002). Nevertheless, Uhrberg 

has also provided evidence for the simultaneous expression of KIR2DL2 and KIR2DL3 

in some individuals (Uhrberg et al. 1997). These novel KIR haplotypes were shown to 

be present with high frequency amongst the unrelated individuals, and could therefore
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also represent a population-specific trait of Mexican Mestizos. Most of these novel 

haplotypes were in agreement to previously described linkage disequilibria, however, 

this was not the case for KIR2DL2 and KIR2DL3 in haplotype M exl3  and of KIR2DS3 

and KIR2DS5 of haplotype M ex l6 .  Although we believe this reflects novel gene 

arrangements originating from recent unequal crossing-over events, we cannot rule out 

the possibility, however unlikely, that they could also be the result of novel gene or 

allele polymorphisms detected by the oligonucleotide pairs in use. Although most of 

these novel haplotypes are the product of allelic variations of known haplotype 

structures, some of them have shown to possess new KIR gene combinations never 

before seen in other populations, thereby establishing new levels of organisational 

diversity to those previously published.

This study has allowed us to increase our knowledge of the degree of KIR diversity that 

exists both within a single individual as well as in a large population. We have been 

able to describe novel haplotype structures which in some cases involved new gene 

combinations which had not been previously thought to exist. The definition of these 

novel haplotypes supports the existence of a continued expansion of KIR haplotypes 

arising from asymmetrical recombination events. The definition of novel haplotypes 

characterised by different allelic combinations to those which have been published 

furthers our knowledge of how KIR allelism diversifies KIR phenotype. And finally, 

our findings have provided interesting clues as to the functional relevance of KIR gene 

diversity in human population survival.
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Chapter Eight

The impact of KIR on unrelated donor 

haematopoietic stem cell transplantation

8.1 Introduction

KIR proteins have been the focus of attention for a number of researchers involved in 

the optimisation of the outcome of HSCT in recent years. This interest has stemmed 

from several findings: first, the description of KIR protein recognition of HLA 

molecules; second, the discovery that NK cells are the first lymphocytes to immune 

reconstitute and third, the existence of post-transplant events that cannot be explained 

by HLA matching alone. Initial studies reporting the clinical advantage arising from 

KIR epitope-mismatched grafts in the HLA haploidentical transplant setting further 

increased the interest in KIR genes (Ruggeri et al. 1999). However, subsequent studies 

carried out by other research groups have failed to reproduce these results in the more 

common transplant modality employing HLA matched unrelated donors (Bornhauser et 

al. 2004). More importantly, only a couple of clinical studies have addressed the 

importance of KIR compatibility in the context of actual KIR typing data (Gagne et al. 

2002; Cook et al. 2003). Nevertheless, these studies have only applied genotyping 

techniques to the investigation of the impact of KIR in HSCT.

In this chapter we describe the clinical relevance of KIR genes and alleles in UD-HSCT 

by applying a typing system capable of determining the presence or absence of all 

known KIR genes as well as discriminating all the known alleles of the five KIR genes 

that bind HLA class I. Our study represents the first and largest comprehensive and 

high-resolution approach to resolving the clinical significance of KIR in the common 

transplant modality using unrelated donors. Our study cohort possesses several 

advantages over the cohorts employed in previous studies investigating the role of KIR

275



C h a p t e r  8

in HSCT. As our cohort has been the subject of previous tissue typing investigations 

(Shaw et al. 2001), the HLA profiles of the recipient and donor members have been 

characterised to a high-resolution (allele level) for the six major HLA loci using DNA 

based molecular methods. In addition this cohort has been subjected to prolonged 

clinical follow-up. It is envisaged that this study will enable us to determine the clinical 

impact and functional relevance of KIR genes, alleles and haplotypes in UD-HSCT 

outcome. More importantly, it is expected that the results generated in this study will 

allow us to extend recommendations directed towards increasing the success and 

reducing the clinical complications of UD-HSCT.

8.2 Study population and demographics

Our study involved the use of two cohorts extracted from the 437 transplant pairs that 

took place in the United Kingdom between 1996 and 2003 for which the Anthony 

Nolan Trust provided the donor. The first study cohort (ANT Cohort 1, shown in table 

8.1) included 308 transplant pairs which were selected for having similar characteristics 

to those included in Ruggeri’s study population so as to allow for direct comparisons to 

be made (Ruggeri et al. 1999). Although fundamental differences exist between our 

study cohort and Ruggeri’s, our investigations were directed towards analysing the 

applicability of her algorithm in the unrelated donor HSCT setting and not directed 

towards reproducing her data. The second cohort (ANT Cohort 2, shown in table 8.1) 

included 141 transplant pairs on which our KIR typing system was implemented so as 

to evaluate the clinical relevance of KIR matching in the UD-HSCT setting. These 

cohorts are comprised of transplant pairs with high resolution HLA typing for six loci 

(H LA -A , -B ,  -C ,  -D R B 1, -D Q B 1 and -D PB1). The pre-transplant characteristics of 

the patient/donor pairs which comprise these study cohorts are shown in table 8.1. The 

pre-transplant characteristics of recipients and donors were similar amongst these two 

study cohorts.

The mean age of the recipients included in both cohorts was around 29 years, and 

ranged from 2 months to 65 years. The mean age of the donors was 36 and ranged from 

19 to 56 years. Roughly 64% of the recipients and donors were male. Approximately 

55% of all transplants were gender matched. Most of the recipients and donors were
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CMV negative at the time of transplant. Recipients had AML, ALL and CM L with 

relatively equal proportions amongst these two cohorts. The KIR typed database also 

included smaller proportions of recipients with other malignant and non-malignant 

diseases. Approximately 71% of the recipients received myeloablative conditioning and 

most patients received bone marrow-derived stem cell grafts. More than 75% of the 

transplants were T-cell depleted. Approximately 70% of the recipients received 

cyclosporin A-based post-transplant immunosuppression, most of them in combination 

to methotrexate.

Most transplant pairs (62%) were matched for the five major HLA loci, H LA -A , -B ,  

-C ,  -D R B 1 and -D Q B 1. HLA-C mismatches were present in an otherwise matched 

HLA context in 16% of the transplant pairs of the first cohort. High-resolution 

D NA -based HLA typing was carried out locally by Andrea Pay, Bronwen Shaw and 

Neema M ayor as all of  these transplant pairs were the subject of a previous tissue 

typing study. The frequency of HLA-C mismatches in an otherwise matched HLA 

context was higher amongst the transplant pairs of the second cohort as a consequence 

of the selection criteria used for inclusion into this cohort (see below). The remaining 

= 15% of the transplant pairs had other mismatches including other isolated class I 

mismatches, combinations of class I mismatches as well as combinations of HLA class I 

and class II mismatches.
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.1. Anthony Nolan Trust (ANT) Cohort demographics.

Transplant characteristic
A N T Cohort 1 A N T Cohort 2

n=308 n=141
n | % n | %

KIR typing data available 113 37 141 100

Recipient age (m ean & range) 27 2 - 6 5 30 <1 - 6 3

Donor age (m ean & range) 36 1 9 - 5 6 36 21 - 5 6

M ale recipients 218 71 81 57

Fem ale recipients 79 26 46 33

Male donors 184 60 96 68

Fem ale donors 113 37 31 22

G ender matched pairs 177 58 74 52

M ale recipient/female donor 43 14 19 14

Fem ale recipient/male donor 77 25 34 24

Missing data on gender 11 3 14 10

Recipient C M V  + 79 26 46 33

Recipient C M V  - 203 66 81 57

Missing data 25 8 14 10

Donor C M V  + 73 24 25 18

Donor C M V  - 225 73 103 73

Missing data 10 3 13 9

Recipient C M V  -/D o n o r C M V  - 165 54 68 48

Recipient C M V  -/D o n o r C M V  + 36 12 11 8

Recipient C M V  +/Donor C M V  - 46 15 32 23

Recipient C M V  +/Donor C M V  + 33 11 14 10

Missing data 28 9 16 11

Chronic Myeloid Leukaem ia 98 32 31 22

Acute Myeloid Leukaem ia 106 34 43 31

Acute Lymphoblastic Leukaemia 104 34 39 28

Other malignant 0 0 21 15

Non-malignant 0 0 7 5

Myeloablative conditioning 241 78 90 64

Reduced intensity conditioning 32 10 27 19

Missing data 35 11 24 17

Recipients of bone marrow 247 80 103 73

Recipients of PBSC 50 16 24 17

Missing data 11 4 14 10

HLA class I and II matched 191 62 67 48

HLA-C mismatched only 50 16 55 39

HLA-A mismatched only 23 7 5 4

HLA-C + class II mismatch 3 1 1 1

HLA-C and HLA-B mismatch only 11 4 2 1

Other class I and II mismatches 19 6 11 7

T  cell depleted 252 82 106 75

No T  cell depletion 19 6 11 8

Missing data 37 12 24 17

Post-transplant Cyclosporin A & Methotrexate 157 51 65 46

Post-transplant Cyclosporin A only 78 25 40 28

Other post-transplant immunosuppression 8 3 2 1

No post-transplant immunosuppression 23 8 8 6

Missing data 42 14 26 18
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The incidence of post-transplant complications was similar between the two study 

cohorts, as shown in table 8.2. Successful engraftment was achieved in more than 90% 

of the cases. Recipients achieved neutrophil counts equal to or greater than 0.5 x 109 

cells/L at a median of 19 days after transplant. Approximately 40% of the recipients 

who engrafted developed aGvHD, the majority of which were grade I and II. Acute 

GvHD was defined as any GvHD  reaction observed within the first 100 days post­

transplant, whereas cGvHD was defined as any GvHD reaction observed thereafter. The 

three-year probability of developing cGvHD was approximately 76% in both cohorts. 

The th ree -year  probability of relapse was approximately 30% for both cohorts. 

Transplant Related Mortality (TRM) was defined as all deaths that did not occur as a 

consequence of relapse. TR M  was assessed at 100 days post-transplant and was 

approximately 28% in both cohorts. The three-year probability of Disease Free Survival 

(DFS) in these cohorts was of 10% and 15% respectively. The three-year probability of 

Overall Survival (OS) was approximately 30% in both cohorts.

Table 8.2. Clinical endpoint features of the two study cohorts.

Clinical endpoint
ANT Cohort 1 ANT Cohort 2

n=308 n=141
n % n %

Primary Graft Failure 24 8 11 8
Successful neutrophil engraftment 284 92 130 92

Days to engraftment (median, range) 19 4 -1 0 4 19 4 -4 8

No aGvHD 117 38 59 42
aGvHD 140 45 52 37

aGvHD Grade 1 + 64 46 19 36
aGvHD Grade II + 64 46 30 58
aGvHD Grade III f 8 6 3 6
aGvHD Grade IV f 4 2 0 0

Missing 51 17 30 21

cGvHD at 3 years 240 78 105 75
Days to cGvHD (median, range) 566 100-2161 618 100-1605

Relapse at 3 years 105 35 29 22
Days to relapse (median, range) 420 5 - 2356 335 5-2136

Transplant Related Mortality (day 100) 25 28 31 29

Disease Free Survival (at 3 years) 31 10 21 15
Disease Free Survival (median, range) 220 5 - 2356 175 5-2136

Overall Survival (at 3 years) 86 28 46 33
Overall Survival (median, range) 535 5 - 2380 349 5-2136

f = Percentage based on recipients that developed aGvHD.
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8.3 Testing the applicability of Ruggeri’s KIR ligand-ligand 

compatibility algorithm for the prediction of NK cell 

alloreactivity in UD-HSCT

8.3.1 Study population

The number of patient/donor pairs included in this study was 308. These patient/donor 

pairs were selected for inclusion as they include recipients diagnosed with AML, CML 

or ALL and exclude pairs in which the recipient was diagnosed with other malignant or 

non-malignant diseases. This sample selection was carried out so as to preserve the 

characteristics of the study population described in R uggeri’s original publication 

(Ruggeri et al. 1999). In accordance to the stratification criteria described in the original 

publication, pairs were classified as belonging to one of three groups: 1) those in which 

the comparison of the HLA typing profiles indicated the presence of NK cell mediated 

alloreactivity in the GvH direction (n=13), 2) those with NK cell mediated alloreactivity 

in the HvG direction (n=20), and 3) those without NK cell mediated alloreactivity in 

either direction (n=275). Transplant pairs were classified as having GvH potential if the 

recipient failed to express a KIR epitope (HLA-C allotypes with either Lys80 or Asn80 

and HLA-B allotypes with the Bw4 motif) present in the donor. Pairs in which the 

donor failed to express a KIR epitope present in the recipient were classed as having 

HvG potential, and KIR epitope matched pairs were grouped into the category without 

NK alloreactive potential. The first group (GvH alloreactive group) included six 

recipients with AML, three with CM L and four with ALL. The second group (HvG 

alloreactive group) included seven recipients with AML, five with CM L and eight with 

ALL. The third group (group without NK alloreactivity) included roughly equal 

numbers of recipients (90 ± 3 patients) for each disease group.

The transplant pairs included in this study cohort had similar numbers of recipients 

allocated to each of the NK alloreactivity categories as Ruggeri’s original study cohort. 

However, the ANT Cohort 1 also differed from Ruggeri’s cohort in the proportions of 

transplant pairs allocated to each of the predicted NK alloreactivity categories. While 

the NK alloreactivity categories of R uggeri’s original cohort (n = 60 transplants)
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possessed similar numbers of patients (approximately 30% per category), our transplant 

pairs were distributed in a different way. The GvH and HvG alloreactivity categories in 

our cohort represented only 4% and 7% of the total transplant pairs, respectively. 

However, the transplant pairs without NK alloreactivity in our cohort comprised 

approximately 90% of the total study population. These differences arise mainly from 

the transplant modality employed in our study, where the prospective selection of HLA 

matched donors decreases the probabilities of generating epitope mismatched NK 

alloreactivity (in comparison to the haploidentical setting employed by Ruggeri).

8.3.2 Engraftm ent

The incidence of primary graft failure (as assessed by univariate Chi-squared analysis) 

was similar between the group with HvG alloreactivity and the group without NK 

alloreactivity, approximately 7%, p = Non Significant (NS). However, the incidence of 

primary graft failure was increased in the group with GvH alloreactivity (23%, 

p = 0.079) as shown in table 8.3.

Table 8.3. Incidence of Primary Graft Failure (PGF) expressed as percentage of transplants according to 

the NK alloreactivity predicted by Ruggeri’s algorithm.

Predicted alloreactivity % PGF

GvH direction 23

HvG direction 7.5

No alloreactivity 7.75

The detrimental effect of GvH NK cell mediated alloreactivity was analysed in a binary 

logistic regression analysis including other factors which have been shown to affect 

engraftment as covariates. These factors included donor sex, recipients CMV status, 

type of disease affecting the recipient, type of conditioning regimen used as well as the 

source of stem cells (Shaw et al. 2003). The multivariate logistic regression analysis 

revealed that the detrimental effect of NK alloreactivity in the GvH direction remained 

significant when corrected for these other factors (p = 0.049). Similarly, recipients with 

CM L had a higher risk of PGF, as shown in table 8.4.
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Ruggeri had described a beneficial effect on engraftment of NK alloreactivity in the 

GvH direction, based on the differences observed in the incidence of PGF and in the 

haploidentical setting. Our results did not show this association in the unrelated donor 

setting as the incidence of PGF in the recipients with GvH NK alloreactivity was greater 

than that observed amongst recipients with HvG NK alloreactivity as well as in those 

without alloreactive NK cells.

Table 8.4. Risk factors associated with primary graft failure (Chi squared and binary logistic regression 

analysis).

Variable Univariate
significance Relative Risk (95% C.l.) Multivariate

significance

GvH alloreactivity 

Disease (CML)

0.079

0.045

0.25 (0.1 -1.0) 

1.9 (1.1 -3.3)

0.049

0.024

The analysis of the impact of the NK alloreactivity as predicted by Ruggeri’s algorithm 

on the time to engraftment (in a univariate Kaplan-Meier analysis) did not reveal any 

significant association as shown in table 8.5.

Table 8.5. Influence o f NK alloreactivity as predicted by Ruggeri’s algorithm on time to engraftment.

Predicted alloreactivity
Time to engraftment (days)

Median Range Significance

GvH direction 20 (19-21) p = 0.8875

HvG direction 20 (16-24) p = 0.1866

No alloreactivity 19 (18-20)

8.3.3 Graft versus Host Disease (GvHD)

Acute GvHD

The impact of NK cell alloreactivity as predicted by Ruggeri’s algorithm on the 

incidence and severity of aGvHD was analysed in a univariate Chi-squared analysis. No 

statistically significant association was observed for any of the variables tested. 

Although not statistically significant, the data shown in table 8.6 demonstrates a lower
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incidence of aGvHD in the group with NK alloreactivity in the GvH direction in 

comparison to the other two groups. A similar distribution of data (i.e. protection from 

aGvHD by NK alloreactivity in the GvH direction) was not observed when the severity 

of aGvHD was taken into account.

Table 8.6. Incidence of aGvHD and grade according to the NK alloreactivity predicted by Ruggeri’s 

algorithm.

Predicted alloreactivity % aGvHD ■
% aGvHD

None - Grade 1 Grade 2 - Grade 4

GvH direction 38 75 25

HvG direction 61 78 22

No alloreactivity 55 70 30

Chronic GvHD

The impact of NK alloreactivity on the incidence of cG vH D  was analysed in a 

univariate tim e-dependant m anner by means o f  the K aplan-M eier method. NK 

alloreactivity in the GvH direction was not found to be a significant factor influencing 

the occurrence of cGvHD. However, NK alloreactivity in the HvG direction was found 

to be associated with a trend to a faster progression to cGvHD as shown in table 8.7 and 

figure 8.1 (p = 0.0743). The most striking differences observed between the two groups 

considered in table 8.7 occur early on. At day 100 approximately three times as many 

recipients of the HvG alloreactive group have progressed to cGvHD in comparison to 

only 4% of the other group (p = 0.046, Breslow test statistic for early events).

Table 8.7. Incidence o f cGvHD according to the NK alloreactivity predicted by Ruggeri’s algorithm 

(extract o f the life table from which figure 8.1 is derived).

Predicted alloreactivity ■
% with cGvHD

day 100 day 200 1st year 2nd year

GvH direction <1 7 73 80

HvG direction 13 50 65 100

No alloreactivity 4 27 42 53
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1.0
p = 0.0743 (Log Rank test), 
p = 0.046 (Breslow test statistic).
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Figure 8.1. Risk of progressing to cGvHD for pairs with NK alloreactivity in the HvG direction (red 

line) and for those without NK alloreactivity (blue line). Tick marks indicate censored cases.

This association o f  HvG alloreactivity with time to progression to cGvHD did not 

remain statistically significant when analysed in the context of other factors which have 

been shown to influence the incidence of cGvHD in a Cox multivariate regression 

model (Shaw et al. 2003).

Ruggeri had described that NK alloreactivity in the GvH direction was protective 

against the occurrence o f GvHD in the haploidentical setting. However, our data 

revealed that this assumption was not true in the unrelated donor setting as the incidence 

of GvHD (both acute and chronic) was similar amongst the recipients o f  the three NK 

alloreactivity categories.

8.3.4 Relapse

Relapse was present in this study cohort at a mean time of 420 days post-transplant 

(ranging between 5 and 2356 days) as shown in table 8.2. The impact o f  NK 

alloreactivity on disease relapse as assessed by the Kaplan-Meier method did not show 

any significant association between the three recipient categories. However, the overall
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incidence of relapse was lower amongst the GvH and HvG alloreactivity groups in 

comparison to that of the group without NK alloreactivity (p = NS), a finding which 

was restricted to recipients with myeloid malignancies (table 8.8). The incidence of 

relapse in the global study cohort was 41% (table 8.2) and similar to the incidence of 

relapse in the group without NK alloreactivity.

Table 8.8. Incidence of relapse by disease group according to the NK alloreactivity predicted by 

Ruggeri’s algorithm.

Predicted alloreactivity
% Relapsed

Myeloids ALL

GvH direction 

HvG direction 

No alloreactivity

22
25

52

75

28

35

% Relapsed 
(at 6 months)

Myeloids ALL

0

24

27

33

0

20

In the haplodientical setting Ruggeri had proposed a protective effect against relapse 

arising from NK alloreactivity in the GvH direction, especially amongst recipients with 

myeloid malignancies. Our results support the existence of this protective effect in the 

unrelated donor setting, however, this was not shown to be statistically significant.

8.3.5 Disease-Free and Overall Survival

The time-dependent univariate analysis of the impact of NK alloreactivity on Disease 

Free and Overall Survival employed the Kaplan-Meier method.

Disease Free Survival

The Disease Free Survival (DFS) for recipients with NK alloreactivity in the HvG 

direction did not differ statistically from that present in the group without NK 

alloreactivity. The three-year probability of DFS for the recipient group without NK 

alloreactivity was 26% (median of 229 days, ranging between 173 and 266 days). 

However, the recipient group with NK alloreactivity in the GvH direction was 

statistically associated with a decrease in DFS during the first two years (p = 0.0404).
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100% of the recipients with NK alloreactivity in the GvH direction died before reaching 

the end o f the third year (median o f  142 days, ranging between 21 and 262 days), as 

shown in table 8.9 and figure 8.2.

Table 8.9. Disease Free Survival during the first three years post-transplant according to the NK 

alloreactivity predicted by Ruggeri’s algorithm (extract of the life table from which figure 8.2 is derived).

% Disease Free Survival
Predicted alloreactivity --------------------------------------------------------------------------------

1st year 2nd year 3rd year

GvH direction 21 12 0

HvG direction 40 30 30

No alloreactivity 40 29 26

1.0
p = 0.0404

D
CO

*

NK Alloreactivity

0.0
1500 2000 25000 500 1000

Disease Free Survival

Figure 8.2. Disease Free Survival curve of recipients with NK alloreactivity in the GvH direction (red 

line) and of those without NK alloreactivity (blue line). Tick marks indicate censored cases.

The impact o f  NK alloreactivity in the GvH direction on DFS was analysed in the 

context o f  other factors that have been shown to influence DFS by means of a Cox 

multivariate regression analysis. The factors considered as covariates for DFS included 

the recipient’s CMV status and disease type (Shaw et al. 2003). The deleterious effect 

of NK alloreactivity in the GvH direction on DFS remained statistically significant 

when corrected for the influence of the other influencing factors (table 8.10).
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Table 8.10. Factors with a statistically significant influence on Disease Free Survival in univariate 

Kaplan-Meier and Cox regression multivariate analysis.

Variable Univariate
significance Relative Risk (95% C.l.) Multivariate

significance

GvH alloreactivity 0.0404 1.9(1 -3.5) 0.038

Recipients CMV status 0.0001 1.4 (1-1 .8 ) 0.043

Disease (CML) 0.0191 1.6 (1.2-2.3) 0.005

Overall Survival

The three-year probability of Overall Survival (OS) was 43% for the group without NK 

alloreactivity (table 8.11). This was not statistically different from that achieved by 

recipients with NK alloreactivity in the HvG direction. However, univariate analysis 

revealed that recipients with NK alloreactivity in the GvH direction had a much lower 

survival rate than that exhibited by the other groups as shown in figure 8.11 (three year 

OS probability of 5%, p = 0.0012).

Table 8.11. Overall survival during the first three years post-transplant according to the NK 

alloreactivity predicted by Ruggeri’s algorithm (extract of the life table from which figure 8.3 is derived).

Predicted alloreactivity
% Survival

1st year 2nd year 3rd year

GvH direction 23 15 5

HvG direction 48 41 38

No alloreactivity 55 46 43

IjO
p «  0 .0012

<o

*

NK Alloreactivity

00
0 500 1000 1500 2000 2500

Days to death

Figure 8.3. Overall survival of recipients with NK alloreactivity in the GvH direction (red line) and of 

those without NK alloreactivity (blue line). Tick marks indicate censored cases.
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The evaluation of NK alloreactivity in the GvH direction in a multivariate Cox 

regression analysis was carried out using other factors which have been shown to 

impact significantly on OS as covariates (table 8.12). These factors included patient 

CMV status, disease type and class I matching status. Recipients that were CMV 

negative, diagnosed with non-malignant diseases and those that received HLA class I 

matched grafts were shown to have a better OS (Shaw et al. 2003).

T able 8.12. Factors with a statistically significant influence on overall survival in univariate Kaplan- 

Meier and Cox regression multivariate analysis.

Variable Univariate
significance Relative Risk (95% C.l.) Multivariate

significance

GvH alloreactivity 0.0012 2.5 (1 .3 -4 .5 ) 0.005

Recipients CMV status 0.01 1.7 (1 .3 -2 .4 ) 0.001

D isease (CML) 0.02 0.7 (0 .4 -1 .0 ) 0.044

The detrimental effect of GvH alloreactivity remained statistically significant when the 

effects of the recipients CMV status and disease type were considered. No statistically 

significant association between NK alloreactivity in the HvG direction and OS was 

observed.

Although Ruggeri did not describe the impact of NK alloreactivity on the survival of the 

transplant recipients included in her haploidentical study, the results of other researchers 

had postulated a beneficial effect arising from NK alloreactivity in the GvH direction as 

predicted by Ruggeri’s algorithm (Giebel et al. 2003). This second study demonstrated 

the existence of a dramatic increase in OS and DFS associated with NK alloreactivity in 

the GvH direction in a cohort of UD-HSCT recipients. In contrast, our results 

demonstrate that NK alloreactivity in the GvH direction was associated with a 

significant decrease in both DFS and OS in comparison to recipients with NK 

alloreactivity in the HvG direction or to those lacking alloreactive NK cells as predicted 

by Ruggeri’s algorithm and in the unrelated donor setting. Our results are similar to the 

findings described by another research group studying the applicability of Ruggeri’s 

algorithm in UD-HSCT (Davies et al. 2002).
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8.4 Evaluation of typing based KIR compatibility in unrelated donor 

haematopoietic stem cell transplantation

8.4.1 Study population and demographics

The number of transplant pairs included in this study was 122. These were selected so 

as to include relatively equal numbers of HLA-matched (n=67) and HLA-C mismatched 

only (n=55) pairs. The pre-transplant characteristics of these transplant pairs were 

similar to those previously described for the other study cohort as shown in table 8.1. 

Similarly, the clinical endpoints were also similar to those of the previously described 

study cohort (table 8.2). Both the recipients and donors of this study cohort were 

genotyped for the presence or absence of 11 KIR genes and the alleles of five additional 

KIR genes were subtyped by means of the PCR-SSP technique previously described.

8.4.2 KIR typing results and comments

The KIR typing profiles of the individual members of this cohort are provided in 

Appendix D. High-quality KIR typings were generated for more than 98% of the 

samples tested. KIR subtyping results revealed the presence of ten anomalous banding 

patterns (ABPs). These ABPs were seen in the subtyping results of four KIR genes 

(KIR2DL1, KIR2DL3, KIR2DL4 and KIR3DL2). Two different KIR2DL1 ABPs were 

observed in two different donor samples each (pairs 16,47, 52 and 121 in Appendix D). 

A single KIR2DL3 ABP was seen in a recipient sample (pair 37 in Appendix D). The 

same KIR2DL4 ABP was seen in three different donor samples (pairs 24, 28 and 134 in 

Appendix D). Finally, the two KIR3DL2 ABPs were seen in different donor samples 

each (pairs 53 and 98 in Appendix D). These ABPs represent potentially novel KIR 

alleles which will be the subject of future investigations directed towards resolving their 

DNA sequence.

The KIR gene frequencies observed amongst the donor population of this cohort were 

similar to those that have been described for Caucasoid populations (Uhrberg et al. 

1997; Norman et al. 2001; Toneva et al. 2001). No statistical differences were observed 

between donor and recipient KIR gene phenotypic frequencies table 8.13. The
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KIR2DL4, KIR3DL2, KIR3DL3 genes and the KIR2DP1 and KIR3DP1 pseudogenes 

were present in 100% of the samples tested. KIR2DL1 was present in 100% of the 

donors and in 97% of the recipients (table 8.13 and figure 8.4)

Table 8.13. KIR gene phenotypic frequencies observed amongst HSCT recipients and donors 

(Significance o f difference was assessed by Chi squared analysis).

KIR gen e

2DL1
2DL2
2DL3
2DL4
2DL5
2DS1
2DS2
2DS3
2DS4
2DS5
2DP1
3DL1
3DS1
3DP1
3DL2
3DL3

+ / total Donors
(%)

1 3 3 /1 3 3 100.0
6 5 /1 3 6 47.8
1 3 2 /1 3 8 95.7
1 3 4 /1 3 4 100.0
7 7 /1 3 3 57.9
6 3 /1 3 9 45.3
6 8 /1 3 9 48.9
4 2 /1 3 9 30.2
1 2 7 /1 3 9 91.4
5 8 /1 3 9 41.7
141 /141 100.0
1 1 7 /1 3 4 87.3
6 3 /1 3 7 46.0
1 4 1 /141 100.0
1 3 0 /1 3 0 100.0
14 1 /1 4 1 100.0

+ / total Recipients
(%)

131 /1 3 5 97.0
6 6 /1 3 9 47.5
1 2 8 /1 3 3 96.2
1 3 9 /1 3 9 100.0
6 7 /1 3 6 49.3
5 4 /1 3 9 38.8
6 9 /1 3 9 49.6
3 7 /1 3 9 26.6
1 3 3 /1 3 9 95.7
4 5 /1 3 9 32.4
141 /141 100.0
1 2 7 /1 3 7 92.7
5 5 /1 3 6 40.4
141 /141 100.0
1 3 6 /1 3 6 100.0
141 /141 100.0

Significance  
of difference

NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS

■  Donors
■ Recipients

2DL1 2DL2 2DL3 2DL4 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 2DP1 3DL1 3DS1 3DP1 3DL2 3DL3

Figure 8.4. KIR gene phenotypic frequency distribution amongst recipients and donors o f  HSCT (based 

on table 8.13).

Of the 282 samples only four were shown to be negative for KIR2DL1, all of which 

occurred in recipients. Eleven samples tested negative for KIR2DL3, five of them in 

recipients and six of them amongst donors. Twenty-seven samples tested negative for 

KIR3DL1 gene, ten in recipients and 17 amongst the donors. The frequency differences
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of these KIR negative-genes that exist between donors and recipients were not 

statistically significant.

KIR allele frequencies were similar between the recipients and donors of this study as 

shown in table 8.14. The allele frequencies observed in our study were compared to 

those recently published for a normal Caucasoid population from Northern Ireland 

(Halfpenny et al. 2004; Keaney et al. 2004; Meenagh et al. 2004; Williams et al. 2004). 

This was carried out for four KIR genes (KIR2DL3, KIR2DL4, KIR3DL1 and 

KIR3DL2). However, the same could not be done for KIR2DL1, as this is the first 

report of allele frequencies for KIR2DL1.

Our KIR2DL3 allele frequencies were similar to those that have been described for a 

normal Caucasoid population (Keaney et al. 2004). Similarly, the majority of our 

KIR2DL4 allele frequencies were similar to those described for the same Caucasoid 

population by a second study (W illiams et al. 2004). This was not the case for 

KIR2DL4*00202 allele, which was present in approximately 15% of our samples but 

present in 30% of the normal individuals of the Northern Irish study. When considering 

KIR3DL1 allele frequencies, the majority were similar to those described in a third 

study on Caucasoids of Northern Ireland (Halfpenny et al. 2004). However, we 

observed the KIR3DL1*001 allele in approximately 14% of our samples, whereas the 

Northern Irish study observed it in more than 40% of their samples. The KIR3DL2 

allele frequencies observed in our study were less similar to those described in a fourth 

study involving Northern Irish Caucasoids ( M e e n a g h  et al. 2004). The 

KIR3DL2*001/9, *005 and *011 alleles were observed at a lower frequency than that 

described in the Northern Irish study, however, the frequency of KIR3DL2*006 in our 

study population was shown to be higher.

The KIR allele phenotypic frequency discrepancies that are observed between our 

results and those of the Northern Ireland group are suggestive of the miss-assignment of 

alleles by either typing group. However, we think this is unlikely as we have been 

generating similar KIR typing results as the Northern Ireland research group as part of 

the University of California at Los Angeles (UCLA) cell exchange for KIR typing.
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T ab le 8 .14. KIR allele phenotypic frequencies observed amongst recipients and donors o f HSCT 

(Significance of difference was assessed by Chi squared analysis).

KIR2DL1

‘001
‘002
‘003
‘004
‘005

‘004/005

KIR2DL3

‘001
*002/006

*003
*004/005

KIR2DL4

‘00101
‘00102
‘00201
*00202

*003
‘004
*005
‘006
*007
‘008

KIR3DL1

‘001
‘002/003/006/007/008

‘004
‘005

KIR3DL2

*001/009
*002
*003
*004
*005
*006
*007
*008
*010
*011
*012

+ / total Donors

1 3 /1 3 3 8.3
6 2 /1 3 3 48.9
91 /1 3 3 63.9
2 8 /1 3 3 22.6
0 /1 3 3 0.8
9 /1 3 3 5.3

+/ total Donors

8 8 /1 3 8 63.8
7 7 /1 3 8 55.8
3 /1 3 8 2.2

1 0 /1 3 8 7.2

+ / total Donors

1 /1 3 4 0.7
8 0 /1 3 4 58.8
3 5 /1 3 4 25.7
1 7 /1 3 4 12.5
0 /1 3 4 0.0
0 /1 3 4 0.0

8 7 /1 3 4 64.0
1 0 /1 3 4 7.4
0 /1 3 4 0.0
0 /1 3 4 0.0

+ / total D onors

2 2 /1 3 4 16.4
6 2 /1 3 4 46.3
3 6 /1 3 4 24.6
3 9 /1 3 4 29.1

+ / total Donors

3 5 /1 3 0 36.5
3 4 /1 3 0 26.2
1 1 /1 3 0 9.9
1 /1 3 0 0.8
9 /1 3 0 7.4
1 3 /1 3 0 11.9
3 6 /1 3 0 23.0
7 /1 3 0 5.4

1 0 /1 3 0 9.5
3 /1 3 0 2.5
3 /1 3 0 2.5

+ / total R ecipients

1 5 /1 3 5 13.5
7 0 /1 3 5 44.9
7 8 /1 3 5 61.3
3 2 /1 3 5 26.0
1 /1 3 5 0.0
2 /1 3 5 2.7

+ / total R ecipients

8 9 /1 3 3 68.9
6 8 /1 3 3 45.8
2 /1 3 3 1.2
1 6 /1 3 3 12.5

+ / total R ecipients

0 /1 3 9 0.0
8 0 /1 3 9 55.3
3 5 /1 3 9 24.8
21 /1 3 9 16.0
0 /1 3 9 0.0
0 /1 3 9 0.0

81 /1 3 9 56.0
9 /1 3 9 8.9
0 /1 3 9 0.0
0 /1 3 9 0.0

+ / total R ecipients

1 5 /1 3 7 10.4
7 6 /1 3 7 57.7
3 5 /1 3 7 24.9
4 0 /1 3 7 29.7

+ / total R ecipients

4 7 /1 3 6 29.1
5 7 /1 3 6 23.2
9 /1 3 6 7.8
0 /1 3 6 0.0
1 1 /1 3 6 3.8
1 4 /1 3 6 5.7
3 2 /1 3 6 17.2
4 /1 3 6 4.3
1 7 /1 3 6 8.8
4 /1 3 6 0.0
1 /1 3 6 0.9

S ignificance  
of difference

NS
NS
NS
NS
NS
NS

Significance  
of difference

NS
NS
NS
NS

Significance  
of difference

NS
NS
NS
NS
NS
NS
NS
NS
NS
NS

S ignificance  
of difference

NS
NS
NS
NS

Significance  
of difference

NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
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Our typing results enabled us to determine the genotypes of 129 recipient and 126 donor 

samples as shown in Appendix E and F, respectively. For the remaining 12 recipient 

and 15 donor samples insufficient typing data did not to allow the genotype structure to 

be completely deduced. A compilation of the KIR genotypes observed amongst the 

recipient and donors and organised according to gene content is shown in tables 6.15 

and 6.16, respectively.

Thirty-nine different genotypes were observed amongst the recipient samples. Four of 

these genotypes were homozygous for group A haplotypes, five were homozygous for 

group B haplotypes and the remaining 30 genotypes represent heterozygous 

combinations of both haplotype groups. Nine genotypes were present in more than two 

samples (frequency > 1 .6  %). The frequency of eight of these nine common genotypes 

was similar to that seen in other Caucasoid populations when compared to the genotype 

compilation published by Yawata (Yawata et al. 2002a). Only one genotype (amongst 

the nine genotypes that were seen in more than 2 samples) (RGt8) had not been 

previously described by other studies. This genotype was present in 2.3% of the 

recipients. It possesses all KIR genes except KIR2DS3 and KIR3DL1 and as such has 

been classified as being a heterozygous combination of both haplotype groups. Within 

the recipient samples, 14 novel KIR genotypes were discovered as indicated in bold 

typeface on the first column of table 8.15.
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Table 8.15. KIR genotypes observed amongst 129 recipients of UD-HSCT f.

Genotype 2DL1 2D L2 2D L3 2D L4 2D L5 2DS1 2D S 2 2D S 3 2D S 4 2D S 5 3DL1 3DL2 3DS1

f = Shaded boxes indicate presence o f a gene, empty boxes indicate the absence of a gene.
/  = Frequency (expressed as percentage) o f genotype amongst our recipient samples (n=129) 
t = Frequency of genotype amongst a compilation of Caucasoid populations (Yawata et al. 2002a). 
§ = Haplotype combination represented by the genotype.

The donor samples represented 35 different genotypes (table 8.16), of which two were 

group A homozygous, seven were homozygous for group B haplotypes and the 

remaining 26 genotypes were heterozygous combinations of both haplotype groups. 

Seven genotypes were present in more than two samples (frequency > 1.6 %), all of 

which were present in our population at similar frequencies to those described by 

Yawata (Yawata et al. 2002a). In the donor population, 13 novel genotypes were seen
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as indicated in the first column of table 8.16 in bold typeface. Five of these novel 

genotypes were also seen in the recipient population of our study.

Table 8.16. KIR genotypes observed amongst 126 donors of UD-HSCT T. 

Genotype
Gt1

Gt2
Gt3

Gt4

Gt5

Gt6
°G t7

Gt8

Gt9

BGt10
DGt11
Gt12
Gt13

Gt14

Gt15
G t16
Gt17

°G t18
Gt19
Gt20
Gt21

°G t22

Gt23

°G t24

Gt25
Gt26
Gt27

Gt28

Gt29

G t30

°Gt31

Gt32

Gt33
°Gt34

G t35

2DL1 2DL2 2D L3 2D L4 2D L5 2D S 4 3DL113DL2 3DS1 / Y t* H p §

28.6 31 A -

0.8 - A,B

0.8 0.2 A,B

0.8 0.2 A -

0.8 0.5 A,B

1.6 - A,B

14.3 7.2 A,B

0.8 < 0 .2 B -

1.6 < 0 .2 A.B

0.8 - A,B

0.8 - A,B

0.8 - A,B

1.6 3.7 A,B

0.8 0.2 B -

0.8 - A,B

1.6 1.5 A,B

0.8 - A,B

9.5 14.9 A,B

0.8 - A,B

0.8 - A,B

1.6 - A,B

4.8 6.7 A.Bu 1.6 0.2 A,B■ 0.8 0.2 A,B■ 0.8 - B -■ 0.8 - A.B□ 0.8 1.2 A,B■15.6 3 A,B■ 0.8 < 0 .2 B -■ 1.6 0.5 B ,-■ 0.8 0.2 B ,-■ 0.8 0.5 B -■ 0.8 - A.B■ 5.6 4.5 A,B■ 4 4.2 A.B

f = Shaded boxes indicate presence o f a gene, empty boxes indicate the absence of a gene.
/  = Frequency (expressed as percentage) of genotype amongst our donor samples (n=126) 
t = Frequency of genotype amongst a compilation of Caucasoid populations (Yawata et al. 2002a). 
§ = Haplotype combination represented by the genotype.

Group A haplotypes were present in homozygous state in 27.7% of the donor 

population and 29.8% of the recipients. Group B haplotypes were present in 8.5% of the 

donor population and 4.3% of the recipients. Heterozygous combinations of both 

haplotype groups were present in 63.8% and 66% of the donor and recipient samples, 

respectively. Approximately 93% of the individuals (both recipients and donors)
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possessed group A haplotypes in any combination, whereas only 70% of them 

possessed group B haplotypes. The haplotype frequency differences observed between 

recipients and donors were not statistically significant. In addition, these haplotype 

frequencies were similar to those described for other Caucasoid populations (Uhrberg et 

al. 2002; Yawata et al. 2002b; Martin et al. 2004).

8.4.3 Engraftm ent

The incidence of primary graft failure (PGF) within our study cohort was 7.8% (defined 

as failure to achieve neutrophil counts above 0.5 x 109 cells/L within 28 days after 

transplant). Univariate Chi-squared analysis revealed a significantly increased incidence 

of PGF in transplants where the donor was heterozygous for the HLA-C specificity in 

comparison to donors homozygous for the group 1 or group 2 HLA-C specificities only 

(p = 0.005). However, this was only seen amongst transplant pairs with HLA-C 

mismatches but not amongst fully HLA-matched pairs. This association did not prove to 

be statistically significant when the analysis was corrected for other factors that have 

shown to influence engraftment success rate, such as donor sex (Shaw et al. 2003), in a 

binary logistic regression analysis (table 8.17).

T able 8.17. Risk factors associated with primary graft failure in the KIR typed cohort (Chi-squared 

univariate and binary logistic regression analyses).

Variable % PGF Univariate
significance Relative risk (95% C.l.) Multivariate

significance
HLA-C specificity heterozygous donor 25 0.005 NS
HLA-C specificity homozygous donor 0

Female donor 33 0.018 0.05 (0.003 - 7) 0.028
Male donor 3

The median time to engraftment of this KIR typed cohort was 19 days, ranging between 

4 and 48 days after transplant (table 8.2). Six different KIR factors were shown to have 

a statistically significant influence on the rate of engraftment (figure 8.5).
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Figure 8.5. KIR factors associated with rate of engraftment. The presence of activating KIR genes in 

the donor is associated with slower engraftment (panels A-C), whereas the presence of certain inhibitory 

KIR alleles in the recipient is associated with a faster engraftment rate (panels D-F).
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Kaplan-Meier based univariate analysis revealed that the presence of activating genes 

KIR2DS1, KIR2DS2 and KIR2DS3 in the donor was statistically associated with 

slower engraftment. Conversely, the presence of the common inhibitory alleles of 

KIR2DL1, KIR2DL3 and KIR3DL1 on the recipient was statistically associated with 

faster engraftment rates. The level of significance of these findings varied depending on 

the HLA and disease characteristics of the study cohort as shown in table 8.18.

T able 8.18. KIR factors with a statistically significant influence on the rate of engraftment as assessed by 

a Kaplan-Meier based univariate analysis.

Univariate significance

Variable All KIR 
typed

HLA
matched

HLA-C
mismatched

Myeloid
leukaemias

Other
d iseases

(n=141) (n=69) (n=54) (n=74) (n=67)

slower
engraftment

2DS1 in donor NS NS NS 0.048 NS
2DS2 in donor 0.0023 NS NS 0.0327 0.0317
2DS3 in donor 0.014 NS 0.033 NS 0.0016

faster
engraftment

2DL1*003 in recipient 0.007 NS 0.0081 0.017 NS
2DL3*001 in recipient 0.0123 NS 0.0288 0.0195 NS

3DL1 *00402 in recipient 0.0173 0.0044 NS 0.0131 NS

All of these associations (except that of KIR2DS1) were shown to exist at statistically 

significant levels when the whole KIR typed population (n=141) was tested, 

irrespective of the HLA matching status or disease type of the transplant pairs. 

KIR2DS1 positive donors were associated with slower engraftment rates at statistically 

significant levels only in the presence of myeloid diseases (AML or CML). KIR2DS2 

positive donors were additionally shown to be associated with slower engraftment rates 

at statistically significant levels in both myeloid and lymphoid malignancies. KIR2DS3 

positive donors were shown to be statistically associated with slower engraftment rates, 

in comparison to KIR2DS3 negative donors, in HLA-C mismatched pairs and especially 

in the context of lymphoid malignancies (ALL). Recipients bearing KIR2DL1*003 and 

KIR2DL3*001 alleles were significantly associated with faster engraftment rates, 

however, this could only be reproduced when only HLA-C mismatched transplant pairs 

were considered. Similarly, this association was also significant when only transplant 

pairs in which the recipient had a myeloid malignancy were analysed. In contrast, 

recipients bearing KIR3DL1 *00402 were shown to be statistically associated with faster 

engraftment rates only when fully HLA-matched transplant pairs were considered. This
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finding was also shown to exist when only transplant pairs of recipient with myeloid 

malignancies were considered.

When all significant factors were included in a Cox multivariate analysis including 

other factors shown to impact on engraftment rate (such as donor sex, recipient/donor 

gender matching, disease type and stem cell source) (Shaw et al. 2003), only four KIR 

variables remained statistically significant (table 8.19).

Table 8.19. KIR factors associated with the speed of engraftment (Cox multivariate regression analysis).

Multivariate significance /  Relative risk (95% C .I.)

Variable All KIR typed HLA matched
HLA-C

mismatched
Myeloid

leukaemias
Other

diseases

(n=141) (n=69) (n=54) (n=74) (n=67)

slower
2DS1 NS NS NS NS NS

engraftment
(donor 2D S2 NS NS NS

0.048  
0.6 ( 0 .3 -1 )

NS

features)
2D S 3 0.001 

0.5  (0 .3  - 0.7) NS NS NS
0.004  

0.4  (0 .2 - 0 .75)

2 D L T 0 0 3 0.003  
1.7 (1 .2 - 3 )

NS
0.01 

2.6  (1 .3 -5 .3 )
0.046  

1 .8 (1  - 3 )
NS

engraftment
(recipient

2DL3*001 NS NS NS NS NS

features)
3DL1 *00402 NS 0.009  

2.6  (1 .3 -5 .4 ) NS
0.031 

2 (1 - 3.6)
NS

After Cox regression multivariate analysis, KIR2DS2 bearing donors remained 

significantly associated with slower engraftment only amongst transplant pairs in which 

the recipient had a myeloid malignancy (p = 0.048). KIR2DS3 bearing donors also 

remained significantly associated with slower engraftment when all transplant pairs 

were analysed irrespective of HLA matching status or disease type (p = 0.001). In 

addition, donors with KIR2DS3 remained significantly associated with slower 

engraftment when only patients with other non-myeloid diseases were analysed in a 

multivariate analysis (p = 0.004).

Recipients bearing the inhibitory KIR2DL1*003 allele remained significantly 

associated with faster engraftment when all transplant pairs were analysed irrespective 

of HLA matching status and disease type. This association also remained significant 

when only HLA-C mismatched (p = 0.01) and myeloid transplant pairs (p = 0.046) 

were analysed. Similarly, KIR3DL1 *00402 bearing recipients remained significantly
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associated with faster engraftment rates when only HLA-matched (p = 0.009) and 

myeloid transplant pairs (p = 0.031) were analysed.

8.4.4 Graft-versus-Host Disease (GvHD)

The incidence of aGvHD in this cohort was of 40%. Univariate analysis did not reveal 

any statistically significant associations between the KIR genes and alleles present in 

the recipients and donors on the overall incidence of aGvHD or aGvHD grade. 

Approximately 75% of the patients were alive at day 100 (n=107). The overall 

probability of cGvHD three years post-transplant was 75% in this cohort. Patients in 

this cohort progressed to cGvHD in a median time of 618 days (ranging between 100 

and 1605 days) post-transplant (table 8.2).

Kaplan-Meier based univariate analysis revealed that donors expressing activating KIR 

were associated with a faster progression to cGvHD. Although this association only 

achieved statistical significance when fully HLA-matched transplant pairs were 

analysed, the remaining sub-cohorts showed a similar distribution of data (table 8.20). 

This was shown for four activating KIR genes (KIR2DS1, KIR2DS2, KIR2DS5 and 

KIR3DS1).

Table 8.20. KIR factors associated with faster progression to cGvHD (Kaplan-Meier univariate analysis).

Variable

Univariate significance

All KIR typed 

(n=141)

HLA matched 

(n=69)

HLA-C
mismatched

(n=54)

Myeloids

(n=74)

Other
d iseases

(n=67)

2DS1 in donor NS 0.0291 NS NS NS
2DS2 in donor NS 0.0472 NS NS NS
2DS5 in donor 0.0154 0.0007 NS NS NS
3DS1 in donor NS 0.029 NS NS NS

Donors expressing KIR2DS1 progressed to cGvHD in a median time of 187 days post­

transplant (ranging between 113 and 261 days). Donors expressing KIR2DS2 

progressed to cGvHD in a median time of 214 days (ranging between 87 and 341 days). 

Donors expressing KIR2DS5 developed cGvHD in a median time of 162 days (ranging 

between 121 and 203 days) after transplant. Finally, donors expressing KIR3DS1
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progressed to cGvHD in a median time of 162 days post-transplant (ranging between 71 

and 253 days). The influence of these activating KIR genes on time to progression to 

cGvHD is shown in figure 8.6.

(A) p -  0.0291

I*

2DS1 (Don)

00o 500 1000 1500 2000

1.0
p =0.0472(B)

Q

2DS2 (Don)

N«g000 500 1000 1500 2000

Days to cGvHD Days to cGvHD

p -  0.0007(C)

o

I*

2DS5(Don)

00
20000 500 1000 1500

p -  0.029(D)

Q

I*

3 D S 1  (D o n )

ao o 500 1000 1500 2000

Days to cGvHD Days ,0 cGvHD

Figure 8.6. KIR factors associated with faster progression to cGvHD. The presence o f  KIR2DS1, 

2D S2, 2DS5 and 3DS1 in the donor is associated with faster progression to cGvHD (panels A-D, 

respectively).

This association was tested in a Cox regression multivariate analysis so as to correct for 

other factors which have been shown to impact on speed of progression to cGvHD such 

as disease type, stem cell source, T-cell depletion and class I mismatches (Shaw et al. 

2003). The influence of KIR2DS5 on progression to cGvHD remained significant when 

these other factors were considered (table 8.21).
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T able 8.21. KIR factors significantly associated with faster progression to cGvHD (Cox regression 

multivariate analysis).

Multivariate significance / Relative risk (95%C.I.)
Variable All KIR typed HLA matched

(n=141) (n=69)
2DS1 in donor NS NS
2DS2 in donor NS NS
2DS5 in donor 0 .0 1 5 /1 .9 8  (1.1 - 3 .4 ) 0 .0 0 2 /4 .9  (1 .8 -1 3 .5 )
3DS1 in donor NS NS

8.4.5 Relapse

In this cohort, recipients with malignant diseases progressed to relapse in a median time 

of 335 days post-transplant (ranging between 5 and 2136 days). The three-year 

probability of relapse in this cohort was 22% (table 8.2). Kaplan-Meier based univariate 

analysis revealed that six recipient and eight donor factors had a statistically significant 

impact on the speed of progression to relapse. The six recipient factors that were 

associated with faster progression to relapse are shown in table 8.22. Recipients 

homozygous for HLA-C specificities (Cl,- or C2,-) had a higher three-year probability 

of relapse (83%) than heterozygous recipients (70%) (figure 8.7, panel A). This 

association also achieved statistical significance when only HLA-matched transplant 

pairs were analysed (irrespective of the disease type). In a similar way, recipients that 

were homozygous for C2 specificity were associated with a faster progression to relapse 

than recipients with Cl specificity in either homozygous or heterozygous state. Whereas 

the three-year probability of relapse was 100% for the C2 homozygous recipients, the 

three-year probability of relapse for recipients with Cl specificities was only 75% 

(figure 8.7, panel B).

Table 8.22. Factors associated with faster progression to relapse when present in the recipient (Kaplan- 

Meier univariate analysis).

Variable

Univariate significance
All KIR 
typed 

(n=141)

HLA
matched

(n=69)

HLA-C
mismatched

(n=54)

Myeloids

(n=74)

Other
d iseases

(n=67)
HLA-C specificity homozygous 0.0139 0.0495 NS NS NS

C2 specificity homozygous 0.0101 NS NS NS 0.0053
KIR2DL1*004 0.0224 NS NS 0.0013 NS

KIR2DL4 alleles (not *00201) NS NS NS 0.0265 NS
KIR2DL5 positive NS NS NS 0.0009 NS
KIR2DS3 positive NS NS NS 0.0061 NS

302



C h a pt e r  8

Recipients expressing KIR2DL 1*004 were associated with faster progression to relapse 

in comparison to recipients possessing other alleles of KIR2DL1 (figure 8.7, panel C). 

This association was present at higher significance when only transplant pairs in which 

the recipient had a myeloid malignancy were analysed (irrespective of HLA matching 

status). Whereas the two-year probability of relapse for recipients expressing 

KIR2DL*004 was 94%, the recipients with other KIR2DL1 alleles had a three-year 

probability of only 76%.
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Figure 8.7. Recipient factors with an impact on time to relapse. The recipient factors that are 

associated with a faster progression to relapse include the HLA-C specificities (panel A and B), the type 

of KIR2DL1 and KIR2DL4 alleles present (panel C and D), the presence of KIR2DL5 (panel E) as well 

as the presence of K1R2DS3 (panel F).

When only transplant pairs in which the recipient had a myeloid malignancy were 

analysed, three additional recipient factors were statistically associated with faster 

progression to relapse. In this group of transplant pairs, recipients expressing KIR2DL4 

alleles other than *00201 were associated with faster progression to relapse (three-year 

probability of relapse of 89%) in comparison to recipients expressing KIR2DL4*00201
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(three-year probability of relapse of 79%), as shown in figure 8.7, panel D. Similarly, 

recipients expressing KIR2DL5 or KIR2DS3 were associated with a faster progression 

to relapse than recipients which did not express either of these KIR genes. 100% of the 

recipients expressing KIR2DL5 or KIR2DS3 relapsed after two and one year post­

transplant, respectively. However, recipients which did not express these KIR genes had 

a three-year probability of relapse of approximately 80% (figure 8.7, panels E and F). 

Kaplan-Meier univariate analysis also revealed eight significant associations of donor 

factors to time to relapse. Three of these donor factors were associated with slower 

progression to relapse whereas five additional donor factors were related to faster 

relapse.

T able 8.23. KIR factors associated with time to relapse when present in the donor (K aplan-M eier 

univariate analysis).

Variable

Univariate significance
All KIR 
typed 

(n=141)

HLA
matched
(n=69)

HLA-C
mismatched

(n=54)

Myeloids

(n=74)

Other
d iseases

(n=67)
Slower KIR2DL1*003 NS 0.0025 NS NS NS

progression KIR2DL3*001 NS 0.0028 NS NS NS
to relapse KIR3DL1*001 0.0427 NS NS NS NS

KIR2DL1*004 NS NS 0.0188 NS NS
Faster KIR2DL4*00102 0.0256 NS NS NS NS

progression KIR3DL2*002 0.0195 NS NS NS NS
to relapse KIR2DS2 NS 0.0275 NS 0.0393 NS

KIR2DS3 0.0232 NS NS NS NS

Transplant pairs in which the donor expressed KIR2DL1*003, KIR2DL3*001 and 

KIR3DL1*001 were associated with a slower progression to relapse than transplant 

pairs in which the donor expressed other alleles of these genes. The three-year 

probability of relapse for transplant pairs having donors expressing these alleles was 

87%, 85% and 51%, respectively. However, the three-year probability of relapse in 

transplant pairs in which the donors expressed other KIR2DL1, KIR2DL3 and 

KIR3DL1 alleles was 100%, 100% and 82%, respectively (figure 8.8). However, a 

statistically significant association of KIR2DL1*003 and KIR2DL3*001 to slower 

progression to relapse was seen only when HLA matched transplant pairs were analysed 

(figure 8.8, panels A and B).

304



C h a pt e r  8

o
o

10*
p -  0.0028

I

i :cc* 4.

1
00

0 900 1900 200C 2900

p -  0 0427

Days to relapse

(A)

Days to mbps*

(B)

Days to relapse

(C)

Figure 8.8. Donor factors associated with a slower progression to relapse. The donor factors that are 

associated with a slower progression to relapse include the type of KIR2DL1, KIR2DL3 and KIR3DL1 

alleles present (panels A, B and C, respectively).

Five additional donor factors were found to be associated with a faster progression to 

relapse, including three inhibitory KIR alleles and two activating KIR genes. Recipients 

that were transplanted from a donor bearing KIR2DL 1*004 relapsed faster than 

recipients having donors expressing other KIR2DL1 alleles (figure 8.9, panel A). The 

two-year probability of relapse for recipients transplanted from KIR2DL 1*004 bearing 

donors was 83%, whereas the two-year probability of relapse for recipients having 

donors expressing other KIR2DL1 alleles was only 56%. Interestingly, the most 

common KIR2DL1 allele amongst our study population (as shown in table 8.14) when 

present in the donor has previously been shown to be statistically associated with a 

slower progression to relapse (table 8.23). The association of KIR2DL 1*004 to faster 

progression to relapse, however, was only observed when HLA-C mismatched 

transplant pairs were analysed (irrespective of the type of disease).

In a similar manner, the presence of KIR2DL4*00102 and KIR3DL2*002 in the donor 

was associated with faster progression to relapse. By the end of the first year post­

transplant, 66% of the recipients that had a KIR2DL4*00102 bearing donor had 

relapsed, whereas only 39% of the recipients having a donor expressing other 

KIR2DL4 alleles had done so (figure 8.9, panel B). The three-year probability of 

relapse for recipients receiving transplants from a KIR3DL2*002 bearing donor was 

94%, whereas the three-year probability of relapse for recipients having a donor 

expressing other K1R3DL2 alleles was of 69% (figure 8.9, panel C). The association of
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K IR2DL4*00102 and KIR3D L2*002 to a faster progression o f relapse was only 

observed when the entire KIR typed cohort was analysed, irrespective o f disease type 

or HLA-matching status.
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Figure 8.9. Donor factors associated with a faster progression to relapse. The donor factors that are 

associated with a faster progression to relapse include particular alleles o f  KIR2DL1, KIR2DL4 and 

KIR3DL2 (panels A, B and C, respectively) as well as the presence o f  the activating KIR2DS2 and 

KIR2DS3 (panel D and E, respectively).

The presence o f activating KIR in the donor was also shown to be statistically 

associated with a faster progression to relapse. M ore than 90% o f the recipients 

transplanted from donors expressing KIR2DS2 had relapsed by the end o f the first year 

post-transplant. All o f these recipients had relapsed during the second year post­

transplant. In com parison, only 60% of the recipients that were transplanted from 

donors negative for KIR2DS2 had relapsed at the end of the first year (figure 8.9, panel 

D). This association only achieved statistical significance when the analysis was 

restricted to H LA -m atched transplant pairs or to those o f the m yeloid group of 

malignancies. Finally, recipients having KIR2DS3 positive donors also relapsed faster 

than recipients transplanted from KIR2DS3 negative donors (figure 8.9, panel E). The

306



C h a p t e r  8

three-year probability of relapse for recipients having a KIR2DS3 expressing donor was 

of 86%, whereas the three-year probability of relapse for recipients transplanted from 

KIR2DS3 negative donors was 66%.

All of the factors with a statistically significant impact on time to relapse were analysed 

in a Cox regression multivariate analysis including other factors that have shown to 

impact on time to relapse such as the age of the recipient at the time of transplant and 

the type of disease present in the recipient (Shaw et al. 2003). Nine factors remained 

statistically significant, including five recipient and four donor features as shown in 

table 8.24. In this study cohort, recipients with CML were more likely to relapse than 

recipients with AML, ALL or other malignant diseases (p = 0.012).

T able 8 .24 . Corrected KIR factors associated with time to relapse as assessed by Cox regression  

multivariate analysis.

Variable Multivariate
significance

Relative risk 
(95% C.l.) Time to relapse *

D isease type (CML) 0.012 3.6 (1 .3 -9 .7 ) 251 (1 2 3 -3 7 9 )

Recipient
factors

C1 specificity (any combination) <0.0001 0.2 (0.1 - 0 .5 ) 375 (306 -  444)
KIR2DL 1*004 0.015 2.5 ( 1 .2 - 5 ) 187 (6 8 -3 0 5 )
KIR2DL4 *00201 0.005 6.0 ( 1 .7 - 2 1 ) 666 (2 3 7 -1 0 9 5 )
KIR2DL5 positive <0.0001 3.97 (1 .9 -8 .4 ) 188 (1 2 6 -2 5 1 )
KIR2DL3*001 <0.0001 0.16 (0.1 - 0 .4 ) 277 (1 2 3 -4 3 6 )

Donor KIR2DL1*004 0.004 9.4 (2 -  43) 251 ( 1 8 -4 8 4 )
factors KIR3DL2*002 0.029 1.9 (1 - 3 .6 ) 276 (1 8 5 -3 6 7 )

KIR2DS3 0.04 1.9 (1 - 3 .4 ) 210 (161 - 2 5 9 )
t = Median (range) days post-transplant.

The impact of recipients bearing KIR2DL4*00201 and KIR2DL5 on time to relapse 

only achieved significance when the analysis was restricted to transplant pairs of the 

myeloid group. The slower progression to relapse observed in recipients that had a 

KIR2DL3*001 bearing donor only achieved statistical significance when the analysis 

was restricted to HLA-matched pairs. Finally, the association of donors bearing 

KIR2DL 1*004 to faster relapse achieved statistical significance only when the HLA-C 

mismatched transplant pairs were analysed.
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8.4.6 Transplant Related Mortality (TRM)

The Transplant Related Mortality (TRM) o f this cohort at day 100 was 29% (table 8.2). 

Only tw o recipient factors were shown to be statistically associated with TRM  in 

K aplan-M eier based univariate analysis (table 8.25).

Table 8.25. Factors with an impact on Transplant Related Mortality as assessed by Kaplan-Meier based 

univariate and Cox regression multivariate analysis.

Variable % TRM Univariate
significance

Multivariate
significance Relative risk (95% C.l.)

(A,-)
Haplotype (B,—)

30
75 0.0318 NS

(A.B) 26
KIR2DL1 *004

Other alleles
42
28

0.047 0.034 5.1 ( 1 .1 - 2 3 )

Recipients homozygous for group B haplotypes had a higher TRM than those that were 

either hom ozygous for group A haplotypes or heterozygous for group A and B 

haplotypes (figure 8.10, panel A). This association achieved higher significance 

(p = 0.0229) when the analysis was restricted to HLA-C mismatched transplant pairs. 

S im ilarly , recipients expressing K IR2D L1*004 had a h igher TRM  (42% ) than 

recipients expressing other KIR2DL1 alleles (28%). This association also achieved 

higher significance when the analysis was restricted to HLA-C mism atched transplant 

pairs (figure 8.10, panel B).
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Figure 8.10. Recipient factors with an impact on Transplant Related Mortality (TRM). The

recipient factors that are associated with a higher TRM include homozygous combinations o f group B 

haplotypes (panel A) and the presence o f KIR2DL 1*004 (panel B).
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These factors were included, together with other factors that have been shown to impact 

on TRM (such as class I and class II matching status) in a multivariate analysis (Shaw et 

al. 2003). After multivariate analysis, only the presence of KIR2DL1*004 in the 

recipient remained significantly associated with higher TRM (see table 8.25).

8.4.7 Disease Free and Overall Survival

The three-year probability of Disease Free Survival (DFS) in this study cohort was of 

15% (median 175, ranging between 5 and 2136 days post-transplant) (table 8.2). 

Kaplan-Meier based univariate analysis revealed that seven recipient factors had a 

significant impact on DFS, as shown in table 8.26.

Table 8.26. Recipient factors with an impact on Disease Free Survival as assessed by Kaplan-M eier 

based univariate analysis.

Variable

Univariate significance

All KIR typed 

(n=141)

HLA
matched
(n=69)

HLA-C
mismatched

(n=54)

Myeloids

(n=74)

Other
diseases

(n=67)
KIR haplotype 0.0055 NS 0.001 0.0221 NS

HLA-C specificity 0.0309 0.0385 NS NS NS
KIR2DL 1*004 0.0086 NS NS 0.0155 NS

KIR3DS1 NS NS 0.0405 0.0207 NS
KIR2DL4*00102 NS NS NS 0.0361 NS

KIR2DL5 NS NS NS 0.0055 NS
KIR2DS3 NS NS NS 0.0153 NS

The recipient factors that were significantly associated with higher DFS were 

heterozygous HLA-C specificities (C1,C2) and the presence of KIR2DL4*00102 allele. 

Recipients having heterozygous combinations of HLA-C specificities had a three-year 

probability of DFS of 20%, whereas recipients homozygous for either group 1 HLA-C 

or group 2 HLA-C specificities had a three-year probability of DFS of only 10% (figure 

8.11, panel A). This association achieved statistical significance when the entire KIR 

typed cohort was analysed as well as when the analysis was restricted to HLA-matched 

transplant pairs. Similarly, recipients expressing the KIR2DL4*00102 allele had a 

three-year probability of DFS of 11%, whereas recipients expressing other KIR2DL4 

alleles had a three-year probability of 0%. However, this association only achieved 

statistical significance in the case of recipients with myeloid diseases (figure 8.11, panel

B).
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Figure 8.11. Recipient factors related to better Disease Free Survival (DFS). Recipients heterozygous 

for their HLA-C specificities (panel A) and those expressing KIR2DL4*00102 (panel B) had a higher 

DFS than their counterparts.

Five recipient factors were associated with a decrease in DFS, particularly when the 

analysis was restricted to the myeloid group. Recipients homozygous for group B KIR 

haplotypes had a three-year probability of DFS of 0%, whereas recipients having a 

group A haplotype in either homozygous or heterozygous state had a three-year 

probability of DFS of 22% and 12%, respectively (figure 8.12, panel A). This 

association also achieved statistical significance when the analysis was restricted to 

HLA-C mismatched transplant pairs (table 8.26). Similarly, recipients expressing the 

inhibitory KIR2DL1*004 and KIR2DL5 alleles had a three-year probability of DFS of 

4% each, whereas recipients that did not express KIR2DL5 or those that expressed other 

KIR2DL1 alleles had a three-year probability of DFS of 15% (figure 8.12, panels B and

C). In addition, recipients expressing the activating KIR2DS3 and KIR3DS1 were 

associated with a lower DFS at three years post-transplant. The three-year probability of 

DFS in KIR2DS3 expressing recipients was 0%, whereas recipients not expressing 

KIR2DS3 had a three-year probability of DFS of 12% (figure 8.12, panel D). Similarly, 

recipients expressing KIR3DS1 had a three-year probability of DFS of 25%, whereas 

recipients that did not express this gene had a three-year probability of DFS of 44% 

(figure 8.12, panel E). This last association also achieved statistically significance when 

the analysis was restricted to the HLA-C mismatched transplant pairs.
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Figure 8.12. Recipient factors related to worse Disease Free Survival (DFS). Recipients homozygous 

for group B haplotypes (panel A), those expressing the inhibitory KIR2DL1*004 and KIR2DL5 (panels 

B and C) as well as those expressing the activating KIR2DS3 and KIR3DS1 (panels D and E) had a lower 

DFS than their counterparts.

Six donor factors were shown to have a statistically significant impact on DFS in 

Kaplan-Meier based univariate analysis (table 8.27). These include four factors 

associated with increased DFS and two factors associated with a decrease in DFS. Most 

of the donor influence on DFS was encountered when the analysis was restricted to 

HLA-matched transplant pairs.

Table 8.27. Donor factors with an impact on Disease Free Survival as assessed by Kaplan-Meier based 

univariate analysis.

Variable

Univariate significance

All KIR typed 

(n=141)

HLA
matched
(n=69)

HLA-C
mismatched

(n=54)

Myeloids

(n-74)

Other
d iseases

(n=67)
KIR2DL1*003 NS 0.0224 NS NS NS
KIR2DL3*001 NS 0.0027 NS NS NS

HLA-C specificity NS 0.0385 NS NS NS
KIR2DS2 NS 0.0421 NS NS NS

KIR2DL1*004 NS NS 0.032 NS NS
KIR3DL1 *00402 NS NS NS 0.0191 NS
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Recipients having a donor with heterozygous HLA-C specificities had a three-year 

probability of DFS of 6%, whereas recipients having HLA-C specificity homozygous 

donors (either C l,- or C2,-) had a three-year probability of DFS of 0% (figure 8.13, 

panel A). Also, recipients having donors that expressed KIR2DL 1*003 and 

KIR2DL3*001 had a three-year probability of DFS of 4% each, whereas recipients with 

donors expressing other KIR2DL1 and KIR2DL3 alleles had a three-year probability of 

DFS of 0% (figure 8.13, panel B and C). In addition, recipients having a 

KIR3DL 1*00402 expressing donor had a three-year probability of DFS of 4%, whereas 

the three-year probability of DFS was 31% for recipients with donors that expressed 

other KIR3DL1 alleles (figure 8.13, panel D). However, this last association only 

achieved significance when the analysis was restricted to recipients with myeloid 

malignancies.
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Figure 8.13. Donor factors related to better Disease Free Survival (DFS). Donors heterozygous for 

their HLA-C specificities (panel A) as well as those expressing the inhibitory KIR2DL1*003, 

KIR2DL3*00I and KIR3DL1 *00402 (panels B, C and D) had a higher DFS than their counterparts.
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Univariate analysis also revealed that two donor factors were associated with a 

statistically significant decrease in DFS. Recipients having donors that expressed 

KIR2DL 1*004 had a three-year probability of DFS of 17%, whereas recipients with 

donors expressing other K1R2DL1 alleles had a three-year probability of DFS of 44% 

(figure 8.14, panel A). Also, recipients having a donor with KIR2DS2 had a three-year 

probability of DFS of 0%, whereas recipients having KIR2DS2 negative donors had a 

three-year probability of DFS of 5% (figure 8.14, panel B).
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Figure 8.14. Donor factors related to worse Disease Free Survival (DFS). Donors expressing the 

inhibitory K1R2DL 1*004 (panel A) and the activating KIR2DS2 (panel B) had a lower DFS than their 

counterparts.

All of the statistically significant factors mentioned previously were included in a Cox 

regression analysis together with other factors that have been shown to have an impact 

on DFS (such as HLA matching status and patient age) (Shaw et al. 2003). Six factors 

remained statistically significant after this multivariate correction, including four 

recipient factors and two donor factors (table 8.28).

Recipients having group A KIR haplotypes both in homozygous or heterozygous state 

remained statistically associated with increased DFS, although only when the analysis 

was restricted to recipients with a myeloid malignancy. Recipients having heterozygous 

HLA-C specificity combinations remained statistically associated with an increase in 

DFS, but only when the analysis was restricted to the HLA-matched group of transplant 

pairs.
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Table 8.28. Factors with an impact on Disease Free Survival as assessed by Cox regression multivariate 

analysis.

Variable Multivariate
significance Relative risk (95% C.l.)

Class 1 mismatch <0.0001 0.4 (0.3 - 0.6)
KIR haplotype 0.01 24.4 (2.1 -280)

Recipient HLA-C specificity 0.041 0.6 (0 .4 -1 )
factors KIR2DL1*004 0.009 1.9 (1 .2 -3 )

KIR3DS1 0.015 2.9 (1 .2 -6 .7 )

Donor KIR2DL1*004 0.008 3.3 (1.4 - 8.1)
factors KIR2DL3*001 0.006 0.5 (0 .3 -1 )

Also, recipients expressing KIR2DL1*004 remained statistically associated with a 

decrease in DFS in the entire KIR typed cohort as well as when the analysis was 

restricted to the myeloid group. Recipients expressing KIR3DS1 remained statistically 

associated with a decrease in DFS when the analysis was restricted to HLA-C 

mismatched transplant pairs.

In addition to these recipient factors, two donor factors remained statistically associated 

with DFS. Recipients having donors that express KIR2DL1*004 remained statistically 

associated with a lower DFS, albeit only when the analysis was restricted to the HLA-C 

mismatched transplant pairs. Also, recipients having donors that express KIR2DL3*001 

remained statistically associated with an increase in DFS, although this was only seen 

when the analysis was restricted to the HLA-matched group. The three-year overall 

survival in this cohort was 33% (median 349, ranging between 5 and 2136 days post­

transplant) (table 8.2). Recipient and donor KIR factors were not found to be 

statistically associated with an increase or decrease in overall survival.

8.5 Discussion

Our study cohort is comprised of patients with different types of diseases, in different 

stages that have received UD-HSCT. This cohort has recently been the subject of 

investigation on the effect that immunogenetic and clinical factors have on the outcome 

of UD-HSCT (such as recipient and donor pre-transplant factors, non-HLA factors as
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well as HLA factors). The impact of these factors on UD-HSCT are detailed to a greater 

extent in the corresponding publication (Shaw et al. 2001; Shaw 2004).

This study cohort was divided into two overlapping cohorts which include a group of 

transplant pairs on which Ruggeri’s algorithm was tested (ANT Cohort 1) and a second 

cohort including KIR typed transplant pairs (ANT Cohort 2), as shown in table 8.1. The 

evaluation of Ruggeri’s algorithm for the prediction of NK alloreactivity based on HLA 

typing data employed a study cohort of 308 transplant pairs with similar features to 

those of Ruggeri’s original study group (Ruggeri et al. 1999). Although fundamental 

differences exist between our study cohort and Ruggeri’s (transplant modality, stem cell 

dose used and post-transplant immunosuppression usage), our investigations were 

directed towards analysing the applicability of her algorithm in the unrelated donor 

HSCT setting and not towards reproducing Ruggeri’s findings. Our ANT Cohort 1 

included relatively equal numbers of patients with each of the three disease types of 

interest (AML, CML and ALL). Additionally our study cohort had similar numbers of 

recipients allocated to each of the NK alloreactivity categories as Ruggeri’s original 

study cohort. However, the ANT Cohort 1 not only differed from Ruggeri’s cohort in 

the transplant modality and usage of post-transplant immunosuppression, but also in the 

proportion of transplant pairs allocated to each of the predicted NK alloreactivity 

categories. While the NK alloreactivity categories of Ruggeri’s original cohort (n = 60 

transplants) possessed similar numbers of patients (approximately 30% per category), 

our transplant pairs were distributed in a different way. The GvH and HvG 

alloreactivity categories in our cohort represented only 4% and 7% of the total 

transplant pairs, respectively. However, the transplant pairs without NK alloreactivity in 

our cohort comprised approximately 90% of the total study population. These 

differences arise mainly from the transplant modality employed in our study, where the 

prospective selection of HLA matched donors decreases the probabilities of generating 

epitope mismatched NK alloreactivity (in comparison to the haploidentical setting 

employed by Ruggeri).

The second study group, ANT Cohort 2, included approximately equal numbers of 

HLA-matched (except HLA-DPB1) and, HLA-C mismatched only, transplant pairs. 

Transplant pairs that only possess HLA-C mismatches by the typing method performed

315



C h a pt e r  8

pre-transplant were selected so as to allow us to investigate the role of KIR genes with 

HLA-C binding potential in the context of an otherwise HLA matched environment. 

Some of the transplant pairs within this KIR typed sub-cohort were subsequently shown 

to possess other HLA mismatches after they had been included in this study (as they 

were also part of a high resolution tissue typing study). The pre-transplant and clinical 

features of this cohort were similar to those of the global database as discussed in the 

text.

The discussion of our findings has been separated into two main sections so as to 

facilitate the interpretation of the data. The first section relates to the discussion of our 

evaluation of Ruggeri’s NK alloreactivity prediction algorithm based on HLA typings. 

The second section relates to the discussion of our findings amongst the KIR typed sub­

cohort.

8.5.1 Discussion of our testing of Ruggeri’s KIR epitope-based algorithm for the 

prediction of NK cell alloreactivity in UD-HSCT

One of the first interesting findings suggested by Ruggeri related to a beneficial effect 

of NK alloreactivity in the GvH direction on engraftment. This was based on the 

differences in the incidence of primary graft failure (PGF) between the three study 

categories. Ruggeri observed PGF in 0%, 6% and 26% of the transplants with 

GvH-alloreactivity, HvG-alloreactivity or No-alloreactivity, respectively. The 

incidence of PGF for each of these categories, as assessed by us in our cohort was of 

23%, 7.5% and 7.75%, respectively. Consequently our results do not support Ruggeri’s 

suggestion that GvH directed NK alloreactivity protects from PGF, as its incidence was 

increased in this category with respect to the other categories as well as to the average 

of the global database (see table 8.2).

A second finding described by Ruggeri related to the protective effect of NK 

alloreactivity in the GvH direction from GvHD. This suggestion was based on the 

observed differences in the frequency of GvHD within each of the study categories. The 

biological basis for this paradoxical finding was presumed to be a result of NK cell 

haematopoietic lineage-restricted cytotoxicity. According to which donor derived NK
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cells eliminate host-derived antigen presenting cells that initiate the events leading to 

GvHD. Ruggeri observed GvHD in 0%, 0% and 13% of the transplants with 

GvH-alloreactivity, HvG-alloreactivity or No-alloreactivity, respectively. Again, our 

results failed to support this idea, as the incidence of aGvHD for each of these study 

categories was found to be of 38%, 61% and 55% and relatively similar amongst them.

A third finding described by Ruggeri related to the protective effect of NK alloreactivity 

in the GvH direction against disease relapse, especially within myeloid diseases. 

Interestingly, our results did support this idea as the incidence of relapse in recipients 

with myeloid malignancies and GvH alloreactivity was shown to be of 0%, albeit this 

was not statistically significant. The incidence of relapse amongst the recipients with 

myeloid malignancies and HvG-alloreactivity (24%) or No-alloreactivity (27%) in our 

cohort was also similar to that presented by Ruggeri (approximately 17% and 27%, 

respectively).

The discrepancies observed between our results and those of Ruggeri’s and the lack of 

statistically significant associations in our study could be a consequence of several 

confounding factors. First, the beneficial effects of KIR ligand incompatibility might 

only be observed in the very specific haploidentical transplant modality studied by 

Ruggeri. Second, they could be a consequence of post-transplant immunosuppression. 

Ruggeri’s cohort did not employ prophylactic post-transplant immunosuppression. In 

contrast, only 8% of the transplant recipients of our cohort did not receive post­

transplant immunosuppression. Third, our mostly HLA-fully-matched cohort might not 

possess sufficient numbers of recipients within each GvH or HvG alloreactivity 

category to reveal the beneficial effects suggested by Ruggeri. Finally, other unknown 

transplantation characteristics (such as infused stem cell dose) might not be comparable 

between these two studies.

Assuming that our findings will be confirmed in a larger study, other results generated 

in our study do not allow us to support the idea that KIR ligand incompatibility is of any 

benefit in UD-HSCT. This is the case of three interesting results concerning the role of 

NK alloreactivity (predicted by Ruggeri’s algorithm) in engraftment, cGvHD incidence 

and overall survival. First, it remains unclear why recipients with NK alloreactivity in
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the GvH direction had a higher incidence of PGF. It would be expected that NK cell 

alloreactivity in the GvH direction would promote engraftment by eliminating residual 

host haematopoietic cells which might interfere with engraftment. Second, it remains 

unclear how NK alloreactivity in the HvG direction increases the incidence of cGvHD. 

This is an intriguing finding as most of the recipients in our study cohort have received 

myeloablative conditioning which in theory should have eliminated host NK cells 

thought to be responsible for this HvG effect. The possibility that these cells might 

indeed be present after conditioning raises yet another question: Why was the incidence 

of PGF not increased in this category group? Finally, and most significantly in terms of 

the impact of NK mismatching, was our description of a negative impact of NK 

alloreactivity in the GvH direction as predicted by Ruggeri’s algorithm on the survival 

of transplant recipients. The analysis of the life tables associated with these findings 

revealed that the majority of the deaths associated with GvH alloreactivity occurred 

early on during the first 12 months after the transplant. As NK alloreactivity in the GvH 

direction was not shown to be associated significantly with an increase in the incidence 

of disease relapse or GvHD, it is probable that this early mortality might not be related 

to either of these factors. It could be hypothesised however, that GvH NK cell 

alloreactivity affects the recipient’s ability to fend off pathogen incursions. Whether this 

actually happens, and how it leads to the immunocompromise remains unclear. This 

phenomenon relating to the negative impact of GvH NK alloreactivity on survival was 

also observed by another research group in their cohort (Davies et al. 2002).

8.5.2 Discussion of our results relating to the impact of KIR genes and alleles on 

UD-HSCT

The fact that high-quality KIR typings were generated for more than 98% of the 

samples tested is a reflection of the robustness of our PCR-SSP KIR typing technique. 

The samples that did not provide adequate KIR typing results failed to do so on more 

than one occasion, thereby suggesting that DNA quality and not PCR-SSP robustness 

was to blame. The KIR gene phenotypic frequencies observed in our donor and 

recipient populations were shown to be similar to those that have been described for 

other Caucasoid populations (Uhrberg et al. 1997). This is not surprising given that the 

members of our study population are mostly Caucasoid. Additionally, the frequency of
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KIR2DL1, 2DL3 and 3DL1 negative samples was similar to that described for 

Caucasoids by other studies (Shilling et al. 2002a). The fact that KIR2DL1 was present 

in more than 98% of the samples tested reflects the previously described ubiquity of this 

non-framework KIR gene in human populations (Vilches and Parham 2002).

In a similar manner, the KIR allele frequencies observed in our study exhibited similar 

frequencies to those that have been described by other studies involving Caucasoids 

from Northern Ireland (Halfpenny et al. 2004; Keaney et al. 2004; Meenagh et al. 2004; 

Williams et al. 2004). The discrepant results that exist between our study population 

and those of the Northern Irish population in the frequency of some KIR3DL2 alleles 

are explained by the counting criteria used in our study. As the KIR3DL2 alleles of 

concern form part of ambiguous combinations that cannot be resolved with our current 

approach, these samples were not taken into consideration when calculating allele 

frequencies. As such, our allele frequencies are an underestimate of the real frequency 

of KIR3DL2*001/009, *005 and *011. However, the origin of the frequency 

differences observed for KIR3DL2*006, KIR2DL4*00202 and KIR3DL1*001 remains 

uncertain. However, both us and the Northern Ireland group have been participating in 

the University of California at Los Angeles (UCLA) cell exchange for KIR typing and 

have generated similar results for the cell typings that were carried out in a blinded 

study. Consequently, we do not think that the observed frequency discrepancies are a 

result of technical flaws or miss-assignment, but more likely to reflect variation in the 

ethnic origin of both Caucasoid groups (possibly as a result of the Celtic influence in 

the Northern Ireland population) (Finch et al. 1997).

The KIR genotypes and haplotypes present within our recipient and donor samples were 

also shown to be similar to those that have been described for other Caucasoid 

populations (Hsu et al. 2002; Uhrberg et al. 2002). This was further supported by the 

fact that the most common genotypes observed in both our recipient and donor sample 

populations were also the most common genotypes encountered in other Caucasoid 

populations (Yawata et al. 2002a). Nevertheless, nearly 35% of the genotypes in our 

study population possessed novel KIR gene arrangements which had not been described 

previously. Although most of these novel KIR genotypes were only observed in one or 

two individuals, one of them (RGt34) was present at a frequency of 2.3% and amongst
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the most common KIR genotypes observed in recipients. These findings support the 

idea that KIR genotype diversity is greater than initially thought, and suggests that 

virtually any KIR gene combination is possible. In summary, our study population 

possesses identical KIR features to those that have been previously described for other 

Caucasoid populations.

The interpretation of the KIR associations with clinical features demonstrated in this 

study suffers from the limited understanding of certain functional aspects of KIR 

proteins. Examples of these include, undefined binding specificities for some KIR 

proteins and insufficient knowledge of the developmental and education programs to 

which NK cells are subjected, and which modulate KIR gene expression. Clinical 

haematopoietic transplantation represents a unique platform on which to explore these 

issues. The following paragraphs discuss our findings and provide some possible 

explanations into the mechanisms which might be responsible for the observed 

associations.

Engraftment is the result of the colonisation of the host immune vacuum created by the 

conditioning regimen by donor-derived cells. The first cells to reconstitute have been 

shown to be those of the innate branch of the immune system, of particular importance 

to this being the NK cells (Lamb 2002; Lowdell 2003). Factors that have been shown to 

influence the rate of engraftment include the recipients age, the type and intensity of the 

conditioning regimens employed and the initial pathology for which HSCT was 

indicated (Toubert 2004). Other factors include the source of the infused stem cells 

(PBSC or BM) and the CMV status of the recipient (Davies et al. 2004; Shaw 2004). 

HSCT engraftment is thought to be limited by residual host cells that have managed to 

survive the pre-transplant conditioning regimen. The use of CAMPATH in 

myeloablative and reduced intensity conditioning regimens for in vivo T cell depletion 

has been shown to improve the engraftment rate (Chakraverty et al. 2002). CAMPATH 

is capable of killing T cells, B cells, dendritic cells as well as NK cells (Schofer et al. 

1988; Condiotti and Nagler 1996). Approximately 65% of our KIR typed cohort 

received CAMPATH. Consequently, we did not expect to encounter any influence of 

recipient KIR factors on the clinical endpoints evaluated. Interestingly, however, our 

results demonstrated the presence of such associations. Although the relevance of these
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associations remains unclear, their recurrence during our investigations has dictated 

their inclusion.

The first example of recipient factors associated with the outcome of HSCT relates to 

engraftment. K1R2DL1*003 and KIR3DL1 *00402 bearing recipients were shown to 

possess faster engraftment rates (median of 18 days and ranging between 16 and 20 

days) than recipients expressing other KIR2DL1 or KIR3DL1 alleles (median of 21 

days and ranging between 19 to 23 days). The association of inhibitory KIR expressed 

by recipient NK cells and faster engraftment rates can easily be interpreted as being the 

result of the inhibition of HvG NK alloreactivity. Theoretically this loss of HvG NK 

alloreactivity would prevent the majority of the host NK cells that survived the 

conditioning regimen from killing donor derived cells. However, this hypothesis does 

not explain why this association was only observed with certain alleles of these genes. 

One possible explanation for this might be the relative frequency of these alleles. In fact 

KIR2DL1*003 is the most common allele of this gene. An alternative explanation for 

this allele specific association could relate to the presence of differential ligand binding 

or signalling properties distinguishing these alleles from other of the same gene. In 

support of this idea is the fact that KIR3DL1 *00402 differs from other KIR3DL1 

proteins (except the one encoded by the less common KIR3DL1 *00401 allele) at 

codons 343 and 373 in the cytoplasmic region. As detailed previously, the cytoplasmic 

region of inhibitory KIR proteins is involved in the transduction of negative signals to 

the NK cell.

With regards to donor-derived factors, the presence of activating KIR2DS2 and 

KIR2DS3 was shown to be statistically associated with a slower engraftment rate 

(median of 21 days and ranging from 19 to 23 for both genes) to that of KIR2DS2 and 

KIR2DS3 negative donors (median 19 days, range 18 to 20 days). This can be partially 

explained if one assumes that donor derived NK cells expressing activating KIR will 

have greater possibilities of being activated and of being involved in GvH reactions. 

These alloreactive donor-derived NK cells might be involved in the early disruption of 

the host’s haematopoietic microenvironment, and it could be hypothesised that this 

disruption might interfere with the survival of donor-derived granulocytes (possibly as a 

consequence of the release of apoptosis inducing cytokines). Other possible
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explanations for this association include the possibility that highly alloreactive donor- 

derived NK cells might be induced into anergy either through re-education imposed by 

the host environment or self-induced after encountering and eliminating an unspecified 

threshold of target cells.

If in fact highly alloreactive donor NK cells were to be anergised (or eliminated) early 

on after transplant, this could also explain why KIR2DS5 was also significantly 

associated with an increase in relapse and cGvHD. Alloreactive NK cells have been 

proposed to diminish the incidence and severity of GvHD reactions by eliminating host 

APCs (Ruggeri et al. 1999; Ruggeri et al. 2002). Without host derived APCs to 

cross-present host-derived antigens to donor-derived lymphocytes, GvH alloreactivity 

cannot take place thus interrupting the main mechanism involved in GvHD initiation. 

The fact that this association was not observed with regards to aGvHD could be related 

to either the type of immunosuppressive regimens used or a reflection of the different 

pathophysiology of cGvHD.

Taking into account the previously proposed hypotheses, the association of inhibitory 

KIR genes to faster progression to relapse can also be explained. Inhibitory KIR genes 

can increase the speed of relapse by providing NK cells with a negative signal capable 

of blocking NK cell involvement in GvL reactions. The true significance of this remains 

unclear as other studies have revealed that NK cell alloreactivity decreases with time 

after transplantation (Ruggeri et al. 1999), a feature that might be related to the 

expression of inhibitory lectin-like receptors (Shilling et al. 2002b; Shilling et al. 2003). 

However, other more recent studies have demonstrated that other lymphocytes can be 

induced to express KIR proteins (Huard and Karlsson 2000; Mizuki et al. 2000). 

Indeed, the induction of KIR2DL1 and KIR2DL2 expression on CD4 and CD8 T cells 

has been demonstrated to occur in vivo after HSCT (Duan et al. 2003).

In our study the presence of inhibitory KIR genes in both the recipient and the donor 

cells were statistically associated with faster relapse rates. The presence of KIR2DL5 

and KIR2DL1*004 in the recipient, and the presence of KIR2DL1*004 and 

KIR3DL2*002 in the donor was statistically associated with a faster progression to 

relapse. KIR2DL5 has been previously shown to exhibit similar structural properties to
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those of common inhibitory KIR, however, it should be noted that not all variants of 

KIR2DL5 are expressed. As such, the association of recipients bearing KIR2DL5 to a 

faster progression to relapse could also be interpreted as being the result of the effect of 

another gene in linkage disequilibrium to KIR2DL5. The reason why this association 

involves these particular KIR2DL1 and KIR3DL2 alleles could also relate to 

differential functional properties distinguishing these alleles from other KIR2DL1 and 

KIR3DL2 alleles. In fact, KIR2DL1*004 has been shown to differ from other KIR2DL1 

alleles by to amino acid residues located in the Ig-binding loops involved in HLA 

recognition. These findings and the recurrence of associations of KIR2DL1*004 allele 

to other clinical endpoints provides the first evidence that this allele possesses clearly 

distinct functional properties. The details of the structural differences that occur 

amongst KIR2DL1 alleles have been addressed to a greater extent in Chapters 3 and 4.

The specific association of KIR3DL2*002 to a decrease in relapse could similarly 

reflect differential functional properties distinguishing this allele from other KIR3DL2 

alleles. KIR3DL2*002 differs from other alleles of this same gene by a single amino 

acid residue located in position 137 and very near to the second Ig-binding loop. The 

structural features of the allelic variants of KIR3DL2 have been described to a greater 

detail in chapter 4. Unfortunately, this structural approach to describing the importance 

of specific alleles does not explain why or how KIR2DL3*001 and KIR2DL4*00201 

are associated with a decrease in relapse.

In addition to the impact of these KIR related factors, our results also provide evidence 

that the recipients HLA-C specificities are important factors determining the successful 

outcome after HSCT. We demonstrated that the presence of homozygous group 2 

HLA-C specificities (C2,-) in recipients was statistically associated with faster time to 

relapse. The idea that HLA-C specificity heterozygous recipients have an advantage 

over homozygous individuals has been proposed by other studies (Carrington et al. 

1999; Lipsitch et al. 2003). In HLA-matched sibling HSCT for myeloid leukaemia, 

patients homozygous for group 2 HLA-C allotypes receiving a graft from a donor 

carrying the KIR gene KIR2DS2 have a significantly reduced chance of survival (Cook 

et al. 2004). However, in our study this finding was not shown to be statistically 

associated with the presence of KIR2DS2 in the donor. In addition, recipients bearing
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homozygous HLA-C specificities were shown to be statistically associated with a 

decrease in DFS. This is similar to Cook’s description of a heterozygous advantage on 

survival. Our results provide further evidence of the importance of HLA-C specificities 

in determining the outcome of HSCT. Interestingly, the presence of group 2 

homozygous specificities in the recipient was shown to be statistically associated with 

faster progression to cGvHD and to faster relapse in comparison to that exhibited by 

recipients bearing Cl group specificities in either combination (data not show).

Another association that involves the particular KIR2DL1*004 variant is that relating to 

an increase in TRM. In order to explain this association and others relating to this 

KIR2DL1 allele, it could be hypothesised that the protein encoded by this allele 

possesses an increased affinity to its ligand. This characteristic could potentially 

generate stronger inhibitory signals, preventing NK cells (or other lymphocytes) from 

participating in GvL reactions (thus explaining the increase in relapse) and/or their 

participation in anti-pathogen responses (thereby explaining the increase in TRM). The 

impact of KIR2DL1*004 on these factors would also explain the association of this 

allele to a decrease in DFS. Interestingly, our data supports the idea that the presence of 

this allele in either the recipient or donor has a negative impact on the outcome of 

HSCT.

Six factors were shown to have a statistical impact on DFS. Four of these factors had 

additionally been shown to influence the rate of engraftment, progression to relapse and 

TRM. Again, the presence of KIR2DL1*004 in both the recipient and donor was 

associated with an adverse outcome. The recipients HLA-C specificity also had a 

statistically significant impact on DFS, where recipients possessing homozygous 

combinations of HLA-C specificities were at a disadvantage with respect to recipients 

expressing both HLA-C specificities. Additionally, recipients having KIR2DL3*001 

expressing donors had a higher DFS than recipients whose donors expressed other 

KIR2DL3 alleles. The increased DFS in these patients could be related to the decrease 

in relapse that also characterises this patient group. Finally, recipients homozygous for 

group B haplotypes were shown to have a lower DFS than recipients bearing 

heterozygous combinations of KIR haplotypes or group A homozygous haplotypes. 

This provides the first direct evidence that KIR haplotypes provide differential
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biological advantages. The reason why recipients having homozygous group B 

haplotypes have this survival disadvantage should be related to the number and type of 

KIR genes present. This could be a reflection of an increase in relapse related to 

activating KIR genes present in the recipient as shown previously (an idea that would 

also explain the association of KIR3DS1 to lower DFS).

The functional interpretation of this data will without a doubt benefit from future 

studies directed towards resolving the functional characteristics of KIR alleles as well as 

from those directed towards exploring the expression profiles of these alleles after 

HSCT and in other lymphocytes. This study represents the largest investigation of the 

impact of KIR on HSCT outcome using high-resolution typing data for at least five KIR 

genes in the UD-HSCT setting. The results of this study have allowed us to provide 

direct evidence of the functional relevance of some KIR features including particular 

KIR alleles and KIR haplotypes. Additionally, our results also provide more evidence 

supporting the clinical relevance of other factors not related to KIR genes (such as 

HLA-C specificity zygocity) in HSCT.

Discussion o f the results observed in the HLA-C mismatched-only transplant pairs

In this section I specifically discuss our findings relating to the HLA-C mismatched- 

only transplant pairs, as their study has allowed us to establish important clinical 

associations that further our knowledge of the functional roles of some KIR proteins. 

The best-characterised KIR:HLA interactions that have been studied to date are those 

dictating the recognition of HLA-C allotypes by KIR2DL1 and KIR2DL2/3 proteins. 

The specificity of KIR2DL1 for group 2 HLA-C allotypes (i.e.: those bearing Lys80) and 

of KIR2DL2/3 for group 1 HLA-C allotypes (i.e.: those bearing Asn80) have been 

extensively studied in the past (Wagtmann et al. 1995; Dohring and Colonna 1996; Fan 

et al. 1996; Biassoni et al. 1997; Colonna 1997; Long et al. 1997; Moretta et al. 1997; 

Reyburn et al. 1997; Winter and Long 1997; Vales-Gomez et al. 1998; Winter et al. 

1998). These receptor-ligand pairs comprise the only two KIR.HLA complexes whose 

crystallographic structure has been resolved by X-ray diffraction methods (Boyington et 

al. 2000; Fan et al. 2001).
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HLA-C mismatches comprised the vast majority of the KIR epitope-mismatches that 

determined NK cell alloreactivity as described in a small cohort of haploidentical 

transplant pairs by Ruggeri’s algorithm (Ruggeri et al. 1999). The clinical role of these 

KIR-ligand mismatches in human HSCT has only been analysed by studies based on 

low-resolution HLA typing data (Ruggeri et al. 1999; Davies et al. 2002; Giebel et al. 

2003; Bornhauser et al. 2004), by studies based on low-resolution KIR typing data 

disregarding HLA profiles (Gagne et al. 2002; Bishara et al. 2004), as well as by a 

single study based on high-resolution HLA typings and low-resolution KIR typing data 

(Cook et al. 2004).

In our study we evaluated the clinical relevance of the KIR2DL1-3:HLA-C interactions 

based on the high-resolution, comprehensive and DNA-based typing of both HLA and 

KIR genes in a large UD-HSCT cohort. Transplant pairs were specifically selected 

based on their HLA profiles for their inclusion into the ANT Cohort 2. It was originally 

envisaged that this cohort would allow us to compare the clinical associations of KIR 

genes in both an HLA fully matched and HLA-C mismatched-only scenarios. It was 

hypothesised that clinical associations of HLA-C binding KIR proteins would only be 

observed in the HLA-C mismatched recipients but not in those that were fully HLA- 

matched. This hypothesis was successfully confirmed by our subsequent results, as 

described below.

The analysis of the results generated by this study allowed us to demonstrate a crucial 

role for two-domain KIR protein genes (those known to bind HLA-C allotypes or 

predicted to bind HLA-C allotypes as described in Chapter 4) at determining the 

outcome of HLA-C mismatched-only UD-HSCT. These KIR genes were shown to be 

statistically associated with the time to engraftment, time to relapse, Transplant Related 

Mortality and with Disease Free Survival.

Recipients having donors expressing KIR2DS3 were shown to be associated with a 

slower time to engraftment, an association whose implications have previously been 

discussed in this discussion. Although this association achieved statistical significance 

only in univariate analysis, it is interesting to note that this KIR gene was predicted to 

bind group 2 HLA-C allotypes based on the ligand-binding region similarities that it
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shares with KIR2DL1 proteins (as discussed in chapter 4). Additionally, recipients 

bearing KIR2DL1*003 or KIR2DL3*001 alleles were associated to faster engraftment 

rates when compared to recipients bearing other alleles of these genes. Although only 

the KIR2DL1*003 association remained significant when analysed in a Cox 

multivariate analysis, it is interesting to note that these two associations were not 

observed in the HLA-matched group of transplant pairs. The fact that this clinical 

variable was specifically associated to a single allele of these genes is highly suggestive 

of the existence of functional differences between alleles of the same genes. 

Alternatively, as linkage disequilibrium has been shown to exist between these two KIR 

alleles, it could also be hypothesised that the clinical association is solely dependent on 

one of these alleles. Multivariate analysis revealed that KIR2DL1*003 expressing 

recipients were three times more likely to engraft faster than recipients expressing other 

KIR2DL1 alleles.

It was discovered that recipients having a donor that expressed KIR2DL1*004 

progressed faster to relapse in comparison to recipients with donors that expressed other 

KIR2DL1 alleles (KIR2DL1 was present in 100% of the donors). This association 

remained statistically significant in multivariate analysis, and showed that 

KIR2DL1*004 expressing recipients were almost ten times more likely to relapse than 

recipients bearing other KIR2DL1 alleles. In addition, KIR2DL1*004 expressing 

recipients also had a higher Transplant Related Mortality (42%) in comparison to 

recipients expressing other KIR2DL1 alleles (28%), an association that remained 

significant in multivariate analysis.

Transplant Related Mortality was also shown to be higher (75%) in recipients 

homozygous for group B KIR haplotypes in comparison to recipients possessing group 

A haplotypes in any combination (^30%). This association could be explained by the 

fact that group B haplotypes differ from group A haplotypes in the number of activating 

two-domain receptors (most of which were predicted to possess the capacity to bind 

HLA-C molecules, as described in chapter 4). The difference in KIR gene content that 

exists between the two KIR haplotype groups has been suggested to have important 

functional implications, where an NK cell possessing group B haplotypes would
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potentially exhibit a lower activation threshold and be more likely to be activated in 

response to the loss of inhibitory KIR-ligand expression.

This finding also fits in with our hypothesis that alloreactive NK cell clones might be 

associated to a biological disadvantage in HSCT as a consequence of their inactivation 

(and the resulting loss of a very important innate immune defence). However, an 

equally possible but alternative explanation to this association could also be given by 

interpreting this result in the context of novel discoveries relating to the expression of 

KIR2DS4, the only two-domain activating KIR present in group A haplotypes. Recent 

studies have demonstrated that an allele of the KIR2DS4 gene possesses a 22 bp 

deletion spanning positions 226 to 233 (see Appendices A and B) that causes a 

frameshift and a truncated protein with an altered D2 domain that could potentially be 

secreted due to the loss of the transmembrane and cytoplasmic regions (Maxwell et al.

2002). This protein variant has been subsequently shown to be encoded by the most 

common KIR2DS4 allele present in Caucasoid populations (Maxwell et al. 2003; 

Maxwell et al. 2004). The possibility that the only activating two-domain KIR protein 

present in group A haplotypes might be functionally null (or possess a different function 

from that exhibited by membrane bound activating receptors present in group B 

haplotypes) further distinguishes the functional differences that exist between the two 

KIR haplotype groups.

As mentioned previously in chapter 4, the characteristics of the ligand-binding region of 

KIR2DS4 proteins are more similar to those of KIR2DL2/3 and KIR2DS2 proteins in 

comparison to KIR2DL1. The analysis of these KIR2DS4 structural features in the 

context of the previously mentioned clinical association of KIR haplotypes with 

Transplant related Mortality supports the idea of a functional interaction of KIR2DS4 

with HLA-C allotypes. Nevertheless, this association of KIR haplotype groups with 

Transplant related Mortality did not remain significant when corrected for the influence 

of other factors in a multivariate analysis, and might need to be confirmed by even 

larger HSCT cohort studies in the future.

Finally, recipients having donors that expressed KIR2DL1*004 were associated to a 

lower three year probability of Disease Free Survival (17%) in comparison to recipients
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having donors that expressed other KIR2DL1 alleles (44%). This association proved to 

remain significant when corrected for the influence of other factors in a multivariate 

analysis. In addition, Disease Free Survival (DFS) was also influenced by the type of 

KIR haplotype present in the recipient. Recipients homozygous for group B KIR 

haplotypes were shown to possess a lower three-year probability of DFS (0%) in 

comparison to recipients bearing group A KIR haplotypes in either heterozygous or 

homozygous combinations (12% and 22%, respectively). This association remained 

significant when corrected for the influence of other factors in a multivariate analysis.

In this chapter, all of the clinical associations of KIR genes described in this study were 

interpreted based on our present day understanding of KIR protein properties. However, 

given the recent developments regarding variations in the expression levels of specific 

KIR proteins (Gardiner et al. 2001), our findings could also be interpreted (especially 

those relating to specific KIR alleles within a gene) as being the result of either a higher 

or a lower surface expression of the particular allelic variants in question. Variations in 

the expression levels of these KIR proteins could influence their capacity to modulate 

the behaviour of NK cell activity, by either increasing or decreasing the intensity of the 

inhibitory signal that is transduced or conversely by modifying the quality of activating 

signal. Although the behaviour of the post-transplant KIR repertoire has been analysed 

for small subsets of recipients (Shilling et al. 2003), we think that future studies 

involving the analysis of the variations in the expression levels of the different KIR 

alleles may clarify some of the associations observed in this study and provide new 

alternative hypothesis to those given in this discussion.

8.5.3 Global discussion

The results generated in this study have allowed us to further our knowledge of the 

clinical relevance of KIR proteins in UD-HSCT. The beneficial effects of KIR mediated 

NK alloreactivity described by Ruggeri in the haploidentical HSCT setting have been 

partly reproduced in the UD-HSCT setting by other research groups (Giebel et al. 

2003). However, our results suggest that Ruggeri’s algorithm cannot be generalised to 

the more common haematopoietic transplant modality employing unrelated donors, and 

idea that has also been suggested by other studies (Davies et al. 2002). The
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discrepancies that exist between our results and those of Ruggeri can be attributed to 

differences in the transplant modalities used, stem cell dose used, the nature and extent 

of T-cell depletion and of post-transplant immunosuppression usage. Alternatively, the 

possibility that these two studies may have also differed in the type and intensity of the 

conditioning regimens employed as well as in the severity of the recipients disease at 

the time of transplant may provide an explanation. Consequently, we suggest that the 

clinical recommendations stated by Ruggeri need to be revised and further studied in 

larger study cohorts employing a relatively homogeneous population of patients with 

similar clinical characteristics and therapeutical management before they are considered 

for use in UD-HSCT.

In this study we have interpreted the presence of a KIR gene as evidence of its 

expression. Although there is direct evidence that in normal physiologic states KIR 

genotype correlates with KIR phenotype (Valiante et al. 1997), this may not be true for 

all cases, given the limitations imposed by the combinatorial expression hypothesis 

mentioned in chapter 1. As the existing KIR-specific antibodies do not allow the 

detection of functionally distinct KIR proteins (i.e.: KIR2DS2 and KIR2DL2), their use 

as a way to analyse the differences in KIR protein expression is very limited. Future 

developments in the detection of the expression patterns of the different KIR proteins 

will without doubt benefit the study of the clinical relevance of KIR proteins in HSCT. 

In addition, these developments will also provide us with the ability to study the clinical 

relevance of the post-transplant emergence of KIR expressing lymphocytes other than 

NK and NKT cells.

In addition, we think that future studies should aim to clarify the role of other NK cell 

receptors in HSCT as well, as their influence on the activity of NK cells has been 

previously demonstrated but their interactions with KIR signalling never addressed. 

This is especially true for CTLD receptors, whose surface expression has been shown to 

be up-regulated after HSCT and whose functions are thought to partially complement 

those of KIR proteins (Miller and McCullar 2001; Pende et al. 2001; Brostjan et al. 

2002; Shilling et al. 2003). However, we also suggest that future studies should address 

the role of other NK cell receptors such as the NCRs which have been shown to evoke 

strong activating signals in NK cells and whose functions are apparently not related to
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MHC product binding. In addition, these receptors represent the only true NK cell- 

specific surface marker, a feature that would provide researchers with the capacity to 

analyse the influence of NK cells in post-transplant events without the possible 

confusion of these receptors being expressed by other lymphocyte populations.

In addition to testing the applicability of Ruggeri’s findings in the UD-HSCT setting, 

our study has also allowed us to investigate the clinical relevance of KIR matching in 

this setting based on high-resolution and comprehensive KIR typing data. This feature 

alone distinguishes our study from previous attempts at describing the clinical relevance 

of KIR in HSCT. In addition, our study has benefited from the experience accumulated 

by the Anthony Nolan Research Institute in HLA typing techniques, a characteristic that 

has allowed me to work with a well HLA-characterised cohort of patients. This feature 

was deemed critical to the discrimination of the clinical importance of KIR matching as 

the use of low-resolution HLA-typing techniques (as those used by Ruggeri in his 

study) are not capable of detecting all of the HLA mismatches that have been shown to 

influence the outcome of HSCT (Shaw et al. 2001; Shaw et al. 2003). Consequently, 

our study represents the best HLA-controlled and KIR-characterised study dedicated to 

the analysis of the clinical relevance of KIR proteins in the UD-HSCT setting. This 

study has provided us with the capacity to extend clinical recommendations relating to 

the use of KIR mismatched donors, and has furthered our understanding of the events 

surrounding haematopoietic stem cell transplantation.
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Chapter Nine

Conclusions

During the past two decades our understanding of the importance of the innate immune 

system, and of NK cells in particular, in the response to pathogen infections and 

malignancies has increased significantly. These advancements have involved both 

cellular and molecular aspects of NK biology, the most important of which include KIR 

proteins and the functional implications of their recognition of HLA molecules. The 

importance of KIR in immunity and in clinical scenarios arises mainly from two 

features: 1) the level of diversity exhibited by KIR genes, and 2) the HLA-binding 

properties of KIR proteins.

KIR genes have been shown to be polymorphic and to exhibit several levels of diversity 

(multiple genes, multiple alleles and multiple haplotypes). Additionally, further 

diversity is generated by modulating the cell-surface expression of some KIR proteins. 

These levels of diversity have been suggested to reflect a crucial role for KIR products 

in the defence against human pathogens, as has also been suggested for other genes with 

immune related functions (Trowsdale and Parham 2004). The presence of multiple 

genes (polygeny) is thought to allow the generation of a wide set of defences capable of 

fending off pathogen incursions. Additionally, the presence of multiple gene copies 

facilitates the development of new genes with innovative properties whilst still 

conserving the essential properties required for survival. The clustering of genes into 

haplotypes together with the presence of multiple haplotypes and the existence of strong 

LD between some KIR genes/alleles ensures that conserved cartouches of interacting 

gene combinations are inherited in the offspring. Two main hypotheses have been 

brought forward in an attempt to explain the origin of KIR diversity. The first of these 

considers a need for KIR to keep up with HLA diversity, whereas the second hypothesis 

suggests a pathogen-driven mechanism dictated by the direct interaction of KIR with

332



Chapter 9

pathogen-derived products (Barten et al. 2001; Arase 2002; Hughes 2002). Current 

knowledge has failed to provide conclusive evidence in support of either hypothesis, 

however, it is also possible that KIR diversity might be influenced by both of these 

selective pressures.

To study the relevance of KIR diversity we developed a KIR gene typing system 

capable of detecting the presence of all known KIR genes as well as all of the alleles of 

five of the KIR proteins for which a ligand has been identified. Our KIR gene typing 

system has allowed us to expand the knowledge of KIR diversity by describing novel 

genotypes and haplotypes in individuals of Caucasoid and non-Caucasoid populations 

as well as in cell lines having different ethnic backgrounds. We have been able to 

describe the high-resolution KIR profile of more than 100 different reference cell lines 

that are widely available and whose HLA profile has previously been determined. More 

importantly, our investigations have allowed us to demonstrate the existence of 11 KIR 

and HLA homozygous cell lines. These homozygous reference cell lines will 

undoubtedly facilitate the study of KIR gene and haplotype structures in the future. Our 

results suggest that the level of KIR gene diversity greater than previously imagined. 

Especially once studies dedicated towards the characterisation of the KIR gene and 

allele content of larger populations of different ethnic backgrounds are carried out. 

Given that our findings have revealed the existence of gene and allele combinations 

within haplotypes which were previously thought not to exist, its is also very likely that 

future studies will encounter novel KIR features which reflect their ongoing evolution. 

These KIR gene features have already begun to complicate the efforts of the KIR 

nomenclature committee, usually due to the blurring of the distinction between genes 

and alleles. However, we envisage that these issues will be successfully resolved (or 

their resolution facilitated) with the establishment of the KIR sequence database which, 

by acting as a central repository of KIR data, will bring together a great number of 

researchers, unify criteria and promote collaborative projects between them.

Although great advances have been made towards defining the level of KIR gene 

diversity in humans, our understanding of the functional significance of KIR diversity 

has remained relatively unchanged. Most studies carried out so far have failed to 

demonstrate the existence of either a biological advantage or disadvantage arising from
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the type or number of KIR genes present. This knowledge gap has begun to dissipate 

thanks to the recent description of associations between KIR genes and autoimmune 

disorders (Martin et al. 2002b; Suzuki et al. 2004) and viral diseases (Martin et al. 

2002a; Khakoo et al. 2004). We had anticipated that the discovery of differences or 

similarities between different human populations in the frequency of KIR genes, alleles, 

genotypes and haplotypes would facilitate the description of a functional role for certain 

KIR features. In our study we have been able to demonstrate the existence of 

similarities between human populations that are geographically and evolutionarily 

related. In a similar manner, we have also demonstrated that human populations that do 

not share a common ancestor differ to a greater extent in their KIR profiles. Future 

studies directed towards defining the KIR diversity of geographically isolated 

populations (native Amerindians of Central and South America for example) might 

reveal that in fact KIR diversity has been shaped by different pathogenic challenges (as 

has been described for the Australian Aborigine population) (Toneva et al. 2001). Once 

these differences are identified, subsequent steps directed towards defining the 

functional mechanisms that led to this skewing of KIR features, such as type of 

pathogen involved in the selective pressure or the type of KIR gene mainly involved in 

the biological advantage/disadvantage, will be more within our reach.

In this study we took two different approaches towards determining the functional 

relevance of KIR diversity. Our first approach involved predicting the functional 

properties of KIR proteins by mapping polymorphic sites unto three-dimensional crystal 

structures of KIR proteins. The second approach involved the study of KIR gene 

associations with clinical endpoints in HSCT. The description of the crystallographic 

protein structure has allowed other research groups to analyse the specific amino acid 

residues that have functionally relevant properties for some KIR proteins (Maenaka et 

al. 1998; Maenaka et al. 1999; Snyder et al. 1999; Fan et al. 2001; Saulquin et al.

2003). We have taken these crystallographic structure templates and modelled the 

polymorphism of other KIR proteins in a similar way as was carried out for class II 

HLA molecules some years ago (Brown et al. 1988). This approach allowed us to 

describe functionally relevant residues which would not been detected throughout the 

study of the linear distribution of polymorphism given by sequence alignments. In this 

respect, we have been the first research group to apply molecular modelling
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bioinformatics tools to study KIR polymorphism, and the first group to describe the 

predicted protein structure of several KIR. The results generated by our molecular 

modelling approach revealed interesting aspects of KIR proteins which had not 

previously been addressed. Examples of these findings include our description of 

differential functional properties amongst alleles of a same gene, as well as of amino 

acid residues potentially involved in KIR:KIR interactions (related to the formation of 

KIR aggregates in the immune synapse). In all, these results have furthered our 

knowledge of the functional significance of KIR polymorphism and have provided us 

with possible explanations for some of the clinical associations observed in the HSCT 

study. Furthermore, the analysis of KIR protein polymorphism has highlighted the 

difficulties experienced by several researchers attempting to develop a serological 

approach to KIR typing (Gardiner et al. 2001; Shilling et al. 2003).

Our second approach towards determining the functional relevance of KIR involved the 

study of KIR genes in the context of HSCT. HSCT remains the best platform that we 

currently possess on which to analyse the functional relevance of KIR genes and alleles 

in vivo. HSCT is a common therapeutic modality for a wide range of malignant or non- 

malignant diseases. The use of unrelated donors in HSCT is currently considered the 

best alternative to using related donors (which are only available in a minority of cases). 

HLA matching continues to be the most important factor determining the outcome of 

HSCT (Anasetti et al. 1990; Speiser et al. 1996; Madrigal et al. 1997). Clinical 

complications arise, nevertheless, even in the presence of HLA matched related donors. 

Consequently, HLA matching alone cannot explain some events surrounding the 

clinical recovery and outcome of all HSCT recipients. Several factors have been 

brought forward to explain these events, most of which refer to minor histocompatibility 

antigen incompatibilities, and in recent years KIR epitope mismatches. In the last five 

years, KIR epitope mismatched transplant pairs in the haploidentical setting have been 

proposed to be clinically advantageous to the recipient (Ruggeri et al. 1999). However, 

research groups across the world have failed to reproduce these results leading to 

increasing controversy on their applicability to other, more common, transplant 

modalities (Davies et al. 2002; Bornhauser et al. 2004). In our study we analysed the 

clinical events occurring in a large cohort of UD-HSCT recipients in the context of both 

their predicted NK alloreactivity as well as by directly assessing KIR genes and allele
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profiles. Our study has allowed us to demonstrate that the benefit arising from NK 

alloreactivity in the haploidentical setting cannot be translated into the more common 

transplant modality employing HLA matched unrelated donors. More importantly, we 

have shown in this study that certain KIR genes and alleles can be used as prognostic 

markers of clinical outcome. In summary our results support the following 

recommendations:

1) The incidence of Primary Graft Failure and the time elapsed until neutrophil counts 

are equal to or greater than 0.5 x 109 cells/L can be decreased by selecting donors 

that lack KIR2DS3 as well as by avoiding donors in which NK alloreactivity in the 

GvH direction is predicted (as assessed by HLA-C and HLA-Bw4 epitope 

mismatches).

2) The progression to cGvHD can be reduced by selecting donors that do not express 

KIR2DS5.

3) The progression to relapse can be reduced by selecting for donors that express 

KIR2DL3*001 whilst avoiding the use of donors expressing KIR2DL1*004, 

KIR3DL2*002 or KIR2DS3.

4) Disease Free Survival can be increased by selecting for donors expressing 

KIR2DL3*001 whilst avoiding donors that express KIR2DL1*004 or those in which 

NK alloreactivity in the GvH direction is predicted (as assessed by HLA-C and 

HLA-Bw4 epitope mismatches).

5) Overall Survival can be increased by avoiding the use of donors in which NK 

alloreactivity in the GvH direction is predicted (as assessed by HLA-C and HLA- 

Bw4 epitope mismatches).

My findings will have to be verified by future larger studies, in order to extend 

recommendations relating to donor selection criteria and therapeutical intervention 

guidelines, much in the same way as has happened for factors of the HLA system.
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Only recently has it been suggested that KIR might be expressed by lymphocytes other 

than NK cells and the small CD8 subset (Duan et al. 2003). Although these 

observations have mainly been encountered in non-physiological states such as in 

malignant diseases and in the months following HSCT, we can only speculate about the 

functional implications of this phenomenon. These speculations gain further impact 

when this ‘aberrant KIR expression’ is put in the context of recent developments 

suggesting that KIR binding of HLA molecules out-competes TCR functions (Guerra et 

al. 2002). Could it be possible that this disruption of TCR function might in fact be 

responsible for the late post-transplant associations seen in our study or in other clinical 

scenarios?

Despite recent advancements in the field of KIR and NK cell biology, several aspects 

remain unclear. It is still not clear how, where and when KIR expression by NK cells is 

molded. As KIR and HLA genes are located on different chromosomes, their 

independent segregation and co-evolution has the potential to generate a near infinite 

number of KIR-.HLA combinations. Although current studies have failed to demonstrate 

the existence of KIR-.HLA combinations that are not compatible with life, they have 

also failed to demonstrate the existence of obligatory pairings capable of ensuring 

adequate inhibition of NK cells. Current understanding resorts to CTLD receptors to fill 

in this functional gap, whereby lectin-like inhibitory receptors would be expressed on an 

NK cell failing to express a suitable inhibitory KIR. Future studies directed towards 

elucidating the existence and extent to which natural selection acts on these KIR-.HLA 

pairs on a large panel of healthy individuals will undoubtedly enlighten our perception 

of KIR evolution and function.

In this thesis I have presented our approach to determining the functional relevance of 

KIR polymorphism. To determine the functional relevance of KIR polymorphism we 

have undertaken a step-wise progression of study objectives. This approach initially 

involved basic immunogenetic studies directed towards defining the localisation of 

polymorphic sites and ultimately culminated in the analysis of the clinical associations 

of these polymorphisms in an HSCT setting.
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Appendix A. KIR amino acid sequence alignments.
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Appendix A. Continued.
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Appendix A. Continued.
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Appendix B. KIR nucleotide sequence alignments.
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Appendix B. Continued.
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Appendix B. Continued.
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Appendix C. KIR haplotypes present in Mexican Mestizo unrelated individuals (UI) and families.
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Appendix D. KIR PCR-SSP genotyping and subtyping profiles of the 141 haematopoietic stem cell transplant pairs.
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002/003/006/007/008,-

005,002/003/006/007/008

002/003/006/007/008,-

00402,002/003/006/007/008

007,011
002/003/006/007/008,-

006,010 or 001/009,007
006,011 or 003,007

001.002/003/006/007/008
001,002/003/006/007/008

006,010 or 001/009,007
006,010 or 001/009,007

007,010
00402,002/003/006/007/008
00402,002/003/006/007/008 001/009,005 or 003,012
00402,002/003/006/007/008

006,010 or 001/009,007

006,007
002/003/006/007/008,-

005,002/003/006/007/008
003,012 or 001/009,005

003,012 or 001/009,005

002/003/006/007/008,-
002/003/006/007/008,-
002/003/006/007/008,-
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001,002
002/006,004/005

003,-

002/006,004/005

001,002 (-) 002/006,004/005
003,005

002,-
±L, 001,-

±L 002/006,-

002,004

001,-

002/006,-

003,-

00102,005

00102,005

00102,00201

00202,-

J±
±L

00202/005,-

00102,005

00102,005

00102,00201,005
005,006

00102,005,00201

00102,005,00201

00102,005,00201

00102,005,00201

S ± J ± J ±

±L

J ±  

(-) I (-) I (-)

i±
H (-) H

±L
Til h

(-)  <-)

(-) I (-)

3 I 8 la

■II (•)

±L
±L

<-> w|(-> (-)

002/003/006/007/008,-

00401,002/003/006/007/008

002/003/006/007/008,-
002/003/006/007/008,-

00402,002/003/006/007/008
j  (-) 00402,002/003/006/007/008 003,012 or 001/009,005
I  (-) 00402,- 005,007nr 005.002/003/006^ 07/008 001/009,- E ]

005,002/003/006/007/008

00402,002/003/006/007/008
00402,002/003/006/007/008

002/003/006/007/008,-
002/003/006/007/008,-

00401,002/003/006/007/008

001.002/003/006/007/008

002/003/006/007/008,-
002/003/006/007/008,005

002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,005
002/003/006/007/008,005
002/003/006/007/008,005

002/003/006/007/008,00402

002/003/006/007/008,00402
002/003/006/007/008,-

002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,005
002/003/006/007/008,005

002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,-
002/003/006/007/008,001

002/003/006/007/008,-

002/003/006/007/008,005
002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,005
002/003/006/007/008,00402

002/003/006/007/008,00402,005
002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,005
002/003/006/007/008,005
002/003/006/007/006,005

002/003/006/007/008.-
002/003/006/007/008,-

002/003/006/007/008,-

001/009,007 or 006,010

001/009,007 or 006,010
002,003

001/009,007 or 006,010

006,010 Of 001/009,007

006.010 Of 001/009,007
003,012 or 001/009,005

003,010 Of 001/009,011
007,010

003,007 of 006,011

001/009,007 of 006,010

006,010 Of 001/009,007

002,003

001/009,011 Of 003,010
011,012 Of 005,010

001/009,-

002,007

006,010 Of 001/009,007

006,010 Of 001/009,007
006,010 Of 001/009,007

003,012 Of 001/009,005

001/009,006

006,011 or 003,007
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(-) :
002.003 (-)

003,-

J ±t 002/006,-

001,-

002,003
001.002/006

00 v -  (-)

JXajjoT̂ *̂
ZsliijoiZÎ B

002.003 M
om/omJ M
002.003 (-)

003,- (-)

001 ,-

001 ,-

002,- 002/006,-
002,003 (-) 001,002/006

002,-
002,003 (-) 001,002/006

002/006,-
004/005,-

002,003 (-) 001,002/006

±L
001,002/006

_LL
002,003 (-) 001,002/006

003,004

002,004

001,-

0 02 ,-

_LL

£

00102,005,00201

00102,005,006 
00102,006

■SI 151 
■51131 151

■51 I ii  
151151 151
151151

■51□ n n n  
■51151 

151151
■51151 151
■51151 151
151151 151
■51151

■51 151
■51 
■51

00102,005,00201

00102,005,00201
00102,005.00201

00102,005

00201,006

■51151151151 151
I5II51I51K51 151

■51 151
■51

■51
151151 151 131

■51
■51151151151 151

00102,005

00102 ,-

00102,00201,005

00402,005
002/003/006/007/008,-
002/003/006/007/008,-

001,002/003/006/007/008
002/003/006/007/008,-

002/003/006/007/008,005

002/003/006/007/008,005
002/003/006/007/008,-

001,002/003/006/007/008
001,002/003/006/007/008

002/003/006/007/008,-
002/003/006/007/008,005

002/003/006/007/008,-

001,002/003/006/007/008
002/003/006/007/008,-

002/003/006/007/008.-

(-) (-i r
(-) <-) <■) 002/003/006/007/008,- 001/009,-

(-1 002/003/006/007/008,- 002,007 |
002/003/006/007/008,-

002/003/006/007/008.005
002/003/006/007/008,-

00402,002/003/006/007/008

002/003/006/007/008,-

002/003/006/007/008,-
00402,002/003/006/007/008

002/003/006/007/008,-

00402.002/003/006/007/008
002/003/006/007/008,-

002/003/006/007/008,-
002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,-

002/003/006/007/008,-
002/003/006/007/008,-
002/003/006/007/008,-

00402,002/003/006/007/008
002/003/006/007/008,-
002/003/006/007/008,-
002/003/006/007/008,-
002/003/006/007/008,-
002/003/006/007/008,-

002/003/006/007/008,-

002/003/006/007/008,-

002/003/006/007/008,-

005,002/003/006/007/008
002/003/006/007/008,-

001/009,011 Of 003,010

001/009,011 Of 003,010

003,012 Of 001/009,005

003,007 Of 006,011
006,010 Of 001/009,007

006,010 Of 001/009,007

006,010 or 001/009,007
002,007

003,012  Of 001/009,005
006,010 Of 001/009,007
003,012 or 001/009,005

003,012 Of 001/009,005

001.005 Of 003,012

001.011 Of 003,010

003,007 or 006,011
006,010 Of 001,007

007,-

001/009,011 Of 003,010

001/009,005 or 003,012

003,007 Of 006,011
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004/005,- _LL
001,002 (-) 002/006,004/005
002,003

001,-

002/006,-
<-) 002/006,004/005

002/006,-

(-)

00102.00202
00102.00201.005

00102,00201,005

00202/005,- i±-LLJd

002/003/006/007/008,-

002/003/006/007/008 .- 
005,-

002/003/006/007/006,- 
002/003/006/007/006,-

002/003/006/007/006,- 
001,002/003/006/007/006

00402.002/003/006/007/008

002/003/006/007/006,-

00402,002/003/006/007/006
005.002/003/006/007/006

001/000,002 
006,011 Of 003,007

006.010 Of 001/009,007

006,010 or 001/009.007
003,010 or 001/009,011 

002,005 
001/009.007 or 006,010

003.012 or 001/009,005

NOTES: Shaded boxes indicate presence of KIR gene, boxes with (-) indicate absence of KIR gene, boxes with F indicate failed reactions, 
t  = within each transplant pair recipients are indicated with prime numbers and donors by odd numbers.
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Haplotype2DS1 2DS2 2DS3 2DS4 2DS5 3DL1 3DL2 3DS12DL1 2DL2 2DL3 2DL4 2DL5
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ID
153

1673

707

1677

1715

119

333

583

665

681

699

899

1057

1483

1545

1879

2147

713

1377

1337

1883

1565

1379

1523

267

667

925

1003

1033

1071

1117

1127

1311

1323

1381

1385

1423

1457

1641

1825

1911

2117

73

125

163

259

1303

1363

1577

1581

351

1343

2DL1 2DL2 2DL3 2DL4 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 3DL1 3DL2 3DS1 Haplotype
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ID

1749

1651

1863

1893

557

923

957

1637

1327

1471

1607

1245

2211

131

135

1221

1455

1557

1747

1809

367

1031

1269

1725

2DL1 2DL2 2DL3 2DL4 2DL5 2DS1 2DS2 2DS3 2DS4 2DS5 3DL1 3DL2 3DS1 Haplotype 

B -  

A,B 

A,B 

A.B 

A,B 

A,B 

A.B 

A,B 

A,B 

A,B

A,B 

B -

B,- 

A,B 

A.B 

A,B 

A,B 

A,B 

A,B 

A,B 

A,B 

A.B 

A,B 

A.B

NOTE: Shaded boxes indicate presence of KIR gene.
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Appendix F. KIR genotypes observed in the haematopoietic stem cell transplant donors. A ppe n d ic e s

2DL4 Haplotype
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3DL1 I 3DL2 I 3DS1 Haplotype

A.B

2DS4

1310
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A p p e n d ix  F . Continued.

Haplotype

A,B

1566

NOTE: Shaded boxes indicate presence of KIR gene.
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