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While much recent research has focused on understanding isolated cascades of networks, less attention has
been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An
example of this is the dynamic behaviour of financial markets where cascades of buying and selling can
occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network
with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and
synchronous regimes of the system is presented, along with analytical identification of the fixed point state
vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of
network coupling probability is found that separates the asynchronous and synchronous regimes. For the
low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the
network coupling probability. Finally, a description of how this model can be applied to interacting agents in
a financial market is provided.

F
or many interconnected systems the propagation of nodal failure can represent a serious, and often irre-
versible, risk. Examples include corporate insolvencies in the real economy1–4, blackouts caused by mech-
anical failures in power grids5 and the spreading of fatal diseases6,7. When the propagation of failures

amongst system components is fast, relative to the system lifetime, it is natural to characterise this spreading
as a cascade. As a result, much research has focused on understanding the important phenomenon of cascades of
an irreversible, or absorbing, state in networks8–10.

In contrast, many other systems exhibit persistent, yet transient, cascades of a specific non-absorbing state,
interspersed with disordered behaviour. Such a system is said to display both asynchronous and synchronous
behaviour. Examples of systems displaying bursts of synchronised behaviour include: neuronal activity in the
brain during both normal, and abnormal, phases11–13, and financial markets, where recurrent cascades of buying
and selling may result in crashes and bubbles14–17. In the latter case, agents exerting both buying and selling
influences are necessary for the proper functioning of markets, although large imbalances, especially over short
timescales, can result in volatile price dynamics18. In these systems, understanding cascades in a one-off, or static,
context only provides partial understanding of the macroscopic behaviour. In this article, we investigate how
transient synchronous behaviour, characterised by large cascades of state adoption, can arise as a result of many
smaller cascades.

To model systems in which transient cascades of two distinct and opposing influences can form, we extend the
stochastic pulse-coupled neural network model of DeVille and Peskin19–21; hereafter referred to as the DP model.
First, by allowing each integrate-and-fire oscillator22,23 to produce both positive and negative pulses that compel
coupled oscillators to move closer to an upper or lower boundary (represented by distinct firing states), respect-
ively. And second, by modelling the state variable as a symmetric diffusion process. Numerical confirmation of
asynchronous and synchronous regimes of the stochastic system is presented, along with identification of the
sparse-coupled fixed point of the associated mean field system. We present both analytical and numerical
evidence identifying a critical value of network coupling probability which marks the onset of synchronised
behaviour. Furthermore, for the low-dimensional mean field system, a closed-form equation is found for cascade
size, in terms of the network coupling probability.

Although deterministic pulse-coupled oscillator models have been successfully applied to a wide range of
physiological and biological processes24–26, for systems exhibiting multiple firing thresholds and uncertain state
dynamics, stochastic models may be more appropriate.

The system consists of N identical discrete-state integrate-and-fire oscillators, u, represented as the vertices of
an all-to-all graph, with parameters K and p representing the number of states and coupling probability, respect-
ively. Given K $ 1, each oscillator is characterised by its discretised state variable, hu(t) g {0, 1, …, 2K}, at time t.
The system alternates between a diffusion phase, during which each oscillator independently transitions between
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its two nearest-neighbour states, according to an unbiased continu-
ous time one-dimensional random walk of step size 1, and an instant-
aneous cascade phase. The cascade phase begins when, at some time
t, an oscillator first transitions into one of states 0 or 2K (the firing
states), and fires a negative (state 0), or positive (state 2K) pulse. The
pulse is either received independently by the other nodes yet to fire,
with probability p, or ignored, with probability (1 2 p). If an oscil-
lator receives a positive pulse, its state is immediately increased by 1.
Similarly, its state is immediately decreased by 1 upon receiving a
negative pulse. A firing oscillator remains immune to all influences
until the cascade phase ends, whereupon it is reset to state K. The
cascade phase ends when there are no oscillators occupying either
firing state, and we record the total number of oscillators that fired as
mR. When a cascade occurs at the upper boundary (initiated by an
oscillator firing while occupying state 2K), then we set the cascade
size, m, to m 5 mR, while for cascades occurring at the lower bound-
ary (initiated from state 0), we set m 5 2mR. The diffusion phase
restarts as soon as the cascade phase finishes.

While the dynamics of this extended system render it unsuitable as
a model of neuronal interaction as it stands, we expect it can be used
to examine and interpret certain systems involving repeated binary
choice and social influence. A pertinent example of this is a system of
interacting agents in a financial market, repeatedly buying and selling
an asset. In this case, the synchronous regime may be identified with
herd behaviour27 in financial markets, which occurs when investors
mimic the decisions of other investors upon gaining knowledge of
their actions. Researchers addressing herd behaviour in financial
markets have done so using a variety of techniques: percolation
models28,29; game theory30–32; econometric modelling33,34, and
agent-based modelling35–37. The advantage of a herd behaviour
model based on the work presented here, is the availability of a mean
field dynamical system which facilitates the identification of certain
features of interest, such as phase transitions. As a result, our model
can provide a novel approach for investigating the so-called two-
phase behaviour of financial markets31,38. Throughout this study
the coupling probability p is parameterised as p 5 Kq/N, for 0 # q
# N/K, N is taken to be large, but finite, with N ? 2K 1 1. For a
detailed description of the model, and a brief interpretation of the
model in a financial market context, see Methods.

Results
Numerical analysis of the stochastic system. The stochastic system
displays a number of interesting phenomena, including asynchron-
ous and synchronous behaviour, separated by a region where both
behaviours coexist. We present in Fig. 1 the evolution of the cascade
size, m, plotted against boundary hitting time, t, for a system of fixed
N 5 1000, K 5 3 and q 5 0.5, 0.9, 1.1, 1.5. In Fig. 1a and Fig. 1b (q ,

1), we observe an almost symmetric process, about m 5 0, with
cascades of comparable sizes representative of the asynchronous
regime. In contrast, Fig. 1c depicts the system during what DeVille
and Peskin21 call the bistable regime, in which both the asynchronous
and synchronous regimes coexist. Figure 1d depicts the synchronous
regime, where cycles consisting of long periods of successive small
cascades result in spikes of large cascades. Furthermore, when K . 1
the results suggest a symmetry-breaking bifurcation exists39 that
coincides with the end of the asynchronous regime, which was not
present in the original DP model. In Fig. 1c and Fig. 1d, it is noted
that the cascades persistently favour one firing state over another
(which state is favoured depends upon initial conditions), implying
the symmetry seen for the system when q , 1 is broken.

Because the so-called bistable region represents the system switch-
ing randomly between the asynchronous and synchronous regimes,
we expect to see see this reflected in the cascade size output, m. To
emphasise this effect, in Fig. 2 we plot Wm - equal to the cumulative
sum of absolute cascade sizes - against the boundary hitting time. For
the case q 5 1.1, corresponding to the bistable regime, the random

duration of the asynchronous dynamics are highlighted along with
the synchronous bursts.

The components of the extended stochastic model described here,
while elementary, contribute two main sources of randomness to the
system that complicate the analysis. The first is randomness from the
coupling probability, controlled by p, and the second is via the (mul-
tiple) random walks used to represent the state dynamics during the
diffusion phase of the system. A well-used tool for facilitating the
analysis of systems of this type is the mean field approximation40,
which is used to construct a deterministic approximation associated
with the stochastic model.

Results from the mean field analysis. By applying the method
outlined by DeVille and Peskin21, we construct the associated
mean field approximation appropriate for our symmetric diffusion
and binary firing states. The central quantity of the mean field
approximation is the expected state occupation vector, x tð Þ, given
by

x tð Þ~ x0 tð Þ, x1 tð Þ, . . . , x2K tð Þð Þ, ð1Þ

where xs(t) . 0 is the expected number of oscillators with state s in {0,
…, 2K} at time t. Unless otherwise stated, the mean field system is
normalised so that Sjxj(t) 5 1, and E~1=N to facilitate the
asymptotic analysis. In brief, all stochasticity is removed and
replaced by a (2K 1 1)-dimensional dynamical system which
describes the dynamics of x tð Þ (see Methods for details).

Analogous to the results obtained by DeVille and Peskin21, the
mean field system displays two distinct types of behaviour. The first,
described as asynchronous, is characterised by isolated (mR 5 1)
oscillator firings originating from either firing state. The second
corresponds to the synchronous regime, and is characterised by long
periods of isolated firings (minimal cascades) leading to infrequent
bursts of synchronised firing (maximal cascades). This is sum-
marised in Fig. 3, which shows a bifurcation diagram of the long-
time behaviour for the stochastic and mean field systems, plotting the
range of m against q. The agreement between the mean field and
stochastic systems at the critical value of q 5 qc, marking the appear-
ance of cascade sizes greater than 1 for the mean field system, is of
particular note. Figure 4 shows the normalised maximal cascade size
and mean interval, l, between successive cascades as a function of q,
for mean field systems with K 5 3, 4, 5, 6. Figure 4b reveals qualitative
differences between mean field systems in how increasingly synchro-
nised behaviour (identified with increasing q) affects the time inter-
val between maximal cascades. While systems with 1 , K , 5
experience longer intervals between maximal cascades as synchroni-
sation increases, for a significant range of q, systems with higher
values of K (true for all K . 5 tested) experience a monotonic
decrease in the time interval between maximal cascades, for a sig-
nificant range of q.

For the one-sided normalised mean field DP model, DeVille and
Peskin21 obtain the value of x tð Þ, (here, called xDP) corresponding to
behaviour in the asynchronous regime, as the solution to a fixed
point equation using an asymptotic method. It was found that

xDP~ 1=K, . . . , 1=K,O Eð Þð Þ ð2Þ

exists, and is asymptotically stable, for q , 1. A first order phase-
transition representing the transition from asynchronous to syn-
chronous behaviour was observed to occur at the critical value,
q 5 qc , 1, although little attention is given to actual value of qc.

By applying the aforementioned asymptotic method to the system
presented here, we solve a fixed point equation to obtain the steady-
state behaviour of x tð Þ when the system is in the asynchronous
regime. In particular, we compute the solution, up to O Eð Þ, of the
fixed point equation G0(x) 5 x tð Þ, where the map G0 is given by

www.nature.com/scientificreports
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G0 xð Þ~ IzEKqLC,{ð Þet2LD

| IzEKqLC,zð Þet1LD x{E v2K{vKð Þ
� �

{E v0{vKð Þ:

ð3Þ

This gives the fixed point (up to O Eð Þ) as

x�0~ O Eð Þ, 1
K2

,
2

K2
, . . . ,

K{1
K2

,
1
K

,
K{1

K2
, . . . ,

1
K2

,O Eð Þ
� �

[ R
2Kz1ð Þ| 2Kz1ð Þ

z :

ð4Þ

In equation (3), t1 and t2 are the times spent in the diffusion phase
before reaching the respective firing state, LC,2, LC,1 are the pulse-
coupling matrices for negative and positive pulses respectively, and
v0, v2K are basis vectors. The fixed point x�0 exists for q , K, although
to determine the exact range of q for which this solution is stable
would require terms involving higher orders of E to be taken in to
account, and is not pursued here. Extensive numerical simulations
strongly suggest that, for the finite systems tested, a transition takes
place between the asynchronous and synchronous regimes, for

q~qcw
1

1{E
. As qc appears to be the same for all values of K tested,

we infer, heuristically, a lower bound for qc in the low-dimensional

case K 5 1, and obtain qcw
1

1{E
(see the next section). Fig. 5 pre-

sents a selection of the simulations performed, where the maximum
and minimum cascade sizes, occurring at the upper boundary, are
plotted against q for 1{Evqv1z8E. Large cascades occur for

values qw

1
1{E

, in agreement with our calculation. As the system

Figure 1 | Cascade size propagation of the stochastic model. For a fixed network size N 5 1000 and K 5 3 the panels show the effect on the time series of

cascade size for four values of q. (a) q 5 0.5 resulting in small cascades sizes occurring evenly at both boundaries. (b) q 5 0.9 resulting in small cascades

sizes occurring evenly at both boundaries. (c) q 5 1.1 and the symmetry present in (a), (b) is broken with cascades occurring exclusively at a single

boundary, dependent upon the initial conditions, and shown here occurring at the upper boundary. Both small and large cascade sizes are present, with no

obvious periodic behaviour. (d) q 5 1.5 and the symmetry present in (a), (b) is broken with cascades occurring exclusively at a single boundary,

dependent upon the initial conditions, and shown here to be occurring at the upper boundary. Cascade propagation appears almost periodic, with long

periods of small cascades culminating in isolated large cascades of similar magnitude.

Figure 2 | Cumulative absolute cascade size during different system
regimes. Cumulative absolute cascade size, Wm is shown for the system

N 5 1000, K 5 3 and q 5 0.5, 0.9, 1.1, 1.5, based upon data shown for Fig. 1.

Of particular note are the almost periodic large cascades present during the

synchronous regime (q 5 1.5) and the linear, and almost identical, graphs

for q 5 0.5, 0.9 representing the asynchronous regime. During the

coexisting regime, the dynamics randomly switches between the

asynchronous and synchronous regime, persisting in each for a random

duration. Two such asynchronous regimes, of different durations, and

three large cascade events, occurring during the synchronous regime, are

labelled for the case q 5 1.1.

www.nature.com/scientificreports
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size N tends to infinity, and by taking the limit of
1

1{E
as E?0, we

infer a phase transition takes place at qc 5 1.
Our final result for the normalised mean field system is a closed

form expression for the cascade size, m, when K 5 1, in terms of the
network coupling parameter p and the expected state occupation
vector, x, given by equation (1) (dropping the dependence on t as
cascades occur instantaneously). For K $ 1, during a cascade of (as
yet undetermined) size m occurring at the upper boundary (and
before firing oscillators are reset to state K), x is mapped to
IzpLC,zð Þmx{mEv2K . By considering the 2K-th row of the matrix
IzpLC,zð Þm, the eventual cascade size can be written in terms of a

vector inner product and computed as min m : z mð Þ,xh i{mEvEf g
(see Methods), where the i-th component of z(m) is given by

z mð Þi~

0 for iv2K{m,i~0

1 for i~2K

p2K{iPm{2Kzi
n~0

2K{i

n

� �
1{pð Þn otherwise,

8>><
>>: ð5Þ

and
n
r

� �
~

nzr{1ð Þ!
r! n{1ð Þ! . Since the cascade is assumed to occur at the

upper boundary, x2K~E. Moreover, when K 5 1, we note from

equation (5) that z mð Þ1~p
Xm{1

n~0
1{pð Þn is the only non-trivial

vector component. By treating m as a real-valued variable, and solv-
ing for the single solution of m satisfying

z mð Þ, xh i{E 1zmð Þ~0, ð6Þ

we obtain,

m~max 1, b{
W abexp abð Þð Þ

a

� �
, ð7Þ

with a 5 log(1 2 p), b~
x1

E
, t:s the floor function, and W the

principle branch of the Lambert W-function41. The maximum func-
tion is used to make a correction for small cascades, while floor allows
m to be reported as an integer. Figure 6 shows a comparison between
cascade sizes obtained via direct simulation of the mean field system
(solid line), and equation (7) (filled triangles), where p is parame-
terised as p~qE. For each value of q, 50 values of x1, equally spaced in
the open interval (1{2E, 1{E), are used to compute and plot 50
values of m (in this case there is very little variation amongst these
values). Obtaining similar closed form formulae for the cascade size
when K . 1 remains an open problem, and is not pursued here.

While x is a (2K 1 1)-dimensional parameter, with 2K 2 1 degrees
of freedom, we note that in certain cases it may be sufficient to solve
equation (6) when x is given by the asynchronous fixed point in
equation (4), and thereby reduce the number of parameters required
in calculations.

Path to synchronicity. Within the asynchronous regime, the mean
field DP model displays only one type of behaviour - a constant
stream of isolated firings. In contrast, due to the extra degree of
freedom of the mean field double threshold system presented here,
there exists a multitude of behaviours during the asynchronous
regime, each coinciding with a different firing pattern with respect
to each of the firing states. The map, G0, given by equation (3),
coincides with the infinite alternating sequence of firings: (…, 1,
2, 1, 2, …), where ‘‘1’’ and ‘‘2’’ denote firing occurring at the

Figure 3 | Bifurcation diagram of stochastic and mean field system. A bifurcation diagram representing the long-time behaviour of the mean field system

superimposed over the same bifurcation diagram for the stochastic system. The system parameters are the same in both cases: N 5 1000 and K 5 3. The

bifurcation parameter is q, which forms part of the parameterised network coupling probability p 5 Kq/N. For q 5 qc < 1, the cascade size suddenly

increases in magnitude, denoting the end of the asynchronous regime. Panels b, c and d, from Fig. 1, corresponding to the cases q 5 0.9, 1.1, 1.5

respectively, are displayed emphasising the dynamics in each region. During the synchronous regime, the impact on the system of long periods of

successive and relatively small cascades eventually accumulate, culminating in a large cascade, before the cycle is repeated (see Fig. 1d). As a result, both

small and large cascades are evident during this regime.

www.nature.com/scientificreports
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upper and lower boundary, respectively. Via positive feedback, when
an oscillator fires, it induces a proportion of the remaining oscillators
to move closer to that firing state. Viewed from the perspective of the
random walk, this feedback is equivalent to bias. By considering the
indefinite sequence of isolated firings (…, 1, 1, 1, 1, …)
represented by the map, G1

G1 xð Þ~ IzEKqLC,zð Þet1LD x{E v2K{vKð Þ, ð8Þ

and the equivalent map, G21 representing the indefinite sequence of
isolated firings (…, 21, 21, 21, …), it is clear that these cases inject
the maximum amount of bias into the random walk process, and
therefore represent a boundary of the asynchronous regime. Thus, by
obtaining the fixed point of the maps, G21, G1, given by x�{1, x�1
respectively, and determining the range of q for which they exist,
we claim to obtain bounds on the critical coupling parameter, qc

defining the asynchronous region.
For K 5 1, and N finite, we use the asymptotic method, described

previously, to determine that the solutions x�{1, x�1 exist only when q

satisfies 1vqv

1
1{E

, while direct calculation demonstrates that the

solution x�0 exists only for q satisfying 0vqv

1
1{E

, suggesting that

qcw
1

1{E
.

Discussion
We have extended the stochastic neural network model of DeVille
and Peskin to account for binary firing thresholds, able to induce
cascades of opposing influence, and a symmetric diffusion process.
This enables the model to be applied to certain social and economic
processes, where agents may be subject to opposing influences when
repeatedly deciding between binary choices. One such example of
this is the interaction of agents in a financial market, whom are
buying and selling a single asset. In our methods section, we provide
an interpretation of the model variables when applied to a financial
market. In this context, the asynchronous and synchronous regimes
may be identified with quiescent and herd-like market states,
respectively.

Methods
Description of the stochastic model. During the diffusion phase, at time t, the state
variables hu(t) update according to a simple unbiased continuous-time random walk
between nearest neighbour states, satisfying

1
2
~P hu tzduð Þ~sz1 hu tð Þ~sjf g

~1{P hu tzduð Þ~s{1 hu tð Þ~sjf g,
ð9Þ

where s g {1, …, 2K 2 1}, hu(t) is the current oscillator state and du are independent
exponentially distributed random variables, Exp(L) with mean 1/L, representing the
passage of time until the next state transition. Without loss of generality, throughout
this study we set L 5 1. The first oscillator to transition to either of the firing states
occurs at the boundary hitting time,

Figure 4 | Maximal cascade size and interval between maximal cascades. (a) the absolute value of the normalised maximal-cascade size of the mean field

system, of fixed size N 5 1000, plotted against q, in log-scale, for K 5 3, 4, 5, 6. (b) mean interval between successive maximal cascades for the same mean

field systems used in (a), indicating a qualitative difference between the cases: K 5 3, 4, 5, and K 5 6. For the former case, the mean interval between large

cascades initially increases as the parameter q is increased, while for the case K 5 6, the reverse is true. This distinction holds for all cases 1 , K , 6 and K $

6 tested. In both (a), (b) the results for each mean field system are plotted up to the value of q that generates a cascade size equal to the total system (1000),

and different random initial values are used for each value of q.
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t~ min
u

t : hu tð Þ~0, or hu tð Þ~2Kf g, ð10Þ

at which time the diffusion process ends and the cascade phase begins. The existence
of finite hitting times, for this random walk between two boundaries, is guaranteed by
standard results42. The cascade process continues as described for the original one
sided model20,21, with the difference being oscillators reset to state K after firing and
the cascade ending, before the diffusion phase restarts.

Mean field model. Let v i [ R2Kz1
z denote the i-th standard basis vector, with 1 in

position i and 0 elsewhere, and let S0, S1, S2 be subsets of phase space, defined by

S0~ y [ R2Kz1
z : y,v0h iv1, y,v2Kh iv1

� 	
,

Sz~ y [ R2Kz1
z : y,v2Kh i§1

� 	
,

S{~ y [ R2Kz1
z : y,v0h i§1

� 	
,

ð11Þ

where Rz~ r [ R : r§0f g, and Æ…æ denotes the standard inner product on R2Kz1.
Throughout this section, all vectors and matrices are indexed with component labels
ranging from 0 to 2K.

The basis of the MF model, is the vector of expected state occupation, which
encodes the macroscopic state of the system. Let xs(t) $ 0 be the expected number of
oscillators in state s at time t, then x tð Þ is given by

x tð Þ~ x0 tð Þ, . . . , x2K tð Þð Þ [ R2Kz1
z : ð12Þ

Our aim is to use the MF system to solve for the vector x tð Þ, in specific cases. For
instance, equation (4) shows the solution for x tð Þ when the MF system produces
singleton firings that alternating indefinitely between the upper and lower
boundaries.

Although the mean field model is deterministic, the dynamics still occur in two
phases: a continuous-time diffusion phase and instantaneous cascade phase. Since the
diffusion of each oscillator state evolves according to equation (9), during the dif-
fusion phase xs(t) evolves according to

dx0 tð Þ
dt

~
1
2

x1 tð Þ,

dx1 tð Þ
dt

~
1
2

x2 tð Þ{x1 tð Þ,

dxj tð Þ
dt

~
1
2

xj{1 tð Þz 1
2

xjz1 tð Þ{xj tð Þ,

dx2K{1 tð Þ
dt

~
1
2

x2K{2 tð Þ{x2K{1 tð Þ,

dx2K tð Þ
dt

~
1
2

x2K{1 tð Þ,

ð13Þ

where j g {2, …, 2K 2 1}. We can write the linear equations (13) in the more compact
form _x tð Þ~LDx tð Þ, with solution x tð Þ~etLD x 0ð Þ where the matrix
LD [ R 2Kz1ð Þ| 2Kz1ð Þ , indexed from i, j 5 0, …, 2K, has entries

LDð Þij~

1
2 for i~j{1, j~1,2, . . . ,2K{1,
1
2 for i~jz1, j~1,2, . . . ,2K{1,

{1 for j~i, j~1, . . . ,2K{1,

8><
>: ð14Þ

Figure 5 | Mean field transition from asynchronous to synchronous regimes. Maximal (solid circles) and minimum (open circles) cascade sizes

occurring at the upper boundary obtained for each q value, suggesting q<1= 1{Eð Þ, indicated by the dashed line and labelled qE, is a critical value of the

finite N system for all K shown. Cascade sizes are shown as a proportion of N (normalised cascade size) and plotted on the vertical axis in log scale.
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Figure 6 | Comparison of K 5 1 mean field cascades size. Cascade size of

the K 5 1 mean field system computed via direct simulation (solid line)

and closed form expression (filled triangles), computed using equation (7).
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with all other entries zero. Recall that the diffusion phase ceases as soon as an
oscillator transitions to either of the firing states. For the non-normalised mean field
system, this condition is encoded as x0(t) $ 1 or x2K(t) $ 1, or equivalently as

x tð Þ,v0h i§1 negative pulse conditionð Þ,

x tð Þ,v2Kh i§1 positive pulse conditionð Þ,
ð15Þ

We say the equations Æx tð Þ, v0æ 5 1 and Æx tð Þ, v2K æ 5 1 define discontinuity
boundaries43,44, in the context of piecewise-smooth dynamical systems, of which the
mean field model is a simple example. As soon as one of the conditions in equation
(15) is satisfied, the cascade phase begins, with the appropriate pulse-coupling.

The action of a single oscillator firing is encoded using the pulse-coupling matrix,
LC, and the map Fp given by

Fp x tð Þð Þ~ IzpLCð Þx tð Þ{v, ð16Þ

where the term 2v removes the firing oscillator from the system, after it has fired, to
satisfy the requirement that it enters a refractory state. The matrix LC describes the
effect of pulse-coupling on the remaining oscillators in the system, and can take one of
two values. For an initial positive pulse LC 5 LC,1 and v 5 v2K are used, while for an
initial negative pulse LC 5 LC,2 and v 5 v0, where

LC,zð Þij~
1 for i~jz1, j~1, . . . , 2K{1

{1 for i~j, j~1, . . . , 2K{1



ð17Þ

LC,{ð Þij~
1 for i~j{1, j~1, . . . , 2K{1

{1 for i~j, j~1, . . . , 2K{1



ð18Þ

with all other entries zero, for both matrices. The cascade, refractory and resetting
processes continue in the same way as for the original model20,21, with the exception
that oscillators reset to state K after firing.

In order to correctly encode the cascade procedure involving multiple oscillators,
the map given by equation (16) must be applied to the state vector x tð Þ each time an
oscillator fires. To do this, we use functional composition defined as follows: for an
arbitrary function f, and arbitrary integer a, the a-fold composition is denoted via an

exponent f 0 f 0 . . . 0 f
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{a times

~f a . Applying the map in equation (16) to x tð Þ a times, we
obtain Fa

p x tð Þð Þ~ IzpLcð Þax tð Þ{av , because v2K g ker(LC,1) and v0 g ker(LC,2).

The cascade size, m, is defined as m~m x tð Þð Þ~inf a : Fa
p x tð Þð Þ [ S0

n o
, given

appropriate values of LC and v, and S0 defined by equation (11). Finally, the m
oscillators that fired during the cascade, and subsequently removed from the system,
are added back in and reset to level K. Hence, we can define a map w : S1 < S2 R S0 as
w x tð Þð Þ~Fm x tð Þð Þ

p zm x tð Þð ÞvK , where S1, S2 are defined by equations (11).

Using the above definitions, we can state the dynamics of the mean field system as

_x tð Þ~LDx tð Þ for x tð Þ [ S0,

x tð Þ. w x tð Þð Þ for x tð Þ [ Sz|S{:
ð19Þ

A model of herd behaviour in financial markets. In order to demonstrate how the
model can be used to model a system of interacting financial agents, and examine herd
behaviour in financial markets, we propose an interpretation of the model variables.
Oscillators in the pulse-coupled network are identified as being market agents
operating within some financial market. During the integrate phase, agents
accumulate information, or sentiment, unobserved by other agents. In the absence of
any structure relating to how agents accumulate such private information, this is
represented by the agents randomly transitioning between the states of the system
(so-called noise traders45), as defined by the parameter K. When agents have
accumulated enough information so as to reach state 0 or 2K, they execute a market
transaction that reduces or increases the market price, respectively. Each transaction
is assumed to impact the market price of the traded asset according to some specified
price-impact function46, whose exact value depends upon the cascade size generated.
Since market prices are observed by all agents, for each change in market price
initiated from firing state X, where X 5 0 or X 5 2K, each market agent not already in
one of the firing states updates their private information by moving one state closer to
state X, independently with probability equal to p. With probability (1 2 p), an agent
ignores the price move and does not update their private information. Thus, the
agents form a pulse-coupled network, with coupling probability equal to p. Once an
agent has traded, its accumulation of private information is reset to a neutral level,
represented by state K. Although this specification is simplistic, a benefit of the model
is its flexibility to include heterogeneity amongst agents. This can be achieved by
allowing the pulse-coupling probability, p, to vary amongst the agents and with
direction, thereby creating influential market agents with relatively high values of
coupling probability, or by mixing agents with different firing states, inducing
transactions that occur over a range of time scales.
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