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Abstract

In many settings, copying, learning from or assigning value to group behavior is rational because such behavior can often
act as a proxy for valuable returns. However, such herd behavior can also be pathologically misleading by coaxing
individuals into behaviors that are otherwise irrational and it may be one source of the irrational behaviors underlying
market bubbles and crashes. Using a two-person tandem investment game, we sought to examine the neural and
behavioral responses of herd instincts in situations stripped of the incentive to be influenced by the choices of one’s
partner. We show that the investments of the two subjects correlate over time if they are made aware of their partner’s
choices even though these choices have no impact on either player’s earnings. We computed an ‘‘interpersonal prediction
error’’, the difference between the investment decisions of the two subjects after each choice. BOLD responses in the
striatum, implicated in valuation and action selection, were highly correlated with this interpersonal prediction error. The
revelation of the partner’s investment occurred after all useful information about the market had already been revealed. This
effect was confirmed in two separate experiments where the impact of the time of revelation of the partner’s choice was
tested at 2 seconds and 6 seconds after a subject’s choice; however, the effect was absent in a control condition with a
computer partner. These findings strongly support the existence of mechanisms that drive correlated behavior even in
contexts where there is no explicit advantage to do so.
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Introduction

Humans learn a range of information from one another [1] and

show a particular sensitivity to the influence of group behavior [2].

The ultimate evolutionary origins of these behaviors and their

dependence on other relevant variables raise broad-ranging

questions [3–6] however, they also invite important but narrower

questions about the human propensity to assign value to the

behavior of others even when there exists no external incentive to

do so. Such assignments can reasonably be considered irrational

because they explicitly violate external incentive structures. It has

been suggested that this propensity to ‘follow-the-crowd’ – even in

the face of information that suggests otherwise – is the basis of a

range of herding behaviors displayed by humans interacting

through markets including both bubbles and crashes [7–11]. One

hypothesis for the origin of this class of ‘believe-the-group’

irrationalities is that while long ago group behavior tended to be

a good proxy for value, the complexities of modern life, and

especially modern markets, subvert this tendency, producing

unpredictable behaviors in market settings.

We used a tandem (two-person) sequential choice experiment,

framed as a market investment task, to test the degree to which

neural and/or behavioral responses change depending solely on

the behavior of one’s partner, and whether they do so in the

absence of incentives. The task asks a subject to invest some

fraction (from 0 to 1) of their total holdings, shows the change in

the market value which controls gains and losses, and later shows

the fraction invested by their partner (Figure 1). The partner’s

investment has no bearing on the payoff of the subject or on the

market’s future movements. In addition to this tandem task we

included a control condition in which subjects played in tandem

with a computer that chose its investments randomly (uniformly

over [0,1]). In this control condition, subjects were informed that

the other ‘‘investor’’ was a computer and that its choices were

random. This experiment asks two empirical questions. (1) Does a

subject change their behavior based on the difference with their

partner’s choice (Jones)? (2) How does the brain respond to the

difference between the subject’s investment level and their

partners? We repeated the experiment twice and varied the time

at which the partner’s choice was revealed (2 seconds and

6 seconds after the subject’s choice).

In this task, there is no incentive for the answer to either

question to be yes; however, a positive answer to either suggests

that group behavior is deemed valuable by brain and behavior
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even in the absence of external economic incentives. The

striatum is well known for encoding ‘‘prediction error’’ signals

that aid humans and other animals learn the value of various

stimuli and actions; therefore, we hypothesized that the

‘‘interpersonal prediction error’’, i.e. the difference between

the partner’s and the subject’s own bet (henceforth referred to as

Jones), would (a) correlate with activation in the striatum and (b)

correlate with the bet in the next round of play. Hypothesis (a) is

based on the idea that the subject’s brain assumes that this

difference with the partner’s bet is an informative error signal.

Hypothesis (b) – the idea that this difference would correlate

with a tendency to adjust ones behavior toward that of the other

investor – suggests one bias that would encourage irrational

herding behavior.

The setup for our tandem investment task and our framing of

the behavior in terms that inform our notion of irrational herding

behavior is also supported by economic ideas. Economists have

laid out the theory of information cascades – situations where

rational agents disregard their private signals and follow the choices

of others [9,12,13] ‘as though’ the others have different or better

information. This tendency to herd is also thought to play a role in

more complicated situations, such as financial markets, where the

phenomenon may lead to bubbles and crashes [14].

Recently neuroscientists have begun to explore the neural

underpinnings of social learning [15–23]. We extend these results

to consider the effects of others’ past investment behavior on

subsequent investment behavior when the risk parameters of the

underlying market are fundamentally unknown. We hypothesized

that modulation of the error signals in the ventral striatum would

reflect the influence of social information on investment behavior.

Results

In order to test the hypothesis that people’s investment behavior

is affected by social information, and to probe the neural substrates

of this influence, we employed fMRI and two human versions and

one control condition of a ‘‘tandem’’ implementation of an

investment game previously used to probe intrapersonal fictive

errors (the difference between the actual received reward, and the

best possible outcome a subject might have achieved) [24,25].

Figure 1 gives a schematic outline of the tasks. In the human

conditions two subjects (who knew that there was another person

playing but did not meet) played the investment game simulta-

neously while being scanned. In the investment game, both

subjects were endowed with $20, and then each had to decide

what percentage of their endowment to risk in the ‘‘market’’ (the

markets were taken from actual historical markets. See Text S1 for

details). After each person lodged their asset allocation (their

‘‘bet’’), the next market outcome was revealed, the portfolio value

and percentage gained or lost was updated, and after a short delay

(2 sec in the first version, and 6 sec in the second) a pair of red

Figure 1. Schematic experiment timeline. A. Two subjects simultaneously played a sequential investment task. After receiving market
information each player privately submitted their own bet. After a delay the players’ bets were simultaneously revealed to the other player (Exp 1,
2 sec delay, 68 subjects; Exp 2, 6 sec delay, 24 subjects), and then another round began. B. In experiment 2 subjects were told and in fact played a
computer partner which chose investments randomly.
doi:10.1371/journal.pcbi.1003275.g001

Author Summary

In this study we examine the neural substrates of inter-
personal error signals on behavior in an investment task
using real historical markets. We show that behaviorally,
subjects correlate their investments, despite the fact that
another trader has no extra information about how the
market may move. These behavioral results are supported
by neural data showing large, parametric responses in
brain areas related to reward and learning when informa-
tion about another trader’s behavior is revealed, even
though this occurs after all useful information about the
market has already been shown. These results promise to
elucidate some of the subconscious processes that guide
people to correlate their behavior in markets and other
group environments.

Correlated Choices in a Tandem Choice Task
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arrows representing the other player’s investment level percentage

appeared on the slider bar. After another short delay the process

was repeated. The choices of the players had no direct influence

on future market fluctuations, and the choices of one player had

no direct influence on the payoffs of the other player. In the

computer control condition the subject was told they were playing

a computer partner that chose randomly; the delay between the

market revelation and the revelation of the computer choice was

6 sec. We examined the behavior from all three experiments, but

focused on the imaging from the 6 sec. human and computer

control conditions.

Behavior
To examine differences among the three versions of the

experiment we performed a mixed-effects linear regression

separating the three groups (2 sec human, N = 68; 6 sec human,

N = 24; 6 sec computer control, N = 24; see Tables S1, S2, S3 for

demographic information) using indicator functions for the three

groups (interacting with all of the variables of interest). The

dependent variable was the normalized investment. The inde-

pendent variables in the regression were a constant, the

normalized previous bet, the previous market return (MKT),

and a variable we call DJONES, equal to the difference between

the other subject’s investment and the subject’s investment. Here

we focus on the regression coefficient of DJONES (Figure 2). The

coefficients from the 2 sec and 6 sec human experiments are both

significantly greater than zero, and the coefficient in the

computer control condition is not significantly different than

zero. There is also a significant difference between the human

6 sec condition, and the computer control condition. See Text S1

for more regression details, and Table S4 and Table S5 for

complete regression tables.

Neuroimaging
To investigate the neural underpinnings of these signals we

constructed a regression model for the imaging data using

regressors suggested by behavioral model (see Supporting

Information for details). We limited our investigation of the

neural data to the 6 sec human and computer control experi-

ments. Specifically we included a parametric regressor for

DJONES at the reveal of the other person’s investment, and a

parametric regressor for MKT at the time of the revelation of the

market return to the subject. Figure 3A shows the activation

corresponding to the DJONES regressor in the human condition

while 3B shows the activation in the computer control (both

N = 24; both displayed with p,.001 uncorrected, cluster size

. = 5). Note that there were no regions of significant negative

correlation. See Figure S1 and Figure S2 for regression tables and

glass brains. In the human condition, this activation survived a

small volume correction for multiple comparisons over an ROI

consisting of 5 mm radius balls centered on bilateral caudate/

putamen voxels taken from peak activations in [24]. (See Figure

S3 for mask). Additionally, the comparison (two-sample t-test) of

DJONES across the human and computer conditions survived a

similar small volume correction yielding voxels in left caudate

(Figure S4). Activation tables for both small volume corrections

are in Figure S5.

While not our main focus, it is worth noting that the MKT

regressor also produced, in both human and control conditions,

robust activation in the striatum (Figure S6). Figure S7 shows a

conjunction/disjunction analysis of the MKT and DJONES

activation at the p,.001 and p,.05 levels in the human condition.

We were also interested in the possible differences between

the neural and behavioral effects of the variables obtained by

splitting DJONES into its positive and negative parts (e.g.

Figure 2. Behavioral analyses of the sequential investment task reveals influence of other player’s investment. Multiple regression
analysis shows that a player’s next bet was influenced significantly by the difference between the human partner’s bet and their own bet (DJONES).
This was true whether the result was lodged at 2 seconds, Experiment 1, or 6 seconds, Experiment 2, after the revelation of the market return. The
influence of DJONES was not significant in the computer control Experiment 3.
doi:10.1371/journal.pcbi.1003275.g002

Correlated Choices in a Tandem Choice Task
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POSDJONES = max(DJONES , 0); see Text S1 for details). We

find a significant difference in the behavioral regression coeffi-

cients, with the coefficient of the negative part of DJONES being

larger in absolute value (Table S3). Neurally, however, we find no

difference between the two conditions (Figure S8).

Finally, we wanted to investigate the relationship between the

neural correlates of DJONES and the individual behavioral

regression coefficients of DJONES. Figure 4A shows the middle

cingulate region for which the individual neural DJONES

responses are significantly positively linearly related to the

individual behavioral DJONES coefficients (p,.05, FWE whole-

brain corrected; behavioral coefficients from individual subject

regressions. See Text S1 for details.). Figure 4B shows (for

illustrative purposes only) a plot of the neural coefficients against

the (mean adjusted) behavioral coefficients.

Discussion

Using a tandem sequential investment task we show that when

subjects play a human partner the inter-personal fictive error

guides behavior (subjects’ next bet) and correlates with a robust

neural signature in the striatum. These findings are significant

because the partner’s choice is revealed after the subject’s

monetary outcome is revealed and the partner’s choice has no

bearing on the payoff to the subject. Despite these facts, the inter-

personal fictive error still influences the subject’s behavior on their

next bet, correlates with a robust and parametric neural signature

in an important reward processing structure, and depends on

whether the partner is a human. Specifically, if humans play a

computer partner expressing random investments on each trial this

same inter-agent fictive error term has no behavioral impact on

the next bet and has no significant neural correlate in the striatum.

Our results are for the most part are consonant with the results

of previous studies of social influence [15–23] that show neural

responses to and behavioral influences of the choices of others.

However, there are several key differences that allow us to expand

on these results.

First, the timing of private and social outcome revelations was

significantly different in this design. Here, information about the

market is revealed first, giving the subject all the information

relevant to their payoff, and then the social signal from the partner

is revealed. Second, our design is parametric in the choices and

outcomes. Our design thus allows us to show that the striatal

response and immediate subsequent behavior is fully parametri-

cally influenced by both the market return signal and the

interpersonal error signal. Additionally, we see a behavioral

asymmetry in the effect of the partner’s investment between the

outcome where the partner invested more than the subject versus

the case where the partner invested less. Subjects adjusted their

subsequent investment more when their partner invested less than

they did on the previous trial as though they were fleeing their own

over-exuberance on that trial. Finally, Burke et al. [17] show that

ventral striatum activation to social information covaries with

behavioral sensitivity to herd information. We do not see this in

our experiment. Rather, we see that neural activation to DJONES

in middle cingulate cortex covaries positively with behavioral

sensitivity to DJONES. One possible explanation for this

correlation is suggested by two studies. Kishida et al. [26] found

that athletes showed increased middle cingulate activity when

imagining themselves playing their own sport as opposed to a

different sport. Further, they saw the same result in subjects when

they took a first, as opposed to third person perspective when

imagining a sports scene. On the other hand, Chiu et al. [27]

found decreased activity during the ‘‘self’’ phase of the trust game

in the middle cingulate in autistic subjects. The effect covaried

with symptom severity. These results suggest that this area is key

for identifying with conspecifics, pointing to a hypothesis that

neural sensitivity in middle cingulate to the DJONES signal is

dependent on the tendency of a subject to identify with the other

investor. This hypothesis is also supported behaviorally by the

findings of Burke et al. [17] showing that herding behavior is more

pronounced when investing alongside human conspecifics as

opposed to non-human primates, as well as by the absence of a

DJONES effect in our control condition.

Figure 3. Striatum shows a parametric response to interpersonal error with human partner. A. When subjects play the human partner in
Experiment 2, the striatum shows a parametric correlation with the interpersonal error, the difference between the other player’s bet and the player’s
bet (DJONES). B. When subjects play a computer partner there is no significant activation associated to DJONES in the striatum. Both figures p,001,
cluster size . = 5, n = 24. The Experiment 2 (human partner) striatal activation survives a small volume correction, as does the contrast
human.computer.
doi:10.1371/journal.pcbi.1003275.g003

Correlated Choices in a Tandem Choice Task
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Our results suggest that the difference between the partner’s

investment and the subject’s investment can be viewed as an error

signal that guides behavior, rather than as simply an add-on

affective response. The affective system has long been considered a

necessary component effective decision-making [28] whose func-

tion can be seen as ‘‘ecologically rational’’ [29]. Neural signals

correlated with affect may then be reinterpreted as error signals

[30]. For example, much of the early work on anterior insula

focused on emotions such as pain and disgust. [31,32] Recently,

however, the function of the anterior insula has been recast in the

language of error signals [29], whereby activation in the insula is

regarded as signaling a variance prediction error. Here our focus is

on the striatum, but the idea is similar. Indeed multiple works

[17,23,33–35] suggest that socially construed reward signals

should appear in the striatum just as other control signals do. In

this light, the results of this paper strongly suggest that we view the

activation in the striatum not only as a hedonic signal, but also as a

control signal.

Correlation is a property that is vitally important in asset

management: in order to maximize return with a minimum of risk

an investment manager must know the correlation of the assets

under management [36]. Our ancestors living in small groups

were not ‘‘asset managers’’, but it is likely the members of the

group correlated their activities in an optimal way, an activity that

would require the brain to track and control individual correla-

tions.

Finally these results provide biological evidence that standard

theories of investment behavior that are variations on the

Figure 4. Neural interpersonal error sensitivity covaries across subjects with behavioral influence of interpersonal error in middle
cingulate. A. Across subject regression of the beta maps from the neural DJONES regressor against the behavioral DJONES coefficients revealed a
significant (p,.05, whole – brain FWE corrected) linear relationship in middle cingulate. B. Plot of individual values of neural DJONES from peak voxel
in middle cingulate (MNI [210,216,38]) versus individual behavioral DJONES coefficients (mean adjusted).
doi:10.1371/journal.pcbi.1003275.g004

Correlated Choices in a Tandem Choice Task
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Markowitz model [37] miss a fundamental driver of behavior by

failing to account for the behavior of other investors. The response

of the striatum to the Jones variable suggests that tendency to

correlate actions is deeply rooted with potential evolutionary

drivers. This lends weight to the ‘‘behavioral finance’’ approach

espoused by Shiller and others [10,38,39].

In summary, previous work shows that the comparison of

personal results to the results of another modulates neural activity.

Our results further show that the comparison of the personal result

to the outcome of the other person can be put in the context of an

error signal, the interpersonal fictive error, which controls behavior

and has a robust neural signature. Social comparison can thus be

construed not merely as a possibly unseemly manifestation of envy,

but rather as a potentially useful learning signal.

Materials and Methods

Ethics statement
Informed consent was obtained for all research involving

human participants, and all clinical investigation was conducted

according to the principles expressed in the Declaration of

Helsinki. All procedures were approved by the Institutional

Review Board of the Baylor College of Medicine, or the

Institutional Review Board of Virginia Tech.

Participants
Experiment 1: 76 participants were recruited and 74 scanned in

accordance with a protocol approved by the Baylor College of

medicine IRB. In the two behavioral only subjects the log files of

the experiment were incomplete, leaving unusable data; in two

scanned subjects the experiment terminated prematurely; in 4

other scanned subjects the functional images were unusable,

leaving 68 subjects with both behavioral and imaging data. Table

S1 summarizes the demographic information of these 68 subjects.

All data mentioned in the text and supplementary information

referring to the first experiment refers to the behavioral data only

of these 68 subjects. Experiments 2 and 3: 49 participants (24 for

the human condition and 25 for the computer control condition)

were recruited and 49 scanned in accordance with a protocol

approved by the Virginia Tech IRB. One subject’s scanning

session terminated prematurely in the control cohort leaving 24

subjects. All data mentioned in the text and SOM referring to the

second experiment refers to these subjects. Table S2 summarizes

the demographic information of these subjects.

Task
Participants arrived at the lab, were consented, and then read

task instructions. In the versions with human partners the partners

did not meet. After they were loaded in scanner, the task began.

Each subject participated in 10 markets in a random order. There

were two groups of markets, A and B (originally described and

used in Lohrenz et al., 2007). 30 subjects saw group A, and 41

subjects saw group B. After seeing initial market data, a participant

selected an investment level (0% to 100% in increments of 10%)

using one button box (shown on a slider bar on the screen) and

submitted the decision using the other button box. In the human

partner versions the next market result appeared 750 ms after the

later of the two partners’ choice was submitted. In the computer

partner version the result was displayed 6 seconds later. 2 or

6 seconds later (depending on the experimental cohort, 1 or 2,3)

the other partner’s choice, was displayed by showing two red

arrows on either side of the slider bar showing the level person’s

investment. This was repeated 20 times per market, for a grand

total of 200 decisions.

fMRI data
Data acquisition. Imaging data were collected at Virginia

Tech Human Neuroimaging Lab using 3-tesla Siemens TRIO

scanners. Initial high-resolution T1-weighted scans were acquired

using an MP-Rage sequence. Functional images were acquired

with TR = 2000 ms and TE = 25 ms. 37- mm slices were

acquired 30 degrees to the anteroposterior commissural line,

yielding functional voxels that were 3.4 mm63.4 mm64 mm.

Preprocessing. All data were preprocessed using standard

SPM8 algorithms (http://fil.ion.ucl.ac.uk/spm, ). Functional

images were motion corrected using a six-parameter rigid-body

transformation to the first functional scan. The mean functional

images for each respective subject were then co-registered using a

twelve-parameter affine transformation to the subject’s high

resolution T1 structural scan. The subject T1 was segmented into

gray and white matter and then normalized to the MNI template,

and the functional images normalized to the template, with

resampled 46464 mm functional voxels. Functional images were

smoothed spatially using a 8 mm Gaussian kernel.

Analysis. All functional data were high-pass (128 sec) filtered.

The AR 1 structure option was used in SPM8. For each subject a

design matrix was constructed using canonical events (each event

was punctate, and convolved with the standard hemodynamic

response function (HRF) in SPM8; see Text S1 for full details). Of

particular interest were the events REVEAL and JONES

REVEAL. REVEAL was the event where the new market trace

was revealed to each subject (see Figure 1). JONES REVEAL was

the event where the investment of the partner was revealed (see

Figure 1). One additional regressor was formed by parametrically

modulating REVEAL with MKT (the market return – see Text S1

for full details). A second additional regressor was formed by

parametrically modulating JONESREVEAL with DJONES (the

difference between the partner’s investment and the subject’s

investment). The beta images for the MKT and DJONES from

the first-level analysis were entered into a second-level t-test for the

analyses presented in Figure 3.

Behavioral analysis
Subject’s behavioral data were analyzed in R (package nlme)

[40,41] (see Text S1 for full details).

Supporting Information

Figure S1 Imaging table and glass brain for DJONES regressor

(p,.001, uncorrected k $5, n = 24) in experiment 2 ( 6 sec.

human partner).

(TIF)

Figure S2 Imaging table and glass brain for DJONES regressor

(p,.001, uncorrected k $5, n = 24) in experiment 3 ( 6 sec.

computer control partner).

(TIF)

Figure S3 Images of mask used in small volume corrections.

Regions of L/R caudate and L/R venral striatum formed by the

union of 5 mm radius balls centered on peak activation

coordinates from Lohrenz et al. 2007 [24] (Caudate: (-8, 8, 4),

(8, 12, 4). Ventral Striatum: (-16, 8,-12), )16, 12,-12). MNI

coordinates).

(TIF)

Figure S4 Two-sample t-test image of the comparison hu-

man.computer for the DJONES regressor (p,.005. cluster size

. = 5, uncorrected, n1 = 24, n2 = 24).

(TIF)

Correlated Choices in a Tandem Choice Task
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Figure S5 Small volume correction statistics for: A. the

DJONES regressor in experiment 2 over the region of interest

displayed in Figure S3; B the comparison human . computer

(experiment 2 . experiment 3) for the DJONES regressor.

(TIF)

Figure S6 Left: MKT regressor in experiment 2, human partner

(p,.001, cluster size . = 5, uncorrected, n = 24); Right: MKT

regressor in experiment 3, computer control partner (p,.001,

cluster size . = 5, uncorrected, n = 24).

(TIF)

Figure S7 Conjunction/disjunction images for the DJONES

and MKT regressors in experiment 2 (human partner). Left: masks

created using p,.001, cluster size . = 3, uncorrected, n = 24;

Right: masks created using p,.05, cluster size . = 3, uncorrected,

n = 24.

(TIF)

Figure S8 Left: Thresholded t-map of the regressor POSD-

JONES in experiment 2 (p,.001, cluster size . = 5, uncorrected,

n = 24; nb: positive correlation). Right: Thresholded t-map of the

regressor NEGDJONES in experiment 2 (p,.001, cluster size

. = 5, uncorrected, n = 24; note: negative correlation).

(TIF)

Figure S9 Thresholded t-maps for the within-subject contrast

NEGDJONES+POSDJONES. Left, positive correlation, right

negative correlation (p,.05, cs . = 5, uncorrected, n = 24).

(TIF)

Table S1 Experiment 1 (2 sec human partner experiment)

demographic information (N = 68).

(TIF)

Table S2 Experiment 2 (6 sec human partner experiment)

demographic information (N = 24).

(TIF)

Table S3 Experiment 3 (6 sec computer control experiment)

demographic information (N = 24).

(TIF)

Table S4 Regression fixed-effect coefficient estimates for the

grouped three-experiment behavior.

(TIF)

Table S5 Contrast estimates for the grouped three-experiment

behavior.

(TIF)

Table S6 Behavioral regression fixed-effect coefficient estimates

for experiment 2 (6 sec human partner for the POSDJONES/

NEGDJONES model; n = 24).

(TIF)

Table S7 Contrast estimate for experiment 2 (6 sec human

partner for the POSDJONES/NEGDJONES model; n = 24).

(TIF)

Text S1 Supplementary information on task and analysis.

(DOCX)
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