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Abstract

Pressure swing adsorption (PSA) is a cyclic adsorption process for gas separation and purifica-

tion, and can be used in a variety of industrial applications, for example, hydrogen purification

and dehydration. PSA is, due to its low operational cost and its ability to efficiently separate

CO2 from flue gas, a promising candidate for post-combustion carbon capture in power plants,

which is an important link in the Carbon Capture and Storage technology chain. PSA offers

many design possibilities, but to optimise the performance of a PSA system over a wide range

of design choices, by experimental means, is typically too costly, in terms of time and resources

required. To address this challenge, computer experiments are used to emulate the real system

and to predict the performance. The system of PDAEs that describes the PSA process behaviour

is however typically computationally expensive to simulate, especially as the cyclic steady state

condition has to be met. Over the past decade, significant progress has been made in compu-

tational strategies for PSA design, but more efficient optimisation procedures are needed. One

popular class of optimisation methods are the Evolutionary algorithms (EAs). EAs are however

less efficient for computationally expensive models. The use of surrogate models in optimisa-

tion is an exciting research direction that allows the strengths of EAs to be used for expensive

models. A surrogate based optimisation (SBO) procedure is here developed for the design of

PSA systems. The procedure is applicable for constrained and multi-objective optimisation.

This SBO procedure relies on Kriging, a popular surrogate model, and is used with EAs.

The main application of this work is the design of PSA systems for CO2 capture. A 2-

bed/6-step PSA system for CO2 separation is used as an example. The cycle configuration used

is sufficiently complex to provide a challenging, multi-criteria example.
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Chapter 1

Introduction

Pressure swing adsorption (PSA) is a gas separation technique that has been studied for sev-

eral decades, and can be seen as a cost-effective alternative to more traditional gas separation

techniques, such as absorption. PSA has more recently emerged as a promising technique for

separating out CO2 from flue gas, and therefore of interest to Carbon Capture and Storage

(CCS). PSA processes offer much flexibility in terms of process design, and have been shown

to be promising for a wide range of applications. PSA units have already been installed world-

wide, as home medical oxygen generators and air brake drying systems, but also for industrial

hydrogen purification and air fractionation. Because of the complex nature of PSA processes,

and the wide range of design possibilities, computer experiments are typically used to emulate

PSA processes. To design PSA systems has been shown to be a challenging problem, mainly

because the computer simulations are computationally expensive to run. There is a need for

more efficient optimisation routines that can handle the design problem, especially for large-

scale industrial applications. The application of interest in this study is carbon capture in power

plants. In this chapter we provide the motivation for our work, and the scope. The final section

will present the outline of this thesis.

1.1 Carbon Capture and Storage

There has been an increased interest in understanding the impacts of climate change and global

warming, which have been observed over the past century. The scientific consensus is that

global warming is due to the greenhouse effect, which is an effect intensified by the ever in-

creasing global CO2 emissions. Fossil-fuel power plants are accountable for approximitely one

third of the total CO2 emitted from man-made sources [AT05]. To achieve a satisfactory level of

CO2 emissions a near-term goal is to substantially reduce the CO2 emissions to the atmosphere
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from the power plants. A possible mid-term goal could be to make better use of fuel in power

generation and transportation, whereas the long-term challenge is to instead use alternative en-

ergy sources such as nuclear, solar, and wind power [AT05]. Fossil-fuel based power plants are

responsible for 80 % of the global energy supply, with the coal-fired ones supplying as much

as 42 % [MIT07, Adm10]. Coal-fired power plants are expected to continue to cover a large

portion of the global energy supply for decades to come.

An initiative for achieving the near and mid-term goals is “Carbon Capture and Stor-

age” (CCS), a strategy by the internationally joint Intergovernmental Panel on Climate Change

(IPCC). The IPCC has been awarded the Nobel Peace Prize for 2007, a recognition “for their

efforts to build up and disseminate greater knowledge about man made climate change, and to

lay the foundations for the measures that are needed to counteract such change.” CCS is a pro-

cess that, as a first step, uses gas separation to extract compressed CO2 of high purity from an

industrial source, followed by transportation of the captured CO2 to a geologic storage reservoir

(such as saline formations and oil or gas fields) or an ocean storage, for instance, and finally

sequestration for long-term storage and isolation [IPC05]. The Climate Change Act 2008 (c.27)

from the Parliament of the United Kingdom, includes a mandate to achieve a reduction in CO2

emissions by at least 80 % for 2050. The baseline for comparison is the emission level recorded

in 1990. In 2009 a UK research consortium was formed, under the name Innovative Gas Sepa-

rations for Carbon Capture (IGSCC) and funded by the British Research Council EPSRC. The

IGSCC aims to develop novel materials and processes for gas separation based on absorption,

adsorption and membrane processes for CCS and investigate their capability based on technical

performance, energy consumption, economical cost and sustainability. Our work is a part of the

IGSCC effort. There are a few CCS technologies that are considered feasible from a scientific

perspective. The CCS problem is however not only a scientific problem, it is also an econom-

ical one, since one of the critical objectives is to find a CCS technology that is economically

viable. The capture system is required to meet certain economical limitations. According to

U.S. Department of Energy, a feasible CCS technology should capture 90 % of the CO2 emis-

sions while keeping the resulting increase in electricity cost below 10 to 20 % (depending on

CCS type) [oFEoS99]. For CCS the costs associated with the transportation, storage, verifi-

cation and monitoring operations have been estimated to represent only one fourth of the total

cost, whereas the remaining cost is related to the separation process [FFP+08, ER09].
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1.2 CO2 capture

The main challenges for CO2 separation techniques are the low concentration of CO2 in flue gas,

and the occurrence of contaminant gases (oxygen, water vapour, sulphur oxides, and nitrogen)

which makes CO2 separation more difficult and might also lead to degradation of material

and corrosion of equipment. A CO2 capture system can be used for post-combustion, pre-

combustion, or oxy-combustion.

Post-combustion

In post-combustion capture the CO2 is separated from flue gas exiting from the combustion

chamber. The flue gas composition is typically about 74 % N2, 15 % CO2, 7 % H2O, 3 % O2,

and with a small fraction (less than 1%) of other particulates (e.g., SOx, NOx). The exhaust

flue gas from the combustion is normally at ambient temperature and atmospheric pressure. In

the combustion process, with air as the oxygen source, the following chemical reaction occurs

CxHy +
(
x+

y

4

)
O2 → Heat + xCO2 +

(y
2

)
H2O,

where stoichiometric coefficients x and y depend on the type of fossil fuel.

Pre-combustion

In pre-combustion capture the carbon dioxide is fully or partially separated from the hydrocar-

bon fuel gas, e.g. methane or gasified coal, to produce hydrogen-rich fuel gas for hydrogen

combustion. Pre-combustion is a gasification process of coal (by partial oxidation reactors or

coke oven gas units) that produces syngas, which consists of monoxide (CO), hydrogen (H2),

carbon dioxide (CO2), and water (H2O), along with small amounts of CH4 and H2S, occasion-

ally. A CO shift converter is here installed to generate a CO2/H2 gas mixture out of a significant

portion of the CO and H2O involved. Much attention has in recent years been towards pre-

combustion capture because of its low capital cost when compared to post-combustion capture

[IPC05]. Also, the pre-combustion technology can be used in modern Integrated Gasification

Combined Cycle (IGCC) power plants with gasification. For IGCC plants that burn methane

the following chemical reactions occur before the CO2 separation unit:

2CH4 +
1

2
O2 +H2O ↔ 5H2 + 2CO (auto thermal reforming reaction), and

CO +H2O ↔ CO2 +H2. (shift reaction)
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The resulting syngas is highly concentrated in CO2 and at a high pressure.

Oxy-combustion

The fossil fuel is burned in an oxygen stream that contains little or no N2. Oxy-combustion

capture can be applied to existing PC power plants. A major drawback is that the air separation

step before combustion is energy demanding. Oxy-combustion is outside the scope of this work,

but we refer the interested reader to [FFP+08, ER09].

Figure 1.1: The diagram, originally published in [FFP+08], illustrates three types of carbon
capture systems: post-combustion, pre-combustion, and oxy-combustion.

Discussion

Combustion is a high-temperature process operating in the regime of atmospheric pressure. A

barrier to the implementation of post-combustion carbon capture is that the CO2 partial pressure

is low in flue gas and much energy is therefore required by the separation process. For pre-

combustion, on the other hand, the capture of CO2 from fuel gas leads to a significantly higher

CO2 partial pressure and hence lower operational cost. The UK government has announced that

they will allocate 1 billion GBP to support a CCS demonstration project of building a fossil-fuel

power plant by 2014/15 [fBISB07]. The project plans to build a coal-fired power plant with a

post-combustion technology. However, one prerequisite was that the CCS technology adopted

should be viable to retrofit to pulverised coal-fired power plants. Post-combustion systems can



1.3. CO2 separation techniques 19

be retrofitted to coal-fired power plants, whereas pre-combustion systems cannot. On the other

hand pre-combustion is suitable for use in the more recent IGCC plants. In conclusion the

post-combustion approach is favored over pre-combustion as a near-term solution, whereas the

pre-combustion approach has in recent years been investigated as a long-term option.

1.3 CO2 separation techniques

The choice of separation technique is very much problem-specific. A CO2 separation technique

should be capable to deliver high-purity streams of CO2 at an acceptable economic cost. There

exists a wide range of applicable commercial technologies for the separation of CO2 from gas-

mixtures: absorption into a liquid, adsorption on a solid, membranes, cryogenic liquefaction,

or hybrid systems of some of the aforementioned. Even though the focal point of this thesis

is pressure swing adsorption (PSA), we will here also present an overview of some alternative

techniques, namely absorption and membranes. After that, we will justify the choice of PSA

as a feasible option to achieve cost-effective separation of CO2 for post-combustion carbon

capture in power plants.

Absorption separation

Separating CO2 from a gas mixture stream (e.g., flue or fuel gas) through absorption is a process

that in principle scrubs CO2 from the gas. A necessary property of the solvent is to favourably

dissolve CO2 above the other components in the gas mixture [AT05]. The other components

of the gas mixture are referred to as carrier components. In the succeeding regeneration step

the CO2-rich solution is feed into a regeneration column, where the CO2 is removed from the

solution and the solvent is regenerated so that it can be reused for a new load of gas mixture.

Absorption is best at low temperature and high pressure, whereas regeneration is best under the

inverted conditions. The typical pressure level in an absorption process is atmospheric pressure,

but could be designed differently to achieve a better performance.

An absorption process can be classified as either “chemical absorption” or “physical ab-

sorption.” A chemical absorption process reacts chemically with the gas mixture and is suitable

for low pressure applications such as post-combustion, whereas a physical absorption process

only reacts physically with the gas and is suitable for high pressure applications given the high

partial pressure [ER09]. Physical absorption processes also suffer from fewer issues related to

the solvent, such as degradation, compared to chemical absorption. A common chemical liq-

uid solvent for CO2 separation is monoethanolamine (MEA), which is regarded as an efficient
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option in terms of performance versus economical cost. MEA absorption is among the most

promising [AT05]. Although, other options such as adsorption and membrane systems have po-

tential of surpassing the performance of MEA absorption, if more efficient and commerciable

materials would be developed [AT05]. Other examples of chemical solvents for CO2 separation

are diethanolamine (DEA), dissopropanolamine (DIPA), methydiethanolamine (MDEA), digly-

colamine (DGA), alkaline liquid, and ammonia. Whereas for physical absorption, no efficient

sorbent has been commercialised [FFP+08]. Two examples of sorbents for physical absorption

are chilled methanol and glycol ethers [ER09].

Absorption techniques are the most well-established in the industry, in particular for natu-

ral gas sweetening and H2 recovery from syngas in the petrochemical industry [AT05, ER09].

In addition, absorption is also established for separating CO2; in chemical process industry,

absorption based separation is used to purify products via the removal of CO2 to enforce pro-

cess and final product requirements. There exists a range of solvents with good regeneration

attributes, especially MEA absorption displays a high selectivity to CO2 along with the capacity

to generate a product stream with CO2 concentration above 95% [AT05, LKL+09]. Whereas on

the other hand the main disadvantages are solvent degradation [LKL+09];equipment corrosion

due to the high level of oxygen concentration; secondary evaporation of amines due to high va-

por pressure as amines react with CO2 [LKL+09, ER09], and the energy intensive regeneration

[AT05]. A remark, 70-80 % of the operational expense is due to the large temperature change

required in transition between the adsorption and regeneration steps [AT05, LKL+09].

Membrane separation

Membrane separation processes are simple to implement, but the development and choice of

appropriate membrane are on the other hand challenging. Permeable membranes (see, e.g.,

[LKL+09]) follow the principle of selective permeation. Permeability is a measure of at what

rate a gas component will propagate, and can be interpeted as the reciprocal resistance against

mass transfer by the medium, in this case the membrane. The permeability depends on the

membrane structure, the nature of the permeant species (size, shape, and polarity), and the

interaction between the permeant species and the membrane.

In the permeation process a gas mixture stream is feed onto the membrane surface and gas

components with higher permeation rate will pass faster through the membrane than compo-

nents with lower permeation rate. The permeation rate depends on the partial pressure differ-

ence between each side of the membrane. In most applications the purpose is to allow passage
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Figure 1.2: Membrane separation.

for a single component through the membrane, while rejecting passage of all other components

involved in the gas mixture. There are three types of membranes for gas separation: polymeric,

inorganic and biological. Only the first two will be discussed here. Polymeric can be divided

into two categories: glassy and rubbery; similarly, inorganic membranes can be classified as

either porous or dense.

Membranes are selected that exhibit a high permeation rate for CO2, but a low rate for

the other components involved. Some popular CO2-permeant polymeric membranes for post-

combustion are PolarisTM and PIMs (see, e.g., [BM10, MLWB10]). In practice, polymeric

membranes have been the most prominent in industry, for instance applied for purposes such

as food and beverage processing, liquid desalination, and gas separation. Inorganic membranes

have not been as extensively studied for CO2 separation as polymetric membranes, but still have

had some progress [YXF+08]. Examples of inorganic materials for membranes are alumina,

carbon, glass, metal, silica, zeolite and zirconia. As discussed in [AT05], the recent interest

towards inorganic membranes is a product of the increased use of inorganic membranes for fuel

cell and membrane reactor applications. What is specially attractive with inorganic membranes

is their thermal and chemical stability [LKL+09]. It could be argued that the best CO2-selective

inorganic membrane candidate to date is the zeolite membrane [LKL+09].

Membrane techniques have the advantages of being simple (no moving parts, compact,

easy to operate, control and scale-up), suitable for retrofitting in existing power plants, requiring

little maintenance, environmentally friendly, and have a low energy demand since they are

based on organic and biological systems and therefore have no phase change [FFP+08]. The
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challenges are however the limited development of durable membrane supports of large surface

area, “membrane wetting,” the fact that impurities in the gas stream can congest the membranes.

Adsorption separation

Adsorption is a process that attempts to force selected gas molecules in a gas mixture to be

trapped close to a solid surface. When a gas molecule is near a solid surface, the molecules in

the solid will apply an attractive force on the gas molecule that will reduce its potential energy.

As a result the gas molecule density will be greater closer to the surface in the free-gas phase

(see Figure 1.3).

Figure 1.3: A simplified illustration of the principles of adsorption, when gas molecules are in
close proximity to the solid surface with selectivity towards the molecules.

“Physical adsorption” is when the forces in the interaction between the adsorbing molecule

and the surface are weak (van der Waals forces) and the adsorbate and the adsorbent are kept

distinct; in contrast to what is known as “chemisorption,” which is when the interaction forces

are strong enough for transfer or sharing of electrons between the adsorbate and the adsorbent.

In practise most adsorption separation processes rely on physical adsorption [RFK93]. Exam-

ples of physical adsorption separation processes are pressure swing adsorption (PSA), vacuum

swing adsorption (VSA), and thermal swing adsorption (TSA). Chemisorption on the other

hand is regarded as an economically unattractive option because of its observed low capacity in

applications.

Pressure swing adsorption

The pressure swing adsorption (PSA) process [RFK93] is a periodic adsorption process and

is considered a viable energy and cost-efficient option which can be used for CO2 separation

from flue as well as fuel gas (see, e.g., [AT05, Sir06, HAW08, LKL+09]). PSA processes have

been applied for small, medium and large-scale purification and separation applications. As



1.3. CO2 separation techniques 23

reported in 2006, at least a few hundred thousand PSA units have been installed world-wide

[Sir06], mainly at the small-scale, for example as home medical oxygen generators and air-

brake drying systems, but also implemented at medium- and large-scale for H2 purification and

air fractionation.

The main characteristic of a PSA process is to “swing” between adsorption and desorption

process steps by increasing and decreasing the pressure in the system, respectively. PSA has

attracted a lot of attention, as it is considered to be a cost-effective option for medium-scale op-

erations [FFB09b]. PSA systems also have the ability to perform regeneration of the adsorbent

bed without the need to request an interruption of the process. The vacuum swing adsorption

(VSA) process, a type of PSA, has attracted much attention in the industry because of its sim-

ple design, low cost, and minimal corrosion and contamination [RFK93]. VSA is operating

under mild conditions compared to other types of PSA systems. PSA processes are tradition-

ally operated with a pressurised feed, whereas VSA processes are by definition carried out at

near-ambient pressure with the gas driven by vacuum control. Another adsorption technique

with similar characteristics as VSA/PSA is temperature swing adsorption (TSA). TSA varies

the bed temperature in order to swing between the process of adsorption and desorption. The

regeneration step from low to high temperature is however more energy demanding and slower

compared to the one based on pressure swing. TSA is thus not as attractive as PSA from an

economical and productivity perspective.

Adsorption processes allow regeneration to be executed on the fly, the systems can there-

fore consist of a series of process steps that either release (desorbe) or capture (adsorbe) the

selective components. It is possible to use multiple “beds”, with “interconnections” which al-

low gas flow between the beds. The wide range of design possibilities of PSA systems has made

the design of PSA systems a matter of study [BJF05, ABZ10b].

There are two types of adsorption surfaces: solid adsorbents and porous adsorbents. With

the solid adsorbents there are many challenges that need to be addressed for large-scale opera-

tions: it requires large volume of adsorbents; it exhibits a rapid decline in adsorption capacity,

and there is a need for a regeneration process operated under large temperature swing conditions

[LKL+09]. For porous adsorbents, 13X zeolite is currently commercially utilised for removal

of CO2 in an air separation process. A drawback with 13X zeolite is that it suffers from co-

adsorption with water, i.e., 13X zeolite in the presence of water will lead to reduced adsorption

capacity [LKL+09]. In contrast to lab-scale experiments, it is hard to rapidly change pressure



1.3. CO2 separation techniques 24

and temperatures in large-scale adsorbent beds, and as pointed out in [LKL+09], it is important

to develop and identify regeneration methods with strong suitability for large-scale operation.

Also, more studies have to address the impact of gas impurities for the capacity, selectivity, and

stability of the adsorption process [LKL+09].

PSA systems are considered to be promising for separation of CO2 in large-scale opera-

tions. Recently there have been studies investigating PSA for both pre- and post-combustion

[ABZ10b, ABZ10a].

Discussion

All the techniques presented for separating CO2 from gas streams in a power plant setting have

some issues that need to be addressed, or investigated. For example, liquid absorption with

MEA may be viewed as the most promising CO2 separation technique in a large-scale power

plant setting [AT05], but this perception is typically based purely on the separation performance,

and not in the light of the economic and environmental issues associated with it, which are

important factors to consider. The key argument against absorption as a separation option for

CO2 is its high energy demand. Also, there has been opposition against amine-based absorption,

as it may lead to environmental issues if the amine compounds are not properly contained.

Membranes based methods need to prove themselves before being considered for large-scale

applications. As seen in this section, there exist several alternative techniques for separation of

CO2 from flue gas and syngas.

However, only a handful are feasible for CCS, because most do not reach an adequate sep-

aration performance, or do not satisfy the requirements for acceptable economic conditions.

The use of membranes is an option because of its simple use and low economic cost, but the

gas streams in power plants have a very large volumetric flowrate, and there are no commercia-

ble membrane materials to date that can withstand such enormous loading. A lot of attention

has recently been devoted towards adsorption processes, in particular to PSA. PSA is a very

promising technique for CCS, as it is considered to be a cost-efficient option with a technical

performance comparable to absorption processes. Even though membrane based separation

methods also have received a lot of attention in recent years, PSA is the more likely out of the

two to be viable in the near future.
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1.4 The operation of PSA cycles

In the PSA process, gas enters the adsorbent bed at high pressure (adsorption), and the feed-

gas components most preferred by the adsorbent material become adsorbed. The remaining

gas mixture not adsorbed passes through the bed and becomes the raffinate (light product).

Eventually regeneration needs to be carried out in the bed by lowering the bed pressure so

that the heavy gas components, which have been adsorbed, can be removed. This process is

called desorption. The gas mixture released from the bed is the heavy product, which can

either be removed or used as purge. Bed regeneration requires no interruption or restart of

the process. PSA processes are thus continuous and cyclic. For a given system, all cycles are

identically configurated and specified in terms of process steps executed in a sequential manner.

PSA processes are operating at cyclic steady state (CSS). CSS is the state when the physical

conditions at the end of a cycle are identical to those at the beginning of the cycle. To reach

CSS from start-up could take hundreds or even thousands of cycles [THW+01, BJF05]. PSA

systems typically involve multiple adsorption beds with connecting streams. Common practise

is to use the same sequence of steps for all beds but in shifted phase. In a multi-bed system a

purge stream can be introduced during the desorption process to enhance regeneration.

1.4.1 Process steps

There are four basic PSA step types: pressurisation, depressurisation, adsorption, and desorp-

tion. A pressurisation step is characterised by high-pressure gas entering the bed while not

permitting any gas to leave. A depressurisation step is characterised by no gas entering the

bed while allowing gas to effuce at one bed end. An adsorption step is characterised by a

high-pressure bed suitable for adsorption, with both ingoing and outgoing gas streams. The

desorption steps operate in the same fashion as the adsorption step, but at low pressure so that

desorption will take place.

A 2-bed/4-step PSA system is shown in Figure 2.1. This exact PSA system was designed

by Charles W. Skarstrom in 1960, after which it was named the Skarstrom cycle, and is the

earliest account of a PSA system [Ska60]. In the first step of Bed 2 the bed is pressurised with

a gas mixture feed at high pressure. The second step is adsorption with a high pressure feed in

which the gas mixture enriched in weakly-adsorbed components passes through the bed (light

product). A fraction of the light product is channeled into a purge stream for the light reflux step

of Bed 1. Bed 2 then performs countercurrent depressurisation in which the pressure within the
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Figure 1.4: Schematic of 2-bed/4-step PSA system with a first-generation Skarstrom cycle. The
steps included are feed pressurisation (FP), feed (F), countercurrent depressurisation (CnD),
and light reflux (LR).

bed decreases as the gas mixture in the bed effuse (heavy product). The fourth and final step

of the cycle in Bed 2 is desorption with a purge stream from the adsorption step of Bed 1, in

which the heavy product is removed. The cycle is then repeated. As both beds have identical

cycle configurations, the same process as in Bed 2 also occurs in Bed 1, but in shifted phase.

Here follows a list of process steps covering some of the most used (see, e.g., [RMER08,

ABZ10b]): countercurrent depressurisation (CnD); cocurrent depressurisation (CoD); feed

pressurisation (FP); feed or adsorption (F); feed plus recycle (F+R); heavy product pressurisa-

tion (HPP); heavy reflux (HR); light end equalisation (LEE); light product pressurisation (LPP);

light reflux (LR); null, delay or idle (N); recycle of the heavy product (R), and recovery (REC).

LPP represents the case when the light product from a highly pressurised bed, typically before

depressurisation, is utilised to partially pressurise another bed. CnD is depressurisation with

the same flow direction as the adsorption flow, whereas CoD is in counter-flow to the adsorp-

tion. Pressure equalisation steps are used to conserve energy [CSMM03]. They reuse gas that

already is at high pressure in one bed to pressurise low-pressure beds in the system. A remark,

the maximal number of equalisation steps that could fit inside a PSA system is equal to the

number of beds. The use of pressure equalisation first appeared in [Ber66], using a modified

Skarstrom cycle with a pressure equalisation step, and can significant reduce the power con-
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sumption of the system. The null/idle step, which represents the bed in an idle mode (that is, a

state awaiting interaction with other beds), is sometimes necessary to include so that the beds

are synchronised [MER11]. More sophisticated cycles could be designed with more elaborate

bed interconnections. As an example, a 5-bed/11-step PSA system was designed in [JFB04],

which included six pressure equalisation steps and one idle step, for an industrial application of

PSA for H2 bulk separation with H2-N2-CO2-CO-CH4 feed gas mixture.

Here follows a few examples of different types of PSA cycles:

• Stripping reflux: A stripping reflux cycle produces an enriched light product and a heavy

waste product.

• heavy reflux: In contrast to stripping reflux, a PSA cycle classified as a heavy reflux

[Wil82] is characterised by a light waste product of the gas mixture, and an enriched

heavy product.

• Duplex reflux [DGH95]: A compromise between a stripping and heavy reflux cycle. It

relies on a 2-bed system setup, for which one bed operating at high pressure whilst the

other operating at low pressure. This leads to an enriched product at an intermediate

pressure for the product streams at both bed ends. The feed stream can also enter at an

intermediate position of the bed.

1.5 Challenges with PSA design

There are few important research directions that are persuited for PSA design for carbon capture

[BJF05, ABZ10b, DVB12], for example, synthesizing novel adsorbent materials, improving the

accuracy of the mathematical models describing PSA processes, developing computationally-

efficient simulation and optimisation methods, and putting forward more systematic ways of

choosing cycle schedule for specific tasks. The challenges related to synthesizing adsorbents,

and improving the mathematical model for PSA processes, are outside the scope of our work.

When designing a PSA system we have some design parameters that we are allowed to manip-

ulated, such as valve constants, bed pressures, cycle times, bed dimensions, among others. The

optimisation procedure will search through the design space of possible design configurations

until we find the design that produces the “optimal” PSA system. The performance is often

assessed based on some design criterion, for example, the purity of the product, or the system’s

power consumption.

Here follows an account of strategies proposed in the literature for the design of complex
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PSA cycles.

1.5.1 Design of complex PSA cycles

A PSA cycle is described by the sequence of steps that the beds undergo. It is often assumed

that the sequence of process steps to be performed in the PSA cycle is given, but this is not

necessarily the case because each step is characterised by the connections between the steps (if

open or closed), the feed, and the light and heavy product tanks.

Given the sequence of process steps, the graphical approach by Ritter et al. [MER10,

MER11] can be used for complex PSA cycle scheduling. This approach, based on [Chi88], can

easily generate and identify all PSA cycle schedules for the given sequence of process steps,

under some constraints. This graphical framework divides the total cycle time into a set of unit

cells such that the duration of any process step is required to be a multiple of the duration of

a single unit cell, that is, a process step occupies one or several unit cells. The approach can

generate all possible multi-bed systems with a given sequence of steps, even delay steps will be

enforced appropriately to syncronise the beds.

PSA processes are very flexible, and the choice of process steps can be included as part of

the cycle scheduling, as in [ABZ10b, ABZ10a], where a two-bed superstructure is proposed for

pre- and post-combustion for CO2 capture. In this design framework only two beds are consid-

ered, but that may not be a problem, as we later will see with the unibed approach [KFH+94].

Many PSA schedules can be represented by a 2-bed structure. The 2-bed superstructure does

not represent all possible bed interconnections, but many promising designs are likely to be

explored. A bed is only allowed to interact with one other bed, no more, and all process steps

can be classified as either adsorbing or desorbing. An advantage with this 2-bed superstructure

is that the bed process behaviour is variable controlled, which means that only continuous deci-

sion variables are present, which avoids the need for mixed-integer programming. Here follows

two more strategies worth mentioning. Fiandaca et al. [FFB09a] for multi-bed PSA cycles for

CO2 capture, where the cycle connections, and the associated valve constants, are generated at

random between the process steps, the feed, and the light and heavy product tanks. In contrast,

Nikolic et al. [NKG09] proposed a “state transition network” (STN) graph that describes all

possible state transitions in a PSA system. In the STN, “states” are represented by process steps

(e.g., found in [MER11]) and “state transitions” are decisions when a change of state should

happen. In a STN, an initial state has to be specified, the authors suggest a co- or counter-current

pressurisation or pressure equalisation step as the best candidate, in general. The STN proce-
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dure is as follows: begin in the initial state, a state transition is then decided by the optimiser in

accordance with feasible transitions in the STN graph and under which conditions a transition

occurs under the current state. For example, a pressurisation step can only be followed by the

adsorption step, whereas the adsorption step can be followed by depressurisation, desorption,

pressure equalisation, and others. However, the proposed STN graph does not include all of

the most interesting state transitions [Aga10]. All of these strategies for PSA cycle scheduling

make assumptions that restrict the search space. They provide a systematic way that can be

used to identify viable PSA cycle schedules. The choice of the framework should be driven

by the specifics of the problem at hand. Fiandaca et al. [FFB09a] provided the most general

framework, but it can turn out to be an inefficient approach if the search space is not restricted

enough to avoid excessive search in less interesting parts of the parameter space. Actually, the

search space should not be too large, because of the computational expense associated with the

simulation of PSA processes. This calls for efficient optimisation methods.

1.6 Problem statement

The focus of this thesis is PSA for post-combustion carbon capture, which is of great interest

for the CCS process. We address the computational aspects that currently prohibit large-scale

optimisation for PSA design. Although there are optimisation procedures that are considered

adaquate for optimisation of PSA cycles, there are more difficult design problems for large-

scale industrial applications that need to be addressed. In particular, this work is driven by the

realisation that the PSA system is the key component for carbon capture in power plants, and

should be assessed computationally as a carbon capture module in a power plant model. The

performance will be evaluated online and should be designed while interacting dynamically

with the other components of the power plant model. The PSA model is likely the most com-

putationally expensive component of the carbon capture power plant model, and an efficient

optimisation procedure should be able to take that into consideration.

To adress this, we have developed an optimisation procedure that is robust, and less time-

consuming than preceding optimisation methods applied to the PSA optimisation problem. The

proposed method relies on the surrogate model known as Kriging [Jon01]. Kriging is used as

an approximation model for the simulation outputs (e.g. purity, recovery, and power consump-

tion) over the entire search space. We have proposed a Surrogate-based Optimisation (SBO)

procedure, where the Kriging has been utilised in various ways to guide the optimiser more
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efficiently. Several modifications have been suggested to make the SBO procedure highly ro-

bust and useful for constrained optimisation and for multi-objective optimisation. The use of

a Kriging surrogate model should be able to signficantly reduce the computational time to run

the PSA model, especially if a surrogate model is used to approximate the PSA component in

the full power plant model with carbon capture.

The Kriging has been used in the work by Faruque Hasan et al. [HKF+11] for a sim-

ple PSA case example for CO2 capture, but the implementation is not robust. An alternative

approximation-based optimisation method is given in [ABZ09], using reduced-order modelling

(ROM) for hydrogen purification. This method is limited to tight search domains, and the

robustness is questionable due to the low-resolution approximation involved. We have also de-

veloped a strategy for fast global sensitivity analysis, based on Kriging and polynomial chaos

expansion [BBMF13], that can be used for screening design variables before the optimisation.

This new efficient PSA optimisation using surrogate models allows a much larger number

of design configurations and adsorbent materials to be investigated, over a wide range of op-

erating conditions, which would help in the CCS effort. For demonstration, we have selected

two relevant, but also challenging, PSA examples, one is a dual-piston PSA and the other is a

2-bed/6-step PSA. which will show the efficiency of our proposed SBO procedure. This proce-

dure can be used with most, if not all, computer simulation strategies currently used for PSA.

Furthermore, the proposed method is also capable of efficiently performing multi-criteria

optimisation. Few studies have addressed multi-criteria design for PSA, which for some appli-

cations can be a very important design problem.

An efficient implementation can make it possible to run a model plant online and the costs

in operation of a power plant with and w/o carbon capture can be compared in an efficient

manner. A single model run of a surrogate model typically takes a matter of seconds, or less,

whereas a single model run of a rigorous PSA model can take hours, or even days. A model run

means the computer simulation of the PSA model for a single design configuration. The use of

surrogate models can lead to huge computational savings, which will be explored in this work.

1.7 Objectives of the project and outline of the thesis

In this thesis the main goal is to develop efficient optimisation procedures for challenging PSA

design problem formulations, and demonstrate them for PSA design, in the context of CO2

separation from a feed with composition similar to the typical composition of flue gas (relevant
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to the CCS process). Our work has been presented in seven chapters, and the outline of the

chapters are as follows:

In Chapter 2, the principles of adsorption are presented, which include adsorption equilib-

rium and mass transfer, followed by the mathematical models describing dynamic behaviour of

a PSA process. The computer simulation strategies are described, as well as the discretisation

of the mathematical models that set the scene for PSA simulation. In Chapter 3 we present the

most used optimisation strategies for PSA. The final section presents the main concept of evo-

lutionary algorithms which will be used throughout this work. Chapter 4 introduces surrogate

modelling, and formally develop a surrogate-based optimisation (SBO) procedure using Krig-

ing, given as a step-by-step strategy. Each step of the procedure is discussed in detail, and the

goal is to achieve a computationally-efficient optimisation method. Because the PSA simula-

tions are computationally expensive, the SBO method attempts to find the global optimum while

using as few PSA simulator runs as possible. The Kriging surrogate model is presented, along

with some adjustments that improve the numerical stability and predictive quality. Two SBO

methods have been proposed, surrogate-based GA and the popular EGO (efficent global opti-

misation). The SBO methods are carried out for a dual-piston PSA design study with six design

variables varied during the optimisation. The SBO methods and a real-coded GA algorithm are

compared against each other. The dual-piston PSA is an interesting system used for testing and

characterising adsorbent materials. This is the first design study for a dual-piston PSA system.

In Chapter 5 we extend the SBO procedure presented earlier to cases where we have multiple

objectives, and expensive design constraints. The procedure is extended to evolutionary multi-

objective optimisation (EMO), and to multi-objective efficient global optimisation (MOEGO).

The EMO of choice in our work is the popular NSGA-II. In addition, we have taken a technique

from active learning, and applied it to sequentially improve the global accuracy of the Kriging

model, and in turn the robustness of the SBO because it will promote exploration. A novel

modification is also made to the Kriging surrogate model to ensure the physical constraints of

the product purity and recovery (since they are ratios) are enforced for the Kriging predictions

made. This is, in fact, particularly important for multi-objective optimisation, as illustrated with

a few examples. The failed simulation runs are utilised to improve robustness by allowing the

SBO methods to learn where the PSA simulator may fail. Chapter 6 illustrates the SBO pro-

cedure for multi-criteria design on a challenging 2-bed/4-step PSA Skarstrom system. For the

multi-objective problems, the SBO methods are compared to NSGA-II. The SBO procedure is
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put to the test over a variety of design problem formulations. This chapter includes the first

PSA optimisation study where we have three objectives optimised simultaneously, that is, the

product purity, recovery, and power consumption. Finally, we summarise the contributions of

this thesis, and discuss directions for future work in Chapter 7.



Chapter 2

Modelling and Simulation of PSA Processes

Pressure swing adsorption (PSA) is a cylic adsorption process suitable for gas separation and

purification. In this process, some feed-gas mixture is passed through a bed packed with some

adsorbent material. The adsorbent bed is packed with some adsorbent that should preferentially

adsorb one or more components of the feed gas, which share similar characteristics, while the

remaining gas passes through the bed. This is a complex process where the choice of adsorbent

material is a critical factor. Hence, in order to understand the modelling and simulation of ad-

sorbent beds, and in the end the design of such systems, it is important to first have an adequate

understanding of the adsorption principles. An introduction to the adsorption principles that

underpin the adsorption bed process is given in the following section. Then we present math-

ematical models that are used to describe the process dynamics involved. The main equations

involved are the ones that describe the conservation of mass and energy, pressure profiles, and

adsorption kinetics in the adsorbent bed. These models tend to be rigorous, and consist of cou-

pled non-linear partial differential equations (PDEs) in space and time, as well as non-linear

algebraic equations representing non-isothermal heat effects and adsorption isotherms. Finally,

we provide an overview of computational simulation strategies for the solution of PSA models.

The computer simulations performed rely on the spatial and temporal discretisation applied to

the mathematical system.

2.1 Principles of adsorption

The adsorption forces that may arise between the surface of the adsorbent material and the

surrounding gas molecules depend on the interplay between them. In this section the principles

of adsorption are explained in order to show the importance of the choice of adsorbent material

for PSA. First the three most influential factors for adsorption are described.
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Selectivity. An adsorbent is desired to have a high affinity between the adsorbing molecule

and the adsorbent surface. This corresponds to a high selectivity. An adsorbent has either

equilibrium or kinetic selectivity. The equilibrium selectivity is when the separation depends

on the difference in the equilibrium affinities. For equilibrium-selective adsorbents the impact

of the mass transfer resistance is significant. Kinetic selectivity on the other hand depends on

the difference in adsorption rates. For kinetic-selective adsorbents the kinetic factors are the

predominant ones.

Capacity. The larger the surface area of the adsorbent, the higher the adsorption capacity.

An adsorbent with low adsorption capacity tends to require a larger, more costly bed.

Physical strength. The degradation of the sorbent causes the adsorbent particles and its

capacity to deteriorate over time. The strength mainly depends on the manufacturing of the

adsorbents, pretreatment, and material properties.

The pore size influences the characteristics of the adsorbent, for example, the adsorption

and desorption rates. The pore size distribution determines the level of resistance an adsorbed

molecule needs to overcome to escape the attractive force from the solid surface. In a microp-

ore the adsorbed molecule cannot leave the solid surface, even when positioned at the center of

the pore. Whereas in mesopores and macropores, adsorbed molecules at the center of the pore

are considered “free” as they experience little or no attractive force. Macropores have a con-

siderably smaller surface area than the full pore volume, which allows the adsorbed molecules

to penetrate at the center of the pore into the interior. Pores are often classified according to

their size [Bur76]: micropores with diameters < 2 nm; mescopores with between 2 and 50

nm, and macropores > 50 nm. For homogeneous adsorbents, the pore structure is the same

throughout the entire particle, and therefore the pore size distribution is unimodal. For com-

posite adsorbents, the structure is non-homogeneous, and a clustering of microporous particles

often tends to bind together. The non-homogeneous structure yields a bimodal pore size dis-

tribution where micropores within the particles connected through the macropores within the

pellet. In equilibrium-controlled adsorption a wide pore size distribution could be acceptable;

as opposed to kinetic-controlled adsorption which uses a narrow distribution of pore size as the

selectivity mainly depends on steric hindrance and less on material properties. Several tech-

niques to achieve control over the pore size are discussed in the book [RFK93], e.g., enforcing

ion exhange and silanation. The layer of adsorbed molecules at the solid surface may be seen

as a single thermodynamic phase.
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2.1.1 Adsorption equilibrium

The state of equilibrium between the gas phase and the adsorbed layer phase at the surface and

the convergence towards equilibrium are described by the laws of thermodynamics. Physical

adsorption is an exothermic process; thus adsorption is favorable at low temperature, in con-

trast to desorption which is favorable at high temperature. At low concentration the adsorption

equilibrium relationship could be described in a linear form by Henry’s Law:

q = Kc or q = K ′p. (2.1)

Here K (and K ′) is the Henry constant; q is the amount adsorbed; p is the pressure, and c

is the concentration of the sorbate in the fluid phase. The temperature-dependent relationship

between the Henry constant and adsorption equilibrium could be described by the van’t Hoff

equation:

K ′ = K ′0 exp

{
−∆H

RgT

}
, and K = K0 exp

{
− ∆U

RgT

}
, (2.2)

where T is the temperature; ∆H = ∆U − RgT is the total energy change on adsorption,

and Rg is the universal gas constant. At high concentration levels the adsorption equilibrium

relationship exhibits nonlinearity, making the linear Henry’s law not ideal.

An adsorption isotherm describes the equilibrium of the sorption at the solid surface at

constant temperature. Isotherm models depend on the type of underlying sorption. Brunauer’s

classification [Rut84] divides isotherms into five classes of isotherm curve shapes. See below

for a selection of popular adsorption isotherm models:

• Langmuir isotherm:
q∗

qs
=

b

c−1 + b
(2.3)

• Freundlich isotherm:

q∗ = bcα
−1

(2.4)

• Langmuir-Freundlich isotherm:

q∗

qs
=

b

c−α−1 + b
(2.5)
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• The extended Langmuir isotherm (for multicomponent sorption):

q∗i
qs

=
bipi

1 +
∑Nc

j=1 bjpj
(2.6)

• The loading ratio correlation (LRC) isotherm:

q∗i
qs

=
bip

α−1
i
i

1 +
∑Nc

j=1 bjp
α−1
j

j

(2.7)

where αi, αj > 0 are correction factors, Nc the number of components, and i and j are

the component numbers.

Here q∗ is the saturated limit to the amount adsorbed q, and pj is the partial pressure for compo-

nent j. To account for the effects of non-isothermality, the equilibrium constants are typically

temperature dependent. For example, the Langmuir isotherm constant, b, can depend on the

temperature as follows:

b = b0 exp

{
−∆H

RgT

}
(2.8)

The Langmuir model has shown to be a good fit for isotherms for many adsorption re-

lated applications [RFK93]. Moreover, the Langmuir model is consistent with Henry’s

law in the low-concentration regime. Langmuir-Freundlich isotherm is a good fit in the

high-concentration regime, but becomes less reliable in the so-called “Henry’s law” regime.

Freundlich-based isotherms have correction parameters that provide more degrees of freedom

in their parametrization.

2.1.2 Mass transfer and diffusion in adsorbents

The resistance to mass transfer is different in homogeneous and composite adsorbents because

of their differences in pore structure. In a composite adsorpent there are three kinds of resistance

to mass transfer: external film resistance, macropore diffusion, and micropore diffusion.

External fluid film resistance. The external fluid film encircle the adsorption pellet and

causes resistance to mass transfer. Although the external film resistance is recognised as

a contributer to the overall resistance, it is often negligible when compared to the internal

diffusional resistances.

Macropore diffusion. The mass transfer resistance appearing as a result of macropore diffu-

sion depends on the ratio between the diameter of the pores and the mean free path. When the
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pores have a diameter considerably larger than the mean free path (1/dpore < 0.1 [PG97]),

the diffusion in the macropores becomes similar to molecular diffusion. The molecular dif-

fusivity is characterised by

Dm ∝
T 1.7

p
√
M
, (2.9)

where Dm is the molecular diffusivity, and M is the molecular weight. When on the other

hand pores are small (i.e., l
dpore

> 10 [PG97]) and at low pressure, the diffusion accounts

for the resistance created by collisions between the diffusing molecules and the pore wall,

known as Knudsen diffusion. The Knudsen diffusivity [PG97] can be described as

DK = 48.5dpore

(
T

M

)1
2
. (2.10)

Here dpore is the diameter of the pore. In the transition region between molecular diffusion

and the Knudsen diffusion, where both are considered important, an effective diffusivity can

be calculated by
1

Deff
=

1

DK
+

1

Dm
, (2.11)

where DK , DM > 0.

Micropore diffusion. The micropore diffusion is the diffusion in pores with a diameter size

of the same magnitude as the one for the diffusing molecule. In micropore diffusion the

diffusing molecule is unable to leave the force field of the pore wall. All molecules are in

the adsorbed phase, becase in the “small” pores there is no distinction between adsorbed

molecules and gaseous molecules in the central region of the pore. This is a big difference to

macropore adsorbents. Moreover, the micropore diffusivity is found to vary with the temper-

ature as described by the Arrhenius equation

D0 = D∞ exp

{
− E

RgT

}
, (2.12)

where D0 is the corrected diffusivity, D∞ is the diffusivity in the limit T →∞, and E is the

activation energy for the process.

2.2 Mathematical modelling of adsorption beds

Mathematical models for describing adsorption and desorption processes are well-established

and are considered to be in good agreement with experiments [RFK93, LHR99]. The full set
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of mathematical equations is typically a large, coupled, nonlinear system of equations. See

the following list of mathematical equations required to describe processes in fixed-adsorption

beds:

• Infra-particle mass transfer model for describing the adsorbate uptake rate by pellets;

• Adsorption equilibrium model;

• A material balance for each component;

• An energy balance for the gas, solid and the adsorbed phase;

• The relation between the pressure drop and the gas velocity (momentum balance).

Together these equations form a set of coupled partial differential and algebraic equations

(PDAEs). We also need to specify initial conditions for the state, as well as the periodic bound-

ary conditions. Besides the governing equations, many models can be differentiated based on

the following model choices [RFK93]:

• plug flow or axially dispersed plug flow pattern;

• isothermal or non-isothermal (if accounting for heat effects);

• constant or linear change in fluid velocity along the bed, and

• the pressure drop along the bed (if assuming linear drop).

The remainder of this section will describe the details of the mathematical modelling of

PSA processes in fixed-adsorption beds. For more details, we recommend [WL03] and refer-

ences therein.

2.2.1 Intra-particle mass transfer model

Here follows a brief account of three commonly used mass transfer models, which describe

the resistance to mass transfer occuring in a particle while the gas and adsorbate phase are

in local thermal equilibrium (see, e.g.,[AB05, CMM06]): Fickian diffusion model, dusty gas

(DG) model, and linear driving force (LDF) model. The models relate the mass transfer rate

between the gas and the adsorbate phase to the fluxes in the pores and in the surface. The

Fickian diffusion model and the DG model are closely related, for instance, both incorporate

the molecular diffusion, Knudsen diffusion, and viscous flux.

Here follows the equations for the intra-particle mass balance in the Fickian model and the

DG-model [CMM06]: the intra-particle mass balance for component i can be written as

εp
RgT

dpi
dt

+ ρs
dqi
dt

= − 1

rs
d

dt
(rs[εpN

p
i +N s

i ]) , (2.13)
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where pi is the partial pressure; q is the amount adsorbed; εp is particle porosity; T is the

temperature; Rg is the gas constant; t represents the time dependency; r is the coordinate of

the particle in a spherical coordinate system, and s is the geometry factor (0=slab, 1=cylinder,

and 2=sphere). Here the terms Np and N s represent the fluxes in the pores and in the surface,

respectively. The N s term accounts for the surface diffusion flux and is given by

N s
i = −Ds

i (T )
qi
pi
ρs
dpi
dt
, (2.14)

where Ds
i is the surface diffusion coefficient, and ρs is the particle density.

For the Fickian model and the DG model the Np term is problem-specific [CMM06], ac-

counting for the molecular diffusion and Knudsen diffusion. The two models are equivalent

if every component except for the sorbent in the gaseous-mixture have a low concentration, or

the Knudsen diffusion is dominant. Given that a linear adsorption isotherm model is deployed,

and the viscous flux is negligible, both models can be expressed by the homogeneous diffusion

equation:
dqi
dt

=
1

rs
d

dt

(
rsDe

M,i

∂qi
∂r

)
, (2.15)

where De
M,i are the effective homogeneous diffusion coefficients. The linear driving force

(LDF) model, first introduced by Glueckauf and Coates [GC47], is a popular approximation of

the homogeneous diffusion equation (2.15). The LDF approximation simplifies the expression

for the mass transfer rate, and can be written as

dq̄

dt
= k(q∗ − q̄). (2.16)

That is, the mass transfer rate is proportional to the difference between the surface concentration

and the average concentration within the particle. The value assigned to k can be derived

experimentally or estimated by

k = Ω
D

r2
p

,

where D is the diffusivity constant; rp the particle radius, and Ω the correction parameter.

When the LDF model was introduced in [GC47], the parameter Ω was set to 15, regardless of

the underlying process. For cyclic adsorption processes the value of Ω can be related to the

cycle time. The choice of the lumped mass transfer coefficient k is a matter of study and much

attention has been devoted to the following:
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• the selection of k so that consistency with the diffusion model is achieved [AS92];

• describe the correlation between k and the cycle time [RHR86, AB05, TW06];

• the problem of lack of diffusivity data to estimate k [DA00], and

• the use of different values of k for adsorption and desorption operations [DA00].

The LDF model has been shown to be in good agreement with the original diffusion model

at CSS. LDF approximations are used for determining the process behaviour at CSS, and not

for predicting the full transient behaviour of the process, especially not accurate for transient

behaviour in fast cycles [NS83, AB05].

2.2.2 Adsorption equilibrium model

Knowledge about the adsorption equilibria is necessary for achieving an accurate empirical

prediction model. Unfortunately it is not a simple task to obtain reliable equilibrium data over

specific process conditions, for example over the pressure and temperature ranges of interest.

The most common adsorption equilibrium models have been described in Section 2.1.1. PSA

involves both adsorption and desorption processes, which for a given system typically operate

at the same temperature. The isotherm model should be close to linear to avoid the adsorption

or desorption to become too low [RFK93].

Small deviations from linearity are acceptable in the isotherm. Linear least squares can be

used to determine the deviation from linearity, but it is a non-trivial task to define what is an

acceptable level of deviation when using this method for isotherm fitting. For example, how

“small” should the sum of squared residuals be to ensure reversibility in the isotherm regime of

interest in order to avoid residual concentration accumulation in the adsorbed phase.

2.2.3 Material balances

The flow pattern in a PSA bed is nothing else than the flow pattern in any fixed-adsorbent bed,

which makes the axial dispersive plug flow pattern a suitable model. By assuming this flow

pattern model, the material balances for the individual gas components can be described by

∂

∂z
(uci) + εb

dci
dt

+ (1− εb)ρs
dqi
dt

= DL
∂2ci
∂z2

, ∀z ∈ (0, L], (2.17)

for i = 1, . . . , Nc, where εb is the bed volume voidage; DL is the axial dispersion coefficient;

c is the cross sectional average concentration of the component in the fluid phase; u is the

fluid velocity; qi is the cross sectional average solid loading; Nc is the number of adsorbable

components in the feed; L is the length of the adsorption bed, and z represents the spatial coor-
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dinate. The concentration and loading are summarised as cross sectional averages as no radial

dependence is assumed. The first and second term on the left hand side in (2.17) represent the

properties of the gaseous mixture, and the third remaining term accounts for the macropore ma-

terial balance. The right-hand side, namely the axial dispersion term, represents axial mixing. If

the axial dispersion term is omitted, we get the plug flow model. The plug flow approximation

is mainly justified when the axial dispersion term is sufficiently small compared to the mass

transfer resistance term. Also, when the Reynold number is large (> 100) the plug flow model

could be a reasonable approximation [WL03].

A PSA system may be classified as a trace or a bulk separation system depending on the

application. For a trace system the adsorbable components account for only a small fraction of

the incoming feed with excess of inert carrier gases. For a bulk separation system the adsorbable

components instead account for a large fraction of the feed. To consider the two types as

different can be helpful because the dynamic behaviour within the system is expected to be very

different. For example, one may assume constant velocity along the bed for trace systems when

the pressure gradients are small, but not for bulk separation for which the velocity variation

plays a more central role [RFK93]. For CO2 separation from flue gas a bulk separation system

should be used, whereas for typical hydrogen purification a trace system should be used.

2.2.4 Energy balances

The gas phase heat balance can be written as

Cgu
∂T

∂z
+ CgT

∂u

∂z
+

(
Cg +

1− εb
εb

Cs

)
dT

dt

+

Nc∑
i

∆Hi
1− εb
εb

dqi
dt

+
2h

εbrb
(T − Tw) = KL

∂2T

∂z2
, ∀z ∈ (0, L], (2.18)

where rb is the bed radius; h is the heat transfer coefficient; Cg is the heat capacity of the gas;

Cs is the heat capacity of the solid; Tw is the temperature at the wall, and KL is the thermal

diffusivity. A gas phase heat balance equation describes the heat transfer. Here it is assumed that

only the axial dispersion term contributes to the heat conduction in the system. The temperature

at the bed wall is assumed to be equal to the temperature of the feed, but this assumption can

be relaxed by introducing an energy balance for the bed wall. If the change in total energy

is almost zero (∆H ≈ 0) the isothermal conditions are met. In a multicomponent system,

the gas density and heat capacity are taken as their averages with respect to the composition
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at each position in the bed. Studies have shown that isothermal PSA models often suffice as

an approximation for kinetic-controlled separation since mass transfer rates are significantly

slower than in equilibrium-controlled systems (see,e.g., [RFK93]). The temperature effects can

be ignored if the trace component is weakly adsorbed [TW06].

2.2.5 Momentum balance

The steady-state momentum balance of gas flow relates the pressure drop to the gas velocity

along the adsorbent bed. There are several ways of describing the steady-state momentum

balance and the pressure transients, but perhaps the most popular are Darcy’s law (see, e.g.,

[NP98, ABW99])
∂p

∂z
= −180µu

(2rp)2

(1− ε2b)
ε3b

,∀z ∈ (0, L], (2.19)

and Ergun’s equation (see, e.g., [ABZ09, JBF03])

∂p

∂z
= −150

µu

(2rp)2

(1− εb)2

ε3b
+ 1.75

ρM

2rp

(1− εb)
ε3b

u|u|, ∀z ∈ (0, L]. (2.20)

Here p is the pressure; µ is the gas viscosity, and M is the molecular weight. Other choices

include the Blake-Kozeny equation [NGGK08], d’Arcy equation [CMM05], and adopting a

constant pressure drop along the bed. The pressure drop effect becomes more important for

short cycle times [SW88].

2.3 Computer simulation of PSA processes

The mathematical equations describing the PSA process are represented by a set of coupled

parabolic/hyperbolic differential algebraic equations (PDAEs) over the spatial and temporal

domain, along with the necessary initial and boundary conditions for the problem at hand. To

obtain an analytical solution to such a large-scale nonlinear system of equations is often out of

the question, but the system can instead in most cases be solved numerically using computer

simulations. For an actual PSA process the time to reach cyclic steady state (CSS) is typically

short when compared to its full life time, so a performance assessment of the system makes

most sense at CSS.
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2.3.1 The CSS solution to the PSA model

To determine the CSS solution to the PSA model, we can formulate the following simulation

problem:

F 1 (q1, q
′
1,x, t) = 0, q1(t0) = q0, t ∈ [t0, t1)

F k (qk, q
′
k,x, t) = 0, qk(tk−1) = qk−1(tk−1), t ∈ [tk−1, tk), k = 2, 3, . . . , N -1

FN (qN , q
′
N ,x, t) = 0, qN (tN−1) = qN−1(tN−1), t ∈ [tN−1, tN ]

W (qN (t),x) = 0, t ∈ [tN−1, tN ]

ε(qN ) = qN (tN )− qN (tN−1) = 0
(2.21)

Here F are the PSA bed model equations; q are the state variables, and subscript k > 0

represents the cycle number; q0 are the initial conditions for the state variables; W are the

design constraints, and t0 to tN is the cycle duration. The set of equations for ε(qN ) are the

CSS constraints. As the problem is stated, the CSS equations need to be strictly satisfied, or at

least up to machine precision in a computer sense. In practice some small tolerance ε > 0 is

used, that is, ‖ε(qN )‖2 < ε, where ‖·‖2 is the Euclidean norm. The overall simulation problem

is challenging, and demands a lot of effort from a computational perspective:

Non-linear Parabolic/Hyperbolic PDEs. When the axial dispersion term of the material

balance is non-zero, the mathematical model has a parabolic nature. The solution to parabolic

PDEs is smooth, although singularities could be present. Whereas when the axial dispersion

is omitted, the model instead adopts a hyperbolic shape. In this case, any discontinuities

of the initial and boundary conditions will propagate into the solution of the system. It is

problematic that even if the input data to nonlinear hyperbolic PDEs is free from disconti-

nuities, the PDE solution may not be. Hyperbolic PDEs tend to generate solutions suffering

sharp fronts in the gas concentration profile, and non-physical oscillations due to shock waves

[LeV02].

Convergence to Cyclic Steady State (CSS). The standard approach to find CSS is to use the

final conditions of one cycle as the initial conditions for the next, that is,

qk(tk−1) = qk−1(tk−1), k = 2, 3, . . . , N, (2.22)

where N is the number of cycles, and subscript k represents the cycle number. This substitu-

tion is repeated from the initial cycle until the system has converged to CSS. This approach is
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called Successive Substitution (SS), also known as Picard iteration. SS is easy to implement,

robust, and captures the process conditions during the transition to CSS. SS is performed

over the same number of cycles as expected by the real-life system, which typically is a large

number. Simulations based on non-isothermal models are expected to run more cycles than

their isothermal counterparts. The real-life system may need hundreds or thousands of cycles

to reach CSS [TFMW03]. For reducing the simulation run time there exist techniques for

CSS acceleration [BJF05]. A selection of these techniques are summarised later.

2.3.2 The computational model

The computational PSA model is the computer code implementation of the discrete-

mathematics version of the mathematical model. A computational model representation is

necessary because computers can only interpret mathematics in discrete form. Here is an

example of a complete discretisation using finite difference for the inviscid Burgers’ equation:

∂u(x, t)

∂t
+u(x, t)

∂u(x, t)

∂x
= 0→ u(xi, tj)− u(xi, tj)

tj − tj−1
+u(xi, tj)

(
u(xi, tj)− u(xi, tj)

xi − xi−1

)
= 0,

(2.23)

where u(x, t) is partitioned over the spatial domain [x0, x1, . . . , xi, . . . , xM ] with M intervals,

and the temporal domain [t0, t1, . . . , tj , . . . , tN ] with N intervals.

2.3.3 Simulation strategies

There are two strategies for constructing computational models from a set of non-linear PDAEs:

Complete Discretisation. The Complete Discretisation (CD) approach entails discretisation

of the PDAEs on a fixed grid over both the spatial and temporal domain. Then, the math-

ematical problem is completely discretised into a large-scale system of non-linear algebraic

equations, for which Newton’s method can be employed. This brute force-like discretisation

is hard to combine with adaptive time stepping, and for this reason the non-linear system

could in many cases become too large, making the approach computationally intractable.

Method of Lines. Method of Lines (MoL) is a two-step approach (see [CS98]): first it pro-

duces a semi-discrete model, and then perform the simulation by solving the computational

model of the PSA model on a fixed grid, or on a grid adaptively refined/coarsened, in the

temporal domain with integration over time. A spatial discretisation scheme is used, such

as the finite difference method, resulting in the semi-discrete problem which forms a large

system of differential algebraic equations (DAEs). Then for the simulation to run, a time

integration routine is applied.
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Since MoL treats the spatial and temporal domain independently there are many ODE/ADE

solvers available for time-adaptive integration, such as Runge Kutta methods. However, when

applying the spatial discretisation to create a system of ODEs/DAEs, the resulting system can

become numerically unstable unless extremely small time steps are applied [Dav13]. Such

systems are known as stiff systems, and to circumvent this issue complete discretisation can be

used, or you need to resort to solvers that are developed for handling stiff DAEs.

The discretisation schemes for the spatial derivatives of the continuous problem have to be

judiciously chosen to avoid numerical issues, which may cause simulation failure or result in

an inaccurate representation of the underlying mathematical model. Hyperbolic PDEs are par-

ticularly difficult to discretise. Spatial discretisation schemes should mitigate the non-physical

traits that may arise, such as oscillatory behaviour near steep adsorption fronts. For fast PSA

cycles we expect shock waves during the pressurisation [SW88]. The most popular methods

for spatial discretisation of hyperbolic PDEs are finite volume methods [LeV02], which respect

the conservation laws. Other chocies for PDEs are the finite difference methods, and the finite

element methods [EEHJ96].

The simulation time can be reduced by tuning the internal parameters for the spatial

scheme, such as tolerance and grid size. To avoid selecting a too large error tolerance, or

grid size, some tampering is warranted to fit the computer model to our expectation based on

our knowledge of the system and model structure, and in some cases empirical data if avail-

able. Adaptive strategies are often used to refine the spatial grid in regions of the spatial domain

where we expect larger derivatives, and coarser in regions that show little spatial variability.

Here follows a list of some of the schemes tested for PSA simulation:

• Finite difference [KSB05, Fia10]

• Finite volume method [HBEF12] (Modified van Leer limiter [JBF03, JFB04, JBF05,

ABZ09], QUICK [WH00], Adaptive QUICK [THW+01], SMART [CSMM05], WENO

scheme [HMN+13])

• Orthogonal collocation on finite elements (Radau scheme [TE99, NGGK08])

Low-order finite difference methods, and even finite element methods, often introduce un-

realistic numerical oscillations near the steep adsorption fronts. For this reason high resolution

methods may be required. Spatial discretisation schemes for PSA models have been explored

thoroughly and we draw the conclusion that the finite volume is the prevailing method.
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In some cases it is possible to simplify the mathematical model, which can be convenient

computationally. For example, when the material balance of the PSA model can be written as

a series of continuous stirred tank reactors (CSTRs) [Fia10], the discretisation along the spatial

direction is not required. Also, then the material balance of the fluid phase is no longer dom-

inated by a convective term as in the plug flow reactor (PFR) model [CMM05]. Alternatively,

there are DAEs that can be used to describe the mass and energy balances [SIW91].

For PSA simulation, when following the Method of Lines (MOL) strategy, we are inter-

ested in solving a system of DAEs of the following form:

0 = F
(

u(t),
du(t)

dt
, t

)
, t0 ≤ t ≤ tN , (2.24)

with initial conditions for u(0) and du(0)
dt when needed to satisfy the degrees of freedom of the

system. DAEs are a generalisation of ordinary differential equations (ODEs)

du(t)

dt
= F (u(t), t) , t0 ≤ t ≤ tN , (2.25)

for which there is a much broader range of numerical solvers. DAEs solvers are used for large-

scale nonlinear systems, often generated by discretisation of the time derivatives. Some popular

temporal discretisation schemes are Euler methods, Runge-Kutta methods, and Backward Dif-

ferentiation Formulas (BDFs) [Fau99]. BDF methods are high-order methods with the stiff

decay property, making it suitable when solving challenging stiff DAE systems. The k-step

BDF method with constant step size applied to (2.24) is given by

0 = F

u(ti),
1

β0(ti − ti−1)

k∑
j=0

αiu(ti−j), ti

 , (2.26)

where β0 and αj are some specific coefficients for the BDF method. DAE solvers can also

feature some adaptive time-stepping procedure. An automatic time step control can be added,

that is,

ti+1 = ti +

(
ei−1

ei

)kp (TOL

ei

)kI ( e2
i−1

eiei−2

)kD
(ti − ti−1) , (2.27)

ei =
‖u(ti+1)− u(ti)‖2
‖u(ti+1)‖2

(2.28)

where en is the error indicator for time step i. Here TOL, kp, kI , and kD are tunable parameters.
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Some DAE solvers that have been applied to PSA models are, for example, DASSL (BDF;

[BCP89, BFB+12]), ADIFOR 2.0 (Automatic Differentiation), DASPK 3.0 (BDF with sensitiv-

ity analysis capability; [JFB04, JBF05]), DASPK 3.1 (BDF), DASOLV (BDF; [TE99]), IPOPT

3.4 (Orthogonal Radau collocation on finite elements; [ABZ10b]).

2.3.4 Numerical techniques for fast determination of CSS

The objective of the simulation problem is to determine some quantities of interest at CSS

under given constraints. However, the use of the Successive Substitution (SS) method to CSS

is typically very costly. One approach to speed up the SS method is to use Successive Node

Refinement [THW+01], which is linked to the spatial discretisation procedure. In [THW+01],

it has been reported that the overall CPU time for simulation can be reduced by half, or even

more, when applying this technique for a 4-step VSA for oxygen enrichment. Similar results

has been reported for a dual piston PSA system for CO2 separation in [FFB13]. The importance

of the resolution level of the spatial discretisation was also underlined in [JFB04], where the

number of spatial discretisation nodes was reduced from 81 to 18.

Successive Node Refinement. Using MOL with SS, the steps of this procedure are:

Step 1. Select a coarse spatial discretisation, e.g., 8 nodes, for the computational model.

Step 2. Integrate the resulting DAEs over time with SS until CSS is achieved. The

quantities of interest are then calculated, for example Purity and Recovery.

Step 3. Select a finer spatial discretisation level than what was used in Step 2.

Step 4. Finish if the difference between two successive runs is small enough in some

error norm. Otherwise repeat from Step 2, but with the initial conditions for this finer

discretisation set to values determined from the interpolation of the CSS solution for

the previous node scheme.

The difference between two successive runs becomes smaller as the number of nodes increases.

Eventually a good balance can be achieved between spatial resolution and computational effi-

ciency.

Often the CSS-based simulation problem, (2.21), does not need to be solved fully, as it

would be enough to identify the CSS cycle, qN (t), t ∈ [tN−1, tN ]. With the SS method all

cycles from start-up to the onset of CSS are simulated. To circumvent the need to simulate all

cycles we can employ techniques for direct determination of CSS. The keyword “direct” refers

to the determination of CSS being the goal, not to perform the full simulation. These methods

assume that the CSS cycle is unique, and in turn insensitive to the initial conditions in place at
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the startup of the process. Direct determination of CSS can lead to a substantial reduction in

the time spent to identify CSS, although at the expense of missing the full transient behaviour

of the process.

Direct determination with quasi-Newton methods: Smith and Westerberg [SW92] tackled

the nonlinear system of CSS equations directly:

ε(q0(z),x) = q0(z)−Ψ [q0(z),x] = 0, (2.29)

where z represents the spatial coordinate along the bed (of length L). Ψ [q0,x] are the final

conditions obtained from a simulation run of a single cycle with initial conditions q0, and

design configuration x. The CSS equations can be solved simultaneously with Newton’s

method. Newton’s method requires its Jacobian matrix to have elements with analytical

expressions, which can be difficult to obtain due to the nonlinearity of typical PSA models.

Quasi-Newton methods therefore tend to be more practical, as they try to find the root to

(2.29) by using successive estimates of the Jacobian. One example of such a method is

Broyden’s method [Bro65], which uses approximations of the Jacobian matrix and its inverse.

Quasi-Newton methods for optimisation problems typically require the Hessian, but here we

are interested to solve the root optimisation problem which only needs the Jacobian.

Smith and Westerberg [SW92] applied Broyden’s method, with the first three cycles per-

formed with SS for the estimation of the Jacobian matrix. The inverse of the Jacobian matrix

is then updated periodically at successive iterations using the Broyden update formula. With-

out updating the Jacobian inverse the solution of (2.29) cannot be guaranteed. Kvamsdal and

Hertzberg [Kva97] instead applied Broyden’s method with Muller’s update formula, which

is only appropriate when the state variables are not conjugated too much. Broyden’s method

achieves superlinear convergence rates near the solution [Gri86]. To update the Jacobian ma-

trix is costly due the size of the Jacobian and the non-sparsity of the mapping Ψ [·]. Also,

convergence is not guaranteed, not even for cases for which Newton’s method is known to

converge [SW92]. Given that the the fixed adsorbent beds are packed in a continuous way

a modification can be made to Broyden’s method to achieve a speed up of an order of mag-

nitude in the calculation time of the Jacobian matrix [DL01]. This approach approximates

some of the Jacobian matrix evaluations by interpolation with piecewise polynomials. The

first Newton-step in Broyden’s method can also be avoided by replacing it with a SS step.
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Direct determination with Newton methods: Newton methods are difficult to overlook

with their guaranteed quadratic convergence near the solution. So instead of employing

quasi-Newton methods, Croft and LeVan [CL94] suggested the use of sensitivity analysis to

preserve the quadratic convergence of Newton’s method. Without loss of generality, let us

assume that (2.29) is a system of DAEs. A remark, if the system consists of PDAEs, very

often it can be semi-discretised with a spatial discretisation scheme into a system of DAEs

[HNW91]. With sensitivity analysis, the analytical sensitivities for (2.29) can be calculated

by

∂ε(q0(z), q′0(z),x)

∂x

dx

dq0(z)
= −

(
∂ε(q0(z), q′0(z),x)

∂q0(z)
+
∂ε(q0(z), q′0(z),x)

∂q′0(z)

)
(2.30)

where ε(q0(z), q′0(z),x) = q0(z) − Ψ [q0(z), q′0(z),x] for all z ∈ [0, L]. The sensitivities

are first calculated and then inserted into the Jacobian matrix of the DAE system consisting

of the CSS conditions (2.29), the sensitivity matrix (2.30), and the design/process constraints

W . The sensitivites can be computed with for instance the finite difference method [DS96]

or direct sensitivity methods. The finite difference method is of low order accuracy, and

is known to suffer from scaling issues. Nevertheless, for well-scaled problems it has been

shown to be reasonable for sensitivity calculation in the PSA setting [JBF03]. Direct sensi-

tivity methods have been shown to be quite accurate for PSA, they rely on integration of the

analytical sensitivities, and the DAEs, simultaneously over a cycle t ∈ [0, tc]. At each itera-

tion of Newton’s method the new state variable conditions with sensitivities are calculated for

the next step. Unfortunately, the direct sensitivity methods suffer from high computational

complexity associated with the sensitivity matrix (2.30), which exhibits high non-sparsity.

The computation cost also quickly increases with the number of state variables, for forward

sensitivity methods, and with the number of design variables, for adjoint sensitivity methods

[PLCS06]. The direct determination of CSS with Newton’s method has been demonstrated

for PSA model in the context of air separation [JBF03]. The calculation of the sensitivi-

ties can be performed in parallell [JBF05]. Another method employed for the computation

of the partial derivatives in the sensitivity matrix (2.30) is automatic differentiation method

[JBF03].

Direct determination with optimisation-based methods:

A more recent approach to solve the simulation problem is to minimise the sum of squares
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of the CSS residuals [LST08]:

1
2ε(q0,x)Tε(q0,x), (2.31)

with respect to the state variables at the beginning of the cycle, q0, while satisfying the con-

straintsW of the simulation problem (2.21). Here ε(q0,x) is defined by (2.29), and ε(·)T is

the transpose of ε(·). The solution (state variable vector) to this optimisation problem is equal

to the initial state conditions of the CSS cycle. Latifi et al. [LST08] applied a gradient-based

nonlinear programming method (SQP) to solve this optimisation problem for a case exam-

ple for CO2/N2 separation with a 2-bed/4-step Skarstrom PSA system. The adjoint method

may be used for calculating the sensitivities when the number of decision variables is large.

This optimisation-based approach has been reported to cause a high number of convergence

failures when the spatial discretisation is too fine (>40 finite volume elements) [ATL11].

2.3.5 The Unibed approach: multiple-bed model reduction

To simulate the dynamic process behaviour taking place in a single PSA bed is computation-

ally demanding, but even more so when the PSA unit consists of multiple beds with complex

interconnections between them. In a PSA system the sequence of process steps in all beds are

identical but with a phase difference. Kumar et al. [KFH+94] showed that for every multiple

bed system there exists a single bed (quasi-)system, henceforth called the Unibed system, with

the same performance at CSS. The Unibed system is a “quasi-system”, because it requires vir-

tual storage to mimic the interconnections between the beds in the original system. The Unibed

model is easy to derive. However, the Unibed system does not guarantee an accurate description

of the transition to CSS.

The Unibed system of a multiple bed system does not dismiss any bed interconnections

involved in the original system, it introduces so-called virtual data storage in the computer

code implementation in order to store the outgoing gas stream values from one bed to another.

So instead of the outgoing gas stream entering the other bed instantaneous, the outgoing gas

stream will be stored virtually until the receiving process step occurs for the first time, which

is in the next cycle. This will preserve the bed interconnections and their effects at CSS. When

the process has reached CSS the performance attributes of the Unibed system and the original

multiple bed system will be identical [KFH+94].
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Figure 2.1: Unibed system of a 2-bed/4-step PSA system with classical Skarstrom cycle. The
process steps included are feed pressurisation (FP), feed (F), countercurrent depressurisation
(CnD), and light reflux (LR).

2.4 Summary

We started with a review of the principles of adsorption, we described the physics behind pres-

sure swing adsorption processes that can be modelled mathematically using coupled PDEs with

algebraic equations. The mathematical models are highly detailed, with well-established theory

even at the microscopic scale, and thus it is possible to produce accurate models to describe the

process behaviour of PSA processes. We also presented a range of computer simulation tech-

niques to numerically solve the models. Because the performance of PSA processes are most

desired at CSS, much development has been made for direct determination of the CSS, rather

than simulating cycle-to-cycle until the CSS is reached. The latter is known as the method of

successive substitution, and is the most robust of the simulation approaches, but also the most

time-consuming. The solution of the hyperbolic PDAEs describing PSA processes are, due to

high nonlinearities generated by the non-isothermal effects, as well as the non-linear isotherms,

typically suffering from sharp fronts and non-physical oscillations, and thus provide a challenge

for the simulation method. To address this, the use of finite volume methods tends to mitigate

such undesired effects caused by the hyperbolic nature of the problem. Because the goal of

this thesis is to produce efficient optimisation, the robustness is vital, hence the recommenda-

tion is to adopt successive substitution with finite volumes for simulation driven by backward

differentiation formulas (BDFs).



Chapter 3

Computer-aided Design of PSA Systems

This chapter begins by giving an overview of the strategies proposed in the literature for the

optimisation of PSA cycles. We are also discussing the different choices of optimisation algo-

rithms that can be used with these strategies. Finally, we have identified some of the problems

facing engineers when asked to design a PSA system.

3.1 Optimisation strategies for the design of PSA cycles

The performance of a PSA system can vary much between different design choices, and to sim-

ulate the PSA process for each choice can be very computationally expensive. With predictive

computer simulation tools as those presented in the previous chapter, the process conditions

(such as flow rates, and valve constants) can be manipulated with the help of optimisation rou-

tines. This highlights the need for efficient optimisation methods that are able to identify the

most promising designs using as few simulation runs as possible.

What makes the PSA design problem very challenging is that it usually involves multiple,

often conflicting, design criteria. See the list below for the most common design objectives used

in literature:

• Maximise purity and/or recovery w/o design constraints

• Maximise purity and/or recovery with design constraints

• Minimise power consumption at desired purity and recovery

The design constraints can depend on, for example, the desired level of product purity and re-

covery, bed pressure limits, and production rate requirements. The technical objectives such as

the product purity and recovery are easy to calculate from knowing the bed conditions over the

CSS cycle, whereas economic objectives such as power consumption are considerably harder to

express without economic empirical data. Actual economic data are often not made available to
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the public by the industries. The purity and recovery are conflicting objectives, and can there-

fore be treated in a multi-criteria framework. Literature suggests that a significant enrichment

of the product tends to add a small penalty on the recovery (see [WS00, JFB04]). The corre-

lation between the power consumption and purity/recovery is less known, but it is reasonable

that there is a positive correlation between the purity of the product and power consumption

[FFB09b].

Utilizing the simulation problem formulation (2.21), the general PSA optimisation problem

can be expressed as follows:

arg min
x

φ(q, q0,x)

s.t.

F 1 (q1, q
′
1,x, t) = 0, q1(t0) = q0, t ∈ [t0, t1)

F k (qk, q
′
k,x, t) = 0, qk(tk−1) = qk−1(tk−1), t ∈ [tk−1, tk), k = 2, 3, . . . , N -1

FN (qN , q
′
N ,x, t) = 0, qN (tN−1) = qN−1(tN−1), t ∈ [tN−1, tN ]

W (q(t),x) ≤ 0, t ∈ [tN−1, tN ]

ε(qN ) = qN (tN )− qN (tN−1) = 0

LB ≤ (q0,x) ≤ UB.
(3.1)

Here φ = (φ1, φ2, . . . , φs)
T is the goal function vector with s design objectives such as power

consumption, purity, and recovery; F (·) are the PSA bed model equations; q is the complete

set of spatially discretised state variables throughout the simulation, and subscript k represents

the cycle number; q0 are the initial conditions for the state variables; W (·) are the inequality

design constraints, t0 to tN is the cycle duration, and LB,UB are the lower and upper bounds,

respectively, of the state and design variables. The set of equations for ε(qN ) are the CSS

constraints. The optimisation problem formulation is stated as a minimisation problem, but

clearly some design criteria should be maximised, such as the recovery. This can easily be

achieved by using −φ(·) instead of φ(·) for the objectives that should be maximised.

As shown the PSA process simulation for large-scale industrial applications of PSA can be

very computationally expensive. The optimisation of complex PSA cycles by searching through

a wide range of possible design configurations tends to be too demanding to solve in reason-

able time. Biegler et al. [BJF05] provide an overview of different strategies for approaching

the optimisation of PSA cycles: black-box optimisation, complete discretisation optimisation,
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simultaneous tailored optimisation, and simplified optimisation. We here briefly describe these

approaches.

3.1.1 Black-box optimisation

The black-box optimisation problem can be written as:

arg min
x

φ(q(x))

s.t. W (q(x)) ≤ 0

LB ≤ x ≤ UB

(3.2)

In this approach the solution of the PSA bed model, given by the vector of spatially discretised

state variables q(x), is computed from solving the simulation problem (2.21) embedded in the

objective function φ(·). W are the inequality constraints for the design. This means the ap-

proach is non-intrusive. Some advantages with this approach are its easiness in implementation,

and that it allows us to specify objective functions that can use the full range of q(x), and not

only the data for the CSS cycle qN (x). φ(·) can be calculated from the CSS solution of the

simulation problem. More precisely, we are mostly interested in the bed conditions and gas

concentration profiles for the ends of the bed during the CSS cycle.

Here, the optimiser calls φ(q(x)) for different design points x, where q(·) are the bed

conditions along the bed, to assist the optimiser to find a new search direction. This is however

a rather naı̈ve approach making it more computationally expensive than may be required for the

specific problem. The optimisation problem is stated in such a way that the computer simulation

is performed through q(x) for a given design configuration x. Most work on PSA optimisation

has used this traditional approach, see, e.g., [CSMM03, FFB09b, HKF+11].

3.1.2 Complete discretisation optimisation

In this approach complete discretisation (cf., Section 2.3.2) is applied on (3.1). The mathe-

matical problem (3.1) is discretised into a nonlinear system for which Newton methods are

applicable. Using Newton methods is highly desired due to their quadratic convergence rate.

For periodic adsorption processes, this approach first appeared in [NP98] for air separation ap-

plication of a RPSA system. In the presence of sharp, moving concentration fronts in the PDAE

solution, a large number of discretisation points is typically required in the temporal domain

[KSB03]. This is the major bottleneck for this approach, complete discretisation relies on a

fixed grid and therefore unable to adjust the temporal grid adaptively, which is a common way



3.1. Optimisation strategies for the design of PSA cycles 55

procedure for solving large-scale systems. The computational complexity is strongly related to

the resolution of the numerical scheme, which can make this approach prohibitively expensive

in a computational sense.

The complete discretisation approach has been applied to some basic PSA systems [KM02,

KSB03]: a RPSA for recovery of oxygen from air, and to a single-bed 4-step PSA system with

Skarstrom cycle for CO2 separation from a binary mixture CO2/N2. More recently, a two-bed

superstructure has been proposed and implemented for pre- and post-combustion carbon capture

[ABZ10a, ABZ10b], which utilised complete discretisation.

3.1.3 Simultaneous tailored optimisation

The simultaneous tailored optimisation problem can be formulated as follows.

arg min
q0,x

φ(q(q0,x))

s.t. W (q(t, q0,x)) ≤ 0

ε(q0,x) = q0 −Ψ [q0,x] = 0

LB ≤ (q0,x) ≤ UB

(3.3)

Here the CSS conditions are posed as constraints for the optimisation problem, unlike the

black-box optimisation where they were solved simultaneously with the DAEs for the PSA

model when simulating q(·). Another simultaneously tailored approach is the one proposed

in Ding et al. [DCL02] that is expressed the same as (3.3) but without inequality constraints

W (·). This approach is similar to the direct determination of CSS approach in simulation. The

CSS conditions are only required to hold at the optimum. In fact, the first solution we find that

satisfies the CSS condition is an optimal one [DCL02]. In other words, the CSS is not reached

until the optimal solution is reached. This approach is considered to be faster than black-box

optimisation but at the price of less accurate CSS conditions [KSB03]. The nonlinearity of

CSS conditions are also introducing some extra computational complexity. This approach was

first proposed for small-scale air separation unit [JBF03], and has later been adopted for CO2

separation from a N2/CO2 gas mixture [KSB03].

3.1.4 Simplified optimisation

The simplified optimisation approach uses a simplified model as a less computationally expen-

sive substitute for the original high-fidelity PSA model in the black-box optimisation frame-
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work:
arg min

x
φ(q̂(x))

s.t. W (q̂(x)) ≤ 0

LB ≤ x ≤ UB

(3.4)

Here φ(·) is based on spatially discretised design variables, q̂, provided by the simulation of

a simplified PSA model. q̂ is an approximation of q. This approach allows a different set of

optimisation methods which normally are confined to problems that are fast-to-evaluate. This

optimisation problem should be much faster to solve. However the resulting solution could be

deceptive, since the solution of arg min
x

φ(q̂(x)) and arg min
x

φ(q(x)) could be very different

if the accuracy of the simpler model is low. Even more concerning is the fact that even if the

simpler model matches the more rigorous one very well on average, the convergence cannot

be guaranteed unless the simpler model and the detailed model have matching gradients at all

points, which would mean that the simpler and the detailed model are exactly same. Biegler

et al. [BGW85] find a simplified model to be an appropriate substitute if also the high-fidelity

model recognises that the optimum satisfies the Karush-Kuhn-Tucker (KKT) conditions, or less

strictly if they have matching gradients at the optimum. The latter may occur when some stop

criterion is met before the optimiser has converged to a KKT point.

Smith and Westerberg [SIW91] simplified the PSA model by using time integrated mass

and energy balances that basically only capture the qualitative physical behavior, this reduced

the computational complexity enough to make simple optimal design affordable. Similarly, in

[FFB09b, FFB09a] a small number of continuous stirred tank reactors (CSTRs) was employed

for the mass balances, together with time integrated energy balances. Agarwal, Biegler and

Zitney [ABZ09] recently proposed a reduced order model (ROM), more specifically a proper

orthogonal decomposition (POD) scheme, to simplify the PSA bed process for optimisation of

a 2-bed/4-step PSA system for hydrogen purification from a CH4/H2 gas mixture. Hasan et al.

[HKF+11] proposed for CO2 post-combustion the use Kriging models as low-fidelity models,

built on m samples {(xi, yi)}mi=1 taken from the high-fidelity model. This was the first attempt

to use Kriging surrogate models for PSA optimisation. A few publications had previously used

Kriging for modular flowsheet optimisation [CG08, HM11].

In principle, the simplified optimisation strategy can be combined with any of the afromen-

tioned optimisation strategies. By convention simplified optimisation is a one-step approach,

but it can be used in an iterative procedure that occasionally compare the simpler model to the
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detailed one to validate and possibly further improve the simpler model around the validation

points.

3.2 Optimisation methods in literature for PSA problems

Different strategies for approaching the general optimisation problem (3.1) require different

optimisation procedures for solving them. Different optimisation strategies are developed for

different types of computational challenges. Despite this fact, most studies for PSA design

put little effort to explain or justify the choice of optimisation method. Before selecting an

optimisation method, we have compiled the following list of some of the challenges that the

method may face:

• Non-convexity in the objective space when mapping the objective function from the de-

sign space;

• The computational expense of the objective/constraint functions for a single evaluation;

• Objective functions with non-smoothness, non-differentiability, noisy output, or even dis-

continuity.

• No information available about the derivatives of the objective function;

• “Curse of Dimensionality”: when computational complexity increases fast with the num-

ber of design variables, typically with an exponential rate;

• Failure to evaluate the objective function at some design points;

Another issue that should be mentioned is that the computational time to perform an optimisa-

tion algorithm can be very high. Ideally, the ratio of the algorithm time to the total time spent

in the objective function evaluation should be small.

Below we have provided a brief presentation of the most popular methods used for PSA

optimisation. First we will discuss optimisation for real-valued objective functions φ(·), then

the case when multiple objective functions are optimised simultaneously.

3.2.1 Gradient-based optimisation

Gradient-based methods start off with an initial guess x in the design space, and then select se-

quentially, in some search direction, a new point until the sequence of selected points converges

to a local optima. Gradient-based optimisation algorithms are commonly based on steepest

descent and Newton’s method. Perhaps the most popular gradient-based optimiser is the Suc-

cessive Quadratic Programming (SQP) method (see, e.g., [NS96]).

Successive Quadratic Programming (SQP): SQP is arguably the most popular locally
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convergent optimisation method for nonlinearly-constrained problems (NLP), such as

(3.2). SQP is in short the application of Newton’s method to the Karush-Kuhn-Tucker

(KKT) conditions for nonlinear problems. Here follows a basic SQP example: consider

the slack-variable formulation of the black-box problem as given by

arg min
x,σ

φ(q(x))

s.t. W (q(x)) + σ = 0

σ ≥ 0

LB ≤ x ≤ UB

(3.5)

where σ ≥ 0 are the slack variables. Then let d(x) = x − x∗. For the current point

x∗ ∈ Rp, the goal is to solve the following quadratic subproblem to find the next point x

along the direction d(x),

arg min
x,σ

φ(q(x∗)) +∇xφ(q(x∗))Td(x) + 1
2d(x)T∇2

xxL(x∗, λ∗)d(x)

s.t. W (q(x∗)) +∇x (W (q(x∗)) + σ)T d(x) = 0

σ ≥ 0

LB ≤ d + x∗ ≤ UB

(3.6)

where L(x, λ) = φ(q(x)) + λTW (q(x)) is the Lagrangian function, and λ ∈ Rp the

Lagrange multipliers. The arguments of the multiplier vector λ are updated from one

iteration to the next, using some updating scheme [NS96]. For each QP step, we solve

the QP subproblem at the current x∗. Under some mild assumptions, this optimisation

algorithm displays a local quadratic rate of convergence like Newton’s method. Whenever

the “work” required to obtain the Jacobian matrix is too high, numerical approximations

for the derivatives are typically introduced. Quasi-Newton methods can be deployed,

downgrading the method to superlinear convergence. The use of approximations for the

derivatives cause loss of accuracy and may deteriorate the optimisation performance.

In the context of PSA design, the SQP method has been used for reducing the bed

length while satisfying a desired product purity [Kva97], and for lowering the power

consumption of the oxygen production system at a desired product purity [CMM05].

SQP has also been used with the complete discretisation approach for air separation with

RPSA [NP98].
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Reduced Hessian Successive Quadratic Programming (rSQP): rSQP [BNS95] is

among the current state-of-the-art for large-scale nonlinearly-constrained optimisation

[BGHvBW03]. rSQP has been applied to the “simultaneous tailored” optimisation, (3.3)

(see, e.g., [KSB03, JBF03, KSB05, JBF05]).

Because the variables of this large-scale nonlinear system can be divided into inde-

pendent and dependent variable subsets, the QP subproblem (3.6) can be projected into

the reduced space of independent variables, namely the null space of the linearised con-

straints. Essentially this eliminates the linearised constraints in (3.6). Also, the search

directions are dealt with separately. For “simultaneous tailored” optimisation, where we

have the CSS equations, this leads to a substationally reduced QP subproblem. However,

due to the CSS equations, ill-conditioning in the Jacobian of the linearised equations may

occur, and a dogleg step can be used to improve numerical stability [JBF03]. For the

slack-variable formulation of (3.3), slack variables σ and initial conditions q0 are the

dependent variables, which are perturbed to improve the solution of the inequality con-

straints, whereas the design variables x are the independent ones, which are manipulated

to minimise the objective function. rSQP also displays global convergence properties

when a penalty term is added to the objective function, a term proportional to the Frobe-

nius norm of the residuals of the constraints. The code for rSQP is available in gPROMS

under the name SRQPD [TB98, KSB05]. rSQP has been applied for a 5-bed/11-step

PSA cycle, both in the unibed and multibed setting, to obtain high purity H2, from a gas

mixture of H2 (73 %), N2 (0.5%), CO2 (16 %), CO (5 %), CH4 (5.5 %) [JBF03, JFB04].

Also for CO2 sequestration applications with PSA [KSB03, KSB05].

Similarly to direct determination of CSS with Newton’s method, the rSQP with the

“simultaneous tailored” approach, as implemented in DASPK 3.0, requires computation-

ally expensive sensitivity calculations. When the low-order finite difference is used to

calculate the sensitivities the derivatives may become noisy and causing severe deterio-

ration of the optimisation performance [BJF05]. Because a sensitivity calculation with

respect to each parameter is independent, parallisation is trivial [JBF05]. Note that the

computation of the DAEs is performed at each CPU, but this computational cost is small

compared to the evaluation of the sensitivities. Accurate sensitivites are reported with

DASPK 3.0.

The performance of rSQP when stable, surpass the performance of the black-box
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approach in terms of the number of objective function evaluations required. As seen in

[JBF05] with DASPK, the black-box approach needed to simulate about 1400 cycles to

reach CSS, whereas the tailored approach with rSQP required about 300 cycles.

Gradient-based optimisation relies on first and/or second derivatives. The derivatives can

be difficult, or even impossible, to express analytically, and thus often replaced by numerical

approximations. Although, if inaccurate derivatives are employed the optimisation result can

be wide of the mark and in turn very delusive. In fact, even if the PDAE solution of the math-

ematical model is continuous, the computational model can result in a noisy solution that is

non-differentiable, which can be destructive to the efficiency of optimisation.

In conclusion, gradient-based optimisers typically exhibit impressive convergence rates

with good starting guesses. On the other hand they are not always manageable: only locally

convergent without adaptivity mechanisms which would spoil the rate of convergence, and have

difficulty to converge in the presence of numerical noise or to tight error tolerances.

3.2.2 Derivative-free optimisation

Derivative free methods tend to require more objective function evaluations than gradient based

methods to achieve similar optimisation performance (see, e.g., [CSV09]), but do not require

any information about the derivatives of the objective function. This makes derivative-free

methods more manageable from a computational perspective.

In [Fia10] some derivative-free methods were compared for the design of a Skarstrom PSA

cycle for N2 production from air: the Nelder-Mead Simplex method, Multidirection Search,

Alternating Directions, Implicit Filtering, and Hooke-Jeeves method. The design variables con-

sidered were the cycle duration, valve constants, and the feed-gas flowrate. The objective was

to maximise product recovery given the CSS conditions and a constraint on the maximal bed

pressure level. The Nelder-Mead method with a multidirection search showed the most promis-

ing performance in terms of convergence. Unfortunately, it is known that Nelder-Mead methods

may converge to non-optimal points even for simple test problems [Kel99], and can thus not be

considered to be a reliable method.

The optimsation software BOBYQA (Bound Optimization BY Quadratic Approximation)

[Pow09] has been applied in an application for CO2 capture in IGCC power plants, with the

black-box optimisation framework [DVB12]. BOBYQA is an extension to constrained optimi-

sation of NEWUOA [Pow06] from the same author.
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3.2.3 Multi-objective optimisation

For most real-world applications the optimisation problem can be formulated with a single

objective function, but for some tasks a single objective cannot carry enough information to

provide a definitive answer to the given problem. The design of a PSA system is a prime ex-

ample where a single value rarely is enough to assess the overall performance. The two most

used design criteria are the product purity and recovery, which are known to be conflicting

[FFB09b]. See Figure 3.1. When solving engineering problems appearing in the real world, the

overall performance is often a trade-off between technical performance attributes and economic

aspects. As an example, identifying the most appropriate technology for carbon capture is one

application where the actual challenge is not to find a technology with viable separation perfor-

mance, but rather to identify an economically viable option with good enough CO2 separation

for carbon capture.

Optimisation with a single objective is conceptually straight-forward, but as soon as you

add one more objective, the situation turns complex. The basic multi-objective optimisation

problem can be written as:

arg min
x

φ(x)

s.t. F (x) = 0

W (x) ≤ 0

LB ≤ x ≤ UB

(3.7)

where φ(·) is a vector of q objective functions, that is, φ(x) = [φ1(x), φ2(x), . . . , φq(x)].

Thus, the goal is to determine x = (x1, x2, . . . , xp)
T , from the set of solutions satisfying the

hard constraints, which yield the optimal values of φ1(x), φ2(x), . . . , φq(x), simultaneously.

Rarely it exists a single solution x that is a global optimum to all objective functions. For

this reason pure MO methods seek to find a set of “non-dominated” solutions considered to be

of equivalent quality, not just to identify a single optimal solution. The objective space thus

becomes partially ordered, see Definition 2.

Definition 1. (Dominate) Let a, b ∈ Rq. Then vector a is said to “dominate” b, denoted by

a ≺ b, if and only if ai ≤ bi for all i and ai < bi for at least one i, where i = 1, 2, . . . , q.

Definition 2. (Non-dominated) Let a response be defined asφ? = [φ?1, φ
?
2, . . . , φ

?
q ] ∈ Rq. Then,

given a set of m responses, T ∈ Rm,q, the response φ? is said to be non-dominated in T , iff it
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does not exist a response φ = [φ1, φ2, . . . , φq] ∈ T such that φ ≺ φ∗.

Definition 1 states that one solution dominates another if the solution is not worst for any of

the objectives and better for at least one objective than the other. This actually allows more than

one solution to be the “best” solution. As opposed to the wide range of methods available for

single-objective optimisation, there are relatively few methods for multi-objective optimisation.

To take advantage of a wide range of existing methodologies, the optimiser can be instructed,

typically with a real-valued trade-off formula, how to cope with the situation of multiple and

sometimes conflicting objectives within the single objective framework.
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Figure 3.1: Left: 2D example of the design solutions in the objective space (Purity versus
Recovery), with red dots representing non-dominated solutions. Right: 3D example of the
solutions in the objective space, which also includes the Power consumption. The data used in
the plot is from a 2-bed/6-step PSA system under investigation in Chapter 6.

The three most common branches of multi-objective optimisation are: multi-objective util-

ity, goal programming, and the Pareto approach.

Multi-objective utility approach: The utility approach defines a new scalar objective

function φ∗(·) : Rq → R, which incoporates the values of all objectives of interest, to

represent a compromise between the objectives. This approach “scalarises” the multi

objective problem into a single objective one. The most common choice is perhaps the

Weighted Aggregation [MA10]:

φ∗(φ(x)) =

q∑
i=1

αiφi(x), (3.8)

where the coefficients αi ≥ 0 represent the weighting between the values of the objec-

tives, φi(x). Expert knowledge and elicitation can be used to choose the weights {αi}.
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A drawback with weighted aggregation is that some of the optima are unreachable if the

feasible region in the objective space is non-convex [Deb01], for example of a concave

shape. However, non-linear utility functions may not present such limitations [AJ05].

Common practice is to perform a few different configurations {αi}, either pre-generated

or adaptively chosen during the optimisation. A set of uniformly distributed weights can-

not guarantee a uniform distribution of points in the objective space [Das97]. Actually,

the points tend to lump in certain regions of the objective space.

Goal programming (GP) approach: Goal programming is an lexicographic approach

that turns the multi objective optimisation problem into a single objective one with ad-

ditional inequality constraints. It can be seen as generalisation of linear programming to

deal with multiple conflicting objective functions. It is assumed the designer provides

a preference system (objectives are ordered by importance) with specified target values

to be achieved. Perhaps the most popular is the ε-constraint method, first introduced

in [CH83]. The ε-constraint method is optimising one objective while specifying target

values (expressed as upper bounds) for the remaining ones, that is,

φi(x) ≤ εi,

for i = 2, . . . , q. The main advantage with this approach is that we only need to solve a

single objective problem, and the additional inequality constraints can naturally be dealt

with using mathematical programming methods. Also, this method is able to identify

solutions on the non-convex boundary of the feasible region that are not possible to reach

using the traditional weighted aggregation approach - when the target values are speci-

fied suitably. Several solutions can be obtained by solving a sequence of ε-constrained

single objective optimisation problems. A drawback is that some design objectives can-

not be expressed as hard constraints in a satisfying way. The prior selection of ε is

also a challenge to ensure feasible solutions. If the ε values are chosen too pessimisti-

cally, the problem formulation becomes infeasible. The GP approach is computationally

more complex than the utility approach. In fact, the computational complexity of the ε-

constraint method grows exponentially with respect to the number of objectives [LTZ06].

For an overview on goal programming methods we refer to [MDC98].

Pareto approach: The trade-off between design objectives cannot always be formalized
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explicitly in an adaquate way, which motivates a more general take on optimality. Instead

of reducing the problem to a single objective formulation, the Pareto approach can be

employed [BDMS08]. The term Pareto optimality, named after the Italian economist

Vilfredo Pareto, is taken from the literature of Economic Theory: when resources have

been allocated to a population, no individual can be made better off without making at

least one of the other individuals worse off.

This approach, when applied in engineering design, does not search for a single

best design but rather for a set of non-dominated solutions. The set of non-dominated

solutions {φ(xi)} is called the “Pareto front”, and the corresponding design points {xi}

the “Pareto set.” This non-parametric approach avoids the need to a priori specify a

trade-off between competing objectives by identifying the Pareto front. By convention a

Pareto front is presented as a curve (or hyper-surface) in the objective space. The goal of

Pareto optimisation is to improve the informativeness of these non-dominated solutions.

The drawbacks are mainly computational, the approach is rather exhaustive and tends to

require a substantial number of evaluations of φ(·) to achieve a “good” Pareto front. In

practice only an approximation of the true Pareto front is affordable. A Pareto front could

be nonlinear, or even discontinuous. Hence, with a sparse Pareto front approximation it

is difficult to draw any conclusions about the actual shape of the true Pareto front.

Here follows an example where the Pareto approach can be considered exces-

sive: lets say we have been asked to minimise φ = (φ1(x), φ2(x))T with φ1(x) =√
(x1 − 1)2 + (x2 − 1)2 and φ2(x) =

√
(x1 + 1)2 + (x2 + 1)2, for x = (x1, x2)T ∈

[−2, 2]2. However, the designer (or decision maker) may have some design preferences,

for instance, the point on the true Pareto front nearest the origin of coordinates in the

objective space might be the one of most interest. This corresponds to the Utility ap-

proach with φ∗(φ(x)) =
√
φ1(x)2 + φ2(x)2. The Pareto approach, when handed a

small computational budget, may not afford to compute an approximation of the Pareto

front with enough spread to cover the region of the Pareto front nearest the point of origin

of coordinates.

Even though this approach is computationally expensive it has an unmatched ability

to capture the non-dominated solution landscape. Also, it is an approach relatively easy

to apply when there are no guidelines available on how the scaling/trade-off between the

objectives should be made for a given application.
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In summary, the Utility and GP approaches are often applied as a parametric down-scaling

to avoid excessive use of computational resources. Also, because they are reducing the problem

to a single-objective formulation, advantage can be taken of a wide range existing methods.

However, for efficient use you should have some knowledge about the shape of the Pareto front.

The Pareto approach, on the other hand, is an a posteriori approach that tends to be more infor-

mative and robust, but comes at the price of a higher computational cost. The Pareto approach

gains momentum if the underlying computational model is cheap-to-evaluate. In the following

chapters we will show that even “expensive” computational models for PSA simulation can be

considered within the Pareto setting, if assisted by so-called surrogate models. Surrogate model

techniques are introduced in Chapter 4.

The Pareto front can be very useful as decision support, even in the case when the decision

maker already has preferences between conflicting objectives. The final decision can be post-

poned until a rich set of non-dominated solutions is generated. The decision maker is then in a

position to use unformalisable knowledge such as intuition and expert knowledge to be able to

select a smaller set of these non-dominated solutions, perhaps of size one, for further consider-

ation. This aspect of the decision process is important to recognize in order to understand the

usefulness of this approach.

The Pareto approach has become increasingly popular over the last decade, much thanks to

the rapid increase in computer power, availibility of computer code packages, and easier access

to high performance computer resources.

Some optimisation methods are specialised in generating Pareto solutions for prob-

lems with multiple objectives, adopting Pareto-based ranking schemes. The most popular

class of such methods are Evolutionary Multi-Objective (EMO) algorithms: VEGA (Vec-

tor Evaluated Genetic Algorithm; [Sch85]); NPGA (The Niched Pareto Genetic Algorithm;

[HNG94]); NSGA-II (The Nondominated Sorting Genetic Algorithm II; [DAPM00]); SPEA2

(The Strength Pareto Evolutionary Algorithm 2; [ZT99]); and MOGA (Multiobjective Ge-

netic Algorithm; [FF93]). Other significant MO approaches are SMS-EMOA (S-metric se-

lection evolutionary multiobjective optimisation algorithms; [BNE07]), MOSA (multi objec-

tive simulated annealing; [SSPC00]), AMOSA (archived multi objective simulated anneal-

ing; [BSMD08]), MOPSO (Multiple objective particle swarm optimisation; [CCL02, MS14]),

NSDE (Nondominated Sorting Differential Evolution).

The main challenge for multi-objective optimisation is to drive the search, in an efficient
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way, so that the distance between the generated Pareto solutions and the true Pareto front is

minimised, while achieving diversity in the Pareto solutions generated. The characteristics of a

good Pareto front approximation are that it should be in close proximity to the true Pareto front

in some distance metric, and ideally achieve the maximal spread, as well as good distribution

of points in terms of spacing, coverage and richness. A variety of performance indicators have

been suggested for the comparison of Pareto solutions [KC02]. The spacing of the Pareto

solutions can be taken as the average interpoint distance between consecutive points of the

ordered Pareto front; the coverage can be quantified by partitioning the objective space and

then observe the ratio of partitions represented by the Pareto solutions, and the richness by the

number of points belonging to the Pareto front. The spacing, coverage and richness indicators

can be misleading as they are only weakly informative about the quality of a Pareto front. The

“distance” between the Pareto front approximation and the true Pareto front is often seen as

a good quality measure but needs to be defined appropriately. The most common example

of a distance metric is the average distance from the points of the Pareto front to the nearest

point of the true Pareto front [BDMS08], where the distance metric is the normalised Euclidean

distance.

In the same spirit, to assert that a Pareto front approximation, lets call it P1, is better

than another approximation P2, in an absolute sense, there must exist for each p2 ∈ P2, a

point p1 ∈ P2 that dominates p2. Only in exceptional circumstances will a set P1 dominate

a set P2 in such a way. Another approach is to compare two Pareto set approximations in a

probabilistic manner, that is, “What is the probability that P1 is better than P2 over a family

of utility functions?” For more on the comparison of Pareto front approximations we refer the

interested reader to [HJ98].

For engineering design applications, such as the PSA case with product purity-recovery, the

true Pareto front is not known, otherwise what would be the point to perform optimisation in the

first place? Hence, in practice, the optimal Pareto front cannot be used as a reference solution.

A more practical performance indicator is instead the S-metric [ZT99], which measures the

“dominated hypervolume of non-dominated solutions”, henceforth denoted by S(P ), which is

the volume spanned by the Pareto front, P , and some specified reference point (see Figure 3.2).

Definition 3. The S-metric for Pareto front P , consisting of vectors φ ∈ Rq, can formally be
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written as:

S(P ) = λ

⋃
φ∈P
{φ̃ ∈ Rq|φ ≺ φ̃ ≺ φref}

 , (3.9)

where λ(·) denotes the Lebesgue measure. Recall, the operatorφ ≺φ′ means thatφ dominates

φ′.

Here φref is the reference point and is chosen such that it is dominated by all the points

belonging to the Pareto front. The S-metric can be used for the comparison of two Pareto ap-

proximations, S(P1) against S(P2). Also, the metric can be used to monitor the increase in S(P)

as a new point is added to the Pareto front P , that is, ∆S(x∗) = S(P ∪ φ(x∗))− S(P ). There

exist multi-objective methods where the goal is to maximise S(P), the dominated hypervolume.

For example SMS-EMOA [BNE07] and MOEGO [EDK11]. Note that the hypervolume of

the Pareto front approximation should converge to the hypervolume of the true Pareto front, if

calculated with respect to the same reference point.

PSA cycles are assessed on conflicting performance criteria, but only a handful of stud-

ies have applied multi-objective optimisation for PSA applications: aJG (Jumping Gene adap-

tations) of the multi objective simulated annealing (MOSA-aJG) [SG07], a modified version

of MOGA [FFB09b, Fia10], NSGA-II [Fia10, HMN+13], and more recently, NSGA-II and

NSDE for air separation with a simplified PSA model in the form of a support vector regression
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model [LS13]. Observe that all except MOSA-aJG are evolutionary multi-objective optimisa-

tion (EMO) methods. This is not surprising, EMOs are the most popular heuristics for solving

complex optimisation problems with multiple objectives [AJ05]. In our work we will use ge-

netic algorithms (GAs), which is a special group of EAs.

Due to the popularity of GAs, they have been applied in a wide range of applications,

including process engineering. The most popular multi-objective GAs are NSGA-II, SPEA2,

and MOGA. Some examples of their application are Sarkar and Modak [SMM03], Atiquzzaman

et al. [ALY06], Ponsich et al. [PAPDP08], and Bandyopadhyay et al. [BB13].

3.3 Evolutionary algorithms

Evolutionary algorithms (EAs) are heuristics that apply the concept of natural selection (sur-

vival of the fittest) for solving complex optimisation problems [AJ05]. Evolutionary algorithms

for single-objective optimisation have existed for several decades [SGK05]. But with Schaffer’s

Vector Evaluated Genetic Algorithm (VEGA) [Sch85] the researchers first noticed that evolu-

tionary algorithms can solve multi-objective optimisation in a natural way - consistent with

the Pareto approach. VEGA is the first EA implementation for problems with multiple objec-

tives. EAs are suitable for multi-objective optimisation because they deal with populations of

solutions.

EAs have over the last two decades become increasingly popular for multi-objective op-

timisation tasks [CLVV07]. EAs are population based, and the principal idea is to evolve a

population of candidate solutions, pressured by natural selection over many generations, into a

future population with improved fitness. This procedure is exercised iteratively, each iteration

is initialized with the population generated in the previous iteration, with the exception of the

first iteration for which an initial population is generated externally. Iterations are often referred

to as “generations.”

Each generation begins with a reproduction process, applied on the population, that per-

turbs and combines candidate solutions to generate new solutions (individuals). A natural se-

lection is then taking place that determines which individuals of the current population that

will participate in the new population. This new population is the one used to initialize the

next generation. This procedure is performed iteratively, for a given number of generations, or

until some stop criteria is met, see Algorithm 1. EAs are considered easy to implement, and

embarrassingly parallel. Moreover, they are derivative free.
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Algorithm 1 Basic procedure of evolutionary computation
1: Initialization: Generate the initial population over the design space.

2: Evaluation: Evaluate each individual of the initial population and perform fitness assign-

ment.

3: repeat

4: Rank selection: Rank the individuals by “fitness” level, and assign a higher probability

of being selected to individuals of higher rank. The individuals then selected, in a random

manner, are called parents.

5: Recombination: Randomly combine parts of selected individuals, two or more, to gen-

erate new solutions, named offsprings.

6: Mutation: Randomly alter the values of one or more parts of the offsprings.

7: Replacement: Replace the parental population with the generated offsprings using the

biological evolution (selection, recombination, and mutation.

8: until Stop criteria are met

Suppose that the individuals of a population are seen as chromosomes, then we are in the

regime of genetic algorithms (GAs), a sub category of EAs.

A chromosome is long, stringy aggregate of genes that carries DNA and associated pro-

teins. The DNA molecules themselves contain the genetic information. Each gene, composed

of several alleles, is uniquely located on the chromosome, these positions are called loci. In the

simple GAs the alleles are encoded with discrete values.

Genetic recombination is the process by which chromosomes exchange genetic infor-

mation. The alleles at different loci become shuffled between chromosomes (chromosomal

crossover), leading to new combinations of alleles, also known as recombinant chromosomes

or offsprings. Moreover, sometimes a genetic mutation occurs that changes the coding for one

or more genes.

NSGA-II [DAPM00], SPEA2 [ZT99], and MOGA [FF93], are among the most applied

multi-objective GAs. All of these methods have performed well for a variety of case examples,

and we have selected NSGA-II to be the preferred method, mostly because of some nice features

unique to NSGA-II, as well as our own experience has been positive when using NSGA-II. We

have implemented our own in-house code for real-coded GA, as well as NSGA-II. Here follows

a little introduction to NSGA-II.
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3.3.1 The Nondominated Sorting Genetic Algorithm II

Deb et al. [DPAM02] proposed a second generation of the original NSGA [SD94], called

NSGA-II. NSGA-II is a non-dominated sorting based multi-objective evolutionary algorithm.

NSGA-II is more computationally efficient, and it uses parameter free crowded-comparison

operator and elitism to attain diversity. The elitist mechanism is combining the best parents

with the best offsprings, as in NSGA. The approach is made up on the idea that individuals are

classified on several layers. First, note that NSGA-II is an EA, and follows Algorithm 1. In

the first instance, an initial population is created, typically at random. The population is ranked

according to non-domination: first, all non-dominated individuals are collected into a single

category, in which all individuals are assigned the same fitness value, equal to the category

number (1 is the best, 2 second best, and so on). This group of individuals in category 1 is

put aside, and the procedure is repeated for the non-dominated individuals of the remaining

part of the population, for category 2, and so on. This leads to several layers of non-dominated

individuals, called fronts, see Figure 3.3.
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Figure 3.3: An illustration of the NSGA-II layers of non-dominated solutions. The data is taken
from a NSGA-II-based optimisation, where purity and recovery are maximised simultaneously.
The first layer is the Pareto front, and second layer the Pareto front of the solutions when the
solutions of the first layer have been excluded, and so on.

The fitness of an individual is thus determined first by the category number it belongs to,

and secondly, by its ranking within the group of individuals in the category. The ranking with

the group is achieved by sorting the individuals with the crowded-comparison operator. This



3.4. Discussion and concluding remarks 71

sorting mechanism has been shown to converge to regions of non-dominated solutions, as it

maintains diversity and achieves well-spread fronts. As a GA, it then generates offsprings with

crossover and mutation, and the next generation is selected according to the non-dominated

sorting described above. Typically N offsprings are generated, and then the N best individuals

are selected from the combined population of parents and offsprings, where N is the popula-

tion size of the initial population. The original implementation uses the real-coded GA, with

simulated binary crossover and polynomial mutation [DG96], which requires a few parame-

ters to be specified: number of generations to be performed, population size, crossover rate,

crossover index, mutation rate, and mutation index. The crowded-comparison operator, given

in [DPAM02], is accounting for all the individual distance values between the individuals’ ob-

jectives, with two boundary points included (to improve the spread of the fronts), when ranking

individuals in a group. An individual is considered better than another if the following is sat-

isfied: if the individual has a better non-dominated rank (category number), or if with same

non-dominated rank but higher crowded-comparison value.

3.4 Discussion and concluding remarks

As shown, to perform computationally efficient, reliable PSA optimisation is difficult and poses

several challenges. There is a need for faster and more stable optimisation algorithms, which

can utilise the progress made in PSA simulation, in particular acceleration techniques to speed

up the convergence to CSS. The tailored approach, which requires the calculation of sensi-

tivities, which for large-scale problems requires a prohibitively high memory demand. The

POD-based reduced-order model approach that does not require gradient information.

These optimization strategies also lead to the following future research directions:

• Optimisation of larger and more complicated PSA cycles.

• Extension to optimal operation of PSA systems using non-linear process control.

• Faster algorithms that do not require explicit calculation of Jacobian through sensitivity

calculations. To avoid the computational bottleneck of sensitivity calculations adjoint

approaches can be considered, and new optimisation algorithms need to be designed.

It is important to find an optimisation strategy that can utilise the progress already made in PSA

simulation and accelerated successive substitution to CSS. The surrogate-based approach can

be retrofitted with simulation techniques already existing for PSA processes.

Perhaps the most pressing issues are related to computational limitations. PSA models are



3.4. Discussion and concluding remarks 72

solved under demanding computational conditions: sharp moving fronts, nonlinearity, and some

level of noise due to the numerical methods. There is a need for robust optimisation procedures

for computationally expensive objective functions and constraints. Although these issues have

long been known, little efforts have been made to address them. In particular multi-objective

optimisation for PSA has somewhat been overlooked.

The design problem becomes much more computationally demanding when the PSA model

is used in a carbon capture unit, and becomes a key component in a model power plant with

carbon capture. The economic implications of integrating a carbon capture unit in a coal-

fired power plant is very interesting, and it cannot be fully investigated without a large-scale

optimisation of the whole power plant with the carbon capture unit included, in this case PSA.

One challenge is that during the design stage the PSA and the plant model react with each

other, which changes the operation conditions (e.g., feed gas composition and pressure) over

time. Because the PSA model is expected to be the most expensive sub-model in the whole plant

model, we are interested in replacing the PSA model with an approximation model, known as

a surrogate model. This will lead to significant computational savings as the surrogate models

typically take less than a second to evaluate, whereas the original model can take hours. The

analysis and tailoring of surrogate-based optimisation for PSA is the main contribution of this

work. Real-coded GA and NSGA-II have gained much popularity over the past decade, and are

robust and efficient, especially when we are able to afford a large number of objective function

evaluations. For this reason, we find them to be suitable for the internal optimisation within the

Surrogate-based Optimisation framework.



Chapter 4

Surrogate Models for Optimisation of PSA

Systems

4.1 Motivation

Because of the detailed mathematical models required to describe the process behaviour inside

a PSA adsorbent bed, many studies have been devoted to the development of simulation and op-

timisation strategies useful for PSA design [BJF05]. Chapter 3 covered this topic, and identified

some of the computational challenges still open which should be addressed:

• The computational models used for high-fidelity simulation of PSA processes are often

too computationally expensive for various analysis, such as parametric analysis, sensitiv-

ity analysis, and visualisation.

• Optimisation strategies are often simplified to save computational time. Instead of using

the black-box optimisation, which perhaps is the most natural formulation of the PSA

problem, other strategies have been proposed that are less costly, but can be unstable and

lead to inaccurate representation. Most of these new simulation and optimisation strate-

gies are adopting direct determination of cyclic stead state (CSS). Hence the transient

process behaviour from startup to CSS is often lost.

• The ε-constraint method is often applied to the PSA optimisation problem with multiple

objectives. This approach transforms the multi-objective problem into a single-objective

problem that optimises one of the objectives while the remaining ones are expressed as

inequality constraints. As an example, when the product purity and recovery are our

objectives the ε-constraint method treats one of them as an objective and the other as an

inequality constraint. On the other hand, the Pareto approach, which is generating non-

dominated solutions, is more informative but computationally costly. Multi-objective
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PSA optimisation has been somewhat overlooked.

• Gradient-based optimisation methods have been shown to be unstable when the response

of the computational model is noisy, typically due to the presence of numerical error.

It can be concluded that efficient, robust, and reliable PSA optimisation is difficult to

achieve with the current state-of-the-art. There is a need for faster optimisation algorithms that

are stable under noise, and avoid computations suffering from instability, such as the sensitivity

calculations performed in “tailored optimisation” for explicit Jacobian calculation. Ideally, we

should also be able to utilise existing techniques for PSA simulation, especially those accel-

erating the convergence to CSS. Another reason to avoid the calculation of sensitivities is the

prohibitively high memory demand for large-scale equation systems. Adjoint approaches have

been used to reduce the computational cost associated with the sensitivities, but are introducing

their own computational issues.

Even relatively fast PSA simulations are too time-consuming for the purpose of real-life

PSA design. Jiang et al. [JFB04] reported a CPU time of 50-200 hours on a 2.4 GHz linux

machine for a 5-bed/11-step PSA process optimisation to maximise hydrogen recovery. Multi-

objective optimisation of a simple single-bed PSA process for air drying required 720 CPU

hours on a 2.99 GHz Pentium IV machine [SG07].

This gives a strong motivation to develop strategies to deal with optimisation for PSA

simulations. These issues are known [BJF05, ABZ09, Aga10], but little effort has been made

to address this for general PSA optimisation. Here is a summary of efforts made to assist

simulation and optimisation by reducing the computational cost associated with the PSA model:

• O.J., Smith and A.W., Westerberg [SIW91]: Model reduction with time integrated

mass and energy balances. This type of low-fidelity model is faster making optimal

design affordable, at the expense of using simplified models.

• G., Fiandaca et al. [FFB09b, FFB09a]: Model reduction with continuous stirred tank

reactors (CSTRs), and a time integrated energy balance. Similar to the point above,

modelling equations are greatly simplified with the use of CSTRs.

• A., Agarwal et al. [ABZ09]: Simplified optimisation with a reduced-order model gen-

erated by a proper orthogonal decomposition (POD) scheme. A POD scheme is used to

reduce the computational complexity of the computational PSA model. Over the past

decade POD has been extensively used in fluid dynamics for obtaining low-dimensional

models of large spatially-distributed models [RCM04, Vol08]. This approach was tested
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for hydrogen purification using a 2-bed/4-step PSA system. Truncated POD expansions

are replacing the state variables in the computational model. The POD expansions consist

of a linear combination of basis functions, with coefficients fitted with Galerkin projec-

tion. This approach is thus based on the physics via the PDAE model of the specific

problem. Following this, the POD-based model is built around a single design solution

at CSS. In this case study 5 basis functions were generated to represent a computational

model with an initial discretisation level of 35 nodes. The original system consisted of

2800 DAEs, and the resulting system 200 DAEs. This is a significant speed up. It is

difficult to assess the accuracy of this one-shot approximation approach. It cannot en-

sure a good approximation quality far from the neighbourhood of the point where the

reduced-order model is set [Aga10]. The optimiser is restricted by tight bounds, because

with relaxed bounds the reduced-order model failed to adequately describe the physics

[Aga10]. A trust region approach was thus employed, that is, the next search point is se-

lected by solving the corresponding optimisation problem on a trust region (tight bounds)

iteratively.

• F.M.M., Hasan et al. [HKF+11]: Simplified optimisation with a popular surrogate

model technique known as Kriging. The Kriging model is “trained” onm distinct training

points, each training point requires a single run of the PSA simulation model. A training

point represents a single input-response relationship, and consists of the response of the

model for a given design configuration. This was the first use of Kriging for PSA optimi-

sation, but some earlier publications had used Kriging for modular flowsheet optimisation

[CG08, HM11].

To overcome the major challenges related to the high computational expense of PSA simu-

lation we propose “Surrogate-based Optimisation” using the surrogate model known as Kriging.

The analysis and tailoring of surrogate-based optimisation for PSA is the main contribution of

this work.

Surrogate models are fast-to-evaluate approximations built on samples of the input-

response data of the PSA simulation. Surrogate models “trained” on hundreds of design points

can take milliseconds to evaluate per design configuration, in contrast to the original PSA sim-

ulation that may take hours or even days. This makes surrogate models practical, and suitable

in simplified optimisation.
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The next section will describe the concept of “surrogate-based optimisation”, and then we

illustrate the use of this surrogate-based procedure on a highly-relevant case example: a total

reflux dual-piston PSA system. The next chapter will extend the work of this chapter to multiple

objectives.

4.2 Surrogate modelling

A surrogate model for a computer model is a fast-to-evaluate approximative model of the

model’s response, y(x) : Rp → R, where X ⊂ Rp is the design space, p is the number of

design variables. Surrogate models, also known as emulators, metamodels, and response sur-

faces, can be implemented in a variety of ways to allow a more efficient use of already existing

methodologies for the analysis of computer models. The use of surrogate models is meaning-

ful when a single evaluation of the computer model is very time consuming [FK09]. Many

computer-aided analysis tools are only affordable for computationally inexpensive computer

models, but with fast surrogates these tools may even be utilised in supercomputer applications.

Surrogate models are frequently used in optimisation, visualisation, parametric studies, and

global sensitivity analysis.

Global optimisation is one of many fields for which surrogates now belong to the state-

of-the-art. For optimisation the most straight-forward approach is to just substitute the costly

fitness and constraint functions with fast surrogates [ONK03, EN04]. Another field is global

sensitivity analysis. Global sensitivity is concerned with quantifying the variation in the model

output with respect to variations in the input; for example with Sobol’ indices as sensitivity

measures [Sob01]. See [BBMF13] for a case example where sensitivity analysis is combined

with surrogates to study the impact of stream impurities on CO2 pipeline failures in the trans-

portation within the CCS chain.

A surrogate model is often non intrusive, as it treats the original computer model as a

black-box, hence no modification of the computer model is necessary. The first step is to select

a surrogate model type, then the surrogate is fitted to some training data. The training data,

denoted by D, is a set of known design points
{

(xj , y(xj))
T
}m
j=1

=
{
XD,Y D

}
. This allows

the surrogate model to predict the response of the underlying computer model for untried points

in the design space X . For most surrogates the training data is the only input needed to build

the surrogate model. The accuracy of the surrogate depends on several factors: the dimension

of the design space, the traning data in terms of size and coverage of the design space, and



4.3. Surrogate models in optimisation 77

the smoothness of the underlying computer model response, as well as the presence of noise.

Moreover, for the surrogate approach to be meaningful the computational cost of the computer

model has to be high. For some computer models the response for a given design point exhibits

some randomness, but this special case will not be considered in this work.

For computer models with multiple outputs a surrogate model is typically constructed for

each output seperately, hence the computational cost increases linearly with the number of

outputs considered.

Most surrogates can be written in the following form:

ŷ(x) =

q∑
k=1

βkhk(x) + ε(x). (4.1)

Here ŷ(x) is the computer model output at design input x, and is equal to a sum of q regressors,

{hk(·)}, with real-valued coefficients, {βk}, and a residual random process, ε(·).

Among the most popular surrogate techniques we find Polynomial response surface, Krig-

ing, Radial Basis Functions (RBF), Artificial Neural Networks (ANN), Multivariate Adaptive

Regression Splines (MARS), and Support Vector Regression (SVR) [FK09]. It is hardly pos-

sible to know a priori what surrogate model technique that will deliver the best approximative

model (in some norm) of the computer model.

4.3 Surrogate models in optimisation

In any optimisation procedure we can in principle substitute the computationally expensive

computer model with a much cheaper surrogate model (see Figure 4.1). The robustness of this

direct approach depends on the surrogate model’s ability to mimic the shape of the high-fidelity

model’s response surface. Even if the surrogate model can approximate the computer model

sufficiently on average over the design space, we still need to perform point-wise validation

against the computer model to gain confidence in the design solution. Furthermore, even if the

surrogate response would match well with the computer model for the solution obtained with

optimisation on surrogates, there still may be doubt if this solution coincides with the solution to

the original design problem. To circumvent this uncertainty, surrogate models are used to assist

and guide the optimiser. This approach is often referred to as “Surrogate Based Optimisation

(SBO)” (see Figure 4.3).
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Figure 4.1: Direct approach with surrogate models

SBO is an optimisation strategy that in an iterative manner optimises some chosen design

criterion based on the surrogate of the original computer model output. For a given design

configuration, the criterion value may not only depend on the surrogate’s prediction, but also

on our confidence in this prediction. At the end of each iteration, the design to the best solution

is evaluated using the original computer model, and the training data supplied to the surrogate

is updated with this new design point. The most popular surrogate model type for optimisation

is the so-called Kriging, and will be described in detail in the following section.

4.4 Kriging surrogate model

Kriging is a very popular statistical approach that treats y(x) as an unknown function, except

for the design points that already are known. It has been applied for approximating deter-

ministic computer simulations in areas such as mechanical engineering, aerospace engineering,

chemical engineering, and design optimisation. Kriging is an interpolation method, which can

be labelled as a generalised regression [Gol62] as it accounts for the correlation between the

error residuals. In other words, the approximation errors are assumed to be correlated in the

design space. Kriging originated in engineering from the work of Danie Krige [Kri51], a South

African minner engineer, and later formulated by the French mathematician Georges Matheron

[Mat63], the founder of geostatistics. The idea of Kriging is to model a random field from

observations on a number of spatial sites for the purpose of making predictions at unobserved

sites in close proximity to the observations. Sacks et al. [SWMW89] proposed Kriging for

approximating deterministic computer experiments with high-dimensional data.

Formally, the goal of Kriging is to infer y(·) over the design space, X , from training data

consisting of m design points, and predict the output at untried design points x∗ ∈ X . Fol-

lowing the strategy given in [SWMW89], the quantity of interest is modelled by a Gaussian
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random field, denoted by Y (·), with E
(
Y (x)2

)
< ∞ for all x ∈ X . The resulting surrogate

model is the Kriging, also known as the Gaussian Process (GP) model. The ordinary Kriging

is considered in this work, which is characterised by a constant mean and covariance structure

Σ(x,x′) = σ2K(x,x′) for x,x′ ∈ X , where K(·, ·) is the correlation function. There is variety

of functions that can be deployed for describing the spatial correlation [RW06], with the most

popular being the squared exponential (SE) correlation function [RW06],

K(x,x′) = exp

{
−

p∑
i=1

(xi − x′i)2

ξ2
i

}
, (4.2)

with hyper-parameters ξ = (ξ1, ξ2, . . . , ξp). Here σ2 is a positive constant that represents the

process variance. Other popular correlation structures are the power exponential function and

the Matèrn function [Ste99]. Both examples are generalizations of SE and therefore allow more

realistic covariance, although at the expense of higher computational complexity and data de-

mand. The SE correlation function (4.2) is stationary, which means that the smoothness of y(·)

is assumed to be the same for all regions of X . This assumption typically oversimplifies the

correlation structure for computer model outputs, but yet it tends to perform well. Also, when

only a small training data is used, the modelling of a non-stationary correlation is difficult, be-

cause better coverage of the design space is required to ensure all regions are well-representated

by the data.

Y D, consisting of m design points, is assumed to follow the multivariate normal distribu-

tionNm (β,Σ). Here β is a constant, and Σ is the m×m variance-covariance matrix with the

(j, k)th element given by Σ(xj ,xk) for xj ,xk ∈ XD. Let us define the correlation matrix as

K = σ−2Σ.

Given the training data, Y D, and covariance parameter values, θ = (σ2, ξ)T , the inference

of y(·) is made by the conditional posterior distribution of Y (·)|Y D,θ for all x. It was shown in

[HS93] that this conditional posterior distribution is a shifted Student’s t-distribution on m− 1

degrees of freedom (dof) with mean

ŷ(x) = β̂ + k(x)K−1(Y D − 1β̂), (4.3)

and variance

ŝ2(x) = σ2
{

K(x,x)− kT (x)K−1k(x) + γT (x)
(
1TK−11

)−1
γ(x)

}
, (4.4)
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wherem×1 vector k(x) has entry j given by K(x,xj) forxj ∈XD, γ(x) = 1−1TK−1k(x),

and β̂ = (1TK−11)−11TK−1Y D.
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Figure 4.2: Kriging mean predictions for two simple examples. The translucent area is the 95
% confidence band. Top: 1D Santner2003 function, τ2 = 10−11 and ξ1 = 0.14. Bottom: 2D
Branin function, with τ2 = 10−11 and ξ = (0.37, 1.46)T .

The (ordinary) Kriging predictor is given by (4.3), whereas the Kriging variance is given

by (4.4). Noteworthy is that (4.3) is the best unbiased linear predictor (BLUP) for Y (·), and

(4.4) is the Mean Squared Error (MSE) of Y (·)|Y D,θ.

An important and rather unique feature to the Kriging is that by using the variance estimate

ŝ2(x) we can calculate confidence bands around the predictive mean: the upper and lower

confidence bounds are ŷ(x)± t(1−α,m−1) ŝ(x)√
m

. When t(1−α,m−1) is the 95th percentile
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of this probability distribution, we have α = 0.95. See Figure 4.4 (Top). Note that for regions

where the confidence bands are tight, we are with high probability well-informed about the

unknown function Y (·).

As seen, there are many practical assumptions made, for example that Kriging relies on

intrinsic stationarity, and that enough training data are available for the estimation of the co-

variance. But perhaps the strongest one is that correlation between errors is directly related

to the metric distance between the data points [JSW98]. On the other hand, linear regression

assumes an even stronger assumption of independent errors.

Empirical Kriging: For computer models the values of the covariance parameters, θ, are rarely

known. The variance σ2 can be estimated by σ̂2 = 1
m−3(Y D−1β̂)TK−1(Y D−1β̂), whereas

the correlation parameters, ξ, are typically estimated using Maximum Likelihood Estimation

(MLE), that is, to maximise the integrated likelihood function of ξ. As shown in [SWMW89]

an equivalent optimisation problem is to minimise

−2 ln{L(ξ)} = m ln{σ̂2}+ ln{|K|}. (4.5)

The search domain in MLE for ξ is here denoted by Ξ ⊆ Rp. Note that the MLE computation

to fit the Kriging needs the determinant and the matrix inversion of them×m correlation matrix

K for a large number of ξ. For this, usually Cholesky factorization is deployed. Cholesky is

the factorization ofK intoCCT , which is an computationally expensive operation for largem,

more precisely∼ O(m3). Before the MLE computation, the training data is normalised for both

XD and Y D, by scaling the mean, and divide by the standard deviation. This enables a simple

yet informative sensitivity analysis, where the values of the correlation parameter associated

with different input variables are compared. A higher correlation parameter value indicates a

lower contribution to the total variability, and vice versa.

The computationally stable approach: The Cholesky factorizaton ofKξ suffers from numer-

ical instabilities due to ill-conditioning, which occurs when the matrix is nearly singular. To

prevent near singularity, which could cause the Cholesky decomposition to fail, a so-called

nugget parameter (τ2 ∈ R) can be added to the diagonal elements of the correlation matrix

K. The nugget parameter, typically very small in size, is mostly used to provide a more sta-

ble computation of the determinant and the inverse of the “true” K, but results in a different

Kriging model that no longer enforces the interpolatory property with respect to the underlying
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data Y D. The interpolatory property is considered to be one of the strengths of the Kriging.

Of course, in some cases the discrepancy between the Kriging predictor and Y D is desired.

For example, small discrepancies tend to smooth out the Kriging predictor surface around the

design points XD, and result in more conservative variance estimates. The use of a nugget

parameter is also justified whenever there is a randomness in y(·) that should be accounted for,

sometimes referred to as residual variability.

A trade-off between robustness and the desire to be “close” to interpolatory can be made

by the addition of a penalty term to the likelihood function L(ξ), to control the approximation

error at the design points XD. Following [AC12], we replace L(ξ) in (4.5) by π(ξ, τ2)L(ξ),

with

π(ξ, τ2) = exp

−2
1
m

(
Y D − ŷ(XD)

)T (
Y D − ŷ(XD)

)
ε 1
m

(
Y D − 1β̂

)T (
Y D − 1β̂

)
 , (4.6)

where ε > 0 is the fraction considered acceptable between the MSE error at XD, and the

“maximum” error defined by 1
m

(
Y D − 1β̂

)T (
Y D − 1β̂

)
. The regions of Ξ with larger ap-

proximation error are therefore penalised more severely. The MLE is then performed jointly

with respect ξ and τ2. To simplify, we will judiciously select a handful of values for τ2, and for

each minimise −2 ln{π(ξ; τ2)L(ξ)}, in order to find the MLE estimates (ξ̂,τ̂2) for (ξ, τ2) that

maximises the integrated likelihood. τ2 is here restricted to T = [0, σ̂2].

The Kriging predictor and variance in this work are given by (4.3) and (4.4), respectively,

with plug-in estimates (σ̂2, ξ̂, τ̂2) for (σ2, ξ, τ2).

A direct computation of ln{|K|} could run into underflow: the determinant may be-

come so small it cannot be represented by a double precision floating point number. To

mitigate the risk of underflow, we utilise that |K| =
∏
jKjj , since K is a triangular

matrix, and that K = CCT (Cholesky), to obtain the following more robust expression:

ln{det(K)} = m ln{|K|
1
m } = m ln{

∏
j C

2
m
jj } [LNS02]. There are other similar ways to

obtain a computationally stable Kriging model (see, e.g., [LNS02, RHK11]).

4.5 Surrogate-Based Optimisation (SBO): a step-by-step proce-

dure for PSA

Surrogate-based optimisation (SBO) is a popular approach for using surrogate models with

already existing optimisation procedures. The general algorithm is presented as a sequential

diagram in Figure 4.3. In each iteration of SBO, the optimiser (e.g. a genetic algorithm) is
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applied on some design criterion based on knowledge gained from the surrogate model. Then,

from one iteration to the next the surrogate is updated with the design solution we found. This

procedure thus builds adaptive surrogates that are made to target the regions of the design space

predicted to contain solutions of most interest. Hence, if poor predictions are made the surrogate

learns from this new knowledge by re-calibration. The initial training data supplied to the

surrogate model does not need to be so large it fills the entire design space, because the training

data is updated sequentially with new design points during the search. A good coverage is

however desired to ensure the efficiency of the approach. Also, instead of simply optimise

the surrogate response, more complex surrogate-based criteria can be deployed, for example

by making trade-offs with “code uncertainty” to ensure exploration as well as to improve the

prediction quality. By code uncertainty we mean uncertainty arising from our inability to run the

computer model for enough design configurations to know the model’s output over the entire

design space. This uncertainty can be estimated by the distance in some metric between the

computer model output and the surrogate prediction over the design space.

We here put forward an efficient optimisation method based on surrogate models to com-

pliment an appropriate choice of optimisation formulation for the PSA design problem. We

have identified the following key properties for an efficient optimisation strategy:

◦ aim to use as few evaluations of the objective function as possible;

◦ guarantee theoretical global convergence in a bounded hyperrectangle domain, and not

getting “trapped” at local optima;

◦ capable to be used efficiently for problems with multiple objectives;

◦ demonstrate a good trade-off between exploration and exploitation;

◦ be able to utilise high performance computing, and

◦ if interupted it should be capable to restart at interuption point.

We also feel the following assumptions should be made:

◦ the design space is continuous, and is represented by at most ten design variables;

◦ the computer simulations of the underlying computer model are deterministic, and con-

sidered computationally expensive;

◦ no modification of the underlying computer model implementation is allowed, and

◦ one surrogate model is applied to each of the quantities of interest (Purity, Recovery, etc.)

from the computer model.

We will now present a step-by-step procedure customised to PSA optimisation, which respects
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the requirements given above. The proposed procedure may need to be modified if the require-

ments are different for other PSA applications. Nonetheless, we feel confident this procedure is

appropriate to efficiently solve a wide range of PSA design problems. Multi-objective optimi-

sation will be mentioned, but addressed in the next chapter.
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Figure 4.3: A sequential diagram of the interaction between the surrogate model, the opti-
miser, and the detailed model, representing the core of conventional surrogate-based optimisa-
tion (SBO).
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Step 1. Choice of surrogate model

There are many different surrogate modelling techniques available, and it is nearly impossible

to know beforehand which technique that would result in the best approximative model of the

computer model’s response. We will here discuss briefly the reasoning behind our consistent

belief in Kriging for SBO, as long as the underlying computer model output is rather smooth

with respect to the design variables. However, we will identify what we believe to be the

advantages and the limitations of Kriging, and indicate when other surrogate techniques may

be more advantageous.

Surrogate modelling techniques can be divided into regression with or without the inter-

polatory requirement [Jon01]. Regression with interpolatory requirement is when the response

values of the surrogate model coincide with the responses of the original model, for all data

points that belong to the training data, that is, ŷ(xi) = y(xi),∀xi ∈ XD. Recall that ŷ(·) is

the surrogate model and {(xi, y(xi))
T }mi=1 is the training data.

The most common surrogate modelling technique is the Polynomial Regression (PR) which

often is used as benchmark when new surrogates are developed. PR is a surrogate model ex-

pressed as a sum of products of polynomials along the different input directions. Typically a

low-order polynomial model is used because of the computational cost increases fast with the

polynomial order. This approach has been successful in producing informative response sur-

faces, as well as in sensitivity analysis to characterise the influence of different inputs and mixed

effects on the model response. However, PR as a surrogate for SBO could mislead the search

(see [Jon01]). The reason is that non-interpolation methods such as PR focus on improving the

average fit, rather than emulating the shape of the objective function [Jon01, Jin05]. Mimicing

the shape is essential for optimisation where the global optimum should be localised, other-

wise the optimiser may get caught in a local basin. Interpolation methods are thus preferred

to non-interpolation methods in the context of global optimisation. There is scattered data in-

terpolation, and interpolation based on selection of points. Scattered data interpolation aim to

solve the problem of finding a smooth function of “minimal degree” that enforces the interpo-

latory property. Interpolation methods based on selection of points aim to solve the problem of

selecting the most appropriate set of training points to achieve an accurate approximation. We

are interest in the use of scattered data, because we then have more “freedom” in the selection

of points, and the method will be applicable even if some design points are not feasible for the

underlying computer model.
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The Kriging model is an interpolation method that can be built on scattered data. Kriging

also possess a rather unique statistical interpretation that provides without any extra computa-

tional effort an estimate of the MSE at any untried design points in the design space X . The

MSE estimate provides pointwise uncertainty predictions in X that can be utilised in SBO to

identify the regions most-in-need of further exploration. There has been many Kriging-based

design criteria proposed for SBO to make trade-offs between exploitation and exploration. The

most popular method being “Efficient Global Optimisation”, EGO. This will be discussed in

Step 3.

Step 2. Initial sampling of the design space

The design space (also known as the design domain) is defined as the space which is bounded

by the upper and lower bounds of the design variables represented. Experimental designs

are techniques used to sample the design space X ⊂ Rp to obtain a discrete representation

X = (x1,x2, . . . ,xm)T of the continuous space. In computer experiments, when the evalua-

tion of the computer model associated to a design point is computationally expensive, the design

points have to be sampled more sparsely. Before building the Kriging surrogate model, an ex-

perimental design type should be chosen for the selection of the training data. The experimental

design problem is concerned with sampling the design space to obtain training dataXD, and se-

quentially or subsequently compute Y D, to fit the surrogate model with as few design points as

possible. PSA applications deal with deterministic computer models with high-dimensional in-

put data. Classical techniques to solve the experimental design problems are, e.g., full-factorial

and central composite design that originally were proposed for physical experiments [Mon06].

They are typically symmetrical and optimal when random noise is present. See Figure 4.5.
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Figure 4.4: Examples of classical experimental designs in a two-dimensional domain: full-
factorial design (Left) and central composite design (Right).
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The classical designs are impractical for most applications whenever more than 3 design

variables are considered, since the total number of points of the design grows exponentially

with the number of design variables (p), Πp
`=1m`, where m` is the number of points in each

direction.

It is important to distinguish between experimental design for computer and physical ex-

periments. The most noticeable difference is that physical experiments suffer from aleatory un-

certainty whereas computer experiments do not. Uncertainty can be classified as either aleatory

or epistemic. Aleatory uncertainty is related to variability in experimental units and from other

physical factors which usually are unavoidable, whereas epistemic is representing human igno-

rance. In this study only deterministic computer experiments are considered, for which aleatory

uncertainties are not present. We do instead refer the interested reader to [BPS99, Pis95] and

references therein for literature on design and modelling under uncertainty, and to the work of

Babuska et al. [BNT07] which is addressing the importance of acknowledging the presence of

uncertainty in computational science. The deterministic nature of computer experiments leads

to improved computer model transparency, and the absence of random error makes systematic

bias the only affecting factor [SWMW89]. The experimental design selection and size may also

differ between computer and physical experiments. For physical experiments for instance the

design should respect the experimental setup and our possibilities to measure the quantities of

interest, whereas computer experiments instead put emphasis on the computational costs and

the validity of the underlying model. McKay et al. [MBC79] proposed the first experimental

design for computer experiments, called the Latin Hypercube design (LHD). LHD is a popular

experimental design for computer experiments, especially for p > 3. Other experimental de-

signs for deterministic computer experiments [SLC01, Mon06] are, e.g., Hammersley sequence

sampling, maximin(Mm) and minimax(mM) designs, Taguchi designs, and orthogonal arrays.

More recent studies have been devoted to improve experimental design selection using Kriging,

see e.g., [KVB04, Kle09].

Experimental designs for deterministic computer experiments can be distinguished with

the help of the following characteristics:

Space filling: Points distributed to represent all regions of the design space;

Uniform: Points distributed evenly across the design space;

Customised: Points selected with respect to the underlying problem (not genetic);

Distance based: Points are well spread from each other with respect to some distance
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metric;

Sequentialised: Points selected in a sequential manner.

If possible, it is desired that the experimental design is customised to the underlying prob-

lem. For global optimisation the space filling property is desired to enhance prior knowledge

of the shape of the objective function. A theorem given in [TZ89] states that “in order to con-

verge to the global optimum for a general continuous function, the sequence of iterates must

be dense.” The full-factorial design (see Figure 4.5 Left) is space filling, but the total number

of design points increase with an exponential rate as the number of design variables increases.

This is commonly referred to as “Curse of Dimensionality.”

To generate the initial training data to the surrogate model, we restrict our attention to

LHDs. The choice of using LHDs is motivated by its simplicity and track record of being

competitive other experimental designs [BJ11]. Also, Kriging models are known to be difficult

to fit on full factorial and central composite designs [MBS+01]. LHDs, with m design points

in a p-dimensional design space, are sampled with the following steps:

1. Divide the hypercube design domain X into mp distinct hypercube sub-domains (the

ranges of each of the p directions are partitioned into m intervals);

2. All directions are weighted equally in probability (= 1
p ). For all directions we sample

randomly from the uniform distribution a point in each interval (p×m);

3. Finally, pair randomly the outcomes from each direction to obtain m design points.
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Figure 4.5: A LHD (m = 16) sampled in a 3-D design space.
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LHDs are space filling and do not suffer from the “Curse of Dimensionality”, therefore

suitable for deterministic computer experiments. To further improve the spread of the initial

training data XD, we will use the Maximin(Mm) LHDs [MM95]. The maximin(Mm) and

minimax(mM) criteria (see [JMY90]) can be used to quantify the spread of a design and its

coverage in the design space X , which make them suitable as experimental design criteria. The

Mm criterion tends to maximise the minimum interpoint distance of the designXD, to improve

the spread, whereas the mM criterion minimises the distance from any point in the design space,

X , to a point inXD, to promote coverage ofX . In practice the mM criterion is considered to be

the most informative of the interior of the design space, but is difficult to compute, and for this

reason needs to be approximated. Mm and mM are typically conflicting [BJ11], and it is not

obvious which criterion most advantageous for training the Kriging. Because the LHDs are easy

and fast to compute, a good trade-off between the Mm and mM can be achieved with MmLHD

[BJ11]. A MmLHD can be computed by first generating a pool of LHD candidates {XDi}i, and

then select the one with highest Mm value. Also, perhaps even more important to the predictive

quality than the positioning of the data points, is the choice of training data size. Initially, for the

first step in the analysis, 10p design points in the training data are often sufficient to achieve a

good enough coverage [LSW09]. That is, when considering a 10-dimensional design problem,

we should start off the optimisation with training data of size 100.
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Figure 4.6: 2-D Examples of LHDs. Left: One-shot LHD. Middle: MmLHD selected from 107

LHDs, Right: mMLHD selected from 104 LHDs.

Sequential design strategies could have been used instead (see, e.g., [GL09]), for which we

would expect a slight improvement in prediction accuracy, but we consider MmLHD to provide

a better trade-off between computational complexity and prediction performance. Sequential

designs gain momentum when we have some stop criteria that should be met (computational
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budget, accuracy, specified coverage level).

Step 3. Choice of surrogate based criterion

In optimisation we want to minimise (or maximise) some objective function, where the input

values x∗ of the global minimum of the objective function is desired:

x∗ = arg min
x∈X

y(x), (4.7)

where the objective function is defined as y(x) : X → R. When y(·) is computationally

expensive, we can reformulate the problem to an “approximative” optimisation problem using

surrogate models. The naı̈ve approach is to solve the same optimisation problem but on the

surrogate model:

x̂∗ = arg min
x∈X

ŷ(x), (4.8)

where ŷ(·) is the surrogate model for y(·), and x̂∗ is the minimum to this “approximative”

optimisation problem. The major issue with this approach is that x̂∗ can turn out to be very

different from x∗. In principle, the better approximative model we are able to build, the more

confident we will be in the solution x̂∗. This is the motivation for the SBO approach. In SBO

we are updating in a sequential manner the surrogate model with the best solution found for

some chosen surrogate based criterion, SbC(·):

x∗k = arg max
x∈X

SbC(x, Dk, ŷ
Dk(·), ŝDk(·)), k = 1, 2, . . . , (4.9)

whereDk = D

k−1⋃
i=1

x∗i . The most common surrogate based criteria for the optimisation problem

(4.7) are listed below.

Predictive Mean:

SbC(x, ·) = ŷ(x) (4.10)

Maximal Variance (MV):

SbC(x, ·) = ŝ2(x) (4.11)

Expected Improvement: When the underlying function y(·) is modelled as a probability

distribution (Kriging), a popular approach is to find the point x expected to deliver the
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largest improvement relative to the best solution we already observed [JSW98]:

SbC(x, ·) = EY (max{ymin − Y (x), 0}) . (4.12)

When Normal distribution is assumed, this optimisation problem can be written in closed

form:

SbC(x, ·) = ŝ(x)

((
ymin − ŷ(x)

ŝ(x)

)
Φ

(
ymin − ŷ(x)

ŝ(x)

)
+ φ

(
ymin − ŷ(x)

ŝ(x)

))
(4.13)

where ymin is the reference solution (current minima, e.g., min{Y D}), Φ is the cumu-

lative distribution and φ is the probability density function for the conditional posterior

probability distribution of the Kriging. This criterion is useful when applied iteratively to

improve the global approximation while searching for the optima.

Probability of Improvement: Select a target value yref < ymin as a reference point

[Moc94]:

SbC(x, ·) = ΦY

(
yref − ŷ(x)

ŝ(x)

)
. (4.14)

By convention yref is taken to be some factor smaller than the current best solution, that

is, yref = ymin − α|ymin| for some α > 0.

“Maximal Variance” aims to reduce the code uncertainty by selecting the point where the

uncertainty is highest. The major drawback is that it does not attempt to target the regions of

most interest for the original optimisation problem, and therefore on its own is not passable for

efficient optimisation of “expensive” computer models. The last two criteria are Bayesian ap-

proaches to global optimisiation, which perform average case analysis. First a prior distribution

is chosen for the objective function y(·), denoted by P (y). This distribution is then updated

by plugging in the known observations D = {(xi, yi)T }mi=1 in Bayes’ rule. This becomes

our posterior distribution for y(·). Although deterministic computer experiments in general do

not have a “true” distribution, this approach has been successful for representing our knowl-

edge about y(·). The only known values of y(x) are the ones given in the training data, hence

y(·) can be seen as a random function except for the points already observed. Here the two

criteria deviate: “Expected improvement” wants to minimise the expected deviation from the

global minimum using the posterior distribution of y(x), to decide which the next observation

(xi+1, y(xi+1))T , this is then repeated to form an iterative optimisation procedure. For the
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“probability of improvement” the goal is to select the next observation xi+1 where the prob-

ability to exceed some target value is the highest. The “probability of improvement” tends to

sample around the current best point, until the ŝ(x) in the region becomes small enough to

force the search to continue in other promising regions. Under certain mild assumptions, the

global convergence is guaranteed. The drawback is that we need to specify yref : too small

improvement (that is, ymin − yref ) leads to an exhaustive local search around the current best

solution, and with too large we are not fully utilizing the given information on where the current

best solution lies. The “expected improvement” criterion guarantees global convergence as well

[Loc97], and favoured to “probability of improvement” as we do not need to specify any target

yref . The drawback is that whenever the conditional variance ŝ2(x) is under-estimated, the

same problem as with small improvement for “probability of improvement” might occur (that

is, extreme local search).

The surrogate-based optimisation based on “expected improvement” (EI) is often referred

to as “Efficient Global Optimization” (EGO), and will be used in our case studies. The ad-

vantage with using the posterior distribution of f(x),∀x derived from Kriging is that both the

mean and variance (conditional on the available data D) are given directly without any extra

work.
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This EI criterion provides a compromise between exploitation and exploration. They also

have natural statistical interpretations. Another type of approach is to combine several criteria,

either applied in different iterations or merged into a single criterion. For example, we can

specify some desired trade-off between prediction and its esimated uncertainty:

x̂∗ = arg min
x∈X

ŷ(x)− αŝ(x). (4.15)

Here the trade-off is specified by some weighting parameter α > 0. This can be seen as a

statistical lower bound [CJ97]. If α is chosen to be conservative, e.g. α = 3 (99.7- normal

percentile), we can use a branch-and-bound algorithm. However, global convergence for con-

tinuous functions cannot be guaranteed given that this bound is an estimate.

Alternatively, shifting between minimisation ŷ(x), and maximising ŝ(x) from one iteration

to the next can turn out to be sensible a choice [VK10].

Step 4. Choice of optimiser for surrogate based criteria

Global optimisation (GO) methods [TZ89] guarantee the convergence to a global optimum

which make them attractive for optimal design. GO methods have the ability to explore more

widely and avoid local basins in which local optimisers would become “trapped.” They tend

to have worse convergence rates than local optimisers because of the extra effort devoted to

exploration. In other words, GO requires more model evaluations, and for this reason imprac-

tical for the expensive computational models typically appearing in engineering. Naı̈ve global

optimisation methods put too much emphasis on exploration. Random search is such an exam-

ple. More effective methods make appropriate trade offs between exploitation and exloration,

e.g. metaheuristic algorithms such as genetic algorithms and simulated annealing. Only a few

contributions to design optimisation of PSA systems have adopted global optimisation routines:

• An aJG adaptation of the multi objective simulated annealing (MOSA-aJG) has been ap-

plied for a 2-bed 4-step PSA system. A modification of MOSA-aJG was necessary to

accommodate for the high computational demand of the high-fidelity PSA model em-

ployed. for a O2/N2 gas mixture [SG07]

• Multi objective genetic algorithm (MOGA) for a 2-bed/4-step PSA system for production

of N2 from air [FFB09b]. Here a simple CSTR-based PSA model was used to reduce

computational requirements.
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However, if the objective space is convex, the local optimum is in fact the global optimum.

This makes local optimisers advantageous due to their potentially fast convergence towards

the optima, unless the numerical noise of the underlying computer code render misleading

gradients.

Experience suggests that the objective space more often than not is convex for the pu-

rity and recovery of the product, as shown for a case example for production of N2 from air

[FFB09b]. But with more complex cases, and different quantities of interest, the objective

space could be non-convex and thus causing difficulty for gradient-based optimisers.

To start optimisation with a global optimiser and finish it by some local optimiser is often

deemed reasonable. The use of a local optimiser can be useful for applications where the

precision of the solution is considered to be important. On the other hand, mathematical models

for engineering design are often not accurate enough to justify the use of some local method to

finish the optimisation. PSA models tend to provide good esimates of performance, but with

some imprecision, therefore we have not followed up the global methods by some local method.

Step 5. Choice of stop criteria

One of the challenges with iterative strategies for optimisation is to decide the when to stop.

The most common criteria when to stop are:

• When reached the maximum allowed number of iterations, or some computational budget

(e.g. given in CPU time)

• When the changes in the objective space (or design space) between successive iterations

is small enough (that is, below a given limit)

4.6 Parallel implementation

To exploit parallelism across multiple CPU processors we propose the use of so-called multi-

point selection [Sch98, GLRC10, PFKH12]. Multiple CPUs allow, at any given time, each

CPU to work independently on a single design point. With multi-point selection, instead of

only selecting a single design point per iteration, we select several design points. Typically

the number of detailed model evaluations should be proportional to the number of available

CPUs. This basic HPC algorithm may lead to a speed-up proportional to the number of CPUs.

However, because PSA simulations are assigned to different CPUs, and usually finalised at

different times, the CPUs on your computer system may become idle for long periods of time,

see Figure 4.8. An alternative approach is to use an asynchronous distributed implementation
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[JLRGG12]. Such an approach allows a new simulation run to begin as soon as a CPU processor

becomes available.

The goal is to select k design points. First, the design points are ordered from most to least

promising with respect to the surrogate based criterion. One way is then to choose the k most

promising design points as a batch. This typically is not efficent, because it is highly probable

the several of the k most promising are neighbouring design points. An efficient procedure

is instead to choose k design points sequentially, without undertaking any evaluations before

the selection process is finalised. Also, inbetween each design point selection the Kriging is

updated, otherwise the same point may be selected more than ones. If there are two equally

promising design points, which also are considered to be the most promising, one option is to

select one of them on random.

Ginsbourger et al. [GLRC10] formalised two Kriging update strategies that can be used

while undergoing the multi-point selection process:

Kriging Believer strategy: Update the Kriging with the selected design point x∗ and

the corresponding dummy response value y∗ = ŷ(x∗), using the current Kriging model’s

predictive mean (4.3). A possible consequence is a misguided Kriging model.

Constant Lier strategy: Update the Kriging with x∗ and its response value y∗ chosen for

the specific-problem, e.g. min{Y D}, mean{Y D}, and max{Y D}. This is an approach

that can be utilised to dictate the behaviour of the SBO method, for example to encourage

exploration rather than exploitation, or vice versa.
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Figure 4.8: Illustration of CPU utilization of 8 CPUs for a single batch of 8 design points for
evaluation by the detailed PSA model. Red lines represents active CPU usage, whereas blue
lines represents idle CPU.
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According to [GLRC10] the Constant Lier strategy with y∗ = min{Y D} performed best

in test for a simple example, the Branin-Hoo test function. The Kriging Believer is the strategy

that will be used throughout our work, because we rely on the Kriging model already, and do not

want to manipulate the search by the Constant Lier without fully understanding the implications

of it. There are however concerns with the error propagation as a result of using the Kriging

Believer with too many point selections in sequence.

4.7 Dual-Piston PSA case study

In this section we will demonstrate the use of SBO for the optimisation of a closed dual-piston

PSA system for N2/CO2 separation.

4.7.1 The Dual-Piston PSA

Conventional PSA systems, as those described in Section 1.4, typically have long cycle duration

to allow enough time for the bed to be pressurised. This however has a negative effect on the

system’s productivity. Productivity is defined by the amount of product produced per unit mass

of the adsorbent per unit time, and is strongly correlated with the cycle time: the shorter cycle

time, the higher productivity is achieved [RFK93].

Two well-known PSA systems that allows short-cycle-time designs are Rapid PSA (RPSA)

and Dual-piston PSA (DP-PSA). RPSA is constructed from two process steps: pressurisation

by feed, and countercurrent depressurisation with internal purging. RPSAs are well-established

commercial products [FTR98], and the first one appeared in the early 1970s for N2-CH4 sepa-

ration [TK71]. These systems are attractive under strict economic conditions because of their

simple design. The other system, DP-PSA, consists of a single adsorption bed, with two pistons

accommodated by cylinders, one on each side of the bed. The DP-PSA apparatus developed by

Keller and Kuo [KK82] is the first known example.

The rapid movement of the pistons makes the fluid flow in the adsorption bed, generating

steep pressure changes causing the gas mixture to separate. The two pistons can be controlled

independently; for example, when operating the pistons out of phase, specified through the off-

set angles, φ1,2, the separation performance is likely to improve. A feed unit can be introduced

at an intermediate position of the bed. Thanks to this unique setup, the DP-PSA can be used for

the testing and characterization of adsorbent materials [DFB13].
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Figure 4.9: Dual-Piston PSA System

When the system is run as a closed system, while inside an temperature-controlled oven, a

wide range of experiments can be completed in a relatively short period of time. With this setup

the cycle times can be reduced to a few seconds. The closed system setup leads to a total reflux

process. There is a pressing need for further research on adsorbents for CO2 separation from

flue gas streams [DFB13].

4.7.2 The modelling and simulation of DP-PSA

The closed DP-PSA system considered in this work is shown in Figure 4.9. As the operation of

the binary separation progresses the light component moves in one direction, while the heavy

component moves in the opposite direction, ending up in the piston chambers positioned at the

two ends of the bed.

We are interested in predicting the separation performance using computer simulations

that rely on accurate mathematical models describing the process behaviour of the DP-PSA.

The model equations used to describe the DP-PSA process can be found in [SJ97, AFR02],

and the computer simulator is implemented as described in [FFB13]. We have not used any

acceleration schemes for faster convergence to CSS (see [FFB13]); instead we adopt the suc-

cessive substitution approach for the simulation. Courtesy to Prof. Brandani at the University

of Edinburgh for providing the DP-PSA simulator code for this work.

The underlying mathematical model relies on the following assumptions:

• The gases obey the ideal gas law

• Axial dispersed plug flow

• No frictional pressure drop along the bed

• Isothermal system

• Langmuir adsorption model
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• LDF approximation of the adsorption rate for the mass transfer

• The gases in the piston chambers are well-mixed

• The dead volume is of equal size in the two cylinders

The isothermal assumption is considered appropriate based on experiments presented in

[FFB13], where the most significant deviation from the temperature mean was 2K. During the

first hour of the experiment the mean temperature over a cycle increased by up to 3K, but con-

sidered to be a result of piston friction forces. We are interested in short cycle times for which

the friction effects should be negligible. The pressure drop, also monitored, was consistently

below 2.5mbar. The governing mathematical equations for the adsorption bed, given in Section

2.2, are here accompanied by a set of ODEs related to the pistons, see Table 4.1. The subscripts

p1, p2 refer to Piston 1 and 2, respectively.

Table 4.1: The model equations related to the pistons.

The mass balance for piston 1 and 2:

dyi,p1
dt
− u1 − |u1|

2Vp1
(yi,p1 − yi,0) = 0

dyi,p2
dt
− u2 − |u2|

2Vp2
(yi,L − yi,p2) = 0 (4.16)

The position of the piston described by a sinusoidal cycle movement:

S(t) = S0,j +
SL,j − S0,j

2

(
1− cos

{
2πt

tc
+ φj

})
(4.17)

The velocity at the bed ends:

u0 = − Vp1
pεbπr2b

dp

dt
− 1

εbπr2b

dVp1
dt

uL =
Vp2

pεbπr2b

dp

dt
+

1

εbπr2b

dVp2
dt

(4.18)

The complete DP-PSA model is here solved by the Method of Lines: PDAEs are converted

with spatial discretisation into set of DAEs which then are simulated forward in time with time

integration techniques. The mathematical model is discretised in the spatial coordinate with

a flux-limiting finite volume scheme using the van Leer flux limiter [Lan98] with 51 spatial

finite volume elements. This spatial discretisation scheme is conservative, and suitable for

systems with sharp, moving fronts. Conservative schemes are particularly advantageous when
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simulating a closed system as they preserve throughout the run the total mass in the system.

The total mass is an aggregation of the volume of the pistons, dead volume, bed gas phase

and the mass adsorbed. The resulting semi-discretised computational model, represented by a

system of DAEs, is then integrated in the temporal domain using the SUNDIALS solver suite

[HBG+05], with the backward differentiation formula (BDF) of order 5.

The CSS condition is checked at the end of each cycle when performing the successive

substitution, and considered satisfied if the difference between the state variable profiles in the

beginning and the end of the cycle is ε-small in the Euclidean norm on scaled values, for some

chosen tolerance ε > 0.

Because the DP-PSA is a closed single-bed system, the simulation is relatively fast, which

is ideal for testing methodology. For the simulation runs made in this optimisation study, the

average CPU time is roughly 3 minutes per simulation run of the detailed DP-PSA model. The

DP-PSA is also sufficiently complex to provide a challenge for the optimisation.

4.7.3 Case Setup

In this case study, the goal is to find optimal process conditions that lead to a CO2-rich gas mix-

ture in the piston chamber located on the left-hand side of the DP-PSA system. We consider a

binary gas mixture of 85% N2

/
15% CO2, which is the typical flue gas composition in the feed

streams that would enter post-combustion units. We run the DP-PSA system, with an adsorption

bed packed with zeolite 13X pellets, at total reflux. Zeolite 13X is a benchmark adsorbent mate-

rial for separation of CO2 from flue gas [KSB03]. A single-site Langmuir adsorption isotherm

model is adopted with parameters found in [XZW+08] derived from the dual-site Langmuir ad-

sorption isotherm model. The axial dispersion coefficient is assumed to be constant, and equal

for both gas components. The simulation results with the DP-PSA simulator has shown a very

good agreement to experimental data, in a case example with 80% N2

/
20% CO2 on a zeolite

13X packed adsorption bed [FFB13]. The process conditions are similar to the ones we use,

and this will provide confidence in the design outcomes of our optimisation study.

To initialise the simulation the adsorbent is set to be in equilibrium with the gas phase

concentration, and the pressure is set at 1 bar. See Table 4.2 for the adsorption bed and piston

parameters.

DP-PSA Optimisation Problem. This is the first optimisation study using detailed com-

puter simulations for tuning the DP-PSA process conditions to improve the separation per-

formance. For the system in total reflux we are mostly concerned with finding the operating
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Table 4.2: Adsorption bed and piston parameters for the DP-PSA unit.

Symbol Parameter Value Unit
Lb Bed length 0.13 m
rb Bed radius 0.0076 m
εb Bed void fraction 0.4 -
rp Pellet radius 2.2 × 10−3 m
εp Pellet void fraction 0.625 -
DN2,CO2

Axial dispersion coefficient 5 × 10−5 m2s−1

Lp Piston length 0.107 m
Rp Piston radius 0.025 m
S0,1 Start position of Piston 1 0.05 m
SL,1 End position of Piston 1 0.1 m
S0,2 Start position of Piston 2 0.0 m
SL,2 End position of Piston 2 0.1 m

conditions that lead to the most CO2-rich piston chamber at CSS. Hence, we are interested

to maximise the following quantity of interest:

Purity of CO2 (%) in piston chamber 1 at CSS = 100×

∫
tc

uyCO2,p1dt∫
tc

u
∑

j={CO2,N2}
yj,p1dt

(4.19)

The parameters allowed to be varied during the analysis are the cycle time (tc), bed temper-

ature (Tb), volume of piston chamber 1 and 2 (Vp1, Vp2), and offset angle of piston 1 and 2

(φp1, φp2). The process conditions have been selected judiciously along with the value ranges

covered, see Table 4.3.

Table 4.3: Decision variables for the DP-PSA optimisation problem.

Variables Range unit
tc Cycle time [1,20] s
Tb Bed temperature [288.15,343.15] K
Vp1 Volume of piston chamber 1 [0.5,15]V0 m3

Vp2 Volume of piston chamber 2 [0.5,15]V0 m3

φp1 Offset angle of piston 1 [0,2π] -
φp2 Offset angle of piston 2 [0,2π] -

The movement of the pistons in terms of phase angles controls the pressure variation in the

bed. The starting position of the pistons will influence the minimum and maximum pressure,
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and in turn the separation performance. Productivity and purity are known to be conflicting,

so faster cycles are expected to penalise the purity while enhancing productivity. The bed

temperature is affecting the adsorption. As we run the system in total reflux, the volume of the

piston chambers with respect to the total volume are expected to affect the separation.

4.7.4 Optimisation implementation details

For this analysis we follow the surrogate-based optimisation procedure described in Section

4.3 in order to demonstrate the performance improvement when surrogate models are used.

This approach is compared to a stand-alone real-coded GA. The real-coded GA, with simulated

binary crossover and polynomial mutation [DG96] is performed for 100 generations, and the

following algorithm parameter settings were used: Population size 16, mutation rate 1/6, muta-

tion index 20, crossover rate 0.9, crossover index 5. These settings are, or in close proximity to,

the default values in the original real-coded GA.

The surrogate model selected is the Kriging model as described in Section 4.4, and is

MLE-fitted to the training data with a real-coded GA, given the same settings as above with

the exception that we now can afford to use a larger population size, 64. To avoid excessive

fitting of the correlation parameters for Kriging, the number of generations is reduced to 50.

The computationally-stable Kriging approach is deployed where we iterate over the nugget

parameter values, τ̂2 = 10−i for i = 7, 8, . . . , 14, and for each estimate, perform the MLE.

The nugget parameter choice resulting in the highest MLE is selected. The MLE procedure

for the estimation of the correlation parameters is restricted to the domain [0.3,15]6. This

domain choice is reasonable: 0.3 represents a non-smooth response surface, whereas with 15

the squared exponential basis function shape resembles a constant. A larger value than 15 would

not be meaningful and likely to lead to over-confidence in the Kriging predictions.

Following the internal optimisation, where design points are ranked based on some chosen

surrogate model-based criteria, we enforce diversity in the design space to avoid clustering: if

the distance between the most promising design point candidate x and the training data XD,

given by the Euclidean norm

∥∥∥x̃− X̃D
∥∥∥

2
= min
x̃∗∈X̃D


√√√√√
 p∑

j

(x̃j − x̃∗j )2


 (4.20)

is ε−small, the design candidate is marked as an undesired candidate. Then the diversity is cal-
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culated for the second most promising design point candidate, and so on until a viable candidate

is found. Here x̃ and X̃
D

are the normalised values of x andXD. Henceforth ε = 10−3.

The Kriging model is updated and refitted to the training data every eight evaluation of the

DP-PSA model. However, the Kriging computational cost as mentioned increases fast with the

size of the training data, ∼ O(m3). Eventually the Kriging computation becomes intractable.

We use a standard remedy to circumvent this problem: when the data consists of more than 60

design points, the Kriging correlation parameters are no longer updated.

4.7.5 Preliminary analysis

As part of our preliminary analysis, we performed a pathwalk consisting of hundred design

points along a hyperline segment between two distant points in the six-dimensional hyper-

rectangle design space, x∗ = x1 + λ(x2 − x1), where λ = [0, 1]. See Figure 4.10, where

x1 = (15.7, 0.04, 1.27, 11.7, 7.73, 278) and x2 = (4.76, 1.52, 0.34, 1.78, 10.4, 330.2). The

figure reveals two important issues: a) the multi-modality in the objective space, and b) the nu-

merical noise in the simulator output. Both these issues could lead to a premature convergence

for local optimisers which are relying on gradient information. The optimisation problem on

the surrogate can become easier than the original problem because the surrogate smooths out

the artifical noise arising from the numerical error from solving the PDAEs. The presence of

numerical noise in the objective function response has been reported when using a computer

simulator for the analysis of PSA for N2 separation from air.

See Figure 4.11 for an analysis of the Kriging predictor error for the DP-PSA model. The

accuracy of the prediction is measured using the root-mean-square error (RMSE) given by

RMSE =

√√√√√
 1

1000

1000∑
j=1

(ŷ(xj)− y(xj))2

 (4.21)

where ŷ(·) is the predictive values, and y(·) is the true responses of the detailed DP-PSA model.

The RMSE is calculated using a hold-off set of detailed model evaluations for 1,000 design

points generated with a MmLHD. The results indicate that the Kriging should be capable in

guiding the optimisation process, even for small training samples. Moreover, from the figure

we can observe that the accuracy only shows subtle improvement as the number of evaluations

of the detailed model increases.
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Figure 4.10: Pathwalk along a hyperline segment between two random distant points in the
six-dimensional design spaceXD.

This is expected, as shown in [LSW09], the improvement that is expected in the global

accuracy over the entire design space is subtle after the size of the training data exceeds 11 ×

p design points, where p is the number of design points. Noteworthy is also the significant

reduction observed in the variability in the prediction as the training data is extended.
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Figure 4.11: Kriging as an approximation for the DP-PSA model. The RMSE approximation
error (4.21) is displayed with error bars based on averages over 10 sets of training data of sizes
16, 32, 64 and 128.
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The total CPU time given to build the Kriging, and the time to execute the subroutine to fit

the Kriging to the training data, for data of size 16, 32, 64, and 128, are presented in Table 4.4.

Table 4.4: CPU time for Kriging construction for DP-PSA case study, using training data of
size m with six-dimensional data points. The CPU time is presented as averages over five runs.

Training data size, m Average CPU time (s)
24 184
32 240
48 365
64 394
80 460

The remaining algorithm time is small in comparison and thus omitted.

4.7.6 Numerical results

The separation performance is measured by the CO2 purity obtained in piston chamber 1 at

CSS. This is the first optimisation study for DP-PSA and for this reason we cannot directly

compare our results with any previous study.

The optimisation is performed with a given computational budget of 500 computer model

evaluations of the DP-PSA system. The outcome of the optimisation is stochastic, because

of the inherent variability of the internal optimisation methods adopted, namely GAs, and the

initial training data upon which the Kriging is fitted. The results are therefore presented as

averages over 5 runs, each with different initial sample. The impact of the GA parameters has

been studied before for PSA with the conclusion that the generation number and the population

size are more influential than the operation parameters (crossover, mutation, etc.) [FFB09b].

We have here fixed the population size to 16, but monitored the evolution of the performance

with each new generation.

We are comparing the different optimisation approaches in terms of the computational work

needed (represented by the number of evaluations of the detailed DP-PSA model) to achieve

some desired level of separation performance. This measure of optimisation performance is

advantageous, alongside the recorded CPU time, since it does not depend on the underlying

computer system or the efficiency of the computer code implementation.

With the SbGA approach, because of the diversity control used in the design space, the

search cannot reach the global optimum if a design point already has been selected to the train-

ing data that are within ε distance from the optimum, where ε is the parameter used in the
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diversity algorithm. We consider searching for near-optimal designs in this case to be accept-

able.

Table 4.5: Optimisation results for DP-PSA case study

Performance variable value
CO2 purity 89.50 (%)
Decision variables value
Cycle time (tc) 20 (s)
Bed temperature (Tb) 342 (K)
Volume of piston chamber 1 (Vp1) 9.5V0 (m3)
Volume of piston chamber 2 (Vp2) 15V0 (m3)
Offset angle of piston 1 (φp1) 0.875π
Offset angle of piston 2 (φp2) 0.233π

The optimisation results are shown in Figure 4.12 for GA, SbGA, and EGO. The runs were

performed on Intel Core i7 core 2.3 GHz machine with 8GB RAM. The best design config-

uration found resulted in 89.5 % of CO2 purity, see Table 4.5. The separation performance

delivered is promising considering the initial CO2 concentration of 15 % in this closed-bed

system. The construction of the Kriging is the computational bottleneck in the surrogate-based

algorithms. For the SbGA and EGO runs, the total CPU time spent on building Kriging models

and fitting the models to the training data was about 30 minutes, and could therefore be said to

be roughly equivalent to 10 DP-PSA computer model evaluations.
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Figure 4.12: Computational results with GA, SbGA and EGO



4.7. Dual-Piston PSA case study 106

Both EGO and SbGA outperform the stand-alone real-coded GA. SbGA obtained good

design solutions already after 100 design points, that is, above 80% CO2 purity, whereas GA

for the same number of points was consistently below 65%.
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Figure 4.13: Parallel coordinate system for visualisation of the most promising design solutions
obtained when using SbGA. The best solution is displayed for the initial design and some
selected iterations, as well as an overkill solution (89.5 % Purity).

Figure 4.14: RadViz visualization for the design points explored for the different approaches:
SbGA (black), EGO (blue), GA (red), and best solution (green).
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The performance of the EGO algorithm and SbGA are comparable. SbGA are more direct

towards maximising the Kriging predictive mean, and the performance with different initial

datasets implies that the product purity is reasonably easy to approximate when the goal is to

drive optimisation. The analysis we performed beforehand is in agreement with this claim.

EGO is more conservative than SbGA because it relies on a trade-off between the predictive

mean and variance. This more conservative approach can be slower, but more robust when the

response surface of the predictive mean is devious. One of our five initial datasets shows that

EGO could have a slower rate of convergence if too much emphasis is put on exploration rather

than exploitation.

The results presented in Figure 4.15 indicate that a DP-PSA system should be designed

as follows: long cycles to operate close to equilibrium, intermediate offset between piston 1

and 2, small chamber volume for piston 1 and large for piston 2, and the bed should operate

at a high temperature. These design guidelines are reached by optimising the purity alone.

The seemingly large gap in the value of φp2 between the design point for initial dataset 3 and

the other datasets is in fact quite small due to the offset angles being periodic with period 2π.

The piston chamber volumes should be representative for the initial gas concentration, that is,

a smaller volume for the chamber for the CO2-enriched gas. The offset angles obtained are

comparable to the ones in [AFR02], where the offset angles 0◦ and 220◦ for piston 1 and 2,

respectively, lead to the best separation performance for air separation.
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Figure 4.15: parallel coordinate system for the design solutions obtained using SbGA, when
100 design points have been explored. The solutions from the five different initial data sets
(of size 16) are presented. Moreover, the best solution found (89.5 % Purity) is included for
comparison.
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The numerical results presented in Figure 4.15 indicate that a DP-PSA system should be

designed as follows: use longer cycle times to operate close to equilibrium, intermediate offset

between piston 1 and 2, the piston chamber volume should be small and large for piston 1 and

2, respectively, and the column should be at a high temperature. These design guidelines are

reached by optimising the purity alone. The influence of further objectives such as recovery and

power requirements will be investigated in the following chapters.

4.8 Concluding remarks

We have presented a surrogate-based optimisation, SBO, procedure, with step-by-step instruc-

tions on how to modify the procedure to achieve better performance for the problem at hand.

The different surrogate-based criteria in SBO performed similarly, and they outperformed the

stand-alone GA. This is the first SBO method applied to the PSA optimisation problem that

sequentially update the surrogate model over a large number of iterations. Also, the accuracy

of the Kriging surrogate model for a PSA model has not been assessed before. This approach

targeted in a sequential manner the most interesting regions of the design space by using the

surrogate model of the PSA model. The SbGA performed well for the dual-piston PSA case

study, which gives us further confidence in the use of evolutionary algorithms in SBO. The next

step is to take the SBO further and explore its use for more challenging design problems, with

design constraints and multiple objectives. The SBO method identified designs that are close

to the optimal performance in terms of CO2 purity (≈ 80%) with only 100 PSA simulations,

whereas the conventional GA required at least 500 PSA simulations. That is an improvement

of at least a factor of 5.



Chapter 5

Surrogate-based Optimisation for

Multi-Criteria PSA Design

To find the optimal PSA cycle configuration for a specific application can be computationally

challenging. It requires advanced simulation strategies that can resolve the rigorous mathe-

matical models describing the PSA process, as well as some procedure to overcome the high

computational cost of running the resulting simulator over a variety of designs and operating

conditions. This fact becomes painfully apparent when optimisation using conventional means

is performed on the PSA simulator to identify appropriate design configurations for large-scale

industrial applications [BJF05]. The decision making process in such circumstances often re-

quires a higher level of detail in the optimisation problem formulation, typically with two or

more design objective to be optimised simultaneously, while meeting some design specifica-

tions (given as inequality constraints). A set of design parameter values, such as for the valve

constants, bed pressures, cycle times, flow rates, and bed geometry are varied over their value

ranges by an optimiser obeying the design criteria. The most common design criteria for PSA

are the purity and recovery of the product, the productivity and the system’s power consumption.

This means we are interested in solving problems with two to four design criteria. The purity

and recovery are the technical attributes that should be as high as possible, and productivity and

power consumption are often included in the design specification. Depending on the specific

problem, some design criteria are naturally expressed as inequality constraints, whilst some are

not. Goal programming is one way to turn one or more design criteria into inequality constraints

with target values, often because of the need of reducing the computational complexity of the

multi-objective formulation.

The main challenge for evolutionary multi-objective optimisation (EMO) is that the objec-
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tive and constraint functions are often too expensive-to-evaluate. For each evaluation of these

functions there is a need to run a time-consuming PSA simulation. Furthermore, the evolu-

tionary multi-objective optimisation algorithm may need hundreds or even thousands of such

evaluations. The simulation is however needed to reveal the complex relationships that exist

between the PSA system’s response (purity, recovery, etc.) and its design configuration (bed

pressure, cycle times, valve constants, etc.). Chapter 4 demonstrated that the utility of the Krig-

ing surrogate model can reveal the input-output relationship for the PSA model. Kriging models

on some training data can make fast predictions for any untried point in the design space. The

prediction quality is expected to improve with larger training data.

The use of surrogate models has made a huge impact on global optimisation practice

[VSBT14]. Existing optimisation methods can utilise surrogate models, and their ability to

make fast predictions at untried design points, to guide the search more efficiently. Surrogate

models were initially introduced to solve problems with scalar outputs [JSW98, Jon01, ONK03,

Jin05], but more recently appear in multi-objective optimisation [EGN06, KN08, VK10]. Chap-

ter 5 demonstrated that a real-coded GA with the Kriging surrogate model greatly improved the

GA method for the dual-piston PSA case example where the CO2 purity was maximised.

The main goal of our work is to develop a surrogate-based optimisation (SBO) approach

that will assist the selection process for the most efficient configuration of the PSA system with

respect to multiple conflicting criteria. There is little difference in the use of surrogate mod-

els for single- and multi-objective optimisation, the formulation of the surrogate-based criteria

is the most significant difference. The robustness become more of an issue in multi-objective

optimisation. This chapter presents SBO for multi-objective optimisation, and constrained op-

timisation. Also, a few adjustments are proposed to make SBO more efficient when solving

challenging PSA optimisation problems. The Utility approach to multi-objective optimisation

is also considered, where the utility function is a multi-objective version of the surrogate-based

“expected improvement” (EI) criterion (see Section 4.5), which can be solved with the real-

coded GA. This EI-based method is called MOEGO.
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5.1 Optimal design of PSA cycles

The design of PSA cycles can be formulated as a multi-objective black-box optimisation prob-

lem:
arg min

x
φ(q(x))

s.t. W (q(x)) ≤ 0

x ∈ X

(5.1)

whereφ(·) = [φ1(·), φ2(·), . . . , φq(·)]T is a vector of q objective functions,W (·) are the design

and process constraints, q(x) ∈ Rn the vector of n (spatially-discretised) state variables, and

x ∈ Rp is the vector of p design variables. The aim is to identify the design configuration x

that yields the best values of φ1(x), φ2(x), . . . , φq(x) in a Pareto optimal sense.

For a typical 2-bed/4-step PSA system [RMER08] (see Figure 5.1), following the notation

given in Chapter 2, the product purity and recovery of CO2 in the product stream can be defined

as:

CO2 Purity. The purity in the product stream are given as the number of moles passing

through the feed units:

PurityCO2
=

∫
F
ucCO2

∣∣∣∣
z=L

dt∫
F

up

RgT

∣∣∣∣
z=L

dt

(5.2)

CO2 Recovery. The recovery of CO2 is accordingly calculated as follows:

RecoveryCO2
=

∫
F
ucCO2

∣∣∣∣
z=L

dt−
∫
LR
−ucCO2

∣∣∣∣
z=L

dt∫
F,FP

up

RgT

∣∣∣∣
z=0

dt

(5.3)

Here
∫
F

is integration over process step F , and so on.

Figure 5.1: Schematic of a 2-bed/4-step PSA. The process steps are: feed pressurisation (FP),
feed (F), countercurrent depressurisation (CnD), and light reflux (LR).
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Systems that yield a high product purity, tend to perform worse in terms of the product

recovery [FFB09b], and vice versa. Similarly, an increase in productivity usually results in a

raise in the system’s power consumption [HMN+13]. According to [ZWX08] an increase in

product recovery typically requires more power usage. Similarly, the product purity is said to be

positively correlated with the system’s power consumption. Further analysis of the conflicting

behaviour between purity, recovery, and power consumption is needed. An expression for the

system’s power consumption has been omitted, but will be defined for our main case study in

Chapter 6. To obtain any reliable power consumption estimate many assumptions need to be

made that vary on a case by case basis [HLAW06]. Because there does not exist a single design

configuration x that generates the maximal possible product purity and recovery of the system,

simultaneously, the use of evolutionary multi-objective optimisation (EMO) is warranted if

we only could overcome the high computational cost of objective functions, in our case time-

consuming PSA simulations.

EMOs are population-based and can be used to identify the set of “non-dominated” solu-

tions, called the Pareto front. One solution is said to dominate another if the solution is not

worst for any of the objectives and better for at least one objective than the other. This means

that more than one solution can be undisputed as the best solution in the Pareto optimal sense.

EMO has been presented in Section 3.3.

5.2 Surrogate based criteria for multiple objectives and constraints

Surrogate modelling has become the technique of choice to overcome the computational bar-

riers caused by expensive objective and constraint functions [FK09]. For multi-objective op-

timisation, the advances made are mostly for surrogate-based EMOs [BBLP05, VK10]. By

convention, this is often done by extending already existing surrogate based criteria to the multi-

objective setting [FK09]. An alternative strategy is to reduce the multi-objective optimisation

problem to a single objective one and solve it within the surrogate-based optimisation (SBO)

framework. The utility approach or the goal programming approach can be used for this end,

see Section 4.5.

The SBO procedure (presented in Section 4.5) performs for set number of iterations, and

in each iteration, one or multiple design points are selected based on some chosen surrogate

based criteria. One of the strengths of the SBO framework is that only the surrogate based

criterion needs to be adapted to this new multi-objective setting, the remaining steps can be left
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untouched.

In this section we suggest some efficient surrogate based criteria for multi-objective opti-

misation, and for constrained optimisation, that can be used for the PSA design problem.

5.2.1 Surrogate based evolutionary multi-objective optimisation

The main challenge for surrogate based criteria in EMOs are that the evolutionary computations

are population based and return non-dominated Pareto solutions. The naı̈ve approach is to di-

rectly apply the EMO on the surrogate model, and then select one or several non-dominated so-

lutions for further consideration. The main concern with this criterion is that the non-dominated

solutions generated by the surrogate model are not put in comparison with the solutions of the

current Pareto front. This spoils the multi-objective performance, in terms of solution diversity,

richness, and coverage (see Section 3.2). A more efficient approach is thus to utilise the cur-

rent Pareto front with the surrogate-based Pareto front when selecting new design points to be

evaluated. See Figure 5.2, for an illustration of this procedure using NSGA-II on the Kriging

model. In this way the EGO procedure obeys the nature of the multi-objective optimisation.

5.2.2 MOEGO: a multi-objective expected improvement criterion

The expected improvement (EI) criterion (see Section 4.5) used in the Kriging-based efficient

global optimisation (EGO) method has attracted much attention in the global optimisation com-

munity [VSBT14], and is considered to be one of the most efficient, as well as reliable, search

criteria that guarantees global convergence [Loc97]. Many attempts have been made to follow

up on this success by extending EI to multi-objective optimisation. One way is to apply the

EI criterion to each of the objective functions, independently, and then employ some multi-

objective optimisation method (such as EMO) [JO05]. Another is to use the weighted aggre-

gation approach and then solve it with some single-objective optimisation method (ParEGO

[Kno06]; WS-EI [LZT+07]). But perhaps the MOEGO criterion by Emmerich et al. [EDK11]

is the most pleasing from a statistical perspective.

Consider the multi-objective black-box optimisation problem (5.1), then we want to

identify the design configuration x optimising the set of multiple objective functions. To

keep the notation used in Section 4.5, we denoted the vector of p objective functions by

[y1(·), y2(·), . . . , yq(·)] ∈ X ⊂ Rp. The MOEGO is based on the assumption that each of our

objective functions y1(·), y2(·), . . . , yq(·) can be modelled independently via Kriging as a prob-
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Figure 5.2: From the Pareto front computed with NSGA-II on the Kriging model (Top), the
solutions that also are non-dominated by the Pareto set of the current set of PSA simulation
responses (Bottom) are considered to be promising candidates for design point selection.
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ability distribution. Under this assumption the method is sequentially selecting points x that

are expected to generate the largested improvement in the dominated hyper-volume (S-metric)

of the Pareto front [EDK11]:

SbC(x, ·) = EȲ
(
S(Y P ∪ Ȳ (x))− S(Y P )

)
, (5.4)

where Y P is the Pareto front of Y D, and Ȳ is the vector of the random variables

Y1(·), Y2(·), . . . , Yq(·) that are jointly normally distributed. The definition of the S-metric

is given in Section 3.2. By convention the normal distribution is assumed for the probability

distributions of the objectives yi(·). Also, as shown in [EDK11], this criterion can be computed

exactly using the same tools as for the EI criterion, namely the cumulative and probability den-

sity functions for the normal conditional posterior distribution derived from the Kriging model.

One drawback with MOEGO is that the S-metric is known to be computationally prohibitive

for more than four objectives [WHBH06].

5.2.3 Surrogate based criteria for constrained optimisation

The criteria discussed so far have not shown any consideration to optimisation problems

with expensive constraints. This is mainly because we only recently begin to see work de-

voted to the development of more efficient surrogate based criteria for solving such problems

[PHFK10, PFKH12]. See [FSK08, FK09] for more on the use of surrogate models for con-

strained optimisation.

PSA design problems are often formulated as a single objective optimisation problem for

the purity or recovery. This is often because either the purity or the recovery is specified as

an inequality constraint to meet some design requirement, or to reduce the computational time

(that is, goal programming). Both purity and recovery are quantities that are computationally

expensive to obtain, but for which can be computed together through a single simulation, with-

out any extra effort. In the surrogate-based optimisation framework, when purity is used as the

objective, and the recovery is used as a constraint, or vice versa, both are represented by mutu-

ally independent surrogate models, typically upon the same design points. Any constraint that

is considered computationally expensive, should be modelled by a surrogate. The inexpensive

ones would just be treated as usual. Henceforth we will refer to the surrogate models of the

constraints as “constraint surrogates.”

For the surrogate-based GAs we are interested in the Deb’s constraint handling method
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[Deb00]. In this approach the fitness function, here denoted by f(x), is penalized for design

point x, when any of the constraints are violated:

f(x) =


ŷ(x) if ŵi(x) ≥ 0,∀i = 1, 2, . . . , n

max
{
ŷ(XD)

}
+
∑n

i=1 |ŵi(x)| otherwise

where ŵi(x) is the constraint surrogates of the ith row of the n design constraints, represented

by W (x) ≤ 0 in the optimisation problem. Observe that the maximal value in the vector

ŷ(XD) : Xm → Rm is introduced to ensure that any infeasible design solution is strictly

dominated by a feasible one. This type of one pass penalty function relies to a high degree

on the global accuracy of the constraint surrogates. Surrogate constraints are required to be

accurate, as Deb’s constraint handling method is sensitive to the actual values of the constraint

functions [PFKH12]. This could be understood from the preferential system adopted: solutions

that violate the constraints, are given a lower priority than any of the solutions that satisfy them.
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Figure 5.3: An illustrative example of Deb’s constraint handling, where a set of ten design
points is sorted with the aim to maximise the product purity, while the product recovery is
specified as an inequality constraint (recovery > 90 %).
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5.3 Premature convergence

One challenge in SBO is to ensure the selection process of new design points is not only guided

by Kriging’s predictive mean, but also by the desire to improve the surrogate’s global approxi-

mation quality. The SBO with the predictive mean criterion can cause premature convergence

[Jon01]. The stagnating convergence may occur when the surrogate prediction leads to an ex-

cessive point selection in an already well-explored region of the design space, because the SBO

lacks the desire to explore the regions of the design space of higher uncertainty.

The SBO methods that rely on either the EI, PI or the MV are exhibiting exploration to

regions of higher uncertainty, as opposed to the standard surrogate based evolutionary multi-

objective optimisation. To circumvent this issue, the combination of surrogate based criteria

can be employed [VK10], where the surrogate based criterion adoped can be different from one

SBO iteration to the next.

Kriging is privileged with its predictive variance ŝ2(x), Eq. (4.4), that could estimate the

“uncertainty” over the design space. To allow the surrogate model to learn, and become a better

global approximative model, we turn to Active Learning (AL) from machine learning (see, e.g.,

[RW06]). One such technique is Active Learning MacKay (ALM) [Mac92, GL09], where the

goal is to identify the design point that maximises the Shannon entropy. The Shannon entropy

is from information theory and measures the uncertainty in a random variable [CT06]. It turns

out the Shannon entropy taken at a candidate point is proportional to the Kriging variance at

the point (∝ ŝ2(x)), which makes this optimisation problem equivalent to finding the point in

the design space that maximises the predictive variance. A similar technique is Active Learning

Cohn [Coh96], where the goal is to the maximise the integrated variance reduction over the

entire design. The reduction in variance is typically mesured point-wise over the design space

by deploying a large number of reference points at which the variance reduction is measured.

The variance reduction at a point x can be estimated by using the Kriging’s predictive variance

ŝ2(x), see calculation in [GL09]. In the early stage of the selection process, ALM tends to

select many points on the boundaries of the design space. Early on the boundary points are less

informative than interior points [KSG08]. To put this in perspective, for a regular grid with mp

points, where p is the number of design variables, mp− (m− 2)p of them are boundary points.

This implies that the percentage of the total points that are on the boundary, 100(1− (1− 2
m)p),

grows rapidly with the dimension p. For p = 6, the design space dimension, with m = 10,

almost 74% of the points lie on the boundary of the design domain.
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Figure 5.4: Standard deviation estimate with Kriging over the design space for Branin function.
The design sites are marked in green. The correlation lengths are ξ = (0.37, 1.46)T , with
τ = 10−11. Left: ALM. Right: ALC.

ALC on the other hand has been shown to abstain from choosing points directly on the

boundaries. See Figure 5.4 for an illustration of ALM and ALC designs for a popular 2D case

example, the Branin function. Over a wide range of different problems, restricted to small sam-

ple sizes, ALC has been shown to perform better than ALM in terms of the mean squared error

(MSE) [SWGO00]. As the amount of training data increases for the Kriging, the difference

between ALM and ALC tends to become smaller. ALM is the significantly cheaper option, and

thus the preferred choice to improve the Kriging prediction quality over the design space. The

ALM or equivalent has been adopted in [VK10, SSW+11].

Constraint surrogates are demanding because they need to be good global approximations,

otherwise the SBO procedure can become very inefficient, see Section 5.2.3. The ALM ap-

proach can be a remedy to overcome such issues in the early stage of the optimisation, when

the training data is small.

It has been demonstrated that alternating between optimising the Kriging’s predictive mean

and the ALM criterion is a reliable strategy [VK10].

5.4 Failure in PSA simulator response

Computer simulations of PSA processes are typically prone to numerical instability that can

lead to simulator failure. A simulator failure here means that no output, or an error flag, is

returned to the optimiser. The causes of the simulation failures are often difficult to pinpoint,

but often a failure to solve the DAEs. For PSA simulation the failures can be a consequence

of the difficult dynamical behaviour that may occur in the adsorbent bed, or in some cases the
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issue may even be a simple error on the implementer’s part. Some simulation approaches such

as those relying on Newton’s method are also known to be unstable because of the calculations

involved [BJF05].

Even though the PSA simulation is successful for one design point, another point may cause

failure. The most robust simulation approach is probably the successive substitution, but even

this approach is suffering from numerical instability because of the challenge of solving the

PSA simulation problem over a wide range of model parameter choices. Hence, it is expected

that some of the design points selected during the optimisation for PSA simulator evaluation

can cause simulation failure. If no precautionary measures are taken to address this issue,

most optimisation methods are terminated on objective function failure, in particular those that

heavily rely on gradient information.

For the SBO approach, we wish to incorporate the knowledge about the design points for

which a failure has taken place. Although no output of the PSA simulator is observed, these

design points should be included in the training data, more specifically, their location in the

design space, XDF , where DF = {XDF ,Y DF } is the training data representing the failed

simulator runs. DF is informative about the possibility of PSA simulator failure at, or in close

proximity to, the design points already known to cause failure. We propose that XD should

be extended with DF when using the Kriging’s predictive variance (4.4). The dependence the

Kriging’s predictive variance (4.4) has on Y D is only through σ̂2, which in the implementation

will be unchanged. In other words, the Kriging’s predictive variance can be calculated, using

the covariance parameters ξ̂ and σ̂2 estimated by D, with the extended training data D ∪DF ,

by assigning dummy values to the unknown responses Y DF , e.g., Y DF = (1, 1, . . . , 1)T .

Kriging’s predictive mean, in contrast to the predictive variance, is affected by the choice of

dummy values, and thus should be performed with D.

By providing this set of data to the Kriging variance (4.4) the “uncertainty” is modelled

more accurately, because we have evaluated the design points even though the response value

is not accessible due to the simulator failure. SBO methods that are assisted by e.g. ALM or

EI, and use this implementation, can avoid selecting design points that belong to the vicinity of

any of the design points that already have caused PSA simulator failure.
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5.5 Transformed Kriging for purity and recovery computations

The product purity and recovery are both represented as ratio values, confined to the inter-

val [0, 1], in the PSA simulator. These are physical constraints not enforced by the surrogate

model, because the Kriging surrogate prediction by definition is made on the real line (see, e.g.,

[RW06]). This means the Kriging predictor can make predictions higher than 1. By respecting

these physical constraints, the performance of the SBO is improved. The perhaps most straight-

forward approach to enforce the bounds are to set the Kriging prediction values that fall outside

the feasible regime to the extreme values of the bounds. Our concern with this approach is the

manipulation of the Kriging response. We instead propose the following transformation of the

training data supplied to the Kriging surrogate model:

UD = log

{
Y D

(1 + ε)− Y D

}
, (5.5)

for some tiny ε > 0. This extends the feasible interval from [0, 1 + ε] to the real line R, which

suits the Kriging model. To reverse the transformation (also known as back-transformation)

we use ŷ(x) =
(1 + ε) exp{û(x)}

1 + exp{û(x)}
, where û(·) is the transformed Kriging predictor. Here

ε is a small perturbation made to allow y = 1. Also ε is needed to ensure (5.5) is defined

when there exists a small numerical error produced by the PSA simulator, e.g. if the product

purity returned is 1.0001 then ε should at least greater than 0.0001. The ordering of objective

function values is preserved under this transformation, that is, if one response value dominates

another in the original space, this response dominates the same one in the transformed space.

Another transformed Kriging approach is the log-normal Kriging (see, e.g., [Cre89, DR07]).

The training data supplied to fit the Kriging is log-transformed in order to reduce the influence

of the few high values observed in data generated from the lognormal distribution. In Figure 5.5

it can be seen the optimisation performance on the Kriging model under transformation (5.5) is

improved and avoids non-physical Kriging responses.

5.6 Summary

In this chapter the PSA design problem has been formulated for multiple design criteria, such

as product purity, recovery, and power consumption. We proposed some modifications of the

surrogate based criteria to adapt the surrogate based optimisation (SBO) framework for this
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Figure 5.5: Top: The Pareto front approximation generated by responses from the Kriging
predictor. Bottom: The Pareto front approximation generated by the transformed-Kriging. This
illustates the benefit of using Kriging in the transformed space when performing multi-objective
PSA optimisation, when there are physical constraints for any of the objective functions.
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multi-criteria setting. Two surrogate based criteria were discussed, one for evolutionary multi-

objective optimisation, and one that extends the expected improvement criterion to multiple

objectives by using the S-metric that measures the hyper-volume dominated by a set of non-

dominated solutions. We also identified and proposed solutions to some SBO issues that are

particularly relevant to the PSA problem:

• Many PSA design problems in the literature are using design constraints, that could be

computationally expensive to compute. We proposed the use of constraint surrogates

together with the use of Deb’s constraint handling method.

• The use of the Kriging model to predict the response of the PSA simulations has been

successful, see Chapter 4. However, there are circumstances were the SBO optimiser can

lead to premature convergence. We here proposed the use of an active learning method

called ALM that selects the design points of largest Kriging variance. The ALM cri-

terion should be used for some SBO iterations instead of the original surrogate based

criterion, to promote exploration in regions considered by the Kriging model to be most

“uncertain.”

• The PSA simulators are known to be fragile due to the difficulty to numerically solve the

coupled PDAEs involved. This means that some of the design configurations attempted

during the optimisation run could lead to PSA simulation failure. PSA simulation failures

should be accounted for by the Kriging model, otherwise the Kriging variance is not

representing the actual “uncertainty.” If the design points causing simulator failure are

provided, the Kriging model can identify those points as known and not revisit them.

• The product purity and recovery, when represented as ratio values, are restricted to the

interval [0, 1]. However, the Kriging is making predictions that are not enforcing these

constraints. The Kriging model can therefore generate values above 1. To avoid this, we

have proposed a transformation of the ratios to the entire real line, and then use Kriging

for SBO in this transformed space. To our knowledge this transformation has not been

used for process design. Same with the issue of physical constraints on the output in the

multi-objective setting has not been highlighted before.

All the strategies presented in this chapter will be employed in the next chapter for a challeng-

ing PSA case study for CO2 separation. The combination of these modifications to the SBO

method promotes robustness, and is new framework for robust multi-objective optimisation

with surrogate models for process design.



Chapter 6

Surrogate-based Multi-Criteria Design: CO2

Capture by PSA

6.1 Introduction

A two bed, six step PSA system is the case study used to show that fast, and robust, optimisa-

tion can be achieved with the surrogate based optimisation (SBO) procedure, demonstrated in

Chapter 4. This SBO procedure is here tailored to a typical multi-criteria PSA design problem

using the strategies presented in Chapter 5.

As discussed in Chapter 3, some recent work on PSA design for carbon capture have yield

frameworks for flowsheet design to ease the search after interesting PSA designs for CCS, in

particular when applied for post-combustion in coal-fired power plants. The frameworks and

the expertise are in place, but the optimisation strategies could benefit from the performance

boost of SBO. The SBO framework is a versatile speed-up procedure that can be applied on top

of any of the design and optimisation formulations proposed in literature for CO2 capture.

PSA is a promising CO2 separation technique with relatively low operating and capital

costs, and thus of great interest to “Carbon Capture and Storage.” For disposal of CO2 in deep

ocean, ageing oil fields, and gas reservoirs, it would be necessary to enrich the CO2 up to a

level of 99% for the compression and transportation costs to be satisfactory. So when the feed

is high in CO2 concentration, above let us say 25%, the PSA design problem is not challenging,

given that we want above 70% recovery, using a one-stage PSA [CKY+95]. Unfortunately

with flue gas of the coal fired power plant, the CO2 concentration can be as low as 10 − 15%,

which makes it difficult to recover 99% CO2 with a single PSA unit. Hence, a two-stage PSA

is required to enrich CO2 from flue gas to acceptable purity levels [IOA+96].

The application of PSA for the separation of CO2 from flue gas is indeed a very challenging
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design problem, and the two-stage PSA process is perhaps a more viable strategy than using

a single PSA system. In the two-stage PSA process the first stage produces a CO2-enriched

product of roughly 50−60%, and the second-stage brings the performance up to the desired CO2

level of about 95%. The design problem is foremost an optimisation problem of the technical

performance of a 2-bed/6-step PSA system design structure with fixed process step. One of the

greastest challenges of applying the the CO2 capture unit to the power plants is the high power

consumption associated with it. Hence, we include the power consumption as an objective for

our analysis. By using this example study, the goal is to address the first-stage of two-stage

PSA process, motivated by the results presented in [PBKC02] for the same case study.

Previous studies have explored the effect of the different process parameters (such as

feed flow rate, purge ratio, and product flow rate) on the PSA performance, both experimen-

tally and through detailed computational simulations, see, e.g., [CKY+95, PBKC02, CKY+03,

ZWX08]. Either by varying one parameter at the time, or using scatter plots with one output

of interest against one of the design variables. Both of these approaches may not capture the

global sensitivity.

We are interested to investigate the effects of the design variables and cycle configuration

of the first-stage PSA system for the two-stage strategy. For CCS we are required to achieve

product recovery of at least 90%, with as high product purity as possible. For a two-step system,

around 95% is desired in each. With a single step with a two-bed PSA system, the work of Liu

et al. [LGL+11] achieve 58% product purity for 93% recovery [LGL+11] from 15% CO2-85%

N2, but with silicalite and not the more established Zeolite 5a. Some of the earlier optimisation

studies for CO2 capture include [CKY+03, KSB03, KSB05]. Ko et al. [KSB05] concluded that

fractionate vacuum PSA under high temperature is more advantagerous than PSA in terms of

product purity and recovery, but with higher average power consumption. Choi et al. [CKY+03]

identified the optimal adsorption step time and reflux ratio for a given PSA system.

In this chapter we will use the SBO procedure for a variety of design problems using a

challenging 2-bed 6-step PSA system as the underlying case example.

6.2 The 2-bed/6-step PSA system

The PSA cycle considered is defined by the following 6 steps: feed pressurisation (FP),

feed/adsorption (F), light end equalisation (LEE), countercurrent depressurisation (CnD), light

reflux (LR), and ligh end pressurisation (LEE). The LEE steps are the pressure equalisation.
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This PSA cycle is a Skarstrom with a pressure equalisation step and has been investigated be-

fore in [PBKC02] for recovering CO2 from flue gas.
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Figure 6.1: 2-bed/6-step PSA Skarstrom Cycle

While there are many adsorbents for CO2 capture, in this study, we consider adsorption

beds packed with zeolite 13x pellets. Zeolite 13X is perhaps the most popular adsorbent ma-

terial for separation of CO2 from flue gas [KSB03]. This adsorbent is a good first approach to

investigate the PSA for CO2 capture [ZWX08].

The schematic is given in Figure 6.1 (Left). The transition between the process steps over

time are regulated by the stem positions of the valves. The valves involved in the system are

presented in Figure 6.1 (Right). The system is symmetrical with the axis of symmetry going

through the feed and vent units. On both sides of of each bed is a bed header which is usually

used to ensure a homogeneous flow distribution in the bed. The units labelled ’Feed’, ’Vaccum’

and ’Vent’ provide the boundary conditions for the PSA system. Briefly, the ’Feed’ unit is an

inlet which provides the gas mixture to separate; the ’Vacuum’ unit is an outlet which provides

vacuum pressure for the purge and blowdown steps; the ’Vent’ unit is an outlet at atmospheric

pressure. These three units are refered to as feed units. The tanks next to the feed units are

buffering the flow so that the pumps can be operated continuously. The tanks and bed headers

are connected by valves which control the flow rates in the system and thus the cycle steps.
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With the pressure equalisation step the CO2 purity can be enriched [PBKC02], and it is

expected this will only lead to a small penalty in power consumption. In this case, the light

reflux step is used to produce a higher CO2 purity. We would expect that with higher CO2

purity, more power is consumed at the vacuum pump.

The stem positions open and close at specific times during the course of a cycle to control

the PSA operation. See Table 6.2 for the stem positions for the different process steps of this

6-step PSA Skarstrom cycle. Here 0 means that the valve is closed, 0.5 half open, and 1 fully

open. The PSA cycle is performed through the coordinated operation of the 7 valves. The

feed unit supplies a gas mixture of constant pressure, temperature, and feed composition, and

therefore held at the initial operating conditions. The flow rate on the other hand is set to

F =


Fi, if

∣∣∣∣p− pnp

∣∣∣∣ > 0.01,

1
2Fi

(
1 + cos

{
100π

(
0.01−

∣∣∣p−pnp ∣∣∣)}) otherwise,
where Fi is the prescribed flow rate and p and pn are the pressures in the feed unit and the

neighbouring unit, respectively. This means that when the relative pressure difference is lower

than 1%, the flow rate will approach zero in a smooth way as p approaches pn. This choice is

out of computational convenience.

Table 6.1: Stem positions for the valves amounting to the different steps. The numbers represent
the fraction of the corresponding valve which is open.

Steps for bed 1 V1 V2 V3 V4 V5 V6 V7
FP 1 0 0 0 1 0 0
F 0 0 r3 0 1 0 r7
LEE 0 0 0 0 0 0 1
CnD 0 1 0 1 0 0 0
LR 0 1 0 1 0 r6 r7
LEE 0 0 0 0 0 0 1

Table 6.2: System parameters for the PSA unit.

Parameter value unit
Lb Bed length 0.12 m
rb Bed radius 0.0175 m
εb Bed void fraction 0.387 -
VCH Bed header volume 5.2 × 10−5 m3

rp Pellet radius 9.15 × 10−4 m
εp Pellet void fraction 0.35 -
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The design problems that will be considered are all using one or several of the following

performance indicators:

CO2 Purity. The purity of CO2 in the product stream during cycle k are calculated from

the number of moles passing through the feed units:

PuritykCO2
=

nkvac,CO2
− nk−1

vac,CO2∑Nc
j=1(nkvac,j − n

k−1
vac,j)

. (6.1)

CO2 Recovery. Similary to the calculation of the purity, the recovery of CO2 is

RecoverykCO2
=

nkvac,CO2
− nk−1

vac,CO2

nkfeed,CO2
− nk−1

feed,CO2

. (6.2)

Power Consumption per Mole. The power consumption per mole is the work done by

all boundary units, that is, feed, vacuum and vent, and is calculated by:

Pow =



γ
γ−1RgTF

{
pn
patm

γ−1
γ − 1

}
, if pn > patm and F < 0,

γn
γn−1RgTnF

{
patm
pn

γn−1
γn − 1

}
, if pn < patm and F > 0,

0 otherwise.

(6.3)

dW

dt
= Pow, W (0) = 0. (6.4)

Here γ =
c̃p
c̃V

is the ratio of the molar heat capacities at constant pressure and constant

volume. The number of models are calculated through the following ODEs

dni
dt

=
F + |F |

2

ci,n
cT,n

+
F − |F |

2

ci
cT
, i = 1, 2, . . . (6.5)

with ni|t=0 = 0.

The power consumption is a function of the molar flow rate, compression ratio and the inlet

gas temperature. The contribution of the vent is zero as it is at atmospheric pressure.

The goal will later be to compare the specific power consumption to the system’s perfor-

mance in terms of product purity and recovery.

6.2.1 Model equations

The bed equations are given in Table 6.3, and the nomenclature is given in Table 6.4.
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Temperature gradients within the pellet were neglected, and heat transfer from the pellet

was entirely due to the fluid film resistance. The adsorber wall energy balance was also included

in the model since it has been experimentally observed that the accumulation of heat in the bed

wall affected the bed dynamics.

Table 6.3: The model equations for the modelling of the adsorption bed.

Component mass balance (axial dispersed plug flow model):

dci
dt

+
1− εb
εb

dQ̄i
dt

+
∂(uci)

∂z
+
∂Ji
∂z

= 0 (6.6)

dQ̄i
dt

:= εp
dcmi
dt

+ (1− εp)
dq̄i
dt

= kpi
Ap
Vp

(ci − cmi )

Energy balance for the adsorbate in the gas phase:

εb
dǓf
dt

+ (1− εb)
dǓp
dt

+ εb
∂(Ȟfu)

∂z
+
∂JT
∂z

+

Nc∑
i=1

∂(JiH̃i)

∂z
+ hw

Ac
Vc

(Tf − Tw) = 0 (6.7)

Energy balance for the adsorbate in the solid phase:

dǓp
dt

:= εp
dǓp,f
dt

+ (1− εp)
dǓp,s
dt

= hp
Ap
Vp

(Tf − Tp) (6.8)

Energy balance in the bed wall:

ρw ĉp,w
dTw
dt

= −hw
Ac
Vw

(Tw − Tf )− Uαwl(Tw − T∞) (6.9)

LDF equation:

dq̄i
dt
− kcri (q∗i − q̄i) = 0 (6.10)

Ergun equation:

−∂p
∂z

=
150µ

4r2p

(1− εb)2

ε3b
u+

1.75ρg
2rp

(
1− εb
ε3b

)
u|u| (6.11)

Langmuir isotherm:

q∗i =
q1i,sb

1
i ciRgT

1 +
∑Nc
j=1 b

1
jcjRgT

(6.12)

blj = blj,0 exp

{
−∆H̃l

j

RgT

}

For the inlet connected to the bed, the flow rate is calculated by:
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Table 6.4: Nomenclature
Parameter Description Units

A Surface area m2

ci Concentration of component i mol m−3

DL Effective axial dispersion coefficient m2 s−1

F Molar flow rate mol s−1

Ffeed Feed flow rate mol s−1

hp Pellet-to-fluid heat transfer coefficient W m−2 K−1

hw Fluid-to-wall heat transfer coefficient W m−2 K−1

Ȟ Enthalpy per unit volume J m−3

H̃ Molar enthalpy J mol−1

Ji Diffusive flux of comp. i in the fluid phase mol m−2 s−1

JT Thermal diffusive flux in the fluid phase J m−2 s−1

kcri LDF coefficient of comp. i in the adsorbent crystal m s−1

kpi LDF coefficient of comp. i in the pellet m s−1

Lv Bed length m
nfeed,i Number of moles of comp. i entering at the feed unit mol
nvac,i Number of moles of comp. i leaving at the vacuum unit mol
pfeed Feed pressure bar
pvac Vacuum pressure bar
Rg Gas constant J mol−1 K−1

rb Bed radius m
rp Pellet radius m
rj Stem position of valve j -
tc Cycle time s
tfeed Feed/purge time s
tpe Pressure equalisation time s
tpr Pressurisation/depressurisation time s
Tf Fluid temperature K
Tfeed Feed temperature K
U Internal energy J
Ǔ Internal energy per unit volume J m−3

u Interstitial velocity m s−1

V Volume m3

W Work J

αwl Mean surface area to volume ratio of the bed wall m−1

εb Bed void fraction -
εp Pellet void fraction -
λL Effective axial thermal dispersion coefficient W m−1 K−1

µ Fluid viscosity Pa s
ρ Density kg m−3

Subscript
b Bed
f Fluid phase
n Neighbouring unit
p Pellet
s Solid phase
w Bed wall

Superscript
cr Crystal
L Axial
m Macropore
p Pellet
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F = k(pn − p). (6.13)

The pressure drop between the bed and the bed header is neglible if k is assigned a suffi-

ciently large value. The bed header and the tanks are modelled as continuously stirred tanks.

The equations are given by:

Fj = −Fnj , j = 1, 2, . . . , NI , (6.14)

V
dci
dt

=

NI∑
j=1

(
Fj + |Fj |

2

ci,nj
cT,nj

+
Fj − |Fj |

2

ci
cT

)
, (6.15)

dUf
dt

=

NI∑
j=1

(
Fj + |Fj |

2
H̃f,nj +

Fj − |Fj |
2

H̃f

)
+ hwA(Tw − Tf ), (6.16)

where NI is the number of connections. The number of connections for the different tanks is

3, in this case. The regulation of the flow rate exiting the valve is controlled by the following

valve equation:

F = CVjcT

√
|p0 − pLb |

ρf
. (6.17)

Here CVj = rjcv, rj is the stem position, cv the valve cofficient, p0 and pLb are the pressures at

the two inlets, respectively, cT is the total concentration and ρf is the fluid density. The pressure

in the tank is given by the ideal gas law.

The boundary conditions for the gas phase concentrations and the enthalpy are given by

the Danckwerts boundary conditions for flow into the bed and the no diffusive flux for flow out

of the bed. With the conventions that the positive flow directions is from 0 to Lc these can be

written in a combined form as

JT |z=0 =
u+ |u|

2

(
Ȟf,0− − Ȟf,0

)
(6.18)

JT |z=Lb =
u− |u|

2

(
Ȟf,L+

b
− Ȟf,Lb

)
(6.19)

Ji|z=0 =
u+ |u|

2

(
ci,0− − ci,0

)
(6.20)

Ji|z=Lb =
u− |u|

2

(
ci,L+

b
− ci,Lb

)
(6.21)

where the superscripts − and + indicate the concentration values to the left and right of the

boundary, respectively.
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A finite volume scheme, using 40 elements along the spatial direction, for the discretisation

of the mathematical models, leading to a semi-discrete computational model. The BDF method

of 5th order is used for time integration from cycle-to-cycle, using the method of successive

substitution.

6.3 SBO setup for different PSA design problem formulations

To demonstration the use of surrogate-based optimisation (SBO) for multi-criteria PSA design

we are addressing the following types of optimisation problems:

1. Maximise product purity with constraint on the recovery

2. Maximise purity-recovery, in a Pareto sense

3. Maximise purity-recovery, while minimising the system’s power usage, in a Pareto sense

All the design problems can be formulated as in (5.1). The design variables are given in

Table 6.5 with the value ranges considered for the optimisation.

Table 6.5: Design variables for the PSA design problem.

Variable Description Range Unit
CV7 Purge-to-feed [0,1]cv -
tfeed Feed/purge time [0,200] s
Ffeed Feed flow rate [5 × 10−4,8 × 10−3] mol s−1

pvac Vacuum pressure [0.02,0.4] bar
CV3, CV6 Valve parameter for 3, 6 [0.3,1]cv -
Tfeed Feed temperature [290,340] K

This configuration is sufficiently complex to provide a challenging, multi-criteria design

example for the SBO procedure. Moreover, a single-criteria problem is also included, in which

the product purity is maximised.

The SBO method applied follows the procedure described in Section 4.5, and the tailored

strategies given in Chapter 5 are adopted. The choice of surrogate model is the Kriging, which

is described in Section 4.4. The SBO settings are described below:

Kriging setup

Section 4.4 describes, in detail, the ordinary Kriging surrogate model technique used in this

work. The design problems considered have costly objective and constraint functions since they

rely on PSA simulations of the product purity, recovery and the system’s power consumption.

The SBO procedure assigns a Kriging model for each of these “expensive” functions. The

Kriging predictor and the variance estimator are given by Eqns (4.3) and (4.4). The plug-in
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Kriging formulas employed are empirical with estimated values for correlation parameters ξ

and process variance σ2. The computationally-stable Kriging approach is adopted, and the

parameters ξ in the SE correlation function (4.2) are fitted with MLE using the real-coded GA

(population size 64, mutation rate 1/6, mutation index 20, crossover rate 0.9, crossover index

5, for 50 generations), within the search domain Ξ = [0.3, 15]6. In this computationally-stable

approach we use several different nugget parameter values, τ̂2 = 10−i for i = 7, 8, . . . , 14, and

for each we perform the MLE. The nugget value selected is the one with highest MLE. Before

the MLE computation, the training data is normalised in both the set of design points,XD, and

the corresponding responses, Y D, by scaling the mean, and divide by the standard deviation.

The Kriging model is updated (and refitted) for every eight design solution of the PSA simulator

added to the training data. Whenever more than 80 design points are in the training data, the

Kriging’s correlation parameters are no longer refitted,in order to avoid the computationally

demanding MLE fitting for large design sets.

The sampling method utilised to generate the training data is the maximin Latin hypercube

design (MmLHD), see Section 4.5. The size of the initial training data is set to 16. The size of

the training data is large enough to generate a decent coverage, as well as being a good starting

point for SBO, based on our experience.

The Kriging models for the product purity and recovery are modified in order to restrict

the Kriging predictions to the [0, 1] interval, since these quantities are ratios. This transformed

Kriging for the product purity and recovery computations is described in Section 5.5.

Choice of surrogate based criteria and internal optimisation routines

In the inner optimisation of the SBO procedure, the design points are ordered according to the

preference ordering of the chosen surrogate based criterion. Here, in contrast to Chapter 4, we

are interested in surrogate based criteria suitable for multi-objective optimisation, and for con-

strained optimisation. Section 5.2 presented some criteria for multi-objective PSA optimisation.

For SBO, we are consistently using the real-coded GA and the NSGA-II (see Section 3.3).

Their success is well-documented, and because they make few assumptions about the objective

functions, they are suitable for a wide range of surrogate based criteria. Also, the constraint

functions can be easily introduced by using penalty terms on the original objective function.

Here follows some SBO methods proposed in this work (defined by the choice of surrogate

based criteria and inner optimisation procedure):

Case I: Maximise product purity
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– [SbGA] Maximise Kriging predictor, with real-coded GA

– [EGO] Maximise EGO, with real-coded GA

– [SbGA-ALM] Switch between maximise Kriging predictor, with real-coded GA

and maximise ALM, with real-coded GA

Case II: Maximise product purity with recovery constraint

– [SbGA-Ch-ALM] Switch between Maximise Kriging predictor for purity, with

Deb’s constraint handling on constraint surrogate for recovery, using real-coded

GA, and Maximise ALM for purity-recovery, with the Pareto approach, using NSGA-

II

Case III: Maximise product purity-recovery

– [SbNSGAII] Maximise Kriging predictors for purity and recovery, with the Pareto

approach, using NSGA-II

– [MOEGO] Maximise MOEGO for purity and recovery, using real-coded GA

– [SbNSGAII-ALM] Switch between Maximise Kriging predictors for purity and

recovery, with the Pareto approach, using NSGA-II and Maximise ALM for purity

and recovery, with the Pareto approach, using NSGA-II

Case IV: Maximise purity-recovery, and minimise power consumption

– [SbNSGAII-ALM] Switch between Maximise Kriging predictors for purity, recov-

ery and power consumption, with the Pareto approach, using NSGA-II and Max-

imise ALM for purity, recovery and power consumption, with the Pareto approach,

using NSGA-II

The abbreviations given inside the brackets ([,]) are henceforth used to refer to the partic-

ular SBO method. Here ’Sb’ stands for ’Surrogate based’, and ’Ch’ for ’Constraint handling’.

To switch between surrogate based criteria has been shown to work well for a variety of chal-

lenging test functions [VK10].

The real-coded GA and the NSGA-II are using simulated binary crossover and polynomial

mutation [DG96], with the following parameter settings: population size, 64; crossover rate,

0.9; crossover index, 5; mutation rate, 1/6; mutation index, 20; number of generations, 50.

The constraint surrogates are implemented as described in Section 5.2.3. Recall that the

ALM is a strategy for improving the global approximation of the Kriging model (Section 5.3).

The ALM criterion selects the design point with largest Kriging variance. The MOEGO is a

multi-objective version of the EGO, and is given in Section 5.2.2. The SbNSGAII procedure is
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described in Section 5.2.1.

Same as in the DP-PSA case study in Chapter 4 we are enforcing diversity by avoiding

the selection of “neighbouring” design points, see the diversity constraint (4.20). The diversity

parameter is again set to ε = 10−3. The diversity in EGO (and MOEGO) is handled by the

Kriging variance estimate, that is, the design points with low Kriging variance is less desired

because we believe we know those points better than points of high variance. This is a neat way

of representing our “uncertainty” spatially over the design space. These approaches, which are

introduced to promote diversity, are not adapted to the case when some design points cannot

be evaluated by the PSA simulator - since the search is likely to revisit such points. To avoid

this issue, we are incorporating into the diversity handling the location of any design point that

failed to be evaluated, see the strategy suggested in Section 5.4.

Many optimisation methods are inherently parallelisable, and an efficient optimisation pro-

cedure preferably be able to utilise the CPUs available. All the surrogate based criteria can be

evaluated in parallel, and we can achieve multi-point selection, that is, the selection of multi-

ple design points. The procedure needed to use any of the surrogate based criteria above for

multi-point selection, see Section 4.6.

The training data for the Kriging model is generated by the MmLHD. LHDs are known

to generate a good coverage of the design space, and if the training data is large enough, it

can be utilised before initialising the SBO routine for the analysis of the underlying computer

simulator over the design space. The results from such an analysis could potentially be used

to identify design variables that have little or no impact on the performance indicators, which

can be useful in model dimension reduction to ease the optimisation that follows. However,

exercise caution before making strong assumptions based on such results.

6.4 Preliminary analysis

The first analysis is the visualisation of the PSA simulator’s response along a hyperline segment

between two points in the hyper-rectangle design space X ⊆ Rp, x∗ = x1 +λ(x2−x1), where

λ = [0, 1]. Hundred design points were used to represent the hyperline segment (which entails

hundred PSA simulation runs). The pathwalk produces a curve for the product purity along the

hyperline segment, see Figure 6.2. This is the same procedure used in the DP-PSA study in

Chapter 4. The Figure 6.2 shows most of the pathwalks are showing little variability, with the

exception of the one line that partially exceeds 60% product purity. This suggests that the larger
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portion of the design space will lead to low purity, and that some regions are exhibiting non-

linearity. Furthermore, there are some visual gaps in the curves, these gaps are the response

values excluded due to simulator failure. This may cause problems for many optimisation

methods, especially those relying on gradient information (such as SQP). In Section 5.4 we

proposed a modification of the Kriging variance expression that makes the SBO procedure

robust against PSA simulator failures. The strategy informs the Kriging variance about the

design points where the PSA simulator failed, so that the SBO procedure can avoid revisiting

those points, as well as any nearby points in the design space.

The computational model used is the finite volume scheme using 40 volume elements with

a Van Leer flux limiter. A single run of the computer simulator ranged between 10 min to an

hour depending on the design configuration used. The simulation strategy used is the successive

substitution as it is a stable approach to simulate the process behaviour to cyclic steady state.
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Figure 6.2: Pathwalk along a hyperline segment in the design space for the product purity.

The discrepancy between the Kriging and the PSA simulator response over the design space

X can be represented by the normalised root-mean-square error (NRMSE):

NRMSE =

√(
1
M

∑M
j=1(ŷ(xj)− y(xj))2

)
maxj y(xj)−minj y(xj)

, (6.22)

where y(x) is the scalar PSA simulator response, and ŷ(x) the Kriging predictor response,

for x = (x1, x2, . . . , xp)
T ∈ X ⊆ Rp. This error has been computed for product pu-
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rity, recovery, and power consumption, defined by eqns (6.1), (6.2), and (6.3), respec-

tively. The validation data used is a hold-off set consisting of the PSA simulator re-

sponses evaluated at 1, 000 design points (M = 1000) generated by MmLHD. The Krig-

ing model for all the three objectives are below 10% in relative error in terms of NRMSE,

whenever the training data exceeds 60 design solutions. See Figure 6.3. The correla-

tion parameters used are: ξpurity = (1.153, 4.693, 1.615, 15.0, 14.393, 15.0)T , ξrecovery =

(3.235, 1.834, 1.708, 5.627, 8.467, 15.0)T , ξpower = (5.463, 7.53, 0.987, 2.721, 15.0, 15.0)T .

This actually expected, according to the analysis presented in [LSW09], the error convergence

rapidly decreases when the training data to the Kriging is about 11 times larger than the dimen-

sion of the design space, that is, 11p.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20  40  60  80  100  120  140

N
R

M
S

E
 to

 th
e 

P
S

A
 s

im
ul

at
or

 r
es

po
ns

e

The number of detailed model evaluations

Purity
Recovery

Power consumption

Figure 6.3: NRMSE for the Kriging model to training data for product purity, recovery, and
power consumption calculated using the detailed PSA simulator. The error bars represent the
variability over ten sets of training data (min-mean-max).

This analysis is usually not computationally viable in practice as it requires many new PSA

simulation runs. An estimate of the NRMSE can be obtained by using cross-validation, but from

our experience that approach will severely underestimate the error estimate when dealing with

the PSA model outputs. We performed this analysis to provide confidence in the use of Kriging

in SBO for PSA optimisation. In the next section an efficient global sensitivity analysis is

proposed for the PSA design formulation, which only requires the initial training data to be of

moderate size.



6.5. Global sensitivity analysis on a small initial training data 137

6.5 Global sensitivity analysis on a small initial training data

In this section we are using the sensitivity measure proposed by Sobol’ [Sob93] to understand

the effect of the variability in the design configurations to the PSA simulator outputs (purity,

recovery, and power consumption per mole).

Global sensitivity analysis (GSA) is concerned with quantifying how the variation in the

simulator’s output depends on different sources of variation over the entire design space, here

treated as random input data, by providing quantitative importance measures that relate the

variance of the output with each design variable considered. This form of analysis of model

sensitivity has been already applied to parts of the CCS chain, to the geological storage of

CO2 by Kovscek and Wang [KW05] where the effect of porosity and permeability on reservoir

performance was assessed, as well as for understanding the impact of the impurities in CO2

transportation on the outflow following pipeline failure [BBMF13].

Global sensitivity analysis with the Sobol’ method [Sob93] applied on the Kriging model

can be an efficient means of quantifying the impact that each design variable has on the PSA

simulator outputs that are considered in the optimisation study to be performed. The Sobol

method is related to analysis of variance (ANOVA) and decomposes the model variation into a

number of effects that represent the influence of each design variable, represented by a probabil-

ity distribution, and their interactions. Many different methods have been proposed to compute

the integrals required to calculate these effects, of these the most widely applied are Monte Carlo

sampling [Sob01] and the Extended Fourier Amplitude Sensitivity Test (EFAST) [MTS82].

This approach typically requires large sample sizes to provide accurate estimations of the sen-

sitivities, making them impractical when the underlying model is computationally expensive.

Sobol’ based GSA has for this reason been considered impractical, but thanks to some recent ad-

vances [OO04, Sud08, MILR09], which are utilizing surrogate models for reducing the expense

of the Sobol’ method, the Sobol’ method has found practical use for a wide range of modelling

applications, for example modelling of landslides [RF11], groundwater flow [FGI+13], and

CO2 pipeline failure [BBMF13].

Sudret [Sud08] proposed a method for computing Sobol sensitivities by approximating

the model’s output by a polynomial expansion, known as generalised polynomial chaos (gPC)

[GS91]. The gPC expansion is a linear combination of suitable global polynomial approxi-

mations in probability space, for which the statistical moments, expected value and variance,

are known exactly from the coefficients of the expansion. The family of orthonormal mono-
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dimensional polynomials is selected in accordance with the general Askey scheme with respect

to the probability measure of each random input variable [XK02].

The stochastic collocation method [BNTT11] has been applied to build a gPC expansion on

tensor grids, suitable for high dimensional random input data, to mitigate the so-called “Curse

of Dimensionality.” This method constructs a gPC expansion, often interpolatory, on input

points, collectively known as “sparse grid” [BG04]. This “sparse” gPC expansion has been

shown to use fewer model evaluations than the other methods identified above (see comparison

in [BBMF13]), which means that the use of GSA for complex numerical models such as the

computational PSA model is possible. Here follows an account of the Sobol’ method, and the

computational strategy used.

6.5.1 Global sensitivity analysis with Sobol’ indices

Let Z(ω) = (Z1(ω), Z2(ω), . . . , Zn(ω), . . . , ZN (ω)) : Ω→ RN represent N independent and

identically distributed (i.i.d.) random variables, Γn ⊆ R the image set of the random variable

Zn, and Γ =
∏N
n=1 Γn. Hence the joint probability distribution function ρ : Γ → R of Z

can be factorised as ρ(Z) = ΠN
n=1ρ(Zn), where ρ(Zn) is the marginal probability distribution

function of Zn. Let (Γ,B(Γ), ρ(Z)dZ), where B(Γ) is the Borel σ-algebra on Γ, and ρ(Z)dZ

is the probability distribution measure of Z on Γ. L2
ρ(Γ) denotes the Hilbert space consisting

of square integrable functions on Γ with respect to the measure ρ(Z)dZ.

A function y ∈ L2
ρ(Γ) can be expanded as an ANOVA decomposition

y(Z) = y0 +
∑
j⊆J

yj(Zj), (6.23)

for which Zj = (Zj1 , Zj2 , . . . , Zj|j|) is a vector including the components of Z indexed by j,

where j represents a non-empty subset of the coordinate indices J = {1, . . . , N} with cardi-

nality denoted by |j|. For example, for j = {2, 3} and {1, 3, 4}, |j| = 2 and 3, respectively. Let

Γj denote the |j|-dimensional hyper-rectangle defined as the projection of the N -dimensional Γ

onto the hyper-rectangle indexed by j. The ANOVA representation allows one to distinguish be-

tween first order effects, low-order interdependence, and high-order interaction. The summands

yj(Zj) can be calculated recursively as follows:

y0 =

∫
ΓN

y(Z)ρ(Z)dZ, (6.24)
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and

yj(Zj) =

∫
ΓN−|j|

y(Z)ρ(ZJ\j)dZJ\j −
∑
k⊂j

yk(Zk)− y0. (6.25)

The measure ρ(ZJ\j)dZJ\j represents the integration over ΓJ\j. The ANOVA expansion is

an exact projection of y(·) with respect to the L2
ρ(Γ)-inner product onto the mutually orthogonal

yj(·), j ⊆ J , that is, ∫
Γ
yj(Zj)yk(Zk)ρ(Z)dZ = δjk, (6.26)

in which δjk 6= 0 if j = k, else δjk = 0. Hence it holds that for all |j| > 0,

∫
Γ
yj(Zj)ρ(Z)dZ = 0. (6.27)

6.5.2 Use of gPC for computing Sobol’ indices

Sobol’ [Sob93] proposed a variance based GSA method that extends decomposition (6.23) to

a variance based representation where the summands can be interpreted as relative importance

measures of the subsets of the input variables. Following Eqs. (6.23), (6.26-6.27) the Sobol’

indices are given by:

Sj =
V[yj(Zj)]

V[y(Z)]
=

∫
Γ y

2
j (Zj)ρ(Z)dZ∫

Γ y
2(Z)ρ(Z)dZ − y2

0
, (6.28)

in which the variance of y(Z) under the probability measure ρ(Z)dZ is

V[y(Z)] =
∑
j⊆J

V[yj(Zj)] =
∑
j⊆J

∫
Γ
y2
j (Zj)ρ(Z)dZ. (6.29)

Accordingly, it holds that
∑

j⊆J Sj = 1. It must be noted that Eq. (6.29) relies on the assump-

tion of the mutual independence of {Zn}. The Sobol’ indices quantify the relative importance

of their corresponding effects which provide valuable insight on the mixed effects. The total

effect induced by each input variable Zn can be defined by

STn =
∑

j⊆J :n∈j
Sj. (6.30)

The total effects STn are in practice easy to compute through their complement in J , that is, Sj

for which n 6∈ j.

The use of global polynomial approximations is promising when the quantity of interest
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y(Z) is smooth with respect to the random input variables {Zn}.

The tensor product structure of L2
ρ(Γ) allows one to introduce a polynomial subspace of

L2
ρ(Γ) denoted by P(Γ) as well as ρ(Z)dZ-orthonormal basis

Ψp(Z) =

N∏
n=1

Ψpn(yn), p = (p1, p2, . . . , pn, . . . , pN ) ∈ NN , (6.31)

where Ψpn(yn) denotes ρ(yn)dyn-orthonormal polynomials on Γn. The goal is to project y(Z)

on PΛ(ω)(Γ) = span{Ψp(Z), p ∈ Λ(ω)} to obtain a global polynomial approximation

yω(Z) =
∑

p∈Λ(w)

αpΨp(Z), (6.32)

for a suitable {Ψp}p⊆Λ(ω), where Λ(ω), ω ∈ N are polynomial spaces of increasing index sets

with respect to ω. This representation is known as the gPC expansion [GS91].

In a computational context the gPC expansion needs to be truncated, and here the gen-

eral construction of Λ(ω) provides a polynomial space hierarchy with ω. The classical Tensor

Product polynomial space Λ(ω) = span{p ∈ NN : maxn=1,2,...,N pn ≤ ω} suffers from the

curse of dimensionality since its dimension increases exponentially fast with the number N of

random input variables. A more attractive option is the sparse Total Degree polynomial space

Λ(ω) = span{p ∈ NN :
∑N

n=1 pn ≤ ω}. The choice and construction of Λ(ω) are discussed

in detail in [BNTT11].

When the randomness in Z is described by any of the common probability distributions,

the Sobol’ indices can be determined exactly from the coefficients of the gPC expansion of

y(Z). This is true when described by for example the uniform and normal distribution. When

computing statistical moments such as the expected value and variance of y(Z) the appropriate

family of ρ(Z)dZ-orthonormal polynomials should be chosen with respect to the distribution

measure of the input variables [XK02]. As the random variables in this study are uniformly

distributed the normalised Legendre polynomials are employed. The first and second statistical

moments of yω(Z) are then directly obtained from the gPC coefficients {αp}:

E (yω(Z)) = α0, and V[yω(Z)] =
∑

p∈Λ(ω)

α2
p − α2

0. (6.33)

There is a one-to-one correspondence between the analytical Sobol’ indices and distinct subsets
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of gPC coefficients [Sud08]: the gPC expansion of y(Z) may be recast as

lim
ω→∞

yω(Z) = α0 +
∑
j⊆J

∑
p∈NN :

in>0⇔n∈j

αpΨp(Z), (6.34)

and then given (6.23) and (6.34) the one-to-one correspondence is explicit, that is,

yj(Zj) =
∑

p∈NN :

pn>0⇔n∈j

αpΨp(Zj). (6.35)

Insert Eq. (6.35) into the Sobol’ index definition, (6.28), and exploit orthonormality of Ψp:

Sj =

∑
p∈NN :pn>0⇔n∈j α

2
p∑

p∈NN α
2
p − α2

0
. (6.36)

The gPC coefficients {αp} can in some cases be computed using Galerkin projection that

involves a reformulation of the model equations [LMK10], but this is impractical for deter-

ministic models of complex structure, such as those involving non-linear governing equations.

To circumvent this, the non-intrusive stochastic sparse grid collocation method [BNT10] can

be applied. Other non-intrusive approaches are described elsewhere [LMK10], for example

those based on projection, that determine the coefficients by integration, and regression-based

approaches, that rely on least squares.

Stochastic sparse grid collocation methods build upon a set of collocation points {Zk ∈

Γ} with corresponding function responses {y(Zk)}, a global polynomial approximation yω :

C0(Γ)→ Pm(i)−1(Γ) :

ySG,ω(Z) =
∑
i∈I(ω)

c(i)

N⊗
n=1

Um(in)
n [y](Z), c(i) =

∑
j={0,1}N :

i+j∈I(ω)

(−1)|j|, (6.37)

where Um(i)
n : C0(Γn) → Pm(i)−1(Γn) denotes a mono-dimensional Lagrangian polynomial

interpolant operator,
⊗N

n=1 the Cartesian tensor product operator of the sets of collocation

points in each direction n, i ∈ NN+ multi-indices, I(ω) a sequence of increasing index sets

and m(i) the number of collocation points used to build the mono-dimensional interpolant at

level i. The polynomial approximation (6.37) is known as sparse grid approximation and its

construction is described elsewhere [BNTT11].
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Figure 6.4: 2D example of a Smolyak sparse grid ω = 4 using Gauss-Legendre points

The set of indices I(ω) can be chosen so that the approximation belongs to a given poly-

nomial space Λ(ω) [BNTT11]. This study will use the isotropic Smolyak sparse grid which is

defined by:

ISmolyak(ω) =

{
i ∈ NN+ :

N∑
n=1

(in − 1) ≤ ω

}
, (6.38)

and

m(i) =


2i−1 + 1, i > 1

1, i = 1.

(6.39)

When using the Smolyak sparse grid many of the coefficients c(i) in (6.37) may be zero,

hence the name “sparse grid.” In this study the mono-dimensional Lagrangian interpolants

use the non-nested Gauss-Legendre rule so that the gPC expansion is built upon tensor prod-

ucts of Legendre polynomials. The collocation points used in a Smolyak sparse grid with the

Gauss-Legendre rule are shown in Figure 6.4. Keep in mind that generally the sparse grid

approximation (6.37) is not interpolatory [BNR00].

Using direct sparse grid quadrature requires the evaluation of high-dimensional integrals to

obtain the gPC coefficients, to circumvent this the key is to convert the sparse grid approxima-

tion into a Legendre gPC expansion without the need to evaluate any high-dimensional integrals

[Tam12], and insert the coefficients in Eq. (6.36) to obtain the Sobol’ indices.

For a comparison of the performance using sparse grid based gPC and some other tra-

ditional methods (Monte Carlo, Quasi-Monte Carlo, EFAST), we will use the Ishigami test

function is given in [SCS00]:

y(x) = sin(x1) + 7 sin2(x2) + 0.1x4
3 sin(x1) (6.40)



6.5. Global sensitivity analysis on a small initial training data 143

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1  100  10000  1e+06  1e+08

| S
1T

-S
1T

,e
xa

ct
 |

Number of function evaluations

MC
QMC

EFAST
gPC

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1  100  10000  1e+06  1e+08

| S
2T

-S
2T

,e
xa

ct
 |

Number of function evaluations

MC
QMC

EFAST
gPC

Figure 6.5: Error convergence for the total effects for x1 and x2 on the Ishigami test function, a
typical benchmark in global sensitivity analysis. Left: ST1 and Right: ST2 .

where xn ∈ [−π, π]. A fourth dummy input which is not used in the function evaluation is

also used in the analysis. We only present the total effects for variable 1 and 2, see Figure 6.5.

The Quasi-Monte Carlo (QMC) used the Sobol’ sequence. This shows the great performance

obtained using sparse grid based gPC.

6.5.3 gPC on Kriging using a small initial training data: GSA on PSA

Up to this point we have presented the construction of a “sparse” gPC expansion for represent-

ing the computational model’s output y(Z) over the design space Ω ⊆ RN , given by our choice

of design variables represented byZ = (Z1, Z2, . . . , ZN )T ∈ RN . For us, the sensitivity analy-

sis should be applied on the PSA simulator’s scalar output (e.g. product purity) considered over

the design space. However, because the PSA simulator fails for some design points, and that

the sparse-grid based gPC is built on a fixed sparse grid, this gPC construction is not possible

if some design points of the sparse grid cannot be evaluated. To overcome this, we propose the

use of the Kriging model on the original PSA simulator output, using some initial training data

D = {(XD,Y D)}, and then apply the sparse grid gPC on this Kriging model. The Kriging

predictor ŷ(·), given by Eq. (4.3), is replacing y(·) in Eq. (6.28) for calculating the Sobol’ index

for j, that is,

Sj =

∫
Γ ŷ

2
j (Zj)ρ(Z)dZ∫

Γ ŷ
2(Z)ρ(Z)dZ − ŷ2

0
. (6.41)

Because the Kriging model is smooth, the gPC method is a good fit even for relatively low res-

olution, specified by ω. The gPC may only need a few thousand Kriging evaluations, which are

fast-to-evaluate, to provide accurate estimates of the Sobol’ indices (see Table 6.6), as opposed

to Monte Carlo computations that most likely require at least 106 evaluations.

Global sensitivity analysis with gPC expansion on sparse grids is here applied on the Krig-
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Table 6.6: The computation of the total effects of the design variables, see Eq. (6.30), on the
Kriging model, with gPC expansion on sparse grids. The Kriging model is applied for the
product purity, and used a training data set of size 128.

ω Kriging evaluations CV7 Ffeed tfeed pvac CV3/6 Tfeed
0 13 0.7316 0.0945 0.1648 0.0080 0.0008 0.0001
1 97 0.8172 0.1102 0.1494 0.0188 0.0098 0.0027
2 545 0.7737 0.0994 0.2003 0.0154 0.0139 0.0111
3 2561 0.7818 0.0921 0.1908 0.0131 0.0119 0.0077
4 10625 0.7811 0.0915 0.1897 0.0131 0.0121 0.0068

ing model with the same settings used in the previous section, where the correlation parameters

are estimated with the Maximum Likelihood Estimation (MLE) method. The Smolyak sparse

grid is used with level ω = 4. See Figure 6.6 where the total effects STn are shown for the

product purity and recovery, calculated from the Sobol’ indices using equation (6.30) for all the

design variables, given as averages with min-to-max ranges.
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Figure 6.6: Total effects calculated with Sobol’ indices for each of the six design variables
(given as averages over 5 different training data of sizes 32, 64, and 128) on the quantities of
interest via the Kriging model.

This is to our knowledge the first attempt to use a gPC expansion on top of the Kriging
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model that has been built for the original model’s output. An interesting observation is that

the Kriging model is adapted to the initial training data through the MLE-fit of the correlation

parameters ξ = (ξ1, ξ2, . . . , ξN )T , and the parameter choices are expected to greatly influence

the estimation of the sensitivity measures. For example for the product purity we obtained

ξ = (1.153, 4.693, 1.615, 15.0, 14.393, 15.000)T for the product purity, which means the CV7

is the most influencial, followed by tfeed and Ffeed, the same order of importance identified by

the total effect in Figure 6.6. On the other hand, for the product recovery, the ordering of the

total effects are not the same, for example Ffeed and CV7 are switch places in the ordering.

That tfeed and Ffeed are influencial across all the objectives is expected. Also, the vacuum

pump is known to be the unit that consumes most power. We therefore expect that the power

consumption would depend strongly on pvac (Figure 6.6). It is the design variable affecting the

energy performance of the system the most.

To understand the impact the correlation parameters on the sensitivity measure calculated

on the Kriging model, the correlation parameters are set to the same value. Then, when the

effect of using fitted correlation parameters is “removed” the effect of each design variable is

still similar, see Figure 6.7. This reveals to us that the parameter estimation for the Kriging

model is not dominating the sensitivity measures too much. However, we have noticed that

with too short correlation lengths the sensitivity measures can be become too influenced by the

non-linearity of the Kriging’s response surface.
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Figure 6.7: Total effects calculated with Sobol’ indices (given as averages over 5 different
training data of sizes 32, 64, and 128) via the Kriging model for the product purity, with all the
correlation parameters ξj set to 2 (Left). This reveals that still these total sensitivity measures
under isotropic correlation structure (Left) are similar to those obtained in the anisotropic case
where the correlation parameters ξ were the MLE esimates (Right).
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From these results we can conclude that CV7, tfeed, and Ffeed all have a strong influence

on the product purity and recovery. The remaining ones seem to have little effect. For the

power consumption, the pvac is a very important design variable, and again tfeed and CV7 are

considered to have significant impact. This analysis using only a small initial training (of size

64) can be useful for model dimension reduction, for instance. In this case, perhaps CV3/6 and

Tfeed could have been removed as design variables in the PSA design problem, and rather be

chosen judiciously with some other approach, such as relying on expert knowledge.

6.6 SBO performance

In this section we are presenting the results obtained from performing SBO for a variety of

optimisation problem formulations. The SBO performance is investigated for a few different

surrogate based criteria, and the resulting design solutions are analysed at the end.

First a single-objective problem is considered, for which the product purity is maximised.

Then the same optimisation problem is revisited with the exception that the design solutions

of interest must exceed 90 % product recovery. After that, the product purity and recovery is

optimised simultaneously in accordance with Pareto optimality. Finally, the system’s power

consumption is included as a third objective, which preferably should be as low as possible.

The SBO methods are compared to the real-coded GA or the NSGA-II, which both are

using the following internal settings: population size 16, crossover rate 0.9, crossover index

5, mutation rate 1/6, mutation index 20, and the number of generations depend on the case

example. The crossover and mutation operators used are the simulated binary crossover and

polynomial mutation.

Let us assume we only have eight CPUs to our disposal at any given time. For all results

presented, the SBO methods have utilised all the available CPUs for selecting eight new design

solutions per SBO iteration. For the SBO methods that switch between two surrogate based cri-

teria, e.g. SbGA-ALM and SbNSGAII-ALM, we are dividing the work (and the CPUs) needed

for the multi-point selection equally between these criteria (that is, four points are selected by

maximising the Kriging predictor, and four points selected by ALM).

6.6.1 Case I: Maximise CO2 purity

To maximise the CO2 purity, we applied the proposed SBO methods, SbGA, SbGA-ALM, and

EGO, and compared the results to the real-coded GA. The comparison is presented in Figure 6.8,

where five replications of all the methods were performed, using five different initial training
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data (of size 16). The real-coded GAs are initialised with the same training data. The variability

in the results are caused by the randomness in the GA operators, as well as the generated initial

training data, as they are the only sources of randomness.
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Figure 6.8: The use of the real-coded GA on CO2 purity in the product, with and without the
use of a Kriging model.

What can be noted from Figure 6.8 is that all the SBO methods outperform the stand-alone

GA, and seem to converge to good design solutions within a budget of hundred twenty design

solutions. The SbGA and EGO are displaying the best convergence rate, although one repli-

cation of the EGO method had an outlier with slighly worse efficiency. For this optimisation

problem the ALM approach seems to be too conservative, and thus less efficient. Nonetheless,

the performance with ALM is comparable to the others, which makes it advantageous as it also

is the most robust of the three.

6.6.2 Case II: Maximise CO2 purity with > 90% CO2 recovery

This optimisation example is the same as for Case I but with an added design constraint, specify-

ing that the product recovery needs to exceed 90%. As discussed in the introduction, for carbon

capture at least a 90% CO2 recovery is required. To enforce this constraint, the constraint han-

dling method for GAs, develop by Deb [Deb00], is adopted. The use of Deb’s constraint han-

dling in SBO is described in Section 5.2.3. The performance of the constrained SBO method,

SbGA-Ch-ALM, is again substantionally better than the conventional real-coded GA-Ch.
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Figure 6.9: Comparison of real-coded GA-Ch and the SbGA-Ch-ALM, both using Deb’s con-
straint handling.

6.6.3 Case III: Maximise CO2 purity and recovery

In contrast to the previous case example, the goal is to maximise the CO2 purity and recovery at

the same time. For this, we are optimising the two objectives in a Pareto sense. Multi-objective

optimisation approaches are presented in Section 3.2.3. The SbNSGAII and SbNSGAII-ALM

up to 336 design solutions, and compared to the conventional NSGAII, for which we run up to

1600 design solutions. Figure 6.10 reveals the rapid convergence of the SBO methods, when

compared to the NSGAII. See also Figure 6.13 for the Pareto front approximations obtained

with the SBO methods and the NSGA-II, after 336 and 1600 PSA simulator evaluations, re-

spectively. The original NSGA-II is performing very well for a large number of PSA simulator

runs, in terms of richness and coverage of the Pareto front. Because of the huge number of sim-

ulation runs performed with various optimisation strategies, we are confident that the NSGA-II

Pareto front, shown in Figure 6.13, is a good approximation of the true Pareto front.

The MOEGO has been found to be less robust than SbNSGA-ALM, see Figure 6.11.

The MOEGO transforms the multi-objective problem into a single-objective one, in a sta-

tistically pleasing way, but also makes it heavily reliant on the Kriging being an ac-

curate statistical representation (both for the predictive mean and variance), which is a

rather strong assumption. As an example, consider the problem of minimising y(x) =

(y1(x), y2(x))T =
(√

(x1 − 1)2 + (x2 − 1)2,
√

(x1 + 1)2 + (x2 + 1)2
)T

over support x =

(x1, x2)T ∈ [−2, 2]2, which was the numerical example used in [EDK11], the original work

on MOEGO. By changing the correlation parameter choice between from the original setting

ξ = (70.7, 70.7)T to ξ = (1, 1)T , the performance is deteriorating, see Figure 6.12.
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Based on the results presented, SbNSGA-ALM has the best overall performance as a multi-

objective optimisation method. The robustness of both the SbNSGAII and SbNSGAII-ALM is

encouraging. For the Pareto front segments, for which both SbNSGAII and SbNSGAII-ALM

were represented, the SbNSGAII most often displayed the best precision (see Figure 6.13). On

the other hand, SbNSGAII-ALM seems to attain a more diverse set of Pareto solutions than

SbNSGAII. This can be seen from that the solutions generated by SbNSGA-ALM (in Figure

6.10) amount to a notably larger portion of the Pareto front, compared to SbNSGAII (without

ALM).
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Figure 6.10: Comparison of different strategies for solving the CO2 purity vs recovery problem:
Top left: 64 points, right: 96. Bottom left: 176, right: 256. The results for each strategy is the
collection of their Pareto fronts from five different initial training data.

The system’s power consumption is also, as discussed earlier, a very important perfor-

mance indicator, for assessing PSA for CO2 capture. The power consumption for the differ-

ent design solutions have been stored during the PSA simulator runs, and are available for
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Figure 6.11: MOEGO and SbNSGA-ALM for the purity-recovery, that started with the same
initial training data of size 16.
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Figure 6.12: A simple optimisation problem (not the PSA problem) to illustrate the effect of
the correlation parameter choice, ξ = (1, 1)T (Top) and ξ = (70.7, 70.7)T (Bottom), on the
MOEGO performance. The intial training data consists of 10 initial evaluations (design solu-
tions), and 10 additional selected sequentially with MOEGO.
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analysis. Figure 6.15 suggests that roughly equal compromises between the purity and re-

covery is actually a low power consumption regime. There is a negative correlation between

min{ypurity(x), yrecovery(x)} and the Power consumption per mole (see Figure 6.14). That is,

by attempting to achieve a moderate to high purity and recovery, simultaneously, the resulting

design will be among the least demanding in terms of power usage.

The trend in Figure 6.14 could be because we have the pressure equalisation step, which

increases the CO2 purity, the most strongly adsorbed component, at the same time as the des-

orption is at a low pressure, which would require a relatively high compression ratio. The

higher compression ratio, the lower CO2 purity. These opposing forces may cause the power

consumption to either increase, or decrease, depending on the relative strength of these two

effects.

Figure 6.16 shows an interesting relationship between segments of the Pareto front, and

cluster patterns in the design space using Radial visualization (RadViz) [AKK96], see Figure

6.16. Courtesy to Antanas Zilinskas and Audrius Varoneckas at Vilnius University for iden-

tifying the clustering, but with multidimensional scaling for the same PSA data. RadViz is a

widely used technique for visualising multi-dimensional data, typically to help detecting and

reveal patterns hidden in the data.
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Figure 6.13: Purity vs Recovery: Comparison of NSGA-II, using 1600 design points, and
SbNSGAII, as well as SbNSGAII-ALM, are using 336 design points. The results presented are
the five Pareto fronts produced from using five different starting training data.
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Figure 6.14: The correlation between the system’s power consumption and
min{ypurity(x), yrecovery(x)}. The design solutions are from a single NSGAII run (1600
design solutions).
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Figure 6.15: Purity vs Recovery: Comparison of NSGAII utilizing a budget of 1600 design
points, and SbNSGAII, as well as SbNSGAII-ALM, a budget of 336 design points. The results
presented are all the evaluations explored by the strategies. The power consumption per mole
is also represented by the color of the Pareto front.
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Another widely used to visualise multi-dimensional data is the parallel coordinates

[Weg90]. Parallel coordinates is suitable for data with a large number of variables. In this

representation each variable then corresponds to an axis. The axes are vertical (or horizontal)

lines that are equidistantly placed. Each data point is represented by a polyline, crossing the

axes according to its variables’ values. But with more and more data points included, the lines

become overlapping, causing crowding, making the visualisation difficult to view.

The use of both parallel coordinates and RadViz has been suggested in [BDS05]. This

is motivated by the more complete visualisation achieved by combining the two. First, the

RadViz visualisation is applied for cluster identification, then the parallel coordinates can be

better used to visualise the design points belonging to the different clusters. For PSA design the

cluster identification, related to some segment of the Pareto front approximation, can be useful

for parametric studies, and to understand the reliability of the PSA simulation prediction (if

similar performance is produced by nearby design points). With these visualisation techniques

we have been able to identify clusters in the design space, here by dividing the Pareto front

approximation into four distinct segments, see Figure 6.16. The design solutions displayed

belong to the Pareto front calculated from all the solutions gathered from the five NSGAII runs

performed in Case III.

The link between the different Pareto front segments highlighted with colours (cyan, red,

green, and blue) and the design solutions are seen in Figure 6.16 to follow a pattern. This

enables us to better understand the underlying process, and the impact the different design

variables have on the outputs of interest. In the regime of high purity, we can see that no purge

should be used in the light reflux step. This is reasonable as the CO2 is the heavy product

taken out during the light reflux step, and to purge the bed with a gas mixture of high N2 is

likely to deteriorate the CO2 level of the outgoing product. Long cycle times promote high

purity CO2 streams, but unlikely to lead to a high recovery system. Instead, we can observe

that lowering the cycle time to an intermediate value, together with using a high flow rate,

provides a trade-off where we expect good performance in purity and recovery simultaneously.

The vacuum pressure is another factor, if the vacuum pressure is high, the CO2 will not be

efficiently removed from the bed. The best performance in terms of CO2 purity is when the

vacuum pressure is at its lowest point in the specified range. CV3/6 is mainly affecting the

recovery; if the stem positions are more closed, the pressure change close to the vent will
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increase the CO2 recovery of the system. As expected a higher temperature will improve the

CO2 uptake and in turn enrich the heavy product in CO2. In conclusion, we can understand

the PSA process much better from observing Figure 6.16, and the trade-off between purity

and recovery can be explored in detail. If we design the PSA system to maximise the CO2

concentration of the outgoing product, we can lower the amount of feed gas (tfeed × Ffeed)

that enters the system, and increase slightly the vacuum pressure (pvac) and the valve constant

CV3/6, in order to significantly improve the recovery without sacrificing too much in terms of

purity. To increase CV7 can improve the recovery, but interestingly enough we can see that it is

not required for the system to achieve high purity and recovery.
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Figure 6.16: Pareto front divided into segments (Top Left) defined by different colours. RadViz
(Top Right) and the parallel coordinates (Bottom) visualisation together show that the design
solutions associated with different Pareto front segments are clustered.
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6.6.4 Case IV: Maximise CO2 purity and recovery, and minimise power con-

sumption

The power consumption is now included as an objective to be minimised. Then the design

problem is with three objectives: maximise the CO2 purity and recovery, while minimising

the system’s power usage. The use of three objectives are usually prohibited because of the

computational effort required. At most two objectives have been considered simultaneously for

any PSA optimisation study in literature. The SBO method accommodates for the use of the

Pareto approach in this case. The results obtained by using SbNSGAII-ALM, and NSGA-II is

presented in Figure 6.18.
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Figure 6.17: Sensitivity analysis using scatter plots for results obtained with SbNSGAII for
three objectives, using 800 design solutions.

The SbNSGAII(-ALM) for purity-recovery-power achieved equally good Pareto front ap-

proximation as in Case III (purity-recovery) without the need to perform additional PSA sim-

ulations. SbNSGAII-ALM is shown to be scalable to more than two objectives. Also, the

SbNSGAII-ALM exhibits a much faster convergence towards the true Pareto front than the NS-

GAII. Moreover, by using the results gathered using SbNSGA (800 design solutions), we can
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compare the design-to-output pattern of the design solutions given as scatter plots, against the

global sensitivity analysis presented in Section 6.5 that used total effect based on Sobol’ indices.

Figure 6.18: Optimised with the Pareto approach for three objectives: product purity, recovery,
and power consumption. The results are the Pareto front approximation presented as a scatter
plot for SbNSGAII-ALM (Top) with 336 points, and original NSGA-II (Bottom) with 1600
points. The dark grey points are the solutions satisfying product purity > 70%, and recovery
> 85%.
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For this, we have selected a few representative scatter plots for the input-output relation-

ships of the solutions obtained with SbNSGAII. The scatter plots given in Figure 6.17 strengthen

our belief in the result obtained through our preliminary global sensitivity analysis, using the

Kriging on only 64 PSA simulation runs. The pressure vacuum pvac has a signficant effect on

the power consumption, but little effect on the product recovery, whereas we can see the huge

impact purge-to-feed ratio, CV7, has on the product purity. The feed, Ffeed, has some affect

on the purity of product. With the SbNSGAII-ALM we had 24 PSA simulation failures out

of the total of 800 simulation runs, and NSGAII had 32. These are representative numbers for

all our runs, that is, roughly 5% of all simulation runs lead to some internal failure. Based on

these numbers, using the procedure presented in Section 5.4 for preventing revisits to the design

points that already caused failure, is worth implementing.

From the parallel coordinate system, showed in Figure 6.16, for the different design so-

lutions, we made the following observations: the recovery of the product increases with the

temperature, and with the vacuum pressure. The purity is increasing with the cycle time, in

contrast to the recovery, and is high when purge-to-feed valve is closed. The best region of

performance in terms of both product purity and recovery, would be with no purge to feed, in-

termediate cycle length, low feed flow rate, low vaccum pressure, little throughput on CV3 and

CV6, while at temperature at the high end of the range.

6.6.5 Comparison in terms of computation effort

When using Kriging surrogate models, the computational cost of fitting a Kriging model is the

most expensive operation, it is proportional to m3, where m is the number of design points

available to build the surrogate. The algorithm cost between the SBO method for single ob-

jective problems, and for multiple objectives, typically differs by a factor of the number of

objectives. This is because for each objective function, we build a separate Kriging model. The

construction of the Kriging is the most demanding part of the SBO method. Also to consider

is that the single objective problem requires the use of for example a real-coded GA, whereas

we used NSGA-II when more than one objective were used. The latter is more costly for large

population sizes as the Pareto front has to be determined many times. The computational cost to

run the PSA simulator should is important when deciding on what algorithm to use. If the PSA

simulator is fast, the algorithm cost for SBO has to be small otherwise the method is not effi-

cient. This is because the algorithm cost of the optimisation procedure should be much smaller

than the cost to calculate the objective functions, and constraints.
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In this case eaxmple, the PSA simulator is moderately expensive to run, between 10 min

to an hour. A simple cost analysis reveals that the algorithm cost for all the SBO methods used

in this investigation is low enough to make the number of simulator runs to be the dominant

important factor in determining the computational efficiency of performing the optimisation.

Because the MLE fit operation is only performed until the design set is of size 80, we exclude

the MLE fit operation cost in this analysis. If it would have been considered, this cost would be

proportional to the number of “expensive” objective and constraint functions that are modelled

with Kriging.

Table 6.7: CPU time for the SBO algorithms at the iteration with 200 design points.

Single objective: ∼ 20s
Single objective
with constraint: ∼ 100s
Bi-objective: ∼ 100s
Tri-objective: ∼ 200s

We are comparing the SBO algorithm costs when using 200 design points, given the set-

tings used in this case example. The SBO algorithm costs are presented in Table 6.7. This shows

that a single-objective SBO method is computationally cheaper. Moreover, the computational

effort of a single objective formulation with a single constraint, which requires two Kriging

models, is of the same order as the effort needed by the bi-objective SBO. The SBO for three

objectives are only twice as expensive as the bi-objective case. As the PSA simulator in this

case example takes on average about 30 min to evaluate, the selection in each iteration mounts

to about 5% of the total cost. We advice that computational cost to run the PSA simulation is

evaluated, and after that decide what approach that is most advantageous not only in terms of

the number of PSA simulation runs needed to find a desired solution, but also considered the

computational effort required when using the Kriging model.

6.7 Concluding remarks

We have shown that the SBO procedure developed for multi-objective optimisation works for a

real, challenging, case study on PSA for carbon capture. We have applied the same procedure

for different optimisation formulations, and we showed that for all cases this new procedure

is robust and much faster in finding good design solutions than the genetic algorithms. It can

be an order of magnitude faster in terms of number of PSA simulation runs required. The
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optimisation problem has been specified with both computationally expensive objectives and

constraints. Based on the results obtained for the different cases, it seems like multi-objective

optimisation of the purity and recovery, is preferred to a single objective optimisation of the

purity, with recovery constraint. Similarly, the three-objective SBO performs as well as the bi-

objective SBO. The approximation quality in the beginning of the optimisation for the product

recovery and power consumption, is above 10% (we use 16 points to initialise the optimisation),

which is not particularly accurate for being a model, but the important aspect is that the accuracy

improves as the search progresses. Also, the optimisation is robust against any issue caused by

low accuracy in the beginning, since the surrogate models are only used to assist the search,

not fully replace the objectives (or constraints). We presented a novel computationally-efficient

global sensitivity analysis with gPC on Kriging instead of Monte Carlo with Sobol’ sequences.

This sensitivity analysis can be useful for selecting the design variables to be considered during

the optimisation. The visualisation procedure to analyse the design solutions is new, that is,

the link between segments of the Pareto front representation in the objective space and the

corresponding design solutions in the parallel coordinate system. This visualisation procedure

can be very helpful even for other applications.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

PSA offers a broad range of design possibilities influencing the system behaviour. To under-

stand the capability of PSA for different tasks, we wish to assess its performance for different

design configurations, typically via PSA computer simulation of some rigorous mathematical

description of PSA processes. To perform this assessment, there is a need for efficient optimi-

sation, since the computer simulations are computationally expensive to evaluate.

Over the past decade, much attention has been devoted towards PSA optimisation for de-

sign, in particular of complex multi-bed/multi-step PSA cycles. More recently, there has been

some new design frameworks, such as the 2-bed superstructure [ABZ10b], for optimal design.

However, there has been a need to develop efficient optimisation methods for this end. Some of

these efforts are the use of a trust-region approach with a reduced-order model [ABZ09], and a

simple surrogate-based optimisation strategy for VSA design [HKF+11]. However, a more effi-

cient optimisation approach is desirable for large-scale PSA optimisation. One such application

is the investigation of PSA as a means for carbon capture. Most optimisation methods for PSA

design, such as the ones above, are not equipped for multi-criteria design in the Pareto optimal

sense. The ones that are suitable for multi-criteria design are computationally inefficient, e.g.

straight-forward use of multi-objective evolutionary algorithms.

The focus of this thesis is on the development of efficient optimisation that can be helpful

in the long term for the Carbon Capture and Storage (CCS) effort in the choice of gas separa-

tion technique. Our work has shown that surrogate modelling can be used to improve already

existing optimisation techniques, by reducing the number of PSA simulation runs required to

find good design solutions. By using the SBO procedure proposed in Chapter 4, which was

further improved in Chapter 5, robust single and multi-objective optimisation can be performed
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more efficiently as fewer simulation runs are needed. This procedure, when used with genetic

algorithms, can attain the nice features of those algorithms, especially for multi-objective opti-

misation.

Few studies have attempted optimisation of PSA systems for multi-criteria design. The

two most used design criteria, the product purity and recovery, are known to be conflicting,

which motivates multi-criteria design. Because PSA is currently investigated as a gas separation

technique in the CCS process, a Pareto front approximation can be useful in the decision mak-

ing process. For the challenging multi-criteria design problem of a 2-bed/6-step PSA system,

given in Chapter 6, even three design criteria were optimised simultaneously, which is consid-

ered to be a huge challenge for optimisers when the objectives are computationally expensive.

SbNSGAII-ALM applied to the 2-bed/6-step PSA system for various design formulations, has

been demonstrated to be efficient and robust. The SBO procedure can be used together with any

type of PSA simulation approach. In this work we used a black-box optimisation framework,

together with the successive substitution as the simulation strategy, both highly stable, but often

rejected because of being computationally intractable for large-scale optimisation.

Chapter 5 presented some novel improvements of the SBO method. For instance, the trans-

formation of the Kriging for the product purity and recovery is novel, and to our knowledge not

used before. This transformation has been shown to be important for multi-objective optimisa-

tion with surrogate models, for engineering problems where we have physical constraints on the

outputs. Also, the improvement made by introducing the knowledge about the PSA simulation

failures, in the Kriging variance, is an essential modification that promotes global search. The

use of ALM gives an advantage, as some surrogate based optimisation methods are overconfi-

dent in the predictive mean of the Kriging, which can be misleading. In a multi-criteria setting,

SBO with ALM tends to generate a higher diversity in the Pareto solutions.

In Chapter 6 we performed global sensitivity analysis with the Sobol’ method. The Sobol’

method is known to be computationally demanding as it requires many multi-dimensional in-

tegrations, for this typically Monte Carlo (MC) sampling is performed. Instead we proposed

a novel approach, that uses a novel sparse grid based polynomial chaos method [BBMF13] on

the Kriging, which enables the calculation of the total sensitivity effects on the objectives used

in the 2-bed/6-step PSA case study.

To conclude, the main contribution of this thesis has been the development of a SBO pro-

cedure suitable for process design under multiple objectives. This should be a helpful step to
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begin to address PSA design for large-scale industrial applications, which are very challeng-

ing computationally. For example, when the PSA model is used as a process unit in a power

plant model for carbon capture. The PSA model is then likely to be the most computationally

expensive sub-model, and the use of surrogate models can in this setting be adventurous.

7.2 Future work

The results obtained showed the use of surrogate models benefits optimisation for PSA design.

The SBO procedure has been shown to be robust and efficient, see results in Chapter 4 and 6.

Kriging, which is the fast-to-evaluate surrogate model, has been proven to be a valuable aid in

optimisation and sensitivity analysis, and there are many other interesting research directions to

explore. Here follows some suggestions on possible research directions.

• The SBO method SbNSGAII-ALM, demonstrated in Chapter 6, has been shown to be

efficient means of achieving fast and robust optimisation of PSA systems for design.

This efficient optimisation method should be possible to incorporate directly in one of

the new flowsheet design frameworks developed in [FFB09a, ABZ10b] for assessing PSA

for carbon capture in a large-scale effort, ranging over a wide range of cycle schedules,

design configurations, and operating conditions. Also if combined with e.g. mixed-

integer programming the adsorbent materials can be included as a decision variable in

the design problem.

• The design of a PSA system should ideally be assessed in the setting it should be used,

which allows more relevant design criteria for the CCS process. This means that if the

PSA model is embedded in the carbon capture post-combustion unit of a steady-state

power plant model, the performance can be assessed in terms of the performance of the

carbon capture unit, and the power plant’s power generation efficiency with and without

the carbon capture integration.

• In Chapter 6 we have showed that multi-objective optimisation can be performed more

efficiently with the use of surrogate models for two and three objectives. An extension

of this work could be to investigate when to consider the multi-objective Pareto approach

over the single-objective optimisation for the problem of minimising the power consump-

tion with constraints on the product purity and recovery.

Even though the SBO procedure has been shown to be robust and efficient, when applied

as in SbGA-ALM and SbNSGAII-ALM, there are some possible improvements to the SBO
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procedure that could be interesting:

• One could combine a targeted optimisation approach suited for process systems design

[WSF04] with SBO to make what would be “Efficient Targeted Optimisation”, ETO.

The issue of designing a surrogate model to be more accurate in targeted regions has

been address before, however not with the surrogate models working in conjunction with

the optimisation algorithm to target regions of mutual interest. In this procedure the

“targeted” region is considered to be the “feasible” region. In this framework a design

point is labelled feasible or infeasible depending on the model’s response, e.g. whether

or not the model fails, or the response values do not satisfy certain criteria. The choice of

feasible region criteria is critical, the failure to remove the ”badly-behaved” regions can

cause the surrogate model performance to deteriorate. The feasible region criteria can be

chosen based on expert knowledge or through the use of data analysis. The feasible region

is often not known beforehand, and from point-wise computation of the original model

before and during the optimisation, a feasbile region approximation can be established.

To identify the feasible region is not a trivial task, as the region may be irregular and non-

convex. However, the use of data analysis and visualisation techniques has been shown

to be very helpful for feasible region approximation, e.g., convex hull, search cones,

and scan circles [BWF07]. For this the surrogate model can be used to more efficiently

identify the feasible region. The feasible region approximation attemps to include as

many feasible points as possible; although in this process, infeasible points may also

become covered by the hull. The feasible region can be approximated by linear constraint

cuts. The linear constraint cuts are determined in an iterative and automated fashion using

the Scan Circle Algorithm (see, e.g., [WSF03]), a cluster identification technique with

parallel coordinates. The optimisation method considered can be e.g. the real-coded GA,

or NSGA-II for multiple objectives, with operators (crossover, mutation, etc.) tailored

to produce the majority of offsprings in the targeted regions, and the surrogate model, a

Kriging model, is updated using the “best” solution found, if feasible. At the end of each

iteration the feasible region appproximation should be refined.

• Chapter 6 showed that the Kriging can be useful when computing the Sobol’ method for

global sensitivity analysis. The use of global sensitivity analysis for screening the design

variables before optimisation can be benefical when you have design problems with many

design variables (> 10).
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