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Abstract This paper presents an agent-based complex system simulation of
settlement structure change using methods derived from entropy maximization
modeling. The approach is applied to model the movement of people and goods
in urban settings to study how settlement size hierarchy develops. While
entropy maximization is well known for assessing settlement structure change
over different spatiotemporal settings, approaches have rarely attempted to
develop and apply this methodology to understand how individual and house-
hold decisions may affect settlement size distributions. A new method devel-
oped in this paper allows individual decision-makers to chose where to settle
based on social-environmental factors, evaluate settlements based on geography
and relative benefits, while retaining concepts derived from entropy maximiza-
tion with settlement size affected by movement ability and site attractiveness
feedbacks. To demonstrate the applicability of the theoretical and methodolog-
ical approach, case study settlement patterns from the Middle Bronze (MBA)
and Iron Ages (IA) in the Iraqi North Jazirah Survey (NJS) are used. Results
indicate clear differences in settlement factors and household choices in simu-
lations that lead to settlement size hierarchies comparable to the two evaluated
periods. Conflict and socio-political cohesion, both their presence and absence,
are suggested to have major roles in affecting the observed settlement hierarchy.
More broadly, the model is made applicable for different empirically based
settings, while being generalized to incorporate data uncertainty, making the
model useful for understanding urbanism from top-down and bottom-up
perspectives.
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Introduction

Spatial modeling of settlement rank-size hierarchies has once again become a
major topic of discussion in archaeology (e.g., see Bevan and Wilson 2013;
Crema 2013; Davies et al. 2014), with equation- and agent-based models
(ABMs) being the most common types of approaches. This paper proposes to
combine methodological contributions from ABMs and entropy maximization as
a way to create a simple and a transferable model that can potentially address a
variety of empirical cases derived from archaeological survey. While simulation
models have enabled the actualization of processes that underline key theoret-
ical assumptions about urbanization and settlement dynamics, relatively few
case studies have integrated comprehensive and relatively intensive archaeolog-
ical survey that can inform us how well model and theoretical design fit
observations from the field. Such models should provide a theoretical frame-
work to evaluate case studies and enable a quantitative-based comparison
between periods to allow one to determine what underlying reasons could lead
to observed rank-size hierarchies.

Various publications have applied forms of spatial interaction in assessing settlement
hierarchy or site interactions (Evans 1982; Knappett et al. 2008). Spatial entropy
maximizing models (Harris and Wilson 1978; Wilson 2012) have been developed to
address how settlement interaction affects urban expansion or contraction. While these
models have been largely applied to modern and economic settings, recent work has
also applied them to past settlement systems (Bevan and Wilson 2013; Davies et al.
2014). The advantage of these methods is that they are general and accommodate a
variety of case studies, including archaeological survey data at different spatial scales,
and do not have complex data requirements, making them useful for cases where
uncertainty prevents the understanding of specific processes that lead to observed
settlement patterns. In summary, such entropy models allow the incorporation of spatial
factors and feedback effects of geography, transport, and site attractiveness over a given
time that enable settlement patterns to develop across a study region. Nevertheless,
classical entropy maximization models do not employ individual or agent decision-
making, a key factor if we are to know how theoretical complexity and complex
systems from basic social units affect urban development (Adams 2001; Bentley and
Maschner 2003).

This paper explores the integration of individual or agent-based methods with
entropy maximization methods in understanding settlement change and settlement size
hierarchy within a given region whereby households are utilized as agents. The goal of
this paper is to present a simulation model that explores how the spatial setting and
factors that affect individual choice result in settlement transformations and rank-size
hierarchies observed in the archaeological record, while also accounting for site-
specific and other regional factors that could affect settlement dynamics. Initially,
background information focused on the case study is given. Then the applied method-
ology is introduced and discussed. Several scenarios demonstrating the model’s appli-
cability are conducted in order to demonstrate how the model addresses the goal
presented. The scenarios focus on how well model results fit the settlement size
distribution, rank-size hierarchy, and account for uncertainty in settlement occupation
while addressing these scenarios. Results from these scenarios are discussed,
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particularly how they provide insight for the research goal. The conclusion discusses
broader benefits and future applications of the advanced method.

Background

Case Study

The North Jazirah Survey (NJS; Fig. 1; Wilkinson and Tucker 1995) provides the test
case in which the applied model will be demonstrated. Because this region (~530 km2)
has been well surveyed and a large portion of sites from various periods recovered, it
serves as a useful test case. Furthermore, the area provides very different types of
settlement patterns in periods studied, which could then be explored further to see what
factors could have contributed to these observations.

The first set of sites, 43 sites with a total area of nearly 226 ha and
dominated by the site of Tell al-Hawa (≈29 % of the total area; site 1 in
Fig. 1), derive from the Middle Bronze Age (MBA; 2000–1600 BC). At this
time, societies across northern Mesopotamia began to develop large urban
spaces and smaller settlements more intensively, while politically there was
fragmentation with small states across northern Mesopotamia for much of the
period (Guichard 2009). Many sites are likely to have been settled for most of
this period, with excavations having indicated long-term occupation (Wilkinson
and Tucker 1995; Altaweel 2006, 2007). The settlement rank-size distribution
for the MBA can be given in a natural log graph (Fig. 2a), with Table 1
providing an indication of the top 10 sites for each period.

While the MBA represents a period of political fragmentation whereby there
was a range of major and minor settlements, the Iron Age (IA; 1200–600 BC)
was a time of intensive and evenly dispersed small settlements across much of
northern Mesopotamia (Wilkinson et al. 2005). In contrast to the MBA, a large
territorial empire in the form of the Neo-Assyrian state characterized most of
the IA in the region, which developed a highly structured provincial system of
control (Radner 2006). Overall, there are 78 sites in the NJS during the IA with
a total settled area of nearly 128 ha (Fig. 2b).

Measuring to see how well these distributions compare with Zipf’s law for
rank-size distributions (Zipf 1949), using the Drennan and Peterson (2004)
measure of deviation from Zipf’s ideal distribution, results in ≈0.58 for the
MBA and ≈0.69 for the IA. This shows that the MBA sites more closely
conform to the expected log-normal line following Zipf’s law for the surveyed
area; however, in both cases these distributions can be characterized as convex
(Johnson 1980; Savage 1997; Drennan and Peterson 2004). Statistical tests to
see how different the settlement size distributions are for the two periods, using
a Kolmogrov-Smirnov test and Wilcoxon ranked sum test, indicate significant
differences (p value <0.01), even when equal subsamples are used (p value
<0.05) to account for different overall sample sizes. In essence, the patterns for
the two periods have clear quantitative and qualitative differences that demon-
strate they are useful to contrast and explore what underlying processes could
have caused the observed patterns to emerge.
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Theory and Empirical Constraints

Over the last two decades, ABMs applying complex system perspectives have been
increasingly applied to assess both settlement patterns in case studies (e.g., Kohler et al.

Fig. 1 Settlements, shown by site numbers, and their sizes (ha) shown using standard deviation for the MBA
(a) and IA (b) in the NJS
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2008; Kohler and Varien 2010) and abstract cases (e.g., Crema 2013). These methods
generally employ individuals or households that make decisions (Epstein and Axtell
1996; Bonabeau 2002), have social connections and interact, and are affected by
environmental and/or social factors. In the social sciences, ABMs are increasingly used
for a wide range of social theoretical perspectives, whereby different approaches to
social agency with agents ranging from rational to highly emotional actors and top-
down and bottom-up social processes incorporated in research methods (Epstein 2014;
Christiansen and Altaweel 2006).

To create a useful model of the past, key factors need to be considered, such as the
fact that early preindustrial urban societies had relatively low rates of natural population
growth (McNeil 2000). On the other hand, attractive factors, such as trade, environ-
mental advantages, geography, economic incentive, or ideology likely lead to more
rapidly increasingly populations for settlements through immigration (Desrochers
2001; Persson 2010). Furthermore, as often observed in northern Mesopotamia, settle-
ment systems diminish and remerge over long-term cycles, with larger political entities

Fig. 2 Natural log settlement rank-size distributions for the NJS sites in the MBA (a) and IA (b)

Table 1 Top 10 sites in size (ha) for the two periods

MBA site number Size (ha) IA site number Size (ha)

1 66 1 11

93 19 138 4.2

43 18 99 3.8

127 10 108 3.3

29 8.3 3 and 140 3.0

140 8 42 and 94 2.9

9 6.5 20, 29, 48, and 174 2.7

48 and 90 6.1 163 2.6

19 and 91 6.0 58, 93, and 178 2.5

42 5.9 2, 73, and 157 2.4
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and households connected through kinship and decision-making that affects settlement
population and development (Wilkinson et al. 2007; Ur 2010).

Flexible theory explained via modeling and simulation methods need to explain how
observed phenomena developed within and across a variety of periods, being able to
address how observed settlement patterns are possible. To this effect, researchers have
begun investigating the applicability of entropy maximizing methods that search for
settlement size hierarchy and account for case study considerations, while also retaining
a more abstract approach that makes the method more easily transferable to other cases
(Bevan and Wilson 2013; Davies et al. 2014). Entropy maximization models have been
among the most widely used urban economic or population growth models. Such
models are useful at multiple scales, where neighborhoods or larger regional settlement
patterns can be investigated (Wilson 1970; Harris and Wilson 1978). At a more general
level, such models apply a system-theoretical approach (Casti 1985) in looking at site
growth or decline. Variant forms of Lotka-Volterra equations have been applied in what
are called Boltzmann-Lotka-Volterra (BLV) equations (Wilson 2008). The intent of the
method is that it allows one to estimate or investigate likely areas of population growth
or decline often under conditions of uncertainty. Factors of distance, economic or social
relevance, including feedbacks to settlement growth, and movement capability become
the generalized variables applied, with these variables encapsulating many concepts.

Nevertheless, classical entropy maximization does not look at how individuals or
agents can apply decisions that may lead to settlement hierarchies observed. The intent
of the new method applied here is to explore if the generalized entropy maximizing
approach can incorporate some of the benefits highlighted by ABMs so that individual
decision-making can be studied, rather than only using a system-level perspective, in
order to address observed spatial patterns over time and still retain a method that is
generalized to accommodate both uncertainty and wider applicability. Such attempts
have been recently proposed and applied by Dearden and Wilson (2012), including
similar methods by Birkin and Heppenstall (2011); however, to date no comparable
applications have been developed to accommodate archaeological cases.

Modeling Method

In the method applied, agents are assumed to be households of varying sizes (e.g.,
single-person, extended, and multi-family households). Key variables that define the
model are given here, including those that are static, calculated, and given as user input.
These are defined as:

& Sij=calculated volume of flow (i.e., movement of people and goods) between agent
i and settlement j

& Zij=calculated social-environmental attractiveness of settlement j to agent i; this
represents all factors (e.g., presence of important temples, other kinship groups,
etc.) that make a site attractive to settle at a given time

& c=operational costs, which includes bringing goods and food (e.g., via land
transport) to a settlement to enable its continuity

& dij=calculated distance between two sites (i and j) based on the natural log of the
cost surface
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& bi=weight for the endogenous or exogenous social benefits (e.g., trade with
kinsmen), or benefit multiplier, an agent i has with those of similar social, cultural,
or kinship backgrounds, enabling agents to be attracted to other like agents

& tj=multiplier for endogenous or exogenous benefits (e.g., a distant state providing
more goods to a settlement because of an important temple) provided for settlement j

& mi=the probability that an agent i will move based on negative or relatively low
flow (Sij)

& αj=return of attractiveness for site j (i.e., this scales attractiveness of sites) based on
social-environmental benefits (Zij)

& β=measure of difficulty for movement (e.g., conflict limiting movement or settle-
ment policy promoting easy movement); low to high β indicates decreasing to
increasing impedance in movement between sites, respectively

& uj=population of settlement j

Of these variables, five of these are user-defined inputs that are tested in scenarios,
which are α, β, m, c, and b. The variable u is generally left static as the proxy used mostly
as the output to compare to settlement size from surveys. In addition, t is generally left
static (i.e., as 1.0 and all settlements are assumed to have equal benefits) and used only in
scenarios where specific settlements have advantages or disadvantages that can affect
agent choice. In all scenarios, distance (d) is determined using a cost surface analysis as
defined by Fontenari et al. (2005), which accounts for elevation. This variable is calcu-
lated using ASTER (2014) terrain elevation data and measures relatively which sites are
more or less costly to travel to from a given site. The variable b is an agent factor that
could have many values, and a normal random number generator using a standard
deviation to create greater variability allows for varied agent types and benefits; however,
a single value is used for scenarios as this allows for an averaged value to be tested. The
other variables are calculated within the simulation and discussed below.

For the following scenarios, model operations are given below in notation and described
qualitatively, provided as a downloadable code (see Electronic Supplementary Data), and
demonstrated in a model flowchart (Fig. 3). The download also has additional explanations
regarding how to use the model in Repast Simphony 2.1 (2014), which was used to execute
the simulation, and the scenario data are also provided. The notation numbers
used here are indicated in the model flowchart, while the flowchart also
indicates the names of the model methods (i.e., names used in code provided)
that apply the algorithms below. To begin, after the model has been initialized,
the first step in the model is called calculateSocioEnvironment:

nij <
! "

→ Zij ¼ ujt j
nij >¼ 1
! "

→Zij ¼ uj þ nij
! "

t jbij
ð1Þ

with Zij representing attractiveness of location j for agent i based on the population
(u) of settlement j, benefits of j (t), and, if there are other agents from the same social
group (i.e., (nij≥1)), benefits ( b ) these type i agents provide to a settlement j. This step
is indicated as (1) in Fig. 3. This step calculates settlement attractiveness, or the reason
why people want to settle in a given site, for agents based on endogenous and
exogenous links the settlement has as well as those brought by agents with similar
status, cultural, or kin backgrounds, with b controlling the relevance of this factor. This
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essentially allows settlements to be viewed for their sociocultural or environmental
benefits, with the specifics of these purposely ignored so as to not make the model too
rigid regarding a given case. The next method in the model, flowFromTowns, calls (2–
4) below. Starting after the first time step, the following is calculated:

Sij ¼ Zaj
ij e

−βln dijð Þ ð2Þ

with Sij representing proportion of flow, that is movement of goods and people
benefiting agent i from settlement j, using Zij to the power of α with e measuring the
effects of cost surface d, taking its natural log, and applying β to regulate how easy it is

Fig. 3 Model flowchart of operations
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to move. Alpha, in essence, scales the effects of Z, while β regulates the effects of
distance on movement flow. What the step does is enable distance, site attractiveness,
and β to affect flow or goods an agent can obtain from settlements. The flow value also
has a cost based on distance, which is determined below:

S
0

ij ¼ Sij− c % ln dij
! "# $

ð3Þ

This calculation, in effect, can limit site flow benefits to an agent based on distance
and other costs. While β relates to the ease of movement, cost is intended to reflect
production or unit costs for items or people relative to moving in a given landscape.
Cost reflects ideas such as land-based transport (e.g., donkeys carrying grain to and
from settlements) that have a given energy or production cost affecting flow. The
aggregate of (3) for all settlements affecting agent i creates a net flow for i:

Di ¼
X

S
0

ij

SD j ¼
X

Di
ð4Þ

with (Di) being net flow for an agent and aggregate flow of all agents in a given
settlement is SD. This provides a measure to evaluate total goods and flow an agent is
getting and what the total flow is for a given settlement based on all agents in that
settlement.

The next step involves the key agent-based decision-making focused on in the
model, with an agent determining to find a new settlement if needed based on negative
or low flow relative to other agents. This conditional, or decision made by the agent, is
applied in determineRelocate in the model with the relocate method being applied if the
conditional is true; if it is false the simulation returns to (1) here. For the two model
methods, including the conditional, they are stated as:

Di < 0∨Di < D̄
# $

∧m > R
# $

⇒

np j ¼ 1 þ nij
.
uj

# $

SD j > 0
! "

→g j ¼ dij
.

SD j % np j % bij
# $

SD j < 0
! "

→g j ¼ SD j % dij
%% %%

.
np j % bij

# $

s j ¼ MIN g j∈g
# $

ð5Þ

which determines, in the first part of this method, if negative flow or flow less than
the mean flow for all agents and a probability (R), based on a uniform pseudorandom
number generator, being less thanm to another settlement for agent i results in the agent
making a choice to resettle. This, essentially, allows agents to move if they are not
benefiting from their current settlement or they may see their economic/social state is
less desirable compared with others. The m factor regulates how important this is to the
model. In the next part of this method, the choice of which specific settlement to move
to, if the decision to move has been made, is based on the number of people (np) at
settlement j that belong to the same social/kin group (n) as i relative to the settlement’s
population (u). Then another step in this method is calculated based on if total
settlement flow (SD) for j is positive or not and what the relative agent benefits (b)
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are. This calculation determines estimated benefits (g) for an agent based on distance
and presence of social groups (np), including the weight of benefits an agent has (b). In
other words, towns, and thus other individuals in these towns, that have a higher benefit
and social connection to an agent are preferred, but this could be mitigated by distance
or lack of interest (i.e., low b) in moving to locations with similar social/kin groups. In
the final step, the smallest g value, which in this case implies the settlement (s) with the
greatest benefit, is selected. While using the minimal value of g (i.e., settlement of
greatest benefit) may seem too deterministic, the variable t, as will be demonstrated, can
allow greater variability in results.

In effect, this last step allows agents not happy with their state in their given location
to migrate. If they leave, they decide where to go based on kinship/social connectivity,
distance, and social-ecological factors affecting settlements’ total flow (i.e., benefits to
a settlement), with these factors’ influence affected by the five user-defined inputs
discussed earlier. The last and earlier methods, in fact, are all regulated by the input
parameters that the simulation will test, allowing for very different circumstances to be
studied for their influence on simulation results. After this step, the model returns to (1)
until the end of the simulation.

Results

The following scenarios address the primary goal of the paper that demonstrates the
model’s capabilities. For scenarios, a 26-node cluster is utilized in the outputs
discussed, with Repast Simphony 2.1 (2014) used for runs and R (2014) and Java
Apache Commons Mathematics Library (2014) applied for statistical analysis.

Scenario 1: Size Hierarchy Matching

The first modeling case investigates how well the ABM method can match known
settlement size hierarchies from the MBA and IA, providing a general validation of the
model. Ranges of input values are given in Table 2; these inputs are utilized in a
parameter sweep (see North and Macal 2007) that represent qualitatively greater and
lesser influences on the model, allowing one to evaluate the importance of given
variables. Population (u) for all sites is initially set to 200; this means there are a total
of 8,600 and 15,600 households for the MBA and IA subcenarios, respectively. No
assumption is being made about the actual population or household sizes in the past, as
the value 200 simply reflects an internal way for the model to measure relatively which
sites become larger than others once people begin to migrate in the simulations. Other
population values, in fact, could have been chosen, with 200 being useful to calculate
population size ratios for all settlements used in outputs. What this means is that the
population is used as a proxy rather than an absolute number that is then compared with
settlement size (ha) as estimated from survey. In other words, the portion of the total
population on a site can be directly compared with the portion of hectares out of the
survey total, making the simulation and survey results comparable. All simulations are
executed for 100 time ticks and up to 10 parameter runs for parameter settings, which
allow results to stabilize and utilize different random seeds to account for stochasticity.
Results are averaged with nearly 300,000 parameter combinations used in the
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subscenarios. To measure how well simulated results match empirical data, regression
analysis is applied for each parameter combination.

Figure 4 shows regression (r2) results, ranging from 0 to 1.0 (shaded areas), using an
ordinary least squares regression on the ratios of simulated site populations, used as a
proxy for simulated size, and surveyed site sizes for the MBA (scenario 1a) and IA
(scenario 1b) cases, indicating how well simulated results fit survey results. In essence,
Fig. 4 shows which variable settings lead to the simulated population data to match
more closely to empirical site sizes, with darker colors indicating greater fit between the
simulated and empirical data. Results that show r2>0.98, that is a relatively high
goodness-of-fit between empirical and simulated results for the MBA and IA, are
shown in Figs. 5 and 6, respectively. These figures provide the frequency of simulations
that have these high fit values, rather than just simply if a setting has a close fit with the
survey as shown in Fig. 4. This gives an idea which parameter settings and combina-
tions generally have more close-fitting results. The r2>0.98 range is found to indicate
both a very close visual (i.e., qualitative) and statistical fit, which is why it is used. Each
frequency count in Figs. 5 and 6 represents an averaged parameter variation result in
which r2>0.98; there are 702 parameter variations that fall within this threshold in the

Table 2 Parameters and their value ranges tested in scenario 1

Alpha (α) Beta (β) Cost (c) Movement
probability (m)

Benefit factor (b) Initial site
population (u)

Simulation time

0.2–10.2 0.2–10.2 0–1.0 0–1.0 1.0–11.0 200 100

Fig. 4 The parameter space for simulated variables for the MBA (a) and IA (b) in scenario 1. The top-left
ranges and greyscale colors indicate r2 values for parameters
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MBA, while there are only 42 in the IA case. For scenario 1a, the best-fit parameter
setting has r2=0.998, where α=0.2, β=6.6, c=0.8, m=0.5, and b=7. For the IA, the
best-fit results (r2=0.994) are α=1.7, β=4.2, c=0.26, m=0.34, and b=1. Figure 7

Fig. 5 Frequency (y-axis) of the five parameters (their names (title) and ranges (x-axis)) where r2>0.98 in a
goodness-of-fit test between simulated and empirical MBA NJS sites
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shows two examples, one MBA and the other IA, where results had a strong fit with
empirical data.

Where there is a close correspondence between simulated and empirical MBA data,
Fig. 5 shows that α ranges between 0 and 5 closely fit the survey data’s settlement size

Fig. 6 Frequency (y-axis) of the five parameters (their names (title) and ranges (x-axis)) where r2>0.98 in a
goodness-of-fit test between simulated and empirical IA NJS sites
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hierarchy, while the results for β are largely between 4 and 10.2. This indicates a
relatively moderate to a low emphasis on α and greater impediment to movement
(i.e., higher β) leads to the settlement size hierarchy observed. As for c, the range is
mostly between 0.4 and 0.8, with some results having a close fit near 0.3 and 1.0.
Movement probability (m), on the other hand, is almost always near 0.5, showing that a
very narrow m range allows close-fit results, while well-fitting b, or benefits an agent
brings to a site, values mostly cluster around 4–8. These results can be interpreted to
mean there is relatively moderate to high cost in flow, relative to return on benefits
provided by individuals, while very high or low benefits by agents do not often lead to
well-fitting results. The benefit factor begins to become relevant when other agents from
the same social group, in this case from the same initial site, are found in other
sites. Variable m shows much greater restriction, around 0.5, and there is a reasonable
chance an agent could move if benefits from their current settlement are negative or
lower than other sites around them. The movement value is not to the extent where
people immediately leave their site, but it shows that movement should occur frequently,
even if interactions are mostly across short distances (i.e., moderate to high β values).

For the IA, cases that meet the r2>0.98 values have α ranging between 0 and 2 and
β mostly lower than 1 but also ranging between 3 and 6 to a lesser extent. There is less
return on settlement attractiveness than the MBA case, showing less importance on
settlement advantages in reinforcing site size, but far less restriction to movement,
allowing flow to be more dispersed. For m, values range between 0 and 0.1 and 0.3 and
0.5. In essence, very low probability of movement or a moderate probability lead to
observed results. This indicates two possible movement range frequencies, rather than
just one as in the MBA case, are possible for the IA, where very few people move or
more frequent movement is found. This will be further discussed in scenario 2. The
other variables appear to be more random or have less of a clear pattern; c ranges
between 0 and 0.6 and 0.7 and 1.0 seem to lead to the observed simulated results. For b,
most of the close-fit results range between 0 and 9, with some between 10 and 11. In

Fig. 7 Comparison of population (simulated) to size (empirical) ratios for the MBA (a) and IA (b) that show
closely matching results between simulated and empirical results. The results for (a) and (b) are r2>0.99. The
MBA parameters here are return on site attractiveness (α)=0.8, ability to move (β)=7.0, cost (c)=0.6,
movement probability (m)=0.5, and agent benefits (b)=2.0, while the IA parameters are α=0.2, β=0.7, c=
1.0, m=0.36, and b=1.0
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essence, α, β, and m appear to have narrower ranges in leading to a close fit between
simulated and empirical results for the IA case, while the values of the other variables
have very wide ranges.

Figure 8 shows settlement sizes, for two example results that are typical for well-fit
results in this scenario, using standard deviation on simulated population to indicate
where larger sites are located. The figure also applies Nystuen and Dacey (1961)
graphs, as similarly used in Davies et al. (2014), of settlement connections based on
movement of people to sties. While Fig. 8a shows site 1, Tell al-Hawa, is not the largest
site in simulations, as observed in the MBA of the NJS survey, Fig. 8b does show the
IA scenario does sometimes lead to site 1 being the largest simulated site, matching the
NJS survey. In Fig. 8a, what is evident is that the MBA case has a large portion of sites
with multiple links, showing a high portion of local interactions or movements between
neighboring sites, with only two sites not having multiple links, where movement of
people is σ>0. In the IA case, the portion of σ>0 links for sites is fewer (63/78 sites).
Overall, a greater number of links in the MBA case indicates more overall movement,
although much of it is concentrating toward neighboring sites that then connects to
larger sites. In the IA, movement is more diffuse and there are fewer hubs attracting a
large number of movements. Furthermore, for all in-degree links, the highest number is
24 in the MBA case, while it is 14 in the IA, showing the higher level of local
interaction and migration in the MBA case. There are also 12/43 sites with 10 or more
in-degree links, while it is 6/72 in the IA.

As for degree centrality, based on total number of movements going to or through a
site, site 37 is the most central in the MBA case, while it is site 144 in the IA. If the
average and standard deviation for number of movements in links is observed, the
results are 742 and 1,213 for the MBA respectively and 877 and 1,682 for the IA,
respectively. While this represents the fact there are more people in the IA case, it is
evident that there is also more variability in IA movements. On the other hand, the
results indicate greater movement of people through different sites in the MBA case
(6,730 movements on average versus 4,485 in the IA), as people made their way to the
larger sites. For the MBA, people do not simply move to neighboring sites, but
movements continue until people reach the larger sites such as site 127, which are
more attractive than others, leading to population concentration at attractive sites and
greater differences in population between sites. This shows that people did not imme-
diately find the most attractive site, rather the limitations on movement, as represented
by β, dampened long-distance interactions. In the IA, diffuse movements and lack of
attractive sites create more of an even population in the IA scenario, with a higher
portion of sites having 0–2σ for population. The IA example applies a m of 0.36, while
Fig. 6 demonstrates it is possible to get well-fit results with a much lower m (i.e., less
than 0.1). This will be discussed further in scenario 2. Overall, this scenario has
demonstrated that the simulation model does create overall site hierarchies that match
different periods’ survey results.

Scenario 2: Size and Rank Matching

Although the first scenario indicates simulations do closely match site size hierarchy
between empirically surveyed and simulated sites, matching not only the hierarchy but
the ordinal rank in size of observed and simulated sites proves to be more difficult. In
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other words, the model in scenario 1 shows that model output often does not have a
close match between the ordinal rank-size for specific sites. In fact, when the same
regression in scenario 1 is applied so that site rank and size are compared with the
matching simulated output, the best results are r2 values of 0.87 and 0.5 for the MBA

Fig. 8 Simulated sites for the MBA (a) and IA (b) showing site size and predominate interactions, based on
the number of times an agent moves from one site to another, derived from a Nystuen and Dacey (1961)
network representation. Standard deviation is used to show population variation and number of movements
between sites; for movement, where the result is less than 0σ, there is no display in order to simplify the visual
representation
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and IA, respectively. Such results are of no surprise since geography is what mostly
gives sites initial advantages over other sites in scenario 1. This indicates a need to
apply additional factors that allow some sites to have initial advantages to enable them
to reach greater size than other sites, while allowing a closer correspondence of
simulated rank and size for each site. To enable sites to have advantages relative to
other sites, t, which controls this aspect, is utilized. This variable also has the benefit of
accounting for edge effects, as areas outside of the simulation could be providing
benefits or disadvantages that sites receive and affecting site interactions.

What is likely evident in the periods studied is that sites did have advantages or
benefits that allowed them to become more populated than other sites. A method
comparable to Davies et al. (2014) is employed by looking at categories, or ranges,
of site’s empirical size estimates in order to create values for t. In this case, rather than
predetermining the number of categories of size used for t, variations of t are simulated
by testing this parameter to see what the minimal number of t value categories, or
differences, are needed so that more than half of the largest ten sites (Table 1) are
forecasted by the simulation. The purpose of this approach is that it would demonstrate
the model’s capability in forecasting larger sites without overly fitting the model (i.e.,
many different t value categories) and indicates that the model has a far better chance at
determining likely larger sites than random chance. For the MBA, four t (i.e.,
endogenous/exogenous benefits given to a site) categories are found to be needed in
order to correctly forecast more than half the ten largest sites. In this case, seven of the
ten largest sites are forecasted when t values are 3, 2, 1, and 0.5 for sites that are >10,
10–5, 5–1, and 1>ha respectively in empirical survey size (Fig. 9a). The result of this in
a Spearman’s rank correlation coefficient is 0.61, while a Pearson correlation coeffi-
cient test between the simulated and observed site sizes produced 0.94 for the MBA.
Both these statistical measures are used because high coefficient values in both tests
demonstrate the best rank, which Spearman’s test captures, and size fit, which Pearson’s
correlation coefficient indicates. Overall, the results demonstrate that the t categories do
produce rank-size values that match reasonably the survey record. The best matching
parameters (Fig. 9) for the four t value categories in the MBA are α=0.4, β=9.7, c=
0.4, m=0.5, and b=6.5.

Additionally, looking at the average distance between the observed rank categories,
that is the sizes used from the NJS survey to create the t values, and simulated rank values,
which is what the simulation produces in the rank category of a site, the result is about
1.31 km (Fig. 9b). In this case, this value is called the distance rank error. Therefore, even
in cases where the rank of simulated sites did not closely match the observed results, the
distance rank error indicates the simulated site is not far from the correct size category.
The interaction links for sites, in relation to connectivity of sites, show very similar results
and structure to Fig. 8a, with site 14 being the most central based on total number of
movements, as the population migrates to the large sites (e.g., site 1). However, the
overall distribution of movements per link is nearly identical to Fig. 8a.

For the IA case (Fig. 10a), five categories for t are needed to enable a greater than
50 % matching of the ten largest sites. If there are four t value categories, 50 %
accuracy for forecasting the largest ten sites is achieved, but not greater. Sites ranging in
empirical survey sizes of >10, 10–4, 4–2, 2–1, 1>ha with simulated t values of 5, 4, 3,
2, and 1, respectively are used here. The best Pearson correlation result, where more
than half of the ten largest sites are forecasted, is about 0.84, while the Spearman result
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is 0.79. This indicates, while the overall correlation is not as good as the MBA case, as
densely located sites create more nearby areas where migration maybe drawn to, the
Spearman result indicates this case does a better job in reproducing the ranks in the
empirical results. In this case, seven of the ten largest sites are forecasted, where α=1.5,

Fig. 9 Results indicating t value variations (a) for the MBA simulation that most closely fits rank and size of
the NJS, with the top 10 sites indicated by a black box, and distance rank error (b) between the simulated and
empirical rank categories. Links indicate number of movements between sites as expressed using a derived
Nystuen and Dacey graph and σ values
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β=1.8, c=0.2, m=0.001, and b=2.5. The distance rank error for the IA case is 1.04 km
on average (Fig. 10b). Unlike the MBA case and Fig. 8b in scenario 1, the results show
a very different interaction link structure, with site 1 having the most interactions by a
wide margin, and sites 138 and 48 at a distant second and third respectively in
migrations. Site 1 has 77 links, indicating every site interacted with it. What the results
suggest is that while m is very low, because β is relatively low (i.e., it is relatively easy
to move) people from throughout the survey area migrate to site 1 directly, rather than
through intermediate sites, because of the site’s advantages. Such a structure is similar

Fig. 10 Results indicating t value variations (a) for the IA simulation that closely fits rank and size of the NJS,
with the top 10 sites indicated by a black box, and distance rank error (b) between the simulated and empirical
rank categories. A Nystuen and Dacey graph is used to show movements between sites
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to what is shown in Fig. 6 (movement probability graph) in scenario 1, which shows
that very low m probabilities could lead to settlement structures observed for the IA.
Mostly, however, β values are lower than what is evident in the MBA case. In essence,
Fig. 10b highlights that a second model, one where there is low m, can lead to
structures observed in the IA, in addition to what is shown in Fig. 8b. This case
indicates that when movement does happen it is focused on a site with advantages with
distance not being a major factor.

Scenario 3: Survey Sampling and Robustness

At any given time, only a subset of the surveyed sites may have existed within the
periods studied, as survey results may not be able to clearly identify subperiods within
the MBA and IA. To ameliorate a situation where sites may have not been contempo-
rary, and to assess the robustness of the results achieved earlier through random
sampling, a repeated sampling approach is applied where only a portion of sites is
executed in a given simulation run (i.e., a bootstrapping method). This portion of sites
is sampled using a range of probabilities, where a given site will not be in a simulation
run, that are 1/5, 1/3, 2/5, and 1/2, with each of these variations run for 500 different
simulation runs for the MBA and IA cases using the parameter settings from the results
in scenario 2. The results are then averaged for all sites so that an overall rank-size
hierarchy is achieved, even though not all sites are simulated and the combination of
sites differs in each simulation run. This approach allows us to see how sensitive results
are when sites are removed from simulations and to see if the overall patterns observed
in the last scenario are relatively meaningful and reproducible by seeing if similar
patterns are achieved in this scenario.

The results for these probability scenarios, for both cases, are given in Table 3; as
before, both Spearman’s and Pearson’s correlation coefficients are given, as this
provides stronger rank and size correlations. For the MBA, the 1/5 and 1/3 probabilities
show a relatively strong Pearson’s r value, while the 1/2 probability indicates a large
decrease in this value. Nevertheless, the Spearman’s correlation coefficient value is
relatively consistent, indicating that the rank order stays relatively stable between
scenarios. In all cases, more than five of the ten largest sites are forecasted; in fact,
the weakest Pearson’s r correlation did very well in forecasting the largest sites, even if
the site size hierarchy results are weaker than other cases. Overall, the results show that

Table 3 Results from scenario 3 testing for sampling and robustness of the modeled survey region’s cases

Probabilities 0 1/5 1/3 2/5 1/2

MBA Pearson's r 0.94 0.9 0.93 0.82 0.46

MBA Spearman's ρ 0.61 0.53 0.54 0.45 0.48

MBA number of sites in top 10 7 6 7 8 9

IA Pearson's r 0.84 0.82 0.85 0.86 0.88

IA Spearman's ρ 0.79 0.73 0.75 0.83 0.79

IA number of sites in top 10 7 4 6 5 6

The results from scenario 2 are also indicated under the “0” column
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the rank and size hierarchy of sites is maintained fairly well and relatively comparable
to the empirical data until the simulation has more than 40 % of the sites missing at any
given time. The Spearman’s rank correlation coefficient and number of top 10 sites
forecasted gives some confidence that the results achieved in scenario 2 are meaningful
even if part of the dataset is used. Figure 11 indicates MBA output, which is the 1/3
probability case, which has the best correlation coefficients for scenario 3. Results here

Fig. 11 MBA case where each site has a 1/3 probability of not being in a simulation run. The simulated
average populations and migrations between sites for 500 runs are indicated (a) along with the top 10
simulated sites. The σ for different simulation runs for population and migration between sites is given as
well (b). Similar to earlier cases, a Nystuen and Dacey graph is used along with σ values
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show that sites 1, 43, 93, and 127 are forecasted to be in the top 10 largest in both
scenarios 2 and 3. One possible interpretation is that the results suggest most of these
sites would have been long-lived and contemporary, as the overall rank and
size hierarchy are more closely maintained if many or all sites are present in a given
scenario. Results in Fig. 11 indicate interactions that are somewhat similar to what is
observed in Fig. 9; however, the main difference is there are more varied links with
greater than 0σmovements, which represents the variability of movements from case to
case due to some sites being removed or added based on the probability. For the overall
average, the most central node is site 30, followed closely by sites 19 and 18,
respectively. While these results are different from what is seen in scenario 2, structur-
ally they are similar as sites near site 1 play an important conduit role in moving people
closer to the high population sites. Movements are also seen to be mostly between
nearby sites, with movements averaging 4.75 km distance.

For the IA (Table 3), the Pearson’s r value is 0.88 when 1/2 of the sites are not
simulated in a given run, with improving Pearson’s r values greater than 1/5 probability
for sites not being in simulation runs. In addition, the Spearman’s rank correlation
coefficient value improves for probability values between 1/5 and 2/5 of sites not
simulated in runs. However, in the two cases, it is evident that forecasting the top 10
sites is not always greater than five. Figure 12, which has 1/2 probability, indicates the
scenario with the best correlation coefficients and most forecasted top 10 sites. This
output is a reflection of the greater variability found between runs in the scenario from
case to case. Despite the fact that Fig. 12 appears to show more noisy interactions, for
both scenarios 2 and 3 in the IA, sites 1, 2, 10, 48, 111, 130, and 138 are forecasted to
be among the largest ten sites. This case shows many interactions where movement is
greater than 0σ for links, which is once again a reflection of the variability found in
given runs. However, looking at the overall average, and very similar to what was seen
in Fig. 10 in scenario 2, site 1 is the most central as people are able to travel relatively
farther distances to an attractive site. Site 138 is the second most central, as it is in
scenario 2, where it forms a smaller regional center to the southwest of site 1. As with
scenario 2’s IA case, many movements are long-distance and not just between sites next
to or very close to each other. Interactions, or movements of people between sites, are
on average covering 9.36 km in the IA in Fig. 11, indicating much more distant
interactions than the MBA case. Although the IA case seems to forecast fewer of the
top 10 largest sites, Pearson’s r and Spearman’s ρ values suggest there is a good degree
of confidence in the results achieved in scenario 2. In fact, the results could suggest that
many of these sites were not contemporary and existed for shorter periods within the
IA, as the Pearson’s r value improves in cases where the probability of a site not being
in a simulation increases, while Spearman's ρ is best when 2/5 of the sites are removed.
Admittedly this is speculative; however, the results do suggest that the rank-size
hierarchy demonstrated in scenario 2 appears to be a meaningful pattern as comparable
or even better results are achieved via subsampling.

Discussion

This presentation has given a number of results that highlight the main goal of this
research, which is demonstrating how a model could integrate site-specific factors and
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agent choice that enable rank-size hierarchies to be achieved that are comparable to the
empirical record. At a general level, scenario 1 investigates parameters used in model-
ing, indicating that some parameters require specific ranges in order to closely replicate
settlement size patterns for the MBA and IA. Scenario 2 demonstrates the model’s
ability to forecast the correct largest sites and maintain relatively close fit with rank-size
values without overly fitting endogenous/exogenous site benefits (t) values to scenario
runs. Scenario 3 demonstrates that for probabilities less than 40 %, where sites are

Fig. 12 IA case using a Nystuen and Dacey graph where each site has a 1/2 probability of not being in a
simulation run. The simulated average site populations and migrations for 500 runs are indicated (a) along
with the top 10 simulated sites. The σ values for population and migration between sites in the simulation runs
is given (b)
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removed from simulation runs, rank-size hierarchies from scenario 2 are fairly robust
and maintained, for the MBA case, suggesting scenario 2’s results are likely to be
meaningful. In the IA case, as the probability increased toward 40 or 50 %, the
correlation coefficient results appear to improve. While these results could suggest that
most or almost all sites in the MBAwere contemporary, the IA case may suggest that a
good number of the sites were short-lived and not contemporary.

Specific archaeological benefits from scenarios are evident from the results. The α
setting in the MBA and IA cases, specifically in scenario 1, shows that in general there
appears to a greater emphasis on feedbacks to site attractiveness in the MBA, leading to
some sites, that is those sites with more benefits (i.e., flow) than others, to become even
larger than other sites, leading to greater differentiation and hierarchical differences in
site size. Scenario 2 shows that site advantages, such as t, do not need to be so great for
major sites (e.g., site 1 Tell al-Hawa) to gain major population advantages over their
neighbors, while the IA case in scenario 2 shows that relatively greater α, at least
compared with results from scenario 1, could be needed for site 1 to gain a great
enough advantage to enable differentiation from its neighbors. This might be because
there are more sites in the IA scenarios, which leads to more settlements attracting flow
and movement away from other centers. Scenario 3 for the IA does suggest a possibility
that many sites may not have been contemporary. A relevant result in scenario 2 is that
in both the MBA and IA cases, the model only needed a few size categories to forecast
a large portion of the top 10 largest sites and achieve results with relatively good fit to
their empirical rank-size hierarchy. This result indicates some role in geography, as sites
that are well positioned between sites could benefit more greatly with nearby interac-
tions; however, geography is not necessarily a dominant factor, at least at the survey
scale, in leading to specific sites becoming relatively large (e.g., site 1 in the MBA and
IA), as t is used for consistent site advantages and to forecast most of the largest sites.

For the MBA and IA, β is shown to play an important role in limiting or facilitating
movement across the modeled region. For the MBA, as shown in scenario 1, high β
values indicate more local or neighboring settlement interactions, while for the IA
lower β values enable diffuse or easier and more distant interactions to occur. This
situation could be reflected by the hollow-ways, or remnants of ancient roads, found in
the survey area and larger region, where many short-distance routes appear to develop
by the Early Bronze Age (Wilkinson 1994; Ur 2003), indicating numerous local
interactions. While long-distance hollow-ways are found in the Bronze Age, by the
IA long-distance roadways appear to become more significant (Altaweel 2008), which
may reflect a period where long-distance movement was easier and thus flow or
migration of people could have become more dispersed in regions. This could be
driven by the political situation in the two periods. In the Bronze Age, and particularly
evident in the MBA, nearby states and communities were often or were likely to be in
conflict or lacked political cohesion (Dalley 2002; Hamblin 2006; Eidem 2012). In the
IA, much of this period is dominated by a singular empire, in the form of the Neo-
Assyrians that controlled vast regions from their capitals in the Assyrian heartland
(Radner 2011), allowing for relatively greater political stability and socio-political
cohesion within the NJS and greater ease of movement across northern
Mesopotamia. In addition, this could explain why c, or the cost value, is often high
in order to develop settlement size hierarchies similar to the MBA, while in the IA c
mattered less and could be at different settings.
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Individuals, or in this case households, play an important role in shaping site size
hierarchies, where choice of movement is affected by common social connectivity and
perceived benefits elsewhere (method #5). Agents bring benefits (b), but
their movement ability (m) is also possibly limited regardless of choice to move.
Simulated benefits by individuals include economic or social benefits brought by
migrations to settlements, where texts indicate how common households are found to
play vital economic and social roles in defining urban structures throughout
Mesopotamia (Van der Mieroop 1999), while movement, even if desired, is not always
possible and the rate and choice of this factor is found to be important in all scenarios
modeled. Agent benefits (b) appears to cluster between 4 and 8 in the MBA, but the
pattern is less clear in the IA and a wider range is found. In scenarios 2 and 3, b helps
enable sites to achieve positive feedback growth, where the relatively high b values
enables site 1 and other MBA sites with initial advantages to grow more rapidly.

In the MBA case, a very narrow range near 0.5 for movement probability (m) is
found to be most relevant, while in the IA case at least two ranges (less than 0.1 and
between 0.3-0.5) seem to create patterns noticed in the empirical record. The MBA case
reflects that although movements are generally restricted to local interactions, it was
relatively easy to move in these shorter distances m. For the IA, there are two clear
movement patterns. One is probability ranges comparable to the MBA scenario, which
creates in this case small settlements of relatively even sizes as the population moves
more evenly across the landscape, while an alternative case, as emphasized by scenar-
ios 2 and 3, is a very low m. This creates a situation where overall movement is low;
however, because β is low, when movement occurs, it often happens over longer
distances. This leads to a site with clear advantages (i.e., site 1 in the IA NJS) getting
a relatively high number of people migrating to it.

Summarizing the variable value ranges and their qualitative interpretation that could
be suggested by the results, for the MBA case, α suggests greater return to settlement
attractiveness, particularly larger sites, while β indicates greater restrictions to move-
ment, although people could move somewhat frequently over relatively short distances,
as shown bym. Agent benefits (b) and high c enabled sites to begin to differentiate their
size and rank relative to other sites. All these variables and values could reflect that the
numerous conflicts or lack of socio-political cohesion in the MBA for the region may
have had an effect by constraining movements of people and goods to shorter distances,
while encouraging a greater portion of them to live in larger sites. The IA case shows it is
possible for empires, such as the Neo-Assyrian state, to facilitate movement and spread
populations, making settlements more equal in size and deemphasizing settlement in
larger sites through unifying regional authority, social integration, or pacifying a given
area, with mostly low α and β demonstrating this. For the IA, the other variables all
indicate that they either mattered less or reflect easier movement, even if it was
infrequent ; c, for instance, had wide value ranges, while m had more specified ranges,
whereby the rate of movement based on probability is either low or somewhat moderate.
The case study results are comparable to what is observed in Davies et al. (2014), where
conflict socio-political cohesion, with their presence or absence, are suggested to be
major driving forces in shaping settlement structures in northern Mesopotamia, with the
historical data supporting these possibilities (Dalley 2002; Radner 2011; Eidem 2012).

Factors dealing with settlement and individual advantages, agent choice, cost of
transport, facility, or ease of movement have all been considered to be critical in the
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shaping of Mesopotamian cities and urban growth (Adams 2001; Algaze 2008), which
are demonstrated in MBA and IA cases. Other factors, such as c in the IA, at times
seem to have less of a clear impact or have a wider range of possibility. Overall,
the model demonstrates how agent-specific factors, decisions, settlement influ-
ences, geography, and outside influences could shape site size hierarchy. As
discussed, households and major institutions likely played an important role in
shaping urbanism in northern Mesopotamia (Wilkinson et al. 2007; Ur 2010).
This model demonstrates how these entities could be studied for their influence
on settlements.

Conclusions

There are several broad benefits demonstrated by the case study and model presented.
The model points to a theoretical merging of top-down and bottom-up factors that can be
studied together to inform about archaeological problems relating to regional popula-
tions and settlement. Many of the factors introduced by the model have been discussed
as critical for the development of modern urban systems (Batty 2008), as economic,
geographic, and transport factors are utilized in a general way and also play key roles in
past urban systems. Theoretical complexity in the past likely plays a significant role in
how urban forms develop in Mesopotamia and beyond (Adams 2001), while this
perspective is having an increased role in archaeology in general (Bentley and
Maschner 2008). Adaptations by learning or simple choice by agents as systems evolve
help to shape how the overall settlement system develops. The model presented here
merges bottom-up and top-down factors because strengths are found in each methodol-
ogy, where system-level equations and agent choice generalize and capture the larger
behaviors of the system but also inform on how individual choice could shape dynamics
and settlement hierarchies as demonstrated here. Further benefits, as already demon-
strated by Bevan and Wilson (2013), include models such as this and other entropy
maximization types that could be created to begin to forecast regions where larger and
smaller sites could have developed. Overall, the modeling approach provides a way to
explain why differential growth is seen or expected in the empirical record.

Shortcomings are found in this article, which suggest possible future research areas.
This includes not differentiating human agents in each simulation run. While stochastic
choices are used to represent varied factors and choices made by agents, with settlements
acting as entities or even pseudo-agents that agents can interact with based on their
advantages and disadvantages, in reality there would have been different types of
individuals and households concurrently operating that could be represented by types
of agents through differences in agent advantages (b). One of the strengths of an ABM is
its ability to represent varied agent types together. In this paper, agents are averaged into
a single type per run and multiple types are run in different simulations, as this helps to
address uncertainty about the ranges of types that could be found while also controlling
for effects by different agent types. Nevertheless, multiple agents can be represented in
the same simulation to see how these types could interact and affect settlement hierar-
chies. Further research in this area seems to be a likely way forward. Additionally, more
work can be done to better define how social relationships could affect results. While an
easy way to represent potentially complex social relationships is to assign people from
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the same settlement to be more socially similar, other methods could prove to be more
effective in representing or replicating complex social relationships.

Overall, this presentation has brought forth several case-specific and broad benefits
that can benefit archaeology in northern Mesopotamia and beyond. With increased use
of complexity theory to explain how urban systems form, the paper presents a formal
method that can be used to explain this theory in a manner that closely replicates the
settlement record. Finally, as discussed previously (Falconer and Savage 1995), the
importance of rank-size hierarchies and their use for analysis are dependent on sam-
pling procedures that capture sites at different parts of site size scales, which empha-
sizes the importance of detailed and intensive surveys such as that found in the NJS.
With further surveys applying comparable approaches to fieldwork, these cases should
in the long run improve modeling methodology applied to settlement size hierarchies.

Acknowledgments This research was supported financially by a grant from University College London’s
Strategic Development Fund in the Humanities. I would like to thank The Fragile Crescent Project at the
University of Durham for providing the primary data used in simulations.

Conflict of Interest The author declares that there is no conflict of interest.

References

Adams, R. M. (2001). Complexity in archaic states. Journal of Anthropological Archaeology, 20(3), 345–360.
Algaze, G. (2008). Ancient Mesopotamia at the dawn of civilization: the evolution of an urban landscape.

London: University of Chicago Press.
Altaweel, M. (2006). Excavations in Iraq: the Ray Jazirah Project, first report. Iraq, 68, 155–181.
Altaweel, M. (2007). Excavations in Iraq: the Jazirah Salvage Project, second report. Iraq, 69, 117–144.
Altaweel, M. (2008). The imperial landscape of Ashur: settlement and land use in the Assyrian heartland.

Heidelberg: Heidelberger Orientverlag.
ASTER. (2014). http://asterweb.jpl.nasa.gov/gdem.asp. Accessed 23 January 2014.
Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771.
Bentley, R. A., & Maschner, H. D. G. (Eds.). (2003). Complex systems and archaeology: empirical and

theoretical applications. Salt Lake City: University of Utah Press.
Bentley, R. A., & Maschner, H. D. G. (2008). Complexity theory. In R. A. Bentley, H. D. G. Maschner, & C.

Chippindale (Eds.), Handbook of archaeological theories (pp. 245–270). Lanham: Altamira.
Bevan, A., & Wilson, A. (2013). Models of spatial hierarchy based on partial evidence. Journal of

Archaeological Science, 40, 2415–2427.
Birkin, M., & Heppenstall, A. (2011). Extending spatial interaction models with agents for understanding

relationships in a dynamic retail market. Urban Studies Research. doi:10.1155/2011/403969.
Bonabeau, E. (2002). Agent-based modeling: methods and techniques for simulating human systems.

Proceedings of the National Academy of Sciences of the United States of America, 99, 7280–7286.
Casti, J. L. (1985).Nonlinear system theory.Mathematics in science and engineering 175. London: Academic Press.
Christiansen, J., & Altaweel, M. (2006). Understanding ancient societies: a new approach using agent-based

holistic modeling. Structure and Dynamics: eJournal of Anthropological and Related Sciences, 1(2), 7.
http://escholarship.org/uc/item/33w3s07r.

Crema, E. R. (2013). A simulation model of fission-fusion and long-term settlement change. Journal of
Archaeological Method and Theory. doi:10.1007/s10816-013-9185-4.

Dalley, S. (2002). Mari and Karana: two Old Babylonian cities. Piscataway: Gorgias Press.
Davies, T., Fry, H., Wilson, A., Palmisano, A., Altaweel, M., & Radner, K. (2014). Application of an entropy

maximizing and dynamics model for understanding settlement structure: the Khabur Triangle in the
Middle Bronze and Iron Ages. Journal of Archaeological Science, 43, 141–154.

Dearden, J., & Wilson, A. G. (2012). The relationship of dynamic entropy maximising and agent-based
approaches in urban modelling. In A. Heppenstall, A. T. Crooks, L. See, & M. Batty (Eds.), Agent-based
models of geographic systems (pp. 705–720). London: Springer.

Settlement Dynamics and Hierarchy



Desrochers, P. (2001). Geographic proximity and the transmission of tacit knowledge. Review of Austrian
Economics, 14, 25–46.

Drennan, R. D., & Peterson, C. E. (2004). Comparing archaeological settlement systems with rank-size
graphs: a measure of shape and statistical confidence. Journal of Archaeological Science, 31, 533–549.

Eidem, J. (2012). The royal archives from Tell Leilan: Old Babylonian letters and treaties from the eastern
lower town palace. Leiden: Nederlands Instituut voor het Nabije Oosten.

Epstein, J. (2014). Agent-zero: toward neurocognitive foundations for generative social science. Princeton:
Princeton University Press.

Epstein, J., & Axtell, R. (1996). Growing artificial societies: social science from the bottom up. Cambridge:
MIT Press.

Evans, S. (1982). Settlement models in archaeology. Journal of Anthropological Archaeology, 1, 275–304.
Falconer, S. E., & Savage, S. H. (1995). Heartlands and hinterlands: alternative trajectories of early urbani-

zation in Mesopotamia and the Southern Levant. American Antiquity, 69(1), 37–58.
Fontenari, S., Franceschetti, S., Sorrentino, D., Mussi, F., Pasolli, M., Napolitano, M., & Flor, R. (2005).

r.walk. GRASS GIS.
Guichard, M. (2009). Suduhum, un royaume d’Ida-Mara et ses rois Yatar-malik, Hammi-kun et Amud-pa-El.

In: E. Cancik-Kirschbaum, & N. Ziegler (Eds.), Entre les fleuves 1: Untersuchungen zur historischen
Geographie Obermesopota- 72 miens im 2. Jahrtausend v. Chr (pp. 75–120). Berliner Beiträge zum
Vorderen Orient 20. Gladbeck: PeWe-Verlag.

Hamblin, W. J. (2006). Warfare in the ancient Near East to 1600 BC: Holy warriors at the dawn of history.
New York: Routledge.

Harris, B., & Wilson, A. G. (1978). Equilibrium values and dynamics of attractiveness terms in production-
constrained spatial interaction models. Environment and Planning A, 10, 371–388.

Java Apache Commons Mathematics Library. (2014). http://commons.apache.org/proper/commons-math/.
Accessed 05 July 2014.

Johnson, G. A. (1980). Rank-size convexity and system integration: a view from archaeology. Economic
Geography, 56, 234–247.

Knappett, C., Evans, T., & Rivers, R. (2008). Modelling maritime interaction in the Aegean Bronze Age.
Antiquity, 82, 1009–1024.

Kohler, T. A., & Varien, M. D. (2010). A scale model of seven hundred years of farming settlements in
Southwestern Colorado. In M. S. Bandy & K. R. Fox (Eds.), Becoming villagers: comparing early village
societies (pp. 37–61). Tucson: University of Arizona Press.

Kohler, T. A., Varien, M. D., Wright, A., & Kuckelman, K. A. (2008). New archaeological research and
computer simulation suggest why ancestral Puebloans deserted the northern Southwest United States.
American Scientist, 96, 146–153.

McNeil, W. H. (2000). Information and transportation nets in world history. In R. A. Denemark, J. Friedman,
B. K. Gills, & G. Modelski (Eds.),World system history: the social science of long-term change (pp. 201–
215). London: Routledge.

North, M. J., & Macal, C. M. (2007). Managing business complexity: discovering strategic solutions with
agent-based modeling and simulation. Oxford: Oxford University Press.

Nystuen, J. D., & Dacey, M. F. (1961). A graph theory interpretation of nodal regions. Papers and
Proceedings of the Regional Science Association, 7, 29–42.

Persson, K. G. (2010). An economic history of Europe: knowledge, institutions and growth, 600 to the present.
Cambridge: Cambridge University Press.

R Project. (2014). http://www.r-project.org. Accessed 05 July 2014.
Radner, K. (2006). Provinz. C. Assyrien. Reallexikon der Assyriologie und Vorderasiatischen Archäologie, 11/

1–2, 42–68.
Radner, K. (2011). The Assur-Nineveh-Arbela Triangle: Central Assyria in the Neo-Assyrian period. In: P.

Miglus, & S. Mühl, S. (Eds.), Between the cultures: the Central Tigris Region in Mesopotamia from the
3rd to the 1st Millennium BC (pp. 321–329). Heidelberger Studien zum Alten Orient 14. Heidelberg:
Heidelberger Orient Verlag.

Repast Simphony. (2014). http://repast.sourceforge.net. Accessed 05 July 2014.
Savage, S. H. (1997). Assessing departures from log-normality in the rank-size rule. Journal of Archaeological

Science, 24, 233–244.
Ur, J. (2003). CORONA satellite photography and ancient road networks: a Northern Mesopotamian case

study. Antiquity, 77, 102–115.
Ur, J. (2010). Cycles of civilization in northern Mesopotamia, 4400–2000 BC. Journal of Archaeological

Research, 18(4), 387–431.
Van der Mieroop, M. (1999). The ancient Mesopotamian city. New York: Oxford University Press.

Altaweel



Wilkinson, T. J. (1994). The structure and dynamics of dry-farming states in Upper Mesopotamia. Current
Anthropology, 35(5), 483–520.

Wilkinson, T. J., & Tucker, D. J. (1995). Settlement development in the North Jazira, Iraq. Warminster: Aris &
Phillips.

Wilkinson, T. J., Wilkinson, E. B., Ur, J., & Altaweel, M. (2005). Landscape and settlement in the Neo-
Assyrian empire. Bulletin of the American Schools of Oriental Research, 340, 23–56.

Wilkinson, T. J., Christiansen, J. H., Ur, J., Widell, M., & Altaweel, M. (2007). Urbanization within a dynamic
environment: modeling Bronze Age communities in Upper Mesopotamia. American Anthropologist,
109(1), 52–68.

Wilson, A. G. (1970). Entropy in urban and regional modelling. London: Pion.
Wilson, A. G. (2008). Boltzmann, Lotka and Volterra and spatial structural evolution: an integrated method-

ology for some dynamical systems. Journal of the Royal Society Interface, 8, 865–871.
Wilson, A.G. (2012). Geographic modeling for archaeology and history: two case studies. Advances in

Complex Systems, 15(1–2). DOI:10.1142/S0219525911003384
Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Harvard University Press.

Settlement Dynamics and Hierarchy


