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Abstract—In this paper we address the controlled complete
AutoRegressive Moving Average Independent Process Analysis
(ARMAX-IPA; X-exogenous input or control) problem, which
is a generalization of the Blind SubSpace Deconvolution (BSSD)
task. Compared to our previous work that dealt with the
undercomplete situation, (i) here we extend the theory to
complete systems, (ii) allow an autoregressive part to be present,
(iii) and include exogenous control. We investigate the case
when the observed signal is a linear mixture of independent
multidimensional ARMA processes that can be controlled. Our
objective is to estimate the ARMA processes, their driving
noises as well as the mixing. We aim efficient estimation by
choosing suitable control values. For the optimal choice of
the control we adapt the D-optimality principle, also known
as the ‘InfoMax method’. We solve the problem by reducing
it to a fully observable D-optimal ARX task and Independent
Subspace Analysis (ISA) that we can solve. Numerical examples
illustrate the efficiency of the proposed method.

I. I NTRODUCTION

Recently, research on Independent Component Analysis
(ICA) [1], [2] and its extensions has gained much attention.
One can think of ICA as a cocktail-party problem, where
there areD microphones,D one-dimensionalsound sources,
and the task is to estimate the original sources from the
observed mixed signals. For a recent review about ICA see
[3], [4], [5].

Applications, whereonly certain groupsof the sources are
independent may be highly relevant in practice. For example,
at the cocktail-party, groups of people or groups of musicians
may form independent source groups. This task is called
Independent Subspace Analysis (ISA1) [6]. The large number
of different ISA algorithms [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31] shows the impor-
tance of this field. Successful applications of ISA involve:
(i) the processing of EEG-fMRI (ElectroEncephaloGraphy,
functional Magnetic Resonance Imaging) data [7], (ii) gene
analysis [32], [33], [34], (iii) face view recognition [35], [36],
and (iv) ECG (ElectroCardioGraphy) analysis [12], [15].

Another extension of the original ICA task is the Blind
Source Deconvolution (BSD) problem. Such a problem
emerges, for example, at a cocktail-party being held in an
echoicroom. Several BSD algorithms have been developed
over the last decades, for a review see [37]. BSD shows
potentials in the following areas: (i) remote sensing applica-
tions; passive radar/sonar processing [38], [39], (ii) image-
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1ISA is also called Multidimensional Independent ComponentAnalysis,
subspace ICA and group ICA in the literature.

deblurring, image restoration [40], (iii) speech enhancement
using microphone arrays, acoustics [41], [42], [43], [44],
(iv) multi-antenna wireless communications, sensor networks
[45], [46], (v) biomedical signal—EEG, ECG, MEG (Mag-
netoEncephaloGraphy), fMRI—analysis [47], [48], [49], (vi)
optics [50], and (vii) seismic exploration [51].

The simultaneous assumption of the two extensions, that
is, ISA combined with BSD, seems to be a more realis-
tic model than either of the two models alone and has
recently been introduced in the literature under the name
of Blind SubSpace Deconvolution (BSSD). For example, at
the cocktail-party, groups of people or groups of musicians
may form independent source groups and echoescould be
present. It has been shown that the undercomplete case of
the BSSD problem can be reduced to ISA by means of (i)
temporal concatenation [20] or (ii) Linear Predictive Approx-
imation (LPA) [52]. Using the first approach the associated
ISA problem can easily become ‘high dimensional’, this
dimensionality problem can be circumvented by applying
the LPA based reduction scheme. The LPA method has been
extended to Integrated ARMA (ARIMA-IPA) processes [53],
but the framework dealt with the undercomplete case and the
estimation of the driving noises only.

It has been shown in a recent work [54] that the parameters
and the driving noise of controlled dynamical systems (ARX
models: AutoRegressive process with eXogenous inputs) can
be efficiently estimated by means of D-optimality princi-
ples. This theory, which allows control variables, has been
formulated only for thefully observablecase. By contrast,
the ‘ICA’ problem family can model hidden independent
variables, but cannot account forcontrol.

We unify and generalize these directions: we treat D-
optimal estimation of controlled independent multidimen-
sional hidden dynamical systems, ARMAX processes. Be-
yond this extension, we estimate the independent multidi-
mensional driving noises and the mixing process, too. Our
method may offer important extension possibilities for ICA
applications. Such potential applications motivate our work.
Here, we present the necessary basic theoretical steps. Future
applications, where interaction (‘X’) with the environment is
present, may include for example, human-computer interac-
tion serving the user.

The paper is structured as follows: In Section II we review
the D-optimal identification of fully observed ARX models.
Section III defines the problem domain, the Controlled
ARMA Independent Process Analysis (ARMAX-IPA) task.
In Section IV we detail our method. Section V contains nu-
merical illustrations and conclusions are drawn in SectionVI.



II. D-OPTIMAL IDENTIFICATION OF ARX M ODELS

We sketch the basic thoughts that lead to D-optimal
identification of ARX models. The dynamical system is fully
observed and evolves according to the ARX equation

st =

Ls
∑

i=1

Fist−i + et +

Lu−1
∑

k=0

Bkut−k, (1)

where

• s ∈ RDs , e ∈ RDe (Ds = De) represent the state of
the system and the noise, respectively

• u ∈ RDu represents the control variables, and
• polynomial matrix

F[z] = I−

Ls
∑

i=1

Fiz
i (2)

(given by matricesFi ∈ RDs×Ds and identity matrixI)
is invertible, that is

det(F[z]) 6= 0, (3)

for all z ∈ C, |z| ≤ 1.

Our task is the efficient estimation of

1) the parametersΘ = [Θdynamics,Θnoise], that is
Θdynamics = [F1, . . . ,FLs

,B0, . . . ,BLu−1] that de-
termine the dynamics and noise parametersΘnoise,

2) the noisee that drives the process

by the ‘optimal choice’ of control valuesu. Formally, D-
optimality aims to maximize one of the two objectives

Jpar(ut) := I(Θ, st|st−1, st−2, . . . ,ut,ut−1, . . .),

Jnoise(ut) := I(et, st|st−1, st−2, . . . ,ut,ut−1, . . .)

for ut ∈ U ⊆ RDu . In other words, we choose control
valueu from the achievable domainU such that it maximizes
the mutual information between the next observation and the
parameters (or the driving noise) of the system. It can be
shown [54], that if

• Θ has matrix Gaussian,
• e has Gaussian, and
• the covariance matrix ofe has inverted Wishart distri-

butions,

then in the Bayesian setting

• maximization of theJ objectives can be reduced to the
solution of a quadratic programming task,

• priors ofΘ ande remain in their supposed distribution
family and undergo simple updating.

The considerations allow for control, but assume full observ-
ability about the state variables. Now, we extend the method
to hidden variables, to ARMA processes in the ARMAX-IPA
model of the next section.

III. T HE COMPLETE ARMAX-IPA M ODEL

Here, we define the ARMAX-IPA (AutoRegressive Mov-
ing Average Independent Process Analysis with eXogenous
input) task. Assume that we haveM multidimensional inde-
pendent noise processes that drive multidimensional ARMA
processes that we can influence (control). Suppose also that
only their

st =

Ls
∑

i=1

Fist−i + et +

Le
∑

j=1

Hjet−j +

Lu−1
∑

k=0

Bkut−k, (4)

xt = Ast (5)

mixture is available for observation2, where

• xt ∈ RDx , st = [s1

t ; . . . ; s
M
t ] ∈ RDs , et =

[e1

t ; . . . ; e
M
t ] ∈ RDe (Ds = De) represent the observa-

tion, the state of the system and the noise, respectively,
• ut ∈ RDu stands for the control variables at thetth

time instant,
• A ∈ R

Dx×De is the mixing matrix,
• s

m
t , em

t ∈ Rdm (m = 1, . . . , M).

Denoting the time-shift operation byz, one may write (4)-(5)
compactly as

F[z]s = H[z]e + B[z]u, (6)

x = As, (7)

using polynomial matrices

F[z] = I−

Ls
∑

i=1

Fiz
i ∈ R[z]Ds×Ds , (8)

H[z] = I +

Le
∑

j=1

Hjz
j ∈ R[z]Ds×De , (9)

B[z] =

Lu−1
∑

k=0

Bkzk ∈ R[z]Ds×Du . (10)

Our assumptions are the following:

• The problem is complete:D := Dx = Ds = De.
• Polynomial matricesF[z], H[z], andA are invertible.
• Driving noisesem of processessm are independent like

in the ISA task and fullfill the ISA assumptions. In other
words,ems are

– independent:I(e1, . . . , eM ) = 0, whereI denotes
the mutual information,

– i.i.d. (independent identically distributed) int,
– and there is at most one Gaussian among thee

ms.

Note: there is no block-diagonal restriction on polyno-
mial matricesF[z] andH[z].

Our task is to estimate the unknown mixing matrixA,
hidden processessm and their driving noisesem by means
of observationsx only.

2Here,Ls, Le, Lu denote the number ofFi, Hj , Bk matrices in the
respective sums.



IV. M ETHOD

Below, we present our solution for the ARMAX-IPA task.
According to our assumptionsH[z] can be inverted, so we
multiply (6) by (H[z])−1 from the left, use the invertibility
of matrix A and substitute relation

s = A
−1

x (11)

that follows from (7) and get

(H[z])−1
F[z]A−1

x = e + (H[z])−1
B[z]u. (12)

Now, multiplying this equation byA from the left we have

A(H[z])−1
F[z]A−1

x = Ae + A(H[z])−1
B[z]u. (13)

In (13), the main coefficient of the polynomial matrix on
the left hand side isI giving rise to an AR(∞) form.
BecauseAe can be considered as an approximately Gaussian
variable according to the d-dependent central limit theorem
[55], we can apply the D-optimal ARX approximation for
(13) in order to estimate noiseAe. The result can be
seen as the observation of an ISA problem because the
e

m ∈ Rdm components ofe are independent. ISA techniques
can be used to identifyA ande

m. Our estimation fors is
ŝ = Â

−1
x.

It can be shown [56] that AR estimation of order

p = o(T
1

3 )
T→∞
−−−−→ ∞ (14)

for the inverse of polynomial matrixH[z] gives rise to
an asymptotically consistent estimation. Thus, taking into
account (13), we shall apply ARX estimations with the
following orders

L′
s = p + Ls, (15)

L′
u = p + Lu. (16)

For the particular choice ofp, see Section V-C.
Note:

1) In the above described complete ARMAX-IPA tech-
nique, the D-optimal ARX procedure is an online
estimation for the innovationε = Ae, the input of
the ISA method, for fixedp. Online ISA method onε
would enable online estimation of the inverse of matrix
A and then the estimation ofs ande. In the absence
of an efficient online ISA estimation, the ISA step was
executed in batch mode. For one-dimensional hidden
sources (dm = 1, ∀m) efficient online ICA methods,
e.g., [57], could be used here.

2) The pseudocode of our method can be found in Table I.
3) In the absence of control (Lu = −1) one can apply a

simple AR fit instead of the ARX estimation. Efficient
AR fit methods can be found in [58], [59]. These
methods use least squares estimations for AR fit, so
recursive online estimations are feasible here.

Table I: Pseudocode of the ARMAX-IPA algorithm.
Input of the algorithm

AR order:L′

s

control order:L′

u

observation:{xt}t=1,...,T

Optimization
D-optimal ARX estimation:

for t = 1, . . . , T

Using xt update D-optimally the distribution of
Θ̂t = [F̂1,t, . . . , F̂L′

s
,t, B̂0,t, . . . , B̂L′

u
−1,t]

Estimate the innovation processεt = Aet:

ε̂t = xt − (
PL′

s

i=1
F̂i,txt−i +

PL′

u
−1

k=0
B̂k,tut−k)

end
ISA estimation: on {ε̂t}t=1,...,T ⇒ demixing matrix:ŴISA

Estimation
Estimated driving noise:̂e = ŴISAε̂

Estimated source:̂s = ŴISAx

V. I LLUSTRATIONS

Here, we illustrate the efficiency of the proposed complete
ARMAX-IPA estimation technique. Test cases are introduced
in Section V-A. To evaluate the solutions we use a perfor-
mance measure given in Section V-B. Numerical results are
presented in Section V-C.

A. Databases

We define three databases (e) to study our identification
algorithm. The databases are depicted in Fig. 1.

1) ABC database:In the ABC database, hidden sources
e

m were uniform distributions on 2-dimensional images
(dm = 2) of the English alphabet. The number of compo-
nents wasM = 4, and thus the dimension of the source was
D = 8. For illustration, see Fig. 1(a).

2) Tale database:The tale test has 2-dimensional source
components generated from drawings of fairy tale characters
(dm = 2).3 Sourcese

m were generated by sampling 2-
dimensional coordinates proportional to the corresponding
pixel intensities. In other words, 2-dimensional images of
tale characters were considered as density functions.M = 4
was chosen, thus the dimension of the hidden source was
D = 8. For illustration, see Fig. 1(b).

3) 3D-geom database:In the 3D-geom test e
ms were

random variables uniformly distributed on 3-dimensional
geometric forms (dm = 3). We chose 3 different components
(M = 3) and, as a result, the dimension of the hidden source
is D = 9. For illustration, see Fig. 1(c).

B. Performance Measure, the Amari-index

Recovery of source componentss
m (ande

m) are subject
to the ambiguities of the ISA task. Namely, components
of equal dimension can be recovered up to permutation
and invertible transformation within the subspaces [60]. Let
us suppose that the hidden components are d-dimensional
(d = dm). Then, in the ideal case, the product of the
estimated ISA demixing matrixŴISA and mixing matrix
A, that is G := ŴISAA ∈ RD×D is a block-permutation
matrix with d × d sized blocks. This block-permutation

3See http://www.smileyworld.com.



(a) (b) (c)

Figure 1: Illustration of theABC (a), tale (b), and3D-geom
(c) datasets.

structure can be measured by the Amari-index. Namely, let
matrix G ∈ RD×D be decomposed intod × d blocks:
G =

[

G
ij
]

i,j=1,...,M
. Let gij denote the sum of the absolute

values of the elements of matrixGij ∈ Rd×d. We normalized
the ISA adapted version [15], [16] of the Amari-error [61]
into interval [0, 1] [62]:

r(G) :=
1

2M(M − 1)

[

M
∑

i=1

(

∑M

j=1
gij

maxj gij
− 1

)

+

M
∑

j=1

(

∑M

i=1
gij

maxi gij
− 1

)



 . (17)

We refer to the normalized Amari-error as theAmari-index.
One can see that0 ≤ r(G) ≤ 1 for any matrix G, and
r(G) = 0 if and only if G is a block-permutation matrix
with d × d sized blocks.

C. Simulations

Results on databasesABC, tale and3D-geomare provided
here. We focused on the following questions:

1) The error of the source estimation as a function of the
sample size.

2) It is expected that if the roots ofF[z] and H[z]
are close to the unit circle then our estimation will
deteriorate. We investigated this by generating the
polynomial matrixF[z] andH[z] as follows:

F[z] =

Ls
∏

i=0

(I − λsOiz) (|λs| < 1), (18)

H[z] =

Le
∏

j=0

(I − λeUjz) (|λe| < 1), (19)

where matricesOi and Uj were chosen uniformly
(according to the Haar-measure) from the orthogonal
group,λs, λe ∈ R and theλs → 1, λe → 1 limits were
studied.

The Amari-index was used to measure the performance of
the proposed complete ARMAX-IPA method. For each indi-
vidual parameter (T, λs, λe), 20 random runs were averaged.
‘Random run’ means random choice of quantitiesF[z], H[z],
B[z], A ande. In our simulations:

• mixing matrix A was uniformly distributed on the
orthogonal group,

• distributions of coordinates of polynomial matrixB[z]
were independent and normal,

• controlu was limited to a hypercube

U := {u ∈ R
Du : max

i∈{1,...,Du}
|ui| ≤ δu}, (20)

with upper limit δu equal to0.1,
• sample numberT varied between1, 000 and20, 000,
• dimension of the control was equal to the the dimension

of s (Du = D),
• invertibility parameters λs and λe of poly-

nomial matrices F[z] and H[z], respectively
were chosen independently from the set
{0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95},

• orderp of the AR approximation (see Section IV) was4

p = ⌊T
1

3
− 1

1000 ⌋, (21)

thus the orders in the D-optimal ARX estimation were
(see (15)-(16))

L′
s = ⌊T

1

3
− 1

1000 ⌋ + Ls, (22)

L′
u = ⌊T

1

3
− 1

1000 ⌋ + Lu, (23)

• the ISA subtask on the estimated innovation, that is
on the estimation ofAe was carried out by the joint
f-decorrelation method [18].

We present our results for invertibility parametersλs and
λe for matricesF[z] and H[z], respectively for maximal
sample numberT = 20, 000. The average quality of the
estimations is shown in Fig. 2, Fig. 3, and Fig. 4 for the
ABC, the tale, and the3D-geomdatabases, respectively. The
average quality is depicted by filled, 30 level contour plots
for the studied parameter region between0.4 − 0.95. One
may conclude from these figures that our method

• provides reliable estimates forλs and λe even if they
are close to 1,

• is more sensitive for parameterλs, and
• is robust up to0.9 in both parameters.

Estimation curves for the full1, 000 ≤ T ≤ 20, 000 sample
interval and for(λs, λe) = (0.4, 0.4), (0.7, 0.7), (0.85, 0.85),
(0.9, 0.85), (0.9, 0.9), (0.9, 0.95) are provided in Fig. 8,
Fig. 9, and Fig. 10 for theABC, the tale, and the3D-geom
databases, respectively. Estimation errors forλs, λe ≤ 0.85
approximate a power lawr(T ) ∝ T−c (c > 0) –manifested
by straight lines on log-log scale,– and this characteristics
can be observed forλs = 0.9, too. Precise values (mean
± standard deviation) of the Amari-index are provided for
sample numberT = 20, 000 in Table II, Table III and
Table IV, for theABC, the tale, and the3D-geomdatabases,
respectively. These tables demonstrate that

• estimations forλs, λe ≤ 0.85 are highly precise (1−3%)
with small standard deviations,

• estimation errors start to increase aroundλs = 0.9: for
λe = 0.85, 0.9, 0.95 values estimation errors are about

4We found this choice ofp reliable in our numerical experiments within
the studied parameter domain.
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Figure 2: Contour plot of the Amari-index as a function of the
λs, λe invertibility parameters on theABCdatabase. Number
of samples:T = 20, 000. For error curves and numerical
values, see Fig. 8 and Table II, respectively.
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Figure 3: Contour plot of the Amari-index as a function of the
λs, λe invertibility parameters on thetale database. Number
of samples:T = 20, 000. For error curves and numerical
values, see Fig. 9 and Table III, respectively.

6 − 10% (ABC), 2 − 5% (tale), 5 − 11% (3D-geom
database) with standard deviations being about the same
order of magnitude as the respective means.

Estimations with average Amari-indices are shown in Fig. 5,
Fig. 6, and Fig. 7. According to these figures, our ARMAX-
IPA method can provide acceptable estimations up to about
(λs, λe) = (0.9, 0.9)− (0.9, 0.95) values.

VI. CONCLUSIONS

In this paper we addressed the controlled complete Au-
toRegressive Moving Average Independent Process Analysis
(ARMAX-IPA) problem. We treated the model of hidden
multidimensional ARMA processes (i) driven by hidden
independent multidimensional noise processes, (ii) observed
through their linear mixtures, and (iii) subject to exogenous
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Figure 4: Contour plot of the Amari-index as a function of
theλs, λe invertibility parameters on the3D-geomdatabase.
Number of samples:T = 20, 000. For error curves and
numerical values, see Fig. 10 and Table IV, respectively.
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Figure 5: Illustration of the estimations on theABC dataset.
Number of samples:T = 20, 000. In (a)-(d): (λs, λe) =
(0.4, 0.4). (a): observed signalx(t). (c): estimation of the
Ae innovation, input of the ISA procedure. (d): estimated
componentŝem, recovered up to the ISA ambiguities. (b):
Hinton-diagram ofG, ideally a block-permutation matrix
with 2×2 blocks. (e)-(i): the same as (d), but for(λs, λe) =
(0.7, 0.7), (0.85, 0.85), (0.9, 0.85), (0.9, 0.9), (0.9, 0.95),
respectively. All the plotted estimations have average Amari-
indices, see Table II.
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Figure 6: Illustration of the estimations on thetale dataset.
Number of samples:T = 20, 000. In (a)-(d): (λs, λe) =
(0.4, 0.4). (a): observed signalx(t). (c): estimation of the
Ae innovation, input of the ISA procedure. (d): estimated
componentŝem, recovered up to the ISA ambiguities. (b):
Hinton-diagram ofG, ideally a block-permutation matrix
with 2×2 blocks. (e)-(i): the same as (d), but for(λs, λe) =
(0.7, 0.7), (0.85, 0.85), (0.9, 0.85), (0.9, 0.9), (0.9, 0.95),
respectively. All the plotted estimations have average Amari-
indices, see Table III.

Table II: Amari-index in percentages on theABC dataset
for different (λs, λe) invertibility parameter pairs: mean±
standard deviation. Number of samples:T = 20, 000. For
other (i)(λs, λe) pairs, (ii) sample numbers between1, 000 ≤
T < 20, 000, see Fig. 2 and Fig. 8, respectively. For the
illustration of the estimations, see Fig. 5.

(λs, λe) = (0.4, 0.4) (λs, λe) = (0.7, 0.7) (λs, λe) = (0.85, 0.85)
1.11% (±0.27) 1.14% (±0.17) 2.40% (±2.30)

(λs, λe) = (0.9, 0.85) (λs, λe) = (0.9, 0.9) (λs, λe) = (0.9, 0.95)
6.24% (±8.76) 5.73% (±6.54) 9.40% (±11.76)

Table III: Amari-index in percentages on thetale dataset
for different (λs, λe) invertibility parameter pairs: mean±
standard deviation. Number of samples:T = 20, 000. For
other (i)(λs, λe) pairs, (ii) sample numbers between1, 000 ≤
T < 20, 000, see Fig. 3 and Fig. 9, respectively. For the
illustration of the estimations, see Fig. 6.

(λs, λe) = (0.4, 0.4) (λs, λe) = (0.7, 0.7) (λs, λe) = (0.85, 0.85)
1.22% (±0.12) 1.23% (±0.15) 1.50% (±0.46)

(λs, λe) = (0.9, 0.85) (λs, λe) = (0.9, 0.9) (λs, λe) = (0.9, 0.95)
2.07% (±1.37) 4.90% (±4.64) 4.75% (±4.01)

(a) (b) (c)
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(f) (g)

(h) (i)

Figure 7: Illustration of the estimations on the3D-geom
dataset. Number of samples:T = 20, 000. In (a)-(d):
(λs, λe) = (0.4, 0.4). (a): observed signalx(t). (c): estima-
tion of theAe innovation, input of the ISA procedure. (d):
estimated componentŝem, recovered up to the ISA ambigu-
ities. (b): Hinton-diagram ofG, ideally a block-permutation
matrix with 3 × 3 blocks. (e)-(i): the same as (d), but for
(λs, λe) = (0.7, 0.7), (0.85, 0.85), (0.9, 0.85), (0.9, 0.9),
(0.9, 0.95), respectively. All the plotted estimations have
average Amari-indices, see Table IV.
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Figure 8: Amari-index as a function of the sample number on
log-log scale for differentλs, λe invertibility parameters on
the ABC database. For different(λs, λe) pairs (contour plot)
and numerical values, see Fig. 2 and Table II, respectively.
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Figure 9: Amari-index as a function of the sample number on
log-log scale for differentλs, λe invertibility parameters on
the tale database. For different(λs, λe) pairs (contour plot)
and numerical values, see Fig. 3 and Table III, respectively.
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Figure 10: Amari-index as a function of the sample number
on log-log scale for differentλs, λe invertibility parameters
on the3D-geomdatabase. For different(λs, λe) pairs (con-
tour plot) and numerical values, see Fig. 4 and Table IV,
respectively.

Table IV: Amari-index in percentages on the3D-geom
dataset for different(λs, λe) invertibility parameter pairs:
mean± standard deviation. Number of samples:T = 20, 000.
For other (i) (λs, λe) pairs, (ii) sample numbers between
1, 000 ≤ T < 20, 000, see Fig. 4 and Fig. 10, respectively.
For the illustration of the estimations, see Fig. 7.

(λs, λe) = (0.4, 0.4) (λs, λe) = (0.7, 0.7) (λs, λe) = (0.85, 0.85)
0.85% (±0.15) 0.94% (±0.23) 1.81% (±0.75)

(λs, λe) = (0.9, 0.85) (λs, λe) = (0.9, 0.9) (λs, λe) = (0.9, 0.95)
5.64% (±6.91) 8.08% (±11.00) 10.82% (±13.27)

control. For the estimation, we adapted the D-optimality
principle. We divided the solution of the problem into two
parts, the estimation of a fully observable ARX problem and
the Independent Subspace Analysis (ISA) task that we can
solve. We also demonstrated the efficiency of the algorithm
on different datasets. Our simulations revealed that (i) the
error of the estimation of the hidden sources decreases
approximately in a power law fashion as the sample size
increases and (ii) estimation is robust against values of the
invertibility parameter. The problem family that we treated
may gain applications among others in human-computer
interaction serving the user.
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