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Abstract

Genome-wide association studies (GWAS) for type 1 diabetes (T1D) have successfully identified more than 40 independent
T1D associated tagging single nucleotide polymorphisms (SNPs). However, owing to technical limitations of copy number
variants (CNVs) genotyping assays, the assessment of the role of CNVs has been limited to the subset of these in high
linkage disequilibrium with tag SNPs. The contribution of untagged CNVs, often multi-allelic and difficult to genotype using
existing assays, to the heritability of T1D remains an open question. To investigate this issue, we designed a custom
comparative genetic hybridization array (aCGH) specifically designed to assay untagged CNV loci identified from a variety of
sources. To overcome the technical limitations of the case control design for this class of CNVs, we genotyped the Type 1
Diabetes Genetics Consortium (T1DGC) family resource (representing 3,903 transmissions from parents to affected
offspring) and used an association testing strategy that does not necessitate obtaining discrete genotypes. Our design
targeted 4,309 CNVs, of which 3,410 passed stringent quality control filters. As a positive control, the scan confirmed the
known T1D association at the INS locus by direct typing of the 59 variable number of tandem repeat (VNTR) locus. Our
results clarify the fact that the disease association is indistinguishable from the two main polymorphic allele classes of the
INS VNTR, class I-and class III. We also identified novel technical artifacts resulting into spurious associations at the
somatically rearranging loci, T cell receptor, TCRA/TCRD and TCRB, and Immunoglobulin heavy chain, IGH, loci on
chromosomes 14q11.2, 7q34 and 14q32.33, respectively. However, our data did not identify novel T1D loci. Our results do
not support a major role of untagged CNVs in T1D heritability.
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Introduction

Type 1 diabetes (T1D) is a complex common autoimmune

disorder that is diagnosed in approximately 1 in 350 children in

the UK [1,2]. Its etiology arises from the action of multiple

genetic and environmental risk factors [3,4], with nearly one-

half of the genetic risk residing in the human HLA-Major

Histocompatibility Complex (MHC). In addition to the MHC,

genome-wide association studies (GWAS) have identified over

40 loci robustly associated loci ([5,6] and www.t1dbase.org). As

for most complex human traits, T1D heritability and the extent

of this heritability that remains to be discovered, are topics of

debate [7]. While the gap between what is explained by known

loci and true heritability is likely to be relatively small compared

to other complex disorders [8], it is clear that additional

variants remain to be found, with the potential to bring novel

insights into T1D etiology. However, discovery of these variants

will require either a significant sample size increase from

previous well-powered GWASes [5], or alternative strategies

that can target variants not captured by the standard GWAS

design.

GWAS studies rely on a tag single nucleotide polymorphisms

(SNPs) strategy to capture the extent of variation of the human

genome and identify association signals. Variants poorly tagged by

GWAS tag SNPs are therefore of primary interest for association

purposes. Putative rare variants with high effect sizes fall into this

category [9,10]. Another class of variation that can be poorly

tagged by the GWAS design are copy number variants (CNVs).

The pathogenic potential of CNVs is supported by their larger

sizes, and therefore their increased likelihood to perturb molecular

mechanisms. CNVs have been implicated in the etiology of several

diseases, in particular developmental disorders [11]. The effec-

tiveness of GWAS SNPs to tag CNVs depends on the type of

CNVs being assayed. Biallelic CNVs generally result from a single

ancestral mutation and their tagging properties closely match

those of SNPs [12–14]. In contrast, highly polymorphic multi-

allelic CNVs may mutate frequently enough to be in low linkage

disequilibrium (LD) with GWAS tag SNPs.
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These observations indicate that untagged CNVs could play a

significant role in the etiology of complex traits. This hypothesis is

further warranted by previous reports of associations between

difficult to genotype multi-allelic CNVs and HIV risk [15], as well

as systemic lupus erythematosus [16]. T1D is a particularly

relevant disease to assess the role of multi-allelic CNVs, owing to

the established association of a variable number tandem repeat

(VNTR) locus near the INS gene. While the INS locus can be used

as a positive control for T1D, it is however not yet known whether

the INS VNTR itself, or another nearby genetic variant, is actually

causal [17].

Owing to our aim to assess the role of untagged CNVs, a

genome-wide CNV scan needs to directly target these variants.

This requirement has limited the ability to thoroughly investigate

the role of CNVs for most complex traits, in particular T1D. The

Wellcome Trust Case Control Consortium (WTCCC) has

performed a recent large scale CNV association study using a

custom designed array comparative genomic hybridization

(aCGH) in a collection of 16,000 cases of eight common diseases,

including T1D, and 3,000 shared controls [18]. In this effort, over

3,400 polymorphic CNVs were evaluated. While this study did not

identify novel T1D associations, its coverage was limited by the

relative inefficacy of the case control association to test CNVs for

association. The primary reason for this limitation is that, in

situations where one cannot assign discrete copy number classes to

individuals at a given (‘unclusterable’) locus, subtle technical

differences between cases and controls affect the CNV intensity

data in a manner that inflates the false positive rate [19,20].

Unclusterable CNVs were therefore not included in the final

WTCCC CNV analysis [18], which highlights the challenge

associated with assessing this class of variants. To overcome these

technical limitations, we must use an alternative to the case control

strategy, which motivated the use of a family design. Accordingly,

novel methodologies have been developed for family based

association tests that do not rely on discrete CNV genotypes but

can directly incorporate raw CNV intensity data [21,22].

To test the hypothesis that unclusterable CNVs contribute to

T1D heritability, we used the collection of T1D multiplexed

families recruited by the T1D Genetics Consortium (T1DGC).

These samples add up to more than 4,000 transmissions between

parents and affected offspring. We designed an aCGH that builds

upon previous CNV discovery and genotyping experiments

[12,18,23] but whose targets are enriched for previously untagged

CNVs, for which discrete calls typically cannot be obtained. We

then used this custom array to genotype the T1DGC samples and

perform a genome-wide scan for T1D association.

Results

Array design and CNV based quality control
CNVs targeted by our CGH array (Methods) were gathered

from a combination of published studies of CNVs in the general

population based on both CGH [12,18] and short read genome-

wide sequence data [23,24]. Combining all sources, we targeted

4,309 CNVs (Figure 1 and Tables S1-2) that were deliberately

enriched for untagged (r2,0.6 with best GWAS tag, Methods) and

difficult to genotype loci. We were able to design probes for 4,207

loci, with the excluded loci typically being highly repeated regions

in multiple genomic locations. We applied multiple QC steps to

remove CNVs affected by technical artifacts (Methods). 3,410

CNV loci passed these filters. Of these, 848 CNVs were

clusterable, in the sense that the intensity data could be clustered

into distinct groups by the CNVtools software [19]. Table S2 lists

the type of CNVs targeted by the aCGH, before and after

applying QC filters. 35.9% of these 3,410 CNV loci overlap a

protein coding gene (intron or exon) and 16.42% overlap a coding

sequence of these genes. The median CNV size if 5.34 kb (5%

quantile: 0.17 kb and 95% quantile: 64.156 kb).

Genotyping quality and sample based quality control
Combining the four cohorts that constitute the T1DGC

collection, a total of 8,460 samples were sent for genotyping

(Table 1). We ensured that within each family, the same primary

source of DNA (e.g. blood, cell-line) was used for every family

member to minimise technical biases within families. These

samples add up to 3,856 transmissions from parents to affected

offspring. Following QC exclusions, 8,005 samples/3,630 trans-

missions were usable for the case control association tests. In

addition, Illumina ImmunoChip genotype data were also available

for all samples. The most common exclusion criteria were quality

below the metrics suggested by Agilent QC, and non-concordance

with the ImmunoChip dataset, potentially indicative of sample

swaps.

Association testing strategy
Our association test strategy uses the previously developed

CNV-family based association test (FBAT-CNV [22]), which is

based on raw CNV intensity data rather than discrete calls. The

key motivation for FBAT-CNV is to avoid the spurious false

positive associations caused by technical differences between

cases and controls. Instead, tests are performed within family

units, comparing CNV data between affected offspring and

parental average. This test does not require the CNV intensity

data to be clearly separated into discrete classes (i.e. ‘‘cluster-

able’’), in contrast with case-control association tests. Figure 2

schematically describes the differences between case-control and

FBAT-CNV.

Prior to applying the FBAT-CNV test, different strategies can

be used to normalize the CNV probe data, as well as summarize

the intensity data from multiple probes at a single CNV locus.

Overall we considered 12 different strategies, including a

heritability variance scaling (HVS) scheme that builds on the

Author Summary

For many complex traits, and in particular type 1 diabetes
(T1D), the genome-wide association study (GWAS) design
has been successful at detecting a large number of loci
that contribute disease risk. However, in the case of T1D as
well as almost all other traits, the sum of these loci does
not fully explain the heritability estimated from familial
studies. This observation raises the possibility that addi-
tional variants exist but have not yet been found because
they have not effectively been targeted by the GWAS
design. Here, we focus on a specific class of large
deletions/duplications called copy number variants (CNVs),
and more precisely to the subset of these loci that mutate
rapidly, which are highly polymorphic. A consequence of
this high level of polymorphism is that these variants have
typically not been captured by previous GWAS studies. We
use a family based design that is optimized to capture
these previously untested variants. We then perform a
genome-wide scan to assess their contribution to T1D. Our
scan was technically successful but did not identify novel
associations. This suggests that little was missed by the
GWAS strategy, and that the remaining heritability of T1D
is most likely driven by a large number of variants, either
rare of common, but with a small individual contribution
to disease risk.
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probe variance scaling idea proposed in [18]. HVS maximizes the

weights of probes with more heritable CNV signal (Methods). Our

final pipeline selected for each CNV the optimum strategy, as

measured by within family correlations (Figure S1). The rationale

for this choice being that probes with heritable signals are more

likely to capture true heritable CNV differences, and less likely to

be affected by noise.

Power of FBAT-CNV test
Previous investigations of the properties of the FBAT-CNV test

focused on demonstrating its validity, i.e. consistency of P-value

distribution under the null with theoretical expectations [21,22].

Assessing the power of the FBAT-CNV test using theoretical

arguments is likely to be assay dependent. To empirically address

the issue of power, we used the subset of 22 clusterable CNVs

located in the HLA- MHC chromosome region, known to be T1D

associated. For these CNVs a linear standard TDT based on

discrete genotypes should provide a near-optimum association

testing strategy.

Figure S2 compares these TDT P-values with the result of the

FBAT-CNV test. The significance of these association P-values

was broadly equivalent for both testing strategies. This result

suggests that, at least in the context of this study, the FBAT-CNV

retains appropriate power for association testing. Unless stated

otherwise, we based analyses on the FBAT-CNV association tests,

independently of whether discrete genotypes were available. Table

S3 lists all targeted CNVs and positions with the associated FBAT

P-values.

The comparable statistical power between FBAT-CNV and

TDT provides the opportunity to use established TDT power study

methodology [25] to determine the range of CNVs for which our

study is well powered. At a P-value threshold of P,1026 a TDT

with 3,610 transmissions to affected offsprings provides 80% power

for bi-allelic CNVs with frequency 40% and odds ratio 1.22.

Figure 1. Summary of the CNVs included in the array design and tested for T1D association using FBAT-CNV. CNVs originate from two
main sources: the GSV map of common CNVs [27] and the 1,000 Genomes sequence data. Tested CNVs also include 365 novel insertion CNVs
obtained from the Venter genome. Detailed description of the array design is provided in Text S1.
doi:10.1371/journal.pgen.1004367.g001

Table 1. Number of transmissions between parents and affected T1D offspring, before/after applying QC steps.

QC step Blood LCL Total Percentage

Before QC 3244 612 3856 100

Agilent standard QC metrics 3075 555 3630 94.14

Consistency of familial relationships 3016 551 3567 92.51

Sample correlation 3072 555 3627 94.06

Gender check 3047 553 3600 93.36

Sample tracking 3020 555 3575 92.71

Heterozygosity 3075 555 3630 94.14

After QC 3075 555 3630 94.14

doi:10.1371/journal.pgen.1004367.t001
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Spurious associations at the TCR and IGH loci
We observed strong evidence of T1D association (P,10210) at

two loci that had been previously identified as affected by

somatic rearrangements in haematopoietic lineages:

CNVR6085.1, which overlaps the TCR alpha/delta (TCRA/

TCRD) chain locus on chr14q11.2, and CNVR3590.1, which

overlaps the TCR beta (TCRB) chain on chr7q34. Strong

difference in probe intensity between DNA extracted from blood

and LCLs at these loci have been previously reported [18] and

our data confirm this (Figures 3A-B). However, FBAT-CNV

association tests are family based and DNA source is homoge-

neous within the T1DGC families, hence this issue is unlikely to

explain these strong associations. However, inspection of the

intensity data showed correlations between age at sampling and

probe intensity at both loci for DNA extracted from blood

samples (Figures 3A-B). This trend is also observed in offspring

after exclusion of parental intensity data. This observation

suggests that the different average signal in offspring compared to

parents is not a consequence of their T1D affected status, but

rather of the differential age when blood was collected. We

hypothesize that this trend is caused by age-dependent variability

in cell type frequencies with different somatic mutation profiles.

Combined with the inevitable younger age of offspring, it likely

explains the strong signal of association.

In addition, moderate evidence of association (P = 6.561025)

was found at the IgG locus on chromosome 14q32.33

(CNVR6294.22, as well as several other CNVs in high LD with

CNVR6294.22). We also observed at this locus a strong LCL/

blood difference (Figure 3C). However, as pointed out above, tests

are performed within-family and therefore this LCL-blood

difference is unlikely to explain this association signal. Unlike the

TCR loci, no age dependent effect was detected (Figure 3C),

which leaves no explanation for this association. Nevertheless, the

technical issues associated with this somatically variable locus

strongly suggest that this association is the result of an unidentified

technical artifact.

Figure 2. Differences between case-control and FBAT-CNV association tests. A- In a case-control analysis, technical variability may affect
the CNV intensity data between cases and controls. Therefore, it is necessary to call the discrete genotypes, potentially allowing for genotype
uncertainty in the association tests. Mixture models are typically used for calling, as illustrated by the colored lines on top of the histograms. Intensity
data must therefore be sufficiently separated to make these discrete calls (CNV data in this example obtained from both control groups in the WTCCC
study [28]). B- With the FBAT-CNV framework, one compares the average parental CNV signal with the signal for affected offspring. Consistent
deviation of affected offspring intensity data compared to parental average indicates biased transmission of CNV alleles. As the test is solely based on
the intensity data, and no systematic bias is expected between parents and offspring, it is not necessary to make discrete calls (CNV data obtained
from INS VNTR first principal component).
doi:10.1371/journal.pgen.1004367.g002
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Genome-wide distribution of the test statistic for T1D
associations

Owing to our focus on CNVs difficult to genotype, and the

challenge of obtaining interpretable association statistics for these

loci, we initially verified that our association P-values were broadly

consistent with the null hypothesis. Figure 4A shows the

distribution of association statistics for 3,286 post-QC CNVs after

excluding IgG/TCR loci described above. Figure 4B shows the

distribution of the test statistic for the same set of loci after

excluding previously reported associated CNVs (HLA-MHC, INS

and the IgG/TCR loci). These results indicate that while some

over-dispersion remains, its level is limited (over-dispersion slope of

1.23, Figure 4B). In particular, the association test statistic for 447

VNTRs that passed QC showed good concordance with the

expectation under the null (over-dispersion slope 1.103, Figure 4C),

with the exception of the established T1D associated INS VNTR,

which showed unequivocal evidence of T1D association (P,

10250).

Manhattan plot and genome-wide results of the scan
Figure 5 shows the Manhattan plot for the association test

statistic, computed for each CNV locus. In addition to the age

Figure 3. Spurious associations at TCR and IGH loci. Age at sampling (x-axis) versus CNV intensity signal (y-axis) for the three most associated
Immunoglobin Heavy (IGH) and T cell receptor (TCR) loci CNVs. Each point represents an individual in the study (irrespective of familial/T1D status).
Blue crosses indicate DNA extracted from LCLs (N = 551) and red crosses DNA extracted from blood (N = 2,981). Red and blue lines have been fitted to
the LCL/blood data using cubic splines. A - CNVR6085.1 (chr14:21977832-21987926) mapping to TCR alpha and TCR delta locus on chr14, FBAT-CNV
P = 3.6 10263. The plot shows correlation between age at sampling and probe intensity for DNA extracted from blood samples. B - CNVR3590.1
(chr7:142194021-142204412) mapping to TCR beta locus on chr7, FBAT-CNV P = 4.4 10231. The plot shows correlation between age at sampling and
probe intensity for DNA extracted from blood samples. C - CNVR6294.22 (chr14:105433837-105441555) mapping to Ig heavy chain locus on chr14,
FBAT-CNV P = 6.5 1025. No age-dependent effect was detected at this locus.
doi:10.1371/journal.pgen.1004367.g003

Figure 4. Quantile-quantile plot comparing the expected versus the observed distribution of the FBAT-CNV P-values. These plots
show the distribution of -2log10(p), which is, under the null, distributed as chi-square with 2 degrees-of-freedom. IgG/TCR loci are discussed
elsewhere and not included in these plots. A – N = 3,286 CNVs that passed quality controls and were tested for association. Loci overlapping the MHC
region are marked in blue. Loci mapping to, or in strong LD with, the INS VNTR region are marked in red. B – N = 3,214 CNVs passed quality controls
and did not overlap or tagged the INS VNTR and the MHC region. C – N = 448 VNTRs targeted by the CGH array that passed quality controls. INS VNTR
CNV regions are marked in red as in Figure 3A.
doi:10.1371/journal.pgen.1004367.g004
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related effects observed at the IGH and TCR loci, two previously

associated loci showed strong association results: multiple CNVs in

the MHC-HLA region, as well as a smaller set of CNVs either

directly targeting of located near the INS VNTR sequence (see

below). We also identified a strong signal of association on

chromosome 2q31, which has been previously identified as a

duplication of this region into the HLA-MHC region, which

accounts for the observed association signal.

In addition to these previously reported associations, a set of

CNV loci in high LD, located in 1q21 (near the centromeric

region of chromosome 1), passed the P = 0.05 Bonferroni

correction threshold for 3,410 loci (corrected threshold P,

1.4661025). The most associated CNV is an unclusterable

duplication (CNVR341.1, Table 2, P = 3.3961026), which over-

laps the first three exons of the gene NOTCH2NL. After excluding

known loci (MHC-HLA, INS, TCRA/TCRD, IGH), five out of the

ten most associated CNVs are located in the same 1q21 region

(Table 2), hence excluding the possibility of a technical artifact that

would affect a single CNV.

Follow-up testing for the CNVs in the 1q21 region
The suggestive evidence of T1D association in 1q21 prompted

us to attempt replication for this potential finding. While the top

CNV region CNVR341.1 is unclusterable, CNVR334.3 in the

same genomic region is clusterable and also shows a similar

strength of association (FBAT P-value 5.861024, Table S2). Case

control data from the WTCCC+ was of sufficient quality for case

control association testing using the CNVtools [19] software. We

found no significant association (P = 0.24) in these samples (2,000

cases, 3,000 controls, Figure S3). We hypothesized that the lack of

replication could be a result of a weak effect combined with the

limited power provided by the case control cohort. The previous

WTCCC+ analysis indicates that rs4649771 is a good quality SNP

tag for CNVR334.3. Therefore, we used a tag SNP strategy and

typed this SNP (Methods) in the full JDRF/Wellcome Trust

Diabetes and Inflammation Laboratory case control collection

(Genetic Resource Investigating Diabetes, 7,814 cases and 9,785

controls, which included the WTCCC+ samples, Methods). We

also found no evidence of T1D association (P = 0.9).

The class I-class III alleles fully account for the INS VNTR
T1D association

To understand the causal mechanism that underlies the INS

gene/T1D association, we tiled aCGH probes across the

representative sequences of all four major alleles of the VNTR

in European populations (Methods). Overall, 100 aCGH tiling

probes targeted the INS VNTR sequence. Additional genotype

data for the nearby SNP rs689 (-23HphI, thought to separate class

I and class III alleles) and rs3842756 (+1428 FokI, thought to

distinguish two subclasses of class III alleles, PH and VPH [17])

were available from the additional T1DGC ImmunoChip

genotyping of the same cohort (Methods).

We decomposed the signal provided by the aCGH probes using

principal component analysis (PCA). We found that PC1-PC2

captures the signal provided by the SNP rs689 (Figure 6), which is

known to distinguish almost perfectly between class I and class III

Figure 5. Manhattan plot for the FBAT-CNV P-values. The y-axis shows the distribution of –log10(p) where p is the FBAT-CNV test association
test P-value for all CNV loci passing quality control filters (Methods). The x-axis shows chromosomes numbered from 1 (left) to X (right).
doi:10.1371/journal.pgen.1004367.g005
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alleles of the VNTR [26].T1D association with rs689 was

convincing (TDT test P = 5.4610252) and consistent with the

FBAT CNV analysis for PC1-PC2 (P = 1610242 for PC1, and

P = 161028 for PC2)

To detect potential secondary signals at the VNTR loci from

this main class I-class III effect, we performed conditional tests of

association, excluding the families for which either of the parents

was heterozygous at rs689. rs3842756 showed no evidence of

association (P.0.05, with 1,432 transmissions from parents to

affected offspring remaining). Similarly, a FBAT-CNV test for the

all PCs 1-10 in that subset of individuals showed no evidence of

association (P.0.05 for all, Figure S4). These results indicate that

T1D association signal is driven by either rs689, or the SNP in

strong LD with rs689, rs3842753 (+1140 A/C; r2 = 1), or the

combination of PC1-PC2, both of them tagging the INS VNTR

class I-class III alleles. Our data do not support the presence of a

secondary association within the INS VNTR locus.

Discussion

We performed a well-powered genome-wide scan for previously

untested and untagged CNVs using a family based design. This is

the first successful genome-wide association study for VNTRs and

other multi-allelic CNVs. Our study targeted 3,410 CNVs,

including 448 VNTRs, and a direct assessment of the role of the

INS VNTR in T1D. The limited over-dispersion of the test statistic

and the clear detection of strong association for the INS VNTR

indicate that the family-based strategy we adopted was technically

successful. These results are in stark contrast with previous

genome-wide association using a case-control strategy [18], which

had to exclude from the final analysis those CNVs whose raw

intensity data was not clusterable into discrete genotypes. In

addition to established loci and a small number of technical

artifacts, a single set of CNV associations located in 1q21 passed a

Bonferroni threshold of association. However, the replication

results were negative, suggesting that this result is the consequence

of stochastic variability rather than biologically meaningful signal.

Taken together, and with the caveat that our coverage of CNVs

genome-wide is not exhaustive, our results suggest that this class of

CNVs does not contribute significantly to the heritability of T1D.

The INS VNTR is of particular interest for T1D etiology owing

to its strongest effect size among all non-HLA variants, along side

the PTPN22 nsSNP rs2476601. By directly targeting this VNTR

using a dense set of tiling probes, we can rule out the presence of a

secondary association within the VNTR locus. The primary

association is driven either by the class I-class III allele split

(captured by PC1-PC2 in our PCA analysis of this locus), or by the

rs689 (-23HphI) variant and/or a second SNP, rs3842753, all three

of them indistinguishable, as reported previously [17]. Alternative

strategies will probably be required to answer the question of what

the causal variant(s) and mechanism actually is, as the perfect LD

in population of European ancestry will probably prevent genetic

epidemiological studies in European populations from providing

this answer.

While the distribution of association P-values is sufficiently close

to its expectation under the null to interpret the results of our scan,

Table 2. Top ten T1D associated CNVs after removing known loci and technical artifacts.

CNV Genomic Coordinates Source Type P-value Genes with overlapping exons

CNVR341.1 chr1:143900933-143967112 WTCCC+ unclusterable but real duplication 3.39E-06 NOTCH2NL

CNVR335.2 chr1:143214434-143238273 WTCCC+ unclusterable but real duplication 2.78E-05 -

CNVR4502.1 chr9:134934317-134947466 WTCCC+ untagged duplication 4.23E-05 -

CNVR339.1 chr1:143659640-143795351 WTCCC+ unclusterable but real duplication 4.56E-05 PDE4DIP

CNVR8001.1 chr21:35523151-35524232 WTCCC+ untagged deletion 5.32E-05 -

CNVR6488.1 chr15:82862339-82873960 WTCCC+ unclusterable but real deletion 9.34E-05 -

CNVR349.3 chr1:147052241-147090322 WTCCC+ unclusterable but real duplication 1.91E-04 -

G1KSVR.1_3 chr1:146398811-146416090 G1K untagged deletion 2.78E-04 -

CNVR986.1 chr2:130682838-130684330 WTCCC+ untagged deletion 2.85E-04 -

CNVR8248.1 chrX:1895433-1900059 WTCCC+ unclusterable but real duplication/deletion 2.93E-04 -

The last column lists the genes for which at least one exon overlaps the defined CNV region. P-value refers to the FBAT association test for autosomal CNVs, and to the
FBAT-X association test otherwise.
doi:10.1371/journal.pgen.1004367.t002

Figure 6. Decomposition of multi-probe CNV data at the INS
VNTR locus into first two principal components PC1 and PC2.
Principal components PC1 and PC2 summarize the multi-probe CNV
data at the INS VNTR locus. Colors (green/red/black) were chosen based
on the genotypes of the SNP rs689 (AA/AT/TT), which captures the class
I-class III separation.
doi:10.1371/journal.pgen.1004367.g006
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the level of over-dispersion remains higher than typically reported

in GWAS studies. This may partly reflect artifacts such as the ones

observed at the IGH/TCR loci. In addition, for CNVs with non-

linear intensity-copy number relationship, FBAT-CNV, departure

from Hardy-Weinberg equilibrium (HWE) can inflate the type 1

error [21]. Hence, population structure in the parental samples

leading to departure from HWE could explain the moderately

biased distribution of the FBAT-CNV association statistics.

Here, we have extended the set of genetic variants considered in

T1D association studies to include a major novel category of

CNVs. However, this set is still limited by the requirement to

design short oligonucleotide probes for the aCGH assay that have

minimal matches elsewhere in the genome. Shorter repeats

regions, in particular microsatellites, remain out of reach of

genome-wide association tests using array-based technologies. The

typically higher mutation rate of microsatellites could lead to a

mutation-selection equilibrium that is compatible with larger odds

ratio of association for T1D. Targeting these variants will require

large scale sequencing studies with sufficiently long reads to

characterize these difficult loci reliably. Future improvements of

sequencing technologies will provide an opportunity to further

broaden the scope of association tests in the future.

Materials and Methods

CNV selection
CNVs selected as targets originated from the following sources:

(i) Loci from the WTCCC+ genotyping chip that were classified as

successfully genotyped but at the same time untagged by SNPs in

the WTCCC+ study, (ii) Loci from the GSV/WTCCC+ set that

could not be genotyped but that were classified as real

polymorphisms in the WTCCC+ study, (iii) Loci from the 1000

Genomes project union set of deletions from Pilot 1 (low coverage

samples) and Pilot 2 (high coverage trio samples) phases that were

genotyped but were not tagged by SNPs in the 1000 genomes

project (PhaseI + PhaseII), (iv) Loci from the 1000 Genomes

project union set of deletions from Pilot 1 (low coverage samples)

and Pilot 2 (high coverage trio samples) phases of the 1000

genomes project for which the SNP tagging status was unknown

and lied in T1D association intervals, (v) Insertions of novel

sequences present in the genome sequence of Craig Venter but not

in the reference sequence that were not previously tested for

association in the WTCCC+ study, (vi) candidate gene loci

PRDM9 VNTR and NCF1 gene, (vii) functional elements in T1D

intervals, (viii) Control loci from WTCCC1 X-chromosome CNV

desert regions and from a set of CNV loci genotyped in the

WTCCC+ study or in the 1000 Genomes project to facilitate

detection of sample mishandling. A more detailed breakdown of

the target loci is given in Text S1 and Figures S5-7. Table S4

provides the bed file that was sent to Agilent for array design.

Samples
The Type 1 Diabetes Genetics Consortium (T1DGC) repre-

sented an international effort to identify genes that determine an

individual’s risk of T1D. A major effort of the T1DGC was the

creation of a resource base of well-characterized families from

multiple ethnic groups to facilitate the localization and character-

ization of T1D susceptibility genes. After consideration of previous

genome-wide linkage scan results for T1D, the contributions of

known T1D risk loci to familial clustering of T1D, and the power

of affected sib-pair linkage studies, the T1DGC proposed to

assemble a collection of 4,000 affected sib-pair (ASP) families,

requiring de novo recruitment of ,2,800 ASP families. In order to

identify, recruit, and collect the samples and data on these newly

ascertained ASP families, the T1DGC developed four regional

networks: North America (NA), Europe (EU), United Kingdom

(UK), and Asia Pacific (AP). Within each network, field centers

identified, ascertained, and collected samples and data from

participating families, with samples shipped and processed in

laboratories at multiple sites. Each network had a repository to

process samples for DNA and to provide cell immortalization

using standard protocols. Samples and data from the T1DGC

network laboratories have been transferred to the central NIDDK

repository (www.niddkrepository.gov) from which investigators

can make requests.

Protocols and informed consents for sharing of data and samples

were approved by review boards of all contributing institutions,

and appropriate informed consent was obtained from families.

Briefly, a family must contain at least one affected sib-pair;

‘‘affected’’ indicates a diagnosis of T1D in the proband (index case)

before the age of 35 years, with insulin required within 6 months of

diagnosis. Two sources of DNA were available, blood (DNA was

extracted from cell pellet collected during plasma isolation from

blood) and EBV-transformed lymphoblastoid cell lines (LCLs).

Only families with one source of DNA were included (all members

with blood DNA (N = 7,152) prioritized over all members with cell

line DNA (N = 1,308)). From this filtering, 8,460 individuals were

included for the CNV study, 1,661 families with at least four

members (2 parents and 2 affected children, n = 6,963) and 499

families with three members (2 parents and an affected child,

n = 1,497).

DNA processing
The T1DGC DNA stock plates were thawed to room

temperature, typically for at least three hours to ensure that the

DNA was homogeneous. The stock plates were vortexed at 1000

rpm for 1 minute, then centrifuged at 280 xg for 1 minute. Stock

DNA concentrations were determined using a Nanodrop spectro-

photometer. An 18 ul sample from the DNA stock plate was

transferred to a CNV dilution plate, after which all samples were

normalized using 10 mM Tris either at University of Virginia

(Charlottesville, VA) or the OGT facility (Oxford, UK). Once the

samples were diluted, the plates were vortexed at 1000 rpm for 1

minute and centrifuged at 280 xg for 1 minute. The plates were

allowed to incubate at room temperature for 30 minutes. DNA

concentration of the CNV dilution plates were evaluated using a

Nanodrop spectrophotometer, targeting a range of 60–70 ng/ul

(acceptable was considered 40–80 ng/ul). For samples out of range

(e.g., a sample higher than 80 ng/ul), more Tris buffer was added,

mixed, and reassessed. Once all of the samples were within the

desired concentration range, the CNV dilution plates were sealed

and stored them at 4uC. A Biomek FX robot was used to transfer

15 ul of each sample from the CNV dilution plates to daughter

plates, that were then heat-sealed and stored at 220uC until

shipped to Oxford Gene Technology (OGT, Oxford, England)

and processed.

aCGH data generation
Data were generated using the Agilent 8660k custom array

CGH at the OGT facility (Oxford, UK). Samples were platted in

rows. Families were processed within the sample plates, with

family members in consecutive wells and random permutations to

change the position of the family members on the columns. All

family members were processed on the same custom array slide.

The shared reference DNA sample for the entire study is a pool of

genomic LCL DNA from 10 male HapMap subjects (NA06994,

NA07051, NA11992, NA12003, NA12043, NA12045, NA12144,

NA12155, NA12750, NA12891). Equal amounts of test and
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reference DNA were used in the DNA labeling reactions and

hybridized to the custom array. Following hybridization the arrays

were scanned using the red channel for the test sample and the

green channel for the reference sample. An internal control

reaction was carried out on each plate to assess DNA labeling and

hybridization steps.

Data processing
Prior to data analysis we normalised the data in 6 different ways

by applying some transformations of the red (R) and green (G) raw

copy number intensities as proposed in [18] (QNorm refers to

quantile normalized intensity data):

1. log(R/G)

2. log(QNorm(R)/QNorm(G))

3. QNorm(log(R/G))

4. QNorm(log(QNorm(R)/QNorm(G)))

5. log(R/G+0.5)

6. log(QNorm(R)/QNorm(G) + 0.5)

Multiple probes at a single CNV were summarized using a PCA

analysis (without rescaling the probe data to unit variance). In

addition, it has been pointed out before [18] that the contribution

of each probe to the intensity signal is variable. We took advantage

of the family design to increase weight for probes likely to be more

informative, a method we called heritability probe scaling (HPS).

Precisely, for each probe on the array, we estimated correlation

between offspring and mid-parental intensities. HPS then rescales

probe intensities proportionally to this measure of heritability.

Combining these 6 normalizations and 2 different probe

summary techniques (PCA and HPS-PCA), we considered 12

different data summaries per CNV. At each of the 4,201 CNV

loci, we selected the method among these 12 that maximized the

correlations between mid-parental intensity and used this choice in

the association tests (Figure S1).

Case-control dataset of replication
Case subjects were diagnosed with T1D before 17 years of age

(mean age at diagnosis 7.8 years) and were from the Juvenile

Diabetes Research Foundation/Wellcome Trust Diabetes and

Inflammation Laboratory Genetic Resource Investigating Diabe-

tes study (www.childhood-diabetes.org.uk/grid.shtml). Control

subjects were obtained from the British 1958 Birth Cohort

(www.cls.ioe.ac.uk/studies.asp?section = 000100020003) and the

Wellcome Trust Case-Control Consortium U.K. Blood Service

Common Control sample collection. All samples were of white

European ancestry.

Genotyping replication of rs4649771
rs4649771 was genotyped using TaqMan nuclease assay

(Applied Biosystems, Warrington, U.K.) according to the manu-

facturer’s protocol. Genotyping was performed blind to case-

control status and double scored to minimize error. Primers and

probes were as follows: forward primer GCAGTTTAGGGTC-

TAATGAGGTAAGTG, reverse primer CCCTGGGTATC-

TAGGTACCTTATCA, FAM probe CAGCATCCAATA-

GAAGT, VIC probe CAGCATCCAACAGAAGT.

Quality controls
Agilent metrics. An initial set of Agilent quality metrics for

red and green raw intensity probe signals was used to flag

problematic samples. Signal intensity, background noise, signal to

noise ratio and derivative log ratio spread (DLRS, which measures

the spread of log ratio difference between consecutive probes)

summarised data quality across all probes and provided us with an

initial quality assessment independent from subsequent processing

step. Metrics were ranked as ‘Excellent’, ‘Good’ or ‘Poor’ based on

the thresholds proposed by OGT. Samples with at least one metric

flagged as ‘Poor’ were excluded from further analysis.

Sample correlation. To identify potential sample swaps, we

computed Pearson’s correlation coefficient between pairs of

samples using n = 452 clusterable CNVs. Based on the overall

distribution of correlation coefficients (Figure S8) we selected a

cut-off of 0.7 to flag pairs of samples as correlated. Samples

showing correlation greater than this cut-off were flagged as

problematic.

Consistency of familial relationships. To identify incon-

sistent maternal and paternal relationships, we used a likelihood-

based approach. We fitted a model H0 of true paternity (resp.

maternity) and a model of non-paternity H1 (resp. maternity) to

the genotype data from N = 318 clustered CNVs with MAF .0.3.

We used a Bayes factors threshold of 100 in favor of non-paternity

to flag likely problematic parent-offspring relationships.

Heterozygosity. We used genome-wide sample heterozygos-

ity as a criteria to exclude samples from the analysis. We computed

the heterozygosity based on a set of 310 autosomal clusterable

CNVs with high confidence genotype calls (posterior probability .

95% based on CNVtools output). We plotted the average number

of heterozygous against the genotype call rate. Samples with

heterozygosity z-score ,25 and call rate ,98% or heterozygosity

z-score .2 and call rate ,92% were flagged as outliers for the

analysis (Figure S9).

Gender check. We used a set of 10 regions without

annotated CNVs on chromosome X to determine the number of

copies of chromosome X and therefore infer gender. This QC step

together with sample tracking led to the identification of a full

plate swap between plate 116 and 118 which could be recovered.

Sample tracking. Sample tracking was performed on a set of

40 CNVs genotyped by either the WTCCC+ or the 1000

Genomes project with CEU MAF .10% that are well-tagged (r2.

0.9) by SNPs present on the ImmunoChip (Figure S10). A

threshold of 80% concordance was used to flag outliers.

QC strategy
A merged list of flagged samples was generated, and whenever

possible manual inspection was used to resolve problematic

samples. Any sample that failed at least one of these quality tests

and that could not be resolved was discarded from the analysis.

We also checked that plate rows and columns showed comparable

CNV intensity data and did not find any systematic change (Figure

S11).

Association testing method
Association tests use the FBAT strategy [21,22] implemented in

the version 2.0 of the CNVtools [19] package. For chromosome X

CNVs not located in the pseudo-autosomal region, we only

compared the CNV intensity between daughters and mothers

(hence restricting the data to approximately half of the sample

size).

Supporting Information

Figure S1 Heritability as a pipeline selection strategy. A measure

of heritability is used to select the optimal pipeline for each CNV

locus. Each boxplot quantifies heritability for a given pipeline

(from N1 standing for normalised1 to N6 standing for normal-

ised6, see Methods for a description of these normalization

A Genome-Wide Assessment of Untagged CNVs in T1D

PLOS Genetics | www.plosgenetics.org 9 May 2014 | Volume 10 | Issue 5 | e1004367

www.childhood-diabetes.org.uk/grid.shtml
www.cls.ioe.ac.uk/studies.asp?section=000100020003


choices). Boxplots are ordered according to increasing heritability.

Pipelines whose data is rescaled according to its first principal

component are marked in blue, whereas pipelines whose data is

rescaled according to heritability probe scaling are marked in dark

green. The magenta horizontal line represents the average

heritability measured across all pipelines. The optimal pipeline

selects the most heritable pipeline at every CNV locus. The

rationale for this choice is that probes with heritable signals are

more likely to capture true heritable CNV differences, and less

likely to be affected by noise.

(EPS)

Figure S2 Comparison of association P-values using FBAT-

CNV and discrete genotyping calls for T1D associated CNVs

located in the MHC complex. In order to empirically assess the

power of family based association tests a subset of clusterable

CNVs known to be positively associated with T1D was used to

compare intensity-based FBAT-CNV P-values with genotype-

based TDT P-values. A - Comparison of association P-values using

FBAT-CNV (x-axis) and TDT (y-axis) for N = 22 T1D associated

CNVs located in the MHC complex. B - Zoom in on the left-

bottom corner of Figure S2A.

(EPS)

Figure S3 Family and case control (WTCCC+) replication data

for CNVR341.1 and for its best clusterable tagging CNV

CNVR334.3. A - Top association in the T1D familial cohort for

unclusterable CNVR341.1 (FBAT-CNV P-value = 3.39 1026). B -

Intensity data for CNVR341.1 in the WTCCC+ case control data

(unclusterable, hence no association P-value available). C -

Intensity data for the clusterable CNVR334.3 (FBAT-CNV

P = 5.8 1024) in the same 1q21 region in the T1D familial cohort.

D - Intensity data for the correlated CNVR334.3 (CNVtools case-

control P = 0.24) in the WTCCC+ case control dataset.

(EPS)

Figure S4 Primary and conditional on rs689 FBAT-CNV test of

association for INS VNTR. A - First principal component PC1

intensity data for INS VNTR (FBAT-CNV P-value = 10242. B -

Third principal component PC3 intensity data for INS VNTR

after excluding families where either of the parents is heterozygous

at SNP rs689 (FBAT-CNV P-value = 0.82).

(EPS)

Figure S5 Mixed probe design with breakpoint and internal

sequence probes. One of the innovations of the CGH array is the

introduction of a mixed probe design consisting of both quantitative

internal sequence probes and qualitative breakpoint probes for loci

with known breakpoints, as opposed to standard CGH probe design

where all probes are internal to the CNV locus.

(EPS)

Figure S6 Design of probes over CNV breakpoints. Each locus

with known breakpoint is targeted by three qualitative probes: one

probe spanning the breakpoint junction on the alternate non-

reference allele (ALT) and two probes spanning each one of the

breakpoints on the reference allele (REF). To maximize discrim-

ination between the three sequence probes, these probes are

designed to be centered on different locations that depend on

whether the targeting breakpoint is classified as blunt, micro-

homology (mH) or non-templated sequence (NTS). If the break-

point is blunt the ALT probe is centered on the breakpoint,

whereas the left-hand reference probe and the right-hand

reference probe are respectively centered on the start and on

the end of the breakpoint on the REF sequence. If the breakpoint

is a micro-homology, the ALT probe is centered on the

micro-homology, the left hand-side REF probe is centered on

the end of the micro-homology and the right hand-side REF probe

is centered at the end of the breakpoint. If the breakpoint is

categorized as non-template sequence, the ALT probe is centered

on the midpoint of the non-templated sequence, whereas the left-

hand REF probe and the right-hand REF probe are respectively

centered on the start and on the end of the breakpoint on the

reference sequence.

(EPS)

Figure S7 Breakpoint probe design examples. Examples of

reference (red) and alternate (green) alleles and breakpoint probe

positioning for respectively blunt, micro-homology and non-

templated sequence deletions. Start and end refer to start and

end of breakpoint detected in reference allele. In case of blunt

deletions the left-hand (right-hand) side reference probe will bind

to the start (end) of the deletion on the reference allele, and the

alternate probe will bind to the deletion breakpoint on the

alternate allele. In case of micro-homology deletions, under the

design assumption that the second micro-homology is being

deleted, the left-hand side reference probe will bind to the end of

the first micro-homology on the reference allele, the right-hand

side reference probe will bind to the end of the deletion on the

reference allele and the alternate reference probe will bind to the

middle of the micro-homology on the alternate allele to maximize

discrimination between breakpoint probe sequences. In case of

non-template sequence deletions, where a sequence is inserted at

the breakpoint, the left-hand (right-hand) side reference probe will

bind to the start (end) of the deletion on the reference allele, and

the alternate probe will bind to the middle of the non-template

sequence on the alternate allele to maximize discrimination

between probe sequences.

(EPS)

Figure S8 Distribution of R2 correlation between pairs of

unrelated individuals. Squared Pearson correlation coefficient

(R2.0) is measured between pairs of unrelated samples across 452

clusterable CNVs. A cutoff of R2 = 0.7 is used to flag highly

correlated samples likely to result from technical artifacts (such as

aliquoting issues).

(EPS)

Figure S9 Genotype call rate versus heterozygosity. Heterozy-

gosity z-score (x-axis) is plotted against genotype call rate (y-axis)

based on a set of 310 autosomal clusterable CNVs with high

confidence genotype calls (95% posterior probability based on

CNVtools output). Each point is a sample. Red samples (z-score

,25 and genotype call rate ,98% or z-score .2 and genotype

call rate ,92%) are flagged as problematic.

(EPS)

Figure S10 Genotype concordance between CNV genotypes

and ImmunoChip genotypes. A set of 40 CNVs genotyped by

either the WTCCC+ or the 1000 Genomes project with CEU

MAF.10% that are well-tagged (R2.0.9) by SNPs present on the

ImmunoChip is used for sample tracking. Each datapoint in the

plots is a sample. The x-axis represents plate position and the y-

axis represents genotype concordance between genotypes based on

CNVtools posterior probabilities and ImmunoChip genotypes.

The scatterplot on the left-hand side (A) show the distribution of

genotype concordance under the null hypothesis of no concor-

dance with ImmunoChip genotypes. The right-hand side

scatterplot (B) shows the estimated genotype concordance with

ImmunoChip genotypes. A threshold of 80% concordance is used

to flag outliers. The long vertical line at the bottom of the right-

hand side plot flags two full plate swaps.

(EPS)
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Figure S11 Distribution of raw un-normalized red intensity signal

across plates for samples passing quality controls. Plate rows and

columns show comparable CNV intensity data before data pre-

processing and normalization. A - Boxplots of raw red intensity

signal across CGH array plate rows E,F,G and H. B - Boxplots of

raw red intensity signal across CGH array plate columns 1 to 12.

(EPS)

Table S1 Source of CNVs targeted by the aCGH, before and

after applying QC filters.

(CSV)

Table S2 Type of CNVs targeted by the aCGH, before and

after applying QC filters.

(CSV)

Table S3 Targeted CNVs with associated FBAT P-values.

(CSV)

Table S4 BED file for T1D CNV array design.

(TXT)

Text S1 Description of array and probe design.

(DOCX)
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