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Abstract

Recent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure
initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a
common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic
mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three
classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally
induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we
illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although
all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised
processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-
specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a
clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of
the previously conflicting experimental and clinical findings.

Citation: Wang Y, Goodfellow M, Taylor PN, Baier G (2014) Dynamic Mechanisms of Neocortical Focal Seizure Onset. PLoS Comput Biol 10(8): e1003787. doi:10.
1371/journal.pcbi.1003787

Editor: Bard Ermentrout, University of Pittsburgh, United States of America

Received September 28, 2013; Accepted June 23, 2014; Published August 14, 2014

Copyright: � 2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Doctoral Training Centre in Systems Biology (University of Manchester), the Biotechnology and Biological Sciences
Research Council, and the Engineering and Physical Sciences Research Council. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: g.baier@ucl.ac.uk

Introduction

Neocortical focal seizures are episodes of pathological brain

activity that appear to originate from spatially localised regions of

the neocortex. The classical understanding of such seizures is that

localised pathological tissue generates epileptic discharges (epilep-

togenic zone [1]), which subsequently recruit connected tissue,

resulting in an epileptic seizure. Hence, the removal of the

epileptogenic zone would result in seizure freedom [1]. Such a

view is particularly applicable to focal epilepsy patients with e.g.

cortical dysplasia, where a clearly localised anatomical abnormal-

ity of the cortex is present.

However, the classical understanding of neocortical focal

seizures has not remained unchallenged, especially when treating

patients without any clearly localised anatomical abnormalities.

For instance, it is proposed that instead of a localised region of

pathological tissue, an epileptogenic network [2–4] could underlie

the generation of focal seizures. The spatial extent, and the

participating regions of such a network are not yet clearly

identified. Some indication is provided by the work of Stead et al.
(2010) and Schevon et al. (2008), who report the recording of

highly spatially localised epileptiform activity on the scale of

cortical columns [4,5]. Such electrographic activities, termed

‘‘microseizures’’ [4,5], were recorded more frequently and for

longer durations near the seizure onset zone [4]. Interestingly

microseizures were also observed in non-epileptic control subjects,

albeit in fewer locations and occurring less frequently than in

epilepsy patients [4]. The authors hence proposed the hypothesis

that ‘‘pathological microdomains’’ (i.e. microdomains that are able

to generate and sustain isolated epileptiform hyperactivity states)

might be found in healthy brains without leading to seizure onset.

However, when occurring with sufficient density in one spatial

area, they can form an epileptogenic network causing focal seizure

onset from that area.

An alternative mechanism underlying (focal) seizure onset is

proposed on the macroscopic scale. Badawy et al. (2009)

demonstrated that the motor threshold of drug naive focal epilepsy

patients decreased up to 24 h before a seizure on the ipsilateral

side to the seizure focus [6]. A similar study using patients with

mesial temporal lobe epilepsy also hints at an elevated motor

cortex excitability preceding the seizure onset [7]. Hence, a

change in overall cortical excitability has been suggested as a

mechanism for focal seizure onset [8,9]. This hypothesis is in line

with the long-standing concept that seizures are a consequence of

changing excitability of the brain [10]. However, the mechanism

by which this general increased excitability over large parts of the

cortex leads to focal onset dynamics is not specified.

An essential point of recent debate that is not explicit in either of

the above suggestions of focal seizure onset mechanisms concerns

the mechanisms of seizure recruitment and propagation. Based on

the observation of single unit activity in human focal onset

seizures, Truccolo et al. (2011) proposed that the recruitment

process is ‘‘highly heterogeneous, not hypersynchronous, suggest-

ing complex interactions among different neuronal groups even at

the spatial scale of small cortical patches’’ [11]. In contrast,

Schevon et al. (2012) suggests that seizure propagation is a
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well-structured process, where the recruitment progresses as a

smooth wavefront. Recruited tissues show a synchronous firing

activity that is phase locked to the local field potential.

It becomes clear that focal seizure onset and recruitment is still

far from understood, and that prevailing hypotheses and

observations lack a unifying framework in which they can be

tested and analysed. In order to achieve this, we turn to

mathematical models of cortical spatio-temporal dynamics.

Traditionally, two types of models have been used: (i) Continuum

models (e.g. [12,13]) or neural field models (see [14,15] for

reviews) treat cortical tissue as a homogeneous continuous

medium. The spatial extent often ranges from a few millimetres

to a few centimetres [16,17]. Pattern formation and travelling

waves of activity have been studied extensively in these systems

(see [18,19] for reviews). Such spatio-temporal patterns have been

related to epileptic activity. For example [17,20] model the

recruitment and propagation of a focal onset seizure as a

propagating wave over a continuous medium. (ii) Network models

treat the cortex as a connected network of cortical units (nodes),

where often nearest neighbour, random, small-world or hierar-

chical connectivities are used. Depending on the definition of the

network nodes, these models are used across all scales from local

populations of neurons [21] to the whole brain level [22,23].

Network based models have investigated how network structures

impact seizure synchronisation dynamics [23–25], seizure fre-

quency [26], or the spread of seizure activity from an epileptic

focus [27,28]. To specifically model the mesoscopic epileptic

dynamics of extended cortical tissue, [29] suggests arranging

coupled units of neural mass models (see [30] for review) as a

sheet. Similarly, [31,32] arrange neural mass models according to

the tessellated surface of the brain and coupled neighbours to

simulate scalp and intracerebral dynamics of focal seizures. Such

an approach, although technically a network approach, can

approximate the behaviour of continuum models (compare [29]

and [20]). Recently, [33] also relates a network of mass models to

an equivalent field model directly.

However, the connectivity in realistic cortical tissue appears to

require a combination of both continuum and network approaches.

Connections to nearby neighbours are very dense [34], such that it

approaches the continuum case. Nevertheless structured long-range

connections can form a complex network that is best described by a

networks approach [35]. Hence, to describe the mesoscopic scale of

the cortex, combinations of both network and continuum

approaches have also been suggested, e.g. including heterogeneous

long-range connections in neural field models (see for example [36–

39]). Starting from a network perspective, Voges et al. (2010)

propose to use a network model that includes dense local

connections, approximating the continuum case, and incorporate

remote excitatory connections that bridge distances of several

millimetres [35]. The remote connections are furthermore struc-

tured and tend to target remote clusters or patches.

In this work, we advance upon previous spatio-temporal

network models of cortical tissue on the mesoscopic scale and

use a dense array of cortical units (cortical columns) that reflect the

activity of local neuronal populations. For connectivity between

the units we use the suggestion in [35] and incorporate dense local

connections as well as patchy remote connections. This model has

the advantage of combining both types of modelling approaches

and thereby we create a spatially hierarchical model to study

multi-scale dynamics.

Using this model, we investigate the dynamical mechanisms

leading to the observation of focal onset seizure activity. We find

that three different classes of dynamical mechanisms are compat-

ible with a focal onset of an abnormal rhythm. Each of these

classes show particular distinguishing features in terms of their

dynamics and response to stimulation. Furthermore, they suggest

alternative treatment strategies that could provide the basis to

improve treatment options for patients in the future.

Model

Model of a cortical mini-column
We commence by defining the smallest unit in our model: the

cortical minicolumn. This choice is based on the highest spatial

resolution of the clinical observations with which we compare the

model output. To reflect the electric activity of a minicolumn, we

use an established model of excitatory and inhibitory neural

population activity: the Wilson-Cowan model [40].

This model expresses the percentage firing activity in an

excitatory (E) and an inhibitory (I ) neural population over time. It

assumes that the E and I populations are coupled to each other

and that the inputs to a target population sum together and

influence the firing activity of this population. We use such a

coupled E { I unit to represent a single cortical minicolumn (see

Fig. 1).

The equations for our E { I model are:

tE
: dE

dt
~ {EzSigm(CE?E

:EzCI?E
:IzPzAs

:S(t))

tI
: dI

dt
~ {IzSigm(CE?I

:EzCI?I
:IzQ),

ð1Þ

where E is the fractional firing activity in the excitatory

population; I is the fractional firing activity in the inhibitory

population; P and Q denote the basal activity level of the

excitatory and inhibitory populations, respectively; S( t) is the

noise input to the excitatory population (e.g. subcortical input)

with As as the coupling strength of the noise input; and the

connectivity constants Ci ? j (with i, j~ E or I ) regulate the

coupling strength between the populations.

Sigm( :::) is a sigmoid function, which derives from a distribu-

tion of firing thresholds in the underlying neural population [40].

Author Summary

According to the WHO fact sheet, epilepsy is a neurolog-
ical disorder affecting about 50 million people worldwide.
Even today 30% of epilepsy patients do not respond well
to drug therapies. Neocortical focal epilepsy is a particular
type of epilepsy in which drug treatments fail and surgical
success rate is low. Hence, research is essential to improve
the treatment of this type of epilepsy. Recent advances in
brain recording methods have led to new observations
regarding the nature of neocortical focal epilepsy. How-
ever, some of the observations appear to be contradictory.
Here, we develop a computational modelling framework
that can explain the different observations as different
aspects of possible mechanisms that can all lead to seizure
onset. Specifically, we classify three main conditions under
which focal seizure onset can happen. This classification is
clinically important, as our model predicts different
treatment strategies for each class. We conclude that focal
seizures are diverse, not only in their electrographic
appearance and aetiology, but also in their onset
mechanism. Combined multiscale recordings as well as
stimulation studies are required to elucidate the onset
mechanism in each patient. Our work provides the first
classification of possible onset mechanism.

Mechanisms of Focal Seizure Onset
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It is defined as Sigm( x) ~
1

1z exp( { a( x { h ) )
, where a

is the steepness of the sigmoid and h is the offset (in x) of the

sigmoid. We fix the sigmoid parameters (a~ 1, h ~ 4) following

previous work [41], as variations in the other parameters

P, Q, C effectively result in a change of the sigmoid shape.

The Wilson-Cowan model has been subject to extensive studies

in the last decades [42–44]. The slightly simplified version in Eqn.

1 (see also [45]) was shown to maintain the same bifurcation

structures as the original model [41]. The simplification removed

the bracket of ( k { rE) (or ( k { rI) ) that the sigmoid was

multiplied by in the original equations. Mathematically, the term

has little impact on the dynamics. It is essentially rescaling the

phase space and parameter space.

Model of a cortical sheet
In order to model cortical tissue, we connect an array of

minicolumn units to form a cortical sheet (also referred to simply

as a sheet). We also refer to each of these minicolumn units simply

as units. This formulation assumes an effectively two dimensional

structure for the cortex. In reality, there is interplay between the

three dimensional cortex, subcortical structures and other brain

regions. However by making the simplifying assumption above,

these influences in brain dynamics are absorbed into the intrinsic

parameters of a minicolumn. Similar approaches of modelling the

cortex as a 2D sheet can be seen in [12,15,29,46,47].

As an approximation we assume all minicolumns to be

50m m | 50m m in size [48]. A macrocolumn is then formed

by 10 | 10 minicolumns, which agrees with the size suggested

in [49]. Furthermore we investigate cortical sheets with 150 | 150
minicolumn units (i.e. 7:5mm | 7:5mm, or 15 | 15 macrocol-

umns). Thus E, I , P, Q and S in Eqn. 1 become vectors of the

length 1502 ; and the connectivities Ci ? j become matrices of the

dimension 1502 | 1502 . We limited the size of the sheet to 150
minicolumns in length, as we assume the mean activity of such a

sheet reflects the signal recorded on a single ECoG electrode.

Each excitatory population is additionally driven by noise

(S( t) ) representing input from other unmodelled regions, e.g.

subcortical input. The noise is the same within each macrocolumn

in agreement with experimental findings and the definition of

macrocolumns [48,50]. We used noise values drawn from a

standard normal distribution as input. The effective noise coupling

strength is set to As~ 1. In this setting the system is not entirely

dominated by the noise input but the noise influences the

deterministic dynamics. Simulations of the system used a fixed step

solver, with a stepsize of 2 ms. Qualitatively equivalent results are

found for smaller stepsizes. Fig. 1 schematically summarises the model.

Connectivity
In the model we use three types of connections between

minicolumns, based on the cortical connectivity suggested by

Voges et al. (2010) [35]. All choices for parameters of the

connectivity are also based on [35], where they are derived from

tract tracing experiments in human cortical tissue.

(I) The first type consists of local excitatory connections, where

each excitatory population of a minicolumn unit connects to the

excitatory populations of neighbouring units in its immediate

proximity (Fig. 2 (a), top). Here, each unit has a probability to

connect to its neighbours that follows a Gaussian fall-off with

distance. The standard deviation s E of the Gaussian is set to

s E~ 250 m m, as within 2 � s ~ 500 m m radius most local

connections are found [35]. We furthermore do not allow for local

excitatory connections beyond a radius 700m m as these are

incorporated into a specific longer range connectivity scheme, as

described below. Fig. 2 (a, bottom) shows an example of one unit

(red) and the neighbouring units (black) is sends local excitatory

connections to. The connectivity matrix for the local excitatory

connections is denoted CE ? EL
, where each connection has the

weight wE ? EL
(subscript L denoting local connections).

(II) The second type of connections is from the excitatory

population of each unit to the inhibitory populations of close

neighbours (Fig. 2 (b), top). We use the same algorithm and

parameters as in (I) to generate these connections. Fig. 2 (b,

bottom) shows an exemplary realisation of local inhibitory

connections from one unit. We refer to the connectivity matrix

for the local inhibitory connections as CE ? IL
, where each

connection has the weight wE ? IL
.

(III) The third type are remote patchy overlapping connections

from each excitatory population to excitatory populations at some

distance (Fig. 2 (c)) [35]. All the parameters are following the

suggestions in [35]. We generate 6 random patches for each

macrocolumn and all minicolumns within the macrocolumn can

connect to these patches with 104 outgoing connections. This

fulfils the suggested average ratio of 6 : 4 of local connections to

remote connections [35]. Each patch consists of 39 minicolumns

(the patch radius is 250m m, i.e. 5 minicolumns radius, i.e.

52 � 3:14 & 39 minicolumns) and is located within * 3:75mm

Figure 1. Schematic illustration of the structure of the model of
a cortical sheet. The cortical sheet consists of an array of
macrocolumns, each containing 10 | 10 minicolumns. Each mini-
column within a macrocolumn is modelled by a Wilson-Cowan E { I
unit (Eqn. 1) and receives the same noise input representing input from
other brain areas.
doi:10.1371/journal.pcbi.1003787.g001

Mechanisms of Focal Seizure Onset
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distance. Macrocolumns share 3 patches with one direct neigh-

bouring macrocolumn, which can increase the distance between

macrocolumn and target patch to more than * 3:75mm. These

parameters are in line with the suggested and experimental values

listed in [35]. The algorithm that generates the remote connec-

tivity matrix is described in Text S1. We call the connectivity

matrix for the remote excitatory connections CE ? ER
, where each

connection has the weight wE ? ER
, (subscript R denoting remote

connections).

The connectivity matrix CE ? E therefore consists of CE ? EL
,

CE ? ER
and the self-excitation value of each excitatory population

on the diagonals (wE ? ES
, subscript S denoting self connection).

Similarly CE ? I consists of CE ? IL
and the connection value of

the E ? I connection within the minicolumn unit on the

diagonals (wE ? IS
). The other C matrices are diagonal matrices

only, as they are exclusively connections within a minicolumn.

Long-range inhibition is not included, following [35].

In order to aid the understanding of the resulting connectivity

being created by the aforementioned rules, Fig. S1 additionally

show the in/out degree and the distance distributions of the local,

as well as remote connections. Text S1 further explains the details

of the connectivity.

A cortical sheet with toroidal boundaries was used in the

construction of the connectivity matrices, following [35], to avoid

boundary cut-off effects caused by lack of basal input due to lack of

neighbours. Text S2 discusses in detail how different boundary

conditions affect the model dynamics and we will show that all our

presented results are not affected qualitatively by the choice of

boundary conditions.

Model parameters
The choice of model parameters for the isolated Wilson-Cowan

unit was based on dynamical reasoning. The dynamics of a single

minicolumn unit (in the following referred to as E { I unit) has

been subject to extensive studies. The invariant dynamic

behaviour in an E { I unit is limited to either a stable fixed

point (node or focus) or a stable limit cycle, and two stable fixed

points (see [41,42] for details). As we are interested in the

transition between fixed point and limit cycle we select model

parameters in the vicinity of the transition to oscillations.

Depending on the combined parameter variation, either a

homoclinic or a Hopf bifurcation occurs. However the single

E { I unit in model is incapable of oscillations, even with

increased constant input P. Text S3 shows details of the current

parameter setting for a single E { I node.

Based on the dynamics of a single E { I unit, the dynamics of

the fully coupled sheet is classified as: (i) fixed point (corresponding

to the lower fixed point in the E { I unit; the spatial average of

the whole system does not show prominent regular oscillations

over time); (ii) oscillation (corresponding to the limit cycle in the

Wilson-Cowan unit; the spatial average of the whole system shows

high amplitude oscillations over time); or (iii) bistability between

fixed point and oscillatory state. Although the coupled Wilson-

Cowan systems are known to show a complicated repertoire of

oscillatory states (in term of regularity and phase relationships

[43]), we do not sub-classify the oscillatory states further. The

epileptic EEG or ECoG has a considerable noise component and

is non-stationary such that a reliable classification from clinical

data is challenging. Also, a theory of spatio-temporal patterns in

Figure 2. The connectivity in our model of a cortical sheet. Top row: schematic illustration of the three connection types (strong green arrow).
The coupled E { I unit represents one cortical minicolumn. The dark grey unit represents a local neighbour and the light grey unit represents a
remote unit. Bottom row: For the same exemplar minicolumn unit (indicated as a red dot) we show the units it projects to (black dots) under the
indicated connectivity.
doi:10.1371/journal.pcbi.1003787.g002

Mechanisms of Focal Seizure Onset
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large heterogenous networks of nonlinearly coupled nonlinear

oscillators is lacking. However, it was shown previously that a

combination of mathematical understanding of a single network

unit and computational studies of the network can lead to

improved understanding of clinically relevant phenomena (e.g. the

generation of oscillatory afterdischarges in epileptogenic cortical

tissue [29].

Seizures in the model
In the clinical setting diverse waveforms can be observed in

electrographic recordings of neocortical focal seizures. However,

we seek a simplification of this situation in our model, which

captures some essence of abnormal dynamics during seizures. We

therefore focus on the existence of high-amplitude oscillations in

the model output as representative of seizure activity, in contrast to

a low-firing state, which is representative of ‘‘background’’ or

inter-ictal activity. This idea follows previous modelling studies (for

example [51–53] and references therein). The approach is further

supported by the suggested clinical definition [54] of a seizure state

as oscillations in unit firing, which are phase locked to high

amplitude local field potential oscillations. The background state is

characterised by irregular firing patterns, which do not correlate

with any oscillations in the local field potential.

In a single unit, we shall hence identify the background with the

fixed point. As the Wilson Cowan oscillator only has one limit

cycle representing synchronous rhythmic firing activity on the

local population level, we shall identify this limit cycle with the

local seizure state. Our model is additionally capable of a third

state: the permanently firing state (referred to as ‘‘upper fixed

point’’ in the Wilson-Cowan model). This state is not identified

with any clinically observable state, and we hypothesise that the

parameter settings required to reach this third state do not play a

functional role during focal-seizure onset.

In the simulated coupled sheet, we understand high-amplitude

synchronous (plus minus phase shift) oscillations in firing and LFP

over several connected units as the seizure core [54]. Hence, full

recruitment will be understood if the whole sheet is in such a state,

where all units are in a synchronous oscillatory state. Text S5

describes how we detect these full recruitments or localised non-

recruiting seizure cores for each figure. Other types of oscillations

(e.g. non-synchronous low amplitude oscillations, which could

represent non-pathological oscillations) on the full-sheet level were

not specifically identified or analysed.

The matlab code for the model is published online (ModelDB

Accession number: 155565).

Results

In a first step we focus on the mean-field dynamics of the model

and how they vary due to changes in parameters. In subsequent

sections we use this insight to investigate the spatio-temporal

mechanisms by which focal onset seizures can occur. For each

mechanism we summarise how it can be distinguished from other

mechanisms, how they relate to clinical and experimental

observations, and which treatment strategies could be effective.

Mean-field dynamics
To chart the dynamics of the model cortical sheet with respect

to parameter changes, we focus initially on spatially homogeneous

variations in the four parameters highlighted with red frames in

the schematic in Fig. 3, i.e. P, Q, CE ? EL
and CE ? IL

. Fig. 3

demonstrates that there are large regions of parameters for which

the system resides in the background state (black regions in Fig. 3),

or oscillatory state (dark blue regions in Fig. 3). Additionally, in

some parameter regions the oscillatory state can be found to be

bistable to the background state (light blue regions in Fig. 3). A

consequence of this is that a system in this parameter region can

exhibit either background or oscillatory dynamics under the same

parameter conditions. The transition from background to oscilla-

tory activity is dependent upon all four scanned parameters.

Pairwise scans of additional model parameters can be found in

Text S4, which demonstrates that combinations of other

parameters also give rise to background, oscillatory or bistable

dynamics.

From the dynamical systems perspective it is often assumed that

the epileptic brain resides in a parameter setting close to the onset

of oscillations [51]. Hence, we selected one standard parameter set

for our model in line with this idea, as indicated in Fig. 3 (a) and

(b) by a red dot. This standard parameter set serves as our model

interictal state, or monostable background state. Dynamically, the

interictal state is a node and excitability can be detect for a range

of stimuli in this state (data not shown). For an exemplary

parameter change (red arrow in Fig. 3 (a)) we have also analysed

the transitions in detail in a noise-free system. The monostable

background state is the only stable fixed point in our system at

P~ { 3, Q~ { 5. The onset of bistable high-amplitude

oscillations occurs suddenly at P~ { 2:4. At the transition to

monostable oscillations (at about P~ { 0:6), the background

node ceases to exist and the oscillatory state becomes the only

stable state. When changing Q, � wE ? EL
, � wE ? IL

from the

standard interictal parameter setting, similar transitions occur,

only the background node remains stable and does not cease to

exist.

Having demonstrated the effect of global parameter changes on

the mean-field dynamics of the model, we proceed to examine the

different ways in which transitions to seizure activity can occur

spatio-temporally.

Class I: Globally induced focal-onset rhythm
The parameter scans in the previous section imply that a slow

parameter change that crosses from the background to the

oscillatory region can induce a transition from background to

seizure dynamics on the mean-field. An example of such a

parameter ramp over time is indicated by the arrow in Fig. 3 (a)

and in Fig. 4 (a). This suggestion follows a traditional modelling

approach of seizures induced by bifurcations (see for example

[55,56], also c.f. [57]). In simulations of this scenario the onset of

the abnormal rhythm is approximately simultaneous in all spatial

locations, as the corresponding parameter P is modified simulta-

neously in all units across the sheet. In our case, the transition

occurs at about P~ { 0:6 as a bifurcation from a node to an

oscillatory state, where the onset of oscillation frequency and

amplitude is sudden and discontinuous, and the node ceases to

exist.

Using such a transition, we sought to establish whether the

model can produce focal onset dynamics. Typically cortical tissue

is not globally homogeneous. We therefore consider the impact of

a locally altered region of model cortex, which is realised by

assuming a local parameter heterogeneity in the model. We specify

a patch in the middle of the model cortical sheet that receives

increased feed-forward excitation. This heterogeneity is not

visually detectable in the interictal state (see Fig. 4 (c), first panel).

However, in a simulation with a parameter ramp as shown in

Fig. 4 (a), the heterogeneous region displays an earlier response

(Fig. 4 (c)). Dynamically, the earlier ignition of activity in the

heterogeneity is due to the introduced difference in feed-forward

excitation, which lowers the threshold beyond which oscillatory

dynamics can ensue.

Mechanisms of Focal Seizure Onset
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Dynamical onset mechanism. In this class of onset

mechanism, the seizure onset is caused by a global parameter

change in an extended piece of tissue. The global parameter

change results in a bifurcation to global oscillatory dynamics in the

mean-field. The focal onset is a consequence of an otherwise silent

local tissue heterogeneity. The heterogeneity itself only reflects the

global change first, but does not cause the transition. We refer to

this mechanism as globally induced focal onset seizures.
Nature of the focus. The local tissue heterogeneity does not

show abnormal background dynamics. Being closer to the

oscillatory region in parameter space it could show enhanced

response to stimulation compared to its surrounding in the

interictal state. It could be detected by spatially resolved single

pulse stimulation, for instance as showing larger amplitude responses

or prolonged oscillatory transients, in agreement with [58].

Distinguishing features and propagation pattern. Following

the focal onset the overall propagation pattern is not necessarily

organised as a wavefront but can appear fairly heterogeneous

depending on the sequence in which different parts of the tissue are

ignited.

Clinical relevance. Our model predicts that in this class of

onset mechanism, removal of the locally heterogeneous patch does

not prevent the remaining model tissue from entering the seizure

state. Resection of the apparent focus will only lead to an apparent

focal onset from another region, e.g. a second region with

increased susceptibility. A ‘‘secondary’’ seizure focus is indeed

observed in some patients with focal seizures after surgery. The

concept of secondary foci has been proposed by [1] in the context

of coexisting seizure onset zones with different thresholds,

although not explicitly conceptualised in the context of spatio-

temporal dynamics. The global parameter shift required by this

onset mechanism could potentially be observed via active

stimulation. For instance Badawy et. al (2009) [6] show that the

motor threshold decreases before seizure onset, indicating a

change on the whole-brain level on a time scale of minutes to

hours. Thus the risk of an imminent seizure could be assessed by

monitoring response to active stimulation, e.g. the transcranial

magnetic stimulation threshold [8,9]. Our model also confirms

that a global decrease in threshold can be detected by stimulation

(Text S6, and Fig. S7).

Predicted responses to treatment. To causally prevent

seizure onset the source of the global parameter shift needs to be

identified and the course of the parameter shift altered. Global

treatment methods which, increase the distance from the seizure

threshold (such as anti-epileptic drugs) are expected to be

successful in this class. A local treatment (e.g. tissue resection)

only prevents seizure onset in the treated area but seizures are

likely to continue, starting from a different part of the cortex. Local

disruption of connectivity will not lead to seizure freedom.

Class II: Globally supported focal-onset rhythm
Next we explore the mechanisms leading to focal onset

rhythmic activity when the whole model cortical sheet is in the

bistable background state. A bistable state has been proposed to

underlie situations in which the transition to abnormal brain

activity is not caused directly by global parameter changes (see e.g.

Figure 3. Mean-field behaviour of the whole system depending on P/Q (a) and feed forward excitation/inhibition wE ? EL
/wE ? IL

(b). Black indicates monostable background. Light blue indicates bistable oscillatory state and background state. Dark blue indicates monostable
oscillatory state, and striped yellow indicates bistable background and upper fixed point. The red dot indicates the standard parameter setting used
for the remaining manuscript, if not mentioned otherwise. Red arrow shows the parameter shift used for Fig. 4. Details of the parameters and the
scan are described in Text S5.
doi:10.1371/journal.pcbi.1003787.g003
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[59]). It was postulated specifically as underlying the transition to

epileptic seizures in the context of generalised [53,60] and focal

seizures [17,28,61].

In order to explore this scenario we prepare the cortical sheet in

a global parameter setting of bistability. If the sheet is initiated in

the background state, it will remain in the background state in the

absence of strong perturbations. To initiate oscillatory activity, the

background state can be disturbed in two possible ways: either by a

short, temporary stimulus or by a persistent stimulus. We shall

explore both perturbations in the following.

Class IIa: Temporary stimulation trigger
We prepared the cortical sheet in the bistable background state

by decreasing the feed-forward inhibition compared to the

interictal parameter setting. Our choice to decrease feed-forward

inhibition is inspired by the suggestion that a failure of inhibitory

restraint [54] contributes to seizure onset. Equally, a change in P,

or other parameters could have been used.

In our model, the bistable background state (dynamically also a

node) does not show any obviously different dynamics compared

to the monostable background state. However, when perturbed

locally by a pulse-stimulus, the whole cortical sheet can transit to

the co-existing oscillatory state. In Fig. 5 (c) and (d) we

demonstrate how this transition unfolds in terms of spatial-

temporal dynamics. After the stimulation, a subset of the

stimulated units transits to the bistable oscillatory regime, which

subsequently recruits neighbouring units into the oscillatory state.

The recruitment in this connectivity parameter setting progresses

as a wave, similar to the observation by Schevon et al. (2012) [54].

The comparison between clinical data and the simulation is

invited in Fig. 5. In both cases the continuous progression of a

wavefront of increased firing activity is observed.

In the current connectivity setting, heterogeneities in the

propagation dynamics can also be observed. This is due to the

heterogeneously created remote projections, which can support

the activation of tissue at some distance from the primary

recruitment site. A purely local connectivity creates an even

propagation front (Text S7A, and Fig. S8 (a)), and a purely remote

connectivity gives rise to stochastic patchy propagation (Text S7A,

and Fig. S8 (b)). A mixture of propagation behaviours between

these two extremes can be observed when a connectivity scheme

that combines both features is used (as in Fig. 5 (d)).

To demonstrate that these findings are repeatable and reliable

despite the noise input to the system, we scanned the recruitment

speed after a (fixed) pulse stimulus for different values of P and

wE ? EL
in and around the bistable parameter setting. Averaged

over 5 trials using different noise input, little variation in

recruitment speed due to noise was found for a fixed parameter

set. However, recruitment speed did vary with the parameter

settings (see Text S7B for details).

The stimulus size was also found to influence the recruitment,

and a minimal stimulus size was found to exist depending on the

parameter setting (Text S8A and Fig. S11). This means that a

critical number of units have to be stimulated to induce the

Figure 4. Input parameter P ramped homogeneously in all units, inducing focal onset of abnormal activity. (a) Ramp of P in all units
over time. (b) Resulting dynamics of simulated LFP shown as the spatial average of macrocolumns. (c) Snapshots in time of the same time series in
(b). In this example, a patch of tissue in the middle (see second snapshot) receives 1.5 times stronger feed forward excitation than the rest of the
sheet. Video S1 shows the temporal evolution of another run of the same simulation conditions. Details of the parameter settings and changes are
described in Text S5.
doi:10.1371/journal.pcbi.1003787.g004
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transition of the sheet to the seizure state, when it is bistable. This

finding is potentially important for the clinical determination of

the spatial extent of pathological stimuli in a patient-specific

context.

Dynamical onset mechanism. In this section we have

introduced a category where seizures are supported by a global

bistability condition and initiated by a local temporary stimulus.

We refer to this as globally supported focal-onset seizures triggered
by local pulse stimulation. No parameter change is required to start

the transition, but the temporal stimulus serves to switch from one

stable attractor in state space to another.

Nature of the focus. The onset of the seizure rhythm is at

the location of the trigger. In the clinical setting, a temporary

trigger could be any (not necessarily pathological) localised input,

which temporarily increases the activity of a patch of tissue (i.e. a

‘‘particular exogenous input’’ [6]). The focal-onset region could

shift and change positions, e.g. when different external inputs

cause the trigger to be in slightly different positions.

Distinguishing features and propagation pattern. In this

category, the global bistability can be explicitly tested in

experimental models, for instance, by local electrical stimulation.

The seizure propagation dynamics in this category can be varied

(ranging from an uniform wave front, to patchy activation).

Clinical relevance. The bistability of the surrounding can be

reached for instance by a parameter change from the monostable

to the bistable parameter region. During the parameter shift, the

observable dynamics remains in the background. Such a global

parameter change without noticeable behavioural or electrograph-

ic change is in agreement with the establishment of the peri-ictal

state as suggested in [6,8]. The peri-ictal state can be detected up

to 24 h before focal onset seizures and is marked by increased

cortical excitability following stimulation, but no seizure events [6].

In such a peri-ictal state, a trigger can elicit a full-recruitment

seizure event. One candidate to be investigated for this kind of

mechanism is reflex epilepsies which are characterised by

precipitated seizures.

Predicted treatment. In this category, any measure to avoid

the local trigger would serve to prevent seizure onset. As the input

is only temporary and is not necessarily pathological (as in the case

of reflex seizures), surgical removal of onset zone might not be

indicated. Preventing the parameter changes leading to global

bistability (e.g. using globally acting anti-epileptic drugs) would be

expected to successfully prevent seizure onset. As shown in our

parameter scans, many different combinations of parameter

changes can lead out of the region of global bistability.

An alternative to drug therapy could be local counter

stimulation in the case of a temporary trigger. If the trigger can

be localised and detected early (in a closed-loop stimulation

protocol), suppression of local seizure onset activity (e.g. by using

high frequency stimulation [62]) can attenuate or prevent

Figure 5. Propagating wave observed after a temporary local stimulus to a bistable sheet. (a) Multiunit firing as recorded in the human
epileptic cortex in different microelectrodes. A propagating wavefront of increased multi-unit activity can be observed. (Reprinted by permission
from Macmillan Publishers Ltd: Nat. Commun. [54], copyright 2012.) (b) Cortical sheet with units that receive a pulse stimulus marked in white. Marker
numbers indicate the units used for the time series in (c). (c) Time series of firing activity of the E population for the four units marked with numbers
in (b). (d) Snapshots of the firing activity of the E population of the sheet at different time points showing a propagating wavefront of recruitment
into the oscillatory state. A video of the temporal evolution is shown in Video S2 (compare with Supplementary Video 5 in [54]). Parameter details are
described in Text S5.
doi:10.1371/journal.pcbi.1003787.g005
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subsequent recruitment and spreading. We demonstrate in Text

S9 that an appropriate counter stimulus delivered at the correct

time after seizure onset can prevent the seizure from spreading.

Finally, it should also be possible at any time during the seizure to

give counter stimuli to abort the rhythm and recover a normal

background dynamics if the bistability persists [61].

Class IIb: Local persistent activity trigger
A perturbation to the model sheet need not be externally

generated, but can arise due to local, abnormal activity generated

within the model. In Fig. 6 we demonstrate that the existence of

an oscillating patch in the sheet can also trigger a transition into

seizure dynamics.

Fig. 6 (d, e) demonstrate that if the parameter setting of the

surrounding sheet is monostable in the background state, the

hyperactive microdomain remains isolated in its epileptic activity

(red trace in Fig. 6 (d)). This agrees with the clinical observation of

spontaneous microseizures that remain spatially localised and do

not recruit surrounding tissue. If, however, the rest of the system is

in a bistable setting, a continued local perturbation by an

oscillatory microdomain can start to recruit the surrounding units

into the seizure state (Fig. 6 (f, g)).

The propagation pattern of recruitment is similar to the case of

recruitment following a pulse stimulation to the bistable sheet.

Depending on the connectivity settings, smooth propagating

waves, patchy propagations, or a mixture of both can be observed.

Text S7B demonstrates that an oscillatory microdomain can

produce recruitment speeds of between * 1 mm=s and

* 100 mm=s, using some example parameter changes in P.

This is within a range of propagation speeds reported experimen-

tally (0.1–100 m/s [63]).

In order to check the robustness of this onset mechanism, we

tested the dependency of recruitment on both the parameter

setting of the surrounding and the size of the pathological

microdomain (see Fig. S12 and Text S8A). We find that for a fixed

bistable parameter setting, a minimum threshold exists for the

Figure 6. Oscillatory microdomain embedded in monostable and bistable surroundings. (a) Clinical microseizure recorded from
microelectrodes (marked in red), which stays spatially isolated. (b) Clinical seizure onset from microelectrodes. Seizure activity builds up in
microelectrodes (red markers) before it spreads to/recruits a larger area. (c) Model microdomain position that has been used (white) embedded in
healthy surroundings (black). Grey dots indicate microelectrode positions used in (d) and (f). Red dot marks the electrode for the red trace in (d) and
(f). (d) Simulated microseizure that does not recruit surrounding tissue. The LFP is plotted for units as marked in (c). The surrounding system is
monostable in the background setting. (e) Corresponding snapshots of the LFP in time for the time series in (d). (f) Simulated build-up of a seizure
from the hyperactive microdomain. The LFP is plotted for units as marked in (c). The surrounding system is in the bistable setting (P~ { 1:9). (g)
Corresponding snapshots of LFP in time for the time series in (f). Images in (a) and (b) are data visualised from [4]. A video of the temporal evolution
of the sheet for (e) and (g) is shown in Video S3 & S4. Parameter P was ramped in the microdomain to the oscillatory state between t~ 0:5 s and
t~ 1:5 s. Parameter details are described in Text S5.
doi:10.1371/journal.pcbi.1003787.g006
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number of units that are required to induce recruitment. When the

parameter setting lies closer to the monostable oscillatory setting,

fewer units are required for recruitment. This behaviour is stable

with different noise inputs and microdomain positions in the

model sheet. This finding is important for the clinical determina-

tion of pathological vs. neutral microdomains in a patient-specific

context.

Dynamical onset mechanism. In this section we have

introduced a category where seizures are supported by a global

bistability condition and initiated by a local hyperactive micro-

domain. We refer to it as globally supported focal-onset seizures
triggered by local oscillations. This class is very similar to class IIa

in many aspects. However, technically, the transition in this class is

not a change of dynamics in a bistable system but a bifurcation

induced by the (local) parameter change. The parameter crosses a

critical value beyond which mono-stable autonomous oscillations

are found. Globally, the background state looses stability in the

presence of a persistent oscillatory drive.

Nature of the focus. The onset of the seizure rhythm is at

the location of the trigger that induces the transition to the seizure

state. In the clinical setting, this could be a local area displaying

abnormal activity over a prolonged period, e.g. detectable as focal

interictal activity or microseizures.

Distinguishing features and propagation pattern. The

main feature is a discoverable local abnormal activity and a

bistable surrounding. The propagation dynamics are as in class

IIa.

Clinical relevance & predicted treatment. The points in

class IIa that we already mentioned still hold in this class.

Additionally, the parameter changes that drive the surrounding to

become bistable, and the parameter changes that create the

abnormal microdomain can be different processes clinically, with

very different causes. Separately, neither might be pathological

[4,8]. Only the co-occurrence of the two processes leads to seizure

onset and evolution. In patients, prevention of either process could

prevent seizures. A single hyperactive microdomain can be

surgically removed. In addition, there is the possibility to destroy

its integrity by, for instance, cutting its connections in a

microdomain using microincisions. This idea is illustrated in the

Text S9. It is further supported by [64].

As the transition is caused dynamically by a bifurcation (in

contrast to class IIa), local temporal pulses will not be able to fully

recover the normal background rhythm for a prolonged time.

Class III: Network induced focal seizure
After demonstrating focal seizure onset in a globally oscillatory

and a globally bistable scenario, we now turn to the case of a

globally monostable background. We shall investigate a system in

the monostable background state except for one or multiple

localised hyperactive microdomains. We examine the spatial

conditions under which these hyperactive patches can recruit their

surrounding, even though globally the oscillatory state neither

exists exclusively (class I) nor coexists (class II) in the absence of

these patches.

Class IIIa: Autonomously oscillating network
We prepare the system in the monostable background state (the

standard interictal parameter set), except for some oscillatory

microdomains. We begin by systematically assessing how the

recruitment from these microdomains depends upon the total

number of hyperactive units and the number of subclusters that

microdomains are organised into. Here a subcluster is a

contiguous patch of units, positioned randomly on the sheet.

Fig. 7 (a) shows that despite the surrounding being in the

monostable background state, partial or full recruitment can be

registered in some configurations. E.g. Fig. 7 (a) demonstrates that

when 2250 units (10% of the whole sheet) are hyperactive, no

recruitment is registered if all the units are organised into one

compact patch (red dot). However if this same number of

hyperactive units are organised into 17 subclusters of equal size,

randomly distributed over the model sheet, noticeable recruitment

can be observed (purple triangle). The recruitment behaviour

additionally depends on the exact parameter of the surrounding.

For example if the exogenous input parameter, P, is set to a value

closer to the global bistability (Psurrounding~ { 2:5, Fig. 7 (a))

recruitment starts at a lower total number of hyperactive units and

with a lower number of subclusters than when using

Psurrounding~ { 2:8, further away from the bistability (Fig. 7

(b)). This recruitment behaviour is stable with regards to the noise

input in our simulation. However, the exact values of the total

number of hyperactive units and the number of clusters vary

slightly with the position of the (sub)clusters (see Fig. S13, Text

S8A).

Fig. 7 (d,f) show example time series from two simulations using

the same number of hyperactive units (2250 units, 10% of the

whole sheet), but different numbers of sub-clusters. In the case of a

single cluster, only a few units are recruited (Fig. 7 (f)). In the case

of many sub-clusters, the whole sheet is recruited (Fig. 7 (d)).

Recruitment can be observed to begin in areas of increased

subcluster density (for example right side of T = 1.6 s in Fig. 7 (d)).

The ‘‘normal’’ monostable tissue between nearby subclusters is

recruited first. In this way, the subclusters that lie in close

proximity recruit the healthy tissue between them to form a bigger

contiguous cluster of oscillatory activity (T = 2 s in Fig. 7 (d)), and

eventually recruit the whole cortical sheet (T = 4 s, T = 10 s in

Fig. 7 (d)).

The recruitment of monostable surrounding tissue in the

background state is not as intuitively understandable as for

instance the case of recruitment of a bistable surround. The scans

in Fig. 7 (a,b) show that the spatial arrangement of ‘‘recruiters’’ is

important. We propose that the basic mechanism is based on the

coherent oscillatory input to units in the background state, which

can incite them to oscillate despite their configuration being

monostable. The parameter change in the microdomains induces

the microdomains to become intrinsically oscillatory. Hence, the

recruitment from microdomains induced by this local parameter

change is a bifurcation from a node to an oscillatory state. The

onset of oscillations, while ramping Pmicrodomain, occurs with a

sudden change in frequency and amplitude. We additionally

address the effect of boundary conditions on this mechanism in

Text S2.

Dynamical onset mechanism. Appearance of autonomous-

ly oscillating patches on a monostable cortical sheet induces a

system-wide bifurcation to the oscillatory state. We refer to this

class of onset mechanism as active microdomain network induced
focal seizures.

Nature of the focus. The focus consists of an assembly of

autonomously oscillating tissue patches. Patches that are in close

proximity to each other can recruit tissue between them from a

monostable background to an oscillatory state. This way, larger

patches form, which in turn are able to recruit tissue between

them. The recruitment eventually leads to formation of a growing

patch of autonomously oscillating tissue. The growth/recruitment

is always between seed patches, which display autonomous

oscillations.

Distinguishing features and propagation pattern. A

clear distinguishing feature of this class is the presence of

hyperactive microdomains. Clinical cases in which microscopic
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localised seizure-like activity is registered, and which develop into

a full-recruitment seizures, are likely to belong in this class. Single

pulse stimuli would not induce recruitment as only the autono-

mous onset of oscillations in microdomains determines if and when

recruitment starts.

The propagation pattern of recruitment is from one active

microdomain to the next, depending on the position of the

microdomains relative to the underlying connectivity. Multiple

‘‘foci’’ could be observed, starting from several dense hyperactive

microdomain regions. These foci would then coalesce to form a

larger continuously recruited area, which might then form for

instance the ictal symptomatogenic zone by the definition of [1].

In the scenario of a strongly connected remote excitation network

and weakly connected local network, the propagation pattern

could be saltatory, advancing from patch to patch, as shown in the

previous class.

Clinical relevance. Micro-seizures, or micro-periodic dis-

charges have been recorded on the human cortex by [4,5,65] and

could represent examples of hyperactive localised domains.

Increased occurrence rates, as well as increased spatial density of

these micro-seizures have been correlated with the seizure onset

zone. Our model observations are in line with those findings. If the

occurrence rates of micro-seizures can be registered for a part of

the cortex around the seizure onset zone (using e.g. high-density

microelectrode arrays), an increased occurrence rate of abnormal

microactivity in a susceptible area could be used as an estimator

for the likelihood of an impending seizure.

Predicted treatment. The drivers of the transition to the

seizure state are the hyperactive microdomains. Hence treatment

can aim to prevent the increased occurrence of microseizures by

identifying and targeting the generating mechanisms. Alternative-

ly, a global parameter change towards decreasing global excitation

Figure 7. Networks of oscillatory microdomains can recruit the monostable background surrounding. (a) Scan of recruitment
depending on the total number of hyperactive units and the number of subclusters they form on the sheet. The surrounding was set in the
monostable state P~ { 2:5. (b) Same scan as in (a), only using P~ { 2:8 for the surrounding. (c) Position of the 15 sub-clusters of hyperactive
units used for (d). (d) Snapshots of the sheet dynamics (fractional firing activity of the E populations). The parameter P in the microdomain is ramped
from the standard value of the surrounding ( { 2:5) to 0 between t~ 0:5 and t~ 1:5. (e) Position of a single cluster of hyperactive units as used in
(f). (f) Snapshots of the sheet dynamics (fractional firing activity of the E populations). Otherwise the simulation followed the same protocol as (d).
Videos of the temporal evolution is shown in Video S5 and S6. Parameter details are described in Text S5.
doi:10.1371/journal.pcbi.1003787.g007
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can also help to increase the threshold for the number of required

hyperactive domains to elicit recruitment (compare Fig. 7 (a) and

(b)). This effect can potentially explain why treatment using anti-

epiletic drugs (AEDs) is successful in some patients with partial

seizures. However this does not remove the cause of the seizure

onset and patients might still be susceptible to some global and

local parameter variations, which are not controlled by the AEDs.

Similar to the class II mechanism, in terms of surgical

interventions, destruction of the integrity of hyperactive micro-

domains (effectively reducing their size) would prevent recruit-

ment. Alternatively the connections between microdomains and

their surrounding could be disrupted to prevent recruitment.

The mechanism of micro-seizure appearance should be further

investigated and patient-specific connectivity of the microdomains

and surrounding local tissue should be assessed to determine the

optimal intervention method.

Class IIIb: Bistable network
We have shown that clusters of autonomous oscillations can

induce recruitment of the whole system to the seizure state. In this

section we investigate additionally whether a system-wide bist-

ability can be induced by localised, bistable clusters of tissue (i.e. a

set of bistable microdomains). The reasoning is that if the network

of microdomains is bistable, specific localised stimuli will be able to

induce localised oscillatory behaviour in the patches, which in turn

would lead to recruitment of the monostable surrounding as in

class IIIa.

For such a scenario, it is required to determine the conditions

under which a local cluster of tissue is bistable. Hence we scan the

size of a microdomain embedded in a monostable background

surrounding versus an exemplary local parameter change

(Pmicrodomain) and determine whether a microdomain patch is

bistable by applying a single-pulse stimulus (Fig. 8 (a)). An

elevation in Pmicrodomain leads to bistability of the microdomain.

Upon further increase of Pmicrodomain, the microdomain becomes

monostable oscillatory. This bifurcation also occurs with a sudden

change in amplitude and frequency. As the patches become

smaller, Pmicrodomain has to be higher to reach bistability (or the

monostable oscillations) in the microdomain. The dependency of

the dynamic behaviour on the size of the microdomain can be

understood if we consider that the oscillatory state in the system

emerges from the coupling of individual units.

Using information from the previous parameter scan, we set up

a monostable sheet and distribute bistable microdomains within it

(Fig. 8 (b)). Such a system remains in the monostable background

state in the absence of perturbations. Multiple single-pulse stimuli

applied randomly at different locations can be used to activate

some bistable patches (Fig. 8 (c)). Some degree of coactivation (i.e.

an active patch subsequently activating a connected silent patch)

can also be observed. Once activated and in high enough density,

the patches can cause recruitment of their non-oscillatory

environment as shown in the previous section. Fig. 8 (c) shows a

time course of multiple stimuli activating silent bistable patches,

which ultimately results in full recruitment of the sheet.

Dynamical onset mechanism. In this class, the recruitment

is a combined effect of some tissue heterogeneity (which is not

observable without perturbations) and some (not necessarily

pathological) stimuli. Hence, we term this class microdomain
network supported focal seizures. Dynamically, the bistable

microdomains introduce a bistability, where targeted perturba-

tions can induce a transition of the whole sheet to the oscillatory

state.

Nature of the focus. Initially, stimuli only activate isolated

bistable patches. These patches can stay activated for a long time

without recruiting their neighbourhood. The seizure recruitment

requires the co-activation of connected microdomains through

successive stimuli. After the co-activation, the recruitment

progresses as in the previous class.

Distinguishing features and propagation pattern. The

propagation pattern in this class is very similar to the previous class

IIIa. The difference is that recruitment only progresses between

activated patches. Silent patches do not aid recruitment, except

when connected neighbours are in the seizure state. Active

stimulation could be able to highlight the location of silent

microdomains clinically, when tested prior to seizure events.

Clinical relevance. This class has implications for clinical

observations of responses of epileptic tissue to stimulation. The

effect of abnormal, localised activation of epileptic tissue following

stimulation is well known as after-discharges [66]. The clinically

observed after-discharges could be compatible with the activation

of subnetworks of bistable patches, i.e. the subset of bistable

patches activated by continued stimulation without recruitment of

the monostable surrounding into a full seizure. This hypothesis

could be tested systematically in experimental models. Clinically, it

would be important to record the spatio-temporal characteristics

of epileptiform afterdischarges with high spatial resolution (e.g.

during presurgical monitoring).

Predicted treatment. Similar to the previous class, destruc-

tion of the integrity of the (silent) microdomains would prevent full

recruitment, as would disconnection of these microdomains.

However, extensive single-pulse stimulation in a setting with high

spatial resolution would be required to identify the locations of the

abnormal microdomains.

As in class IIIa, a global parameter change (towards less

excitation for each unit) can increase the threshold for the number

of required hyperactive domains to elicit recruitment. An

additional possibility in the current class of onset mechanism is

to prevent or counteract the seizure-inducing stimuli.

Finally, we summarise the most important point in all three

classes in Table 1.

Discussion

In this study we used a novel spatio-temporal model of the

dynamics of cortical minicolumns, coupled by multi-scale cortical

connectivity, to categorise possible mechanisms of focal seizure

onset. We showed that in this framework, apparently conflicting

clinical observations regarding focal seizure onset can be

understood and unified. We furthermore suggested how to test

for the different onset categories, and made predictions regarding

possible treatment methods for each category.

The three mechanisms we identified by which a focal seizure

onset can occur are: (I) A global parameter change which induces

a global bifurcation of a piece of cortical tissue to the seizure state.

(II) A global bistability combined with a local trigger leading to

transition to the seizure state. (III) A globally monostable state with

local parameter changes causing recruitment of the whole system.

We expect that either mechanism may dominate the onset of focal

seizures in different patients.

The model employed herein uses the approach of discretised,

coupled spatial units to reflect the activity of a piece of contiguous

cortical tissue. Each unit in the current model is described by

Wilson-Cowan equations, which embody the collective activity of

local excitatory and inhibitory neural populations [40]. Compared

to detailed neuronal models of cortical activity (e.g. [67]), the

Wilson-Cowan model is computationally less demanding and the

number of parameters to analyse is manageable. However the

parameters of the Wilson-Cowan model are more abstract in
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nature. Thus, if for example cellular mechanisms of focal seizure

onset are to be investigated (e.g. [68]), a detailed neuronal model is

required. Similarly, if the detailed laminar and horizontal

interaction between different types of excitatory and inhibitory

populations is of interest, the populations in our model can be

extended. However, in our current study, describing the dynamics

of cortical minicolumns in terms of the lumped activity of generic

excitatory and inhibitory neural populations allowed us to model a

hierarchy of clinically relevant spatial scales by reducing the level

of detail for the analysis.

The classical Wilson-Cowan model has been used to reflect

EEG/ECoG dynamics in the delta to beta range [41,69].

Similarly, we used it here to model seizure oscillations in this

frequency range. Faster or slower dynamics are therefore not

considered in our current approach, although it will be interesting

in future studies to investigate the influence of these aspects, for

example the addition of slower time scales. The incorporation of

additional intrinsic long-term dynamics (e.g. adaptation or

learning) can lead to the creation of additional types of dynamics,

which could also be relevant for clinical question. If the time scale

Figure 8. Bistable microdomains can recruit monostable background surrounding. (a) Microdomain behaviour depending on
microdomain size and its basal excitatory input (Pmicrodomain). P of the surrounding is in this case monostable. Dark (light) blue indicates parameter
regions, where the microdomain is monostable oscillatory (bistable). The grey arrows on the bottom indicate the corresponding parameter regions
for global parameter variations (derived from Fig. 3). (b) Position of the bistable microdomains used in (c). (c) Temporal snapshots of an example time
course, where a sheet with bistable microdomains is perturbed at T = 0,3,6,9,12,15,18 and 21 s with local, arbitrarily placed stimuli. A video of this
simulation is shown in Video S7 Parameter details are described in Text S5.
doi:10.1371/journal.pcbi.1003787.g008

Table 1. Summary of the three classes of onset mechanisms.

Class Global setting Spatial heterogeneity Stimulation Related clinical observations Possible treatment

I Oscillatory Silent interictally,
appears as seizure
focus at onset

- Increased global excitability of
the cortex before seizure
onset [6,8,9]; Secondary foci [1]

Global acting drugs; Identify cause of increased
global excitability.

IIa Bistable - Local temporary
stimulus

Peri-ictal state [6,8];
Reflex epilepsies

Global acting drugs; Identify cause of bistability;
Prevent stimulus; Counter stimulation.

IIb Bistable Oscillatory microdomain - Peri-ictal state [6,8];
Microseizures [4]

Global acting drugs; Identify cause of bistability;
Remove microdomain; Microincisions.

IIIa Monostable
background

Oscillatory microdomains - Microseizures [4,5,65] Global acting drugs to increase seizure threshold;
Remove microdomains; Microincisions through
the microdomain or between microdomains.

IIIb Monostable
background

Bistable microdomains Multiple stimuli Microseizures [4,5,65];
After-discharges [66]

Global acting drugs to increase seizure threshold;
Remove microdomains; Microincisions; Counter stimuli.

doi:10.1371/journal.pcbi.1003787.t001
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separation is sufficient (i.e. intrinsic long-term dynamics are on the

order of seconds or longer) Fenichels theorem [70] indicates that

our presented attractors would remain as manifolds in the full

system with a slower time scale. Hence the slower time scale

dynamics would modulate and orchestrate the transitions between

the stable dynamics presented here. Indeed, the global parameter

configuration (monostable, bistable, and oscillatory) used in our

current model could be fluctuating over time according to some

slow dynamics. It might be that the parameters of the cortex of

patients as well as healthy subjects are constantly changing [8],

putting cortical tissue in different global configurations at different

times. However, in an epileptic patient, either these global

fluctuation are either too extreme leading to a global bifurcation

into the seizure state (class I), or would remain silent if not co-

occuring with a local trigger (class II), or do not affect seizure onset

directly (class III). In patients with stereotypical seizure onset (i.e.

the seizure onset is repeatedly from the same region with a similar

electrographic pattern), the underlying long time-scale dynamics

are either similar from seizure to seizure, or at least giving similar

dynamical conditions. Hence the categories would apply to all

seizures of the same stereotype (in the same patient). Our

classification is hence crucial to determine (patient-specifically)

the exact role of the parameter fluctuation dynamics in seizure

onset. Practically, a constant multi-scale monitoring of the cortical

activity, as well as regular stimulation tests should be carried out to

determine the global and local parameter configuration.

In our model, we equated high amplitude oscillations with a

pathological state in each mini column. This is mainly inspired by

the observation that the seizure core contains highly active

neurons with firing patterns phase locked to the oscillatory LFP

[54]. We believe that in our case, firing activity might provide a

better benchmark for comparison of clinical and simulation data

than LFP, as the generators of the different components of focal

seizure field potentials are largely unknown. Hence, following [54],

we identified high amplitude oscillations in firing as the seizure

state and low level firing as the background state. Additionally, the

approach of identifying oscillations with seizures and fixed points

with background activity is well established in the modelling

literature (see for example [51,55,56,71,72]). It is in line with the

long-standing suggestion of dynamic diseases [73,74], where the

disease state is identified as an oscillatory attractor and the

background state as an non-oscillatory, primarily noise dominated

state. Only very little clinical or theoretical understanding exists

regarding the different waveform morphologies in focal seizures

[75,76] and how seizure onset mechanisms influence them. Weiss

et al. (2013) [77] point out that high frequency oscillations phase

locked to low frequency oscillations at seizure onset could be an

indicator for increased, structured firing in the underlying tissue

and hence an indicator for the seizure core. Future studies should

specifically investigate how focal seizure onset field potential

morphologies arise, as well as how they relate to firing patterns.

Potentially, the knowledge gained by studies of waveform

morphology in purely temporal framework such as [41,71,78]

could be of use.

Each of the onset mechanisms we describe relies on a certain

configuration of global parameters, where global is in reference to

the scale of the model of about one square centimetre of cortex.

However, in reality global parameter changes in the brain will

vary from the whole-brain level to the scale of our current model,

all of which can influence the global parameter configuration in

our model. A range of physiological and pathological conditions

could cause such variations. For example different phases of the

sleep-wake cycle or hormonal variations [8] can change the

excitability of brain. Pathological conditions include misregulation

of excitation and inhibition [10]. If pathological parameters

changes exist in a limited part of the cortex, then the focal seizure

could be limited in its spatial extent. However, if abnormal

dynamics entrain a large region, they could activate other whole-

brain networks (including subcortical networks) leading to

generalised abnormal activity (secondary generalisation).

In this context the model can also resolve the apparent

contradictions in the experimental literature on the mechanisms

of focal seizure onset. The contradiction of focal seizure onset

being a result of global (whole brain network changes) or local

(abnormally behaving cortical columns) mechanisms is no longer a

contradiction in our model. We have shown that global as well as

local mechanisms can interact and we have classified the

interaction in three major categories. Hence, global changes can

cause (class I), or support (class II), or modify (class III) seizure

onset. Equally, local changes can trigger (class II), cause (class IIIa),

or support (class IIIb) focal seizures. It is hence no surprise that

clinical and experimental observations supporting both global as

well as local mechanisms are found. Similarly, the contrasting

observations from [11] and [54] can also be united: it might be

that very near to the ‘‘focus’’ recruitment propagates as a wave

over the local network. However, further away regions are

probably recruited via remote or long-distance connections first

and activation is primarily patchy. Hence, the conflicting

recruitment dynamics described by Truccolo et al. (2011) and

Schevon et al. (2012) is explained in our model by the propagation

of activity via different networks. Interestingly, Schevon et al.
(2012) [54] hypothesised that the ictal penumbra could restrain the

propagation of epileptic activity due to an ‘‘inhibitory veto’’. In

our model of non-recruiting microdomains, we find that the

restraint is not explicitly excessive inhibitory firing activity in the

penumbra. Rather, the net synaptic input into each unit in the

penumbra is not strong enough to entrain them to become

oscillatory.

A question that arises from our study is whether the categories

we established can be generalised to any spatio-temporal system

showing bifurcations or bistabilities between a non-oscillatory

(fixed point) and an oscillatory state. We propose that the detailed

transition dynamics will depend on the specific system. However,

we postulate that the three categories are general features of

spatio-temporal systems showing either a bifurcation or a

bistability between fixed point and oscillation. This is mainly

due to the observation of the three categories in other spatio-

temporal models using different model formalisms as well as

underlying connectivity. For instance [17] essentially show class

IIa in their partial differential equation model. Class I has been

shown in a coupled Amari-type model representing a whole-brain

network [24]. [64] show a class IIIa transition in their rule-based

model of microseizures and recruitment. To our knowledge, class

IIIb has not been demonstrated explicitly so far. We emphasise

that the dynamical classification only becomes useful in the context

of a relevant model, and the interpretation becomes useful when it

is applied to the clinical context, e.g. to search for the cause of the

seizure and to devise potential treatment strategies.

We have outlined major features and the expected observations

of each class of onset mechanism in the Results section. A question

that remains is how one would practically tell the classes and

subclasses apart in a clinical setting. This question is crucial, as

treatment will depend on the individual mechanism of seizure

onset in a patient. We suggest that high resolution spatio-temporal

recordings, similar to [79], combined with local perturbation

studies (similar to [80], but on different spatial scales) might be the

key to answer this question. In the context of local perturbations,

we point out that although we only demonstrated the impact of

Mechanisms of Focal Seizure Onset

PLOS Computational Biology | www.ploscompbiol.org 14 August 2014 | Volume 10 | Issue 8 | e1003787



pulse stimulation in our current study (to essentially reset the

activity of the excitatory population), practically the effect of

different types of stimulation has to be assessed prior to its usage

for the classification of the seizure onset.

In this context, we recommend the development of patient-

specific models to classify the dynamic seizure onset mechanism.

This would involve incorporating the patient-specific connectivity

of the affected cortical area (e.g elucidated from high resolution

track density imaging [81–83]), as well as online parameter fitting

according to passive and active high-resolution spatio-temporal

recordings. This could enable the use of closed loop counter-

stimulation devices (as demonstrated in Fig. S15). Additionally,

such patient-specific models can be employed to predict optimal

treatment protocols, for example minimal cortical micro-incisions

to stop the recruitment of tissue into full seizures (see Fig. S16 and

[84]).

In the case of a global shift of parameters (affecting larger brain

regions) causing or facilitating seizure initiation and recruitment, it

is probably desirable to target the reason for the global shift

directly rather than trying to suppress seizure onset locally. In fact

class I onset demonstrates that although one particular cortical

location appears to be the source of seizure initiation (epilepto-

genic zone), the mechanism causing the seizure can be a global

parameter shift in an extended tissue. The ‘‘epileptogenic zone’’

only reacts first due to its increased local threshold. Then, despite

reducing or removing the local activity in the seizure onset zone,

the seizure still starts, albeit from a different ‘‘most active’’ site.

This concept of the existence of alternative foci has been proposed

from clinical reasoning [1,3] to explain why some surgical

resections of epileptogenic zones have little effect.

Conceptually, we hence propose to distinguish between global

or generalised causes of focal seizures, which induce the seizure by

a global parameter shift - and local or focal causes of seizure,

which can be facilitated by global bistability settings. The spatial

extent of the cause of the seizure, however, can differ greatly from

the spatial extent of the observed seizure onset. The traditional

concepts of the epileptogenic zone and the seizure onset zone do

not fully account for this. The understanding and treatment, of

focal-onset seizures might benefit from further clinical and

computational studies of seizure onset mechanisms on multiple

spatial scales.

Supporting Information

Figure S1 Degree and distance distribution of the
connectivity in our model. (a–c) In degree distribution of

the three connectivities. (d–f) Out degree distribution of the three

connectivities. (g–i) Distance distributions of the three connectiv-

ities. Y-axis always indicates the count number.

(TIF)

Figure S2 Recruitment on a monostable sheet using
zero-flux boundary conditions. In this scan

Psurrounding~ { 2:5 was set in the monostable state. All

simulations and scans performed on a system with zero-flux

boundaries (ZFB). This figure is the equivalent of Fig. 7 using

ZFB. (a) Scan of average percentage of recruitment with respect to

the total number of hyperactive units and the number of

subclusters these are grouped in. (b) Location of the hyperactive

units for (c) and (d), respectively. (c) Snapshots in time using one

cluster of hyperactive units. Minimal recruitment (4.4%) can be

observed. (d) Snapshots in time using 25 clusters of hyperactive

units. Recruitment (70%) can be observed for regions between the

clusters.

(TIF)

Figure S3 Oscillation amplitude of a single E-I unit.
Oscillation amplitude is indicated as a colour-code for different

values of P and � wE ? EL. Black indicates the background fixed

point. The grey region additionally shows the parameter region for

where an upper fixed point exists. The current setting of the single

unit is indicated with the red dot.

(TIF)

Figure S4 Single E-I unit phase space. � wE ? ESelf
~ 10 for

all plots. Increases in P changes the lower fixed point node to a

focus (via a saddle-focus and a saddle-node bifurcation) between

P~ 0 and P~ 1. No limit cycles are found with increasing P.

(TIF)

Figure S5 Bifurcation behaviour of the full system in
self excitation and inhibition. Black indicates monostable

background. Light blue indicates bistable oscillatory state and

background state. Striped yellow indicates bistable background

and upper fixed point. Red dot marks the interictal standard

parameter position used throughout the manuscript.

(TIF)

Figure S6 Input pulse vs. initial condition reset pulse.
Pall~ { 2 has been used for all simulations, putting the sheet in

the bistable regime. (a) Stimulus position on the simulated cortical

sheet. This is used for both types of stimuli. (b) The input pulse

used to simulate input stimulation (c) and (d). (c) Time series of the

average macrocolumn excitatory populations for an input pulse

given at T = 1 s. (d) Corresponding snapshots in time for (c). (e)

Time series of the average macrocolumn excitatory populations

for an initial condition reset to 1 at T = 1 s. (f) Corresponding

snapshots in time for (e).

(TIF)

Figure S7 Simulating the changing motor threshold in
the lead-up to a seizure. The seizure (see (a,b) for time series)

has been induced using a global parameter ramp in P(c). The

measured motor threshold in the model is shown in (d).

(TIF)

Figure S8 Example propagation patterns using local or
remote connections. Snapshot of the sheet at different time

points for strong local connection weights, weak remote connec-

tion weights (top), and strong remote connection weights and weak

local connection weight (bottom). A mixture between both

dynamics can be seen in Fig. 5 (d) of the main manuscript.

(TIF)

Figure S9 Recruitment dynamics for different local and
remote feed-forward connection weights. (a) Number of

recruited units 5 s after stimulus, depending on the remote and

local connection strength. (b) Time required to recruit half of the

final recruitment number as shown in (a).

(TIF)

Figure S10 Percentage of recruitment over time and
different conditions of the surrounding. (a) For different

values of P, recruitment (colour code) following a single pulse

stimulus was measured every 0.3 s. (b) For different values of P,

recruitment (colour code) from a hyperactive microdomain was

measured every 0.3 s. (c) For different values of wE ? EL
,

recruitment (colour code) following a single pulse stimulus was

measured every 0.3 s. (d) For different values of wE ? EL
,

recruitment (colour code) from a hyperactive microdomain was

measured every 0.3 s. The stimulus location and the location of

the hyperactive microdomain were identical in all scans. Each scan

point is obtained as the average over 5 different noise inputs.

(TIF)
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Figure S11 Recruitment depending on P and number of
units being stimulated. In this scan the stimulus was to

contiguous patches on the sheet. (a) Scan result obtained by

averaging over different noise inputs, 5 for each of the 5

stimulation positions. The 5 positions were chosen at random.

Colour code indicates percentage of recruited units relative to the

total number of units. 1 on the colour bar indicated 100%

recruitment. (b) The maximum difference in terms of recruitment

between different microdomain positions of the same setting

(averaged over 5 different noise inputs for each position). (c)

The maximum difference in terms of recruitment of the

surrounding between the 25 different noise inputs of the same

setting, off-setted against the already registered effect of the

microdomain position.

(TIF)

Figure S12 Recruitment depending on Psurrounding and
number of units in the hyperactive microdomain. In this

scan only one continuous microdomain was used. (a) The scan

result is obtained by averaging over different noise inputs, 5 for

each of the 5 microdomain positions. The 5 positions were chosen

at random. Colour code indicates percentage of recruited units

relative to the total number of units outside of the microdomain. 1

on the colour bar indicated 100% recruitment of the surrounding.

(b) The maximum difference in terms of recruitment of the

surrounding between different microdomain positions of the same

setting (averaged over 5 different noise inputs for each position). (c)

The maximum difference in terms of recruitment of the

surrounding between the 25 different noise inputs of the same

setting, off-setted against the already registered effect of

the microdomain position.

(TIF)

Figure S13 Recruitment depending on the number of
subclusters and number of hyperactive units. In this scan

Psurrounding~ { 2:5 was set in the monostable background state.

(a) The scan result is obtained by averaging over different noise

inputs, 5 for each of the 5 microdomain positions. The 5 positions

were chosen at random. Colour code indicates percentage of

recruited units relative to the total number of units outside of the

microdomain(s). 1 on the colour bar indicated 100% recruitment

of the surrounding. (b) The maximum difference in terms of

recruitment of the surrounding between different microdomain

positions of the same setting (averaged over 5 different noise inputs

for each position). (c) The maximum difference in terms of

recruitment of the surrounding between the 25 different noise

inputs of the same setting, off-setted against the already registered

effect of the microdomain position.

(TIF)

Figure S14 Variation of the P=Q bifurcation diagram
with changing underlying connectivity. Five different P=Q

bifurcation diagrams were obtained using five different local and

remote connectivities (generated by the same algorithm using the

same parameters). Black indicates monostable background. Light

blue indicates bistable oscillatory state and background state. Dark

blue indicates monostable oscillatory state. Dotted light blue

indicates a deviation in at least one of the five scans at this

parameter setting.

(TIF)

Figure S15 Simulating counter stimulation. (a) Snapshots

of fractional firing activity of the E populations upon stimu-

lation at 0 s. Recruitment starts from a local perturbation. (b)

Identical system and simulation conditions as above, only with a

counter-stimulus delivered at t~ 0:1 s (red block). The recruit-

ment is suppressed.

(TIF)

Figure S16 Simulating microincision. (a) Snapshots from a

time evolution of fractional firing activity of the E populations.

Recruitment begins from a hyperactive microdomain (where its P

value has been ramped to 1 between 0:5 s and 1:5 s). The

surrounding sheet is in the bistable state. (b) Identical system and

simulation conditions as (a), only with all connections removed

that intersect the cut (red line). Recruitment is delayed and starts

from only one half of the microdomain. (c) Identical system and

simulation conditions as above, only with an additional cut (second

red line). Recruitment is suppressed during the whole simulated time.

(TIF)

Figure S17 P/Q bifurcation diagram of the whole sheet
for different values of the signal propagation speed.
Black indicates monostable background. Light blue indicates

bistable oscillatory state and background state. Dark blue indicates

monostable oscillatory state.

(TIF)

Text S1 Additional methods and algorithms.

(PDF)

Text S2 Effect of boundary conditions.

(PDF)

Text S3 Parameter setting for the single unit.

(PDF)

Text S4 Additional parameter scans for the full system.

(PDF)

Text S5 Details of parameters and simulation methods
for every figure.

(PDF)

Text S6 Simulating stimulation.

(PDF)

Text S7 Propagation patterns and recruitment speed.

(PDF)

Text S8 Additional parameter scans and their variability.

(PDF)

Text S9 Simulating seizure prevention.

(PDF)

Text S10 Effect of propagation delays.

(PDF)

Video S1 Global ramping of P to the oscillatory state
induced seizure onset. Same simulation conditions as Fig. 4,

i.e. a small heterogeneity is introduced in the middle of the sheet.

In the video we leave the system in the background state for longer

by ramping P slowly. P~ { 3 for T = 0 s until T = 0.5 s. P

ramped from -3 to -1 between T = 0.5 s and T = 4 s. P~ { 1
from T = 4 s until T = 5 s.

(MP4)

Video S2 Stimulus to bistable sheet induced propagat-
ing seizure activity. Same simulation conditions as Fig. 5.

(MP4)

Video S3 Oscillatory microdomain remains isolated in
a monostable surrounding. Same simulation conditions as

Fig. 6 (d,e).

(MP4)
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Video S4 Oscillatory microdomain recruits bistable
surrounding. Same simulation conditions as Fig. 6 (f,g).

(MP4)

Video S5 Single contiguous oscillatory microdomain
remains isolated in a monostable surrounding. Same

simulation conditions as Fig. 7 (e,f).

(MP4)

Video S6 Multiple subclusters of oscillatory microdo-
mains recruits monostable surrounding. Same simulation

conditions as Fig. 7 (c,d).

(MP4)

Video S7 Multiple bistable microdomains recruits
monostable surrounding after multiple stimuli. Same

simulation conditions as Fig. 8 (c).

(MP4)
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