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Abstract— The next generation of navigation and positioning 
systems must provide greater accuracy and reliability in a range 
of challenging environments to meet the needs of a variety of 
mission-critical applications. No single navigation technology is 
robust enough to meet these requirements on its own, so a 
multisensor solution is required. Although many new navigation 
and positioning methods have been developed in recent years, 
little has been done to bring them together into a robust, reliable, 
and cost-effective integrated system. To achieve this, four key 
challenges must be met: complexity, context, ambiguity, and 
environmental data handling. This paper addresses each of these 
challenges. It describes the problems, discusses possible 
approaches, and proposes a program of research and 
standardization activities to solve them. The discussion is 
illustrated with results from research into urban GNSS 
positioning, GNSS shadow matching, environmental feature 
matching, and context detection. 

Keywords- Integrated Navigation, Multisensor Navigation, 
UrbanPositioning 

I.  INTRODUCTION 
Before the 1990s, electronic navigation mainly concerned 

the positioning of large vehicles, such as ships and aircraft, in 
open environments. Different technologies were applied to air 
and sea navigation, while land navigation was largely manual. 
The advent of the Global Positioning System (GPS) provided a 
single technology that could be used for air, land, and sea 
navigation, and many other positioning applications, such as 
surveying. However, it was limited in terms of signal 
penetration and interference vulnerability. Robustness was 
improved by integrating global navigation satellite systems 
(GNSS) with established position-fixing and dead-reckoning 
technologies [1][2]. However, many capability gaps remained, 
particularly for indoor and urban navigation, and for 
applications requiring very high solution availability and 
reliability. 

To bridge the gaps, many new positioning techniques have 
been investigated over the past fifteen years. Examples include: 

 Wi-Fi positioning [3][4][5]; 

 Ultra-wideband (UWB) positioning [6]; 

 Positioning using phone signals [7][8][9]; 

 Positioning using television signals and other signals of 
opportunity (SOOP) [10][11][12][13][14]; 

 Bluetooth low energy positioning [15]; 

 Laser-based position fixing and dead reckoning 
[16][17][18][19][20][21]; 

 Pedestrian dead reckoning (PDR) using step detection 
[22][23][24][25]; 

 Pedestrian map matching [26][27][28][29][30][31]; 

 Magnetic anomaly matching [32][33][34]; 

 Activity-based map matching [35][36]; and 

 GNSS shadow matching [37][38][39][40][41]. 

There have also been improvements to existing 
technologies. The hardware required for visual navigation is 
now inexpensive and many new position-fixing and dead-
reckoning algorithms have been developed 
[42][43][44][45][46][47]. Micro-electro-mechanical systems 
(MEMS) technology has enabled low-cost (albeit low-
performance) inertial sensors [48], while high-precision inertial 
sensing has been demonstrated in the laboratory using cold-
atom technology [49][50], and nuclear magnetic resonance 
(NMR) gyros offer aviation-grade performance with compact 
sensors [51]. Legacy radio navigation systems, such as 
Distance Measuring Equipment (DME) [52][53] and Loran (in 
Europe and South Korea) [54] are being modernized, and 
Doppler positioning is being reintroduced using Iridium 
communication satellites [55]. Finally, GNSS has been 
enhanced through multiple constellations [1], high-sensitivity 
receivers and network assistance [56], and augmentation by 
commercial pseudolite systems [57][58][59]. Current trends in 
navigation and positioning research are reviewed in [60]. 

The next generation of navigation and positioning systems 
must provide greater accuracy and reliability in a range of 
challenging environments to meet the needs of a variety of 
mission-critical applications. For example, a universal 
navigation system might be expected to provide position within 
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3 meters at any location with a very high reliability. No single 
positioning technology is capable of meeting the most 
demanding application requirements. Radio signals may or 
may not be subject to obstruction, attenuation, reflection, 
jamming, and/or interference. Known environmental features, 
such as signs, buildings, terrain height variation, and magnetic 
anomalies, may or may not be available for positioning. The 
system could be stationary, carried by a pedestrian, or on any 
type of land, sea, or air vehicle. Furthermore, for many 
applications, the environment and host behavior are subject to 
change. A multisensor solution is thus required. 

Although many new navigation and positioning methods 
have been developed, little has been done to combine them into 
a robust, reliable, and cost-effective integrated system. To 
achieve this, the navigation and positioning community must 
meet four key challenges. These are as follows: 

 Complexity – How to find the necessary expertise to 
integrate a diverse range of technologies, how to combine 
technologies from different organizations that wish to 
protect their intellectual property, how to incorporate new 
technologies and methods without having to redesign the 
whole system and how to share development effort over a 
range of different applications. 

 Context – How to ensure that the navigation system 
configuration is optimized for the operating environment 
and host vehicle (or pedestrian) behavior when both are 
subject to change. 

 Ambiguity – How to handle multiple hypotheses, including 
measurements of non-unique environmental features, 
pattern-matching fixes where the measurements match the 
database at multiple locations, and uncertain signal 
properties, such as whether reception is direct or non-line-
of-sight (NLOS). 

 Environmental Data Handling – How to gather, distribute, 
and store the information needed to identify signals and 
environmental features and define their points of origin or 
spatial variation. 

Sections II to V describe each of these challenges in turn. In 
each case, the problem is explained, one or more solutions are 
proposed, and the issues that must be resolved in order to 
implement those solutions are discussed. Section III also 
presents the results of some preliminary context detection 
experiments while, in Section IV, the ambiguity problem is 
illustrated using results from several UCL research projects. 
Section VI then recommends a program of research and 
standardization activities to address the four challenges. 

II. COMPLEXITY 

A. The Problem 
Achieving robust positioning in challenging environments 

potentially requires a large number of subsystems. For 
example, Fig. 1 shows the possible components of a pedestrian 
navigation system using sensors found in a typical smartphone. 
Similarly, Fig. 2 shows possible components of a car 
navigation system using equipment already common on cars 

and other suitable low-cost sensors [61]. Comparing these 
figures, some of the technologies are common to pedestrian 
and road navigation, whereas others are different. 

Any multisensor navigation or positioning system needs 
integration algorithms to obtain the best overall position 
solution from the constituent subsystems [1]. These algorithms 
must not only input and combine measurements from a wide 
range of subsystems, but also calibrate systematic errors in 
those subsystems. Designing the integration algorithms 
therefore requires expertise in all of the subsystems, which can 
be difficult to establish in a single organization. The more 
subsystems there are, the more of a problem this is. 

 
Figure 1.  Potential components of a pedestrian navigation system using 

smartphone sensors 

 
Figure 2.  Potential components of a car navigation system using commonly 

available equipment and other low-cost sensors 

The expert knowledge problem is compounded by the fact 
that different modules in an integrated navigation system are 
often supplied by different organizations, who may be reluctant 
to share necessary design information if this is considered to be 
intellectual property (IP) that must be protected. In a typical 
smartphone, one company supplies the GNSS chip, another 
supplies the Wi-Fi positioning service, a third organization 
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supplies the mapping, the network operator provides the 
phone-signal positioning, a fifth company provides the inertial 
and magnetic sensors and a sixth company produces the 
operating system. Due to lack of cooperation between these 
different organizations, useful information gets lost. For 
example, GNSS pseudo-range measurements are not normally 
available to “app” developers. 

A further issue is reconfigurability. To minimize 
development costs, manufacturers share algorithms and 
software across different products, incorporating different 
subsystems. They also want to minimize the cost of adding 
new sensors to a product to improve performance. Similarly, 
researchers want to compare different combinations of 
subsystems. However, with a conventional system architecture, 
modifications must be made throughout the integration 
algorithm each time a subsystem is added, removed, or 
replaced. The more subsystems there are, the more complex 
this task becomes. 

For a given application, different subsystems may also be 
used at different times. For example, a smartphone may use 
Wi-Fi positioning indoors and GNSS outdoors and may deploy 
different motion constraints and map matching algorithms, 
depending on whether the device is carried by a pedestrian or 
traveling in a car. Different integration algorithms for different 
configurations are more processor efficient, but also require 
more development effort. Conversely, an all-subsystem 
integration algorithm is quicker to develop, but can waste 
processing resources handling inactive subsystems. 

B. The Solution: Modular Integration 
The solution to these problems is a modular integration 

architecture, consisting of a universal integration filter module 
and a set of configuration modules, one for each subsystem 
[62]. The integration filter module would be designed by data 
fusion experts without the need for detailed knowledge of the 
subsystems. It would accept a number of generic measurement 
types, such as position fixes and pseudo-ranges, with 
associated metadata. The configuration modules would be 
developed by the subsystem suppliers and would convert the 
subsystem measurements into a format understood by the filter 
module and supply the metadata. They would also mediate the 
feedback of information from the integration filter to the 
subsystems. The metadata comprises the additional information 
required to integrate the measurements such as 

 The measurement type and any coordinate frame(s) used. 

 A sensor identification number (to distinguish 
measurements of the same type from different sensors). 

 Statistical properties of the random and systematic 
measurement errors. 

 Identification numbers and locations of transmitters and 
other landmarks. 

A key advantage of this approach is that subsystems may be 
changed without the need to modify the integration filter. 
Provided the new subsystem is compatible, all that is needed is 
the corresponding configuration module. 

Fig. 3 shows an example of a modular integration 
architecture for a combination of conventional GNSS 
positioning, GNSS shadow matching, Wi-Fi positioning, and 
PDR. As well as providing measurements and associated 
statistical data to the integration filter module, the 
configuration modules feedback relevant information to the 
subsystems. Shadow matching works by comparing measured 
and predicted signal availability over a number of candidate 
positions, so requires a search area to be specified using other 
positioning technologies [38][39]. PDR uses information from 
other sensors, where available, to calibrate the coefficients of 
its step length estimation model and correct for heading drift 
[24]. Conventional GNSS positioning can also benefit from 
position and velocity aiding to support acquisition and tracking 
of weak signals in indoor and urban environments [1][56]. 

 
Figure 3.  Modular integration of conventional GNSS, shadow matching, 

PDR, and Wi-Fi positioning for pedestrian navigation (different colors denote 
potentially different suppliers) 

In principle, each subsystem configuration module could 
simply supply a position fix to the integration filter module 
with an associated error covariance. However, other forms of 
measurement generally give better results. For conventional 
GNSS positioning, the advantages of tightly coupled (range-
domain) integration over loosely coupled (position-domain) are 
well known [1]. Using pseudo-range measurements from 
individual satellites in the integration filter minimizes the 
impact of time-correlated noise and avoids the need for at least 
4 satellites to be tracked to provide measurements. 

PDR is a dead-reckoning technique, so measures distance 
traveled rather than position. Consequently, providing 
measurements of position displacement and direction can avoid 
cumulative errors in the measurement stream. 

GNSS shadow matching and some types of Wi-Fi 
positioning use the pattern-matching positioning method. This 
scores an array of candidate position solutions according to the 
match between the measured and predicted signal availability 
or signal strength. Although the output of these algorithms is in 
the position domain, a likelihood distribution can provide more 
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information for the integration filter than a simple mean and 
covariance (see Section IV). 

Other navigation and positioning techniques generate 
further types of measurement, including velocity, attitude, 
specific force, angular rate, range rate, and bearings and 
elevations of features. The types of measurement depend on the 
positioning method, i.e. dead reckoning, proximity, ranging, 
angular positioning, pattern matching, or Doppler positioning, 
as detailed in [62]. 

A universal integration filter must operate without prior 
knowledge of which measurements it must process and which 
states it must estimate. Consequently, it must reconfigure its 
measurement vector, state vector, and associated matrices 
according to the measurements available, using the metadata 
supplied by the configuration module. This capability is 
sometimes called “plug and play” and a number of prototypes 
have already been developed [63][64][65]. 

The integration filter must be capable of implementing 
either error-state or total-state integration, depending on the 
measurements available [1]. In error-state integration, one of 
the subsystems, usually a dead-reckoning technology such as 
inertial navigation, provides a reference navigation solution 
and the integration filter estimates corrections to that solution 
using the measurements from other subsystems. In total-state 
integration, the integration filter estimates the position, 
velocity, and attitude (where appropriate) directly. In the total-
state case, an additional configuration module is required to 
provide the universal filter with information on the host vehicle 
(or pedestrian) dynamic motion. 

Modular integration algorithms could form part of a wider 
modular integrated navigation concept in which subsystem 
hardware and software is also shared across a wide range of 
applications. Software sharing could span the consumer, 
professional, research, and military user communities, though 
opportunities to share hardware designs are more limited due to 
the differences in user requirements [62]. 

C. Issues to Resolve 
A critical requirement for the successful implementation of 

modular integration is an open-standard interface for 
communication between the universal filter and configuration 
modules. This enables modules produced by different 
organizations to work together. To realize the full benefits of 
modular integration, in terms of interoperability and software 
re-use, there should be a single standard covering the 
consumer, professional, research, and military user 
communities and spanning all of the application domains air, 
sea, land, indoor, underwater, and so forth. A standard 
developed by one group in isolation is unlikely to meet the 
needs of the whole navigation and positioning community, 
while the development of multiple competing standards defeats 
the main purpose of modular integration. 

This interface should be defined in terms of fundamental 
measurement types, such as position, velocity and range. 
However, there are many different ways of expressing these. 
Position may be curvilinear or Cartesian. Cartesian position 
may be Earth-centered inertial (ECI), Earth-centered Earth-

fixed (ECEF), or local. A local coordinate frame may or may 
not be aligned with north, east, and down. A position fix may 
also have 1, 2, or 3 dimensions, while 1D and 2D fixes are not 
necessary aligned with the axes of the coordinate frames. 

Depending on how the relevant subsystem works, 
measurements of velocity, position displacement, acceleration, 
specific force, angular rate, and the bearings and elevations of 
features may be resolved about the axes of the either the host 
vehicle or sensor body frame or an external reference frame. 
Similarly, ranging measurements may be true ranges or 
pseudo-ranges. Furthermore ranging and angular positioning 
measurements may be differenced across transmitters or 
landmarks, differenced across receivers or sensors, or double 
differenced across both. 

 A universal interface must support every measurement 
type that requires different processing by the filter module. 
However, it need not support formats that are easily 
convertible. Thus, there is no need to support both the north, 
east, down and east, north, up conventions. There are two main 
approaches to defining the fundamental measurement types: 

 A minimal number of very generic measurement types with 
metadata used to describe how these should be processed 
by the integration filter. 

 A large number of more specific measurement types for 
which the processing methodology is already known. 

For example, in the generic approach, there would be only 
one type of position measurement, but it would have a variable 
number of components and each axis would be specified in the 
metadata. Conversely, for the specific approach, 3D position, 
horizontal position, height, and line fixes would be separate 
measurement types. A hierarchy of types and sub-types could 
also be adopted. 

For each measurement type, an error specification must be 
defined. For error sources assumed to be white, a standard 
deviation or power spectral density (PSD) is required. For 
correlated errors, such as biases, scale factor and cross-
coupling errors, and higher-order systematic errors, 
information on the time correlation is required alongside 
variances and covariance information. The interface standard 
should include every conceivable error source. Error sources 
that are insignificant for a particular implementation should 
simply be zeroed by the relevant configuration module. The 
filter module should then use the error specification to 
determine which error sources to model and how. 

Obtaining reliable navigation sensor error specifications 
can be difficult. Manufacturers often provide only limited 
information, while performance in the field can be different 
from that in the laboratory due to vibration and electromagnetic 
interference. For new positioning techniques, the error behavior 
may not be fully understood, while complex error behavior can 
be difficult to measure. Adaptive estimation techniques 
[66][67][68] provide only a partial solution. Even where the 
error behavior is well known, it can too complex to practically 
model within the estimation algorithm. Arguably, this 
represents a fifth challenge to the community [69]. 



For subsystems used as the reference in an error-state 
integration filter, such as an inertial navigation system (INS), 
the errors will typically be correlated across the different 
components of the subsystem navigation solution, e.g. position, 
velocity, and attitude. Furthermore, to represent the error 
behavior within an integration algorithm, it is necessary to 
model the error properties of the underlying sensors, 
accelerometers and gyroscopes in the case of inertial 
navigation [1]. Thus, it is likely that additional compound 
measurement types for reference system data will be needed. 

For pseudo-range measurements, an issue to consider is the 
synchronization of different transmitter and receiver clocks. 
Clocks in receivers for different types of signal, such as GNSS 
and Loran, may or may not be synchronized with each other. 
Also, the transmitter clocks are typically synchronized in 
groups. For example, the GPS satellite clocks are synchronized 
with each other, as are the GLONASS satellite clocks, but 
GLONASS is not currently synchronized with GPS. For 
optimal integration of pseudo-ranges from different sources, 
this information must be conveyed to the integration filter. 

The interface standard for communication between the 
filter and configuration modules must also support feedback of 
information from the integration filter to the subsystems, via 
the configuration modules.  The integrated position, velocity, 
and attitude solution, with its associated error covariance, is 
useful for aiding many different subsystems. Therefore, a 
generic standard for this should be defined. Conversely, the 
feedback to the subsystems of calibration parameters estimated 
by the integration algorithm is sensor specific, so should be 
incorporated in the definitions of the fundamental measurement 
types. Note that closed-loop correction of subsystem errors is 
often essential to maintain the validity of linearization 
approximations within the integration filter [1]. 

The user requirements, such as accuracy, integrity, 
continuity, solution availability, update rate, and power 
consumption, can vary greatly between applications. For 
example, accuracy is important for surveying, integrity for civil 
aviation, solution availability for many military applications, 
and power consumption for many consumer applications. This 
impacts the design of the whole navigation system: the 
integration filter, the configuration modules, and the 
subsystems. Different modules could be used for different 
applications. However, to reap the full benefits of a modular 
approach, the components should be able to adapt to different 
user requirements. This is particularly important for devices, 
such as smartphones, which must switch between the 
requirements of different applications. Fig. 4 shows how 
requirements information can be disseminated in a modular 
integrated navigation system. The adaptation of GNSS user 
equipment to varying user requirements is discussed in [70]. 

An open-standard interface specification should be able to 
handle measurements from and feedback to any conceivable 
navigation and positioning system. However, it is not practical 
to expect every filter module to handle all measurement types 
because of the development effort required. Similarly, there 
will be differences in the sizes of errors that an integration filter 
can handle and in its capability to handle non-Gaussian error 
distributions. For example, an integration algorithm based on a 

 
Figure 4.  Modular integration architecture incorporating requirements 

information distribution 

particle filter has different capabilities from one based on an 
extended Kalman filter. Variations in fault detection and 
integrity monitoring capability can also be expected. 
Consequently, there must be a capability specification for each 
filter module and a protocol for handling mismatches between 
the measurements and the filter module. For many applications, 
there will also be a need to certify the filter module to ensure it 
actually has the capabilities claimed for it. 

III. CONTEXT 

A. The Problem 
Context is the environment that a navigation system 

operates in and the behavior of its host vehicle or user. 
Examples include a pedestrian walking (behavior) in an urban 
street (environment), a car driving at highway speeds 
(behavior) on an open road (environment), and an airliner 
flying (behavior) high above an ocean (environment).  

Context is critical to the operation of a navigation or 
positioning system. The environment affects the types of 
signals available. For example, GNSS reception is poor indoors 
while Wi-Fi is not widely available outside towns and cities. In 
underwater environments, most radio signals cannot propagate 
so acoustic signals are used instead. Processing techniques can 
also be context dependent. For example, in open environments, 
non-line-of-sight (NLOS) reception of GNSS signals or 
multipath interference may be detected using consistency 
checking techniques based on sequential elimination. However, 
in dense urban areas, more sophisticated algorithms are 
required [71] and may be enhanced using 3D city models 
[72][73][74][75][76]. Similarly, GNSS shadow matching only 
works in outdoor urban environments [38]. 

Navigation using environmental feature matching is 
inherently context-dependent as different types of feature are 
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available in different environments. Suitable algorithms, 
databases, and sensors must be selected. For example, terrain 
referenced navigation (TRN) uses radar or laser scanning in the 
air [17][77][78], sonar or echo sounding at sea [79], and 
barometric pressure on land [61][80]. Map matching requires 
different approaches for cars [81], trains [82], and pedestrians 
[26][27]. Similarly, algorithms and databases for image-based 
navigation depend on the types of feature available, which vary 
with the environment [42][43][44][45][46][47]. 

Behavioral context is also important and can contribute 
additional information to the navigation solution. For example, 
cars normally remain on the road, effectively removing one 
dimension from the position solution. Their wheels also impose 
constraints on the way they can move, reducing the number of 
inertial sensors required to measure their motion [83][84]. 
Similarly, PDR using step detection depends inherently on the 
characteristics of human walking [23][24]. Trying to use PDR 
for vehicle navigation or vehicle motion constraints for 
pedestrian navigation will result in errors. 

Host vehicle behavior is also important for tuning the 
dynamic model within a total-state navigation filter and for 
detecting faults through discrepancies between measured and 
expected behavior [1]. Within a GNSS receiver, the behavior 
can be used to set tracking loop bandwidths and coherent 
correlator accumulation intervals, and to predict the temporal 
variation of multipath errors [85]. The antenna placement on a 
vehicle or person [86] can also affect performance. 

Historically, context was implicit; a navigation system was 
designed to be used in a particular type of vehicle, handling its 
associated behavior and environments. However, many 
navigation systems now need to operate in a variety of different 
contexts. For example, a smartphone moves between indoor 
and outdoor environments and can be stationary, on a 
pedestrian, or in a vehicle. Similarly a small surveillance drone 
may operate from above, amongst buildings, or even indoors. 
Furthermore, as discussed in Section II, there is a growing need 
to re-use hardware and software modules across multiple 
applications to reduce development and production costs. At 
the same time, most of the new positioning techniques 
developed to enable navigation in challenging environments 
(see Section I), are context-dependent. To make use of these 
techniques in practical applications (as opposed to research 
demonstrators), it is necessary to know the context. 

B. The Solution: Context-Adaptive Navigation 
The solution to the problem of using context-dependent 

navigation techniques in variable-context applications is 
context-adaptive navigation [1][87]. As shown in Fig. 5, the 
navigation system detects the current environmental and 
behavioral context and, in real time, reconfigures its algorithms 
accordingly. For example, different radio positioning signals 
and techniques may be selected, inertial sensor data may be 
processed in different ways, different map-matching algorithms 
may be selected, and the tuning of the integration algorithms 
may be varied. 

Previous work on context-adaptive navigation and 
positioning has focused on individual subsystems and 
concerned either behavioral or environmental context, not both.  

 
Figure 5.  A context-adaptive navigation system [1] 

For example, there has been substantial research into 
classifying pedestrian motion using inertial sensors to enable 
PDR algorithms using step detection to estimate the distance 
travelled from the detected motion [88][89][90][91]. The 
context information may also be used for non-navigation 
purposes [92][93]. 

Typically, orientation-independent signals are generated 
from the accelerometer and gyro outputs. Statistics such as the 
mean, standard deviation, root mean squared (RMS), inter-
quartile range, mean absolute deviation, maximumminimum, 
maximum magnitude, number of zero crossings, and number of 
mean crossings are then determined from a few seconds of 
data. Frequency-domain statistics may also be used. Finally, a 
pattern recognition algorithm is used to match these parameters 
to the stored characteristics of different combinations of 
activity types and sensor locations. 

Detection of road-induced vibration using accelerometers 
has been used to determine whether or not a land vehicle is 
stationary [94][95], while a calibrated yaw-axis gyro can be 
used to determine when a vehicle is travelling in a straight line 
[96]. Recent work at UCL has also shown that vibration spectra 
derived from accelerometer measurements can be used to 
distinguish when a device is on a table, held by a stationary 
pedestrian, and placed in a stationary car or bus [87]. 

Indoor and outdoor environments may be distinguished 
using GNSS carrier-power-to-noise-density ratio (C/N0) 
measurements [85] or a Rician K-Factor estimator [97]. Recent 
work at UCL has confirmed this over a wider range of 
environments and shown that the GNSS C/N0 measurements 
can also be used to distinguish different types of outdoor 
environments, such as urban and open [87]. 

Wi-Fi signals might also be used for environmental context 
detection. Early experiments suggested that indoor and outdoor 
environments might be distinguished using a combination of 
the number of access points received, the average signal-to-
noise ratio (SNR), and the SNR standard deviation [98]. By 
contrast, in recent UCL experiments across a wider range of 
environments, it was difficult to identify differences between 
the indoor and outdoor datasets [87]. However, differences 
between types of outdoor environment were observed and it 
was found that the types of access points received could be 
used to distinguish between residential and business districts.  



Further context detection experiments are described in 
Section III.C. Despite the work done with individual sensors, a 
multisensor integrated navigation system that adapts to both 
environmental and behavioral context remains at the concept 
stage. Realizing this in a practical system requires both 
effective context determination and a standard set of context 
categories. These issues are explored in Section III.D, while 
Section 0 discusses how to incorporate context adaptivity in a 
modular integration architecture.   

C. Context Detection Experiments 
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Figure 6.  Locations for the GNSS indoor/outdoor context detection 

experiment at UCL’s Grant Museum of Zoology 

 
Figure 7.  GNSS C/N0 measurement distributions at sites inside and 

immediately outside UCL’s Grant Museum of Zoology 

Experiments have been conducted to assess the feasibility 
of using GNSS and Wi-Fi for distinguishing indoor and 
outdoor environments and accelerometers for distinguishing a 
number of behavioral contexts. These directly follow the 
experiments described in [87]. 

1) Indoor/Outdoor Context Detection using GNSS 
GNSS data was collected at five locations inside and 

immediately outside UCL’s Grant Museum of Zoology; these 
are shown in Fig. 6, C/N0 measurement data was collected from 
all GPS and GLONASS signals received by a Samsung Galaxy 
S3 Android smartphone. About 60s of data was collected at 
each site. Fig. 7 presents histograms of the C/N0 measurements 
and Table I lists the means and standard deviations. 

TABLE I.  MEANS AND STANDARD DEVIATIONS OF GNSS C/N0 
MEASUREMENTS INSIDE AND OUTSIDE UCL’S GRANT MUSEUM OF ZOOLOGY 

Site Mean C/N0 C/N0 SD 

a (Deep indoors) 14.7 dB-Hz 1.8 dB-Hz 

b (Inside, near entrance) 20.0 dB-Hz 5.3 dB-Hz 

c (Inside, in the doorway) 20.1 dB-Hz 3.5 dB-Hz 

d (Outside, on entrance steps) 24.4 dB-Hz 7.3 dB-Hz 

e (Outside, by the kerb) 25.0 dB-Hz 7.9 dB-Hz 

 
As expected, the average received C/N0 is lower indoors 

than outdoors and lower deep indoors than near the entrance. 
Furthermore, the standard deviation of the C/N0 measurements 
is larger outdoors than indoors and also larger near the entrance 
to the building than deep indoors. Both trends are consistent 
with previous results collected in a range of different 
environments [87]. Thus, both the mean and the standard 
deviation of the measured C/N0 across all GNSS satellites 
tracked are useful both for detecting indoor and outdoor 
contexts and for distinguishing between different types of 
indoor environment. Context detection should be more reliable 
if both the mean and standard deviation are used. 

2) Indoor/Outdoor Context Detection using Wi-Fi 
Tests in and around several UCL buildings have shown no 

clear relationship between Wi-Fi SNRs and environmental 
context, confirming previous results [87]. However, as the 
environment changes, there is a rapid change in the Wi-Fi 
SNRs over a few epochs. For a user moving from inside to 
outside of a particular building, those signals which originate 
inside go from strong to weak, while many of those from 
neighboring buildings become stronger. Consequently, Wi-Fi 
signals could potentially be used to detect context changes 
instead of the absolute context. Thus is useful for improving 
the overall robustness of context determination. 

To test this, Wi-Fi SNR data was collected on a Samsung 
Galaxy S3 smartphone, along a route with both indoor and 
outdoor sections. One step was taken at each epoch.  The 
magnitude of the SNR differences over intervals of one to six 
epochs was computed for each received signal. An overall 
“context change” score was then calculated at each epoch, 
comprising the weighted mean across all signals and 
innovations. Shorter durations were given greater weighting.  

The “context change” score results are presented in Fig. 8. 
The large blue blocks indicate when the user was outside and 
the smaller blue block shows when the user was in the 
building’s basement, a very different Wi-Fi environment. As 
can be seen, there are clear peaks in the “context change” score 
whenever the user moves between indoor and outdoor contexts. 



However, there are also peaks when the user enters and leaves 
the basement, so the technique is sensitive to false positives 
and must be combined with other context detection techniques 
to be used reliably.  

 
Figure 8.  “Context change” score computer from Wi-Fi SNR measurements 

3) Behavioral context detection using accelerometers 
In [87], it was shown that accelerometer vibration spectra 

can be used to distinguish when a stationary device is in a road 
vehicle, held by a pedestrian, or on a table, and also to 
determine when the car is moving. Here, further results from a 
train, a car, an escalator and an elevator are presented. 

Specific force data was collected using an Xsens MTi-G 
IMU/GNSS device. However, any accelerometers, including 
smartphone sensors, are potentially suitable. For the escalator 
and elevator experiments, the magnitude of the specific force 
was analyzed while, for the train and car experiments, the 
individual components were examined. In all cases, the mean 
of the specific force measurements was subtracted to remove 
most of the gravity, which dominates the measurements, giving 
specific force residuals, from which vibration is easy to 
identify. A discrete Fourier transform was then applied using 
the MATLAB function fft. Note that this integrates the specific 
force residuals. 

Fig. 9 and Fig. 10 respectively show the vibration spectra of 
a stationary Vauxhall Insignia car, and a stationary urban 
electric train. In each case, the x-axis was pointing forward, the 
y-axis to the right and the z-axis down. The car exhibits a lot of 
vibration at frequencies above 10 Hz due to its engine, whereas 
the dominant train vibration peak is around 1.5 Hz, with 
smaller peaks at 15 Hz, 25 Hz, 33 Hz, and 50 Hz, the mains 
power frequency. Thus, the two vehicles are very different. 

Fig. 11 shows the vibration spectrum of the car moving on 
a high-speed road, while Fig. 12 shows the vibration spectrum 
of the train travelling between Euston and Watford Junction 
stations in the London area. As might be expected, both show 
much more vibration when moving than when stationary. For 
the car, there are broad peaks below 15 Hz due to road 
vibration and above 15 Hz due to engine vibration. For the 
train, vibration below 4 Hz dominates. Thus, there is clear 
scope to distinguish between the two types of vehicle. 

 
Figure 9.  Specific force frequency spectrum of a stationary car 

 
Figure 10.  Specific force frequency spectrum of a stationary train 

 
Figure 11.  Specific force frequency spectrum of a car traveling on a high-

speed road 

 
Figure 12.  Specific force frequency spectrum of a moving train 



Fig. 13 and Fig. 14 show the vibration spectra in a moving 
elevator at Hampstead London Underground station and on an 
escalator at Angel station, respectively. In both cases, the IMU 
was in the trouser pocket of a pedestrian. Contrary to reports in 
[16], these are very different. The elevator spectrum is 
dominated by low-frequency acceleration. Distinct periods of 
acceleration and deceleration can be observed in the time 
domain By contrast, the escalator motion is subject to vibration 
at a range of frequencies below 30 Hz. The resonant 
frequencies vary between individual escalators. 
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Figure 13.  Specific force frequency spectrum in a moving elevator 
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Figure 14.  Specific force frequency spectrum on an escalator 

D. Issues to Resolve 
1) Context Categorization 

To implement a multisensor navigation system with many 
different subsystems adapting to the context and contributing to 
the context determination process, a common set of context 
categories and their definitions must be established. As 
different modules will often be produced by different 
organizations, standardization across whole the navigation and 
positioning community is required. Standard context 
definitions are also needed to enable software modules to be re-
used across multiple applications. 

The first step in the standardization process is to establish a 
framework suitable for navigation and positioning. Each 
context category must map to a configuration of the navigation 
system; otherwise, it serves no purpose. Multiple categories 
may map to the same configuration as different navigation 
systems will respond to different context information. In an 
autonomous context-adaptive navigation system, the context 
categories must also be distinguishable from each other. 

In [87], a five-attribute framework, comprising 
environment class, environment type, behavior class, vehicle 
type, and activity type, was proposed. Fig. 15 shows the 
relationship between the attributes. The environmental and 

behavioral contexts are treated separately because they perform 
fundamentally different roles in navigation. Environmental 
context concerns the availability of signals and other features 
that may be used for determining position whereas behavioral 
context is concerned with motion. 

 

Figure 15.  Proposed attributes of a context category [87] 

Context may be considered at different levels. Sometimes it 
is sufficient to consider broad classes such as indoor or aircraft. 
In other cases, more detail is needed, specifying the type of 
indoor environment or the type of aircraft. Therefore, a two-
level categorization framework, comprising class and type, was 
proposed. The behavioral context comprises the vehicle type 
and the activity undertaken by that vehicle. A common set of 
classes containing separate vehicle and activity types was thus 
proposed. For pedestrian navigation, different parts of the body 
move quite differently, so the sensor location on the body is 
analogous to the vehicle type.  

The broad classes of environmental and behavioral context 
are relatively obvious. It is therefore proposed that the 
community adopts the classes listed in Table II. 
Standardization at the type level requires further research to 
determine: 

 Which context categories a navigation system needs to 
distinguish between in order to optimally configure itself, 
and 

 Which context categories may be distinguished reliably by 
context detection and determination algorithms. 

Some possible environment, vehicle, and activity types are 
proposed in [87]. 

TABLE II.  PROPOSED ENVIRONMENT AND BEHAVIOR CLASSES 

Environment Classes Behavior Classes 

Indoor 
Land Outdoor 

On Water 
Underwater 

Air 
Space 

Land Vehicle 
Boat or Ship 

Underwater Vehicle 
Aircraft 

Spacecraft 
Pedestrian 

Fixed Location 
 

2) Effective Context Determination 
The reliability of current context detection techniques is 

typically 9099%, with some context categories easier to detect 
than others. For the purposes of controlling a navigation system, 
this is relatively poor. Furthermore, context detection research 
projects have typically considered a much smaller range of 
context categories than a practical context-adaptive navigation 
system would need. Generally, the more categories there are, 
the harder it is to distinguish between them. 

Context 

Environment class Behavior class 

Vehicle 
type 

Activity 
type 

Environment 
type 



To make context determination reliable enough for context-
adaptive navigation to be practical, a new approach is needed 
[87]. Firstly, the context should be detected using as much 
information as possible, maximizing both the range of sensors 
used and the number of parameters derived from each sensor. 

Environmental context detection experiments have largely 
focused on GNSS and Wi-Fi signals. Other types of radio 
signal; environmental features detected using cameras, laser 
scanners, radar, or sonar; ambient light; sounds; odors; 
magnetic anomalies, and air pressure could all be used. Context 
may also be inferred simply by comparing the position solution 
with a map, provided both are sufficiently accurate [99]. 

Behavioral context detection experiments have generally 
used inertial sensors. As shown in Section III, this could be 
taken further by analyzing different frequency bands and, 
where possible, separating the forward, transverse, and vertical 
components. Other motion sensing techniques, such as visual 
odometry and wheel-speed odometry could be used. Context 
information, such as vehicle type, can also be determined from 
the velocity, attitude, and acceleration solutions. 

A further line of research is the development of algorithms 
to detect changes in context as well as absolute context. This is 
applicable to both the environment and the behavior. 

Considering every combination of environment type, 
vehicle type (or pedestrian sensor location), and activity type, 
there are potentially tens of thousands of different context 
categories. This is too many to practically distinguish using 
context detection techniques alone. However, the number of 
context categories that must be considered may be reduced 
substantially by using association, scope, and connectivity 
information, making the context determination process much 
more reliable [87]. 

Association is the connection between the different 
attributes of context. Certain activities are associated with 
certain vehicle types and certain behaviors are associated with 
certain environments. For example, an airliner flies, while a 
train does not and flying takes place in the air, not at the 
bottom of the sea. The behavior of a vehicle can also vary with 
the environment. For example, a car typically travels more 
slowly, stops more, and turns more in cities than on the 
highway. Thus, combinations of environment type, vehicle 
type, and activity type that are not associated in practice, may 
be eliminated, while weakly associated combinations may be 
downweighted in the context determination process. 

For a particular application, the scope defines each context 
category to be required, unsupported, or forbidden. The 
required categories are those that the navigation system must 
detect and respond to. Unsupported context categories are 
those that could occur, but need not be detected and responded 
to. Finally, the forbidden context categories are those that 
cannot occur. For example, a navigation system permanently 
fitted to a car cannot be flying or running. Thus, scope 
definition enables forbidden context categories to be eliminated 
from the context determination process and required categories 
to be treated as more likely than unsupported categories. 

 Connectivity describes the relationship between context 
categories. If a direct transition between two categories can 

occur, they are connected. Otherwise, they are not. Thus, 
stationary vehicle behavior is connected to pedestrian behavior, 
whereas moving vehicle behavior is not because a vehicle must 
normally stop to enable a person to get in or out. Context 
connectivity is directly analogous to the road link connectivity 
used in map matching [100] and a similar mathematical 
formulation may be used. In practice, it is best to represent the 
connectivity as continuously valued transition probabilities 
rather than in Boolean terms. This facilitates recovery from 
incorrect context determination and enables rare transitions 
between context categories to be represented. 

Location-dependent connectivity takes the concept a stage 
further by considering that many transitions between context 
categories happen at specific places. For example, people 
normally board and leave trains at stations and fixed-wing 
aircraft typically require an airstrip to take off and land. Thus 
context transition probabilities may be modeled as functions of 
the position solution, provided the positioning and mapping 
error distributions are adequately modeled and the probability 
of transitions occurring at unusual locations is considered. 

Further examples of context association, scope, and 
connectivity may be found in [87]. 

Finally, for maximum robustness, the whole context 
determination process should be probabilistic, not discrete. The 
system should maintain a list of possible context category 
hypotheses, each with an associated probability. Multiple 
context detection algorithms should be used, each based on 
different sensor information. The detection algorithms should 
also output multiple context category hypotheses with 
associated probabilities. The context determination algorithm 
should then produce a new list of context category hypotheses 
and their probabilities by combining: 

 The previous list of hypotheses and their probabilities; 

 The hypotheses and probabilities output by the context 
detection algorithms; 

 Context association, scope, and connectivity information. 

 
Figure 16.  Probabilistic context determination. 

A suitable algorithm for this is described in [87], while Fig. 
16 illustrates the concept. When there is insufficient 
information to determine a clear context category, the list of 
context hypotheses and their probabilities will be output to the 
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navigation algorithms. The handling of ambiguous information 
in navigation systems is the subject of Section IV.  

E. Context Adaptivity and Modular Integration 
The practical implementation of a complex multisensor 

navigation system for a multi-context application requires 
context-adaptive navigation to be incorporated into a modular 
multisensor integration architecture (Section II.B). To enable 
different modules to adapt to changes in context, the 
architecture shown in Fig. 4 should be extended to supply 
context information to the configuration modules, integration 
filter, and dynamic model from the system control module, 
alongside the user requirements. The configuration modules 
can then pass the context information onto the subsystems 
where necessary. The standardization of context categories and 
their definitions across the navigation and positioning 
community is essential for this. The distribution of context 
information is useful even for single-context applications as it 
enables suppliers to provide modules that are optimized for 
multiple contexts.  

 
Figure 17.  Context-adaptive modular multisensor integration architecture  

The modular integration architecture must also support the 
context detection and determination process, allowing all 
subsystems to contribute. The configuration modules should 
therefore provide context detection information to a context 
determination module, as shown in Fig. 17. The scope 
information should be supplied by the system control module. 

There are three main ways in which context detection could 
be implemented: 

1) Subsystem-based approach 
The context detection algorithms are implemented inside 

the subsystems or configuration modules with a list of possible 
context categories and their probabilities sent to the context 
determination module. This has the advantage of keeping the 
context determination model generic. However, the subsystem 

suppliers may consider the need to implement context detection 
software to be too much of a burden, particularly if they don’t 
consider context adaptivity to be a core requirement. 

2) Context-determination-module-based approach 
The context detection algorithms are implemented in the 

context-determination module with the subsystems providing 
the necessary data. This is straightforward for subsystems such 
as an IMU or a GNSS receiver where the necessary 
information is commonly output. However, for some of the 
newer navigation and positioning technologies, the subsystem 
suppliers may consider the underlying data to be proprietary. 
For other subsystems, such as image-based navigation, the 
volume of data could be a problem. An advantage of this 
approach is that context detection algorithms may use data 
from more than one navigation subsystem. A variation on this 
architecture would comprise separate modules for context 
detection and context determination. 

3) Distributed approach 
This splits the context detection process, with the 

subsystems or their configuration modules compiling a series 
of statistical parameters, such as means and variances. These 
are then sent to the context determination module, which uses 
them to detect the context. This approach should enable 
subsystem suppliers to protect their IP and is efficient in terms 
of the amount of data conveyed between modules. However, it 
requires standardization of the statistical parameters used for 
context detection. At present, context detection is insufficiently 
mature for the optimum set of descriptors to be known. 

Further research is needed to determine the best way 
forward. It is possible that different approaches to context 
detection may be needed for different classes of subsystem. 

IV. AMBIGUITY 

A. The Problem 
Ambiguity occurs when measurements can be interpreted in 

more than one way, leading to different navigation solutions, 
only one of which is correct. Any navigation technique can 
potentially produce ambiguous measurements. The likelihood 
depends on both the positioning method and the context, both 
environmental and behavioral. Urban and indoor positioning 
techniques that do not require dedicated infrastructure are 
particularly vulnerable to ambiguity. Poor handling of 
ambiguity results in erroneous navigation solutions and the 
navigation system can become ‘lost’, whereby it is unable to 
recover and may even reject correct measurements. 

There are six main causes of ambiguity: feature 
identification, pattern matching, propagation anomalies, 
geometry, system reliability, and context ambiguity. Each of 
these is described in turn in the following subsections. 

1) Feature identification ambiguity 
The proximity, ranging, angular positioning, and Doppler 

positioning methods all use landmarks for positioning. These 
may be radio, acoustic, or optical signals, or natural or man-
made features of the environment. For reliable positioning, 
these signals or features must be correctly identified. 
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Digital signals intended for positioning incorporate 
identification codes. However, where a signal is weak and/or 
interference is high, it may be possible to use the signal for 
positioning but not decode the identification information. For 
signals of opportunity, i.e. not designed for positioning, the 
identification codes may be encrypted, while analog signals do 
not typically have identifiers. These signals must be identified 
using their frequencies and an approximate user position, in 
which case there may be multiple candidates. Even where a 
signal of opportunity is identifiable, the transmission site may 
change without warning. For example, Wi-Fi access points are 
sometimes moved and mobile phone networks are periodically 
refigured. Thus, there is a risk of false landmark identification. 

Environmental features are difficult to identify uniquely. In 
image-based navigation, man-made features, such as roads, 
buildings, and signs, are easiest to identify in images due to 
their line and corner features. However, similar objects are 
often repeated in relatively close proximity. For example, Fig. 
18 shows the locations of the five ‘No entry’ signs in a 1200m 
circuit of Central London streets [61]. Two of the signs are 
within 20m of each other. 

 
Figure 18.    ‘No entry’ signs in a 1200m circuit of Central London 

(background image courtesy of Bing maps) 

2) Pattern-matching ambiguity 
The pattern-matching positioning method maintains a 

database of measurable parameters that vary with position. 
Examples include terrain height, magnetic field variations, Wi-
Fi signal strengths, and GNSS signal availability information. 
Values measured at the current unknown user position are 
compared with predictions from the database over a series of 
candidate positions. The position solution is then obtained from 
the highest-scoring candidate(s) [1]. 

An inherent characteristic of pattern matching is that there 
is sometimes a good match between measurements and 
predictions at more than one candidate position. Fig. 19 and 
Fig. 20 show GNSS shadow-matching scoring maps based on 
smartphone measurements taken at the same location 40s apart. 
The scores are obtained by comparing GNSS signal-to-noise 
measurements with signal availability predictions derived from 
a 3D city model as described in [101]. In Fig. 19, maximum 
scores (shown in dark red) are only obtained in the correct 
street, whereas in Fig. 20, there is also a high-scoring area in 
the adjacent street, giving two possible position solutions. 

 
Figure 19.    GNSS shadow-matching scoring map – unambiguous case (the 

cross shows the true position and white areas are indoor locations) 

 
Figure 20.    GNSS shadow-matching scoring map – unambiguous case (the 

cross shows the true position and white areas are indoor locations) 

 
Figure 21.    Height of a car derived from a barometric altimeter at three 

different times; readings of around 235m are highlighted.  

 Fig. 21 presents another example, showing the height of a 
road vehicle derived from a barometric altimeter at three 
different times [61]. Provided the altimeter is regularly 
calibrated, it may be used for terrain-referenced navigation 
(TRN), determining the car’s position along the road by 
comparing the measured height with a database [1]. However, 
if only the current height is compared, it will typically match 
the database at multiple locations within the search area, as the 
figure shows. The ambiguity can be reduced by comparing a 
series of measurements from successive epochs, known as a 
transect, with the database. This approach is applicable to any 
pattern-matching technique. However, increasing the transect 



length to reduce the ambiguity also reduces the update rate and 
the ambiguity problem can never be eliminated completely. 

3) Signal propagation anomalies 
The ranging, angular positioning, and Doppler positioning 

methods all make the assumption that the signal propagates 
from the transmitter (or other landmark) to the user in a straight 
line at constant speed. Significant position errors can therefore 
arise when these assumptions are not valid due to phenomena 
such as non-line-of-sight reception, multipath interference, and 
severe atmospheric refraction [1]. In challenging environments, 
such as dense urban areas and indoors, multiple signals are 
typically affected by propagation anomalies and it is not always 
easy to determine which signals are contaminated. 

Where the position solution is overdetermined (i.e., more 
than the minimum number of signals are received), different 
combinations of signals will produce different position 
solutions when there are significant propagation anomalies. 
Fig. 22 and Fig. 23 illustrate this for conventional GNSS 
positioning using a Leica Viva geodetic receiver, showing the 
position errors obtained using different combinations of GPS 
and GLONASS signals. In Fig. 22, the receiver is located on a 
high rooftop [102] and the majority of position solutions are 
within 15m of the mean, with the remainder easily dismissible 
as outliers. However, in Fig. 23, where the receiver is located 
in a dense urban location [71], the candidate position solutions 
are spread over more than 100m and the correct position 
solution is not clear. The densest cluster of positions is far from 
both the centroid and the truth. Therefore, anomalous signal 
propagation may be treated as an ambiguity problem. 

 
Figure 22.    GNSS position errors using different combinations of signals in a 

rooftop environment 

 
Figure 23.    GNSS position errors using different combinations of signals in a 

dense urban environment 

4) Geometric Ambiguity 
Geometric ambiguity occurs when more than one position 

solution may be derived from a set of otherwise unambiguous 
measurements. Fig. 24 shows two examples. On the left, two 
ranging measurements in two dimensions produce circular 
lines of position that intersect in two places. On the right, a 
ranging measurement and a direction-finding measurement are 
made using the same signal. As direction finding has a 180 
ambiguity, the lines of position also intersect at two places. 

 
Figure 24.    Geometric ambiguity in two dimensions from two ranging 

measurements (left), and a ranging and direction-finding measurement (right) 

5) System Reliability 
Navigation subsystems can produce incorrect information 

for a host of different reasons. Some examples include: 

 User equipment hardware and software faults; 

 Transmitter hardware and software faults; 

 Out-of-date databases used for pattern matching, including 
TRN, GNSS shadow matching, and map matching; 

 Wheel slips in odometry; 

 The effects of passing vehicles and animals on 
environmental feature visibility, availability and strength of 
radio signals, and Doppler-based dead reckoning. 

Some of these failure modes are easily detectable through 
the measurements failing basic range checks [1] or being 
absent altogether. In other cases, faults may be detected by 
consistency checks [1] within the subsystem. For example, 
wheel slip may be detected by comparing measurements from 
different wheels, while Doppler radar and sonar systems 
typically incorporate a redundant beam to enable the 
interruption of a beam by a vehicle or animal to be detected. 

Subsystems can sometimes output incorrect information 
that is plausible. An ambiguity thus exists where it is uncertain 
whether or not a measurement may be trusted. An ambiguity 
also exists where a fault has been detected, but not its source. 
Thus, some of the information produced by the subsystem must 
be incorrect, but some of it may be correct. 

6) Context Ambiguity 
As discussed in Section III, the optimum way of processing 

sensor information depends on the context. However, if context 
information is used, the navigation solution will then depend 
on the assumed context. For example, if an indoor environment 
is assumed, indoor radio positioning and map matching 
algorithms that are only capable of producing an indoor 
position solution may be used. Similarly, if an urban 
environment is assumed, GNSS shadow matching and outdoor 
map matching may be selected, resulting in an outdoor position 
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solution. Adoption of pedestrian and vehicle motion constraints 
can also lead to different navigation solutions.  

Context determination is not a completely reliable process. 
Therefore, to minimize the impact of incorrect context 
assumptions on the navigation solution, the context should be 
treated as ambiguous whenever there is significant uncertainty. 

B. Possible Solutions 
There is no obvious solution to the ambiguity problem. 

Instead different approaches to integrating ambiguous 
information may be adopted depending on the relative 
priorities of solution availability, reliability, and processing 
load [1]. The main approaches, illustrated in Fig. 25, are 
discussed in the following subsections. They all require the 
subsystems to present the different measurement hypotheses 
and their associated probabilities to the integration algorithm. 

 
Figure 25.    Methods of handling ambiguous measurements in a navigation 

integration algorithm 

1) Accept or reject the lead hypothesis 
The simplest way of handling ambiguous information is to 

maintain a single-hypothesis navigation solution and consider 
only the most-probable hypothesis from each subsystem. This 
is then accepted or rejected based on the following criteria: 

 Whether the probability of the highest-scoring hypothesis 
above a certain threshold. 

 Whether the probability of the second-highest-scoring 
hypothesis below a certain threshold. 

 Whether the highest-scoring measurement hypothesis is 
consistent with the current integrated navigation solution. 
(Determinable using measurement innovation filtering [1].) 

Context may be incorporated into this approach by 
accepting the highest-scoring behavioral and environmental 

contexts where they meet the above criteria and computing a 
context-independent navigation solution otherwise. 

This approach is processor-efficient, but high integrity and 
availability cannot be achieved simultaneously. Low 
acceptance thresholds provide high reliability by rejecting most 
erroneous measurements, but low solution availability as many 
good measurements are also rejected. Conversely, high 
acceptance thresholds provide availability at the expense of 
reliability. 

2) Accept all hypotheses into a single-hypothesis solution 
A probabilistic data association filter (PDAF) [1][103][104] 

accepts multiple measurement or context hypotheses, 
weighting them them according to their probabilities, but 
represents the navigation solution as the mean and covariance 
of a uni-modal distribution. The measurement update to the 
state estimation error covariance matrix accounts for the spread 
in the hypotheses such that the state uncertainties can 
sometimes increase following a measurement update. 

This approach reconciles the demands of integrity and 
availability at the price of a moderate increase in processing 
load. However, the uni-modal navigation solution can 
sometimes be misleading. For example, if a pattern-matching 
system determines that the user is equally likely to be in one of 
two parallel streets, the overall position solution will be 
midway between those streets. 

3) Multi-hypothesis integration accepting all hypotheses 
Multi-hypothesis integration deals with multiple 

measurement and context hypotheses by spawning multiple 
integration filters, one for each hypothesis [1][105]. Each filter 
is allocated a probability based not only on the probabilities of 
the measurements input to it, but also on the consistency of 
those measurements with the prior estimates of that filter. This 
consistency-based scoring is essential; otherwise the filter 
hypothesis that inputs the highest-scoring measurement 
hypotheses will always dominate, regardless of whether those 
measurements are consistent across subsystems and successive 
epochs. 

A fundamental characteristic of multi-hypothesis filtering is 
that the number of hypotheses grows exponentially from epoch 
to epoch. This is clearly impractical so the number of 
hypotheses is limited by merging the lowest-scoring 
hypotheses into higher-scoring neighbors. 

The overall navigation solution is the weighted sum of the 
constituent filter hypotheses. Each individual filter hypothesis 
describes a uni-modal distribution. However, the combined 
navigation solution is multi-modal. Thus, the position 
probability can be higher in two streets than the in the buildings 
between those streets. This is a clear advantage over the 
PDAF-based approach, but the processing load is higher. 

4) Multi-modal integration accepting all hypotheses 
A multi-modal filter is not constrained to model the states it 

estimates in terms of a mean and covariance. This enables it to 
process multiple measurement and/or context hypotheses and 
represent the result as a weighted sum of the probability 
distributions arising from the individual hypotheses. Suitable 
data fusion algorithms include the Gaussian mixture filter and 

Measurement hypotheses 

Navigation solution 

1) Accept or reject the lead 
hypothesis 

Measurement hypotheses 

Navigation solution 

2) Accept all hypotheses 
into a single-hypothesis 
solution 

Measurement hypotheses 

Navigation solution 

3) Multi-hypothesis integration 
accepting all hypotheses 

Measurement hypotheses 

Navigation solution 

4) Multi-modal integration 
accepting all hypotheses 



the particle filter. A key advantage over multi-hypothesis 
integration is that measurements may be treated as continuous 
probability distributions instead of as a set of discrete 
hypotheses. This enables pattern-matching measurements to be 
integrated more naturally and offers greater flexibility in 
handling signal propagation anomalies. 

A Gaussian mixture filter models the probability 
distribution of the navigation solution as the weighted sum of a 
series of multi-variate Gaussian distributions. An example is 
the iterative Gaussian mixture approximation of the posterior 
(IGMAP) technique, which has been applied to terrain 
referenced navigation integrated with inertial navigation [77]. 

A particle filter models the probability distribution of the 
navigation solution using a series of semi-randomly distributed 
samples, known as particles. Between a thousand and a million 
particles are typically deployed, with a higher density of 
particles in higher-probability regions of the distribution 
[1][106][107][108]. Particle filters have been used with a 
number of different navigation technologies, including TRN 
[109], pedestrian map matching [110], Wi-Fi positioning [4], 
and GNSS shadow matching [111]. 

Multi-modal integration algorithms offer the greatest 
flexibility in reconciling the demands of solution availability 
and reliability, but also potentially impose the highest 
processing load. 

C. Issues to Resolve 
The key challenge in handling ambiguous measurements is 

determining realistic probabilities for each hypothesis. A 
probability must also be calculated for the null hypothesis, i.e. 
the hypothesis that every candidate measurement output by the 
subsystem is wrong. The same applies to ambiguous context. 

A feature identification algorithm must allocate a score to 
every database feature that it compares with the sensor 
measurements In practice, only features within a predefined 
search area, based on the prior position solution and its 
uncertainty, will be considered. Features scoring above a 
certain threshold will be possible matches. Similarly, pattern-
matching algorithms allocate a score to each candidate position 
in the search area according to how well the sensor 
measurements match the database at that point. For correct 
handling of ambiguous matches, these scores should be as 
close as possible to the probabilities of the feature match or 
candidate position being correct. 

Feature identification and pattern-matching algorithms can 
also fail to consider the correct feature or candidate position for 
several reasons. The correct feature or position may be outside 
the database search area. It may be absent due to the database 
being out of date. The sensor may also observe or be affected 
by a temporary feature that is not in the database, such as a 
vehicle. The null hypothesis probability must account for all of 
these possibilities. In practice, it will be higher where there is 
no good match between the measurements and database.  

Signal propagation anomalies affect the error distributions 
of ranging, angle, and Doppler shift measurements, and the 
positions and velocities derived from them. These error 
distributions depend on whether the signals are direct line-of-

sight (LOS), non-line-of-sight (NLOS), or multipath-
contaminated LOS. However, this is not typically known. 
Signal strength measurements, environmental context, signal 
elevation (for GNSS), distance from the transmitter (for 
terrestrial signals), consistency between different 
measurements, and 3D city models can all contribute useful 
information. However, their relationship with the measurement 
errors is complex, so a semi-empirical approach is needed. 

Moving on to reliability, virtually any subsystem can 
produce false information. The overall probability will 
typically be very low and thus only significant for high-
integrity applications. However, the failure probability will be 
higher in certain circumstances, in which case the relevant 
subsystem should report a higher null probability. For example, 
in odometry, the probability of a wheel slip depends on host 
vehicle dynamics. Similarly, a radio signal is more likely to be 
faulty if it is weaker than normal. Repeated measurements, 
changes to the update interval and sudden changes in a sensor 
output are also indicative of potential faults. 

Geometric ambiguity is easy to quantify as the candidate 
solutions have equal probability in the absence of additional 
information. 

As proposed in Section III.D.2), the context determination 
process should produce multiple context hypotheses, each with 
an associated probability. Therefore, it is important to ensure 
that all navigation subsystems that use this context information 
do so in a probabilistic manner. Thus, where different context 
hypotheses lead to different values of the measurements output 
by a navigation subsystem, each measurement hypotheses 
should be accompanied by a probability derived from the 
context probabilities. 

A further issue to resolve is the relationship between 
discrete and continuous ambiguity. Ambiguities in feature 
identification, solution geometry, failures, and context 
categorization are discrete and are suited to integration filters 
that treat them as a set of discrete hypotheses. However, the 
position solution ambiguity in pattern-matching is continuous, 
i.e. the probability density is a continuous function of position, 
albeit sampled at discrete grid points. This probability 
distribution may be input directly to a particle filter. However, 
if the integration algorithm is a uni-modal filter or a bank of 
uni-modal filters, the probability distribution must be converted 
to a set of discrete hypotheses. This can be done by fitting a set 
of Gaussian distributions to the probability distribution. For 
signal propagation anomalies, their presence or absence is 
discrete. However, the resulting measurement error distribution 
is continuous, so a similar approach is appropriate. 

D. Ambiguity and Modular Integration 
The same challenging environments that require multiple 

navigation subsystems to maximize solution availability, 
accuracy, and reliability can also induce those subsystems to 
produce ambiguous measurements. Consequently, the modular 
integration architecture proposed in Section II.B should be 
capable of handling ambiguous measurements. 

Determination of the hypothesis and null probabilities must 
be the responsibility of the subsystem suppliers as they have 



the necessary specialist knowledge. The probabilities may be 
calculated within either the subsystems or in the configuration 
modules. The integration filter must then be designed to accept 
multi-hypothesis measurements, handling then using one of the 
methods described in Section III.B. 

In principle, almost any measurement can be ambiguous. 
Even dead-reckoning systems are subject to reliability issues 
and context ambiguity. Therefore, the interface standard for 
communication between the configuration and filter modules 
(see Section II.C) should support multiple hypotheses of any 
measurement type. A maximum number of hypotheses per 
measurement should be agreed. 

Where context ambiguity leads to measurement ambiguity, 
multiple subsystems may be affected such that hypotheses are 
correlated across those subsystems. To enable the integration 
algorithm to handle these measurements correctly, the interface 
standard should support the tagging of measurement 
hypotheses with context information, where appropriate. 

To support the optimal integration of pattern-matching 
techniques and signal propagation anomalies, the interface 
standard should also support the representation of position, 
ranging and angular measurements as probability distributions. 

E. Ambiguity and Integrity 
For high-integrity applications, two requirements must be 

met. The first is that the probability of the position error 
exceeding a certain limit, known as the alert limit, due to an 
undetected fault is below a certain very low value. For 
example, for civil aviation in the nonprecision approach phase, 
the probability of the horizontal position error exceeding 556 m 
during any one-hour period due to any one failure mode must 
be less than 107. Therefore, in handling ambiguous 
measurements, hypotheses with very low probabilities must be 
considered. Similarly, large database search areas are required 
for feature identification and pattern matching. 

The second requirement of high-integrity applications is 
that when faulty information is detected, a navigation solution 
that is isolated from the source of the faulty information must 
be generated and that navigation solution verified as fault-free. 
This requires an array of parallel navigation filters to be 
maintained, each excluding one or more signal or subsystem. 
Parallel filters may also be required for different hypotheses of 
the same measurement when combining hypotheses could 
compromise the alert limit. 

 In practice, the processing capacity needed to incorporate 
potentially ambiguous measurements in a high-integrity 
navigation system is likely to be prohibitively expensive. 
Consequently practical high-integrity navigation in challenging 
environments may require dedicated positioning infrastructure. 

V. ENVIRONMENTAL DATA 

A. The Problem 
Position-fixing systems need information about the 

environment, sometimes known as a ‘world model’ [112], to 
operate. Proximity, ranging, and angular positioning, all use 
landmarks that must be identified. For GNSS and other long-

range radio systems, identification codes are determined when 
the system is designed and incorporated in the user equipment. 
However, this is not practical for shorter range signals, whether 
opportunistic or designed for positioning, due to the vast 
numbers of transmitters available worldwide and the fact that 
many will be installed during the lifetime of the user 
equipment. The user equipment will also require information 
on the characteristics of a signal to enable it to use that signal 
for ranging. A mobile device equipped with a generic radio or 
transceiver may be required to download software to enable it 
to use a proprietary indoor positioning system. For 
environmental feature matching techniques, the user equipment 
requires information to enable it to identify each landmark. 

Navigation using landmarks also requires their positions 
and, for passive ranging, their timing offsets. Signals designed 
for positioning typically provide this information, but it can 
take a long time to download (30s for GPS C/A code) and can 
be difficult to demodulate under poor reception conditions. The 
positions of opportunistic radio transmitters and environmental 
features must be determined by other means. 

For positioning using the pattern-matching method, a 
measurement of radio signal strength or a characteristic of the 
environment, such as the terrain height or magnetic field, is 
compared with a database to determine position [3][4][33][34] 
[61][77][78]. Therefore, a database providing values of the 
measured parameter over a regular grid of positions is required. 
Map matching requires a map database to indicate where the 
user can and cannot go [26][27][81]. GNSS shadow matching 
requires a 3D city model to predict signal visibility [38]. 

Finally, as discussed in Section II, mapping is required to 
determine environmental context information from the position 
solution and to enable location-dependent context connectivity 
information (e.g., the location of train stations) to be used for 
context determination. 

B. Possible Solutions 
The environmental data collection and its distribution to the 

user equipment are discussed in turn. 

1) Data Collection 
Positioning data may be collected either from a systematic 

survey or by the users. In either case, regular updates will be 
required. A systematic survey might be conducted by the 
subsystem supplier, a national mapping agency, or a private 
third party. The user will need to pay for the data in some way. 
It could be included in the equipment cost, via a subscription 
payment, by accepting advertising, or through general taxation 
(for some national mapping agency data). For mobile devices, 
such as smartphones, mapping data may be available for some 
applications, but not others. 

Single-user data collection does not involve user charges, 
but only provides data for places the user has already visited. A 
simple approach requires a good position solution to collect 
mapping data. This can work for applications which normally 
use GNSS, but require backups for temporary outages [61]. 
However, it does not work for areas where GNSS reception is 
poor. Simultaneous localization and mapping (SLAM) 
techniques can perform mapping without a continuous position 



solution. However, there are several constraints. Firstly, a good 
position solution that is independent of the data being mapped 
is required at some point, usually the start. Secondly, a 
navigation system including dead-reckoning must be used 
technology. Thirdly, locations must be visited repeatedly 
within a short period of time (to achieve ‘loop closure’). 
Finally, only features close to the user can be mapped. 

Cooperative mapping by a group of users solves many of 
the problems of single-user mapping [113]. It can provide 
individual users with data for places they have not visited 
before. Distant landmarks can also be mapped more easily by 
multiple users, particularly where it is necessary to determine a 
timing offset as well as the location. However, a method for 
comparing and combining data from multiple users is required. 

2) Data Distribution 
For data collected by a systematic survey, there are two 

main data distribution models: pre-loading and streaming. Pre-
loading requires sufficient user equipment data storage to cover 
the area of operation. New data may have to be loaded prior to 
a change in operating area and updates will be required. 
However, a continuous communications link is not needed. 

Streaming requires much less data to be stored by the user 
and provides up-to-date information, but only where a 
communications link is available. Although buffering can 
bridge short outages, navigation data is simply not available for 
areas without sufficient communications coverage. Continuous 
streaming can also be expensive. One solution is a cooperative 
approach using peer-to-peer communications for much of the 
data distribution. A pair of users traveling in opposite 
directions along the same route will each have data that is 
useful to the other. A further possibility is to incorporate local 
information servers in Wi-Fi access points for exchanging 
information relevant to the immediate locality. This might be 
best suited to indoor navigation, where there is an incentive for 
the building operator to provide the service. 

For data collected by a single user, no data distribution is 
required other than a back-up. For cooperative data collection 
by multiple users, a method of data exchange is needed. This 
can be via a central server, communicating either in real time 
or whenever the user returns to base. It can also be through 
peer-to-peer communications or through local information 
servers, where there is an incentive to provide them. 

C. Issues to Resolve 
Standardization is a major part of the data management 

challenge. A multisensor navigation system will typically 
incorporate multiple subsystems with data requirements. This 
might include road or building mapping, radio signal 
information, terrain height, magnetic anomalies, visual 
landmarks, and building signal-masking information for GNSS 
shadow matching. There will be a different standard for each 
type of data. Furthermore, different subsystem suppliers will 
often use different standards for the same type of data. This is 
sometimes done for commercial and/or security reasons, so the 
data may be encrypted. There may also be technical reasons for 
different data standards. For example, in image-based 
navigation, different feature recognition algorithms require 
different descriptive data. 

Ideally, all navigation data in a multisensor system should 
be distributed by the same method. This requires agreement of 
storage and communication protocols that can handle many 
different data formats, including encrypted proprietary data and 
future data formats.  Open standards for each type of data 
should also be agreed, noting that consumer cooperative 
positioning using peer-to-peer communications and/or local 
information servers is probably only practical with open data 
formats. Ideally, the standards should be scalable to enable 
precisions, spatial resolutions, and search areas to be adapted to 
the available data storage and communications capacity. 

Peer-to-peer data exchange requires a suitable 
communications link. Bluetooth is the established standard for 
consumer applications. Classic Bluetooth provides sufficient 
capacity, but it takes longer to establish a connection than 
passing pedestrians or vehicles remain within range. Bluetooth 
low energy can establish a connection quickly, but the data 
capacity is limited to 100 kbit/s. This is sufficient for some 
kinds of navigation data, but not others. Professional and 
military users have more flexibility to select suitable datalinks. 

Finally, establishing local information servers requires both 
standardization and an incentive for the hosts. Demand would 
be greater if there were applications beyond navigation and 
positioning. Possibilities include product information in shops 
and exhibit information in museums, both of which might be 
provided more efficiently from a local server than the internet. 
For home users to provide local information servers, they 
would also have to benefit from them, a potential “chicken and 
egg” problem. For military applications, local information 
servers are a potential security risk and a target for attack. 

VI. CONCLUSIONS AND RECOMMENDATIONS 
Achieving accurate and reliable navigation in challenging 

environments without additional infrastructure requires 
complex multisensor integrated navigation systems. However, 
implementing them presents four key challenges: complexity, 
context, ambiguity, and environmental data handling. Each of 
these problems has been explored and solutions proposed. 
Here, the main conclusions and recommendations for 
standardization and further research are summarized. 

A. Conclusions 
A modular integration architecture, comprising a universal 

integration filter module and a configuration module for each 
subsystem enables multiple subsystems to be integrated 
without the need for whole-system expertise in a single 
organization. It also enables subsystems from different 
organizations to be combined without sharing intellectual 
property and allows new navigation technologies and methods 
to be added without having to redesign the whole system. 

Context-adaptive navigation enables a navigation system to 
respond to changes in the environment and host-vehicle (or 
user) behavior, deploying the most appropriate algorithms for 
the current circumstances. Context can be determined more 
reliably by adopting a probabilistic approach and using 
connectivity, association, and scope information. The potential 
use of GNSS to distinguish between indoor and outdoor 
environments and Wi-Fi to detect indoor-outdoor transitions 



has been demonstrated. The potential use of accelerometer 
vibration spectra to distinguish between a car and a train and 
between an elevator and an escalator has also been shown. 

Navigation solution ambiguity can arise from feature 
identification, pattern matching, propagation anomalies, 
solution geometry, system reliability issues, and context 
ambiguity. To handle ambiguity in a multisensor navigation 
system, the subsystems must present the different measurement 
hypotheses and their associated probabilities to the integration 
algorithm. The best strategy for integrating ambiguous 
measurements depends on the relative priorities of solution 
availability, reliability, and processing load. Options include 
simply accepting or rejecting the lead hypothesis, accepting all 
measurement hypotheses into a single-hypothesis solution, 
multi-hypothesis integration accepting all hypotheses, and 
multi-modal integration accepting all hypotheses. For very-
high-integrity applications, the processing capacity needed to 
incorporate potentially ambiguous measurements is likely to be 
prohibitively expensive. 

Position-fixing subsystems need data such as locations of 
radio transmitters and other landmarks, information for 
identifying signals and landmarks, road or building mapping, 
terrain height, magnetic anomalies, and building signal-
masking information (for GNSS shadow matching). Different 
models for collecting and distributing this data suit different 
applications. Data may be collected from a systematic survey 
or by users. In the latter case, users may cooperate to share data 
where a suitable communication link is available. Data may be 
stored by users in advance, streamed from central servers, 
and/or distributed cooperatively using peer-to-peer 
communication and/or local information servers. 

B. Standardization 
To enable effective communication between modules from 

different suppliers, an open-standard interface specification 
should be developed to convey the following information: 

 The integrated navigation solution; 

 Measurements from navigation subsystems, including error 
specifications, multiple hypotheses with their associated 
probabilities, and the option to represent position, ranging 
and angular measurements as probability distributions; 

 Feedback of subsystem error calibration information; 

 Accuracy, integrity, continuity, solution availability, update 
rate, and power consumption requirements; 

 Integration filter capability specifications; 

 Environmental and behavioral context hypotheses and their 
associated probabilities; 

 Context detection information from the subsystems; 

 Data for use by the subsystems, including road or building 
mapping, radio signal information, terrain height, magnetic 
anomalies, and visual landmarks. 

Standards are also needed for peer-to-peer communication 
of navigation data and Wi-Fi local information servers. 

C. Further Research 
Further research is needed to support the standardization 

process described above, including the identification of a set of 
fundamental measurement types and their error sources, and 
the establishment of the best set of context categories for 
integrated navigation. 

Extensive research into context detection and determination 
is needed, including the measurements to use, the statistical 
parameters to derive from those measurements, and a set of 
context association and connectivity rules. 

An assessment of the different methods for handling 
ambiguous measurements is needed, comparing accuracy, 
reliability, solution availability, and processing load. This will 
enable the community to determine which methods are suited 
to different applications. 

Finally, there is a need for a practical demonstration of the 
key concepts proposed in this paper, including modular 
integration, context adaptivity, ambiguous measurement 
handling, and collection and distribution of environmental data. 
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