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ABSTRACT
Parkinsonian diseases comprise a heterogeneous group
of neurodegenerative disorders, which show significant
clinical and pathological overlap. Accurate diagnosis still
largely relies on clinical acumen; pathological diagnosis
remains the gold standard. There is an urgent need
for biomarkers to diagnose parkinsonian disorders,
particularly in the early stages when diagnosis is most
difficult. In this review, several of the most promising
cerebrospinal fluid candidate markers will be discussed.
Their strengths and limitations will be considered
together with future developments in the field.

INTRODUCTION
Idiopathic Parkinson’s disease (iPD) is a progressive
neurological disorder initially described as a clinical
entity by James Parkinson and then embellished by
Charcot and other nineteenth-century physicians,
including Trousseau, Gowers and Erb. It is a clinical
construct, based upon the presence of bradykinesia
accompanied by at least one other characteristic
feature, such as resting tremor, rigidity and impaired
postural reflexes.1 The signs and symptoms are
usually asymmetrical at onset and, typically, there is
a good response to levodopa treatment.
‘Parkinson-plus’ or ‘atypical parkinsonism’ are

terms that refer to a heterogeneous group of neuro-
degenerative disorders that may masquerade particu-
larly in the early stages of the disease as Parkinson’s
disease (PD).2 The ‘plus’ or ‘atypical’ descriptor indi-
cates the presence of additional characteristics not
usual in patients with iPD, such as early autonomic
disturbance and pyramidal signs exhibited by patients
with multiple system atrophy (MSA), supranuclear
gaze palsy and frontal/dysexecutive syndrome by
those with progressive supranuclear palsy (PSP), dys-
tonia and myoclonus in corticobasal degeneration
(CBD) and early postural instability and falls by all of
them. Another disease that could be classified as an
atypical parkinsonian disorder is dementia with Lewy
bodies (DLB), where dementia onset is before or
within a year of onset of extrapyramidal features.
The earlier onset of dementia differentiates DLB
from Parkinson’s disease dementia (PDD).
Atypical parkinsonian disorders account for less

than 10% of all parkinsonism and rarely respond
with sustained improvement to levodopa. They
usually follow a much more aggressive disease
course than iPD and are characterised by atrophy to
several different cortical and subcortical networks.
Furthermore, atypical parkinsonism has been
described in other conditions, such as Alzheimer’s
disease (AD) and frontotemporal dementia (FTD).

PATHOLOGY
Protein misfolding and aggregation is seen with
many neurodegenerative diseases. Based on patho-
logical findings, parkinsonian syndromes are classi-
fied into α-synucleinopathies (PD, DLB and MSA)
and primary tauopathies (PSP and CBD). For
pathological lesions used in postmortem diagnosis
of parkinsonism, see figure 1.
α-Synuclein (α-Syn) has been found to be the

major constituent of the intracellular aggregates in
Lewy bodies and Lewy neurites (pathological hall-
mark of PD and DLB) and in the glial cytoplasmic
inclusions in MSA.3 4 The presence of abnormally
aggregated tau proteins in the form of neurofibril-
lary tangles, for example, are diagnostic of PSP.5

Tau-positive intracellular inclusions are the neuro-
pathological findings in CBD.6 Even though there
are also neurofibrillary tangles in AD, Aβ plaques
are closely tied to the primary disease process and
thus AD is considered to be a secondary tauopathy.
FTD can also have underlying tau pathology.
There is often some overlap between syncleino-

pathies and tauopathies (for a review, see ref. 7).
Co-occurrence of tau and α-Syn pathology has
been found in neurons and oligodendrocytes in
AD, PD and DLB.8 α-Syn has complex and
dynamic interactions with tau. Each of these two
proteins has the tendency to seed the aggregation
of the other.9 α-Syn induces aggregation and poly-
merisation of tau, which promotes formation of
intracellular amyloid-tau inclusions.10 Similar inter-
actions have been described between α-Syn and Aβ
pathology.11

GENETICS
Recent advances in genetics have shed light on the
underlying pathophysiology because mutations in
the gene for each misfolded protein can give rise to
an inherited form of a relevant neurodegenerative
condition. For example, rare hereditary forms of
PD can be caused by mutations affecting the gene
coding for α-Syn (SNCA); PARK1 (missense) and
PARK4 (duplication, triplication).12 Furthermore, in
both PD and to a lesser extent in MSA, population
studies demonstrated an association between
disease risk and distinct single-nucleotide poly-
morphisms in SNCA. DJ-1(PARK7) mutations can
lead to rare forms of autosomal-recessive PD,
pointing towards mitochondrial damage/oxidative
stress pathways driven pathogenesis.13 Even though
PD is not a ‘tauopathy’, population studies also
showed variants in tau (MAPT) gene, particularly
the H1 haplotype, as another risk factor for PD
(for a review, see ref. 14). Several tauopathies are
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associated with variants in MAPT, including CBD, FTD linked
to chromosome 17 (FTDP-17T) and PSP.15 The fact that the
MAPT/tau haplotype also shows an association with PD strongly
suggests that the pathogenic cascades in the tauopathies may be
related to those in the synucleinopathies.16

DIAGNOSTIC CHALLENGES
Accurate diagnosis of parkinsonian disorders still relies heavily
on clinical acumen, although imaging and ancillary investiga-
tions may be helpful in some situations. In one postmortem
series, 24% of patients clinically diagnosed with idiopathic PD
by a consultant neurologist during life were found to have an
alternative diagnosis.1

CEREBROSPINAL FLUID BIOMARKERS
A biomarker is “a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, patho-
genic processes or pharmacologic response to a therapeutic

intervention”.17 An ‘ideal’ biomarker should be sensitive, repro-
ducible, closely associated with the disease process, non-invasive
and inexpensive.

Cerebrospinal fluid (CSF) has more physical contact with the
brain than any other fluid and as such represents a potentially
reliable biomarker source. Unlike plasma, CSF is not separated
from the brain by the tightly regulated blood–brain barrier.
Proteins/peptides that may be directly reflective of brain specific
activities or disease pathology would most likely diffuse into the
CSF. Furthermore, CSF can be tested serially, which makes pos-
sible the study of protein changes reflecting the evolving path-
ology throughout the clinical course of the disease. This is
preferable to pathological studies, which only reveal the terminal
changes of a disease process that has developed over decades.

HISTORICAL BACKGROUND
CSF has been widely investigated in parkinsonian disorders and
is considered to offer the most promising insights into the

Figure 1 In Parkinson’s disease (PD), there is loss of pigmented neurons from the substantia nigra and remaining neurons may be very sparse (A).
Lewy bodies can be observed in residual neurons (A, inset) and are highlighted, together with Lewy neuritis, using α-synuclein
immunohistochemistry (B). Lewy bodies and Lewy neurites may be present in significant numbers in the neocortex (C, frontal cortex). In multiple
system atrophy (MSA), α-synuclein is primarily deposited in the form of glial cytoplasmic inclusions in oligodendrocytes (D, putamen) and may also
form inclusions in neuronal cytoplasm and nuclei (arrow) (E, pontine nuclei). In progressive supranuclear palsy tau forms, aggregates in neurons and
glia, giving rise to tufted astrocytes (F, caudate) and neurofibrillary tangles (G, pontine nuclei). A characteristic feature of corticobasal degeneration
(CBD) is the astrocytic plaque, formed from aggregated tau in the distal processes of astrocytes (H, parietal cortex). In CBD, tau also accumulates in
neurons in the form of neurofibrillary tangles (H, inset a) and in oligodendrocytes as coiled bodies (H, inset b). (A) Haematoxylin and eosin;
(B–D) α-synuclein immunohistochemistry; (F–H) tau immunohistochemistry. Bar in (A) represents 100 mm in (C); 50 mm in (A, D–G); 25 mm in inset
A, B and H. Pathological images kindly provided by Dr Janice Holton, Queen Square Brain Bank for Neurological Disorders, London.
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disease process. Historically, because of dopaminergic abnormal-
ities in parkinsonism, the first compounds to be tested as poten-
tial markers were dopamine and other monoamines and their
metabolites. In the 1960s and 1970s, reduced CSF monoamine
concentrations (homovanillic acid and 5-hydroxyindoleacetic
acid) were found in patients with parkinsonism and dementia.18

A study conducted at the National Hospital, Queen Square,
London, assessed the effect of levodopa treatment in CSF
homovanillic acid concentration of PD patients. Before levodopa
treatment, homovanillic acid concentration was low in all
patients, while after treatment it rose to a level that correlated
significantly with the levodopa dose.19

As these metabolic results were prone to be influenced by a
multitude of other factors,7 the quest went further to investigate
a priori defined compounds, such as α-Syn and tau. These were
tested in patients and in healthy controls, looking for differ-
ences, patterns and associations. Even though several promising
candidates exist, there is still no reliable biomarker.

METHODS
We reviewed the potential use of CSF proteins as biomarkers in
parkinsonism, focusing on α-Syn, neuronal injury markers and
Aβ42. In addition, we briefly reviewed the latest novel markers
and the ‘omics’ approach. We performed a PubMed/Medline
search and limited searches to studies reported in English and
published after 2006, including antemortem, human, lumbar
CSF; all studies included at least one parkinsonian cohort com-
pared with healthy or neurological controls. We combined
searches with ‘Parkinson’s disease’, ‘progressive supranuclear
palsy’, ‘multiple system atrophy’, ‘corticobasal syndrome’ (CBS),
‘corticobasal degeneration’, ‘Parkinson’s disease dementia’,
‘dementia with Lewy bodies’, ‘Lewy body dementia’, ‘parkin-
sonism’, ‘synucleinopathies’, ‘tauopathies’, ‘neurodegenerative
diseases’ with ‘CSF biomarkers’ and specific biomarkers
(‘α-Syn’, ‘tau’, ‘phosphorylated tau’, ‘Aβ42’, ‘neurofilaments’,
‘neuronal injury markers’, ‘inflammatory’, ‘metabolic’ and ‘oxi-
dative stress markers’). Further references were found manually

from identified publications. For a review of the earlier litera-
ture, not captured using the time limit of our search criteria, see
Eller and Williams.20

CSF BIOMARKER CANDIDATES IN PARKINSONISM
Aβ42
Aβ42 is a 42 amino-acid long, aggregation-prone protein,
derived from the proteolytic processing of amyloid precursor
protein and is a major component of neuritic plaques in AD.
Cognitive impairment and dementia are much more common in
parkinsonism than in the general population and have a detri-
mental effect on quality of life and life expectancy. The link
between Aβ42 and PD and dementia has been studied exten-
sively (see table 1).

In most studies, Aβ42 is significantly reduced in PD compared
with controls and is associated with worse cognitive perform-
ance.21–25 However, other investigations showed no difference
between PD and controls.26–30

Compta et al31 collected CSF from 27 non-demented PD
patients and followed them over time. Patients who converted
to dementia within 18 months had a significantly lower baseline
CSF Aβ42 than the patients who remained non-demented.

DLB patients have the lowest CSF levels of Aβ42 among the
parkinsonian cohorts.25 32–34 One study found that almost half
of DLB patients had a CSF biomarker profile consistent with
AD,33 which agrees with the knowledge of Aβ pathology in this
disease.35–37

There is evidence that low Aβ42, a marker of Aβ plaque path-
ology, may predict cognitive decline in patients with PD,38 but
other longitudinal studies with larger cohorts are necessary to
clarify this further.

α-Syn
α-Syn is a 140 amino-acid long protein that localises to pre-
synaptic terminals and is widespread in the brain, comprising
1% of cytosolic protein. In presynaptic terminals, α-Syn is
present in close proximity to the synaptic vesicles. The precise

Table 1 CSF Aβ42 in parkinsonian disorders

Research groups Participants Main findings

Kang et al21 PD n=39 (drug-naïve patients), HC n=63 Decrease in PD vs HC
Compta et al31 Baseline: PD n=27 (non-demented)

18 month follow-up: PD n=16 (non-demented), PD n=11 (dementia converters)
Decrease in dementia converters

Bech et al32 PD n=22, PDD n=3, DLB n=11, MSA n=10, PSP n=20, CBD n=3 Decrease in DLB vs other disease groups
Hall et al26 PD n=90, PDD n=33, DLB n=70, PSP n=45, CBD n=12, MSA n=48, AD n=48, controls n=107 Decrease in AD>DLB+PDD
Schoonenboom et al33 DLB n=52, PSP n=20, CBD n=16, AD n=512, FTD n=144, VaD n=34, CJD n=6, controls n=275 Decrease in AD>VaD>DLB>CBD
Parnetti et al27 PD n=38, DLB n=32, AD n=48, FTD n=31, controls n=32 ▸ Decrease in AD, FTD+DLB vs PD and controls

▸ No difference between PD and controls
Andersson et al34 DLB n=47, PDD n=17, AD n=150 Decrease in DLB vs PDD
Shi et al22 Discovery cohort: PD n=126, MSA n=32, AD n=50, controls n=137

Validation cohort: PD n=83
Slight decrease in PD and MSA vs controls

Montine et al28 PD n=41, PDD n=11, AD n=49, HC n=150 Decrease in PDD vs HC
Süssmuth et al29 PSP-RS n=20, PSP-P n=7, MSA-P n=11, MSA-C n=14, PD n=23, controls n=20 ▸ No difference in parkinsonian syndromes

▸ Lower in PSP-RS vs PSP-P
Alves et al23 PD n=109, AD n=20, HC n=36 Decrease in PD vs HC
Ohrfelt et al30 PD n=15, DLB n=15, AD n=66, controls n=55 Decrease in AD+DLB vs controls and PD
Compta et al24 PD n=20, PDD n=20, HC n=15 Decrease in PDD>PD vs HC
Parnetti et al25 PD n=20, PDD n=8, DLB n=19, AD n=23, HC n=20 Decrease in DLB>PDD>PD

AD, Alzheimer’s disease; CBD, corticobasal degeneration; CJD, Creutzfeldt–Jakob disease; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia;
HC, healthy controls; MSA, multiple system atrophy; MSA-C, multiple system atrophy cerebellar type; MSA-P, multiple system atrophy parkinsonian type; PD, Parkinson’s disease;
PDD, Parkinson’s disease dementia; PSP, progressive supranuclear palsy; PSP-P, progressive supranuclear palsy–parkinsonism; PSP-RS, progressive supranuclear palsy–Richardson’s
syndrome; VaD, vascular dementia.
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function of α-Syn is obscure, but it is speculated that its main
role is in the control of neurotransmitter release.39 Although
mostly considered an intracellular protein, α-Syn is capable of
transfer between cells leading to a speculation of a prion-like
mechanism operating in PD pathology spread.40

α-Syn can be modified by truncation, acetylation, phosphoryl-
ation, oxidation, nitrosylation, glycation or glycosylation.41 Lewy
bodies are formed mostly of post-translationally modified α-Syn.
α-Syn deposition is key in the pathogenesis of synucleinopathies.
In vitro, similar to AD, α-Syn fibrillation involves α-Syn oligo-
merisation followed by oligomer conversion into mature amyloid
cultures, which are toxic to cultured neuronal cells.42

Total α-Syn (t-α-Syn)
Inconsistent results were initially reported in parkinsonian condi-
tions with studies demonstrating considerable overlap of t-α-Syn
in several neurodegenerative conditions.30 43–45 A consensus is
now emerging, and the vast majority of recent studies (predomin-
antly using ELISA techniques) have shown a reduction of t-α-Syn
levels in PD compared with controls.21 22 26 46–55 In addition,
there is decreased t-α-Syn in other synucleinopathies, such as
MSA and DLB,26 47 49 50 51 54 without good discriminatory
value between the groups (see table 2).

Mollenhauer et al assessed levels of t-α-Syn in patients with
synucleinopathies, patients with tauopathies and in neurological
controls without neurodegenerative disease, first in a training set
and then in a validation set. In the training set, a combination
of t-α-Syn, t-tau and age differentiated synucleinopathies from
neurological controls and AD with an area under the curve
(AUC) of 0.908. Only t-α-Syn levels and not t-tau or Aβ42 dis-
criminated PD and MSA from controls with a positive predictive
value of 91%.54

Parnetti et al investigated whether the combination of t-tau,
p-tau and t-α-Syn can improve differentiation of PD from DLB,
AD, FTD and controls. They found an inverse correlation
between t-α-Syn and total tau in all subjects and a lack of speci-
ficity of CSF t-α-Syn determination alone as a marker of synu-
cleinopathy (sensitivity 94%, specificity 25%). However, t-tau/
t-α-Syn and p-tau/t-α-Syn ratios were identified as possible bio-
markers for PD (sensitivity 89%, specificity 61%).27

Shi et al22 also showed that a combination of t-α-Syn and
p-tau/t-tau could discriminate PD from MSA with a sensitivity
of 90% and a specificity of 71%, when blood contaminated
samples were excluded. t-α-Syn was decreased in PD and espe-
cially in MSA compared with controls.

In most studies, there was no correlation of t-α-Syn with
disease duration or disease severity. Interestingly, gender-specific
variations were reported in levels of t-α-Syn.47 Both
Mollenhauer et al48 and Kang et al21 studied drug-naïve PD
patients and still found reduction in t-α-Syn, so it was proven
that this finding was not related to a dopaminergic medication
effect. There are several theories why there is reduced t-α-Syn
in PD, MSA and DLB. High brain levels of pathological t-α-Syn
and low CSF levels may reflect a reduction of ‘free’ t-α-Syn cir-
culating in the CSF. This could be similar to ‘pathological
protein trapping’ reported for brain Aβ42 in AD CSF.56

Oligomeric and phosphorylated α-Syn
Tokuda et al evaluated soluble α-Syn oligomers as potential
early markers of PD and found that both the level of oligomeric
α-Syn and the oligomer/t-α-Syn ratio were substantially higher
in patients with PD (including those with mild and early-stage
disease) compared with healthy controls and patients with non-
neurodegenerative neurological conditions. CSF oligomer/

t-α-Syn ratio had a sensitivity of 89.3% and a specificity of
90.6% for PD.57 These findings were replicated in two further,
independent studies.58 59 Both oligomeric and phosphorylated
oligomeric forms of α-Syn were detected in postmortem ven-
tricular CSF, which may be useful in distinguishing between PD,
DLB and MSA.60 The results need to be replicated in larger
groups of living patients.

NEURONAL INJURY MARKERS
Tau
Tau is important for the function of axonal microtubules and, as
a result, plays an important role in the structural integrity of the
neuron and axonal support. When hyperphosphorylated, it has
reduced binding affinity for microtubules, causing their malfunc-
tion. At the same time, it adopts an abnormal conformation
leading to aggregation and inclusion formation.61

Total and phosphorylated tau (t-tau and p-tau)
In the past, there were inconclusive results when assessing tau
levels in CSF of parkinsonian patients (see table 3). In PD, most
studies found normal values,23 24 25 26 27 29 30 but lower levels
were also reported.21 22 28 In atypical parkinsonism, high t-tau
levels were found in DLB25 27 34 and low p-tau/t-tau ratio in
MSA and PSP compared with PD.29 However, other investiga-
tions found no difference between parkinsonian syn-
dromes.22 26 30 In particular, no significant change has been
seen in PSP.26 Age, not diagnosis, is thought to be the strongest
factor affecting t-tau protein levels.54

t-tau and p-tau may prove useful in differentiating AD from
PD and can perhaps improve diagnostic accuracy when used in
combination with other markers rather than on their own.

Tau isoforms
Imbalances in the homeostasis of tau isoforms with three-
(3R-tau) and four- (4R-tau) microtubule-binding repeat domains
are important in neurodegenerative disease pathogenesis. In a
normal adult brain, there are comparable levels of 3R- and
4R-62 but in PSP, CBD and FTDP-17 cases, the neurofibrillary
tangles and glial inclusions are predominantly 4R, whereas Pick
bodies in FTD are predominantly 3R-tau63 and neurofibrillary
tangles in AD contain both 3R- and 4R-tau isoforms.

Luk and colleagues had previously developed antibodies
selective for the two isoforms and adapted an immuno-PCR
procedure in order to detect the isoforms’ miniscule amounts in
the CSF. Decrease in 4R-tau isoform was found in PSP and AD
compared with CBS, PDD and controls. There was no differ-
ence in 3R-tau.64

We think that 4R-tau could be used as a marker of disease
progression in PSP, but further large samples and longitudinal
series are needed.

Truncated tau forms
Borroni and colleagues looked at full-length (55 kDa) and trun-
cated (33 kDa) tau forms in several neurodegenerative diseases.
In ratio with the full-length tau forms, the truncated tau forms
(33 kDa/55 kDa forms) were substantially reduced in PSP com-
pared with healthy controls (sensitivity 96% and specificity 85%
PSP compared with PD/DLB; sensitivity 90% and specificity
76.2% PSP compared with CBD).65 These fragments are proteo-
lytic products of tau that were detected by immunoprecipitation
techniques, which are more time consuming, less quantitative
and more operator-dependent than ELISA techniques.

Findings were reproduced by the same group in
another cohort of patients.66 However, these results were
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not reproduced by another group, which did not find a
reduced tau ratio in an independent cohort of PSP patients,67

speculating that the 33/55 kDa bands seen are heavy and
light IgG chains. Recent findings of other endogenous tau frag-
ments in CSF suggest that specific assays for these fragments
should be developed and evaluated in relation to different
tauopathies.68

Neurofilament light chain protein (NF-L)
Neurofilaments are major structural elements, whose main
role is to maintain the axonal calibre and neuronal shape and
size.69 They are, thus, critical for the morphological integrity of
neurons and for the conduction of nerve impulses along axons.
They are composed of three subunits of different molecular
weights: light, medium and heavy chain.

Table 2 CSF α-synuclein in parkinsonian disorders

Research groups Participants Analyte Method Main findings

Van Dijk et al46 PD n=53, HC n=50 t-α-Syn
t-α-Syn/
t-protein ratio

TR-FRET Decrease in both t-α-Syn+t-α-Syn/t-protein
ratio levels in PD vs HC

Kang et al 201321 PD n=39 (drug-naïve patients), HC n=63 t-α-Syn ELISA Decrease in PD vs HC
Wennström et al47 PD n=38, PDD n=22, DLB n=33, AD n=46,

HC n=52
t-α-Syn ELISA Decrease in PDD > PD > DLB vs AD+HC

Mollenhauer et al48 PD n=78 (de novo, drug-naïve patients), HC
n=48

t-α-Syn ELISA (3rd generation) Decrease in de novo PD patients vs HC

Hall et al26 PD n=90, PDD n=33, DLB n=70, PSP n=45,
CBD n=12, MSA n=48, AD n=48, controls
n=107

t-α-Syn Bead-based multi-analyte assay
(Luminex)

Modest decrease in AD > DLB+PDD > PD
+MSA vs controls, AD and PSP

Aerts et al43 PD n=58, MSA n=47, DLB n=3, VaD n=22,
PSP n=10, CBD n=2

t-α-Syn ELISA No difference between groups

Tateno et al49 PD n=11, DLB n=6, MSA n=11, AD n=9,
controls n=11

t-α-Syn ELISA ▸ Decrease in PD, DLB, MSA vs AD+
controls

▸ No difference among PD, DLB, MSA
Wang et al50 Discovery cohort:

PD n=83, MSA n=14, PSD n=30, AD n=25,
HC n=51
Validation cohort:
PD n=109, MSA n=20, PSP n=22, AD
n=50, HC n=71

t-α-Syn
p-α-Syn
p-α-Syn:
t-α-Syn ratio

Bead-based multi-analyte assay
(Luminex)

▸ t-α-Syn decrease in PD+MSA vs controls
▸ Increase α-Syn ratio in MSA vs PSP
▸ Increase α-Syn ratio in PD vs controls and

PSP

Park et al58 PD (drug-naïve) n=23, controls n=18 t-α-Syn
o-α-Syn

Dual ELISA method for
simultaneous measurement of
t-and o-α-Syn

▸ t-α-Syn: no difference
▸ o-α-Syn: increase in PD

Mollenhauer et al54 Training cohort: PD n=51, DLB n=55, MSA
n=29, AD n=62, controls n=76
Validation cohort: PD n=273, DLB n=66,
PSP n=8, MSA n=15, NPH n=22, controls
n=23

t-α-Syn ELISA (1st and 2nd generation) ▸ Decrease in PD, DLB, MSA vs AD, NPH,
PSP and controls

▸ High degree of concordance in t-α-Syn
levels between PD+MSA

Parnetti et al27 PD n=38, DLB n=32, AD n=48, FTD n=31,
controls n=32

t-α-Syn
t-α-Syn/t-tau
ratio

ELISA ▸ t-α-Syn decrease in all diseased groups
(especially DLB/FTD)

▸ Ratio: decrease in PD vs all other diseased
groups

Shi et al22 Discovery cohort: PD n=126, MSA n=32
AD n=50, controls n=137
Validation cohort :PD n=83

t-α-Syn Bead-based multi-analyte assay
(Luminex)

Decrease in PD vs controls and AD

Tokuda et al57 First cohort (all analytes):
PD n=32, controls n=28
Second cohort (o-asyn):
PD n=25, AD n=35, PSP n=18, controls
n=43

t-α-Syn
o-α-Syn
o-α-Syn:
t-α-Syn ratio

ELISA ▸ t-α-Syn: trend towards decrease in PD
▸ o-α-Syn+ratio increase in PD

Hong et al52 PD n=117, AD n=50, HC n=132 t-α-Syn Bead-based multi-analyte assay
(Luminex)

Decrease in PD vs AD and controls (after
omitting samples with high haemoglobin
concentration)

Noguchi- Shinohara et al44 DLB n=16, AD n=21 t-α-Syn ELISA No difference
Spies et al45 DLB n=40, AD n=131, VaD n=28, FTD

n=39
t-α-Syn ELISA No difference

Ohrfelt et al30 PD n=15, DLB n=15, AD n=66, controls
n=55

t-α-Syn ELISA Decrease in AD, no difference in parkinsonian
groups

Mollenhauer et al53 PD n=8, DLB n=38, AD n=13, CJD n=8,
controls n=13

t-α-Syn ELISA (1st and 2nd generation) Marginal decrease in LBD and PD vs all other
groups

Tokuda et al55 PD n=38, controls n=38 t-α-Syn ELISA Decrease in PD vs controls

AD, Alzheimer’s disease; CBD, corticobasal degeneration; CJD, Creutzfeldt–Jakob disease; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia;
HC, healthy controls; MSA, multiple system atrophy; NPH, normal pressure hydrocephalus; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; PSP, progressive supranuclear
palsy; TR-FRET, time-resolved Förster’s resonance energy transfer; VaD, vascular dementia.
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Neurofilament heavy chain (NF-H) forms an important com-
ponent of the cytoskeleton. Higher CSF levels of NF-H were
found in PSP and MSA compared with PD, CBD and neuro-
logical controls.70

Neurofilament light chain forms the backbone of neurofila-
ments and can self-assemble. Increased levels in CSF reflect
axonal degeneration of large myelinated axons. Recent studies
showed consistent results in differentiating PD from atypical
parkinsonian conditions26 32 71 but not in discriminating
between atypical parkinsonian syndromes. Consecutive analyses
of CSF showed no increase in NF-L levels with disease
progression.71

NF-L can be useful in the differential diagnosis of PD versus
other neurodegenerative conditions as it is very sensitive in
detecting more aggressive neuronal death than occurs in PD.

Glial fibrillary acidic protein
Glial fibrillary acidic protein (GFAP) is a protein predominantly
expressed in fibrillary astrocytes. Disintegration of astroglial
cells postacute brain injury can lead to high CSF GFAP levels.
Süssmuth et al29 showed that there are increased levels in par-
kinsonian syndromes compared with controls (patients with
other neurological disorders), but there was no difference
between diseased groups. However, another group found

Table 3 CSF neuronal injury markers: tau, neurofilament light chain (NF-L) and glial fibrillary acidic protein (GFAP) in parkinsonian disorders

Research groups Participants Analyte Method Main findings

Kang et al21 PD n=39 (drug-naïve patients), HC n=63 t-tau,
p-tau

Bead-based multi-analyte assay
(Luminex)

Decrease in t-tau+p-tau in PD vs controls

Luk et al64 PDD n=11, PSP n=44, CBS n=22, AD n=11,
controls n=34

3R/4R
isoforms

Immuno-PCR (adapted from sandwich
ELISAs)

▸ Decrease in 4R-tau in PSP and AD vs controls
▸ Lower 4R-tau in AD vs PDD
▸ -No difference in 3R-tau

Hall et al 201226 PD n=90, PDD n=33, DLB n=70, PSP n=45,
CBD n=12, MSA n=48, AD n=48, controls
n=107

t-tau,
p-tau
NF-L

Bead-based multi-analyte assay
(Luminex)

▸ Increased t-and p-tau in AD vs DLB+PDD
▸ NF-L differentiates PD from atypical

parkinsonism
Bech et al32 PD n=22, PDD n=3, DLB n=11, MSA n=10, PSP

n=20, CBD n=3
NF-L ELISA ▸ Higher NF-L levels in atypical parkinsonian

disorders vs PD
▸ No difference between parkinsonian groups

Andersson et al34 DLB n=47, PDD n=17, AD n=150 t-tau,
p-tau

ELISA Increased t-tau in DLB vs PDD

Shi et al22 Discovery cohort: PD n=126, MSA n=32, AD
n=50, controls n=137
Validation cohort: PD n=83

t-tau,
p-tau

Bead-based multi-analyte assay
(Luminex)

▸ -Decrease in PD vs to controls
▸ -Decrease in PD+MSA vs AD

Parnetti et al
201127

PD n=38, DLB n=32, AD n=48, FTD n=31,
controls n=32

t-tau,
p-tau

ELISA ▸ Increase in AD>FTD>DLB vs PD and controls
▸ No difference between PD and controls

Kuiperij et al102 NA 33/55
kDa tau
forms

Immunoprecipitation assay and
western blotting

▸ Not able to detect tau form ratio
▸ Suggested that 33/55 kDa bands seen are

heavy and light IgG chains
Borroni et al103 PSP n=18, CBS n=16, FTD n=28, controls n=25 33/55

kDa tau
forms

Immunoprecipitation assay and
western blotting

tau form ratio significantly reduced in PSP vs
other groups

Constantinescu
et al71

PD n=10, MSA n=21, PSP n=14, CBD n=11, HC
n=59
(×2 consecutive samples)

NF-L
GFAP

ELISA ▸ NF-L: normal levels in PD, elevated in MSA,
PSP+CBD

▸ No statistical significance overtime
▸ GFAP: no difference

Montine et al28 PD n=41, PDD n=11, AD n=49, HC n=150 t-tau,
p-tau

Bead-based multi-analyte assay
(Luminex)

▸ t-tau: no difference between parkinsonian
groups

▸ p-tau: reduced in PD vs HC
Süssmuth et al29 PSP-RS n=20, PSP-P n=7, MSA-P n=11, MSA-C

n=14, PD n=23, controls n=20
t-tau,
p-tau
GFAP

ELISA ▸ p-tau/t-tau ratio lower in PSP and MSA vs PD
▸ GFAP: increase in parkinsonian syndromes

(no difference between disease groups)
Alves et al23 PD n=109, AD n=20, HC n=36 t-tau,

p-tau
ELISA No difference between PD and controls

Ohrfelt et al30 PD n=15, DLB n=15, AD n=66, controls n=55 t-tau,
p-tau

ELISA No difference between parkinsonian groups

Compta et al24 PD n=20, PDD n=20, HC n=15 t-tau,
p-tau

ELISA t- and p- tau: increase in PDD vs PD and
controls

Parnetti et al25 PD n=20, PDD n=8, DLB n=19, AD n=23, HC
n=20

t-tau,
p-tau

ELISA ▸ t-tau: DLB > PDD > controls
▸ p-tau: no difference between parkinsonian

groups
Borroni et al65 PSP n=21, CBS n=20, FTD n=44, AD n=15, PD

n=10, DLB n=15, controls n=27
33/55
kDa tau
forms

Semiquantitative immunoprecipitation
and western blotting

tau forms significantly reduced in PSP vs controls
and other neurodegenerative diseases

Brettschneider
et al70

PD n=22, MSA n=21, PSP n=21, CBD n=6,
controls n=45

NF-H ELISA Increased in MSA and PSP vs PD, CBD and
controls

AD, Alzheimer’s disease; CBD, corticobasal degeneration; CBS, corticobasal syndrome; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; HC,
healthy controls; MSA, multiple system atrophy; MSA-C, multiple system atrophy cerebellar type; MSA-P, multiple system atrophy parkinsonian type; NF_H, neurofilament heavy chain;
NF-L, neurofilament light chain; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; PSP, progressive supranuclear palsy; PSP-P, progressive supranuclear palsy–parkinsonism;
PSP-RS, progressive supranuclear palsy–Richardson’s syndrome.
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similar GFAP levels in parkinsonian syndromes and healthy con-
trols without significant change over time.71

OTHER CANDIDATE MARKERS
Oxidative stress markers
DJ-1
DJ-1 is a multifunctional protein involved in many processes. It
is thought to have a protective role in oxidative stress during
neurodegeneration (table 4). As we have already discussed, it
has been linked to autosomal-recessive PD. Results on DJ-1 as a
CSF biomarker have been inconsistent so far. One study showed
decreased levels in PD compared with controls with a sensitivity
of 90% and a specificity of 70%,52 whereas another showed no
difference among parkinsonian syndromes72 and the most
recent one demonstrated significant increase in MSA compared
with PD and controls.73 The diagnostic accuracy for discriminat-
ing MSA from PD was improved by combining DJ-1 levels with
t-tau and p-tau levels.

8-Hydroxydeoxyguanosine (8-OHdG)
8-OHdG is a marker of oxidation and mitochondrial dysfunc-
tion in neurodegeneration and malignancy. CSF 8-OHdG levels
were increased in non-demented PD patients compared with

controls and there was a negative correlation with MMSE levels
in PDD.74

Urate
Urate is an endogenous and most potent antioxidant. Even
though there is considerable evidence linking low serum levels
of urate to PD,75 76 CSF studies have shown inconsistent
results. Maetzler et al77 found increase levels in PD compared
with DLB, but Constantinescu et al78 showed no difference
among parkinsonian groups and healthy controls.

Inflammatory markers
Fractalkine
Fractalkine is an inflammatory cytokine that acts as a neuro-
trophic and antiapoptotic factor in the central nervous system.
It was decreased in MSA and could alone differentiate between
PD and MSA with a sensitivity of 99% and a specificity of
95%.22 In addition, the fractalkine/Aβ42 ratio was closely asso-
ciated with disease severity and progression in PD. These results
are in need of replication.

Complement C3/factor H ratio
The C3/factor H ratio in CSF was significantly decreased in
MSA compared with PD, AD and healthy controls. Increased

Table 4 CSF biomarkers for oxidative stress, inflammation and energy failure in parkinsonian disorders

Research groups Participants Analyte Method Main findings

Herbert et al73 PD n=43, MSA n=23,
controls n=30

DJ-1 ELISA ▸ Increase in MSA>PD
▸ Significant difference in MSA vs PD,

MSA vs controls and PD vs controls
Constantinescu
et al78

PD n=6, MSA n=13, PSP
n=18, CBD n=6, HC n=18

Urate Enzymatic method on a modular system No difference

Wennstrom et al47 PD n=38, PDD n=22, DLB
n=33, AD n=46, HC n=52

Neurosin ELISA ▸ Lowest levels in DLB, but no
difference between synucleinopathies

▸ When pooled, synucleinopathies
decrease levels vs AD+HC

Goldstein et al82 PD n=34, MSA n=54, PAF
n=20, HC n=38

Dihydroxyphenylatic acid
(DOPAC)

Batch alumina extraction followed by liquid
chromatography with electrochemical detection

▸ Decrease in PD, MSA and to a lesser
degree PAF vs HC

▸ No difference between
synucleinopathy groups

Salvesen et al72 PD n=30, DLB n=17, MSA
n=14, PSP n=19

DJ-1 ELISA No difference among groups

Maetzler et al77 PD n=55, PDD n=20, DLB
n=20, controls n=76

Uric acid ADVIA analyser+photometric methods Increase in PD vs DLB

Shi et al22 Discovery cohort:
PD n=126, MSA n=32
AD n=50, controls n=137
Validation cohort:
PD n=83

DJ-1
Fractalkine

Bead-based multi-analyte assay (Luminex) ▸ DJ1: decrease in MSA+PD vs controls
+AD

▸ Fractalkine: decrease in MSA vs PD,
AD+controls

LeWitt et al81 PD n=217 (samples collected
×2 occasions)
HC n=26

Homovallinic acid/
xanthine ratio

Gas chromatography-mass spectrometry ▸ Increased ratio in PD vs HC
▸ Ratio increased further in PD

specimens collected up to 2 years
later

Wang et al79 PD n=86, MSA n=20, AD
n=38 HC n=91

Complement C3/factor H
(FH)

Bead-based multi-analyte assay (Luminex) ▸ C3: decrease in MSA vs PD+HC;
increase in AD vs all other groups

▸ FH: increase in AD vs PD+HC
▸ C3/FH ratio: decrease in MSA vs all

other groups
Maetzler et al80 PD n=38, PDD n=20, DLB

n=21 m, controls n=23
Neprilysin Fluorometric assay Decrease in DLB+PDD vs PD+ controls

Hong et al52 PD n=117, AD n=50, HC
n=132

DJ-1 Bead-based multi-analyte assay (Luminex) ▸ Decreased levels in PD vs Controls
and AD

▸ No difference between AD+ controls

AD, Alzheimer’s disease; CBD, corticobasal degeneration; CSF, cerebrospinal fluid; DLB, dementia with Lewy bodies; HC, healthy controls; MSA, multiple system atrophy; PAF, pure
autonomic failure; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; PSP, progressive supranuclear palsy.
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levels of C3 or factor H, together with decreased levels of
Aβ42, correlate positively with disease severity and progression
in PD.79

Neurosin
Neurosin is a protein expressed in human brain tissue, and it is
one of several enzymes suggested to cleave α-Syn. A study com-
paring neurosin levels in synucleinopathies showed lowest levels
in DLB, but no difference among DLB, PDD and PD. However,
when pooled together, synucleinopathies had significantly lower
neurosin levels compared with AD and controls.47

Neprilysin
Neprilysin is a membrane bound presynaptic protein involved in
Aβ clearance. CSF levels were significantly decreased in DLB
and PDD compared with PD and controls, and they correlated
well with Aβ42 levels in all cohorts.80

Catecholamine metabolites
Homovanillic acid (HVA)/xanthine ratio
HVA is the major catabolite of dopamine and has been exten-
sively studied in the past in relation to PD, as described above.
Xanthine is the immediate precursor of urate. HVA/xanthine
ratio was increased in PD compared with controls and corre-
lated with diseased severity.81

Dihydroxyphenylatic acid (DOPAC)
Depletion of dopamine (a catecholamine) in basal ganglia is a
defining neurochemical characteristic in PD. DOPAC is a neur-
onal metabolite of catecholamines. It was found to be decreased
in PD and MSA compared with healthy controls, but there was
no difference between synucleinopathy groups.82

The above compounds may be promising candidate makers,
but they need verification in further studies. CSF HVA has been
extensively studied in relation to PD and treatment response but
still has no definite place in the clinical routine.

Lysosomal dysfunction
Lysosomes are the cell’s waste disposal system, and their dys-
function is an early event in PD pathogenesis.83 Patients suffer-
ing from Gaucher disease, a rare, autosomal-recessive storage
disorder caused by lysosomal enzyme β-glucocerebrosidase
(GCase) deficiency,84 have an increased risk of parkinsonism,85

which appears to be driven by a direct effect of GCase defi-
ciency and lysosomal dysfunction on α-Syn aggregation.86

Measuring GCase activity in the CSF could be a useful bio-
marker in PD. PD87 and DLB88 patients were found to have sig-
nificantly reduced GCase activity compared with neurological
controls. A recent study showed that the combination of GCase
activity, oligomeric/total α-Syn ratio and age discriminates best
PD from neurological controls.89 However, in a Dutch cohort
of de novo PD patients and healthy controls, there was a trend
towards a reduction in CSF GCase activity.90 The usefulness of
GCase as a potential biomarker in parkinsonian conditions
needs to be evaluated in future studies that include additional
neurodegenerative groups to PD.

‘Omics’ approaches
The markers already discussed have been hypothesis driven
based on pathophysiological studies, which have identified
potentially deranged pathways in neurodegenerative diseases.
The ‘omics’ techniques offer an unbiased approach of identify-
ing biochemical pathways that are unexpectedly involved in neu-
rodegeneration. Ultimately, the aim is to generate a list of

candidate markers deserving further targeted studies.91 The
‘omics’ approach results in unbiased and systematic measure-
ment of patterns of variations in genes (genomics), RNA (tran-
scriptomics), proteins (proteomics) and small molecules
(metabolomics). We have briefly discussed genomics and
touched on metabolomics in previous sections, and we will now
review proteomics in parkinsonian disorders.

Abdi et al92 used a multiplex quantitative proteomic platform
to find 72 altered proteins in PD compared with healthy con-
trols. Apolipoprotein H and ceruplasmin seemed to differentiate
PD from healthy controls and from non-PD patients (AD and
DLB). Eight of the proposed proteins were validated using a
multianalyte CSF profile and showed good PD discriminatory
power compared with AD and healthy controls.93

Using surface-enhanced laser desorption/ionisation time-of-flight
mass spectrometry (SELDI-TOF MS), Constantinescu et al94 found
a CSF proteomic profile consisting of four proteins (ubiquitin,
β2-microglobulin and two secretographin 1 fragments), which dif-
ferentiated PD and healthy controls from atypical parkinsonian
patients with an AUC of 0.8. Recently, Ishigami et al95 were able to
differentiate PD from MSA, even at the early stages, using their
proteomic pattern (ie, the combined set of many protein peaks),
rather than a single peak. Multiple peaks differentiated MSA and
PD from control groups, consistent with previous reports that a
panel of potential biomarkers is essential to distinguish between
disease states.96

Another recent study attempted to differentiate PD from
PDD patients using proteomic technology. Six proteins were
identified, but only serin-protease inhibitor Serpin A1 was veri-
fied using biochemical methods. Performing 2-D immunoblots,
there was 100% specificity and 58% sensitivity for the test pro-
cedure.97 Testing CSF obtained from PD, PDD patients and
non-demented controls using a gel-free proteomics mass spec-
trometry approach with isotope-labelled samples (iTRAQ) led to
the identification of 16 differentially regulated proteins, which
could be potentially diagnostic markers.98

While proteomics studies have produced a number of interest-
ing candidate markers, these are still in need of replication and
far from being established. It has also become clear that many
of the protein expression changes seen so far represent changes
that are common to several neurodegenerative diseases. Reliable
detection of disease-specific changes most likely depends on the
development of more advanced techniques that allow for
deeper analyses of the CSF proteome.

Imaging markers
Even though imaging biomarkers are beyond the scope of this
review, we would like to point out that combination of CSF and
imaging markers can provide increased diagnostic accuracy com-
pared with using either modality alone. For example, Borroni and
colleagues used mid-sagittal midbrain-to-pons atrophy in addition
to CSF tau fragments levels to increase the discriminative power in
identifying PSP from other neurodegenerative conditions.66

DISCUSSION
The vast majority of the studies discussed are cross-sectional,
retrospective and do not have pathological confirmation. The
accuracy of the clinical diagnosis is uncertain, and the contribu-
tion of comorbidity to the clinical phenotype is unknown.

There is lack of standardisation both of preanalytical (sam-
pling collection, handling and storage) and analytical (analysis
execution/sample processing) factors. For example, CSF contam-
ination by blood can alter study outcomes in α-Syn and DJ-1
assays. In addition, there is lack of assay standardisation;
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different assays can give different absolute concentrations of the
protein, making it almost impossible to use global reference
limits and diagnostic cut-off points.

Furthermore, both disease groups and control groups are het-
erogeneous. The neurodegenerative groups differ in terms of
age, disease duration and severity. The control groups include a
very small proportion of healthy controls and are mostly non-
neurodegenerative neurological patients. However, some studies
include patients with possible neurodegenerative conditions,
such as mild cognitive impairment or normal pressure
hydrocephalus.

Finally, there is lack of combination of different biomarker
modalities, such as imaging and CSF markers.

A very promising study is the Parkinson’s Progression Markers
Initiative (PPMI), which aims to identify PD progression
markers and to better define subsets of PD patients.99 100 It is a
5-year, multicentre, longitudinal study of drug-naïve PD patients
with early-stage disease, compared with healthy controls.
Detailed motor and neuropsychological assessments, DaT-scan
and CSF examinations are performed. There is strict standard-
isation of data acquisition, CSF collection and processing.21

SUMMARY POINTS: CSF BIOMARKERS IN PARKINSONISM
▸ Aβ42 has a role in predicting cognitive decline in Parkinson’s

disease (PD)
▸ t-α-Syn: most promising marker; differentiates synucleinopa-

thies from other neurodegenerative diseases and controls but
is not specific

▸ t-tau and p-tau: inconsistent data, can help differentiate PD
from AD and can be useful in combination with other
markers

▸ NF-L: useful in differentiating PD from atypical parkinsonian
conditions

▸ 4R-tau: possible marker of disease progression in PSP
▸ DJ1: potential role in discriminating MSA from PD
▸ Oxidative stress/inflammatory/metabolic markers: promising

initial results, requiring further validation

FUTURE DEVELOPMENTS FOR THE CSF FIELD IN
PARKINSONISM
We think that several hypothesis-driven biomarkers are going to
be investigated at the same time using multiplex platforms. The
proteomics field is likely to expand and gain in analytical sensi-
tivity, resulting in the identification of more candidate markers,
some of which may be unexpected and give new clues on
disease mechanisms. There needs to be large, prospective and
longitudinal cohorts with serial CSF examinations and patho-
logical confirmation in as many patients as possible. A very
important issue to be resolved is the standardisation of protocols
and improvement in quality controls in CSF analysis. Finally,
like in AD, it will likely be important to combine several CSF
markers with other modalities, like imaging.

Accurate diagnosis of parkinsonian conditions should occur as
early as possible, before too much irreversible neuronal damage
has accumulated. This is essential, especially with the emergence
of potential disease-modifying drugs, which must be used to
target the correct underlying pathology. There is promising pro-
gress in the development of an α-Syn imaging agent, using radio
ligands that bind to α-Syn fibrils. This should enable the assess-
ment of the distribution of brain α-Syn during life.101

CONCLUSION
Parkinsonian conditions, like most neurodegenerative diseases,
have complex and dynamic interaction of several underlying

pathogenic mechanisms. A combination of biomarkers possibly
from different modalities in large, longitudinal cohorts might be
required for early diagnosis and accurate disease prognosis.
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