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How do offenders choose where to offend?
Perspectives from animal foraging

Shane D. Johnson*
UCL Department of Security and Crime Science, University College London, UK

Purpose. Research suggests that offender spatial decision-making is not random.

However, little is known about if or how offences in a series influence where an offender

will target next. Drawing on concepts and empirical findings from environmental

criminology and the ecology literature, in this article I considerwhat spatial patternsmight

be expected in the sequential crimes committed by serial offenders and provide an

empirical example.

Methods. Data for detected burglars are analysed and patterns in the inter-event

distances for sequential offences comparedwith those signatures typically associatedwith

three types of foraging behaviour – central place foraging, Brownianwalks and L�evywalks.
Analyses involve the use of a Monte Carlo simulation to derive an expected distribution

for central place foraging, while the observed probability density function of sequential

inter-event distances is compared to exponential and power law distributions to test for

evidence of Brownian and L�evy walks, respectively.

Results. Analyses suggest thatpatterns inburglar sequential inter-eventdistancescannot

be explained by a simple central place foraging strategy. The distribution of sequential

inter-event distances is found to be consistent with both Brownian and L�evy walks.

Conclusions. The findings suggest that there are regularities in the sequential spatial

choices made by offenders, and that these are similar to those observed across species.

Reasons for why there is evidence of both Brownian and L�evy walks are discussed. The
implications of the findings for forensic techniques such as crime linkage analysis,

geographic offender profiling and crime forecasting are discussed.

Criminological research concerned with where crimes happen suggests that patterns are

far from random (e.g., Block, Dabdoub, & Fregly, 1995; Sherman, Gartin, & Buerger,

1989). Moreover, that offender spatial decision-making can be understood from a rational

choice perspective (Clarke & Cornish, 1985), with offenders considering (however,

briefly) the costs and benefits of possible choices and making decisions that optimize
some expectation of utility. For example, a considerable body of research has examined

whether offenders exhibit preferences for committing offences in certain types of areas

and why they might do so, with many studies focusing on how far they typically travel to

commit offences – the so-called journey to crime (see, Rossmo, 2000). However, little
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research has examined the dynamics of offender spatial decision-making and whether

there exist patterns in sequential choices. Given the theoretical and potential policy value

of understanding such dynamics, this is somewhat surprising. Drawing on theories of

animal foraging, and using an empirical example for the acquisitive crime of residential
burglary, the aim of the current study was to do so. In the next section, I briefly review

existing research on offender spatial decision-making and then discuss the offender as

forager hypothesis. A set of testable expectations are subsequently articulated and to

illustrate the types of analyses that can be used to test them, in the second section of the

article I describe a sample of data and a series of methods used to analyse it. After

discussing the results, the potential implications of the findings for theory and policy are

discussed. Particular emphasis is given to the forensic implications of the research such as

crime linkage analysis and geographic profiling. Finally, an agenda for research of this kind
is discussed.

Theories of spatial choice

Drawing on theories of human ecology (Hawley, 1950), routine activity theory (Cohen &

Felson, 1979) suggests that for a crime to occur, a motivated offender must encounter a

suitable target in the absence of a capable guardian, and that this convergence will be a

function of the routine activities of offenders, potential victims and guardians against
crime. Crime pattern theory (CPT; Brantingham & Brantingham, 1993, 1995) considers

how people’s everyday activities influence their awareness spaces and, in the case of

offenders, how this influences their spatial decision-making when it comes to offending.

To explain, as a consequence of engaging in routine activities, people (offenders or

otherwise) are believed to formmental maps to represent the routine activity nodes they

frequent, the pathways they must travel to move from one activity node to another, and

the areas that surround them (Brantingham&Brantingham, 1993). Routine activity nodes

typically include a person’s home, place of work, places of recreation, and so on, and it is
the environmental backcloth that determines their distribution in space. Some routine

activity nodeswill be sharedbymanypeople (e.g., city centres) andhence encapsulated in

their awareness spaces, but otherswill bemore unique to particular individuals (Bernasco

& Block, 2009).

According to CPT, it is where offender awareness spaces overlap with suitable

opportunities for crime that they are most expected to engage in crime. And, it is where

the activity spaces (see Golledge & Stimson, 1997) of many offenders overlap that

hotspots of crime are most likely to form. Studies of the journey to crime provide support
for CPT, showing that offenders typically commit most of their crimes close to their home

location (e.g., Rossmo, 2000; Townsley & Sidebottom, 2010), and do so despite the many

and varied opportunities available to them (see Reppetto, 1974). Further support for CPT

comes from studies that have examined the influence of factors other than propinquity on

offender spatial decision-making. For example, Bernasco (2010) showed that after release

from prison, relocated offenders were more likely to target areas in which they had

previously resided than alternative locales. Bernasco and Block (2009) showed that

robbers were more likely to select areas that contained routine activity nodes such as
schools, and Baudains, Braithwaite and Johnson (2013) show the same for rioters,

particularly those under the age of 18, for whom such nodes of activity are likely to have

the most salience.

According to CPT (Brantingham & Brantingham, 1981), offenders develop cognitive

scripts that serve as templates to describe successful offending patterns. Experience
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updates the templates, but as far as the author is aware, the theory does not explicitly

consider the dynamics of spatial choice, and how one choice might affect the next.

Consequently, one could assume little dependency in sequential choices.

Space-time dynamics of crime

From the above discussion, it should be evident that CPT provides insight as to why the

micro-level decision-making of individual offenders should, in the aggregate, lead to the

spatial clustering of crime at the area level or at particular places. An increasing body of

empirical research provides support for the theory across a range of crime types (e.g.,

Bernasco & Block, 2011; Kurland, Johnson, & Tilley, 2014). However, much of that

research ignores the dimension of time, focusing either on spatial patterns aggregated to
some areal unit such as neighbourhoods (e.g., Bernasco&Block, 2009) over some interval

of time (such as 1 year) or, on the specific locations targeted byparticular individuals (e.g.,

Townsley & Sidebottom, 2010), without consideration of when those offences were

committed.

However, for many crimes, it is evident that the risk of victimization clusters in time as

well as space. For instance, considering patterns at themicro level of place, when a repeat

burglary victimization of the same home occurs, the elapsed time between events is

typically short (e.g., Johnson, Bowers, & Hirschfield, 1997; Polvi, Looman, Humphries, &
Pease, 1991), with the risk of further offences typically decaying exponentially over time.

More recently, using techniques originally developed to detect disease contagion,

scholars (e.g., Johnson, Birks, McLaughlin, Bowers, & Pease, 2007; Johnson & Bowers,

2004; Johnson, Bernasco, et al., 2007; Townsley, Homel, & Chaseling, 2003) have

examined the association between the timing and location of crimes committed not just

against the same target but those nearby. The finding so far consistently observed for

crimes including burglary (e.g., Johnson, Bernasco, et al., 2007; Johnson, Birks, et al.,

2007; Townsley et al., 2003; Short et al., 2009), theft from motor vehicle (Johnson,
Summers, & Pease, 2009), shootings (Ratcliffe & Rengert, 2008), insurgent activity (e.g.,

Braithwaite & Johnson, 2012; Townsley, Johnson, & Ratcliffe, 2008) and even maritime

piracy (Marchione & Johnson, 2014; Townsley & Oliveira, 2013) is that when a crime

occurs at one location, others are more likely to take place swiftly nearby. Such events are

collectively referred to as near repeats (Morgan, 2001). To be clear, when studied at the

area level, it may be the case that some areas are more risky than others, but within (and

across) those areas the risk of crime diffuses in space and time with an observable

(slippery) regularity.
Why such patterns might emerge, and in particular, how individual offender

decision-making might lead to them is the subject of contemporary debate. Two classes

of theory have been proposed and according to the first, variation across neighbourhoods

(and individual locations) in those characteristics that are time-stable – at least on time

scales such as 1 year – that would be appealing to most offenders, can explain observed

patterns. Such characteristics would include the location of routine activity nodes,

features of the environment that attract or generate crime (e.g., Brantingham &

Brantingham, 1995; Johnson & Bowers, 2010), variation in the social fabric of
communities that might make crime more or less likely (e.g., Sampson & Groves,

1989), or characteristics of a location that are unobserved by the researcher. This

perspective of risk heterogeneity (see Johnson, 2008; Nelson, 1980; Sparks, 1981)

assumes that offenders select places to commit crimes based on how attractive they are in

terms of persistent characteristics. As such, when a crime occurs at a location the future
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risk of crime at that location or those nearby does not change. However, it may appear to

do so due to an aggregation artefact associatedwith the statisticalmethods used to analyse

the data (for a detailed discussion, see Johnson, 2008).

Given the finding that (for example) the risk of repeat victimization has a distinct time
course, this explanation seems unlikely and a series of studies conducted using computer

simulation (e.g., Johnson, 2008; Pitcher & Johnson, 2011), interviews with offenders

(Summers, Johnson, & Rengert, 2010) and the analysis of crimes detected by the police

(Bernasco, 2008; Johnson et al., 2009) suggest that risk heterogeneity does have a part to

play, but that it provides an incomplete explanation of observed patterns.

Considering the second type of explanation, theories of event dependency assume a

more dynamic process that can be explained in terms of the impact of learning (or

experience) on the choices of individual offenders. For example, it is hypothesized that
when the conditions at already targeted locations are conducive to burglary, the same

offender (or group of offenders), having developed knowledge of that location, will

swiftly return to those locations to commit further offences (Pease, 1998).

Offender as forager?

To try to better understand such patterns in terms of individual offender decision-making

and to develop a broader conceptual framework, Johnson and Bowers (2004) draw upon
theories of animal foraging (for a broader discussion of crime andnature, see Felson, 2006)

and propose the offender as forager hypothesis (see also, Brantingham & Tita, 2008;

Johnson, Bowers, Birks, & Pease, 2008; Johnson et al., 2009). Their motivations for this

were two-fold. First, animal foragers and offenders share (at least) some common

underlying goals. For instance, both seek tomaximize the benefit of their activity,which is

to acquire resources, be it food or stolen items (Brantingham, 2013). Both activities

involve time spent searching and handling resources (see, Pyke, 1984), and the forager

(animal or human) seeks to minimize expended effort and the associated risks; be it the
risk of apprehension or of being eaten by a predator. Moreover, both are subject to

constraints. For example, both forms of actor can only move so far and so fast per unit

time, and both expend effort in so doing. Second, while theories of crime tend not to

explicitly consider sequences of offender spatial choices, and how patterns might vary

across them, theories of animal foraging do. Building on this earlier research, the aimof the

current article is to further refine and test these ideas.

Some general principles concerning animal foraging (for a review, see Pyke, 1984) are

particularly worthy of attention, and their relevance to offender spatial decision-making
will now be discussed. Central place foraging (Orians & Pearson, 1979) refers to

instances where a forager has a central base to which it must return at least some of the

time. Thismay be a nest for an animal/insect, or the home in the case of the offender and it

is notable that it is this routine activity node that has received the most attention in the

criminological literature.

Optimal Patch choice is a complex process concerned withwhere an animal chooses

to forage. Assuming an animal does not have perfect knowledge of the quality of patches,

targeting choices are assumed to be based on the amount of time available for foraging,
past experience and knowledge of the types of patches available more generally (Pyke,

1984).Where sufficient time is available, the forager may spend time sampling alternative

locations before deciding where to target. If an animal is aware of the typical quality of

patches available, however, it may spend less time sampling from alternatives, and avoid

particular patches if they are known to offer less reward (per unit time) than the average
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expected (e.g., Pyke, 1984). Of course, those patches that offer the greatest rewards may

be those that are the hardest to reach which wouldmean that their targeting would result

in the greatest energy depletion. Thus, with limited resources the forager seeks to

optimize their utility byminimizing energy expenditure (whichwould include time spent
searching within and between patches) whilst maximizing their expected benefits

(Charnov, 1976).

Considering thedistributionof resources in the environment,patches that are closer to

each other tend to be more similar (see, Fortin & Dale, 2005; consider also Dr Snow’s

mapping of outbreaks of Cholera in London in 1854) –whether it be in terms of nutritional

value in the case of crops, or affluence in the case of residents – meaning that attractive

patches are likely to cluster geographically, and hence that targeting new locations near to

patches that are already known to be acceptable can be an efficient strategy.
Having selected apatch,patch departure rules determine how long a forager spends at

a particular location. In cases where the forager knows little about a particular patch,

knowledge will be acquired during an episode of consumption that may reveal that the

patch is less desirable than others, encouraging it to target alternative locations.

Alternatively, as resources are depleted through time spent foraging, a predator may

decide to leave a patch when little of value remains. More strictly, according to Charnov’s

(1976) marginal value theorem (MVT), a predator should leave a patch when the rate of

energy intake (or the acquisition of stolen goods for the burglar) drops to the average
across the habitat.

Figure 1 provides an illustration of Charnov’s model. The panel on the left shows an

example of how a forager might move through a habitat that contains different types of

patches (two types of patches, A and B are shown). In this example, assume that both

types of patches are richer in resources than the average encountered across the entire

habitat, but that patches of type A are richer than type B. In line with studies of spatial

autocorrelation, both types of patch are shown to cluster spatially. The forager expends

resources travelling within and between patches, and time spent in patches of type Awill
bemore beneficial than time spent in patches of type B. The right panel of Figure 1 shows

that the rate of net energy intake (given by the slope of the curve) in patches of type A or B
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Figure 1. Optimal foraging in a patchy habitat (adapted fromCharnov, 1976). Left panel: simulated walk

of a forager in a patchy habitat. Right panel: Energy intake for time T spent in patch of type i.
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is initially higher than the average across the entire habitat, but that after a sufficiently

lengthy bout of consumption, the rate of intake will be equal to or less than the average

across the entire habitat. According toMVT,when the rate of intake in a patch drops to the

average for the entire habitat (see vertical lines in Figure 1), the forager is expected to
leave that patch. In our example, a forager would be expected to spend longer in patches

of type A than in those of type B.

Althoughnot included in theMVT, exposure to the risk of predationmay also influence

foraging bouts at particular locations, with foragers choosing to leave a patch when

perceived risks outweigh expected benefits (e.g., Nonacs, 2001). Alternatively, a forager

may target patches that are sub-optimal in terms of resources if they offer refuge from

other predators (or the police in the case of burglary). For the reasons discussed above, it

seems reasonable to suggest that as well as applying to animals, these principles could
apply to the offender (as forager).

In support of this, the analysis of crimes detected by the police (Bernasco, 2008;

Johnson et al., 2009) indicates that, relative to burglaries that occur close in space but not

time, or vice versa, those that occur close to each other in both dimensions (e.g., within a

fewdays and 200 m) aremassivelymore likely to be thework of the same offender(s). The

same is true for thefts from motor vehicles (Johnson et al., 2009). Research concerned

with crime linkage analysis provides further support for this hypothesis, indicating that

offender inter-crime distances are typically short (e.g., Bennell & Canter, 2002; Goodwill
& Alison, 2006). Interviews with offenders are also informative, suggesting that offenders

frequently return to the same locations (Ashton, Brown, Senior, & Pease, 1998) or those

nearby (Summers et al., 2010).

The above findings suggest that offenders return to locations they have recently

victimized, or those nearby, but say little about sequential choices in particular, or the

longer term patterns of choices observed across an offender’s crime series. The aim of the

remainder article is to explore these issues conceptually (see also Brantingham & Tita,

2008; Hering & Bair, 2014) and to provide an example to illustrate how they might be
examined empirically.

In the case of animal foraging, at least two types of so-calledwalkshave been described

to characterize animal foraging patterns. The first are Brownian motion random walks

whereby the ‘walker’ moves in a random direction at each time step but their step lengths

are relatively constant. For such walks, sequential steps are near to each other and the

walker may return to the same locations frequently (see Figure 2). More recently, interest

has grown in L�evywalks (L�evy, 1925; Viswanathan et al., 1999) as an alternative form of

foraging strategy. Rather than having a constant length, the step length for each ‘trip’
(sequential inter crime distances in our case) is selected from a power law distribution of

the form P[l] = l
�u, where 1 < u ≤ 3. For such a distribution, most trips will be short but

occasionally trips many orders of magnitude larger than the average will be observed (see

Figure 2). In animal foraging, the adoption of a L�evywalk wouldmean that animals return

to the same sites less frequently than if their spatial behaviour resembled a pattern of

Brownian motion. One advantage of such a strategy is that locations are less likely to be

over foraged (see, Viswanathan, 2010). In the ecology literature (e.g., Humphries et al.,

2010), it appears to be the case that Brownian motion is more likely where resources are
abundant, but that L�evy walks are adopted where resources are more scarcely distributed

(such as the open seas).

In addition to being observed in animal foraging, L�evy walks have been found to

characterize patterns of human mobility. For example, Brockmann, Hufnagel, and Geisel

(2006) examined human travel patterns indirectly by tracking the movement of bank
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notes in theUnited States and findpatterns of banknote dispersal that are consistentwith a
L�evy walk (small movements interspersed with scale-free jumps). In a more recent study,

using global positioning system (GPS) units, Raichlan et al. (2014) examined human

foraging behaviour in a sample of 44 human hunter-gatherers in Tanzania, finding that

they performed L�evy walks in around 50% of all foraging bouts.

Do sequential ‘trips’ in offender crime series resemble one of the two foraging patterns

described above? If so, which?Or, is there generally little pattern in the sequential choices

made, with locations perhaps being targeted purely because of their proximity to the

offenders’ home locations? Existing empirical research does not shed light on this
question. Consider the types of foraging patterns that might be observed, in the case of

burglary, targets (homes) are likely to be relatively abundant and so a pattern of Brownian

motionmight be expected. However, targets will vary in attractiveness and offendersmay

perceive that continuing to return to the same areaswill ultimately attract police attention

or lead to over-foraging. For these reasons, the spatial behaviour of offendersmay bemore

in line with a L�evy walk. These are the questions to be considered here.

Before continuing, it is important to discuss a few points of departure between studies

of animal foraging and offending. First, when measuring ‘trip’ distances associated with
animal movements, ecologists are often able to record the exact details of each trip using

GPS technology or other directmethods of observation. In the case of offenders, or people

more generally, this is not typically possible. For example, as noted, the first study of L�evy
walks in humanmobility (Brockmann et al., 2006) used notGPS traces, but themovement

of bank notes to represent observable traces of people’s sequential movements. In the

case of active offenders, systematic methods of direct observation are currently a little

impractical, but observable traces of their mobility can be estimated through the

examination of the timing and location of the detected offences that they commit. While
imperfect this is the approach adopted here.

Second, in studies of animal foraging, researchers typically collect many observations

for every animal sampled, but collect data for only a small number of (say 7) animals (e.g.,

Brownian motion Lévy  walk

Figure 2. Simulated walks generated for Brownian motion and a L�evy walk (both walks originate from

the centre of the plot).
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Humphries et al., 2010). In the case of offenders, data will typically be available for many

offenders, but the number of jumps for each offender will be rather more limited.

Moreover, even if an offender commits more than one offence per day, traces of their

activity – as recorded in crimes detected by the police –will most likely include relatively
few ‘jumps’ each day. This contrastswith studies of animal foraging forwhich hundreds of

‘jumps’ might be recorded for a single foraging bout. However, it is likely that the spatial

decision-making of offenders is more deliberate than that for animals, and likely informs

actions over longer time scales, making it reasonable to consider sequential decision

-making that extendsover anumberofdays (rather thanwithin thesameday). Forexample,

relative to animals, offenders may be more likely to engage in rational decision-making

(however, briefly) and more likely to draw on their memory of possible spatial choices,

associating less uncertainty to those places most recently visited. If this is the case, then
even though their sequential choicesmaybe interruptedby theneed to returnhomeat the

endof eachday (central place foraging), it seems reasonable to suggest that theywill–with

someprobability –deliberately return to an area targeted on1 day (or nearby) on the next.

Analternativehypothesis (testedbelow) is that rather thandoingso,offenders returnhome

eachday and select an areawithinwhich to offend on the nextwithout reference towhere

they last offended. Thiswould represent the simplest formof central place foraging. In the

next section, I describe the data analysed before presenting illustrative results.

Method and results

Police detection data

Data were acquired for all detected residential burglaries committed between January

2007 and December 2012 in one large metropolitan UK police force. The following

variables were available for analysis for each offence: a unique identifier for the offender
involved; the time and date of the offence; and the address and geographic grid

coordinates of the offence (accurate to a resolution of 1 m). A total of 7,713 offenceswere

available for analysis and these were committed by 4,435 unique offenders who each

committed an average of 1.7 (SD = 2.7, range = 1–63) offences.
For each offender that committed more than one offence (1,037 offenders who

committed 4,315 offences), and forwhich their home addresswas the same for sequential

offences,1 the Euclidian distance (diþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xiþ1Þ2 þ ðyi � yiþ1Þ2

q
, where i is the ith

offence in an offender’s crime series, and x and y are the Easting and Northings of each

crime, respectively) between sequential offences in their crime series were computed.

Thus, if an offender committed four crimes and lived at the same address across the series,

three sequential ‘jump’ distances would be computed for that offender.

Simple central place foraging

As discussed, patterns observed in the distribution of ‘jump’ distances could be explained

by offenders starting their trips from a central routine activity node each day and selecting

targets nearby, regardless of where they committed their last offence. For the reasons

discussed above, the routine activity node considered here is the home location.

1 Analyzing the distances between offences committed by an offender who had moved residential address would likely distort
patterns.
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Considering the distance betweenwhere offenders live and offend first, as is illustrated in

Figure 3A, consistent with previous research, and the idea that there are spatial
constraints to offender targeting behaviour, for the sample of offenders considered here,

the probability of an offender committing a crime at a particular location decreased the

further that location was from the offender’s home.

Considering sequential ‘jumps’, Figure 3B shows the empirical cumulative distribu-

tion function (ECDF) for the observed distances for the entire sample of offenders. It is

apparent thatmost sequential jumpswere short but that theywere as large as 20 km.How

does this compare with what would be expected if offenders adopted very simple central

place foraging patterns? To generate such an expected distribution, for each offender I
simulate their targeting choices (the number of simulated offences being equal to the

number observed) assuming that each trip originates from their home location, that the

distances they travel are constrained, that they select a direction in which to offend at

random, and that sequential choices are independent. To do this, for each offender and for

each simulated offence, the angular direction of travel from their home location is selected

at random using a uniform random number generator (range 0–360). The jump distance

from their home location is also selected at random (without replacement), but this time it

is selected from the vector of journey to crime distances for that offender (rather than a
theoretical distribution). Having simulated the data in thisway, an ECDF can be computed

for the simulated sequential jump distances as before, which can then be compared with

the observed distribution. Doing thismany times represents aMonte Carlo simulation that

can be used to compute the probability with which the observed distribution can be

explained by the simulated process.

The grey lines shown in Figure 3B illustrate the expected distribution for 999

realizations of this process.While formal methods (North, Curtis, & Sham, 2002) could be

used to estimate the probability with which this explains the observed distribution, it is
clear that it does not. The observed distribution never overlaps with those simulated, and

the expected sequential inter-event distances are consistently much larger than those

observed. For example, while about 10% of the observed jump distances were around

100 m, almost none of those expected were.
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Figure 3. Complimentary cumulative distribution function for the journey to crime (a) and the empirical

cumulative distribution function for sequential crime trips (b).
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L�evy walks or Brownian motion?
Having established that a simple central place foraging strategy does not appear to explain

offender spatial choices for the current sample, I explore the inter-event distances inmore
detail. Figure 4 shows a Log-Log plot of the probability density function (PDF) for the

entire sample of data. As noted above, in the event that the inter-event distances are

consistent with a L�evy walk, the PDF should have a power law distribution which, on a

Log-Log plot would resemble a straight line.

Figure 4A suggests that a power lawprovides a relatively good fit to the data. However,

visual patterns can be illusory and so more formal testing is necessary. There exist

different approaches to measuring the extent to which an observed distribution fits a

particular distribution (e.g., Clauset, Shalizi, & Newman, 2009) and for estimating the
parameters that best describe it. Here, I take a simple approach, estimating parameters

using a linear model in the R package. Two distributions are considered. The first is a

power law distribution. In the event that the data fit a power law distribution, the linear

model log10NðxÞ ¼ ulog10x should describe the data well. For the current sample, the R2

of .78 suggests a good fit to the data. Moreover, the estimate value of u of 1.17 is in the

range of 1 < u < 3, associated with a L�evy walk (e.g., Viswanathan, 2010).

The second probability function considered is an exponential of the form log10N

(x) = x. Such a distribution is expected if foraging patterns are more consistent with
Brownianmotion (e.g., Humphries et al., 2010).With an R

2 of .85, this provides a slightly

better fit to the data, but the differences inmodel fit are not large.Moreover, a known issue

with this type of analysis is that only part of an observed distribution is likely to fit a power

law. Consequently, it is common practice to estimate the minimum (xmin) and maximum

(xmax) values of the distribution for which the data are consistent with a power law (e.g.,

Clauset et al., 2009). For instance, the tail of a distributionwill usually containmany zeros

(for which the logged value is negative infinity) that cannot be included in the analysis.

Sensitivity analyses of the current data indicate that as theminimumvalue ofX considered
increases, the two functions rapidly converge in terms of the amount of the variance

explained. For example, in Figure 2B with xmin and xmax values of 1.25 and 24.5 km, the

power law (with an estimated value of u 1.65) and exponential distributions provide an

equally good fit to the data with R
2 values of .81.
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Figure 4. Log-Log plots of the probability density function for the observed inter-event distances for

different ranges of the observed inter-event distances.
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Discussion

The discussion and analyses presented here provide a more complete picture of offender
sequential spatial targeting patterns than have been explored hitherto. In the main,

previous empirical research has examined the distance from an offender’s home location

to where they offend, but has ignored regularities in their sequential offences. In the few

notable exceptions (Bennell, Snook, Macdonald, House, & Taylor, 2012; Bernasco, 2008;

Johnson et al., 2009; Lammers, 2014) that inter-event distances have been examined in

empirical studies, in all but one study (Hering & Bair, 2014) sequential patterns have been

ignored. The aim of the current paper was to consider the dynamics of burglar spatial

decision-making with a specific focus on whether observed patterns resemble those
identified across animal species. In what follows, I discuss the results of the empirical

example presented and consider what these might mean for theories of offender spatial

decision-making and for those forensic applications that are most likely to be informed by

them (crime linkage analysis, geographic offender profiling, and crime forecasting).

The results suggest thatwhen analysed in the aggregate, for the current sample at least,

burglar sequential inter-crime distances cannot be explained by a very simple type of

central place foraging strategy, and hence amore complex strategy is likely. The datawere

tested for evidence of two other types of foraging behaviour: L�evy walks and Brownian
motion.Both, rather thanonedistribution,providedarelativelygoodfit to thedata, and this

was particularly evident for increasing values of xmin. There are a number of reasons why

one specific distribution might not provide an unequivocal best fit to the data. The first is

that it is possible that rather than adopting one strategy exclusively, offenders may switch

from one strategy to another. For instance, as has been observed in studies of animal

foraging (Humphries et al., 2010), one strategymaybemore effective in some areas than it

is in others– awalkbasedonBrownianmotionmaybeparticularly effective in areaswhere

good opportunities are abundant, while a L�evy walk may be optimal where resources are
sparse. Alternatively, offenders may vary their foraging strategy based upon their

perception of the risk of apprehension. For example, a more complex L�evy walk may be

the most sensible where offenders perceive the risk of detection is high. Summers et al.

(2010) provide examples that are consistent with this in their interviews with burglars:

If this area I didn’t get caught in, I earned enoughmoney to seeme through the day then I’d go

back the followingday to the sameplace. If Iwas in, say, that place and it cameon top, andby it

came on top I mean I was seen, I was confronted, I didn’t feel right, I’d move areas straight

away . . . (P02)

Summers et al. (2010)

A second possibility is that burglars are relatively consistent in the strategy they adopt but

different offenders prefer different strategies (most of the time). For example, thosemore

established in their criminal careers may bemore likely to adopt a L�evywalk, while others

may favour a strategy more consistent with Brownian motion. Moreover, opportunistic

offenders may adopt very little strategy at all, perhaps engaging in central place foraging

unintentionally. In a recent study, Hering and Bair (2014) found that a sample of burglars

in the United States differed in the extent towhich their offences clustered spatially. Many

(around 60%) committed offences near to each other, but others appeared to avoid doing
so. Future research might systematically explore these possibilities further, perhaps

starting with an exploration of whether certain types of strategy are more apparent in

certain types of areas or for particular types of offenders.
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A third possibility is that offendersmight adopt a different strategy to those considered

above. Many strategies are possible, but an issue not so far discussed concerns bias in the

direction of travel offendersmight take. In the case of L�evy or Brownianwalks no attention

is given to this, with the focus being on trip lengths. Research concernedwith the journey
to crime has often also ignored directional bias. However, research on this is growing,

with studies suggesting that for many offenders their direction of travel does tend to be

biased (e.g., Goodwill and Alison, 2005; Frank et al., 2011; Rengert &Wasilchick, 2000),

and may be oriented towards nodes of activity such as shopping malls (e.g., Frank et al.,

2011). However, this is not always the case, and it appears that some offenders prefer to

commit offences around their home location (e.g., Canter & Larkin, 1993) and that

patterns may vary across offence types (e.g., Meaney, 2004).

Of course, such research considers directional bias as measured relative to the
offender’s home location. Thus, the consideration of angular variation in sequential

inter-crime tripswould complement these findings by examining patterns in the vector of

travel from one crime to the next (not from the home location to each crime). In

conducting such research, if biases emerge researchers might explore if activity nodes or

other factors might explain observed regularities. They might also consider angular

variation relative to the offender’s homebase and their last offence simultaneously to see if

(for example) the former constrains the latter. Other targeting strategies may exist and

researchers are encouraged to articulate and test for evidence of them.
Considering the approach to model fitting adopted here, as with many studies that

have examined such issues, a simple and easy to articulatemethodwas taken. However, in

future research, scholars who examine some of the suggested lines of enquiry discussed

here are advised to adopt Maximum Likelihood approaches tomodel fitting, such as those

described in Clauset et al. (2009). Such approaches have been shown to provide less

biasedparameter estimates than othermethods andhencewill be the preferred approach.

A further point concerns the data analysed here. As noted, the data consideredwere for

burglary offences detected by the police and these represent an incomplete picture of
offender movement. First, the data are for crimes detected by the police and it is possible

that patterns of offending differ for those who are and are not detected. For example,

those who commit crimes close to each other may bemore easy to detect than those who

do not. However, in a recent study, Lammers (2014) examined this issue using data for a

sample of offenders who were either apprehended by the police or were not

apprehended but whose crimes were linked together using DNA samples. Lammers

found no differences in the distribution of the inter-event distances for such offenders,

suggesting that the two groups could not be differentiated – and hence that detection data
are unlikely to be systematically biased – in this respect.

A second issue concerns the fact that the data do not provide a complete record of

movement for those who are detected by the police. They only detail the timing and

location of detected offences. Using an alternative method, in a recent study, Rossmo, Lu,

and Fang (2011) mapped the sequential movements of a sample of 14 offenders required

to wear GPS trackers as a condition of their parole. Such analysis – not without its own

biases –provides a richer picture of offendermobility and could and should be analysed in

theways presented here. More generally, a better understanding of offender mobility will
be gained through the triangulation of findings from studies that use different sources of

data.

Turning to possible applications of the findings, consider crime linkage, or

comparative case analysis (Grubin, Kelly, & Ayis, 1997). This analytic technique is used

to identify a series of offences committed by a single perpetrator out of a pool of
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unsolved crimes (Woodhams, Hollin, & Bull, 2007). If completed correctly, it can play a

major role in the detection of prolific offenders. While linkage analysis can sometimes be

achieved using physical or other identifying evidence (e.g., fingerprints, DNA, witness

statements), such evidence is often unavailable (Davies, 1991). Consequently, linkage is
often attempted using other forms of crime scene evidence, such as an offender’smodus

operandi. If successful, crime linkage allows for the centralization and rational allocation

of investigative resources (Godwin, 2001). For the crime of burglary at least, recent

research on linkage analysis suggests that the distance between offences is one of the

best predictors of whether two crimes were committed by the same offender (e.g.,

Bennell & Canter, 2002; Bennell & Jones, 2005; Bouhana, Johnson, & Porter, 2014;

Goodwill & Alison, 2006; Tonkin, Santtila, & Bull, 2011). This is, of course, completely

consistent with the current findings and the theory articulated. However, what should
also be clear from the current findings is that while most offences committed by the

same offender may tend to be near to each other, others will be a long distance from each

other. Considering Figure 2, this suggests that if an offender adopts a foraging pattern

that resembles Brownian motion, crime linkage based on distance will work well and

should lead to many pairs of offences being correctly linked to each other. However,

where offenders adopt a L�evy walk, while geographic clusters of offences will be

correctly linked to each other, offences from one spatial cluster are unlikely to be linked

to those of another. This does not challenge the validity of methods of crime linkage
based on propinquity, but does highlight an issue that scholars might want to try to

address in future research.

A related methodology is that of geographic profiling (e.g., Rossmo, 2000). This

technique is intended to assist lawenforcement agencies investigating a crime series focus

their efforts geographically. Informed by CPT, and specifically the finding that most

journeys from an offender’s home-to-crime location are short, the approach essentially

assumes that offenders are central place foragers who typically begin their journeys to

crime from a specific routine activity node that could – but need not be – their home
location. The approach is not intended to pinpoint the exact location that an offendermay

be found, but rather to direct police resources to those locationswhere investigative effort

might most profitably be focused (e.g., Rossmo, 2000). To over simplify the analytic

technique that underlies the approach, an assumption of existingmodels is that given a set

of crime locations that are known (or assumed) to have been committed by a single

offender, using a simple (isotropic) density estimator it is possible to estimate the

residence of the offender, or at least an important anchor point.

In those cases, where offenders employ a Brownian motion search strategy, for the
current sample this technique is likely to be effective at least some of the time. However,

where offenders employ a L�evy walk search strategy, it is unlikely to generate optimal

predictions, having the potential to be grossly inaccurate some of the time. The extent to

which the current findings are generalizable remains to be seen, but assuming they are

they suggest directions that future research of this kind might explore.

A similar issue can be discussed with respect to spatial methods of crime forecasting.

Inspired by the research on near repeats, one contemporary approach (e.g., Bowers,

Johnson, &Pease, 2004; Johnson et al., 2008;Mohler, Short, Brantingham, Schoenberg,&
Tita, 2011) assumes that the risk of crime in an area is the function of two things. Time

stable risk associated with features of the environment, and, a more dynamic process

whereby, after successfully targeting one location, offenders target others nearby.

Mathematical models have been developed to mimic such processes and have been

shown to be more accurate at predicting the future locations of crime than more
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traditional methods of crime mapping (e.g., Bowers et al., 2004; Johnson et al., 2008;

Mohler et al., 2011).

However, such models assume that the risk of crime spreads in space and time

according to pattern known in statistical physics as a diffusion pattern (e.g., Barthelemy,
Bertolotti, &Wiersma, 2008). For such a process, and in the case of offending, we assume

that the average squared distance travelled by an offender (referred to as displacement)

increases linearly with time spent foraging. That is, sequential crimes will tend to be

committed close to each other. Where offender foraging patterns resemble a Brownian

walk, the mathematics associated with predicting the diffusion of risk will be simple.

However, in the case of a L�evy walk, the average squared displacement is known not to

increase linearly with time spent foraging and instead leads to a different pattern of

superdiffusion (Viswanathan, 2010). Modelling such a process is more complicated and
hence future research on crime forecasting might consider how to model such a process,

or a mixture of them.

To conclude, the aim of this article was to explicitly consider regularities in offender

spatial decision-making that has not received attention in the literature hitherto. The

theoretical perspective offered, and the empirical examplepresented, suggest that space–
time patterns of burglary (at least) may be explained by offenders adopting foraging

strategies not unlike those observed across animal species. The results also suggest that

one foraging strategy is either not adopted by all offenders, or is not adopted all of the time,
and hence suggestionsweremade regarding the future directions that researchmight take

to further enhance understanding of offender spatial decision-making.
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