Supplementary Figure 1

a

Reagents and conditions: a) 3-amino-6-chloropyridazine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (3:2), microwave ($10 \mathrm{~min}, 120^{\circ} \mathrm{C}$), 72%; b) R-benzyl bromide, $\mathrm{KO}^{t} \mathrm{Bu}, \mathrm{DMF}\left(3 \mathrm{~h}, 0^{\circ} \mathrm{C}\right.$), $31-62 \%$; c) allyl-4-bromobutyrate, DMF (5$17 \mathrm{~h}, 80^{\circ} \mathrm{C}$), 37-85 \%; d) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, scavenger ligand, $\mathrm{THF} / \mathrm{CH}_{3} \mathrm{OH}(4: 1), 56-94 \%$. Full synthetic procedures are outlined in Supplementary Information.
b

Reagents and conditions: a) 3-amino-6-chloropyridazine, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (3:2), microwave (10 min, $120^{\circ} \mathrm{C}$), 61 \%; b) allyl-4-bromobutyrate, DMF ($18 \mathrm{~h}, 80^{\circ} \mathrm{C}$), 76%; c) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, morpholine, $\mathrm{THF} / \mathrm{CH}_{3} \mathrm{OH}(4: 1)$ ($30 \mathrm{~min}, \mathrm{rt}$), 92%. Full synthetic procedures are outlined in Supplementary Information.

C

Reagents and conditions: a) NBS, AIBN, benzene ($16 \mathrm{~h}, 80^{\circ} \mathrm{C}$), 56%; b) NaH, 1, DMF ($4 \mathrm{~h}, 0-20^{\circ} \mathrm{C}$), 82\%; c) 5Hexynoic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}, \mathrm{Cul}^{2} \mathrm{Et} \mathrm{E}_{3} \mathrm{~N}, \mathrm{THF}\left(16 \mathrm{~h}, 65^{\circ} \mathrm{C}\right), 49 \%$; d) DCC, amine $28, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}(16 \mathrm{~h}, \mathrm{rt}), 52 \%$; e) Allyl 4bromobutyrate, DMF (16 h, $120^{\circ} \mathrm{C}$), 77%; f) $\mathrm{NaOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}\left(3 \mathrm{~h}, 50^{\circ} \mathrm{C}\right) ; \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~h}, 0^{\circ} \mathrm{C}\right) 65 \%$. Full synthetic procedures are outlined in Supplementary Information.

Supplementary Figure 1 Organic synthesis

(a) Synthesis of the gabazine analogues: GZ-A1, GZ-B1 and GZ-D1. (b) Synthesis of the truncated analogue GZ-B2. (c) Synthesis of biotinylated gabazine analogue GZ-B1biotin. (See supplemental information for full experimental procedures).

Supplementary Figure 2

a

b

C

d

Supplementary Figure 2 Docking GABA, gabazine and GZ-B1 at the binding site

GABA binding site model showing computational docking of GABA and gabazine to identify critical binding residues. (a) The top two predicted binding modes for GABA (Ranks 1 and 2) are shown at the GABA binding site. Rank 1 forms H-bonds with R119 ($\alpha 1$) and E155 ($\beta 2$), whereas rank 2 represents a potential alternate binding mode involving H-bonds with R207 ($\beta 2$) and E155 ($\beta 2$). (b) Predicted binding mode for gabazine. The carboxyl group of gabazine is predicted to H-bond with R207 ($\beta 2$) and E155 ($\beta 2$), and the aromatic ring is predicted to form a cation-т interaction with R119 (a1). (c) Cluster of gabazine binding modes. The predicted binding mode (b) is shown as a large ball and stick representation along with similar binding modes (11 out of 50 shown as small ball and stick representations) based on RMSD measures (See Methods). (d) Cluster of GZ-B1 binding modes based on AChBP. The predicted binding mode is shown as a large ball and stick representation along with similar binding modes (13 out of 50 shown as small ball and stick representations). (e) Cluster of GZ-B1 binding modes based on GluCl . The predicted binding mode is shown in large ball and stick format along with similar binding modes (15 out of 50 shown in small ball and stick format). H -bonds are depicted as coloured dashed lines, with cation-m interactions as dashed lines in black. The subunits are shown in ribbon format.

Supplementary Figure 3

a

$\boldsymbol{\beta}_{\mathbf{1}}$	26	RLRPDFG	32
$\boldsymbol{\beta}_{\mathbf{2}}$	26	RLRPDFG	32
$\boldsymbol{\beta}_{\mathbf{3}}$	26	RLRPDFG	32

LoopB		
158	GYTTDD	163
158	GYTTDD	163
158	GYTTDD	163

b

	82		LNNTM	
α_{2}	82		RLNn	8
α_{3}	107		LnNLL	
α_{4}	81		RLNnMm	-88
α_{5}	92		LNNLI	99
α_{6}	81		LnNLM	

Loope			
117	LIRITE	122	
117	LTRIQD	122	
142	LTRLVD	147	
116	LERIMR	121	
127	LTRLED	132	
116	LERLMQ	121	

Supplementary Figure 3 Binding site residues aligning with the benzophenone group

(a) Primary sequence alignments of $\mathrm{GABA}_{\mathrm{A}}$ receptor $\beta 1-3$ subunits from two stretches of residues predicted to oppose the benzophenone group of GZ-B1. The latter contains loop B. (b) Similar alignments of residues in a1-6 subunits opposing the benzophenone group. The latter contains loop E. Boxed areas indicate conserved residues. In α subunits residues have been colour codes to highlight amino acid differences.

Supplementary Figure 4

a

b

c

Supplementary Figure 4 Quantum dot binding to hippocampal neurons via GZ-

B1-biotin

(a) Structure of GZ-B1-biotin. Colour coded groups of the molecule are: gabazine (black), benzophenone (green), alkene and polyethylene glycol (PEG) linker (blue), biotin (red). (b) Cultured hippocampal neurons shown after treatment with 0.5 mM GZ-B1-biotin (previously incubated for 3 min with $25 \mathrm{pM} \mathrm{QD}_{655}$-streptavidin; Life Technologies) not-exposed (control) or UV exposed (40 s) followed by washing of cells in Krebs solution. DIC and quantum dot fluorescent (655 nm) images are shown. Note the significantly greater number of bound QDs observed in the UV treated dishes. Scale bar: $20 \mu \mathrm{~m}$. (c) Histogram showing significantly higher specific QD labelling in UV treated dishes $(\mathrm{n}=4)$. (d) Schematic representation of the proposed orientation of a bound GZ-B1-biotin molecule at the GABA binding site. The gabazine group (out of view) nestles behind Loop C of the β subunit with the benzophenone group largely above. This allows the PEG and biotin groups to orientate away from the GABA $_{A}$ receptor facilitating a strong bond with a streptavidin-coated quantum dot.

Supplementary Figure 5

Supplementary Figure 5 Internalisation of QD-labelled GABA A_{A} receptors in hippocampal neurons

At 7 DIV, hippocampal neurons were transiently transfected with eGFP cDNA using a calcium phosphate method to enable visualisation of the cell bodies, dendritic and axonic processes. Approximately 1 week later, neurons were incubated with 0.5 mM GZ-B1-biotin (pre-reacted with 25 pM QD $_{655}$ for 3 min), then UV exposed for 40 s , and washed with Krebs solution. Fixation was carried out at $t=0 \mathrm{~min}$ or after incubation for 1 hr at $37^{\circ} \mathrm{C}(\mathrm{t}=60 \mathrm{~min})$. The images are maximum intensity projections of z -stacks (left and right panels) from hippocampal neurons at 12-14 DIV expressing eGFP labelled with GZ-B1-biotin-streptavidin-QD ${ }_{655}$. The QDs are shown as red dots in the middle panel. A Y-Z axis projection (lower panel, far right) has been included at $t=60$ to show the location of the internalised QDs in the cytosol between the nucleus and the plasma membrane. Images were acquired using a SP8vis confocal microscope with a resonant scanner, x40 oil objective, 405 nm excitation for QD655 and 488 nm for eGFP. Images were processed using Fiji (ImageJ v.1.48). Scale bar $=10 \mu \mathrm{~m}$. Arrows indicate surface $(t=0)$ or internalised QDs $(t=60)$. For a 3D projection see Supplementary Movie 1.

Supplementary Table 1

Functional effects of binding site mutations for GABA, gabazine and GZ-B1

Isoform	Spont. activity	$\begin{gathered} \text { GABA } \\ \mathrm{pEC}_{50}\left(\mathrm{EC}_{50}\right) \end{gathered}$	Gabazine pIC $_{50}\left(\mathrm{IC}_{50}\right)$ Max inhibition	$\begin{gathered} \text { GZ-B1 } \\ \text { pIC } C_{50}\left(\text { IC }_{50}\right) \\ \text { Max inhibition } \end{gathered}$	GABA max currents ($\mathrm{pApF}{ }^{-1}$)
$\alpha 1 \beta 2 \mathrm{y} 2$ (wt)	n.d.	$\begin{gathered} 5.180 \pm 0.0593(34) \\ (6.6 \mu M) \end{gathered}$	$\begin{gathered} 6.457 \pm 0.0308(8) \\ (0.3491 \mu M) \\ 100 \% \end{gathered}$	$\begin{gathered} 6.809 \pm 0.0852(6) \\ (0.1553 \mu M) \\ 100 \% \end{gathered}$	221 ± 25 (13)
$\alpha 1^{\mathrm{R84}} \mathrm{\beta}^{2} \mathrm{\gamma} 2$	n.d.	$\begin{gathered} 4.776 \pm 0.0817(6) \\ (17 \mu M) \end{gathered}$	n.t.	$\begin{gathered} 5.374 \pm 0.0756(5) \\ (4.22 \mu M) \\ 100 \% \end{gathered}$	242 ± 32 (6)
$\alpha 1^{\mathrm{R} 119 \mathrm{Q}^{3} 2 \mathrm{\gamma} 2}$	n.d.	$\begin{gathered} 3.809 \pm 0.1484(8) \\ (155 \mu M) \end{gathered}$	$\begin{gathered} 6.727 \pm 0.2809(7) \\ (0.1876 \mu M) \\ 100 \% \end{gathered}$	$\begin{gathered} 7.146 \pm 0.2142(5) \\ (0.0715 \mu M) \\ 100 \% \end{gathered}$	207 ± 55 (8)
$\alpha 1 \beta 2^{R 207 Q} \mathrm{Y} 2$	n.d.	$\begin{gathered} 3.344 \pm 0.1241(6) \\ (452 \mu M) \end{gathered}$	$\begin{gathered} 5.768 \pm 0.0885(5) \\ (1.7077 \mu M) \\ 100 \% \end{gathered}$	$\begin{gathered} 6.312 \pm 0.0303(5) \\ (0.4871 \mu M) \\ 83 \pm 3 \% \end{gathered}$	249 ± 48 (6)
$\alpha 1 \beta 2{ }^{\text {E155Q }} \mathrm{Y} 2$	72 ± 3 \%	$\begin{gathered} 2.580 \pm 0.3561(6) \\ (2,628 \mu M) \end{gathered}$	$\begin{gathered} <4(4)^{i} \\ (>100 \mu M) \\ \text { n.d. } \end{gathered}$	$\begin{gathered} <4(4)^{i} \\ (>100 \mu M) \\ \text { n.d. } \end{gathered}$	25 ± 6 (6)
$\alpha 1 \beta 2{ }^{\text {D162+163N }} \mathrm{Y} 2$	n.d.	$\begin{gathered} 4.752 \pm 0.0589(5) \\ (18 \mu M) \end{gathered}$	n.t.	$\begin{gathered} 4.869 \pm 0.0933(5) \\ (13.5 \mu M) \\ \text { n.d. } \end{gathered}$	175 ± 27 (5)
$\alpha 1 \beta 2{ }^{\text {E15 }}{ }^{\text {Q }+ \text { R207Q }} \mathrm{Y} 2$	7 ± 1 \%	$\begin{gathered} 3.326 \pm 0.0674(6) \\ (473 \mu M) \end{gathered}$	$\begin{gathered} 5.860 \pm 0.3535(5) \\ (1.3817 \mu M) \\ 100 \% \end{gathered}$	$\begin{gathered} 6.328 \pm 0.0526(5) \\ (0.4700 \mu M) \\ 100 \% \end{gathered}$	$152 \pm 32(6)$
$\alpha 1^{\mathrm{R} 119 \mathrm{Q}} \beta 2^{\mathrm{E} 155 \mathrm{Q}} \mathrm{Y} 2$	87 ± 3 \%	$\begin{gathered} 3.113 \pm 0.263(4) \\ (772 \mu M) \end{gathered}$	$\begin{gathered} <4(4)^{\mathrm{i}} \\ (>100 \mu \mathrm{M}) \\ \text { n.d. } \end{gathered}$	$\begin{gathered} <4(4)^{\mathrm{i}} \\ (>100 \mu \mathrm{M}) \\ \text { n.d. } \end{gathered}$	32 ± 16 (4)
$\alpha 1{ }^{\text {R84Q }} \beta_{2}{ }^{\text {R207Q }} \mathrm{Y} 2$	n.d.	$\begin{gathered} 3.020 \pm 0.2515(5) \\ (955 \mu M) \end{gathered}$	n.t.	$\begin{gathered} 3.740 \pm 0.1224(6) \\ (182 \mu M) \\ \text { n.d. } \end{gathered}$	124 ± 39 (5)
$\alpha 1^{R 119 Q^{2}} 2^{\text {R207O }}{ }^{2} 2$	n.d.	$\begin{gathered} 1.799 \pm 0.2616(6) \\ (15,885 \mu M) \end{gathered}$	5.426 ± 0.2565 (5) (3.7535 $\mu \mathrm{M}$) 100 \%	$\begin{gathered} 6.379 \pm 0.0422(5) \\ (0.4182 \mu M) \\ 75 \pm 2 \% \end{gathered}$	120 ± 27 (6)
$\alpha 1^{\mathrm{R} 119 \mathrm{Q}} \mathrm{S}^{\mathrm{E} 155 Q+\mathrm{R} 207 \mathrm{Q}} \mathrm{Y} 2$	10 ± 3 \%	$\begin{gathered} 1.746 \pm 0.1982(6) \\ (17,968 \mu M) \end{gathered}$	$\begin{gathered} 5.645 \pm 0.0579(5) \\ (2.2623 \mu M) \\ 94 \pm 1 \% \end{gathered}$	$\begin{gathered} 6.371 \pm 0.1654(5) \\ (0.3381 \mu M) \\ 72 \pm 4 \% \end{gathered}$	81 ± 23 (6)
$\alpha 1^{\text {R84+119Q }} \beta 22^{\text {D162+163N }}{ }^{2} 2$	n.d.	$\begin{gathered} 2.032 \pm 0.022(5) \\ (9,282 \mu M) \end{gathered}$	n.t.	$\begin{gathered} 3.589 \pm 0.1027(5) \\ (258 \mu M) \\ \text { n.d. } \end{gathered}$	83 ± 25 (5)

Supplementary Table 1: Potencies of GABA and antagonists including extent of spontaneous channel opening for wild-type and mutant GABA A_{A} receptors. n.d. not detectable; n.t. Not tested; i: inhibition of spontaneous activity, since agonist induced responses (EC_{50}) were too small.
Maximum currents are shown as $\mathrm{pA} \mathrm{pF}^{-1}$ (average cell capacitance: $13.4 \pm 0.9 \mathrm{pF}$).

Supplementary Table 2

GABA potency before and after UV exposure in the presence of GZ-B1

Isoform	Conc. of GZ-B1 during UV ($\mu \mathrm{M}$)	Pre-UV GABA $\mathrm{pEC} 50\left(\mathrm{EC}_{50}\right)$	Post-UV GABA $\mathrm{pEC} \mathrm{C}_{50}\left(\mathrm{EC}_{50}\right)$	P
$\alpha 1 \beta 2 \mathrm{y} 2$	10	$\begin{gathered} 5.259 \pm 0.0913(6) \\ (5.51 \mu M) \end{gathered}$	$\begin{gathered} 5.542 \pm 0.1026(6) \\ (2.87 \mu M) \end{gathered}$	0.06
$\alpha 1^{R 119 Q^{3}}{ }^{\gamma} \gamma 2$	10	$\begin{gathered} 3.385 \pm 0.1006(6) \\ (412 \mu M) \end{gathered}$	$\begin{gathered} 3.596 \pm 0.04614(6) \\ (254 \mu M) \end{gathered}$	0.09
$\alpha 1 \beta 2{ }^{\text {D162N, D163N }} \mathrm{Y} 2$	100	$\begin{gathered} 4.607 \pm 0.0416(4) \\ (25 \mu M) \end{gathered}$	$\begin{gathered} 4.330 \pm 0.1943(4) \\ (47 \mu M) \end{gathered}$	0.21
$\alpha 1^{\mathrm{R84Q}} \mathrm{\beta} 2 \mathrm{\gamma} 2$	100	$\begin{gathered} 4.514 \pm 0.1377(6) \\ (31 \mu M) \end{gathered}$	$\begin{gathered} 4.541 \pm 0.1228(6) \\ (29 \mu M) \end{gathered}$	0.88
$\alpha 1^{\text {R84Q }} 32^{\text {R207Q }} \mathrm{Y} 2$	100	$\begin{gathered} 3.020 \pm 0.2515(5) \\ (955 \mu M) \end{gathered}$	$\begin{gathered} 2.932 \pm 0.2530(5) \\ (1169 \mu M) \end{gathered}$	0.81
$\alpha 1^{\text {R84Q, R119Q }} \beta 2^{\text {D162N, D163N }} \mathrm{y} 2$	100	$\begin{gathered} 2.032 \pm 0.022(4) \\ (9282 \mu M) \end{gathered}$	$\begin{gathered} 1.949 \pm 0.0421(4) \\ (11240 \mu M) \end{gathered}$	0.11

Potencies of GZ-B1 measured for wild-type and mutant GABA A_{A} receptors before and after UV exposure

Supplementary Table 3

Partition coefficients for gabazine analogues

Compound	cLogP
GZ-A1	2.65
GZ-B1	3.49
GZ-D1	4.63
GZ-B2	2.22
GZ-B1-biotin	5.07

Supplementary Methods

All chemical reactions were carried out at atmospheric pressure with stirring unless otherwise stated. All reagents and solvents were purchased from suppliers and used without further purification unless otherwise stated. Thin-layer chromatography (TLC) was performed on aluminium-backed TLC plates pre-coated with Merck silica gel 60 F_{254}. Compounds were visualized with UV light and/or staining with KMnO_{4} or vanillin. Flash column chromatography was performed using silica gel 60 (230-400 mesh). Solvents used for anhydrous reactions were dried and distilled immediately prior to use. For use in anhydrous reactions all glassware was flame-dried and cooled under an argon atmosphere immediately prior to use. NMR spectra were recorded on a Bruker 600 or 500 MHz spectrometer. Chemical shifts (δ) are listed in ppm downfield from TMS. Coupling constants are reported in Hz. High and low resolution mass spectrometry was performed using a VG70 SE operating in modes CI, EI, ES and FAB. Infrared spectra were obtained on a Perkin Elmer Spectrum 100 FTIR Spectrometer operating in ATR mode. UV/Vis absorbance spectra were recorded using a Cary WinUV spectrometer. Wavelength(s) corresponding to any absorbance maxima ($\lambda_{\max }$) are given in nm, and molar extinction co-efficients (ε) are given in $\mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

UV - visual spectra

UV - visual spectum for photoaffinity labels GZ-B1 and GZ-B1-biotin, indicating the presence of the $n-\pi^{*}$ absorbance at $\lambda=360 \mathrm{~nm}$.

GZ-B1

UV spectra of GZ-B1 ($\mathrm{c}=2.0 \times 10^{-5} \mathrm{M}$)

GZ-B1-biotin

UV spectra of GZ-B1-biotin ($\mathrm{c}=1.5 \times 10^{-3} \mathrm{M}$).
Partition coefficients for the gabazine analogues were estimated using OSIRIS Property Explorer ${ }^{1}$ to determine the partition coefficient between n-octanol and water (clogP $=\left\{\log \left(\frac{C_{\text {octanol }}}{C_{\text {water }}}\right)\right\}$) (Supplementary Table 3). Melting points were measured with a Gallenkamp apparatus and are uncorrected. Room temperature (rt) is defined as between 19-22 ${ }^{\circ} \mathrm{C}$. In vacuo is used to describe solvent removal by rotary evaporation between $20{ }^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, at approximately 10 mmHg unless otherwise stated. The term 'degassed' refers to the process of removing O_{2} from a solution by bubbling argon through the solution prior to use. Microwave irradiation was carried out in a CEM 150W microwave reactor.

4-(6-Amino-pyridazin-3-yl)-phenol (1)

To a microwave vial containing 3-amino-6-chloropyridazine ($102 \mathrm{mg}, 0.740 \mathrm{mmol}$), 4hydroxyphenylboronic acid (163 mg, 1.26 mmol), bis(triphenylphosphine)palladium(II) dichloride ($27 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(202$ $\mathrm{mg}, 1.46 \mathrm{mmol})$ were added $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~mL})$. The resulting solution was degassed for 5 min and subjected to microwave irradiation for 10 min at $120^{\circ} \mathrm{C}$. The mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with EtOAc ($3 \times$ 100 mL), washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography ($\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{OH}, 19: 1 \mathrm{v} / \mathrm{v}$) to give the pyridazine 1 ($87 \mathrm{mg}, 0.459 \mathrm{mmol}, 62 \%$) as an orange solid. m.p.: 250-252
${ }^{\circ} \mathrm{C}$; $\mathrm{TLC}(\mathrm{EtOAc}): \mathrm{RF}=0.10 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}: \mathrm{CDCl}_{3}, 1: 1 \mathrm{v} / \mathrm{v}, 600 \mathrm{MHz}\right) \delta 7.68(\mathrm{~d}, \mathrm{~J}$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 159.3,157.8,150.0,128.0,126.7,124.7,115.5$, 114.4; IR (film): 3414, 3121, 1646, 1617, $1447 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{m} \mathrm{z}^{-1}$): [M] ${ }^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}, 187.0740$; found, 187.0732.

Synthesis of GZ-i1

6-(4-Benzyloxyphenyl)-pyridazin-3-yl amine (2)

1 ($250 \mathrm{mg}, 1.34 \mathrm{mmol}$) and sodium hydride ($54 \mathrm{mg}, 1.34 \mathrm{mmol}$) in DMF (2 mL) was cooled to $0^{\circ} \mathrm{C}$. Benzyl bromide ($239 \mathrm{mg}, 1.40 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and washed with water (100 mL). The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$. The organic extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and the residue subjected to column chromatography (EtOAc) to give the pyridazine 2 ($151 \mathrm{mg}, 0.544 \mathrm{mmol}, 41 \%$) as a white solid. m.p.: $190-192{ }^{\circ} \mathrm{C}$; TLC (EtOAc: $\mathrm{CH}_{3} \mathrm{OH}, 20: 1 \mathrm{v} / \mathrm{v}$): RF $=0.30 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 7.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36$ (dd, $J=7.3$ and $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta$ $161.0,138.5,136.2,130.7,129.6,129.0,128.6,128.5,128.2,127.9,117.7,116.3$, 71.0; IR (film): 3431, 3282, 3113, 1647, $1609 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{m} \mathrm{z}^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}, 278.1281$; found, 278.1293.

1-(3-Allyloxycarbonylpropyl)-6-amino-3-(4-benzyloxyphenyl)-pyridazinium bromide
(6)

To a solution of 2 ($50 \mathrm{mg}, 0.180 \mathrm{mmol}$) in DMF (0.2 mL) was added allyl-4bromobutyrate ($56 \mathrm{mg}, 0.271 \mathrm{mmol}$). The solution was heated to $80^{\circ} \mathrm{C}$ for 16 h . The hot solution was poured into EtOAc (5 mL) to yield a solid, which was then isolated by filtration. The product was dried under high vacuum to give the ester 6 (51 mg , $0.105 \mathrm{mmol}, 59 \%$) as a grey solid. m.p.: $174-177{ }^{\circ} \mathrm{C}$; TLC $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 8: 2 \mathrm{v} / \mathrm{v}\right)$: $R F=0.60 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 8.27(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=5.6$
$\mathrm{Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=7.4$ and 7.1 $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=$ 15.7 and $1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=8.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.44$ (m, 4 H), $2.60(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta$ 174.0, 162.7, 153.9, 151.9, 138.2, 133.4, 132.6, 129.6, 129.3, 129.1, 128.6, 126.7, 126.6, 118.6, 116.7, 71.1, 66.5, 56.9, 31.3, 22.5; IR (film): 2930, 1724, 1681, 1649, 1612, 1554, 1541, $1509 \mathrm{~cm}^{-1}$; HRMS ($m z^{-1}$): $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{3}$, 403.1896; found, 403.1864.

1-(3-Carboxypropyl)-6-amino-3-(4-benzyloxyphenyl)-pyridazinium bromide (GZ-i1)

To a solution of $\mathrm{NaHCO}_{3}(20 \mathrm{mg}, 0.240 \mathrm{mmol})$, and dimedone ($18 \mathrm{mg}, 0.128 \mathrm{mmol}$) in water (0.70 mL) was successively added THF (4.5 mL), triethyl phosphite (11 mg , $0.066 \mathrm{mmol})$ and palladium(II) acetate ($2.0 \mathrm{mg}, 0.0089 \mathrm{mmol}$) under argon. After stirring for $3 \mathrm{~min}, 6$ ($51 \mathrm{mg}, 0.105 \mathrm{mmol}$) was added and the mixture was stirred at $35{ }^{\circ} \mathrm{C}$ for 17 h . The mixture was diluted with water (5 mL) and washed thoroughly with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The aqueous phase was separated and evaporated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 9: 1 \mathrm{v} / \mathrm{v}\right)$ to give the acid GZ-i1 ($26 \mathrm{mg}, 0.059 \mathrm{mmol}, 56 \%$) as a white solid. m.p.: $180-183^{\circ} \mathrm{C}$; TLC ($\left.\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 8: 2 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.30 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 600 \mathrm{MHz}\right)$ $\delta 8.14(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (dd, $J=7.6$ and $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ ($\mathrm{s}, 2 \mathrm{H}$), 7.11 ($\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.44-4.41 (m, 2H), 2.50-2.45 (m, 2H), 2.19-2.14 (m, $\left.2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 1: 1\right), 150 \mathrm{MHz}\right) \delta 177.3,161.3,152.2,150.5,136.3$, 131.1, 128.5, 128.1, 128.0, 127.4, 125.4, 125.0, 115.5, 70.1, 56.2, 30.9, 22.2; IR (film): 2924, 2214, 1712, 1671, 1647, 1609, 1566, 1535, $1512 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right)$: $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}, 364.1671$; found, 364.1661.

Synthesis of GZ-A1

4-Azidotoluene ${ }^{2}$ (10)

To a solution of 4-toluidine ($3.75 \mathrm{~g}, 35.0 \mathrm{mmol}$) in $\mathrm{HCl}(50 \mathrm{~mL}, 2 \mathrm{M})$ at $-5^{\circ} \mathrm{C}$ was added sodium nitrite ($2.90 \mathrm{~g}, 42.0 \mathrm{mmol}$) in water (10 mL). The temperature was maintained at $-5^{\circ} \mathrm{C}$ for 5 min . Urea ($250 \mathrm{mg}, 4.16 \mathrm{mmol}$) was then added to the reaction mixture. The resulting solution was added over 5 min to a solution of sodium azide ($4.55 \mathrm{~g}, 70.0 \mathrm{mmol}$) and sodium acetate ($8.4 \mathrm{~g}, 105 \mathrm{mmol}$) in water (50 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times$ $100 \mathrm{~mL})$, washed with water $(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was dried under high vacuum to give the azide 10 ($4.00 \mathrm{~g}, 30.0$ $\mathrm{mmol}, 86 \%$) as a yellow oil. TLC ($40-60{ }^{\circ} \mathrm{C}$ petroleum ether): $\mathrm{RF}=0.25 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.15(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 137.2,134.7,130.4,118.9,20.9$ IR (film): 2933, 2111 cm^{-1}; HRMS $\left(\mathrm{m} \mathrm{z}^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3}, 133.0640$; found, 133.0641.

1-Azido-4-bromomethyl-benzene (11)

To a solution of $10(2.27 \mathrm{~g}, 17.0 \mathrm{mmol})$ in anhydrous benzene $(20 \mathrm{~mL})$ was added NBS ($3.78 \mathrm{~g}, 21.3 \mathrm{mmol}$) and AIBN ($1.40 \mathrm{~g}, 8.52 \mathrm{mmol}$). The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 4 h . After cooling to rt , the solvent was concentrated in vacuo. The residue was purified by column chromatography ($40-60^{\circ} \mathrm{C}$ petroleum ether) to give the azide 11 ($1.60 \mathrm{~g}, 7.58 \mathrm{mmol}, 44 \%$) as a colourless oil. TLC $\left(40-60{ }^{\circ} \mathrm{C}\right.$ petroleum ether): $\mathrm{RF}=0.30 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.01 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 140.3,134.6$, 130.9, 119.4, 33.0; IR (film): 2954, $2125 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{m} \mathrm{z}^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3}{ }^{79} \mathrm{Br}, 210.9740$, found, 210.9745 .

6-[4-(4-Azidobenzyloxy)-phenyl]-pyridazin-3-yl amine (3)

1 ($300 \mathrm{mg}, 1.60 \mathrm{mmol}$) and potassium tert-butoxide ($186 \mathrm{mg}, 1.66 \mathrm{mmol}$) in DMF (2 mL) were cooled to $0^{\circ} \mathrm{C} .11$ ($348 \mathrm{mg}, 1.65 \mathrm{mmol}$) was dissolved in DMF (1 mL) and added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was extracted with EtOAc (100 mL) and washed with water (100 mL). The aqueous layer was further extracted with EtOAc $(4 \times 50 \mathrm{~mL})$. The organic extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and the
residue subjected to column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 19: 1 \mathrm{v} / \mathrm{v}\right)$ to give the pyridazine 3 ($193 \mathrm{mg}, 0.606 \mathrm{mmol}, 38 \%$) as a white solid. m.p.: $204-206{ }^{\circ} \mathrm{C}$; TLC $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 19: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.20$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,500 \mathrm{MHz}) \delta 7.88(\mathrm{~d}, \mathrm{~J}=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), 7.07 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (DMSO, 125 MHz) δ 159.4, 158.5, 149.6, 138.9, 133.9, 129.8, 129.5, 126.6, 125.0, 119.2, 115.0, 114.4, 66.7; IR (film): 3431, 3282, 3113, 2954, 2125, $1647 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}$, 319.1307; found, 319.1312.

1-(3-Allyloxycarbonyl-propyl)-6-amino-3-[4-(4-azido-benzyloxy)-phenyl]-pyridazinium bromide (7)

To a solution of 3 ($194 \mathrm{mg}, 0.609 \mathrm{mmol}$) in DMF (1 mL) was added allyl-4bromobutyrate ($194 \mathrm{mg}, 0.937 \mathrm{mmol}$). The solution was heated to $80^{\circ} \mathrm{C}$ for 6 h . The hot solution was then poured into EtOAc $(20 \mathrm{~mL})$ to yield a solid, which was then isolated by filtration. The product was dried under high vacuum to give the ester 7 $(120 \mathrm{mg}, 0.228 \mathrm{mmol}, 37 \%)$ as a white solid. m.p.: degraded $>200^{\circ} \mathrm{C}$; TLC (EtOAc: $\left.\mathrm{CH}_{3} \mathrm{OH}, 9: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.20 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 8.20(\mathrm{~d}, \mathrm{~J}=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=17.3$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, J=10.5$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.48-4.46(\mathrm{~m}, 4 \mathrm{H})$, $2.61(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 174.0,161.9$, 153.8, 152.2, 133.4, 132.5, 131.4, 130.5, 130.5, 129.4, 126.5, 125.0, 120.1, 118.6, 117.0, 70.6, 66.5, 56.8, 31.3, 22.4; IR (film): 3184, 2112, 1727, 1646, 1607, $1543 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{3}, 445.1988$; found, 445.1994.

6-Amino-3-[4-(4-azido-benzyloxy)-phenyl]-1-(3-carboxy-propyl)-pyridazinium bromide (GZ-A1)

To a solution of $7(120 \mathrm{mg}, 0.228 \mathrm{mmol})$ in $\mathrm{THF}(4 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ was added morpholine ($198 \mathrm{mg}, 2.28 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) $(26 \mathrm{mg}, 0.023 \mathrm{mmol})$ under argon. The reaction mixture was stirred at rt for 30 min , then concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{AcOH}, 17: 2.9: 0.1 \mathrm{v} / \mathrm{v}\right.$) to give the acid GZ-A1 (104 mg, 0.214 mmol , 94%) as a white solid. m.p.: degraded $>200^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 17: 3 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=$ $0.20 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 600 \mathrm{MHz}\right) \delta 8.12(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.47-4.41(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.33(\mathrm{~m}, 2 \mathrm{H})$, 2.11-2.05 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 150 \mathrm{MHz}\right) \delta 177.9,161.0$, 152.2, 150.3, 139.9, 133.1, 131.0, 129.1, 128.7, 128.0, 125.4, 125.3, 119.1, 115.5, 69.4, 56.7, 31.9, 22.7; IR (film): 2930, 2111, 1710, 1656, 1538, $1509 \mathrm{~cm}^{-1}$; UV/vis $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 1: 1 \mathrm{v} / \mathrm{v}\right): \lambda_{\max } 283 \mathrm{~nm}\left(\varepsilon=11900 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), \lambda_{\max } 313 \mathrm{~nm}(\varepsilon=2200)$ $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) ;$ HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}, 403.1519$; found, 403.1529.

Synthesis of GZ-B1

\{4-[4-(6-Amino-pyridazin-3-yl)-phenoxymethyl]-phenyl\}-phenyl-methanone (4)

To a solution of potassium tert-butoxide ($197 \mathrm{mg}, 1.76 \mathrm{mmol}$) in DMF (15 mL) was added a solution of $1(300 \mathrm{mg}, 1.60 \mathrm{mmol})$ in DMF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min . 4-Bromomethylbenzophenone ($485 \mathrm{mg}, 1.76$ mmol) was added in one portion and the reaction mixture was allowed to warm to rt over 16 h . The reaction mixture was partitioned between sat aq $\mathrm{LiCl}(50 \mathrm{~mL})$ and EtOAc (200 mL). The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The organic extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and the residue subjected to column chromatography (EtOAc) to give the pyridazine 4 ($266 \mathrm{mg}, 0.498 \mathrm{mmol}, 44 \%$) as a white solid. m.p.: $167-169{ }^{\circ} \mathrm{C}$; TLC $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 9: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.30 ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}, 500 \mathrm{MHz}) \delta 7.90(\mathrm{~d}, \mathrm{~J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76(\mathrm{~m}, 5 \mathrm{H}), 7.68(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=7.6$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.29 (s, 2H), 6.38 (s, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO, 125 MHz) $\delta 195.9,159.9,158.8,144.9,142.5,137.5,136.8,133.2,130.6,130.3$, 130.0, 129.1, 127.8, 127.1, 125.4, 115.5, 114.8, 69.0; IR (film): 2923, 2491, 1727,

1644, $1596 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}, 381.1472$; found, 381.1485.

1-(3-Allyloxycarbonyl-propyl)-6-amino-3-[4-(4-benzoyl-benzyloxy)-phenyl]pyridazinium bromide (8)

To a solution of $4(120 \mathrm{mg}, 0.31 \mathrm{mmol})$ in DMF (0.4 mL) was added allyl-4bromobutyrate ($97 \mathrm{mg}, 0.47 \mathrm{mmol}$). The solution was heated to $80^{\circ} \mathrm{C}$ for 18 h . The hot solution was then poured into EtOAc (3 mL) to yield a solid, which was then isolated by filtration. The product was dried under high vacuum to give the ester 8 $(135 \mathrm{mg}, 0.229 \mathrm{mmol}, 85 \%)$ as a white solid. m.p.: $160-162^{\circ} \mathrm{C}$; TLC (EtOAc: $\mathrm{CH}_{3} \mathrm{OH}$, $9: 1 \mathrm{v} / \mathrm{v}): \mathrm{RF}=0.20 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 8.31(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=$ 7.6 and $7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 5.25$ (dd, J= 17.4 and $1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.17(\mathrm{dd}, J=10.4$ and $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.48(\mathrm{~m}, 4 \mathrm{H}), 2.64$ (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right) \delta 196.7,172.6,161.0$, $152.5,150.4,141.9,137.4,136.9,132.5,132.0,131.2,130.0,129.6,128.2,128.0$, 126.9, 125.5, 125.3, 117.3, 115.3, 69.0, 65.1, 55.5, 29.9, 21.1; IR (film): 3042, 1732, 1644, 1606, $1541 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}, 508.2236$; found, 508.2243.

6-Amino-3-[4-(4-benzoyl-benzyloxy)-phenyl]-1-(3-carboxy-propyl)-pyridazinium bromide (GZ-B1)

To a solution of 8 ($150 \mathrm{mg}, 0.254 \mathrm{mmol}$) in THF (4 mL) and $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ was added 1,4-dimethyl barbituric acid ($398 \mathrm{mg}, 2.54 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($29 \mathrm{mg}, 0.025 \mathrm{mmol}$) under argon. The reaction mixture was stirred at rt for 3 h , then concentrated in vacuo. The residue
was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 17: 3 \mathrm{v} / \mathrm{v}\right)$, then triturated with water to give the acid GZ-B1 ($90 \mathrm{mg}, 0.164 \mathrm{mmol}, 65 \%$) as a white solid. m.p.: $152-154{ }^{\circ} \mathrm{C} ; \mathrm{TLC}\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 8: 2 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.25 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1\right.$ $\mathrm{v} / \mathrm{v}, 600 \mathrm{MHz}) \delta 8.13(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 4 \mathrm{H})$, 7.62-7.59 (m, 4H), $7.49(\mathrm{dd}, J=7.6$ and $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.28$ (s, 2H), 4.45-4.41 (m, 2H), 2.42-2.39 (m, 2H), 2.17-2.10 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 150 \mathrm{MHz}\right) \delta 198.6,179.5,162.3,153.6,151.7,143.0,138.6$, 138.4, 134.2, 132.5, 131.7, 131.3, 129.7, 129.5, 128.4, 126.8, 126.7, 116.9, 70.7, 57.9, 32.8, 23.8; IR (film): 3418, 1734, 1720, 1645, $1578 \mathrm{~cm}^{-1}$; UV/vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right): \lambda_{\max }$ $278 \mathrm{~nm}\left(\varepsilon=12600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), \lambda_{\max } 326 \mathrm{~nm}\left(\varepsilon=1300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; HRMS $\left(m z^{-1}\right):[\mathrm{M}]^{+}$ calculated for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}, 468.1923$; found, 468.1910 .

Synthesis of GZ-D1

2,2,2-Trifluoro-1-(4-methylphenyl)-1-ethanone ${ }^{3}$ (12)

4-Bromotoluene ($10.0 \mathrm{~g}, 58.5 \mathrm{mmol}$) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(280 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C}$. n-BuLi ($40.5 \mathrm{~mL}, 60.7 \mathrm{mmol}, 1.1 \mathrm{M}$ in hexanes) was added dropwise, and the solution was warmed to $0{ }^{\circ} \mathrm{C}$ over 2 h . The solution was then cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of ethyl trifluoroacetate ($9.55 \mathrm{~g}, 67.2 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 3 h , before being warmed to rt. The solution was hydrolysed with saturated ammonium chloride solution (50 mL), then washed with water $(3 \times 50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and the residue purified by column chromatography $\left(40-60{ }^{\circ} \mathrm{C}\right.$ petroleum ether) to give the ketone $12(4.24 \mathrm{~g}, 22.5 \mathrm{mmol}, 38 \%)$ as a colourless oil. TLC ($40-60$ ${ }^{\circ} \mathrm{C}$ petroleum ether): RF $=0.50 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 174.9(\mathrm{q}$, ${ }^{2} J_{\mathrm{CF}}=37.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{O}$), 147.4, 130.7, 130.0, 127.3, 118.1 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=288.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 22.8; IR (film): 3433, $1719 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}\left(m z^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}$, 188.1465; found, 188.1512.

2,2,2-Trifluoro-1-(4-methylphenyl)-1-ethanone oxime ${ }^{4}$ (13)

To a solution of 12 ($13.5 \mathrm{~g}, 71.7 \mathrm{mmol}$) dissolved in pyridine (155 mL), was added hydroxylamine hydrochloride ($14.9 \mathrm{~g}, 215 \mathrm{mmol}$). The reaction mixture was then heated at $70{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to rt, the solvent was removed in vacuo. The remaining residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and washed with aqueous HCl $(300 \mathrm{~mL}, 0.01 \mathrm{M})$, water $(3 \times 50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo to give the oxime 13 ($14.5 \mathrm{~g}, 71.4 \mathrm{mmol}, 99 \%$) as a pale yellow solid used without further purification as a $1: 1$ mixture of isomers. TLC $\left(40-60{ }^{\circ} \mathrm{C}\right.$ petroleum ether:EtOAc, $3: 1 \mathrm{v} / \mathrm{v})$: RF $=0.60 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}$, $1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 8 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 148.8\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=\right.$ $37.6 \mathrm{~Hz}, \mathrm{CNO}$), 141.7, 130.0, 129.0, 123.3, 118.2 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=277.5 \mathrm{~Hz}, \mathrm{CF}_{3}$), 21.8; IR (film): 3290, 1888, $1631 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{m} \mathrm{z}^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}$, 203.0558; found, 203.0551.

2,2,2-Trifluoro-1-(4-methylphenyl)-1-ethanone O-(p-toluenesulfonyl) oxime (14)

To a solution of 13 ($14.5 \mathrm{~g}, 71.4 \mathrm{mmol}$) dissolved in pyridine $(250 \mathrm{~mL})$ was added p toluenesulfonyl chloride ($20.5 \mathrm{~g}, 107 \mathrm{mmol}$). The reaction mixture was refluxed at $110{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to rt, the solvent was removed in vacuo, and the residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the tosylate 14 ($19.2 \mathrm{~g}, 53.5 \mathrm{mmol}, 75 \%$) as a white solid used without further purification as a $1: 1$ mixture of isomers. TLC $\left(\mathrm{CHCl}_{3}\right): \mathrm{RF}=0.80 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.88(\mathrm{~d}, \mathrm{~J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 155.0\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=36.5 \mathrm{~Hz}, \mathrm{CNO}\right), 147.5,132.2,131.0$, 130.3, 130.2, 129.4, 126.8, 123.6, 119.3 ($\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=264 \mathrm{~Hz}, \mathrm{CF}_{3}$), 22.0, 21.8; IR (film): 2994, 1917, 1637, 1588, $1489 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}$, 357.3475 ; found, 357.3481 .

3-p-Tolyl-3-trifluoromethyl-diaziridine (15)

14 (19.2g, 53.6 mmol$)$ was added to a sealed vessel containing $\mathrm{Et}_{2} \mathrm{O}(130 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. Ammonia (25 mL) was condensed in dropwise and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 8 h . The vessel was then unsealed and allowed to warm to rt. The solution was then extracted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and washed with water $(300 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent removed in vacuo. The product was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right)$ to give the diaziridine 15 ($9.46 \mathrm{~g}, 47.3 \mathrm{mmol}, 88 \%$) as a white solid. m.p.: $59-61^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{CHCl}_{3}\right): \mathrm{RF}=0.40$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ (s, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 140.0,138.4,131.4$, 129.9, $123.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=276.6 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 57.7\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=30.2 \mathrm{~Hz}, \mathrm{C}(\mathrm{NH})_{2}\right), 21.8$; IR (film): $3005,1650,1598,1489 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2}$, 202.1764; found, 202.1753.

3-p-Tolyl-3-trifluoromethyl-3H-diazirine (16)

To a solution of $15(1.00 \mathrm{~g}, 4.95 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added triethylamine ($2.06 \mathrm{~mL}, 14.8 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. lodine ($1.38 \mathrm{~g}, 5.45 \mathrm{mmol}$) was added gradually, until the solution became brown in colour. The reaction mixture was washed with aqueous $\mathrm{NaOH}(20 \mathrm{~mL}, 1 \mathrm{M})$, water $(20 \mathrm{~mL})$, brine $(20 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was carefully removed in vacuo at $20^{\circ} \mathrm{C}$ owing to the volatility of the product. The residue was purified by column chromatography ($40-60{ }^{\circ} \mathrm{C}$ petroleum ether: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20: 1 \mathrm{v} / \mathrm{v}$) to give the diazirine 16 ($601 \mathrm{mg}, 3.00 \mathrm{mmol}, 61 \%$) as a colourless oil. TLC $\left(\mathrm{CHCl}_{3}\right)$: RF $=0.90 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.21(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $140.0,129.6,126.5,126.2,122.7\left(q,{ }^{1} J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 28.4\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=40.5 \mathrm{~Hz}\right.$, $\left.\mathrm{C}(\mathrm{N})_{2}\right)$, 21.3; IR (film): 3196, $1650 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{~N}_{2}$, 200.1065; found, 200.1110.

3-(4-Bromomethylphenyl)-3-trifluoromethyl-3H-diazirine (17)

To a solution of $16(1.80 \mathrm{~g}, 8.97 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(40 \mathrm{~mL})$ was added NBS (2.39 g , $13.5 \mathrm{mmol})$ and AIBN ($20 \mathrm{mg}, 0.128 \mathrm{mmol}$). The reaction mixture was refluxed at 70 ${ }^{\circ} \mathrm{C}$ for 4 h . After cooling to rt , the precipitate was filtered and the solvent was removed in vacuo at $20^{\circ} \mathrm{C}$ owing to the volatility of the product. The residue was purified by column chromatography ($40-60{ }^{\circ} \mathrm{C}$ petroleum ether: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20: 1 \mathrm{v} / \mathrm{v}$) to give the bromide 17 ($1.63 \mathrm{~g}, 5.83 \mathrm{mmol}, 65 \%$) as a colourless oil. TLC $\left(40-60{ }^{\circ} \mathrm{C}\right.$ petroleum ether: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 19: 1 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.45 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.46(\mathrm{~d}, \mathrm{~J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $139.5,129.6,129.3,127.0,122.1\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=273.0 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 32.1,28.4\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=40.5\right.$ $\left.\mathrm{Hz}, \mathrm{C}(\mathrm{N})_{2}\right)$; IR (film): 3277, $1644 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(m z^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{6}{ }^{79} \mathrm{BrF}_{3} \mathrm{~N}_{2}$, 277.9666; found, 277.9732.

6-\{4-[4-(3-Trifluoromethyl-3H-diazirin-3-yl)-benzyloxy]-phenyl\}-pyridazin-3-ylamine (5)

A solution of 1 ($160 \mathrm{mg}, 0.854 \mathrm{mmol}$), 18 -crown- $6(226 \mathrm{mg}, 0.854 \mathrm{mmol})$ and potassium tert-butoxide ($96 \mathrm{mg}, 0.854 \mathrm{mmol}$) in DMF (3 mL) were cooled to $0^{\circ} \mathrm{C} .17$ $(140 \mathrm{mg}, 0.501 \mathrm{mmol})$ was dissolved in DMF (1 mL) and added dropwise, then stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was extracted with EtOAc (100 mL) and washed with water (100 mL). The aqueous layer was further extracted with EtOAc (4 $\times 50 \mathrm{~mL})$. The organic extracts were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed in vacuo and the residue subjected to column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 19: 1 \mathrm{v} / \mathrm{v}\right)$ to give the pyridazine $5(120 \mathrm{mg}, 0.311 \mathrm{mmol}, 62 \%)$ as a white solid. m.p.: degraded $>150{ }^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 9: 1 \mathrm{v} / \mathrm{v}\right)$: RF $=0.25 ;{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 7.79(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right) \delta 160.6,152.8,140.6,133.1,131.0$, 129.7, 129.0, 128.7, 127.8, 127.6, $123.7\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=274.7 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 117.8, 116.3,
70.2, 29.6 ($\mathrm{q},{ }^{2} J_{\mathrm{CF}}=39.2 \mathrm{~Hz}, \mathrm{C}(\mathrm{N})_{2}$); IR (film): 2930, 1654, $1562 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{mz}^{-1}\right)$: [M] ${ }^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{OF}_{3}, 386.1229$; found, 386.1222.

1-(3-Allyloxycarbonyl-propyl)-6-amino-3-\{4-[4-(3-trifluoromethyl-3H-diazirin-3-yl)-benzyloxy]-phenyl\}-pyridazinium bromide (9)

To a solution of 5 ($120 \mathrm{mg}, 0.311 \mathrm{mmol}$) in DMF (1 mL) was added allyl-4bromobutyrate ($96 \mathrm{mg}, 0.467 \mathrm{mmol}$). The solution was heated to $80^{\circ} \mathrm{C}$ for 5 h . The hot solution was then poured into EtOAc (20 mL) to yield a solid, which was then isolated by filtration. The product was dried under high vacuum to give the ester 9 ($80 \mathrm{mg}, 0.135 \mathrm{mmol}, 44 \%$) as a white solid. m.p.: degraded $>200{ }^{\circ} \mathrm{C}$; TLC (EtOAc: $\left.\mathrm{CH}_{3} \mathrm{OH}, 8: 2 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.20 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 8.29(\mathrm{~d}, \mathrm{~J}=9.5$ Hz, 1H), 7.94 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.23-5.22(\mathrm{~m}, 3 \mathrm{H})$, 5.15 (dd, $J=9.9$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47-4.43 (m, 4H), 2.62 (t, J = 6.7 Hz, 2H), 2.27 (quint, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right) \delta 174.0,162.4,153.9,151.8,140.6,133.4$, $132.6,129.5,129.1,128.6,127.9,126.9,126.7,123.6\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{CF}}=273.9 \mathrm{~Hz}, \mathrm{CF}_{3}\right)$, 118.6, 116.7, $70.2,66.5,56.9,31.3,29.4\left(q,{ }^{2} J_{C F}=40.1 \mathrm{~Hz}, \mathrm{C}(\mathrm{N})_{2}\right)$, 22.5; IR (film): 3033, 1732, 1647, $1541 \mathrm{~cm}^{-1}$; HRMS (mz^{-1}): [M] ${ }^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~F}_{3}$, 512.1900; found, 512.1900.

6-Amino-1-(3-carboxy-propyl)-3-\{4-[4-(3-trifluoromethyl-3H-diazirin-3-yl)-benzyloxy]-phenyl\}-pyridazinium bromide (GZ-D1)

To a solution of $9(10.0 \mathrm{mg}, 0.0168 \mathrm{mmol})$ in THF (0.2 mL) and $\mathrm{CH}_{3} \mathrm{OH}(0.05 \mathrm{~mL})$ was added 1,4-dimethyl barbituric acid ($26 \mathrm{mg}, 0.168 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) $(2.0 \mathrm{mg}, 0.0017 \mathrm{mmol})$ under argon. The reaction mixture was stirred at rt for 3 h , then concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 17: 3 \mathrm{v} / \mathrm{v}\right)$, then triturated with water to give the acid GZ-D1 ($5.5 \mathrm{mg}, 0.010 \mathrm{mmol}, 59 \%$) as a white solid. m.p.: degraded $>200{ }^{\circ} \mathrm{C}$; $\operatorname{TLC}\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 8: 2 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.25 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 400 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.20(\mathrm{~s}, 2 \mathrm{H}), 4.43-4.41(\mathrm{~m}, 2 \mathrm{H}), 2.45-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 150 \mathrm{MHz}\right) \delta 179.5,162.3,153.7,151.8$, $140.0,132.5,130.0,129.4,129.1,128.0,126.8,126.7,123.5$ (q, ${ }^{1} J_{\mathrm{CF}}=272.6 \mathrm{~Hz}$, CF_{3}), 116.8, $70.4,57.8,32.7,29.4\left(\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{CF}}=40.4 \mathrm{~Hz}, \mathrm{C}(\mathrm{N})_{2}\right), 23.7$; IR (film): 3420, 1719, 1650, $1577 \mathrm{~cm}^{-1}$; UV/vis $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 1: 1 \mathrm{v} / \mathrm{v}\right) \lambda_{\max } 280 \mathrm{~nm}\left(\varepsilon=6100 \mathrm{M}^{-1}\right.$ cm^{-1}), $\lambda_{\max } 335 \mathrm{~nm}\left(\varepsilon=2100 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~F}_{3}, 472.1596$; found, 472.1574

Synthesis of GZ-B2

[4-(6-Amino-pyridazin-3-yl)-phenyl]-phenyl-methanone (18)

To a microwave vial containing 3-amino-6-chloropyridazine (101 mg, 0.779 mmol), 4benzoylphenylboronic acid (262 mg, 1.16 mmol), bis(triphenylphosphine)palladium(II) dichloride ($27 \mathrm{mg}, 0.040 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (201 $\mathrm{mg}, 1.45 \mathrm{mmol})$ were added $\mathrm{CH}_{3} \mathrm{CN}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.3 \mathrm{~mL})$. The resulting solution was degassed for 5 min and subjected to microwave irradiation for 10 min at $120^{\circ} \mathrm{C}$. The mixture was diluted with water (50 mL), extracted with EtOAc (3×100 $\mathrm{mL})$, washed with brine $(100 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was concentrated in vacuo. The residue was purified by column chromatography (EtOAc: $\mathrm{CH}_{3} \mathrm{OH}, 19: 1$ v / v) to give the pyridazine 18 ($130 \mathrm{mg}, 0.472 \mathrm{mmol}, 61 \%$) as a white solid. m.p.: 147$149{ }^{\circ} \mathrm{C}$; TLC (EtOAc): RF = 0.15; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 8.00(\mathrm{~s}, \mathrm{~J}=7.5 \mathrm{~Hz}$, 2H), 7.85 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (m, 3H), 7.61 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, $J=7.9$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 198.1$, 160.4, 151.4, 141.5, 138.4, 138.3, 133.7, 131.6, 130.9, 129.3, 128.3, 126.8, 117.4; IR (film): 3052, 2923, 1727, 1644, $1596 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{m} \mathrm{z}^{-1}\right):[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}, 276.1137$; found, 276.1141 .

1-(3-Allyloxycarbonyl-propyl)-6-amino-3-(4-benzoyl-phenyl)-pyridazinium bromide
(19)

To a solution of 18 ($100 \mathrm{mg}, 0.363 \mathrm{mmol}$) in DMF (1 mL) was added allyl-4bromobutyrate ($103 \mathrm{mg}, 0.497 \mathrm{mmol}$). The solution was heated to $80^{\circ} \mathrm{C}$ for 18 h . The hot solution was then poured into EtOAc $(20 \mathrm{~mL})$ to yield a solid, which was then isolated by filtration. The product was dried under high vacuum to give the ester 19 ($133 \mathrm{mg}, 0.276 \mathrm{mmol}, 76 \%$) as a white solid. m.p.: $142-144{ }^{\circ} \mathrm{C}$; TLC (EtOAc: $\mathrm{CH}_{3} \mathrm{OH}$, $8: 2 \mathrm{v} / \mathrm{v}): \mathrm{RF}=0.20 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 600 \mathrm{MHz}\right) \delta 8.45(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74$ (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.8$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ (m, 1H), 5.27 (dd, $J=17.2$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dd, $J=10.4$ and $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-$ $4.51(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32$ (quint, 2 H$)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right)$ $\delta 196.1,172.7,153.1,149.7,139.3,136.9,136.4,132.9,132.0,131.5,130.3,129.7$, 128.3, 126.4, 125.7, 117.2, 65.1, 55.7, 29.9, 21.1; IR (film): 3165, 2999, 1725, 1648, $1533 \mathrm{~cm}^{-1}$; HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}, 402.1818$; found, 402.1822.

6-Amino-3-(4-benzoyl-phenyl)-1-(3-carboxy-propyl)-pyridazinium bromide (GZ-B2)

To a solution of 19 ($64 \mathrm{mg}, 0.133 \mathrm{mmol}$) in THF (4 mL) and $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ was added morpholine ($116 \mathrm{mg}, 1.33 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) $(15 \mathrm{mg}, 0.0133 \mathrm{mmol})$ under argon. The reaction mixture was stirred at rt for 30 min , then concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{AcOH}, 17: 2.9: 0.1 \mathrm{v} / \mathrm{v}\right)$ to give the acid GZ-B2 (54 mg, 0.122 mmol , $92 \%)$ as a white solid. m.p.: $140-142{ }^{\circ} \mathrm{C}$; $\mathrm{TLC}\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 8: 2 \mathrm{v} / \mathrm{v}\right): \mathrm{RF}=0.25$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 600 \mathrm{MHz}\right) \delta 8.25(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=9.5 \mathrm{~Hz}$,

1 H), 7.67 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (dd, $J=7.7$ and $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.51-4.47 (m, 2H), 2.43-2.37 (m, 2H), 2.15-2.10 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}: \mathrm{CD}_{3} \mathrm{OD}, 1: 1 \mathrm{v} / \mathrm{v}, 150 \mathrm{MHz}\right) \delta$ 196.6, 179.3, 152.9, 149.3, 139.3, 136.8, 136.3, 133.1, 131.1, 130.7, 130.0, 128.5, 126.4, 126.1, 56.9, 31.9, 22.7; IR (film): 2933, 1740, 1651, 1570, 1533, $1511 \mathrm{~cm}^{-1}$; $\mathrm{UV} / \mathrm{vis}\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 1: 1 \mathrm{v} / \mathrm{v}\right): \lambda_{\max } 306 \mathrm{~nm}\left(\varepsilon=10600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; HRMS $\left(m z^{-1}\right)$: $[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$, 362.1505; found, 362.1510.

Synthesis of GZ-B1-biotin

(3-iodo-4-methylphenyl)(phenyl)methanone (20)

To neat 2-iodo-4-methylbenzoic acid ($5.00 \mathrm{~g}, 19.1 \mathrm{mmol}$) was added thionyl chloride $(7.00 \mathrm{~mL}, 96.5 \mathrm{mmol})$ and the reaction mixture was heated to reflux for 2 h . The reaction mixture was allowed to cool and then was concentrated in vacuo. The residue was redissolved in benzene (20 mL) and $\mathrm{AICl}_{3}(2.80 \mathrm{~g}, 21.0 \mathrm{mmol})$ was added. The mixture was then heated to $50^{\circ} \mathrm{C}$ for 3 h . After having cooled, the reaction mixture was partitioned between $3 \mathrm{M} \mathrm{aq} \mathrm{HCl}(20 \mathrm{~mL})$, and EtOAc (20 mL). The aqueous layers were extracted with EtOAc $(3 \times 20 \mathrm{~mL})$, and the combined organic layers were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography $\left(40-60{ }^{\circ} \mathrm{C}\right.$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}, 9: 1 \mathrm{v} / \mathrm{v}$) to give $20(5.09 \mathrm{~g}, 15.8 \mathrm{mmol}, 83 \%)$ as a white solid. m.p.: 78-79 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.25(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.68$ (dd, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{tt}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}) 7.49$ (dd, $J=7.9,7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 194.9,146.4$, 140.5, 137.3, 136.9, 132.7, 130.0, 130.0, 129.5, 128.5, 100.8, 28.5; IR (solid) 3050, 1722, 1652, 1595, 1587, 1577, $1544 \mathrm{~cm}^{-1}$; HRMS ($[\mathrm{M}+\mathrm{H}]^{+}$) calculated for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}$ 321.98491 ; found 321.98516 .
(4-(bromomethyl)-3-iodophenyl)(phenyl)methanone (21)

To a solution of $20(955 \mathrm{mg}, 2.96 \mathrm{mmol})$ in benzene (20 mL) were added NBS (527 $\mathrm{mg}, 2.96 \mathrm{mmol}$) and AIBN ($63 \mathrm{mg}, 0.39 \mathrm{mmol}$). The reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 16 h then the reaction solvent was removed in vacuo. The residue was purified by column chromatography ($40-60^{\circ} \mathrm{C}$ petroleum ether: $\mathrm{Et}_{2} \mathrm{O}, 100: 1 \mathrm{v} / \mathrm{v}$) to
give starting material 20 ($372 \mathrm{mg}, 39 \%$). Further elution gave 21 ($666 \mathrm{mg}, 1,66$ $\mathrm{mmol}, 56 \%$) as a white solid. m.p.: $54-56{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.27(\mathrm{~d}, \mathrm{~J}$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dt}, J=7.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{tt}, J$ $=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 194.4,144.3,141.3,140.0,136.8,133.1,130.4,130.2$, 130.1, 128.6, 99.7, 37.8; IR (solid) 3030, 2927, 1734, 1649, 1594, 1562, 1550, 1510 cm^{-1}; HRMS $\left[{ }^{79} \mathrm{M}\right]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrIO} 399.89542$; found 399.89584.
(4-((4'-(6"-aminopyridazin-3"-yl)phenoxy)methyl)-3-iodophenyl)(phenyl)methanone
(22)

To a solution of $\mathrm{NaH}(131 \mathrm{mg}, 3.56 \mathrm{mmol})$ in DMF (5 mL) at $0^{\circ} \mathrm{C}$ was $1(606 \mathrm{mg}$, 3.24 mmol) in one portion. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min before a solution of $21(1.56 \mathrm{~g}, 3.88 \mathrm{mmol})$ in DMF (5 mL) was added via cannula. The reaction mixture was the stirred at rt for 4 h , quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, and concentrated in vacuo. The residue was purified by column chromatography (EtOAc) to give $22(1.25 \mathrm{~g}, 2.47 \mathrm{mmol}, 82 \%)$ as a white solid. m.p: $90-91^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 8.31(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.65$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.59-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{br} \mathrm{s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta 194.9,159.0,158.1,153.3,143.4,140.5,138.6,137.0,133.0,130.1,130.2$, 130.1, 128.6, 128.0, 128.0, 127.7, 125.9, 115.3, 115.3, 115.1, 96.4, 73.8; IR (solid) 3420, 3312, 3168, 2928, 2349, $1653 \mathrm{~cm}^{-1} ; \mathrm{HRMS}[\mathrm{M}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{IN}_{2} \mathrm{O}_{2}$ 507.04382; found 507.04450.

6-(2-((4-(6-aminopyridazin-3-yl)phenoxy)methyl)-5-benzoylphenyl)hex-5-ynoic acid (23)

To a solution of $22(160 \mathrm{mg}, 0.32 \mathrm{mmol})$ in degassed $\mathrm{Et}_{3} \mathrm{~N}(5 \mathrm{~mL})$ and THF (5 mL) was added 5-hexynoic acid ($38 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}(7.3 \mathrm{mg}, 0.006 \mathrm{mmol})$ and Cul ($1.8 \mathrm{mg}, 0.010 \mathrm{mmol}$). The reaction mixture was heated to $65^{\circ} \mathrm{C}$ for 16 h in the dark. Methanol (20 mL) was added and the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}, 10: 1$ v / v) to give 23 ($76.6 \mathrm{mg}, 49 \%$) as an insoluble white solid. m.p. $186-188^{\circ} \mathrm{C} ; \mathrm{R}_{f}=0.30$ ($\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} 9: 1$); IR (film) 3328, 1740, $1638 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were not obtained due to high insolubility of compound. Purity was established by chemical derivation. HRMS $\left(m z^{-1}\right):[M]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O} 492.1923$; found 492.1901.
tert butyl N-\{2-[2'-(2"-aminoethoxy)ethoxy]ethyl\}carbamate (26)

To a solution of 2-[2-(2-aminoethoxy)ethoxy]ethanamine ($8.00 \mathrm{~g}, 54.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added a solution of $\mathrm{Boc}_{2} \mathrm{O}(1.18 \mathrm{~g}, 5.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ dropwise. The reaction mixture was stirred at rt for 16 h before being concentrated in vacuo. The resulting reside was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$ and the combined organic layers were dried and concentrated in vacuo to give 26 ($1.38 \mathrm{~g}, 5.54 \mathrm{mmol}, 99 \%$) as a white solid. m.p.: $234{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ $\delta 5.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 4 \mathrm{H}), 3.51-3.56(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{q}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J$ $=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 156.1,79.2$, 72.6, 70.3, 70.2, 70.2, 41.4, 40.4, 28.5; IR (solid) 3366, 2973, 2927, 2865, $1703 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS $\left(\mathrm{Cl}^{+}\right)[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ 249.18088; found 249.17974.
N-(2-(2'-(2"-(N-Boc-amino)ethoxy)ethoxy)ethyl)biotinylamine (27)

To a solution of D-biotin ($221 \mathrm{mg}, 0.906 \mathrm{mmol}$) and HBTU ($298 \mathrm{mg}, 0.785 \mathrm{mmol}$) in DMF (3 mL) was added DIPEA ($310 \mu \mathrm{~L}, 1.81 \mathrm{mmol}$). The reaction mixture was stirred for 20 min at rt before being added via cannula to a solution of $26(150 \mathrm{mg}$, 0.604 mmol) in DMF (5 mL). The reaction mixture was stirred for 2 h before the solvent was removed in vacuo. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}, 20: 1 \mathrm{v} / \mathrm{v}\right)$ to give $27(182.5 \mathrm{mg}, 0.366 \mathrm{mmol}, 63 \%)$ as a colourless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 4.50(\mathrm{dd}, J 7.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=7.8,4.8$ Hz, 1H), 3.61 (app s, 4H), 3.55 (t, J = $5.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.52 (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ (t, J $=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19-3.24(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{dd}, 12.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}$, 1 H), $2.22(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.48(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 176.2,166.1,158.4,80.1,71.3,71.1,70.6,63.4,61.6,57.0$, $41.2,41.1,40.3,36.7,29.8,29.5,28.9,26.9$; IR (oil) $3292,2930,2867,1693 \mathrm{~cm}^{-1}$; HRMS (ES) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{SNa}$, 497.2410; found 497.2423.

N-(2-(2'-(2"-aminoethoxy)ethoxy)ethyl)biotinylamine TFA salt (28)

To a solution of $\mathbf{2 7}(700 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added TFA (4 mL). The reaction mixture was stirred at rt for 3 h before being concentrated in vacuo to give 28 (725 $\mathrm{mg}, 100 \%$) as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 4.51$ (dd, $J=7.9,4.7 \mathrm{~Hz}$, 1 H), 4.32 (dd, $J=7.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.93 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-$ $1.77(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right) \delta 176.3,166.2,161.3$ (q, $J=38 \mathrm{~Hz}$) $117.3(\mathrm{q}, J=289 \mathrm{~Hz}), 71.4,71.3,70.7,63.4,61.7,57.0,41.7,40.7$, 40.2, 36.7, 29.7, 29.5, 26.9; IR (oil) 3293, 3075, 2929, 1777, $1673 \mathrm{~cm}^{-1}$; HRMS (Cl^{+}) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}, 375.20605$; found 375.20509.

6-(2-((4-(6-aminopyridazin-3-yl)phenoxy)methyl)-5-benzoylphenyl)-N-(2-(2-(2-(biotinylamino)ethoxy)ethoxy)ethyl)hex-5-ynamide (24)

To a solution of 23 ($126 \mathrm{mg}, 0.26 \mathrm{mmol}$) in DMF (3 mL) was added DCC (58 mg , 0.28 mmol) and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction was allowed to warm to rt over 20 min before $\mathrm{Et}_{3} \mathrm{~N}(36 \mu \mathrm{~L}, 0.26 \mathrm{mmol})$ and $28(125 \mathrm{mg}$, $0.26 \mathrm{mmol})$ were added. The reaction mixture was then stirred at rt for 16 h before being diluted with EtOAc (3 mL) and washed with sat aq LiCl , dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{CHCl}_{3}: \mathrm{CH}_{3} \mathrm{OH}, 9: 1 \mathrm{v} / \mathrm{v}\right)$ to give $24(113 \mathrm{mg}, 52 \%)$ as a yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $600 \mathrm{MHz}) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.70-7.75$ (m, $2 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.38 (s, 2H), 4.46 (dd, $J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.26 (dd, $J=8.0,4.4$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.57(\mathrm{app} \mathrm{s}, 3 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.32-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.13-3.17(\mathrm{~m}$, $1 \mathrm{H}), 2.89(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.17(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) 1.89$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.51$1.73(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right) \delta 197.4,176.1,175.4$, $163.6,160.9,144.1,138.5,138.4,134.4,134.1,131.2,131.0,131.0,130.4,129.7$, 128.6, 128.0, 124.2, 117.5, 116.2, 97.3, 79.5, 78.7, 71.3, $70.670 .6,69.2,66.9,63.3$, 61.6, 57.0, 41.0, 40.3, 40.3, 36.7, 36.0, 29.8, 29.5, 26.8, 25.9, 19.2; IR (oil) 3301, 2926, 2856, 2349, 1693, $1650 \mathrm{~cm}^{-1}$; HRMS (ES ${ }^{+}$) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{7} \mathrm{O}_{7} \mathrm{SNa}$, 870.3625; found 870.3621.
allyl 4-(3-(4-((4-benzoyl-2-(5,16-dioxo-1-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-6,15-diazahenicos-20-yn-21-yl)benzyl)oxy)phenyl)-6-iminopyridazin-1(6H)-yl)butanoate hydrobromide (25)

To a solution of 24 ($19 \mathrm{mg}, 0.02 \mathrm{mmol}$) in DMF (0.1 mL) was added allyl 4bromobutyrate ($7.0 \mathrm{mg}, 0.03 \mathrm{mmol}$) and heated to $120^{\circ} \mathrm{C}$ for 16 h . Cold EtOAc (2 mL) was added and the resulting residue filtered to give 25 (18.2 mg, 77\%) as a brown oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 8.32(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78$ (s, 1H), 7.72 (td, $J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), $5.80-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 5.24$ (dd, $J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (dd, $J=$ $10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.50(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{dd}, J=7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ (app s, 4H) 3.52 (app q, $J=5.8 \mathrm{~Hz}, 4 \mathrm{H}$), 3.32-3.36 (m, 4H), 3.14-3.20 (m, 1H), 2.90 (dd, $J=$ 12.6, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.68(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 1.89 (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.50-1.74 (m, 4H), 1.37-1.44 (m, 2H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 150 MHz) $\delta 197.3,175.9,175.4,174.0,162.5,160.5,158.8,153.9,152.9,144.0$, 134.5, 134.1, 133.6, 133.5, 131.0, 130.4, 129.7, 129.5, 127.2, 127.1, 126.7, 122.5, 118.7, 116.7, $97.3,81.6,71.3,70.6,70.6,69.3,66.5,63.3,61.6,56.9,55.9,43.8$, 41.1, 40.3, 40.3, 36.7, 36.0, 31.3, 29.8, 29.5, 26.9, 25.9, 22.5, 19.8: IR (oil) 3323, 2939, $1726 \mathrm{~cm}^{-1}$; HRMS (ES+) $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{53} \mathrm{H}_{64} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{~S} 974.4486$; found 974.4557.

4-(3-(4-((4-benzoyl-2-(5,16-dioxo-1-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12-dioxa-6,15-diazahenicos-20-yn-21-yl)benzyl)oxy)phenyl)-6-iminopyridazin-1(6H)-yl)butanoate hydrochloride (GZ-B1-biotin)

To a solution $25(8.6 \mathrm{mg})$ in THF (1 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added $\mathrm{NaOH}(1.0 \mathrm{mg})$ and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . After cooling to $10^{\circ} \mathrm{C}$ the reaction mixture was washed with EtOAc (2 mL) and the aqueous layer separated then acidified to pH 1 by addition of 0.1 M aq HCl . The aqueous layer was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then the solvent was removed in vacuo and the residue triturated once with $\mathrm{H}_{2} \mathrm{O}$, to give GZ-B1-biotin ($11.9 \mathrm{mg}, 65 \%$) as a brown solid. m.p: degraded $>150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right) \delta 8.30(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.77-7.80(\mathrm{~m}, 1 \mathrm{H}), 1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.70(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.48(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{apps}, 4 \mathrm{H})$ 3.51 (app q, $J=5.7 \mathrm{~Hz}, 4 \mathrm{H}$), 3.32-3.36 (m, 4H), 3.14-3.18 (m, 1H), $2.90(\mathrm{dd}, J=$ 12.7, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{t}, J=7.4 \mathrm{~Hz}$, 2 H), 2.15-2.24 (m, 4H), 1.88 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.52-1.73 (m, 4H), 1.37-1.43 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right) \delta 197.4,177.1,176.1,175.4,173.7,162.5,153.0$, 151.8, 144.0, 138.4, 134.5, 134.1, 132.6, 131.0, 130.4, 129.7, 129.5, 128.7, 127.1, 126.6, 124.5, 116.6, 98.0, 78.6, 71.3, 70.6, 70.6, 69.6, 69.3, 63.3, 61.6, 57.0, 41.0, 40.3, 40.2, 36.7, 36.0, 31.6, 29.8, 29.5, 26.9, 25.9, 23.0, 19.8; IR (oil) 3263, 2832, 2380, $1650 \mathrm{~cm}^{-1}$; UV/vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$: $\lambda_{\max } 274 \mathrm{~nm}\left(\varepsilon=140 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$; HRMS (ESI $)$ $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{~S} 934.4173$; found 934.4884.

Supplementary References

[^0]${ }^{2}$ Demko, Z.P.; Sharpless, K.B. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew. Chem Int. Ed Engl. 41, 2110-2113 (2002).
${ }^{3}$ Creary, X. Reaction of organometallic reagents with ethyl trifluoroacetate and diethyl oxalate. Formation of trifluoromethyl ketones and α-keto esters via stable tetrahedral adducts. J. Org. Chem. 52, 5026-5030 (1987).
${ }^{4}$ Strømgaard,K. et al. Ginkgolide derivatives for photolabeling studies: preparation and pharmacological evaluation. J Med Chem 45, 4038-4046 (2002).

[^0]: ${ }^{1}$ Calculated LogP values from OSIRIS Property Explorer, Organic Chemistry Portal. Available at www.organic-chemistry.org. Accessed March 2014.

