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Abstract

We define the logit dynamic in the space of probability measures for a game with a compact
and continuous strategy set. The original Burdett and Judd (1983) model of price dispersion
comes under this framework. We then show that if the payoff functions of the game satisfy
Lipschitz continuity under the strong topology in the space of signed measures, the logit dynamic
admits a unique solution in the space of probability measures. As a corollary, we obtain that
logit dynamic generated by the original Burdett and Judd model is well defined.

1 Introduction

In Lahkar (2007), we completed the evolutionary analysis of the finite dimensional Burdett and
Judd (1983) price dispersion model under perturbed best response dynamics. We showed that in
the most general version of the model in which both sellers and consumers behave strategically, all
dispersed price equilibria are unstable under these dynamics. We opted for the finite dimensional
evolutionary analysis to avoid technical complications and because the analysis is valuable in its
own right. Any game with a continuous strategy space is at best an abstraction of reality. In
actual economic situations, the number of strategies will always be finite, even if very large. Our
results indicate that in real market situations, we should not expect to see dispersed equilibria as a
long run social state. Instead, price dispersion is more likely to be manifested as a disequilibrium
phenomenon like cycles.

Nevertheless, we would like to extend our evolutionary analysis to the original continuous strat-
egy Burdett and Judd model. As an academic exercise, this is interesting because it allows us to
complete our analysis by providing results on the limit of the sequence of finite dimensional games.
Moreover, the infinite dimensional analysis compels us to face new technical challenges which can
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give better insights into the behavior of evolutionary dynamics in the infinite dimensional setting.
Furthermore, most problems of economic interest are modeled using continuous strategy spaces,
this being a close but convenient approximation of reality. It may not always be possible to have
a convenient finite dimensional approximation as we have been able to construct here. In such
circumstances, if we are interested in evolutionary models, it will be important to have techniques
that allow us undertake the analysis directly in the infinite dimensional setting.

Moreover, once we overcome the technical difficulties, the infinite dimensional analysis can
actually be simpler and the results more intuitive. For example, the calculation of Nash equilibrium
is much more convenient in the infinite dimensional Burdett and Judd model than in an arbitrarily
large finite approximation of Chapter 2. Also, in the finite dimensional Burdett and Judd model,
there is no way general way to quantify the number of Nash equilibria. In general, the number of
equilibria is quite large. In contrast, for the original continuous strategy model, there is always
a unique Nash equilibrium when consumer behavior is exogenous. For the case with endogenous
consumer behavior, there are, generically, two Nash equilibria, and one pure equilibria. The infinite
dimensional analysis should also allow us to harness the power of calculus and functional analysis
to express results and conditions in a simpler and more tractable format. Instead of complicated
sums and matrices, we should be able to express conditions for stability of equilibria using a
single integral. Arriving at such a goal provides a powerful motivation to undertake the infinite
dimensional analysis.

In this chapter, we do some work in extending the evolutionary analysis to the continuous
strategy setting. As of now, the results in this chapter are largely of technical importance and is
confined to showing existence of unique solution trajectories under the logit dynamic. As in the
finite dimensional case, we would like to concentrate on the evolutionary analysis of the Burdett
and Judd model under perturbed best response dynamics. However, due to technical difficulties
involved in defining the general class of perturbed best response dynamics, we focus only on the
logit dynamic with a continuum of strategies. We establish the existence of solutions under this
dynamic. Our existence result if for a general continuous strategy game. We establish conditions
that the payoff functions of the game should satisfy to ensure that solution trajectories exist. As
a corollary, we show that those conditions are satisfied by the payoffs of the Burdett and Judd
model. The infinite dimensional analysis is, however, still incomplete since we do not as yet have
any stability results in this context. The existence result is, we believe, still sufficiently novel and
interesting in its own right to be presented. It lays the groundwork for analyzing the issue of
stability as a topic for future research.

In the next section, we describe the Burdett and Judd model. In this model, the strategy set
of the sellers is the compact interval S = [0, 1]. We interpret the Burdett and Judd model as a
population game and identify each probability measure with a population state. We consider both
versions of the model—one with exogenous consumer behavior and the other where consumers
behave strategically. We then cite Burdett and Judd’s theorem identifying the Nash equilibria of
the game. The analogy between the equilibria of the original model and our finite approximation
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of it in Chapter 2 then becomes very clear.
In section 3, we introduce the infinite dimensional logit dynamic. The state space of the dynamic

is the set of probability measures on S. The logit dynamic is determined by the logit best response
function. Given a population state, the logit best response to that state is an absolute continuous
probability measure with positive density everywhere. A rest point of the logit dynamic is a fixed
point of the logit best response function and, hence, is a logit equilibrium of the game. In section
4, we establish conditions under which the set of logit equilibria of a continuous strategy game is
non-empty. As a corollary, we show that at least one logit equilibrium exists in the Burdett and
Judd model. This result follows as a simple consequence of the infinite dimensional extensions of
the Brouwer’s fixed point theorem.

Section 5 discusses the question of whether the logit dynamic is well defined for continuous
strategy games. We provide the conditions on the payoff functions that ensure that starting from
any initial population state, a unique solution trajectory in probability measures exists for all future
times. The main technical difficulty in showing this is the choice of an appropriate topology on the
set of probability measures. The general consensus following Oechssler and Riedel (2002) is that
the topology of convergence in distribution (the weak topology) is more appropriate for defining
distance between probability measures. This is because this topology respects the natural distance
between two pure strategies1. However, it is more convenient to prove the existence result under the
strong topology under which the distance between two pure strategies is always 2. This topology
can be metrized in the vector space of signed measures. We can therefore extend the logit dynamic
into this bigger space and show Lipschitz continuity of the logit dynamic. The infinite dimensional
version of the Picard-Lindelof theorem then ensures the existence of unique solution trajectories
of the dynamic. Existence and uniqueness in the strong topology then implies the same under the
weak topology. As a corollary, we obtain the existence result for the Burdett and Judd model.

Even though we haven’t been able to arrive at stability results, we believe it is plausible to
conjecture that positive definiteness would imply instability even in the infinite dimensional game.
Hence, we should also expect that dispersed equilibria are unstable in the game with endogenous
consumer behavior. This is more so because it can be shown, using ideas from Dasgupta and
Maskin (1986), that given any sequence of finite dimensional Nash equilibria, there would exist a
subsequence of equilibria that would converge in distribution to a Nash equilibria of the infinite
dimensional game. If the entire sequence is unstable, it is reasonable to suppose that the limit will
also be unstable. This remains a conjecture because it is by no means obvious. In fact, there are
results that show that even strict equilibria can be unstable in infinite games.2

1If x and y are two pure strategies that are very close to each other, then the two Dirac measures δx and δy are
also close under the weak topology. We explain this in greater detail in Section 5.

2Oechssler and Riedel (2001,2002) show instability of strict equilibria in the context of the replicator dynamic.
Hofbauer, Oechssler and Riedel (2005) show this for the BNN dynamic.
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2 The Burdett and Judd Price Dispersion Model

In this section, we provide a brief description of the Burdett and Judd price dispersion model. In
this model, there exist a continuum of firms, all selling a particular good and all facing the same
marginal cost of production. As we noted in chapter 2, the strategy set of sellers is S = [0, 1]
with 0 being the marginal cost of firms and 1 the common reservation price of consumers. Firms’
pricing behavior therefore generates a probability measure P over this set. We will denote the
distribution function of the measure P with F. To denote the probability of a single point x, we
will use P (x) instead of the more formally accurate P ({x}) . Consumer behavior is summarized
by the distribution (q1, q2, · · · qr) which may be exogenously given or may emerge endogenously

As in the finite case, we model the Burdett and Judd game as a population game with sellers
as population 1 and consumers as population 2. Since the sellers’ strategy set is a continuum, we
are implicitly assuming the sellers’ population to be a continuum as well. Population masses are
assumed to be 1 so that we can identify population states with probability measures. Let B be
the Borel σ−algebra on S. The space (S,B) is endowed with the Lebesgue measure. We denote by
Me (S,B) the set of finite and signed measures on (S,B) . We can then define the following two
sets.

∆1 =
{

P ∈Me (S,B) :
∫
S

P (dx) = 1, P (A) ≥ 0,∀A ∈ B
}

T∆1 =
{

µZ ∈Me (S,B) :
∫
S

µZ (dx) = 0
}

. (1)

∆1 is therefore the set of probability measures on S. We call T∆1 the tangent space of ∆1. We
will also use the (r − 1) dimensional real sets ∆2 and T∆2 defined earlier in chapter 2, Section 2 as
the simplex and tangent space for population 2. We define ∆ = ∆1×∆2 and T∆ = T∆1×T∆2. A
social state is now a pair (P, q) ∈ ∆. P (A) denotes the proportion of firms who charge prices in the
set A and qi represents the proportion of consumers who sample i prices before purchasing. For the
one population game with exogenous types, ∆ = ∆1 and T∆ = T∆1. In this case, a social state is
P ∈ ∆ = ∆1. In defining T∆1, we have used the notation µZ . Here, Z stands for the distribution
function of the signed measure µZ .

2.1 Exogenous Consumer Behavior

First, we consider the simpler case of exogenous consumer types. Let {qi}r
i=1 be the distribution of

consumer types. We now specify the payoff function of producers. The payoff that a firm receives
by charging a price x ∈ [0, 1] will depend on x, the distribution q , and the measure P over the set
of prices induced by the pricing behavior of the other firms.

Given the distribution q, the payoff to strategy x ∈ S is the function π1
x : ∆ → R defined by,

π1
x (P ) = x

[
q1 +

r∑
m=2

mqm

{
m−1∑
k=0

Gm
k,x(P )
k + 1

}]
. (2)
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where

Gm
k,x(P ) = (m−1

k )P (x)k (
∫

y>x
P (dy))m−1−k

= (m−1
k )P (x)k (1− F (x))m−1−k. (3)

The interpretation of the payoff function is similar to that in the finite dimensional case. If
indeed the measure P is absolutely continuous, then the payoff function takes the form.3

π1
x (P ) = x

[
q1 +

r∑
m=2

mqm (1− F (x))m−1

]
. (4)

which is in the form written by Burdett and Judd. Even if P is not absolutely continuous, payoffs
are given by (4) almost everywhere since the set of possible discontinuities in F is of measure zero.

If the distribution of consumer type is exogenous, then Burdett and Judd prove that the fol-
lowing three cases exhaust the possibilities for firm equilibria.

Lemma 2.1 (Burdett and Judd (1983)) If the distribution {qi}r
i=1 is exogenous, then the three

possible types of Nash equilibria are:

1. If q1 = 1, then the unique firm equilibrium is the monopoly price equilibrium. All firms charge
the highest available price, which is the reservation price 1.

2. If q1 = 0, then the unique firm equilibrium is the competitive price equilibrium. All firms
charge the lowest feasible price, which is 0.

3. If 0 < q1 < 1, the unique firm equilibrium is an absolutely continuous probability measure
with compact support [x, 1] with x > 0. The equilibrium payoff is given by

π∗ = q1 = x
r∑

m=1
mqm.

One can clearly observe the analogy with the corresponding finite dimensional results. For the
proofs of these statements, the reader is referred to the original paper.

2.2 Endogenous Consumer Behavior

As in the finite dimensional case, we now consider the case in which the distribution of consumers
aggregate behavior emerges endogenously. Consumers’ strategy is the number of prices to be
sampled before purchasing. A consumer has to pay a search cost c > 0 for every price he chooses

3This is the form in which Burdett and Judd define their payoff functions. They therefore ignore the possibility of
ties since they show that any dispersed equilibria, the probability measure will be absolutely continuous. To define
perturbed best response dynamics, we can also ignore ties since, as we will see, these dynamics do not depend on
Lebesgue measure zero sets. But if we want to define other dynamics, say the replicator dynamic, we need the general
definition.
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to sample. The parameters c and r are the same for all consumers. This being a two population
game, the state space is now ∆ = ∆1 ×∆2 with T∆ = T∆1 × T∆2 being the tangent space.

For producers, the payoff function continues to be (2) with the domain of the function being
∆ = ∆1 ×∆2. We now specify the cost function of consumers. If each price quotation is a random
draw from the probability measure P, then the expected cost of purchasing when m prices are
observed is given by the function Cm : ∆1 → R defined by

Cm (P ) = mc + m

1∫
0

x

{
m−1∑
k=0

Gm
k (P )

k + 1

}
P (dx) .

with Gm
k (P ) defined in (3). The interpretation of the cost function is similar to that in the finite

case. The cost function is independent of consumers’ aggregate behavior q ∈ ∆2.

Once again, our definition of the cost function is more general than that of Burdett and Judd.
They define the cost function for only such P that are absolutely continuous. In this case, Cm (P )
simplifies to

mc + m
1∫
0

x(1− F (x))m−1dF (x).

The payoff function of a consumer is the negative of the cost function. Thus,

π2
m(P ) = −Cm (P ) . (5)

Burdett and Judd assert that the cost function is convex in m. This is however, not clear from
the basic definition of the cost function. However, using integration by parts and through some
tedious algebraic manipulation, we can write the cost function in the following form.

Cm (P ) = mc +
1∫
0

(1− F (x))m dx.

By an argument similar to that in the finite dimensional case, it becomes clear that the function
is indeed convex in m as long as the measure P is not a pure strategy. The fact that Cm (P ) is
convex in m implies that there exists a unique integer m∗ or there exists two integers m∗ and m∗+1
that minimizes the expected cost of purchase.

The following theorem characterizes Nash equilibria in the game. As we remarked earlier, the
analogy with the finite dimensional case (Theorem 2.5 in chapter 2) is very clear.

Theorem 2.2 (Burdett and Judd (1983))

1. The monopoly situation (P (1) = 1, q1 = 1) is always a Nash equilibrium.

2. Any other Nash equilibria is a mixed equilibria with both producers and consumers randomiz-
ing.
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3. Depending upon the cost level c, there may be zero, one or two mixed equilibria. If (P ∗, q∗)
is a mixed Nash equilibrium and F ∗ is the distribution function of P ∗, then 0 < q∗1 < 1 and
q∗1 + q∗2 = 1 and

F ∗ (x) = 1− q∗1 (1− x)
2(1− q∗1)x

.

Thus, F ∗ is a continuous distribution function increasing monotonically over its support [x, 1]
with

x =
q∗1

2− q∗1
.

For formal proofs, the reader is referred to the original paper.

3 The Logit Dynamic

To describe behavior dynamics in infinite dimensional games, we need to define evolutionary dy-
namics in the space of probability measures ∆. Let us consider a one population game with payoff
function π1

x : ∆1 → R for strategy x ∈ S = [0, 1]. For the one population Burdett and Judd model,
π1

x (P ) is given by (2). As in the finite dimensional case, we can view evolutionary dynamics as

the differential equation
·
P (A) = V (P )(A). Here, A ⊆ S and V (P )(A) gives the direction and

magnitude of change in the proportion of agents playing strategies in A. To be admissible as an
evolutionary dynamic, we require that from every initial condition P (0) ∈ ∆, there must exist a
solution trajectory, preferably unique, {Pt}t∈[0,∞] with Pt ∈ ∆, for all t ∈ [0,∞]. Since we require
that This second property is called forward invariance. To ensure forward invariance, we require
that V (P )(S) ∈ T∆ so that the mass of the population remains fixed at 1 at all time.

Much of the literature on infinite dimensional evolutionary dynamics has focused on the repli-
cator dynamic of Taylor and Jonker (1978). The infinite dimensional version of the dynamic has
been studied by Bomze (1990, 1991), Cressman (2005), Cressman and Hofbauer (2005), Cressman,
Hofbauer and Riedel (2005) and Oechssler and Riedel (2001,2002). The continuous version of the
Brown-von Neumann-Nash (Brown and von Neumann, 1950) dynamic has also been studied—see
Hofbauer, Oechssler and Riedel (2005).

In this section, we introduce the infinite dimensional logit dynamic. For the purpose of this
general discussion, we consider a one population game with a compact strategy set S. Given x ∈
S,the payoff to x is given by π1

x : ∆ → R. Given A ⊆ S, the logit dynamic is given by

·
P (A) = V (P )(A) = Lη(P )(A)− P (A) . (6)

where Lη : ∆ → ∆ is the logit best response function. Lη(P ) is defined by

Lη(P )(A) =
∫
A

exp(η−1π1
x (P ))∫

S

exp(η−1π1
y (P ))dy

dx. (7)
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For the Burdett and Judd model, π1
x is given by (2). We note that the logit best response function

does not depend on what happens to the payoff function on a set of measure zero. Hence, to define
Lη(P ) for the Burdett and Judd model, we only need to consider payoffs at those prices x where
the distribution function F is continuous. At such prices, payoffs are given by (4).

The density function of Lη(P ) is given by

lη(P )(x) =
exp(η−1π1

x (P ))∫
S

exp(η−1π1
y (P ))dy

.

The function lη(P ) has been also obtained by Mattsson and Weibull (2002). Their interest in it
was, however, more decision theoretic than its applicability as a continuous strategy evolutionary
dynamic.

We call a fixed point of Lη(P ) a logit equilibrium of the population game π. Clearly, the set of
rest points of the dynamic coincide with the set of fixed points of the logit best response function.

One can clearly notice the analogy with the finite dimensional case. Just as the finite dimensional
logit best response function puts positive probability on all strategies, the logit density function
takes positive value over all x ∈ S. Hence, all sets of positive Lebesgue measure receive positive
probability under the logit best response measure.

In the finite dimensional case, the logit dynamic has some technical and behavioral features
that make it preferable to the best response dynamic. For example, the logit dynamic is a smooth
differential equation that makes it amenable to analysis by using standard techniques, whereas
the best response dynamic is a differential inclusion that is difficult to analyze. In the infinite
dimensional case, this advantage of the logit dynamic is even more striking: the logit best response
is always well defined whereas the proper best response may not even exist. For example, in the
Burdett and Judd game with exogenous consumer types, suppose x ∈ S is not dominated by
strategy 1.4 Suppose the population state P is P (x) = 1. Then, any seller has an incentive to
deviate to a strategy immediately below x. But there is no best response. However, the logit best
response is well defined since the density function exists at all points in S. Moreover, it also manages
to capture the intuition of the best response. For η sufficiently small, the logit best response will
assign most of the probability mass on a small interval immediately to the left of x. Thus, let A be

any connected interval that contains x and some strategies below x. Then lim
η→0

∫
A

lη(P )(x)dx = 1.

We now define the logit dynamic for a two population game. To ensure consistency with
the general setting of the Burdett and Judd model with endogenous consumer behavior, we will
assume that population 1 has a continuous strategy space [0, 1] while population 2 has a discrete
strategy set {0, 1, . . . , r}. In this framework, the state space is ∆ = ∆1 × ∆2 with ∆2 being the
(r − 1) dimensional simplex.The function π1

x : ∆ → R denotes the payoff to strategy x ∈ [0, 1]
of population 1. Similarly, π2

m : ∆ → R is the payoff to m ∈ {0, 1, . . . , r} of population 2. For

4Given exogenous consumer behavior (q1, q2, · · · qm), strategy x is dominated by 1 if x < q−1
1

(
r∑

m=1

mqm

)
.
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the Burdett and Judd model, these payoffs are given by (2) and (5) respectively. Assuming, for
simplicity, that the perturbation factor η is the same for both populations, the logit dynamic at
population state (P, q) ∈ ∆ is given by the ordinary differential equation on ∆ ,

V 1 (P, q) (A) =
·
P (A) = L1

η(P, q)(A)− P (A)

V 2
m(P, q) =

·
qm = L2

η(P, q)(m)− qm. (8)

where L1
η : ∆ → ∆1 is the logit best response function for the population of sellers defined by (7).

L2
η : ∆ → ∆2 is the logit best response function for the population of consumers given by

L2
η(P, q)(m) =

exp(η−1(π2
m (P, q)))

r∑
i=1

exp(η−1(π2
i (P, q)))

.

4 Existence of Logit Equilibrium

In this section, we consider the first of the two technical questions we address in this chapter–the
existence of logit equilibria in a continuous strategy game. Since our ultimate interest is on the
stability analysis of logit equilibria, this is fundamental issue that needs to resolved to ensure that
the evolutionary analysis of infinite dimensional games using the logit dynamic is even meaningful.
Our proof of existence of equilibria is for the one population game with strategy space S = [0, 1]
and payoff function π1

x. This result can, however, be easily extended to the Burdett and Judd
framework with two populations where the second population has a finite strategy set.

We now state the main result on the existence of logit equilibria. Let LE (π) be the set of
logit equilibria of the game. The proof of the theorem is a straightforward application of the
Schauder fixed point theorem which is an extension of the Brouwer’s fixed point theorem to infinite
dimensional settings.

Theorem 4.1 Consider the one population game with strategy set S = [0, 1] and payoff function
π1

x : ∆1 → R for x ∈ [0, 1] . Then, if the payoff function π1
x is continuous with respect to the

topology of convergence in distribution on ∆ for almost all x, the set LE (π) is non-empty.

Proof. First, we impose the topology of convergence in distribution on ∆1. The set ∆1 is
compact under this topology of weak convergence. Now, let P ∈ ∆ and let the sequence Pn

converge in distribution to P. Since π1
x is continuous with respect to the topology of convergence

in distribution on ∆ for almost all x, we have limn→∞ π1
x (Pn) = π1

x (P ) almost everywhere. So,
limn→∞ exp(η−1π1

x (Pn)) = exp(η−1π1
x (P )) almost everywhere. The logit best response function is

therefore continuous in this topology. The existence of a logit equilibrium then follows from the
Schauder fixed point theorem.5 �

5The Schauder fixed point theorem requiresMe(S,B) to be a Banach space. To fulfil this condition, we can impose
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To establish existence of equilibria in the Burdett and Judd model, we only need to verify that
the continuity condition of Theorem (4.1) is satisfied by the payoff function (2). This is established
in the following corollary.

Corollary 4.2 The set of logit equilibria LE (π) of the Burdett and Judd model with payoff function
(2) is nonempty.

Proof. We only need to verify that the payoff function π1
x is continuous with respect to the

topology of convergence in distribution on ∆ for almost all x. Let the sequence Pn converge in
distribution to P. Since Pn d−→ P, the distribution function of Pn will converge pointwise to the
distribution function F of P on a set of full measure, the possible exceptions being the zero measure
set of discontinuities in F. Hence, limn→∞ π1

x (Pn) = π1
x (P ) almost everywhere. The result now

follows from Theorem (4.1). �

5 Existence and Uniqueness of Solutions for the Logit Dynamic

in the Burdett and Judd Model

Our discussion about the logit dynamic till now has not considered the fundamental question of
whether the dynamic is well defined or not in continuous strategy games. Unless we can show that a
forward invariant solution trajectory , preferably unique, exists from every initial population state,
we cannot use it to model evolutionary behavior for such games. In the finite dimensional case,
it is easy to show the existence and uniqueness of solutions by appealing to the Picard-Lindelof
Theorem, at least as long as payoff functions are smooth. In the infinite dimensional case, however,
the matter is not so easily resolved as we have to resolve some fundamental topological issues
before defining the dynamic. In this subsection, we provide some comments on the technical issues
and problems involved in answering this question. We then provide the conditions under which
the logit dynamic admits unique solutions in continuous strategy games. In establishing this, a
personal communication from Frank Riedel has been immensely helpful. Finally, we show that
these conditions are satisfied by the Burdett and Judd model. The result can be easily extended
to games with populations having only continuous strategy spaces.

Our discussion of the existence question is for the two population framework described in
Section 3. Thus population 1 has a continuous strategy space [0, 1] while population 2 has a
discrete strategy set {0, 1, . . . , r}. The functions of the two populations are π1

x and π2
m respectively,

as described earlier. The logit dynamic itself is given by (8).
We noted earlier that an evolutionary dynamic needs to satisfy forward invariance in ∆ and

admit at least one solution trajectory in ∆. For the logit dynamic, forward invariance follows from

the fact that V 1(P, q) (S) =
r∑

m=1
V 2

m(P, q) = 0 so that solution trajectories that start in ∆ will

the BL (bounded Lipschitz) norm (Shiryaev (1995)) on Me(S,B). This norm metrizes convergence in distribution on
∆.
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remain in ∆ at all future times. To show the existence of a unique solution trajectory is, however,
a much more challenging task.

Before we begin our proof of existence of solutions, we have to resolve a very important topo-
logical question: how do we define a neighborhood of a probability measure in ∆1. In the finite
dimensional case, the particular choice of topology is not of much consequence because all norms
are equivalent. In the infinite dimensional case, however, the structure of the neighborhood of a
probability measure can depend on the choice of topology.

The two most prominent candidates for the topology on ∆1 are the strong topology and the weak
topology. The strong topology is the topology induced by the variational norm on Me(S,B), given
by ‖µ‖ = supx∈S |

∫
S

fdµ| where f is a measurable function f : S → R such that supx∈S |f (x)| ≤ 1.

If P,Q are two probability measures, then the distance between them under this norm is (Shiryaev
(1995), p. 360)

‖P −Q‖ = 2 sup
A∈B

|P (A)−Q (A)| .

The appendix in Oechssler and Riedel (2001) presents the variational norm in great detail. They
note that in the finite dimensional case, the strong topology is equivalent to the topology induced
by the pointwise convergence of probabilities.

Oechssler and Riedel (2002) argues for an alternative topology on ∆1, particularly for the case
where the strategy space is a compact interval of the real line. This is the weak topology or the
topology induced by convergence in distribution. On ∆1, this topology can be metrized by the
Prohorov metric (Shiryaev, 1995).

ρ (P,Q) = inf{ε > 0, Q (A) ≤ P (Aε) + ε and P (A) ≤ Q (Aε) + ε,∀A ∈ B}.

The main reason why Oechssler and Riedel (2002) prefer the weak topology is that it respects
the natural distance in R. Hence, if x and y are two points in S that are very close to one another,
the two Dirac measures δx and δy will also be close under the weak topology. Intuitively, this is
because the distribution functions of δx and δy will be close to one another. Thus, apart from small
intervals around x and y, the two distribution functions will be virtually identical over the rest of
S. This is unlike the case in the strong topology where the distance between two pure strategies
is always 2. Moreover, under the weak topology, ∆1 is a compact set, unlike under the strong
topology.

Given the arguments in Oechssler and Riedel (2002), it seems the weak topology is a more
appropriate choice in analyzing economic problems like the Burdett and Judd model. Hence, we
will use the weak topology to define a neighborhood in ∆1. However, trying to resolve the question
of existence and uniqueness of solutions by using the weak topology leads to some intractable
problems. In particular, there is no known norm that metrizes the weak topology in Me (S,B).
The Prohorov metric and the BL metric only works with respect to ∆1. It therefore becomes
impossible to do analysis with the weak topology. For instance, there is no way to define the notion
of Lipschitz continuity in Me (S,B) with the weak topology.
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In contrast, the variational norm metrizes the strong topology in Me (S,B) . Me (S,B) is there-
fore a Banach space under the strong topology. In particular, an infinite dimensional version of
the Picard-Lindelof theorem holds true. The Lipschitz continuity of the underlying dynamic is
sufficient to ensure existence and uniqueness. Hence, we will use the strong topology to establish of
existence and uniqueness of solutions under the logit dynamic. This, however, is sufficient to estab-
lish the result for the weak topology because existence and uniqueness under the strong topology
is a stronger result than existence and uniqueness under the weak topology.

Since we have defined the logit dynamic on ∆1 ×∆2, we need to define Lipschitz continuity on
Me (S,B)×Rr. For this, we first define a norm on Me (S,B)×Rr. Let P ∈Me (S,B) and q ∈ Rr.

Then, we define the norm ‖(P, q)‖ as

‖(P, q)‖ = max |‖P‖ , ‖q‖1| . (9)

where ‖P‖ is the variational norm and ‖q‖1 =
r∑

i=1
|qi| . Hence, given two points in Me (S,B)×Rr,

(P, q) and (Q, r), the distance between them is

‖(P, q)− (Q, r)‖ = max |‖P −Q‖ , ‖q − r‖1| .

We now present the result about the existence of unique solution trajectories for the logit
dynamic for our two-population game setting. First, we define the notion of uniform Lipschitz
continuity of the payoff function π1

x with respect to the norm (9). For this, we need to extend π1
x

and π2
m to all of Me (S,B)×Rr in the obvious manner. We then denote

(MR)2 = {(P, q) ∈Me (S,B)×Rr : ‖(P, q)‖ ≤ 2} .

Definition 5.1 The payoff function π1
x : Me (S,B)×Rr → R is Lipschitz continuous on (MR)2,

uniformly in x ∈ S, if there exists a constant K such that

|πx (P, q)− πx (Q, r)| ≤ K ‖(P, q)− (Q, r)‖

for all (P, q), (Q, r) ∈ (MR)2, x ∈ S.

We can now state our main result of this chapter.

Theorem 5.2 Let π1
x : Me (S,B) × Rr → R be Lipschitz continuous on (MR)2, uniformly in

x ∈ S. Let π2
m : Me (S,B) ×Rr → R be Lipschitz continuous on (MR)2, for all m. Then, from

each initial condition (P, q) = (P (0), q(0)) ∈ ∆, there exists a unique solution (P (t), q(t)) ∈ ∆ of
the ordinary differential equation (8) for all time t ∈ [0,∞].

We now present a brief discussion of the way we prove Theorem (5.2). The details are given
in the appendix. The proof is founded on the infinite dimensional version of the Picard-Lindelof
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theorem. Given (P, q) ∈ Me (S,B) ×Rr, suppose we have a dynamic Ṽ on Me (S,B) ×Rr given
by the ordinary differential equation,

·
P = Ṽ 1 (P, q)
·
q = Ṽ 2 (P, q) . (10)

The Picard-Lindelof theorem for infinite dimensional dynamics is stated below.

Theorem 5.3 Suppose Ṽ 1 (P, q) and Ṽ 2 (P, q) are bounded and satisfies a global Lipschitz conti-
nuity condition: ∃K > 0 such that ∀(P, q), (Q, r) ∈Me (S,B)×Rr,∥∥∥(Ṽ 1(P, q), Ṽ 2(P, q))− (Ṽ 1(Q, r), Ṽ 2(Q, r))

∥∥∥ ≤ K ‖(P, q)− (Q, r)‖ .

Then a unique solution of the differential equation (10) exists for all time t ∈ [0,∞].

A proof of Theorem 5.3 appears in Zeidler (1986) (Corollary 3.9).
We now consider existence and uniqueness of solutions specifically under the logit dynamic. To

prove these results, it is first necessary to extend the logit dynamic (8) to all of Me (S,B) ×Rr.

This is because V 1 and V 2 defined in (8) are neither bounded or globally Lipschitz continuous on
Me (S,B) × Rr. So, we cannot apply Theorem 5.3 directly. Instead, we construct two auxiliary
functions Ṽ 1(P, q) and Ṽ 2(P, q) defined on all of Me (S,B)×Rr and which coincides with V 1(P, q)
and V 2(P, q) in ∆. We then show that the dynamics defined by these functions satisfy the global
Lipschitz continuity condition of Theorem 5.3 as long as the payoff functions π1

x and π2
m satisfy the

conditions in Theorem (5.2). This then implies that from every initial point in Me (S,B) × Rr,

Ṽ will have a unique solution. Since Ṽ coincides with V in ∆ and V is forward invariant in ∆,

we can conclude that solution trajectories to these dynamics starting in ∆ do not leave ∆. Hence,
from every initial point (P (0), q(0)) ∈ ∆, the logit dynamic defined by π1

x and π2
m admits a unique

solution in ∆. The details of the proof are given in the appendix.
As a corollary, we can now show that the logit dynamic is well defined for the Burdett and Judd

model. The proof is for the case with endogenous consumer behavior. But it can be easily applied
to the one population game with exogenously defined consumer types.

Corollary 5.4 Consider the logit dynamic (8) defined by the payoff function (2) and (5) of the
Burdett and Judd model. Then, from every initial condition (P (0), q(0)) ∈ ∆, there exists a unique
solution (P (t), q(t)) ∈ ∆ of the dynamic for all time t ∈ [0,∞].

Proof. The corollary follows from Theorem (genexist) as long as the conditions about the
Lipschitz continuity of π1

x and π2
m are satisfied. We verify these conditions in the Appendix. �
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6 Conclusion

The objective of this chapter has been to extend the evolutionary analysis in chapter 2 to the original
Burdett and Judd model of price dispersion with continuous strategy space using perturbed best
response dynamics. Due to technical difficulties, we have limited ourselves to the logit dynamic. We
have introduced the logit dynamic for continuous strategy games in a naturally analogous fashion
to the finite dimensional logit dynamic. Given a game, we have defined the set of logit equilibria
of the game to be equal to the set of rest points of the logit dynamic induced by the payoffs of
the game. We have provided conditions that ensure the existence of logit equilibria in continuous
strategy games. We have shown that the Burdett and Judd model fulfils these conditions. We
have then resolved the important technical question of whether the logit dynamic generated by
continuous strategy games is well defined. We have shown that from every initial population state,
the logit dynamic generates a unique solution trajectory of population states for all forward time
provided the payoff functions of the game satisfy a certain Lipschitz continuity condition. This
result establishes the existence of solutions in the Burdett and Judd model as a corollary.

The main technical contribution of this chapter is therefore introducing the logit dynamic and
resolving the question of existence and uniqueness of solution trajectories. The analysis is, however,
incomplete since we haven’t been able to establish results about the stability of equilibria of infinite
dimensional games. Certain questions have to be resolved before we can examine such results. If we
are to be guided by the finite dimensional analysis, we need to first arrive at a definition for positive
definite games for general nonlinear payoff functions6. The difficulty in this is that there are certain
technical problems in defining the notion of derivative appropriately for infinite dimensional payoff
functions. We then need to find an appropriate method to show stability or instability of equilibria.
Again, the difficulty here is that there is no analogue of the linearization techniques we used in the
finite strategy case.

We therefore leave the study of stability properties of the logit dynamic as a subject for future
research. The resolution of this question is important as it will open the way for the analysis of a host
of economic models using evolutionary and learning models. Another important research question
is providing microfoundations to infinite dimensional evolutionary dynamics. For evolutionary
dynamics to have credibility as a description of aggregate behavior in society, it is necessary that
it be based on the behavior of individual agents. The revision protocol model in Sandholm (2006c)
provides such microfoundations for finite dimensional evolutionary dynamics. There is, however,
no obvious mathematical machinery that will provide such a foundation for infinite dimensional
dynamics. This problem has also hampered the development of learning models for continuous
strategy games.

Finally, the application of evolutionary ideas to other economic models can be a fruitful area of
research. One possible application is in explaining price cycles in “switching” models. There are
duopoly models (Narasimhan (1988), Raju, Srinivasan, and Lal (1990)) in which two stores have

6Hofbauer, Oechssler and Riedel (2005) definite the notion of negative definiteness for games with linear payoff
functions.
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loyal customers and compete for “switchers” by setting prices. The Nash equilibrium is mixed in
this game. However, experiments by Choi and Messinger (2005) reveal predictable cycles in which
for both firms, prices start high initially, decline gradually and then rise abruptly.. This raises the
possibility that these cycles can be explained using learning models like stochastic fictitious play.

7 Appendix

7.1 Logit Dynamic is well defined (Proof of Theorem 5.2)

Given (P, q) ∈Me (S,B)×Rr, we define the two auxiliary functions as follows.

Ṽ 1(P, q) = [2− ‖(P, q)‖]+V 1(P, q)

Ṽ 2(P, q) = [2− ‖(P, q)‖]+V 2(P, q)

where V 1(P, q) and V 2(P, q) are as defined in (8).
We need to show that the function Ṽ (P, q) is Lipschitz continuous. Formally, we want to show∥∥∥(Ṽ 1(P, q), Ṽ 2(P, q))− (Ṽ 1(Q, r), Ṽ 2(Q, r))

∥∥∥ ≤ K ‖(P, q)− (Q, r)‖

or

max
∣∣∣∥∥∥Ṽ 1(P, q)− Ṽ 1(Q, r)

∥∥∥ ,
∥∥∥Ṽ 2(P, q)− Ṽ 2(Q, r)

∥∥∥
1

∣∣∣ ≤ K max |‖P −Q‖ , ‖q − r‖1| (11)

for some constant K independent of (P, q), (Q, r).
In showing Lipschitz continuity, we note that the logit dynamic is not affected by payoffs on a

measure zero set.7 Hence, given (P, q), (Q, r), we can afford to consider only those prices at which
both P and Q are continuous. Hence, instead of (2), we can use (4) to define sellers’ payoff. Doing
this considerably simplifies our proof of Lipschitz continuity.

To show (11), we need to distinguish between three cases. First, if both‖(P, q)‖ , ‖(Q, r)‖ ≥ 2,

then both Ṽ (P, q) and Ṽ (Q, r) are both zero and there is nothing to show. Next, we consider
‖(P, q)‖ ≥ 2 > ‖(Q, r)‖ . Hence, Ṽ 1(P, q) = Ṽ 2(P, q) = 0. Hence, the left hand side of (11) is

max
∣∣∣∥∥∥Ṽ 1(Q, r)

∥∥∥ ,
∥∥∥Ṽ 2(Q, r)

∥∥∥
1

∣∣∣
= [2− ‖(Q, r)‖]max

∣∣∥∥V 1(Q, r)
∥∥ ,

∥∥V 2(Q, r)
∥∥

1

∣∣
Given any (Q, r) ∈Me (S,B)×Rr, the logit best response function to it is a probability measure.

7Irrespective of whether there is a mass point on some x ∈ S,
·
P (x) = −P (x) under the logit dynamic.
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Hence, ‖L(Q, r)‖ = 1. Hence,

∥∥V 1(Q, r)
∥∥ = 1 + ‖Q‖ ≤ 1 + max |‖Q‖ , ‖r‖1| ≤ 3 (12)∥∥V 2(Q, r)

∥∥
1

= 1 + ‖r‖1 ≤ 1 + max |‖Q‖ , ‖r‖1| ≤ 3

Hence,

max
∣∣∣∥∥∥Ṽ 1(Q, r)

∥∥∥ ,
∥∥∥Ṽ 2(Q, r)

∥∥∥
1

∣∣∣ ≤ 3[2− ‖(Q, r)‖] ≤ 3[‖(P, q)‖ − ‖(Q, r)‖] ≤ 3 ‖(P, q)− (Q, r)‖

So, we obtain∥∥∥(Ṽ 1(P, q), Ṽ 2(P, q))− (Ṽ 1(Q, r), Ṽ 2(Q, r))
∥∥∥ ≤ 3 ‖(P, q)− (Q, r)‖

Next, we consider the case where both ‖(P, q)‖ , ‖(Q, r)‖ ≤ 2. Continuing from (11), we can
write∥∥∥Ṽ 1(P, q)− Ṽ 1(Q, r)

∥∥∥ =
∥∥[2− ‖(P, q)‖]V 1(P, q)− [2− ‖(Q, r)‖]V 1(Q, r)

∥∥
≤ (2− ‖(P, q)‖)

∥∥V 1(P, q)− V 1(Q, r)
∥∥ +

∥∥V 1(Q, r)
∥∥ |‖(P, q)‖ − ‖(Q, r)‖|

≤ (2− ‖(P, q)‖)
∥∥V 1(P, q)− V 1(Q, r)

∥∥ + 3 ‖(P, q)− (Q, r)‖

≤ 2
∥∥V 1(P, q)− V 1(Q, r)

∥∥ + 3 ‖(P, q)− (Q, r)‖

where
∥∥V 1(Q, r)

∥∥ ≤ 3 by (12). Similarly,∥∥∥Ṽ 2(P, q)− Ṽ 2(Q, r)
∥∥∥

1
≤ 2

∥∥V 2(P, q)− V 2(Q, r)
∥∥

1
+ 3 ‖(P, q)− (Q, r)‖

Hence, the proof will be complete if we can show that V 1(P, q) and V 2(P, q) are Lipschitz
continuous on the bounded subset of Me (S,B)×Rr where ‖(P, q)‖ ≤ 2. To show this, it is sufficient
to show that the logit best response functions L1(P, q) and L2(P, q) are Lipschitz continuous on
this set. Let us consider L1(P, q) first. Since it is a probability measure, we need to show that

sup
A⊆S

∣∣∣∣∣∣∣
∫
A

eπx(P,q)dx∫
S

eπx(P,q)dx
−

∫
A

eπx(Q,r)dx∫
S

eπx(Q,r)dx

∣∣∣∣∣∣∣ ≤ K1 ‖(P, q)− (Q, r)‖

for some K1 independent of (P, q), (Q, r). Here, without loss of generality, we have taken η = 1.

For this, we only need to show that eπx(P,q) is Lipschitz. For, then
∫
A

eπx(P,q) will also be Lipschitz,

for all A ⊆ S. Moreover, since payoffs are bounded on a bounded set, the denominator of L1(P, q)
will be bounded away from zero. Since the ratio of two Lipschitz continuous functions is Lipschitz
as long as the denominator stays away from zero, we can conclude that the Lipschitz continuity of
eπx(P,q) will imply the Lipschitz continuity of L1(P, q). Now, the exponential function is Lipschitz
on bounded sets. Hence, the Lipschitz continuity of πx (P, q), uniformly in x, is sufficient for the
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Lipschitz continuity of eπx(P,q).

In sum, the Lipschitz continuity of πx (P, q) , uniformly in x, is sufficient for the Lipschitz
continuity of Ṽ 1(P, q). By a similar argument, the Lipschitz continuity of Cm (P, q) , uniformly in
m, is sufficient for the Lipschitz continuity of Ṽ 2(P, q). Theorem 5.3 and the forward invariance of
the logit dynamic then implies Theorem 5.2.

7.2 Proof of Corollary 5.4

By Theorem 5.2, it is sufficient to prove the Lipschitz continuity of π1
x. and π2

m. We show this
in the form of two lemmas. Lemma 7.1 shows the uniform Lipschitz continuity of π1

x. Lemma 7.2
shows the Lipschitz continuity of π2

m, or equivalently of the cost function Cm. Before presenting
the lemmas, we note that the logit dynamic is not affected by payoffs on a measure zero set.8

Hence, given (P, q), (Q, r), we can afford to consider only those prices at which both P and Q are
continuous. Hence, instead of (2), we can use (4) to define sellers’ payoff. Doing this considerably
simplifies our proof of Lipschitz continuity.

Lemma 7.1 Let ‖(P, q)‖ , ‖(Q, r)‖ ≤ 2. Then, for all x,

|πx (P, q)− πx (Q, r)| ≤ K2 ‖(P, q)− (Q, r)‖

Proof. By our earlier remark, it is sufficient to consider those x at which both P and Q are
continuous. Hence,

|πx (P, q)− πx (Q, r)|

=
∣∣∣∣x[(q1 − r1) +

r∑
m=2

m{qmP (x, 1)m−1 − rmQ(x, 1)m−1}]
∣∣∣∣

=
∣∣∣∣x[(q1 − r1) +

r∑
m=2

m{qmP (x, 1)m−1 − qmQ(x, 1)m−1 + qmQ(x, 1)m−1 − rmQ(x, 1)m−1}]
∣∣∣∣

=
∣∣∣∣x[(q1 − r1) +

r∑
m=2

m{qm(P (x, 1)m−1 −Q(x, 1)m−1) + Q(x, 1)m−1(qm − rm)}]
∣∣∣∣

≤
∣∣∣∣x[(q1 − r1) +

r∑
m=2

m{qm(P (x, 1)−Q(x, 1))(P (x, 1) + Q(x, 1))m−2 + Q(x, 1)m−1(qm − rm)}]
∣∣∣∣

≤
∣∣∣∣x[(q1 − r1) +

r∑
m=2

m{2(P (x, 1)−Q(x, 1))4m−2 + 2m−1(qm − rm)}]
∣∣∣∣

≤ |q1 − r1|+
r∑

m=2
m{22m−3 |P (x, 1)−Q(x, 1)|+ 2m−1 |qm − rm|}

≤ [‖q − r‖1 +
r∑

m=2
m{22m−3 ‖P −Q‖+ 2m−1 ‖q − r‖1}]

≤ (1 +
r∑

m=2
m(22m−3 + 2m−1))max |‖P −Q‖ , ‖q − r‖1| = K2 ‖(P, q)− (Q, r)‖

8Irrespective of whether there is a mass point on some x ∈ S,
·
P (x) = −P (x) under the logit dynamic.
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with K2 = (1 +
r∑

m=2
m(22m−3 + 2m−1)) and we use the fact that x ≤ 1. �

Next, we look at the Lipschitz continuity of the consumers’ cost function.

Lemma 7.2 Let ‖(P, q)‖ , ‖(Q, r)‖ ≤ 2. Let F and G be the distribution functions of P and Q

respectively. Then, for all m,

|Cm (P )− Cm (Q)| ≤ K3 ‖(P, q)− (Q, r)‖

Proof. We use the simpler version of the cost function.

|Cm (P )− Cm (Q)| =
∣∣∣∣ 1∫
0

(1− F (x))mdx−
1∫
0

(1−G(x))mdx

∣∣∣∣
≤

∣∣∣∣ 1∫
0

[(1− F (x))− (1−G(x))][(1− F (x)) + (1−G(x))]m−1dx

∣∣∣∣
≤ 4m−1

1∫
0

|F (x)−G(x)| dx ≤ 4m−1 ‖P −Q‖ ≤ 4m−1 max |‖P −Q‖ , ‖q − r‖1|

= K3 ‖(P, q)− (Q, r)‖

with K3 = 4r−1. �

V 1(P, q) and Cm (P, q) are therefore Lipschitz in the bounded set where ‖(P, q)‖ ≤ 2. If we
denote the Lipschitz constants as K2 and K3 respectively, the Lipschitz continuity of the dynamic
Ṽ in this set will be given by the constant 2(K2 + K3) + 6.

References

[1] Bomze, I., 1990. Dynamical aspects of evolutionary stability, Monatshefte für Mathematik.
110, 189–206.

[2] Bomze, I., 1991. Cross entropy minimization in uninvadable states of complex populations,
Journal of Mathematical Biology 30, 73–87.

[3] Brown, G. W., von Neumann, J., 1950. Solutions of Games by Differential Equations. In H.
W. Kuhn and A. W. Tucker, eds., Contributions to the Theory of Games I 73-79. Annals of
Mathematics Studies 24. Princeton: Princeton University Press.

[4] Burdett, K., Judd, K., 1983. Equilibrium Price Dispersion. Econometrica 51, 955-969.

[5] Choi, S., Messinger, P., 2005, “Edgeworth Promotional Cycles in the Loyal-Switcher Game,”
working paper, Marketing Department, University of Alberta.

[6] Cressman, R., 2005. Stability of the replicator equation with continuous strategy space. Math.
Soc. Sci. 50, 127-147.

18



[7] Cressman, R., Hofbauer, J., 2005. Measure dynamics on a one-dimensional continuous trait
space: Theoretical foundations for adaptive dynamics. Theoretical Population Biology 67, 47-
59.

[8] Cressman, R., Hofbauer, J., Riedel F.,2005. Stability of the replicator equation for a single-
species with a multi-dimensional continuous trait space. Journal of Theoretical Biology, in
press.

[9] Dasgupta, P., Maskin, E., 1986. The Existence of Equilibrium in Discontinuous Economic
Games, I: Theory. Review of Economic Studies 53, 1-26.

[10] Hofbauer, J., Oechssler, J., Riedel F., 2005. Brown-von Neumann-Nash Dynamics: The Con-
tinuous Strategy Case. Bonn Econ Discussion Papers. University of Bonn, Germany.

[11]

[12] Lahkar, R., 2007. The Dynamic Instability of Dispersed Price Equilibria. Unpublished
Manuscript, University College London.

[13] Mattsson, L., Weibull, J., 2002. Probabilistic Choice and Procedurally Bounded Rationality.
Games and Economic Behavior 41, 61-78.

[14] Narasimhan, C., 1988. “Competitive Promotional Strategies,” Journal of Business, 61 (4),
427–49.

[15] Oechssler, J., Riedel F., 2001. Evolutionary dynamics on infinite strategy spaces, Economic
Theory 17, 141–162.

[16] Oechssler, J., Riedel F., 2002. On the Dynamics Foundations of Evolutionary Stability in
Continuous Models. Journal of Economic Theory 107, 223-252.

[17] Raju, J., Srinivasan, V., Lal. R., 1990. “The Effects of Brand Loyalty on Competitive Price
Promotional Strategies,” Management Science, 36 (3), 276–304.

[18] Sandholm, W., 2006c. Population Games and Evolutionary Dynamics. Unpublished
Manuscript. University of Wisconsin-Madison.

[19] Shiryaev, A., 1995. Probability. 2nd ed., New York: Springer Verlag, 1995.“Probability,” 2nd
ed., New York: Springer Verlag.

[20] Zeidler, E., 1986. Nonlinear Functional Analysis and its Applications, Vol.I, Springer Verlag,
New York.

19


