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Abstract

We present a model in which a principal delegates the choice of project to an
agent with different preferences. The principal determines the set of projects
from which the agent may choose. The principal can verify the characteristics
of the project chosen by the agent, but does not know which other projects
are available to the agent. Two frameworks are considered: (i) a static setting
in which the collection of available projects is exogenous to the agent but
uncertain, and (ii) a dynamic setting in which the agent searches for projects.

Keywords: Delegation, principal-agent, rules, search, merger policy.

1 Introduction

In this paper we present an analysis of a principal-agent problem in which the prin-
cipal can influence the agent’s behaviour not by outcome-contingent rewards but by
specifying what the agent is, and is not, allowed to do. The agent, whose preferences
differ from those of the principal, will select from her available projects the permitted
project that best serves her interests. The principal can verify whether or not the
selected project is indeed within the permitted set, but cannot observe the number or
characteristics of the projects available to the agent. How then should the principal
specify the set of projects from which the agent is permitted to choose?

Our analysis was originally motivated by a question in competition policy that is
explained more fully in section 2: should mergers be permitted provided that they are

∗This paper supersedes our 2007 paper entitled “A Model of Delegated Project Choice with
Application to Merger Policy”. We are grateful to V. Bhaskar, James Dow, Bengt Holmstrom,
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Karl Schlag, Aggey Semenov, Jidong Zhou, and to seminar participants at Barcelona, Bristol, Cam-
bridge, Columbia, MIT, Oslo, Oxford, Singapore, Toulouse, UCL, Warwick and Yale for comments
and discussion. Armstrong gratefully acknowledges the support of the Economic and Social Research
Council (UK).
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expected to enhance (or at least not to diminish) “total welfare”, or should the policy
standard be in terms of consumer welfare? Even if the ultimate policy objective is
total welfare, the answer is not obvious because the merger proposals brought forward
by (profit-seeking) firms are selected by them from a wider pool of potential mergers.
As we shall see, because of this selection effect, it could be that total welfare is higher
on average under a consumer standard than a total welfare standard.

Our goal, however, is not to compare alternative ad hoc rules, such as the consumer
and total welfare standards in the merger policy example. Rather, it is to characterize
optimal permission sets in terms of the fundamentals of our models. Sometimes
optimal permission rules are found to have strikingly simple forms. Two variants of
our framework are analyzed. First is the model of project choice examined in section
3. This has a static setting in which the agent chooses one project from an exogenous,
but uncertain, number of available projects. The principal optimally restricts agent
choice in a way that forbids some projects that are good, in the uncertain hope of
inducing the agent instead to choose a project that is better for the principal. This
bias could be interpreted as strategically putting less weight on the agent’s payoff
than is in the true welfare function. The second is the model of project search
analyzed in section 4. This is in a dynamic setting where the agent can influence the
uncertain arrival rate of projects by exerting costly effort. Here, the principal again
may disallow some good projects but, in order to induce search effort, may allow some
that are detrimental for his interests; in such examples the principal strategically puts
more weight on the agent’s payoff than is in his true welfare function. In both models
we show how optimal permission sets vary with preferences, probability distributions,
project numbers, discount rates, and so on.

The merger policy illustration that first motivated our work is but one example of
constrained delegation in the absence of contingent payments between principal and
agent. For instance, the framework could apply to decision making within a firm. A
CEO of a company may, within limits, delegate investment project choice to a more
junior manager, where the CEO is interested in shareholder value (for example),
while the manager enjoys private benefits from certain projects and private costs
from searching for projects. Our analysis suggests that, in such a setting, it will not
generally be optimal for the CEO to approve all projects whose expected returns
exceed the cost of capital. A quite different, behavioural, application of our model is
to a single agent whose future tastes may differ from her current tastes. This agent
may wish to constrain her future choices now, if feasible, in order to maximize her
well-being over time.

More generally, our analysis addresses an aspect of the theory of optimal rules–
namely, the relationship between the ultimate objective of the rule-setter and the
optimal rule to commit to. That relationship is not straightforward inasmuch as the
likely consequences of a rule–including for the attainment of the ultimate objective–
depend on the responses of agents seeking to maximize, within the rules, their own
objectives. The interplay between rules and the responses that they induce is at the
heart of our analysis.

Some other papers have examined situations in which a principal delegates decision-
making to a (potentially) better-informed agent whose preferences differ from those
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of the principal, and where contingent transfers between principal and agent are ruled
out.1 Aghion and Tirole (1997) show how, depending on information structure and
payoff alignment, it may be optimal for a principal to delegate full decision-making
power to a potentially better-informed agent. The principal’s loss of control over
project choice can be outweighed by advantages in terms of encouraging the agent
to develop and gather information about projects. In like vein Baker, Gibbons, and
Murphy (1999), though they deny formal delegation of authority, examine informal
delegation through repeated-game relational contracts. Even an informed principal
able to observe project payoffs may refrain from vetoing ones that yield him poor
payoffs in order to promote search incentives for the agent.

Our work is closer to the models which analyze constrained delegation, where the
agent can make decisions but only within specified limits and the principal’s problem
is to decide how much leeway to give the agent.2 This literature was initiated by
Holmstrom (1984), and the elements of his model go as follows. There is a set of
projects, indexed by a scalar variable d which takes values in some large interval D,
of which one needs to be chosen. A given project generates payoffs to the two parties
which depend on the state of the world, represented by θ, and only the agent observes
this parameter. The preferences of the principal and agent may differ, and if project
d is chosen when the state is θ the principal obtains payoff YP (d, θ) and the agent has
payoff YA(d, θ). The principal’s problem is to choose a permission set, say D ⊂ D,
in order to maximize his expected payoff (given his prior on the distribution of θ),
while predicting that the agent will choose her most preferred project in D given the
state θ. This “delegation problem” coincides with the “mechanism design problem”
where the agent announces the state of the world, θ̂, and the principal commits to a
(deterministic) decision rule d(θ̂) which maps the announcement to the implemented
project. The two approaches are equivalent since the principal never directly observes
the true θ and by making a suitable announcement θ̂ the agent can implement any
project in the range of the rule d(·).

Holmstrom mostly limits attention to the (often realistic) situation in which the
permission set is an interval. Subject to this assumption (and other regularity con-
ditions), he shows that an agent whose preferences are closer to the principal’s will
be given more discretion. (This result has subsequently sometimes been termed the
“ally principle”.) Following Holmstrom’s initial contribution, subsequent papers have
analyzed when interval delegation is in fact the optimal delegation policy, making the
additional assumption that θ is a scalar variable.3 Melumad and Shibano (1991) were

1One plausible reason why monetary incentives are not always given to an agent is that the agent
in practice performs several tasks, and giving incentives to do one task well might induce the agent
to under-perform on other, unmeasured, aspects of her job. See Holmstrom and Milgrom (1991) for
further discussion of this point, as well as section 1 of Alonso and Matouschek (2008) for further
discussion about why it is worthwhile to analyze situations without monetary incentives.

2In an experimental study, Falk and Kosfeld (2006) find that agents can be de-motivated when
their choices are restricted by the principal, a factor we do not take account of in our model.

3Szalay (2005) presents an interesting variant on this delegation problem in which interval dele-
gation is often sub-optimal. In his model, there is no divergence in preferences between the principal
and agent, but the agent incurs a private cost to observe θ. He shows that it can be optimal for
the principal to remove intermediate projects from D so that the agent is forced to choose between
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the first to calculate optimal permission sets, in the special case where preferences
were quadratic, where the agent had a known bias, and where θ was uniformly dis-
tributed. They found that interval delegation was optimal when principal and agent
have ideal projects which are similarly responsive to the state θ, but that otherwise
it could be optimal to have “holes” in D. Martimort and Semenov (2006) find a suffi-
cient condition on the distribution of θ for interval delegation to be optimal. Alonso
andMatouschek (2008) systematically investigate when interval delegation is optimal,
and they generalize Melumad and Shibano’s insight that the relative responsiveness
of preferred decisions to the state is the key factor for this. One interesting finding
is that when interval delegation is sub-optimal the ally principle need not hold and
an agent with preferences more aligned with those of the principal might optimally
be given less discretion.4

Those models in the Holmstrom tradition differ from ours in respect of project
specification and the form of asymmetric information. In particular, they characterize
each project by a scalar parameter, all projects are always feasible, and the agent
has private information about a payoff-relevant state of the world. In our model, by
contrast, payoffs of the chosen project to both principal and agent are known, but
only a finite collection of projects is feasible and only the agent knows what those
projects are. Like the papers discussed above, our aim is to characterize the optimal
delegation set for the principal to allow the agent to choose from, but in the two-
dimensional setting where the principal can observe both his own and the agent’s
payoff from the project chosen by the agent.5

2 Welfare Standards in Merger Policy

An important debate in antitrust policy concerns the appropriate welfare standard
to use when deciding whether to prohibit a merger (or some other form of conduct).6

The two leading contenders are a total welfare standard, where mergers are evaluated

relatively extreme options, and this sharpens the agent’s incentive to discover θ. The benefit from
this can outweigh the principal’s loss due to the possibility that the ideal project given the realized
state is forbidden.

4Kovác and Mylovanov (2007) discuss the impact of stochastic delegation schemes, in which the
agent chooses from a constrained set of lotteries over projects rather than from a subset of projects
themselves. They show, broadly speaking, that when interval delegation is optimal in Alonso and
Matouschek’s deterministic framework no extra benefit is generated by stochastic schemes, but
otherwise the principal can sometimes do better by offering lotteries over projects.

5A recent paper which also investigates a two-dimensional delegation problem is Amador, Wern-
ing, and Angeletos (2006). There, an agent with quasi-hyperbolic preferences has wealth which she
consumes over two periods. If there were no uncertainty about her preferences, she would gain by
committing to a fixed consumption path at time zero. However, she will receive a utility shock in
period 1 and this uncertainty gives a motive allow some flexibility in consumption. Amador et al.
show that the time-zero agent limits her consumption possibilities to a subset of feasible consump-
tion paths, and they find a condition which implies that the optimal delegation set simply involves
placing a ceiling on first-period consumption.

6In practice, many mergers giving rise to competition concerns are permitted subject to conditions
(e.g., asset disposals) rather than prohibited altogether. Such merger remedies are beyond the scope
of the illustrative example discussed here.
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according to whether they decrease the unweighted sum of producer and consumer
surplus, and a consumer welfare standard, where mergers detrimental to consumers
are blocked. Many economic commentators feel that antitrust policy should aim to
maximize total welfare, whereas in most jurisdictions the focus is more on consumer
welfare alone. See Farrell and Katz (2006) for an excellent overview of the issues.

One purpose of this paper is to examine a particular strategic reason, discussed
by Lyons (2002) and Fridolfsson (2007), to depart from the regulator’s true welfare
standard, which is that a firm may have a choice of merger possibilities. A less
profitable merger might be better for total welfare, but will not be chosen under a
total welfare standard. To illustrate, consider Figure 1, which is similar to those
presented in section IV.B in Farrell and Katz (2006).7
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Figure 1: The Impact of Welfare Standard on Chosen Mergers

Here, u represents the gain in total profit resulting from amerger, while v measures
the resulting net gain (which may be negative) to consumers. Suppose that u and v
are verifiable once a merger is proposed to the competition authority. If the regulator
follows a total welfare standard, he will permit any merger which lies above the
negatively-sloped line in the figure. Suppose the firm has two mergers to choose
from, depicted by � and ⋆ on the figure. With a total welfare standard, the firm
will choose the merger with the higher u payoff, i.e., the � merger. However, the
regulator would prefer the alternative ⋆ since that yields higher total welfare. If the
regulator instead imposed a consumer welfare standard, so that only those mergers
which lie above the horizontal line v = 0 are permitted, then the firm will be forced
to choose the preferred merger. In this case, a regulator wishing to maximize total

7The discussion in Farrell and Katz (2006) is a “reduced-form” version of the formal models in
Lyons (2002) and Fridolfsson (2007).

5



welfare is better off if he imposes a consumer welfare standard. As Farrell and Katz
(2006, page 17) put it: “if we want to maximize gains in total surplus (northeasterly
movements as shown in Figure 1) and firms always push eastwards, there is something
to be said for someone adding a northerly force.”

Nevertheless, there is a potential cost to adopting a consumer welfare standard:
if the � merger turns out to be the only possible merger then a consumer welfare
standard will not permit this even though the merger will improve total welfare.
Thus, the choice of welfare standard will depend on the number of possible mergers
and the distribution of profit and consumer surplus gains for a possible merger. For
instance, as Farrell and Katz observe, if efficiency gains from a merger take the form
of reductions in fixed, not marginal, costs, any merger between competitors can only
cause reductions in consumer surplus and so a consumer welfare standard would
forbid all such mergers (including those which increase total welfare).

3 Choosing a Project

A principal (“he”) delegates the choice of project to an agent (“she”). Both parties
are risk-neutral. There may be several projects for the agent to choose from, although
only one can be implemented over the relevant time horizon. We will consider two
variants of the delegated choice problem: (i) a static setting in which the agent can
choose one project from an exogenous but random number of available projects (as
analyzed in this section); and (ii) a dynamic search model in section 4 in which the
agent can choose the arrival rate of potential projects.

A project is fully described by two parameters, u and v. The agent’s payoff if
the type-(u, v) project is implemented is u, while the principal’s payoff is v + αu.
Here, α ≥ 0 represents the weight the principal places on the agent’s interests, and v
represents factors specific to the principal’s interests.8 In the merger context, α = 1
when the antitrust authority wishes to maximize total welfare and α = 0 when it
cares only about consumers. More generally, the case α = 1 applies in delegation
settings where the principal hires the agent for a fixed fee, not contingent on results,
before the agent knows which projects are available.9

Each project is an independent draw from the same distribution for (u, v). Since
the agent will never propose a project with a negative payoff, without loss of generality
we suppose that only non-negative u are realized. The marginal density of u ≥ 0 is
f(u). The conditional density of v given u is denoted g(v, u) and the associated
conditional distribution function is G(v, u). Here, v can be positive or negative.
For technical reasons, suppose that the support of (u, v) is a rectangle [0, umax] ×
[vmin, vmax]. In particular, the support of v given u does not depend on u. Suppose
also that vmin ≤ 0 ≤ vmax, so that (0, 0) lies in the support of (u, v). Finally, suppose
that both f and g are twice continuously differentiable and non-zero on the support

8It would also be straightforward to allow the agent to care about the principal’s welfare.
9Specifically, the principal chooses the permission set D and transfer t to maximize E[v + αu]−

(1−α)t subject to E[u] + t ≥ u0, the agent’s outside option. Optimality requires that D maximizes
E[v] +E[u].
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of (u, v).
The principal delegates the choice of project to the agent. We assume that it

is impossible, or not credible, for the principal to give monetary incentives to the
agent to choose a desirable project. Once the agent selects a particular project from
the set of possible projects, that project’s characteristics are verifiable.10 The class of
mechanisms we analyze is as follows: before the agent has any private information, the
principal commits to a (measurable) “permission set” (or delegation set) of projects,
denoted D ⊂ [0, umax] × [vmin, vmax], and the agent can then implement any project
she chooses in D. (See section 3.3 for discussion of our approach and the impact of
more ornate delegation schemes.)

In this first model, the number of projects is random and the probability that
the agent has exactly n ≥ 0 possible projects is qn. (Our analysis applies to the
case where there are surely N projects, so that qN = 1, but the analysis is no easier
for that case.) The realization of (u, v) for each project is described by f and g as
above, and is independent for each project among the n projects. In addition, (u, v)
is distributed independently of n.

For each u, let
Du = {v such that (u, v) ∈ D}

be the set of u-projects which are permitted, and let

p(u) =

∫

v∈Du
g(v, u)dv

to be the proportion of type-u projects which are permitted. Let

x(u) = 1−
∫ umax

u

p(z)f(z) dz

to be the probability that any given project either has agent payoff z less than u or
is not permitted. Note that

x′(u) = p(u)f(u) . (1)

(Our assumptions ensure that x(·) is differentiable.) If there are exactly n ≥ 1 avail-
able projects, the probability that the agent’s preferred permitted project has payoff
no higher than u is (x(u))n, and so the density of the agent’s preferred permitted
project is

d

du
(x(u))n = np(u)f(u)(x(u))n−1 .

(One of the n projects must be permitted and give agent payoff u, which has prob-
ability p(u)f(u), while the remaining n − 1 projects must either have agent payoff
lower than u or not be permitted.) Summing over n implies that the density of the
highest-u permitted project is

d

du

∞∑

n=0

qn(x(u))
n .

10What is needed here is that the principal and agent have symmetric information about the
project characteristics when the project is chosen. The actual outcome of the project could still be
uncertain at this point, in which case u and v represent the expected payoffs to the two parties.
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If we write φ(x) ≡∑∞
n=0 qnx

n for the probability generating function (or PGF) asso-
ciated with the random variable n, it follows that the density of the agent’s preferred
permitted project is d

du
φ(x(u)). Useful properties of PGFs which we will sometimes

use is that they are well-defined on the interval 0 ≤ x ≤ 1 and convex and increasing
over this interval.

The principal’s payoff with the permission set D is

∫ umax

0

{E[v | u and v ∈ Du] + αu} d

du
φ(x(u)) du

=

∫ umax

0

{∫

v∈Du
vg(v, u)dv + αup(u)

}
φ′(x(u))f(u) du . (2)

The principal’s problem is to maximize expression (2) taking into account the rela-
tionship between and p and x in (1) and the endpoint constraint x(umax) = 1. The
following lemma shows that the optimal permission set takes the following “thresh-
old” form:

Lemma 1 In the optimal policy there exists a threshold rule r(·) such that

(u, v) ∈ D if and only if v ≥ r(u) .

Proof. From (1), the function x(·) depends on D only via the “sufficient statistic”
p(u), not on the particular v-projects which are permitted given u. Therefore, for any
candidate function p(u) the principal might as well permit those particular v-projects
which maximize the term {·} in the (2), subject to the constraint that the proportion
of type-u projects is p(u). But the problem of choosing the set Du in order to

maximize

∫

v∈Du
vg(v, u)dv subject to

∫

v∈Du
g(v, u)dv = p(u)

is solved by permitting the projects with the highest v so that the proportion of
permitted projects is p(u), i.e., that Du = {v such that v ≥ r(u)} for some r(u).

Thus, the problem simplifies to the choice of threshold function r(·) rather than
the choice of permission set D. (A similar argument is valid in the search model
presented in section 4.) Figure 2 depicts a possible threshold function r(·), and also
shows x(u) depicted as the measure of the shaded area.

It is useful to introduce one further piece of notation, and define

V (r, u) ≡ E[v | u and v ≥ r]

to be the expected value of v given that the project has agent payoff u and that v is
at least r. Recasting (2) in terms of r(·) rather than D, the principal’s problem is to
choose r(·) to maximize

∫ ∞

0

[V (r(u), u) + αu][1−G(r(u), u)]f(u)φ′(x(u)) du (3)
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Figure 2: The Agent’s Preferred Permitted Project

subject to the “equation of motion”

x′(u) = f(u)[1−G(r(u), u)] (4)

and the endpoint condition x(umax) = 1.
This classical calculus of variations problem is solved formally in the appendix,

but its solution can be understood intuitively with the following argument. Consider
some point (u, r(u)) on the frontier of the permitted set. For the set to be optimal it
must be that the principal is indifferent between his payoff [r(u) + αu] at that point
and his expected payoff from the agent’s next-best permitted alternative, conditional
on the agent’s best permitted project being (u, r(u)).

To calculate the latter expected payoff, note that the density that a project drawn
at random has payoffs (u, r(u)) is f(u)g(r(u), u). Then the probability that one out
of n projects has payoffs (u, r(u)) and all the others have agent utility no greater
than z ≤ u or are not permitted is nf(u)g(r(u), u)[x(z)]n−1. Taking the qn-weighted
sum across n, the probability that one project has payoffs (u, r(u)) and all other
permitted projects have utility no greater than z is therefore f(u)g(r(u), u)φ′(x(z)).
In particular, the probability that the agent’s preferred permitted project is (u, r(u))
is f(u)g(r(u), u)φ′(x(u)). Conditional on that event, the probability that the next-
best permitted alternative for the agent has agent utility no greater than z ≤ u
is

f(u)g(r(u), u)φ′(x(z))

f(u)g(r(u), u)φ′(x(u))
=

φ′(x(z))

φ′(x(u))
,

9



which has associated density φ′′(x(z))x′(z)/φ′(x(u)). Therefore the indifference con-
dition is

r(u) + αu =
1

φ′(x(u))

∫ u

0

[V (r(z), z) + αz]φ′′(x(z))x′(z) dz (5)

for all u ∈ [0, umax].
In particular, we see from (5) that r(0) = 0. This implies that the principal does

not wish to restrict the desirable projects available to the agent whose best project
has only zero payoff, i.e., there is “no distortion at the bottom”. The reason for this
is that when u = 0 there is no strategic benefit to restricting choice. (The strategic
effect of raising r(u) above −αu is to increase the probability that the agent will
choose a smaller z, and this effect cannot operate when u = 0.) Differentiating (5)
with respect to u and using (4) implies the Euler equation for the principal’s problem,
which is expression (6) below.

Proposition 1 The optimal threshold rule satisfies the Euler equation

r′(u) + α = [V (r(u), u)− r(u)][1−G(r(u), u)]f(u)
φ′′(x(u))

φ′(x(u))
(6)

with initial condition r(0) = 0, terminal condition x(umax) = 1, and equation of
motion (4). A sufficient condition for the second-order condition for the calculus of
variations problem to be satisfied is that

ζ(x) ≡ φ′′(x)

φ′(x)
weakly decreases with x . (7)

Proof. See appendix.

Expression (6) reveals that ζ in (7) is important for the form of the solution. A
short list of examples for this term includes:

• If n is known to be exactly N ≥ 1 for sure (so qN = 1), then φ(x) = xN and
ζ(x) = (N − 1)/x.

• If n is Poisson with mean µ (so qn = e−µ µ
n

n!
for n ≥ 0) then φ(x) = e−µ(1−x) and

ζ(x) ≡ µ.

• If n is Binomial (the sum of N Bernoulli variables with success probability a)
then φ(x) = (1− a(1− x))N and ζ(x) = a(N − 1)/(1− a(1− x)). The “known
n” case is a special case of the Binomial with a = 1. The Poisson is a limit case
of the Binomial when aN = µ and a→ 0.

• If n is Geometric (so qn = (1−a)an−1 for n ≥ 1 and some parameter a ∈ (0, 1))
then φ(x) = (1− a)x/(1− ax) and ζ(x) = 2a/(1− ax).

• If n = 2 with probability π and n = 1 with probability 1 − π, then φ(x) =
(1− π)x+ πx2 and ζ(x) = 1/(k + x) where k = (1− π)/(2π).

10



Assumption (7) is valid for the Binomial distribution–and hence for the “known n”
and Poisson sub-cases–and for the n ∈ {1, 2} example, but not for the Geometric
distribution.

Define the “naive” threshold rule to be

rnaive(u) = −αu .

This is the threshold rule which permits all desirable projects, i.e., those projects
such that v + αu ≥ 0. This rule might be implemented by a principal who ignored
the strategic effect that the agent will only choose the project with the highest u
whenever she has a choice. As such, the naive rule is optimal for the principal when
the agent never has a choice of project, i.e., when q0 + q1 = 1. (In this case φ′′ ≡ 0,
the right-hand side of (6) vanishes, and so r(·) ≡ rnaive(·) is optimal.)

Outside this dull case, though, the right-hand side of (6) is strictly positive. There-
fore, since r′(u) + α > 0 and r(0) = 0 it follows that r(u) > rnaive(u) when u > 0.
Therefore, the principal forbids some strictly desirable projects (and never permits
undesirable projects). Moreover, the gap between the optimal and the naive rule,
r(u)− rnaive(u), strictly increases. We state this formally as:

Corollary 1 Suppose the agent sometimes has a choice of project (i.e., q0+ q1 < 1).
Then it is optimal for the principal to forbid some strictly desirable projects, and
the gap between the optimal threshold rule r(u) and the naive threshold rule rnaive(u)
widens with u. In particular, when α = 0 the optimal threshold rule increases with u.

What is the intuition for why the principal wishes to exclude some desirable
projects from the permitted set, whenever the agent sometimes has a choice of
project? Suppose the principal initially allows all desirable projects, so that r(u) ≡
rnaive(u). If the principal increases r(·) slightly at some u > 0, the direct cost is ap-
proximately zero, since the principal then excludes projects about which he is almost
indifferent (since r(u) + αu = 0). But there is a strictly beneficial strategic effect:
there is some chance that the agent’s highest-u project is excluded by the modified
permitted set, in which case there is a chance that she chooses another project which
is permitted, say with z < u. This alternative project is unlikely to be marginal for
the principal, and instead the principal will expect to get payoff V (r(z), z)+αz, which
is strictly positive when r(z) = −αz. This argument indicates that it is beneficial
to restrict desirable projects, and not to permit undesirable projects. Moreover, it is
intuitive that the strategic effect is more important for higher u, since it applies over
a wider range z < u, and this explains why the gap r(u)− rnaive(u) widens with u.

Corollary 1 shows that the gap between the optimal threshold rule and the naive
threshold rule widens with u. What else can we say about the shape of r(·)? Write

I(r, u) = [V (r, u)−r][1−G(r, u)] =

∫ vmax

r

[v−r]g(v, u)dv =

∫ vmax

r

[1−G(v, u)]dv . (8)

Then Ir = −[1−G(r, u)] < 0. Differentiating expression (6) with respect to u shows
that

r′′

r′ + α
=

Ir
I
r′ +

Iu
I
+

f ′

f
+

ζ ′

ζ
x′ =

Ir
I
[Ifζ − α] +

Iu
I
+

f ′

f
− ζ ′

ζ
fIr .

11



Here, the second equality follows from (4) and (6). Thus, since r′ + α is positive we
have

r′′
sign
= fIr

[
ζ − ζ ′

ζ

]

︸ ︷︷ ︸
[i]

+

[
−α

Ir
I

]

︸ ︷︷ ︸
[ii]

+
Iu
I︸︷︷︸
[iii]

+
f ′

f︸︷︷︸
[iv]

. (9)

Note that [ζ − ζ ′/ζ] in term [i ] in expression (9) is positive if and only if φ′′/(φ′)2

decreases with x. This is a weak condition, satisfied by all five of our examples of
PGFs above. (It is weaker than assumption (7) above.) If this holds, then term [i ]
is negative. Term [ii ] is positive, unless α = 0 when it is zero. Term [iii ] is zero if
u and v are independently distributed, and it is positive if the two parameters are
positively correlated (in the sense that G(v, u) decreases in u). Term [iv ] has the sign
of f ′, and in particular this is zero when u is uniformly distributed.

Thus we see that whether r is (locally) convex or concave depends on the sum
of four terms. In some special cases we can sign r′′. For instance, if u has weakly
decreasing density and is independent from v, and if α is close to zero, then r(·) is
concave (and increasing). More generally, (9) shows that α large and the existence
of positive correlation between u and v are both forces which tend to make r convex
(in which case the permission set D is a convex set).

We next discuss comparative statics for this problem. First, we show that a
greater fraction of projects should be permitted when more weight is placed on the
agent’s interests.

Proposition 2 Let αL and αH be two weights placed by the principal on the agent’s
payoff, where αL < αH. Let ri(·) and xi(·) solve the Euler equation (6) when α = αi
for i = L,H. If assumption (7) holds then xL(0) > xH(0), i.e., the fraction of
permitted projects increases with α.

Proof. Condition (6) implies that at u = 0 and any other u such that rL(u) = rH(u)

r′L(u) + αL
r′H(u) + αH

=
ζ(xL(u))

ζ(xH(u))
. (10)

If xL(0) ≤ xH(0), then by assumption (7) ζ(xL(0)) ≥ ζ(xH(0)), and so (10) implies
that r′L(0) > r′H(0). In particular, rL(u) > rH(u) for small u > 0. If xL(0) ≤ xH(0)
then rL(·) must cross rH(·) at some point. (If rL were uniformly above rH then clearly
the fraction of prohibited projects with αL would be greater than with αH .) Let u∗

be the first point above zero where the curves cross. In particular, we must have
r′L(u

∗) ≤ r′H(u
∗). In addition, we must have xH(u

∗) ≥ xL(u
∗) since xH(0) ≥ xL(0)

and rH(u) ≤ rL(u) for u ≤ u∗. But then (10) implies that

1 >
r′L(u

∗) + αL
r′H(u

∗) + αH
=

ζ(xL(u
∗))

ζ(xH(u∗))
≥ 1 ,

a contradiction. We deduce that the curves can never cross, and so our initial as-
sumption xL(0) ≤ xH(0) cannot hold.

12



Thus we see that the more the principal cares about the utility of the agent, the
more discretion–in the sense of a greater fraction of projects being permitted–the
agent is given. This result is similar to the “ally principle” in the Holmstrom-type
model mentioned in section 1, where the more likely the agent’s preferences were to
be close to the principal’s, the more discretion the agent was given. It is also simple to
show that the agent’s expected payoff with the principal’s optimal scheme increases
in α.11

It is also natural to expect that when the agent is likely to have more projects
to choose from, the principal will further constrain the permitted set of projects.
With more projects available, the agent is likely to have at least one which lies close
to the principal’s preferred project. There is a close connection between “having
more projects” and the function ζ(x) being shifted upwards. For instance, in our five
examples of distributions for n above, this is true. (In the Poisson case, ζ is just
equal to the expected number of projects.) More generally, a natural interpretation
of “having more projects” is the following: suppose the number of agent’s projects
is initially governed by the PGF φL(·), and suppose the agent then has access to an
additional source of projects which has PGF φ(·), say. A fundamental property of
PGFs is that the PGF corresponding to the independent sum of two random variables
is the product of the underlying PGFs. Therefore, the PGF for the agent with these
two sources of projects is just φH = φφL. Under a regularity condition, φ

′′
H/φ′H is

greater than φ′′L/φ
′
L:

Lemma 2 Suppose that 1/φL(x) is a strictly convex function, and let φH(x) =
φ(x)φL(x) for any PGF φ(·) except the trivial PGF φ ≡ 1. Let ζi = φ′′i /φ

′
i for

i = L,H. Then
ζH(x) > ζL(x) . (11)

Proof. Condition (11) is equivalent to the condition that φ′H(x)/φ
′
L(x) strictly in-

creases with x. But
φ′H
φ′L

=
φ′φL + φφ′L

φ′L
= φ+ φ′

φL
φ′L

and so
d

dx

φ′H
φ′L

= φ′′
φL
φ′L
+ φ′

[
2− φLφ

′′
L

(φ′L)
2

]
≥ φ′

[
2− φLφ

′′
L

(φ′L)
2

]
.

Therefore, provided that φ′ > 0 (which is the case whenever there is sometimes an
additional project), a sufficient condition for (11) to hold is that 2(φ′L)

2 > φLφ
′′
L,

which is equivalent to the requirement that 1/φL be strictly convex.

Note that the condition that 1/φL(x) is convex is satisfied in all our listed examples
of PGFs above. Using this notion of “more projects”, we can obtain the following
result.12

11When α = αH the principal prefers rH(u) to rL(u) and vice versa when α = αL. It follows by
the principal’s revealed preference that expected u is higher with αH than αL.
12An example where adding more projects widens the optimal set of permitted projects is the

following. Suppose initially the agent has no projects at all with probability 1− ε and exactly two
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Proposition 3 Suppose the number of projects is initially nL with PGF φL(x) which
satisfies (7) and such that 1/φL is convex. Suppose next that the agent has access
to a second source of projects with number n (where n is positive with some positive
probability), and now the total number of projects is the independent sum nH = nL+n.
Let ri(·) and xi(·) solve the Euler equation (6) when the number of projects is ni for
i = L,H. Then xH(0) > xL(0), i.e., the fraction of permitted projects decreases when
there are more projects.

Proof. From Lemma 2, the PGF φH associated with nH satisfies (11). The rest of
the proof follows the argument (with L and H permuted) of Proposition 2.

Note that we use the term “having more projects” to mean that the agent now
has the independent sum of her original projects and a supply of other projects.
This is a stronger requirement than the more usual notion of first-order stochastic
dominance. Indeed, it is possible to find examples (even in the most regular cases)
where stochastic dominance leads to a smaller fraction of projects being excluded.

Without making further assumptions, it is hard to make more progress in charac-
terizing the solution to (6). This expression is in general a second-order differential
equation in x, x′ and x′′ (see expression (43) in the appendix). However, there are
two cases in which the Euler equation can simplify to a first-order equation. First,
when v is independently distributed from u the Euler equation simplifies and with
further assumptions (for instance when α = 0), the Euler equation becomes a first-
order equation in x and x′. Second, when n is a Poisson variable, the dependence on
x(u) in the Euler equation vanishes, and (6) becomes a first-order equation in r and
r′. These special cases are discussed in more detail in the next two sub-sections.

3.1 Independent distributions

Suppose in this section that the distribution of v is independent of u. In particular,
in the following we write g(v), G(v), V (r) and I(r) as functions which do not depend
on u. Then the Euler equation can then be simplified in the following manner.13

Lemma 3 If the distribution for v is independent of u, expression (6) is equivalent
to

d

du

[
V (r(u))− r(u)

f(u)

d

du
φ(x(u))

]
=

α

f(u)

d

du
φ(x(u)) . (12)

projects with probability ε. Because the state when no projects materialize plays no role in the
determination of r(·), the optimal threshold rule for this agent is just as if there were two projects
for sure. Such a threshold rule will strictly exclude some desirable projects. Consider next the
situation in which the agent has exactly one more project than the previous situation (i.e., n = 1
with probability 1− ε and n = 3 with probability ε). Whenever ε is small, the state where there is
only one project will dominate the choice of r(·), and almost all desirable projects will be permitted,
thus widening the set of permitted projects. One can check that the PGF for the original distribution
for n does not satisfy the requirement that 1/φL is convex.
13Within the calculus of variations literature, this transformation of the Euler equation is known

as the Beltrami identity.
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Proof. Note that

−I ′(r) = 1−G(r) =
x′(u)

f(u)
,

and

V (r)− r =
I(r)

−I ′(r)
. (13)

Multiplying both sides of (6) by −I ′(r(u))φ′(x(u)) and using (13) it follows that (6)
is equivalent to

−I ′(r(u))φ′(x(u))[r′(u) + α] = I(r(u))φ′′(x(u))x′(u) .

Therefore, we have

−αI ′(r(u))φ′(x(u)) = I(r(u))φ′′(x(u))x′(u) + I ′(r(u))φ′(x(u))r′(u)

=
d

du
[I(r(u))φ′(x(u))]

=
d

du

[
[V (r(u))− r(u)]

x′(u)

f(u)
φ′(x(u))

]

=
d

du

[
V (r(u))− r(u)

f(u)

d

du
φ(x(u))

]
.

And

−αI ′(r(u))φ′(x(u)) = α
x′(u)

f(u)
φ′(x(u)) =

α

f(u)

d

du
φ(x(u)) .

Thus, (6) implies expression (12) and vice versa.

Inspecting (12) shows there are at least three cases in which this second-order
differential equation can be integrated to a first-order equation:

• when α = 0 the equation becomes

[V (r(u))− r(u)]
d

du
φ(x(u)) = kf(u) (14)

for some positive constant k;

• when u is uniformly distributed the equation becomes

[V (r(u))− r(u)]
d

du
φ(x(u)) = k1φ(x(u)) + k2

for two constants k1 and k2, and

• when v is exponentially distributed, V (r) − r is constant and so the equation
becomes

d

du
log

[
1

f(u)

d

du
φ(x(u))

]
= constant .
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In the following discussion we examine further the first of these cases, where α = 0.
Here, the principal obtains the same payoff with all density functions f(·) for u. To
see this, change variables in (14) from u to F (u). That is to say, write r̂(F (u)) ≡ r(u)
and x̂(F (u)) ≡ x(u), so that r̂ represents the threshold rule expressed in terms of the
cumulative fraction of u-projects F . Then (14) becomes

[V (r̂(F ))− r̂(F )]
d

dF
φ(x̂(F )) ≡ k , (15)

with initial condition r̂(0) and terminal condition x̂(1) = 1. In particular, the optimal
threshold rule r̂(·) does not depend on the distribution for u at all, as long as u is
continuously distributed.14 Since the random variable F (u) is uniformly distributed,
it follows from expression (9) and a mild regularity condition on ζ(x) that r̂(·) is an
increasing and concave function of F (u). In sum, with α = 0 and u and v independent
the principal’s payoff does not depend on the distribution of u. As such, only ordinal
rankings of u matter for the principal.

We note that when α = 0, although the principal does not care directly about the
agent’s payoff, he nevertheless hopes that the agent has a permitted project with high
u. In particular, the principal’s expected payoff conditional on u, namely V (r(u)),
increases with u. It follows that, even without re-optimizing the threshold rule r(·),
the principal’s expected payoff increases if the agent has more projects (in the sense of
having an additional source of projects) because projects from the additional source
will be chosen only if they have higher u than what would otherwise have been chosen.

3.2 Poisson distribution for the number of projects

If n follows a Poisson distribution with mean µ, the Euler equation (6) becomes a
first-order differential equation in r(u):

r′(u) + α = µ[V (r(u), u)− r(u)][1−G(r(u), u)]f(u) . (16)

The comparative statics of r(·) with respect to α and µ are stronger than the corre-
sponding results in the general setting reported above in Propositions 2 and 3:

Proposition 4 With a Poisson distribution for the number of available projects, the
optimal threshold rule r(·) is pointwise increasing in µ and decreasing in α.

Proof. The method is similar the proof of Proposition 2. Consider first the impact
of increasing µ, and let µL and µH > µL be two values for µ. Let rL(·) and rH(·) be
the corresponding optimal threshold rules. From (16) it follows that at u = 0 and
any other u such that rL(u) = rH(u)

r′L(u) + α

r′H(u) + α
=

µL
µH

< 1,

14Note that this argument requires us to change variables in expression (14), and so F (u) needs
to be differentiable and, in particular, the distribution for u has no “atoms”. If there were atoms,
then we would need to consider what project the agent would choose in the event of a “tie”, when
there would two projects which yielded the same maximal agent payoff u.
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so r′L(u) < r′H(u) at all such u. So rH can never cross rL from above. We deduce that
rH(u) > rL(u) for all u > 0. The argument for the impact of α on r(·) is similar.

Moreover, it is straightforward to show from (16) that

r(u) → vmax as µ→∞ (if u > 0), and

r(u) → rnaive(u) = −αu as µ→ 0 .

Thus, with the ability to choose from many projects, the agent is essentially given
no discretion, and only those projects with the highest payoff to the principal are
permitted. In addition, as it becomes unlikely that the agent has any choice of
project, the principal should allow all desirable projects to be implemented.

While solution to equation (16) can easily be solved numerically–and we present
some examples of this at the end of this section–it apparently cannot be solved
analytically without making further assumptions. One natural simplification is to
make the differential equation homogeneous, so that there is no direct dependence
on u in (16). This is done by supposing (i) that u is uniformly distributed on, say,
[0, 1] and (ii) that u and v are independent. In this case, (16) becomes

r′ = µI(r)− α , (17)

where I(·) is given in (8).
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Figure 3: Uniform-Poisson example with µ = 2 and α = 0, 1
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Note that if α = µI(0), then the solution to (17) is simply the flat rule r(u) ≡ 0.
Thus, in the merger context, if the regulator wishes to maximize total welfare (so
α = 1), then if the expected number of mergers is such that µI(0) = 1 the regulator
should optimally enforce a pure consumer welfare standard. Outside this knife-edge
case, the solution to (17) will be increasing (decreasing) in u when α < (>)µI(0).
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Moreover, by differentiating (17), it follows that r(u) is concave (convex) when α <
(>)µI(0). Specifically, the solution to (17) when α �= µI(0) is given implicitly by

∫ r(u)

0

1

µI(r)− α
dr = u . (18)

To illustrate some solutions to (18), suppose that (u, v) is uniformly distributed
on [0, 1]× [−1, 1] so that I(r) = 1

4
(1− r)2. When α = 0, expression (18) implies that

r(u) =
µu

4 + µu
. (19)

When α > 0 expression (18) can be integrated (using partial fractions) to give

r(u) =

(
1− 4α

µ

)
eu
√
αµ − 1

(1 +
√
4α/µ)eu

√
αµ − (1−

√
4α/µ)

. (20)
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Figure 4: Uniform-Poisson case with α = 1 and µ = 0, 1, 2, 4 (dotted), 10 and 50

As already mentioned, when µ = 4α it is optimal in the Uniform-Poisson example
to have the flat rule that only projects with positive v are permitted. For µ > 4α,
the solution is increasing and concave, while for µ < 4α the solution is decreasing
and convex. We depict these solutions in Figure 3 for fixed µ = 2 and various values
for α. Here, higher values of α correspond to lower threshold rules r(u) (illustrating
Proposition 4). Notice that a higher value of α is more likely to lead to r(·) being
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convex, as was indicated in general in expression (9). Figure 4 shows the solutions
for fixed α = 1 and for various µ. Here, higher curves correspond to higher µ, which
is consistent with Proposition 4. The straight line depicted for µ = 0 is just the naive
rule which permits any desirable project.

The final issue we discuss here is the impact of correlation between u and v
on the set of permitted projects. Intuitively, all else equal we expect that positive
correlation between the two payoffs to lead to the agent being given more discretion:
the agent can be trusted to pick projects with high u, and with correlation this tends
to lead to high-v projects too. To investigate this issue, suppose that α = 0 and v
is exponentially distributed with support v ∈ [0,∞) and mean λ(u) given u, so that
G(v, u) = 1− e−v/λ(u). The variables u and v are independent if λ is constant, they
are positively correlated if λ(u) is increasing in u, and they are negatively correlated
if λ(u) decreases.
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In this case V (r, u)− r = λ(u), and so equation (16) becomes

r′(u) = µλ(u)f(u)e−
r(u)
λ(u) . (21)

If λ is constant (the independence case), it follows from (21) that

r(u) = λ log(1 + µF (u)) ; p(u) =
1

1 + µF (u)
.

If there is correlation, equation (21) does not seem explicitly soluble, but it is easily
solved numerically.

Figure 5 depicts five solutions. In each of these we have set µ = 2, u is uniform
on [0, 1], and λ(u) = 1 + k(u− 1

2
). (It follows that the unrestricted expectation of v
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is the same–equal to 1–for all k, and so changes in the threshold rule for different
k are not simply due to changes in the mean of v.) A positive k represents positive
correlation between u and v. Here, we illustrate the permission probabilities, p(u),
instead of the permission rules r(u) illustrated on previous figures. In the figure the
thick line depicts the independent case with k = 0, and higher curves correspond
to more positive (or less negative) correlation. Thus we see that more correlation is
indeed associated with more discretion–in the sense that any type-u project is more
likely to be permitted–being granted to the agent.15

3.3 Discussion of our delegation scheme

In the analysis above we restricted attention to situations where the principal simply
determines a permission set D for the agent to choose from. In this regard it is
important first to emphasize the assumption here, as in delegation problems more
generally, of commitment. The principal excluded some desirable projects from the
permission set. But in the absence of commitment power, if the agent reports that she
has no permitted project, the principal may have an incentive to “renegotiate”, and
to widen the set of permitted projects. In section 4 we find cases with the opposite
bias, in which the principal permits some projects which are undesirable to him ex
post, and this again requires commitment power to be credible.16

Second, we restricted attention to deterministic mechanisms, rather than, say,
assigning to each proposed project a (possibly interior) probability π(u, v) of being
implemented. We did this in part because it is hard to imagine being able to commit
to or implement a stochastic mechanism in practice. In any event, by the argument
in Lemma 1, any stochastic scheme is dominated by the deterministic scheme giving
rise to the same p(u) function if the agent retains the alternative projects if her initial
choice is (randomly) rejected. If, however, those alternatives are lost, it is possible
that commitment to a stochastic scheme could do better for the principal than a
deterministic scheme.17

Third, it may be asked whether, if feasible, more ornate deterministic delegation
schemes (still without outcome-contingent payments) could improve the principal’s
expected payoff. Recall from the Introduction that in the Holmstrom (1984) setting
the “delegation problem” coincided with the “mechanism design problem” in which
the agent reports her (scalar) private information. In our setting her private infor-
mation consists of the number and nature of available projects, and the mechanism
design approach involves the agent announcing a list of projects and the principal

15The threshold rules r(u) are not strictly nested in this example, and cross when u is close to 1.
16See Baker, Gibbons, and Murphy (1999) and Alonso and Matouschek (2007) for analyses of how

commitment power can be endogenously generated with repeated interaction.
17For example, suppose that α = 0, that n = 2 for sure, and that (u, v) = (0.5, 1) with probability

0.5 and (u, v) = (0.9, 0.1) with the same probability. In this case, the optimal deterministic scheme
only permits the principal’s favoured project, (0.5, 1). However, permitting the project (0.9, 0.1)
with probability 0.5 yields the principal a higher expected payoff than banning it altogether: in
both cases the agent would choose the principal’s preferred project if she could, but if that is not
available the stochastic scheme would still allow some chance of a desirable project being chosen.
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choosing to implement one project from the list. Two variants of this approach can
be considered.

For instance, if the principal is able to verify the characteristics only of the cho-
sen project (e.g., if auditing can only happen ex post), then the mechanism design
problem again boils down to the delegation problem of simply choosing a set D of
permitted projects.18 To see this, note that the set of projects can be partitioned
into two subsets: those projects which, by making suitable reports of other projects,
are chosen for implementation under the principal’s decision rule, and those projects
which are never implemented by the principal’s rule. Faced with this rule, the agent
will simply choose its preferred available project in the former set (if any), and an-
nounce any other projects required to implement that choice. Clearly, this mechanism
is equivalent to the delegation problem where the agent can directly choose a project
in this set. So if the principal can verify the characteristics only of the chosen project,
our approach is optimal among the class of deterministic schemes.

If, however, the principal has wider powers of observation, more ornate schemes
might be able to do better. For instance, consider the scenario in which the principal
can cheaply verify the characteristics of all announced projects, so that the agent
can only conceal projects but not lie about projects she has available. To illustrate,
consider the (implausible) situation in which the principal knows for sure that the
agent has two projects to choose from. Then, if able to inspect both projects for
free, the principal could require the agent to bring them both forward, and simply
implement his preferred one and so obtain his first-best outcome. However, such
“forcing” mechanisms cannot be used when the number of projects is uncertain (as
is much more plausible), and they also cannot be used if the agent can fabricate
additional related projects.19

4 Searching for a Project

The previous model assumed that the number of projects was exogenous to the agent
(but uncertain). We now suppose instead that the agent can influence the number of
available projects in a dynamic search framework. In particular, the rate of arrival of
projects depends on privately costly search effort by the agent. Special cases of our
formulation are standard search models in which: (i) the agent can instantaneously
obtain a new draw by incurring a cost C, and (ii) the agent is passive and must wait
for a new draw to materialize exogenously.

As before, the agent’s payoff (excluding search costs) is u, the principal’s payoff
is a weighted sum of the agent’s payoff (including search costs) and the expected
value of a random variable v, where the relative weight on the agent’s payoff by the
principal is α ≤ 1. The principal determines a function r(·) such that any type-u
18If the chosen project turns out not to have the claimed characteristics, suppose the principal

does not implement any project.
19In the merger context it is easy to imagine that a firm with a particular merger possibility could

also construct a second artificial merger option which is slightly less good for both consumers and
profit. Such gaming is never worthwhile when the agent is simply faced with a permission set.
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project with v ≥ r(u) is permitted.20 Also as before, x(u) is the probability that a
project drawn at random either has agent utility below u or is not in the permitted
set.

Provided that search is worthwhile, the agent will keep searching until she finds a
permitted project which delivers her utility u above some threshold, denoted U , to be
characterized below. The agent also decides how much effort to put into searching.
Specifically, suppose that the arrival of projects follows a Poisson process, and a new
project emerges with probability h × dt in any small time interval dt, where the
hazard rate h has associated private flow cost for the agent given by c(h). Here,
c(·) is assumed to be increasing and convex. To avoid corner solutions, suppose that
c′(0) = 0. (However, we do not require that c(0) = 0.) For use later, define C to
be the minimum average search cost, so that C is the minimum value of c(h)/h over
h ≥ 0.

The probability that a given project will be implemented is 1 − x(U), while the
agent’s expected payoff at the time the project is implemented is B(U)/(1− x(U)),
where

B(U) =

∫ umax

U

u[1−G(r(u), u)]f(u) du . (22)

Following this strategy, the agent will receive an acceptable project in a time interval
dt with probability h(1 − x(U)) × dt. This implies that the probability the first
acceptable project will arrive in the time interval (t, t+ dt) is

h(1− x(U))e−h(1−x(U))t × dt .

If the agent discounts at the rate δ, her expected utility is therefore
∫ ∞

0

[h(1− x(U))
B(U)

(1− x(U))
− c(h)]e−h(1−x(U))te−δtdt =

hB(U)− c(h)

h(1− x(U)) + δ
. (23)

The agent will choose her reservation utility U and search intensity h in order to
maximize her payoff (23). The first-order condition for choosing U is

U =
hB(U)− c(h)

h(1− x(U)) + δ
. (24)

In particular, U , the reservation utility, is also the agent’s discounted payoff from
following her optimal strategy (as is usual in search models). Using expression (24),
the first-order condition for h is

hc′(h)− c(h) = δU . (25)

Given that c(·) is convex, it follows from (25) that higher U is associated with greater
search effort (at least when δ > 0). Expression (25) represents the fundamental

20The discussion in section 3.3 of more ornate mechanisms in the choosing model also applies
to this search model. In particular, in this search model it would be interesting in future work to
investigate whether the principal can sometimes do better by making the threshold rule depend on
the delay before a project is chosen. For instance, could it be optimal to impose a deadline on the
agent?
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relationship between the agent’s utility and her search effort. Since a high search
effort benefits the principal as well as the agent, the principal has a reason (beyond
the weight α placed on the agent’s interests) to increase the agent’s payoff.

Note that (24) and (25) imply that

∫ umax

U

(u− U)(1−G(r(u), u))f(u) du = c′(h) . (26)

Expression (25) shows h to be an increasing function of U , whereas (26) gives h to
be a decreasing function of U . Therefore, the pair of equations (25)—(26) can have at
most one solution in (U, h). It is clear that h corresponding to U = umax is smaller in
(26) than it is in (25). The value of h corresponding to U = 0 in (25) is the h which
minimizes c(h)/h, say h∗. The h corresponding to U = 0 in (26) is higher than h∗

provided that ∫ umax

0

u(1−G(r(u), u))f(u) du ≥ c′(h∗) = C , (27)

where the equality follows from the fact that h∗ implements the minimum average
cost, C. Condition (27) simply states that the agent has an incentive to engage in
search at all when faced with the permission rule r(·). Thus, whenever (27) holds,
there exists a unique solution to the pair of equations (25)—(26).

Finally, the comparative statics of the agent’s strategy are clear-cut. If δ is in-
creased, this shifts upwards the increasing relationship between h and U in (25) but
leaves the relationship in (26) unaltered, and this therefore induces U to fall and h
to rise (weakly). Likewise, if the principal shifts the permission rule r(·) upwards,
this shifts downwards the relationship between h and U given in (26), but leaves
(25) unaltered, and so induces the agent to lower both U and h. This discussion is
summarized in the following result:

Lemma 4 Suppose that the permission rule r(·) satisfies inequality (27). Then the
agent is willing to search for a project, and her reservation utility U and search effort
effort h are the unique solution to the pair of equations (25)—(26) (or, equivalently,
to the pair of equations (24)—(25)). All else equal, (i) increasing δ induces the agent
to (weakly) reduce U and increase h, and (ii) shifting the rule r(·) upwards induces
the agent to (weakly) reduce U and h.

Turning to the principal’s problem, let Z denote the discounted expected value of
v:

Z =
h
∫ umax
U

(∫ vmax
r(u)

vg(v, u)dv
)
f(u) du

h(1− x(U)) + δ
. (28)

The principal aims to choose the permission rule r(·) and the agent’s search strategy
(U, h) in order to maximize αU +Z subject to the agent’s twin incentive constraints
(24) and (25). The relationship between h and U in (25) cannot be influenced by the
principal, although the principal can choose the point on this locus by choosing r(·)
appropriately.
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4.1 The optimality of linear rules

We attempt to solve the principal’s problem in two stages. First, for given reservation
utility U , and hence a given h satisfying (25), we derive the permission rule r(u) which
maximizes the principal’s payoff subject to the single constraint (24). Subsequently,
the optimal choice for U can be analyzed. In this section, we consider the first
sub-problem, which turns out to have a surprisingly simple solution.

Therefore, fix U (and hence h). Writing γ for the Lagrange multiplier on the
constraint (24), the principal chooses r(·) to maximize the Lagrangian

L = Z+γ
hB − c(h)

h(1− x(U)) + δ
=

h
∫ umax
U

(∫ vmax
r(u)

[v + γu]g(v, u)dv
)
f(u)du− c(h)

h(1− x(U)) + δ
. (29)

(The multiplier γ will then be chosen in order to ensure that (24) binds.) For a
given U there are many ways to choose the rule r(·) which lead to a specified value
of 1 − x(U), the chance that a project is permitted and yields agent utility above
the reservation level U . For a specified value of 1 − x(U), it is clear that the way
to maximize the numerator of the Lagrangian (29) is to set r(u) = t − γu for some
t which ensures that the target 1 − x(U) is achieved. This simple result tells us
immediately that the optimal rule r(·) will be linear in this search setting, regardless
of the distribution of (u, v).

Altering t will affect both the numerator and denominator in the Lagrangian.
Note that a small increase in t loses (v, u) points such that v + γu ≈ t. It follows
that

d

dt

∫ umax

U

(∫ vmax

t−γu
[v + γu]g(v, u)dv

)
f(u) du = t

d

dt
(1− x(U)) .

Differentiating (29) with respect to t therefore implies that the optimal t satisfies

t = Z + γU .

Therefore L in (29) is maximized, given U and h, when

r(u) = Z − γ(u− U) . (30)

We summarize this discussion in the following result:

Proposition 5 The optimal strategy for the principal in the search framework is to
offer a linear threshold rule (30), where U is the agent’s reservation utility and Z is
the expected discounted value of v.

The intuition for the, perhaps surprising, linearity of r(u) comes from noting that
for given U and for given 1 − x(U), the principal’s problem is simply to maximize
the expected value of the weighted sum v + γu, where the weight γ is the Lagrange
multiplier on the constraint that the agent has reservation utility U .

General analysis of the second stage of the principal’s problem, the analytic deriva-
tion of the optimal value of U , turns out to be complex. Instead, in the next two
sections we focus on two polar cases: the case of no discounting (which is equivalent
to the standard search problem where the agent can instantaneously obtain a new
draw of project in return for a cost C), and the case of “urgent” projects where δ is
large.
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4.2 No discounting

In this section we focus on the special case where δ = 0. The agent’s choice of search
effort cannot then be influenced by the principal (so long as the agent is willing
to search at all). From expression (23), the agent will choose U and h in order to
maximize

B(U)− c(h)/h

1− x(U)
,

and so h is chosen to minimize c(h)/h regardless of r(·). Since C is the minimal value
of c(h)/h, the agent will choose U in order to maximize [B(U)− C]/[1− x(U)]. To
make the problem interesting, suppose that c(0) > 0 so that the agent faces a flow
cost even to search at a minimal level.21 This implies that C > 0. Note that this
problem is formally identical to the problem where the agent can instantaneously
obtain a new draw of project in return for a cost C.22

When δ = 0, then γ > 0 in (30) and the linear permission rule is always downward
sloping. To see this, note from (28) that the equilibrium Z satisfies

0 =

∫ umax

U

(∫ vmax

Z−γ(u−U)
[v − Z]g(v, u)dv

)
f(u) du . (31)

If γ ≤ 0 then the integrand above is always positive, and so the integral cannot equal
zero. Thus, we must have γ > 0 as claimed. The multiplier γ > 0 is chosen to make
constraint (24), or equivalently constraint (26), bind, so that

C =

∫ umax

U

(u− U))(1−G(Z − γ(u− U), u))f(u) du . (32)

(Note that since C is the minimum value of c(h)/h, it follows that C = c′(h).)
To obtain some explicit solutions to the principal’s problem, suppose again that

(u, v) is uniformly distributed on the rectangle [0, 1]× [−1, 1]. Expressions (31) and
(32) become respectively

0 =
1

12
(1− U)

(
3(1− Z)2 − γ2(1− U)2

)
, or 1− Z =

γ√
3
(1− U) , (33)

and

C =
1

12
(1− U)2(3(1− Z) + 2γ(1− U)) .

Eliminating γ from this pair of equations shows that

Z = 1− 2C

κ(1− U)2
, (34)

21If c(0) = 0, then C = 0 and the problem is trivial. If C = 0, the agent will make (almost) no
search effort, and the principal will wait for an (almost) perfect project to materialize. Thus, there
is almost no discretion and r(u) ≈ vmax. An example of this phenomenon can be seen in Figures 6,
7 and 8 below.
22If the agent has search effort h, the expected time until a new project arrives is 1/h. Without

discounting, therefore, the (expected) total cost of obtaining a new draw of project is c(h)/h. Once
the agent minimizes this total cost, the cost of getting a new draw is C.
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where

κ ≡ 1

2
+
1√
3
≈ 1.08 .

Since the principal’s payoff is Z +αU , the principal will therefore choose U to maxi-
mize

αU − 2C

κ(1− U)2
.

This is a decreasing function of U whenever

α ≤ 4C

κ
≈ 3.7C , (35)

in which case it is optimal to set U = 0 and so leave the agent with zero rent. The
optimal permission set is then r(u) = Z−γu, where Z is given by (34) and γ is given
by (33), both with U set equal to zero. It follows that23

r(u) = 1− 2C
κ

(
u
√
3 + 1

)
(36)

for all α that satisfy (35). Thus, for different values of C expression (36) traces out
a family of linear, downward-sloping lines for r(u). See Figure 6 for the case α = 0
(when condition (35) is always satisfied), where smaller C correspond to higher r.
When C ≈ 0, we have r(u) ≈ vmax as expected. (This is like the “large µ” case in
section 3.2.)
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Figure 6: r(u) for Uniform example with α = 0 and C = 0.01, 0.1, 0.2 and 0.3

23These solutions are valid only when C ≤ κ/(1+
√
3) ≈ 0.4. This is to ensure that r(u) does not

hit the lower boundary v = −1. If C > 0.4, the optimum will involve r(u) being a downward-sloping
linear function which hits this lower boundary (and r(u) ≡ −1 beyond this point).
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In the two models we have considered, with α = 0 and a uniform distribution
for (u, v), we have derived two surprisingly simple families of threshold rules (see
(19) and (36) above). In one respect optimal policy is similar in the two models: as
projects are easier to come by for the agent (i.e., µ is larger in the first model or C
is smaller in this second model), the permitted set of projects becomes progressively
more restricted. In other respects, though, policy is dramatically different in the two
settings. In the “choosing a project” model in section 3, the rules start at r(0) = 0 and
increase, and only desirable projects (i.e., v ≥ 0) are permitted. In the “searching”
model we have r(0) > 0, r is decreasing, and it may be optimal to permit projects
with negative payoff for the principal (as when C = 0.3 in Figure 6).

The downward slope of r(u) in the “searching” model when α = 0 can be ex-
plained as follows. The principal wishes to maximize the expected value of v in the
permitted set, subject to the agent being willing to engage in costly search for per-
mitted projects. For a given expected value of v in the permitted set, the principal is
indifferent about whether the threshold rule is upward or downward sloping; however,
the agent’s willingness to search is enhanced when higher-u projects are more likely
to be permitted, i.e., when the rule is downward sloping. For the same reason, it
can be optimal to permit the agent to choose projects with a negative payoff for the
principal, if the search cost is large enough.
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Figure 7: r(u) for Uniform example with α = 1 and c = 0.01, 0.1, 0.2, and 0.3

If (35) does not hold then U > 0 is optimal. Indeed optimal U and γ satisfy

1− U =

(
4C

κα

)1
3

, γ =

√
3

2
α .

Note that γ here is independent of C and less than α. Therefore, the permission rule
is

r(u) = 1− (1 +
√
3)

(
Cα2

2κ

) 1
3

+

√
3

2
α(1− u) .
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In Figure 7 we show the permission sets when α = 1, for the same search costs as in
Figure 6. Since the agent will keep searching until a permitted project with u > U
is found, only that part of the rule with u > U is relevant, and that part is depicted
on the figure. (The principal can choose the linear rule without constraining u > U ,
so that the downward-sloping lines can be extended to the left until they reach the
vertical axis, but the agent will never choose a permitted project to the left of the
vertical lines shown.) When the principal wishes to maximize total welfare (α = 1),
Figure 7 suggests that a good approximation to optimal policy is to permit projects
which increase total welfare by some discrete threshold, where this threshold is higher
when projects are less costly to discover.

4.3 The impact of discounting

We now discuss cases with discounting, including the limit case where δ → ∞. For
intermediate values of δ, it seems necessary to use numerical methods with partic-
ular examples to proceed. To this end, consider again the example where (u, v)
is uniformly distributed on [0, 1 × [−1, 1]. Then expressions (26) and (28) become
respectively

c′(h) =
1

12
(1− U)2(3(1− Z) + 2γ(1− U)) (37)

δ

h
Z =

1

12
(1− U)(3(1− Z)2 − γ2(1− U)2) . (38)

Suppose that the effort function is c(h) = h2, in which case expression (25) implies

h =
√
δU . (39)

Eliminating γ from the two equations (38)—(37) and substituting for the value of h
in (39) yields the following (tedious) expression for Z in terms of the agent utility U :

Z = 1− 4

√
(1− U)3

√
U/δ + 4 (4U + 7U2 + 1)− 4U − 2
(1− U)2

√
U/δ

. (40)

To find the optimal permission rule corresponding to a particular value of δ in this
example, one can work as follows. The principal wishes to choose U to maximize Z+
αU , where Z is given by expression (40). For given δ this can be done (numerically),
and then the value of the slope γ of r(u) can be obtained from expression (37). The
permission rules for various values of δ are illustrated in this figure for the case α = 0.
(Larger δ correspond to lower permission rules in the figure.)

As is intuitive, smaller values of delta lead to a higher payoff for the principal.
(The payoffs (U,Z) to the two parties are given by the “corners” of the permission
rules in the figure.) In the limit as δ → 0, the principal can obtain almost the
maximum possible payoff of 1 by permitting the agent to choose only those projects
which are almost the best possible for the principal; the agent will expend minimal
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(but positive) effort and eventually a qualified project will emerge.24 Note that the
optimal permission rules have upward slope when δ is very small.
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Figure 8: r(u) for δ = 10−7, 10−4, 0.01, 0.05, 0.1, 0.2, 0.5, and δ =∞ (in bold)

In this example, when δ is larger the principal finds it optimal to induce more
search effort from the agent.25 This implies that the principal expects to wait a
shorter time for a permitted project (acceptable to the agent) to appear.26 However,
since the permission rule r(·) is lower when δ is higher, the principal’s expected
payoff when an acceptable project emerges is lower when δ is higher. Thus, as is
intuitive, the principal is willing to accept a less good project, but with less delay,
when discounting is more significant.

The limit of impatience as δ becomes large is straightforward to analyze in general
terms. From (23) and (28), U and Z tend to zero as δ →∞. Therefore, Proposition
5 indicates that the rule r(·) will be a straight line emanating from (0, 0). However,
it is perhaps more illuminating to derive the solution directly. The impact of the
assumption that δ is large is that both principal and agent aim to maximize their
flow payoff. Thus, faced with a particular rule r(·), the agent will choose U and δ
to maximize hB(U) − c(h), where B(U) is given in (22). It is immediate that the
agent will choose U = 0, and implement the first permitted project. Thus, if we write

24From the figure it is apparent that the agent also obtains almost the ideal payoff of 1 too. How-
ever, that is inessential to the solution. When δ ≈ 0, the curve (40) is almost flat and approximately
equal to 1 for U > 0, and so the principal could do almost as well by giving the agent minimum
rent as by giving her maximal rent. Of course, if α > 0 then the principal has a strict incentive to
offer high rent to the agent.
25From (39), with δ = 10−7 effort h is about 0.0003, and this increases monotonically to h = 0.15

when δ = 0.5.
26The expected waiting time for an acceptable project to appear is (h(1 − x(U)))−1, and this

decreases with δ since both h and 1− x(U) increase with δ in this example.
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B = B(0) the agent will choose h to maximize hB − c(h). If we write

σ(B) ≡ max
h
: hB − c(h)

then σ is a convex increasing function and σ′(B) is the agent’s choice of effort given
her reward B.

The principal chooses r(·) to maximize his flow payoff:

h

∫ umax

0

(∫ vmax

r(u)

vg(v, u)dv

)
f(u) du+ α (hB − c(h)) ,

which can be written as
σ′(B)A+ ασ(B) , (41)

where

A =

∫ umax

0

(∫ vmax

r(u)

vg(v, u)dv

)
f(u) du .

By considering small changes in r(·) at u, it follows that (41) is maximized when

r(u) +

[
A
σ′′(B)

σ′(B)
+ α

]
u ≡ 0 , (42)

and r is indeed a straight line starting at the origin.27 Moreover, the line is down-
ward sloping and weakly steeper than the principal’s true preferences (which have
slope −α). The only situation in which the principal implements his naive rule, i.e.,
r(u) = −αu, is when σ′′ = 0, which applies when the agent’s search effort does
not respond to incentives, i.e., there is an exogenous hazard rate. Outside this dull
case, though, in this limit of impatience the principal allows some projects which are
strictly undesirable (v + αu < 0) in order to stimulate search effort by the agent.28

This distortion is the opposite to the bias in the “choosing” model, where the principal
forbade some desirable projects.

27For example, take the case where c(h) = a+ 1

2
bh2. Then σ(B) = 1

2b
B2 and (42) becomes

r(u) = −
(
A

B
+ α

)
u .

This permission rule does not depend on the specific parameters of the quadratic cost function. In
the example depicted in Figure 8 above, (42) implies that r(u) = −1

2
(
√
5 − 1)u, and this line is

drawn in bold on that figure.
28This feature is also seen in Baker, Gibbons, and Murphy (1999). By contrast, as discussed

in section 1, Szalay (2005) presents a model where “search incentives” are enhanced by forbidding
projects which the principal and agent might often wish to implement.
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5 Conclusions

Proceeding from the motivating example of welfare standards in merger policy, we
have explored the nature of optimal discretion for a principal to give to an agent in
two related settings of delegated project choice with (contingent) transfers ruled out.
The principal’s problem is to design the optimal set of permitted projects without
knowing which projects are available to the agent, though being able to verify the
characteristics of the project chosen by the agent. In other words, the problem is to
set the optimal rule that the agent must obey, in circumstances where the principal
can just check whether or not the rule has been met.

In the first setting the agent has a number (unknown to the principal) of projects
to choose from. The optimal permission set excludes some projects that are good for
the principal because the loss from excluding marginally good projects is outweighed
by the expected gain from thereby inducing the choice of better projects. We showed
(i) the principal permits more types of project when he put more weight on the
agent’s welfare, and (ii) the principal permits fewer types of project when the agent
has more projects to choose from. Solutions for the optimal delegation set were
derived for some examples.

In the second setting the agent searches for a project that is both permitted by
the principal and meets the agent’s own acceptance threshold. Here the optimal
permission set was quite generally characterised by a linear relationship between the
payoffs of principal and agent. In order to encourage search effort, or to cover fixed
search costs efficiently, projects with higher agent payoffs are permitted for a wider
range of principal payoffs, so that the permission rule is downward sloping. In order
to encourage search, the principal might permit some projects which are undesirable
ex post (especially with high discounting), in contrast to the bias induced in the
“choosing” model.

Our two settings have therefore illustrated different aspects of the problem of
optimally constraining the choices of an agent when the principal can simply commit
to what the agent is and is not allowed to do. Elements of our analysis could perhaps
be extended to situations where the principal has richer information (e.g., about
unchosen projects) and/or more instruments (e.g., some scope to make contingent
transfers or to impose deadlines on the agent). Another way to develop the analysis
could be to multi-agent settings: it is after all a feature of many rules that they apply
without discrimination to various agents in various situations.
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APPENDIX: Derivation of the Euler equation (6)

The following analysis follows the argument in any standard textbook on the
calculus of variations. Write

s(p, u) ≡
∫ vmax

r(p,u)

vg(v, u) dv ,

where r(p, u) is defined implicitly by

G(r(p, u), u) ≡ 1− p .

Thus r(p, u) is the threshold such that a proportion p of projects lie above r(p, u) for
given u, and s(p, u) is the sum of v above this threshold. Therefore, V (r(p, u), u) =
s(p, u)/p. Note that s is increasing and concave in p, and ranges from 0 to E[v | u]
as p ranges from 0 to 1. Note also that sp(p, u) ≡ r(p, u). Viewing p as a function of
u, we have x′(u) = f(u)p(u) as in (1) above.

The principal’s aim is to maximize

∫ umax

0

[V + αu]
d

du
φ(x(u)) du =

∫ umax

0

[
f(u)s

(
x′(u)

f(u)
, u

)
+ αux′(u)

]
φ′(x(u)) du ,

subject to the endpoint condition x(umax) = 1. Write

H(u, x, x′) ≡
[
f(u)s

(
x′

f(u)
, u

)
+ αux′

]
φ′(x)

for the Hamiltonian for this problem.
Let η(u) by any smooth function such that η(umax) = 0, and consider the function

Ψ(t) =

∫ umax

0

H(u, x+ tη, x′ + tη′) du .

If x is the optimal path, it follows that Ψ(t) must be maximized at t = 0, for any η.
By Leibniz’s rule

Ψ′(0) =

∫ umax

0

[ηHx(u, x, x
′) + η′Hx′(u, x, x

′)] du .

Integrating the second term by parts yields

∫ umax

0

η′Hx′ du = ηHx′ ]
umax
0 −

∫ umax

0

η
d

du
Hx′ du .

The only way that the problem can be stationary at x is if Hx′ = 0 when u = 0 (for
otherwise we could choose η(0) to be any value which makes the above very large).
Since Hx′ = φ′(x)f(0)sp(x

′/f(0), 0) when u = 0, it follows that at the optimum we
must have sp(p(0), u) = r(0) = 0, and assume this henceforth.
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It follows that

Ψ′(0) =

∫ umax

0

η

{
Hx −

d

du
Hx′

}
du .

Since this must be zero for all deviations η(·), it follows that {·} must be zero for all
u, and we obtain the central Euler equation

Hx(u, x, x
′) =

d

du
Hx′(u, x, x

′) .

Written explicitly this becomes

φ′′(x)[fs

(
x′

f
, u

)
+αux′] = φ′(x)

d

du

[
sp

(
x′

f
, u

)
+ αu

]
+φ′′(x)x′

[
sp

(
x′

f
, u

)
+ αu

]
.

(43)
Since p(u) = x′(u)/f(u) and r(u) ≡ sp(p(u), u), this expression becomes

r′(u) + α =
φ′′

φ′
fp

[
s(p, u)

p
− r

]
(44)

which leads to expression (6) in the text.
What about the second-order condition? When H is jointly concave in x and x′,

it is known that the solution to the Euler equation is the global maximum. However,
since Hxx = [fs(x′/f, u) + αux′]φ′′′(x) > 0 this sufficient condition never applies
in our problem. Therefore, we look for local second-order conditions. Repeated
differentiation yields

Ψ′′(0) =

∫ umax

0

[
η2Hxx + 2ηη

′Hxx′ + (η
′)2Hx′x′

]
du .

It is well known that a necessary condition for Ψ′′(0) to be negative for all η is that
Hx′x′ ≤ 0 along the optimal path. (This is the “Legendre condition”.) In our problem,
Hx′x′ = φ′(x)spp(x

′/f, u)/f < 0 and so this necessary condition is indeed satisfied.
But it would be reassuring to have a sufficient condition for Ψ′′(0) < 0 as well.

The middle term in the above integral can be integrated by parts to give
∫ umax

0

2ηη′Hxx′ du = η2Hxx′
]umax
0

−
∫ umax

0

η2
d

du
Hxx′ du = −

∫ umax

0

η2
d

du
Hxx′ du .

Here, the second equality follows from the observation that Hxx′ = 0 when u = 0
(and also that η(umax) = 0). Therefore,

Ψ′′(0) =

∫ umax

0

η2
[
Hxx −

d

du
Hxx′

]
+ (η′)2Hx′x′ du .

Since Hx′x′ < 0, a sufficient condition for Ψ′′(0) < 0 for all η is that the above term
[·] be weakly negative along the optimal path. Writing explicitly shows that

Hxx −
d

du
Hxx′ = φ′′′fp(

s

p
− sp)− φ′′(r′ + α) = fp(

s

p
− sp)

(
φ′′′ − φ′′

φ′′

φ′

)
,

where the second equality follows from (44). Since s is concave in p it follows that
( s
p
− sp) is positive, and so the above expression is weakly negative if and only if

ζ(x) ≡ φ′′(x)/φ′(x) weakly decreases with x. In such cases, we may be sure that the
second-order condition Ψ′′(0) < 0 is satisfied.
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