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Abstract 

Insects, which represent the most species-rich taxa, are extremely important 

ecosystem components. The diversity patterns of insects have, however, been widely 

ignored in biodiversity research. In my thesis, I aim to establish a basic understanding 

of the diversity patterns of insect assemblages in the temperate forest and forest 

plantation ecosystems of Northern China, and to investigate how these patterns 

correlate with vegetation and environmental conditions. The study aims to give 

further insights into the insect diversity status and measures to conserve or even 

enhance their diversity in the large secondary and plantation forests which have been 

and are currently established throughout northern China.  

The study focuses on two distinct insect taxa: ground beetles (Coleoptera: Carabidae) 

and geometrid moths (Lepidoptera: Geometridae). In the main study area located 

within the Changbaishan Natural Reserve (CNR) in Jilin Province, 4844 individuals 

(47 species) of ground beetle and 9285 individuals (155 species) of geometrid moth 

were sampled. In addition, 1488 ground beetles (24 species) and 2047 geometrid 

moths (165 species) were sampled in the secondary and plantation forest area at 

Dongling Mountain (DLM) in Beijing.  

A first important result of this work is that the α-diversity of both ground beetle and 

geometrid moth assemblages decreased significantly with increasing elevation at 

CNR. My results also show that the relationships between phyto-diversity and the 

diversity of insects are weak and furthermore likely to be driven by underlying 

environmental factors. The significant changes which have recently occurred in the 

plant species composition at CNR chiefly related to changes in the climatic conditions 

suggest that insect species are also under high pressure in this area. Finally, this study 

suggests that in the temperate religions of Northern China, secondary and plantation 

forests can potentially harbour high levels of insect α-diversity compared with mature, 

more pristine forests. 
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Chapter 1.  Introduction 

1.1.  Biodiversity 

1.1.1.  What is biodiversity? 

Biodiversity is defined by the Convention on Biological Diversity (CBD) 

((http://www.cbd.int/convention/articles)) as “the variability among living organisms 

from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems 

and the ecological complexes of which they are part; this includes diversity within 

species, between species and of ecosystems.” The term ‘biodiversity’ was originated 

form the conference of ‘National Forum on Biological Diversity’ in 1986 organized 

by the National Research Council (Wilson, 1988). Generally, biodiversity includes 

three distinct levels, genetic diversity, species diversity and ecosystem diversity 

(Hooper et al., 2005; Larsson, 2001). Some studies include landscape diversity as a 

further distinct level of biodiversity (Fu & Chen, 1996; Romme & Knight, 1982), 

while others consider landscape diversity within the concept of ecosystem diversity at 

large geographical scales (Lapin & Barnes, 1995).  

Genetic diversity refers to the overall genetic information from all individuals of a 

species or population. Genetic distinctiveness is also seen as a basis for species 

diversity. Genetic diversity within a species is dependent upon diversity among 

species, and vice versa (Lankau & Strauss, 2007; Tisdell, 2003; Vellend & Geber, 

2005). Quantitative traits of genetic diversity are measured as the genetic variance or 

the total phenotypic variance within a population lead by individual genetic 

differences (Falconer et al., 1996). Genetic diversity is maintained by four factors: 

mutation, drift, selection and migration (Vellend & Geber, 2005). From an ecosystem 

perspective, a species will have greater resilience to environmental change if its 

populations have a wider genetic variation (Luck et al., 2003). For example, Ehlers et 

al. (2008) revealed that the density of eelgrass (Zostera marina L.) is negatively 
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correlated with climate warming, but positively correlated with genotypic diversity, 

indicating that species genetic diversity enhances the resistance to temperature stress. 

The economic and ecological value of a species also relates to its distinct genetic 

composition (Notter, 1999; Rajora, 1999). A species’ extinction risk increases with the 

depression of inbreeding, the loss of genetic diversity and the accumulation of 

mutations (Frankham, 2005). A good example is the monoculture in agriculture 

attributed to selective breeding, resulting in crop species with a low suppression to 

disease. To maintain crop genetic diversity is key to enhance crop disease suppression 

as well as to secure an overall sustainable crop production (Skamnioti & Gurr, 2009; 

Zhu et al., 2000).  

Species diversity is the diversity at species level, based on the distribution patterns of 

species and their spatial-temporal variations. Species diversity can be studied from 

taxonomic, phylogenetic and biogeographic perspectives. The issue of species 

definitions has been confused due to a variety of species concepts existing in the 

literature. These vary from biological, ecological, evolutionary and phylogenetic to 

phonetic approaches (see reviews by De Queiroz, 2007). Without a generally 

agreeddefinition of the term ‘species’, the concept of ‘species richness’ has also been 

strongly debated (De Queiroz, 2007; Gaston & Spicer, 2009; Ricotta, 2005). 

Nonetheless, species richness in practice is still treated as the fundamental element or 

currency of biodiversity (Gaston & Spicer, 2009). The diversity status of rare, 

endangered and endemic species is a key indicator in measuring biodiversity 

conservation outcomes. Whittaker (1960) distinguished species diversity at three 

levels: α-diversity as species richness within a sampling plot, community or habitat; 

β-diversity as species compositional heterogeneity amongst plots or habitats and 

γ-diversity as the total species diversity over a larger geographic area. While 

Whittaker (1960) did not give a very specific definition of β-diversity, Cody (1975) 

defined β-diversity as turnover of species along environmental gradients or between 

habitats, focussing also on shifts in abundance patterns. More recently, Tuomisto 

(2010) defined the ‘true beta diversity’ as being “obtained when the total effective 
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number of species in a dataset (true gamma diversity γ) is multiplicatively partitioned 

into the effective number of species per compositionally distinct virtual sampling unit 

(true alpha diversity α) and the effective number of such compositional units” 

(Tuomisto, 2010, pp. 2). α-diversity and β-diversity can generally be described by a 

variety of diversity indices (see more details in following section). 

Ecosystem diversity refers to the diversity of habitats, communities and ecological 

processes in the biosphere (McNeely et al., 1990). Globally, ecosystem can be 

classified into two key categories, terrestrial and aquatic. Aquatic ecosystems are 

further separated into marine and freshwater ecosystems, resulting in three essential 

global ecosystem types. Each ecosystem contains several sub-ecosystems. For 

example, terrestrial ecosystems can be separated into forest, desert or grassland 

ecosystems. Forest ecosystems are again separated for example into tropical, 

temperate and taiga forests; these ecosystems can again be divided into smaller 

ecosystem units. Nonetheless, ecosystem classifications, particular for small units, are 

not widely agreed by scientists (Carranza et al., 2008; Pojar et al., 1987; Rankin et al., 

2012; Rowe & Rowe, 1996). Habitat diversity is the foundation of community and 

ecosystem diversities, which comprises the variety of physical environmental factors 

such as topography and climatic conditions. Community diversity refers to differences 

in the biological composition and ecosystem dynamics. Community and habitat form 

complex functional units, ecosystems. Ecological processes cause temporal and 

spatial changes in composition, structure and function of ecosystem, as well as in the 

interactions between biological components and the environments. 

1.1.2.  Biodiversity and human well-being 

Biodiversity is the basis for human survival (Millennium Ecosystem Assessment, 

2005). Most species are part of natural ecosystems that provide a wide range of 

ecosystem processes and conditions to sustain human life (Chivian & Bernstein, 

2008). Broadly, the value of biodiversity provided for humans can be divided into use 

value and non-use value. The use value can again be categorized as direct-use value 



 

 18

and indirect-use value (Gaston & Spicer, 2009).   

Food is the most obvious direct-use value that biodiversity provides in support of 

human life. Other direct-use values include (but are not limited to) medicine, 

industrial materials, biological control and cultural value. Sustainable production of 

biological resources is particularly important for people living in economically poorly 

developed areas (Becker & Ostrom, 1995; Brown et al., 1987). It is estimated that 

about 80% of the world’s population rely on plant medicine either in part or entirely 

for primary health care (Farnsworth & Soejarto, 1991). In China, many plants are 

highly valued in Tradition Chinese Medicine (TCM), such as Fleeceflower Root 

(Polygonum multiflorum Haraldson), Ginseng (Panax ginseng Meyer) and 

Notoginseng (Panax notoginseng Chen & Chow). In addition, some raw biological 

materials will have a higher value after being processed through industrial production, 

such as timber, animal furs, antlers, honey, natural rubber and dyes. As already 

mentioned above, biological control is another direct-use value that has already partly 

been used as alternative for chemical pesticides. Biodiversity in pest control not only 

comprises the direct agricultural or forest pest control by natural enemies (e.g. Karp et 

al., 2013; Thomson & Hoffmann, 2010; Wilby & Thomas, 2002), but also refers to the 

fact that an increase of diversity per se, from both genetic diversity, species diversity 

and ecological diversity levels, can enhance crops’ resistance against pests (Bianchi et 

al., 2006; Harwood et al., 2009; Skamnioti & Gurr, 2009; Veres et al., 2013). Finally, 

from a cultural aspect, biodiversity is also valuable for tourism (Appiah-Opoku, 2011), 

education (Kassas, 2002) and scientific studies (Diaz & Duffy, 2006; Gaston & Spicer, 

2009; Millennium Ecosystem Assessment, 2005). 

As biodiversity is a core factor ensuring sustainability and productivity of many 

ecosystems, benefits from ecosystem services can be viewed as indirect-use value 

provided by biodiversity. Biodiversity can indirectly affect the provision of ecosystem 

services via influences on the nutrient and water cycles, soil formation and retention, 

crop pollination, disease and pollution control and climate regulation (Millennium 
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Ecosystem Assessment, 2005; Naeem et al., 1999). These services generally cannot be 

traded in the marketplace directly (Gaston & Spicer, 2009). Among these services, 

biodiversity providing for ecosystem functioning is one of the most important ones 

(see following sections). In an ecosystem context, many species of lesser direct 

importance for the direct production and consumption of resources used by humans 

are still vital in sustaining viable populations of key ecosystem service providers 

(Gaston & Spicer, 2009). For example, the decline in the species number and 

abundance of wild bees, which are important pollinators but generally are 

non-commercial species, will affect the crop yields and result in a direct economic 

loss (O'Toole, 1993). 

1.1.3.  Biodiversity and ecosystem functioning 

Biodiversity has many components that can play important roles in sustaining the 

lives of organisms within ecosystems. Ecosystem functioning reflects the collective 

life activities of living organisms (e.g. nutrient and carbon cycling) and the effects of 

these activities (e.g. feeding, moving and growing) on their environment (Naeem et al., 

1999). The importance of different biodiversity components, such as species richness, 

abundance, community structure and functional traits (where a functional trait is “the 

characteristics of an organism that are considered relevant to its response to the 

environment and/or its effects on ecosystem functioning”, see (Dı́az & Cabido, 2001, 

pp.654)), varies in affecting specific ecosystem services. For example, the functional 

trait diversity often plays a more important role than species richness per se in an 

ecosystem’s biomass production, effective pollination, soil retention, climatic 

regulation, and in protecting against natural hazards such as environmental 

fluctuations (Diaz & Duffy, 2006).  

The relationship between biodiversity (here mainly refers to species diversity) and 

ecosystem functioning has received increasing scientific interest in recent decades 

(Balvanera et al., 2006; Ehrlich & Wilson, 1991; Kremen, 2005; Zavaleta et al., 2010). 

The outcomes of experimental and theoretical biodiversity and ecosystem functioning 
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studies have, however, led to a number of contested debates. The first one is the 

biodiversity-productivity debate. Classic model predict that the biodiversity – 

productivity relationship is ‘hump-shaped’, with species richness peaking at 

intermediate productivity level (Rosenzweig, 1992; Rosenzweig & Abramsky, 1993). 

This model has however been challenged. Probably the most influential model in the 

1990s was proposed by Tilman et al. (1997) who predicted a general positive 

relationship between biodiversity and productivity. Tilman et al. (1997)’s first model, 

also called ‘niche differentiation’ model, stated that higher diversity in species or 

functional groups enhances the usage of resources due to the niche differentiation and 

facilitation, which results in an overall higher productivity (Naeem et al., 1994; 

Tilman et al., 1997). Tilman et al. (1997)’s second model, named ‘sampling effect’ 

model (or ‘selection probability effect’ (Huston, 1997) and ‘selection effect’ (Loreau, 

2000), based on very similar concepts) predicted that high species diversity of a plot 

automatically increased the probability that one of the species contained was a highly 

productive species or a species providing growth-enhancing ecosystem services such 

as  N-fixation, again resulting in positive biodiversity-productivity relationship 

(Huston, 1997; Loreau et al., 2001; Tilman et al., 1997; Wardle et al., 2000). This 

positive relationship attracted great interests because it seems to contrast natural 

observations, where typical highly productive ecosystems such as agro-ecosystems 

optimized for their yield usually contain only a very low species richness (Grime, 

2006).  

The empirical results of biodiversity-productivity studies are mixed, with relationship 

reported as ‘hump-shaped’ (Huston & DeAngelis, 1994; Waide et al., 1999), positive 

(Currie, 1991; Grace et al., 2007; Hector et al., 1999; Mittelbach et al., 2001), 

U-shaped and negative (see reviews by Waide et al., 1999) or completely missing 

(Adler et al., 2011). In addition, scale-dependent models (Bond & Chase, 2002) and 

experiments (Chase & Leibold, 2002) propose a ‘hump-shaped’ 

biodiversity-productivity relationship at a local scale and a linear increase relationship 

at a regional scale, while some scientists also argue that the observed relationship 
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depends on the assembly sequence (Fukami & Morin, 2003). It should particular be 

noticed that a recent study of 48 plant communities on five continents undertaken by 

Adler et al. (2011) found that there was no clear relationship between diversity and 

productivity. They encouraged ecologists to focus on more sophisticated approaches 

rather than on a single, dominant pattern.  

Another debate linking biodiversity and ecosystem functioning is the role of 

biodiversity in safeguarding ecosystem stability. Stability has a variety of meanings 

(Ives & Carpenter, 2007). For example, one definition refers that ecosystems have the 

ability of maintaining a stable state—returning to their pre-disturbance equilibrium 

after small perturbations or showing a general resilience and resistance to change 

(McCann, 2000). In biodiversity and ecosystem debates, it mainly refers to temporal 

stability, measured of the mean value divided by the standard deviation of production 

for a given time period (Tilman et al., 2006). In the 1950s, MacArthur (1955) and 

Elton (1958) proposed that the increase of species richness can enhance ecosystem 

stability. This theory was considered as one of the main ecological principals for the 

following 20 years (Hastings, 1986; McNaughton, 1988; Pimm, 1984). The positive 

relationship has been supported by a variety of experiments in the 1990s (De 

Grandpre & Bergeron, 1997; Frank & McNaughton, 1991; Tilman & Downing, 1994; 

Tilman et al., 1996), including in microcosms (McGrady-Steed et al., 1997; Naeem & 

Li, 1997). A few hypotheses have been proposed to explain mechanisms of a positive 

biodiversity-stability relationship. As a species-diverse ecosystem has a higher 

likelihood to contain species that confer resilience to changes in that ecosystem, a 

higher diversity of a system could be buffered against the loss of species, a trend 

termed ‘insurance effect’ (Naeem & Li, 1997; Yachi & Loreau, 1999). As the 

definition of ecosystem stability per se is multifaceted and not generally agreed, there 

is no unique theory supporting a general trend for increased biodiversity to enhance 

the stability in all ecosystems (Ives & Carpenter, 2007). If stability refers to species 

level, the increase of diversity will reduce the stability. This is not difficult to 

understand because the increase of diversity will result in a reduction of the 
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population size of individual species, while a smaller population size increases the 

risks for entire populations of species to go locally extinct (Cleland, 2011).  

The entire ecosystem forms a complex web in which the abundances of most species 

on earth are interdependent. The extinction of a species may trigger a domino-effect 

that causes a wide range of impacts (Hintz & Garvey, 2012). Changes in diversity at 

higher trophic levels can lead to significant alternation for the ecosystem functioning 

because the diversity of predators can strengthen the food web complexity (Crooks & 

Soulé, 1999; Finke & Denno, 2004; Snyder et al., 2006). In many conservation 

strategies, apex predators often serve as an umbrella species, namely ‘species whose 

conservation confers a protective umbrella to numerous co-occurring species’ 

(Fleishman et al., 2000). The loss of these predators can have a particularly strong 

influence on ecosystem structure and functioning (Berger et al., 2001; Borrvall & 

Ebenman, 2006; Estes et al., 2011; Frank et al., 2005). The dramatically decreasing 

populations of sharks—the top predators in the ocean—for example leads to a 

dramatic increase of their prey such as cownose rays, subsequently leading to a 

significantly reduction of bay scallops and other shellfish (Baum et al., 2003). In 

China’s Changbai Mountain area, the increasing number of wild boars leading to an 

increasing food source competition with other mammal species is partly believed to 

be due to the local extinction of the local top predators, Amur Tiger (Panthera tigris 

altaica Temminck) and Amur leopard (Panthera pardus orientalis Schlegel). 

1.1.4.   Global biodiversity and its distribution 

Current knowledge of biodiversity is very incomplete and strongly biased. Estimates 

of global species numbers range between 3 and >100 million species, based on 

different estimation methods, taxonomic knowledge and differences in the 

consideration of prokaryotic species and viruses (Dirzo & Raven, 2003; May, 2010; 

Stork, 1993). Most recent studies by Mora et al. (2011) suggest 8.7 (±1.3SE) million 

seems a reasonable estimate for multi-cellular organisms (Costello et al., 2013; May, 

2011; Scheffers et al., 2012). About 1.94 million of eukaryotic species had been 
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described by 2010, and thousands of new species are described each year (IISE, 2012). 

This number is nonetheless likely to account for less than 10% of the total species 

once microbes are included. Among all described eukaryote species, more than half 

(1,023,430) are insects, 14.7% plants, 5.4% arachnids, 5.2% fungi and 3.3% 

invertebrates (Figure 1).  

 

Figure 1 The number of described species (×1000) by 2010 (IISE, 2012)  

A large proportion of global terrestrial species is concentrated in relatively small areas. 

Tropical rainforests for example are estimated to contain almost half of the world’s 

species (Qian, 1993), with for example the Amazon basin alone containing more than 

3,000 species of fish (Naeem et al., 1999). Williams et al. (1997) mapped the global 

terrestrial species distribution of families for plants, reptiles, amphibians and 

mammals, which showed a clear, consistent gradient of diversity in relation to latitude, 

with biodiversity generally increasing from the poles to the equator (see also Franklin, 

2009). In marine ecosystems, species richness also shows a broad latitudinal gradient 

(Ormond et al., 1997), with an increase from the arctic to the tropics, and with the 

highest diversity recorded in coral reefs of tropical regions (Gray, 1997; Kendall & 

Aschan, 1993; Ormond et al., 1997). Hillebrand (2004)’s meta-analysis also showed a 

general increase in species richness towards the equator, with the trend at regional 
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scales being stronger than at local scales.  

The current decreasing trend of species richness with increasing latitude has been 

considered as the most common bio-geographical rule (Mora & Robertson, 2005; 

Willig et al., 2003), although it needs to be noticed that the latitudinal diversity 

gradient (LDG) was not unique in the earth’s past (Sahney & Benton, 2008). 

Explanation of what determines the LDG has been considered as a key research theme 

in biology (Gaston, 2000). In general, species richness must be determined by 

dispersal (immigration), speciation and extinction (Condamine et al., 2012; 

Mittelbach et al., 2007; Wiens & Donoghue, 2004; Willig et al., 2003). There are three 

kinds of explanations of the latitudinal diversity gradient: the ecological hypothese, 

which focuses on species coexistence, dispersal and maintenance; the evolutionary 

hypothesis, which focuses on diversification rate; and the historical hypotheses 

focusing on the history of earth’s tropical environments (Mittelbach et al., 2007). 

One of the ecological explanations, which is also named the ‘Rapoport rule’, is that 

species in high latitudes suffer from harsh climatic conditions resulting in a broader 

tolerance range than in species at low latitudes, so that species at high latitudes have a 

wider ecological amplitude resulting in a wider dispersal range compared with 

tropical species that often occupy a very small ecological niche (Lyons & Willig, 2002; 

Rapoport, 1982; Stevens, 1989). Species in tropical region are therefore also more 

sensitive to environmental change than species in temperate and cold areas, and the 

spatial distributions of tropical species are generally more limited and heterogeneous 

(Lyons & Willig, 2002). Such heterogeneous species distribution pattern results in 

diverse habitats that forms a variety of abiotic conditions (Brose, 2001), which in turn 

enhance biodiversity. As local species diversity is governed by the combination 

between species extinction rates and species colonization rates (Brown & 

Kodric-Brown, 1977), an area of higher habitat heterogeneity, higher species 

immigration rates occur between neighbouring habitats (Brown & Kodric-Brown, 

1977). Consequently, high habitat heterogeneity in tropical region results in a high 
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diversity (Stevens, 1989). It has, however, been also argued that ‘Rapoport’s rule’ is a 

local phenomenon which cannot explain the overall latitudinal gradients of 

biodiversity (Rohde, 1996). Rapoport’s rule is very pronounced in the high latitude of 

the northern hemisphere, which is potentially due to the strong influence of the glacial 

periods on this region, with severe temperature fluctuations and changes in habitat 

conditions causing the differential extinction for species, resulting in a higher survival 

rate for those species with very wide tolerance ranges (Price et al., 1997; Rohde, 

1996). 

From the evolutionary aspect, there are several hypothesises to explain the LDG. The 

speciation rate hypothesis argues that tropical areas have a higher species richness due 

to the temperature-induced increased generation turnover and subsequent  speciation 

rate (Rohde, 1992). The differences in temperature of different latitudinal areas lead 

not only to shorter generation times, but also to higher mutation rates and higher 

selection pressure in tropical areas, resulting in higher species richness (Rohde, 1992). 

Other explanations of higher speciation rates in the tropics include more opportunities 

for isolation due to large areas and in more opportunities of paratactic and sympatric 

speciation and genetic drift in the many small populations of species typically 

encountered in the tropics (see review in Mittelbach et al., 2007). In addition, the 

evolutionary hypothesises also includes the hypothesis of lower extinction rates in the 

tropics due to stable climatic conditions (see review in Mittelbach et al., 2007).   

From a historical aspect, the time and area hypothesis suggests that, historically, areas 

in tropical climate are older and larger than other global areas, which allows more 

chances for species diversification in this area (see review in Mittelbach et al., 2007). 

This has been supported by several studies (e.g. Fine & Ree, 2006). For example, Fine 

and Ree (2006) found positive correlations between current tree diversity and 

time-integrated biome areas (as biome areas have been changing with the change of 

climate through time) for older time periods. Supporting evidence also includes the 

phylogenetic relationships between temperature and tropical species (Condamine et 
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al., 2012; Jablonski et al., 2006). Nonetheless, the overall LDG are not possibly 

driven by a single explanatory factor, while to identify which mechanisms have 

greater influence than others is a key challenge for future research (Stevens, 2011).  

In mountain ranges, environmental factors relating to altitude exert a dominant 

influence on species diversity, which change primarily in relation to changes in 

temperature and precipitation (Stevens, 1992). Four contrasting species diversity 

patterns for the altitudinal gradients of species have been proposed in reaction to 

increasing altitude: a continuous decline, a hump-shaped distribution with a distinct 

mid-elevation peak, a diversity plateau and an increase in diversity (García-López et 

al., 2011; McCain & Grytnes, 2010). Of these, a monotonic decrease and a 

hump-shaped distribution are most commonly observed. Both these patterns have 

been revealed in plants (Hamilton & Perrott, 1981; Kessler, 2001), vertebrates 

(Graham, 1983; Terborgh, 1977) and terrestrial arthropods (Beck & Chey, 2008; 

Goldsmith, 2007; McCoy, 1990; Pyrcz & Wojtusiak, 2002; Tykarski, 2006; Wolda, 

1987).   

A variety of different hypotheses have been proposed to explain the decreasing trend 

of species richness along altitudinal gradients. According to the Productivity 

Hypothesis, species richness is positively associated with overall ecosystem 

productivity (Chase & Leibold, 2002; Currie, 1991; Fargione et al., 2007; Mittelbach 

et al., 2001; Rahbek, 1995; Roy, 2001). This is often argued to lead to a continuous 

decrease in diversity with increasing elevation as temperature decreases (Orians, 1969; 

Terborgh, 1971), although evidence shows that productivity can also peak at 

mid-elevation (Rahbek, 1997). Alternatively, the harsher environmental conditions 

encountered at high elevation will, according to the Harsh Environment Hypothesis, 

led to a decrease in diversity. This relates to Rapoport’s rule, which was originally 

proposed to explain the biodiversity increase from the pole towards the tropics (see 

statements above). The harsh climatic conditions species encounter at high latitudes, 

but also at high altitudes, require them to have broader tolerance ranges than species 
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at low latitudes and altitudes. This in term will lead to wider species distribution 

ranges with increasing elevation and to higher species richness at low altitudes 

(Rapoport, 1982; Stevens, 1989, 1992). The Resource Diversity Hypothesis links 

increases in diversity to increases in the diversity of resources (Price, 1984), for 

example postulating increases in plant diversity to be associated with increases in 

herbivore diversity. Another commonly mentioned hypothesis in relation to altitudinal 

gradients is the Species-Area Hypothesis, relating a decrease in species richness with 

increasing elevation to the overall decrease in available area from the base to the top 

of mountains (Rosenzweig, 1995). 

There are also a few hypotheses to explain the hump-shaped distribution. Water 

supply usually peaks at intermediate elevations (Rahbek, 1995), potentially resulting 

in a peak of productivity at the middle of the elevational range (Brown, 2001). 

Climatic models combining all climatic factors influencing species diversity such as 

rainfall and temperature, furthermore predict a maximum of species richness to occur 

at higher elevation on higher mountains than on shorter ones (McCain, 2005). This 

phenomenon is called ‘Massenerhebungseffekt’, which refers to the higher elevation 

of tree limits on higher than shorter mountain (Körner, 2012). The compression of 

vegetation distribution in smaller mountain then may affect the distribution of other 

species such as insects by providing food sources and suitable habitats (Van Balen & 

Nijman, 2004). The peaks of species richness would be amplified if the range with 

maximum combination effects of climatic factors located at the 

maximum-productivity area (Brown, 2001). A famous model that developed during 

the last decades to predict the hump-shaped distribution is the mid-domain effect 

(MDE) (Colwell & Lees, 2000; Colwell et al., 2004). The MDE model considers that 

species with random distribution are expected to overlap more near the centre of a 

bounded domain than the edge of the domain. According to this hypothesis, species 

richness along a geographic elevational gradient is expected to peak at the middle 

between the mountain base and the summit of the highest mountain. This ‘null model’ 

has, however, been criticized by many researchers (Dunn et al., 2007; Hawkins et al., 
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2005; McClain et al., 2007). One reason is that species are not possibly randomly 

distributed (McClain et al., 2007).  

Each mountain range has its unique history, distinct geographic setting and is 

influenced by specific anthropogenic biotic and abiotic factors, and this can result in 

very unique, complex diversity distribution patterns (Axmacher & Fiedler, 2009; 

Axmacher et al., 2004a; Brehm et al., 2003b). Furthermore, different species and 

species groups show highly variable responses to environmental changes along 

altitudinal gradients (Axmacher et al., 2011; Kessler, 2001; Rahbek, 1995), rendering 

predictions based on patterns observed in well-known, species poor taxa which are 

commonly used in biodiversity studies, highly unreliable (Axmacher et al., 2011). In 

highly diverse insect groups, altitudinal diversity patterns can generally be linked to 

specific changes in environmental conditions (Axmacher et al., 2009; Axmacher et al., 

2011; Beck et al., 2010; Brehm et al., 2007; Liu et al., 2006; Taboada et al., 2010). As 

these patterns are highly complex and currently not well understood, it is very 

important to establish and understand the underlying relationships for individual taxa, 

with research especially required for the most species-rich, highly under-studied 

insect taxa who contribute substantially towards the global species pool. 

1.1.5.  Threats to biodiversity 

Global biodiversity is seriously under threat. Estimated species extinction rates are 

extremely high and many species are believed to have gone extinct before we even 

described them (Smith et al., 1993). Recent studies argue that this situation may have 

changed partly due to the increase of taxonomists - not only those who working in the 

field, but also those ‘fans’ of individual taxonomic groups in the general public 

(Costello et al., 2013). This trend could be nourished by species conservation 

receiving increasingly more publicity and becoming a greater general concern. 

Estimates suggest that from the 16th century until the end of 20th century, the mean 

annual species extinction rate is about 26 per million, while this number is estimated 

to reach 1000 per million in the 21st century, and if current forest loss rates continue, 
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it could even reach 1500 per million by the end of the 21st century (Pimm et al., 2006). 

Despite the great number of estimated species extinctions, most estimates are based 

on well-known, species poor groups such as plants (Skole & Compton, 1993), 

mammals and birds (Thomas et al., 2004). According to the IUCN (International 

Union for Conservation of Nature) Red List (Baillie et al., 2004), between 12% and 

52% of species in well-studied taxonomic groups such as mammals, birds and 

amphibians are threatened with extinction. These species are physiognomically and 

ecologically very different from the mega-diverse insect taxa such as beetles and 

moths, so that published estimated numbers are to be treated with great care (Dunn, 

2005; Fonseca, 2009; Jocque et al., 2010). In addition, estimation based on the 

reversing of species-area relationship curves, which is widely used in estimating 

extinction rates, generally leads to overestimations (He & Hubbell, 2011).  

Although species extinction is a natural process, it is general argued that human 

actions have greatly increased extinction rates (Brooks et al., 2006). Following the 

industrial revolution, the rapidly expanding human population and its economic 

activities have caused a dramatic loss in global biodiversity in the last two centuries, 

resulting from significant disturbances of ecosystems and land-use changes, which 

manifested themselves in deforestation, habitat degradation, desertification, 

deteriorating water quality and potentially intensification of natural disasters. The 

ongoing destruction of ecosystems threatens the diversity of remaining forest, 

grassland and agricultural habitats and the supply of clean water. Between 1950 and 

1980, more land was converted for agricultural use than in the 150 years from 1700 to 

1850, strongly affecting all forest types on earth. Between 1980 and 1995, a further 

~180 M ha of forest were lost - mainly in developing countries (Millennium 

Ecosystem Assessment, 2005). 

The resulting habitat destruction and fragmentation of pristine habitats are considered 

to be among the most important drivers of biodiversity loss (Debinski & Holt, 2000; 

Fahrig, 2003). Fragmentation leads to the reduction of habitat area, generating 
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isolated populations, which can affect species’ behaviours (Davies & Margules, 1998), 

genetic exchange between populations and subpopulations (Fahrig, 2003) and species 

interactions (Kruess, 2003; Kruess & Tscharntke, 1994) and ecological processes 

among populations (Zschokke et al., 2000). Many species face eventual local 

extinction if they are ill adapted to survival in fragmented habitat mosaics, a trend 

strongly affecting top predators, but also many habitat specialist species (Crooks, 

2002; Fahrig, 1997; Haag et al., 2010; Riley et al., 2003).  

The over-exploitation of natural resources is another key threat to biodiversity. Many 

large vertebrate species such as African Elephant (Loxodonta cyclotis Matschie and 

Loxodonta africana Blumenbach), Amur Tiger (Panthera tigris altaica Temminck) 

and Eurasian Brown Bear (Ursus arctos arctos Linnaeus) are under severe hunting 

pressure for the demands of traditional medicine, food and clothing. These large 

mammals play a crucial roles in ecosystems not only due to their significant 

interactions with the vegetation and their effects on energy flow and nutrient cycling 

(Botkin et al., 1978), but also as keystone species for researchers to understand overall 

ecosystem functioning (McNaughton et al., 1988). In addition, many valuable trees 

have also become endangered because of commercial over-exploitation. Wildlife 

extraction from tropical forests is estimated to be about 6 times greater than 

sustainable rates (Bennett, 2002), resulting in a dramatic pressure for tropical forest 

biodiversity. In Africa, the widespread overgrazing has led to widespread degradation 

and ecosystem change; in Southeast Asia and the Amazon region, half of drylands are 

becoming desertificated mainly due to overgrazing (Millennium Ecosystem 

Assessment, 2005). Between 4,000 and 10,000 medicinal plant species may 

furthermore be endangered due to unsustainable harvesting from the wild (Hamilton, 

2003). 

Local biodiversity is additionally threatened by the invasion of exotic species. Exotic 

plants compete for water, light, nutrients and space with native species, but in contrast 

to them, often live in an ‘enemy-free space’, as their traditional herbivore counterparts 
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are missing. Some invasive plants furthermore secrete inhibiting allele-chemicals 

decreasing the fitness of native species, in turn affecting the ecosystem structure and 

functioning and eventually leading to the reduction or extinction of competing local 

species. One example of this is provided by the water hyacinth (Eichhornia crassipes 

Solms), which was first introduced from South America into China as a fodder plant 

in the early 1900s. A large coverage of water hyacinth that currently occurs on many 

Chinese lakes and slow-moving canals decreases sunlight and subsequently reduces 

underwater plants’ photosynthesis leading to the reduction of water oxygen content. 

In Dianchi Lake, Yunnan province, 60% of the local, native species became extinct 

because of this spreading foreign weed (Chu et al., 2006).  

Exotic predatory animals can expand rapidly if they are introduced to areas that were 

previously without natural predators occupying similar niches. An extreme example 

of negative impacts from alien animals is shown by the brown tree snake (Boiga 

irregularis Merrem), which was brought to American Guam accidentally during 

World War II. This island ecosystem previously lacked larger vertebrate predators. 

Brown tree snakes prey on birds, small mammals and lizards. As a result of their 

invasion, 10 of 13 bird species and 9 of 12 lizard species on American Guam have 

become extinct (Savidge, 1987). Although the rate of exotic species becoming 

invaders is only about 1‰ (Williamson & Fitter, 1996), a large number of species 

being taken into different areas intentionally or unintentionally every year still results 

in a number of successful invaders. China currently harbours 754 known invasive 

species (Database of Invasive Alien Spices in China, 2013), which have already had 

significant ecological, environmental and economical impacts (Axmacher & Sang, 

2013; Yan et al., 2001). 

Environmental pollution is also an important driver for biodiversity loss (Freedman, 

1995; Lovett et al., 2009). Examples of environmental pollution for economic 

purposes include air pollution by automobile exhausts, oil spills and pollution by 

chemical products such as pesticide residue that deteriorates the living environment 
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supporting the diversity of organisms. Environmental pollution can reduce the 

reproduction ability of plant species and change the long-term ecological status of 

dormancy and dispersal (Cox, 1992). Pollution has also caused an extensive decline of 

vertebrate species richness and abundance, with examples inducing amphibians 

(Jeliazkov et al., 2013), birds (Saha & Padhy, 2011), mammals (Sánchez-Chardi et al., 

2007) and fish (Agostinho et al., 2007). The mega-diverse invertebrates are 

commonly used in the assessment of the pollution status such as for soil pollution 

(Eeva et al., 2010; Gongalsky et al., 2010; Santorufo et al., 2012), as a variety of 

invertebrate species have also shown a substantial decline due to pollution 

(Gongalsky et al., 2010; Gunnarsson, 1990; Moroń et al., 2012). Additionally, a few 

aquatic invertebrates are sensitive to pollution and hence can be used in the 

assessment of water quality (Brix et al., 2011; Emere & Nasiru, 2008; Kunz et al., 

2010).  

1.1.6.  Biodiversity and climate change 

The global climate has changed significantly during the 20th century. The average 

global air temperature near the Earth's surface rose by about 0.74ºC between 1906 and 

2005 (IPCC, 2007). Simultaneously, precipitation increased by 0.5% - 1.0% per 

decade in middle and high latitude regions of the Northern Hemisphere, but decreased 

by 0.3% per decade in sub-tropical regions (IPCC, 2007). On a global level, climate 

change resulting in the change of temperature and precipitation is believed to be a key 

factor affecting future developments in biodiversity (Beck et al., 2011; Hawkins et al., 

2003; Rahbek et al., 2007; Sala et al., 2000), with wide-ranging effects for vegetation 

structure and local species distribution patterns (Sang & Bai, 2009). Models predict 

that a large proportion of extant species will go extinct in the future if current climate 

change trends continue. Thomas et al. (2004)suggested that 15-52% of a sample of 

1,103 animal and plant species will go extinct by 2050 under current change trends, 

although Harte et al. (2004) and others argue that these are overestimations, as 

predictions should also consider the specific topography, species migration patterns 
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and adaptation abilities (Willis & Bhagwat, 2009). 

Climate change can also induce a higher risk of natural disasters such as floods and 

droughts, which potentially increase extinction risks, while the relationship between 

biodiversity and climate change is mostly discussed from a more ‘inherent’ aspect: the 

biological response. All species have their specific biological niche (Hutchinson, 

1957). Climate change can lead to the change of population sizes, distribution patterns, 

breeding time and migration behaviour. Only those individuals, populations or species 

with strong ability to adapt to the changing climate can have a high chance to survive 

(Bellard et al., 2012). When considering climate change effects on biodiversity, it also 

needs to be considered that species are not only passively exposed to climate change, 

but they are continuously adapting to environmental change through evolution, 

changing distribution areas and other specific adaptations (Franks et al., 2007; Guo et 

al., 2009).  

Bellard et al. (2012) reviewed the biodiversity response to climate change from 

‘spatial’, ‘temporal’ and ‘self’ aspects. The spatial response is mainly through 

dispersion, shifting species distributions to different areas. A meta-analysis estimated 

that the median rate that organisms have recently shifted to higher areas amounts to 

11 m and to higher latitudes at a rate of 16.9 km per decade (Chen et al., 2011). 

Temporal shifts refer to species showing variations in certain periodicities (for 

example, daily or seasonal) because of climate changes. A good example is the 

response of plants to climate change by the change of their phenology and the 

increase of their resistance to temperature change, leading to the increase in their 

inter-specific competitive ability (Parmesan, 2006). The self response, which is also 

referred as in situ changes by Bellard et al. (2012), is the change of species to allow 

tolerance to wider ecological pressures such as drier or warmer conditions. A recent 

study by Quintero and Wiens (2013), however, predicted that rates of climatic niche 

evolution of terrestrial vertebrate species need to be 10,000 times faster in response to 

climate change during next 100 years than those species have had to adapt to in the 
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past. Although Quintero and Wiens (2013)’s model is not the only prediction (for 

example Hoffmann & Sgrò, 2011), their results also indicate that in situ changes may 

not be an option for many species.  

In the terrestrial biosphere, raising temperatures can accelerate carbon release rates 

more strongly than carbon absorption rates, which can cause an increase of 

atmospheric CO2 concentrations (Cox et al., 2000).A recent study, however, found 

that the reduction of forest carbon stocks led by climate change is much less than 

expected and may even not occur at all (Huntingford et al., 2013). In addition, Lapola 

et al. (2009) indicate that the increase in atmospheric CO2 concentrations and 

temperature can also enhance net primary productivity, while (Costanza et al., 2007) 

reported an increasing trend of a positive link between biodiversity and primary 

productivity with the increase of temperature. These intricate links again increase the 

difficulty of predicting biodiversity patterns under climate change. Overall, current 

evidence of species extinction caused by climate change is very limited (Lavergne et 

al., 2010), and estimations are very variable according to the study method used, 

taxonomic group studied as well as the spatial and temporal scale. Nonetheless, the 

potential biodiversity loss caused by climate change should still be highly concerning 

(Bellard et al., 2012).  

1.2.   Insect diversity1  

1.2.1.  Importance of insects  

Insects are by far the most species-rich taxonomic group on Earth. To date, more than 

one million insect species have been described and many millions await discovery 

(IISE, 2012). Insects have high intellectual and economic value, supporting and 

providing livelihoods for numerous people. These range from the silk trade to 

                                                        
1 Part of this information has been published in Zou et al. (2011). In this paper, I was the main, 
lead author, with the other authors mainly commenting on the manuscript drafts I prepared and 
they edited some of the grammar, as well as making minor suggestions for additional aspects to be 
covered in the text. 
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beekeeping and the pollination of most of our fruit and other agricultural produce. The 

description of insects and their colourful body patterns have initiated prominent 

contributions to art, literature and culture, and they offer great educational tools (Pyle 

et al., 1981). In many regions, insects also form an important component of human 

diet and medicine. For instance, the Chinese fungal drug Dongchongxiacao 

(Cordyceps sinensis Berk) is the fruiting body of a parasitic fungus which develops 

inside the caterpillar of a ghost moth and has a very prominent role and long history in 

traditional Chinese medicine.  

In addition to intellectual and economic value, insects are extremely important 

ecosystem components. They perform many key ecosystem functions, commonly 

relating to interactions with the vegetation. These interactions include herbivory and 

many mutualistic relationships such as pollination, seed dispersal and decomposition 

(Qin & Wang, 2001). Insect-plant interactions therefore have direct effects on 

ecosystem functioning, for example on the storage and cycling of carbon and nutrients, 

as well as strongly influencing succession and competition patterns in plant 

communities and overall food web interactions (Swank et al., 1981; Weisser & 

Siemann, 2004). 

Another important application of insects is biological pest management. Insect 

predators are known to be more effective than many chemicals in controlling 

economically damaging insects (Dempster, 1968). Additionally, due to 

their conspicuousness and susceptibility to environmental factors, many insect taxa 

can also be used as bio-indicators (Choi, 2006; Kati et al., 2004). For 

example, butterfly population dynamics have been suggested as indicators of species 

richness in overall pollinators and of the structural and floristic diversity of habitats, 

as indicators of climate change and of landscape distinctiveness (Heath, 1981; 

Kremen, 1994; Pe'er & Settele, 2008; Pyle, 1976).  
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1.2.2.  Implications of knowledge gaps relating to insect diversity 

Due to the very limited knowledge base on the exact number of species of insects, 

their distribution and rarity, only a small number of species have been listed in 

regional and global red lists. It has been estimated that about 44,000 extinctions of 

insect species have occurred in the last 600 years, but only 70 such events have 

actually been documented (Dunn, 2005). Of an estimated 29,000 insect species 

endangered or threatened in North America alone, only 37 are included in regional red 

lists (Dunn, 2005; Redak, 2000). Factors such as habitat loss that result in the 

extinction of vertebrates can also lead to the extinction of insects, while insects may 

be going through unique extinction patterns in comparison to vertebrates and plants, 

such as extinctions of narrow habitat specialists and co-extinctions with their hosts 

(Dunn, 2005). According to some authors, the extinction of insects possibly exceeds 

vertebrates and plants (Fonseca, 2009; Jocque et al., 2010). Overall, the diversity of 

insects has received very little attention by researchers, due not least to constraints in 

time, energy, and funds available to thoroughly investigate mega-diverse insect taxa. 

The small body size, as well as the variability in colour patterns and size of insect 

species increases the difficulties with their identification and makes insect diversity 

studies more challenging than studies of vascular plants or vertebrate species. 

Additionally, the incomplete knowledge in entomological taxonomy increases the 

difficulties in studying insects.  

Apart from the diversity and distribution patterns for insect taxa, relationships 

between insect assemblages and plant communities are another key topic requiring 

urgent research attention. As plants provide key habitat parameters for many insect 

species ranging from shelter to breeding sites, insect diversity can be affected by 

parameters of vegetation structure such as plant height, plant size or leave shape 

(Axmacher et al., 2004b; Haysom & Coulson, 1998; Lawton, 1983; Price & Wilson, 

1979; Schuldt et al., 2012). Insect species richness often increases with an increase in 

vegetation height, with the highest diversity levels often recorded in full-grown 
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forests (Haysom & Coulson, 1998; Pöyry et al., 2006; Price & Wilson, 1979; Treweek 

et al., 1997). This has been related to a greater resource availability in mature forest 

ecosystems (Lawton, 1983). In contrast, higher diversity has also been observed in 

open habitats as compared to closed forests, potentially in reaction to changes in the 

microclimatic conditions (Axmacher et al., 2004b, 2009). 

Plant species richness and community composition affects the diversity of herbivore 

insects. According to the ‘Resource Concentration Hypothesis’ (Root, 1973), 

herbivores are more likely to find and remain on hosts in monocultures. Reduced 

plant diversity therefore increases the potential damage of the vegetation by pest 

species, while simultaneously reducing overall insect diversity. Supported by 

experiments, it has been predicted that herbivorous insect diversity is therefore 

generally positively correlated with the diversity of plant species (Beck et al., 2002; 

Chey et al., 1997; Ghazoul, 2002; Intachat et al., 1999; Lewinsohn & Roslin, 2008; 

Niemelä et al., 1996; Siemann, 1998; Tilman, 1986).  

The increasing diversity in plants is also assumed to enhance the diversity of 

predatory insects (Root, 1973). Arthropod consumers are also known to be influenced 

by top-down control via the abundance of their natural enemies (Hairston et al., 1960; 

Russell, 1989; Walker & Jones, 2003). This control forms the basis of the “Enemies 

Hypothesis” (Root, 1973), which postulates that species-rich vegetation assemblages 

can provide more refuges and more stable prey availability for predators than plant 

species-poor assemblages, resulting in predators catching and feeding on prey more 

effectively, so that a higher diversity in the plant community is believed to support a 

higher diversity and abundance also of predatory species (Jactel et al., 2005; Russell, 

1989). 

The links between plant diversity and the diversity of insects is not always positive. 

Negative relationships have been reported in forest (Axmacher et al., 2004b; 

Cuevas-Reyes et al., 2003) and grassland ecosystems (Unsicker et al., 2006; Wardle et 

al., 1999) and in experiments (Kanaga et al., 2009). Other studies found no significant 
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link between plant diversity and the diversity of herbivorous insects (Axmacher et al., 

2009; Hawkins & Porter, 2003). The underlying patterns governing the links between 

phyto-diversity and the diversity of insects are still unclear, and more studies are 

urgently needed to investigate these links. 

The relationship between insect diversity and temperature shifts is another topic that 

needs to be addressed. This question is also correlated with several core ecological 

issues such as insect altitudinal and latitudinal distribution patterns and their 

respective responses to overall climate change. Insect species richness and species 

composition are known to be particularly strongly affected by environmental factors 

such as temperature and precipitation (Axmacher et al., 2004b, 2009; Brehm et al., 

2003b). Global climate change is accordingly predicted to strongly alter the 

distribution and also diversity patterns in insect communities. Many insect species are 

already observed to alter and extend their distribution ranges northwards in the 

northern hemisphere, while others have declined in population size in reaction to 

climatic changes (Asher et al., 2001; Hill et al., 1999; Masters & Clarke, 1998; 

Thomas et al., 2001; Thomas et al., 2006b; Warren et al., 2001). In other cases 

including the silver spotted skipper buttery (Hesperia comma Linnaeus) and Roesel’s 

bush cricket (Metrioptera roeselii Hagenbach), population sizes have actually 

increased with increasing temperature (Thomas et al., 2001).  

It is unsurprising that there is no unique response of different insect taxa to 

temperature. Nonetheless, while temperature can affect the life cycles, phenology and 

distribution of insects, responses of different taxa are not unique (Bale et al., 2002; 

Samways, 2005). For herbivore insects, temperature can also change their diversity 

and distribution patterns by altering the phenology of their host plants (Bale et al., 

2002). Other indirect influences on herbivores include climate-change induced 

changes in predation pressure from birds or predatory insects, and through affecting 

mycorrhizal fungi and subsequently the secondary metabolism of plant species (Ayres 

& Lombardero, 2000; Bennett et al., 2006). These interactions are in turn likely to 



 

 39

also result in alterations at higher trophic interactions, which increases the difficulty 

of predicting the diversity of predatory insects in response to temperature (Samways, 

2005). Additionally, as many insects can move faster than plants in response to 

climate change, plant species from high latitudes are likely to meet new insect pests, 

which enhances the challenges of pest control (Samways, 2005). A good prediction of 

the response patterns of insect diversity to alterations in precipitation and particularly 

temperature is therefore urgently needed. 

1.3.  Insect taxa selected in this study 

In this study, two insect groups have been selected – ground beetles (Coleoptera: 

Carabidae) and geometrid moths (Lepidoptera: Geometridae). These two groups were 

chiefly selected due to three reasons. Firstly, both taxa can be seen as strong 

bioindicators (see following). Secondly, the two families represent different trophic 

levels, with ground beetles chiefly representing predatory insects and geometrid 

moths a group of herbivores – disregarding the insectivorous geometrid caterpillars 

encountered on Hawaii (Montgomery, 1983). Thirdly, both groups have been studied 

previously by members of the UCL Department of Geography and the China 

Agricultural University in Northern China (Axmacher et al., 2011; Liu et al., 2010b, 

2012), which offered not only a good basis for the identification of specimens, but 

also a baseline for comparison of diversity data (Chapter 7).  

1.3.1.  Carabidae 

Carabids (ground beetles, Coleoptera: Carabidae) are one of the largest adephagan 

families and one of the most species-rich beetle families, containing more than 40,000 

species in 34 subfamilies (Carabidae of the World, 2011; Lövei & Sunderland, 1996). 

Carabids are taxonomically and ecologically well-known. The distribution of carabids 

is influenced by a wide range of factors, including temperature, humidity, food 

availability, competitors’ distribution, life history and seasonality, and most habitats 

are inhabited by a mixture of specialist and generalist species (Lövei & Sunderland, 
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1996; Rainio & Niemelä, 2003). The larva’s survival rate is crucial in overall 

mortality because it is the most vulnerable life stage of carabids, resulting in a high 

selectivity of suitable habitat conditions by adult females when laying eggs (Lövei & 

Sunderland, 1996). Considering their wide geographical distribution and 

environmental sensitivity and also their cost-effective standardized sampling using 

pitfall traps, carabids are ideal bioindicators (Rainio & Niemelä, 2003). Their 

assemblages are a reflection of the state of their environment and environmental 

change (McGeoch, 1998). Carabids have been used as bioindicator in many ways 

such as in indicating the land management status and use (Blake et al., 1996; 

Desender et al., 1994; Liu et al., 2006), in environmental quality assessments (Eyre et 

al., 1996), to characterize degrees of urbanization (Niemelä et al. 2000), habitat 

fragmentation (Spence et al. 1996; Davies and Margules 1998), forest management 

(Niemelä, 1993), climate change (Ashworth, 1996) and overall biodiversity (Duelli & 

Obrist, 1998).  

Most carabids are predators. A worldwide survey of literature on 1054 carabid species 

showed that 73.5% are purely carnivorous, consuming molluscs, worms, small insects 

and insect larvae; 8.1% are herbivores and 19.5% omnivorous (Larochelle, 1990). 

Larvae are more often strictly carnivorous and also more specialized in their food 

range than adults (Lövei & Sunderland, 1996). Carabids are therefore also an 

important group in biological pest control (Kromp, 1999). The body of the adults of 

carabids can be dark, matte, shiny, bright or metallic coloured, sometimes it is also 

pubescent. Their body size ranges from 1 to 60 mm; the elytra of most species are 

fused, especially in large ones, resulting in many species being unable to fly. Carabids 

have pronounced mandibles and palps, long slender legs and sets of punctures; their 

antennae are mostly large and pubescent with 11 segments (Figure 2). They generally 

reproduce once a year in temperate regions. 
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Figure 2 Photo of the carabid Cychrus morawitzi Gehin 

1.3.2.  Geometridae 

Geometrid moths (Lepidoptera: Geometridae) are a second, highly species-rich insect 

family with more than 21,000 described species (Scoble, 1999). Similar to carabids, 

geometrid moths can also be used as bioindicators (Kati et al., 2004), as they are 
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taxonomically well-known (Scoble, 1999), environmental sensitive (Holloway, 1985), 

readily surveyed on a wide range of light sources (Axmacher & Fiedler, 2004; 

Intachat & Woiwod, 1999; Muirhead-Thomson, 1991) and the wide caterpillars’ food 

selection and the wide ecological amplitude occupied by members if this family leads 

to their widespread distribution, for example also at high latitudes and altitudes 

(Axmacher et al., 2009; Axmacher et al., 2004a; Robinson et al., 2010). The diversity 

pattern of geometrid moths has been studied in America (Brehm & Fiedler, 2003; 

Brehm et al., 2003a; Hilt et al., 2006), Southeast Asia (Beck et al., 2002; Willott, 

1999), Australia (Kitching et al., 2000) and Africa (Axmacher et al., 2004a). 

Caterpillars of geometrid moths are mainly phytophagous. Larvae of geometrids are 

widely feed on trees, shrubs or herbs, occasionally also on ferns (Scoble, 1992). Adult 

moths generally have functioning proboscis and feed on nectar (Han & Xue, 2011; 

Xue & Zhu, 1999). Their bodies are usually slender, and they have large and broad 

forewings, while females in some species are wingless and cannot fly. Many species 

hold their wings away from the body and flat against the substrate when at rest 

(Figure 3a), while some also close their wings vertically over their back when resting 

(Figure 3b). Their tympanal organs are located on the ventral side of the first segment 

of the tergum and are usually oval in form (Figure 4), which is one of the key 

identification traits of geometridae. Caterpillars’ bodies are also slender and usually 

only have two pairs of prolegs on the sixth and tenth segments, leading to the special 

locomotion method of geometrid caterpillars: looping the end of the body to the front 

and then extending the body forward. In English, they are therefore also called 

loopers, and since their movement looks as if they are measuring the length of their 

path. In Chinese, they are called ‘Chie’, which means ‘inch moth’. 
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Figure 3 Different resting positions of geometrid moths: (a) Scopula limboundata 

Haworth1 and (b) Plemyria georgii Hulst2 

 

Figure 4 Lateral (a) and anterior (b) view of tympanal organs of geometrid moths 

(Cook & Scoble, 1992) 

1.4.  China’s temperate forests and their biodiversity 

1.4.1.  China’s temperate forests distribution 

Long-term climatic patterns are the main drivers of forest distribution. Globally, there 

are four climatic zones along the latitudinal gradient with relatively stable air masses 

classified by Alissow (1954): the tropical, subtropical, temperate and polar zone. In 

                                                        
1 Image available from online source: http://bugguide.net/node/view/484393 
2 Image available from online source: http://bugguide.net/node/view/442828 
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China, according to the classical climate classification, there are nine climatic zones 

distinguishable: a cool temperate zone, a central temperate zone, a warm temperate 

zone, a northern sub-tropical zone, a central sub-tropical zone, a southern sub-tropical 

zone, a northern tropical zone, a central tropical zone and a southern tropical zone. 

Furthermore, the Qinghai-Tibet Plateau represents a separate climatic zone due to its 

distinct geographical and climatological conditions (Chen et al., 1997). The Pacific 

southeast monsoon and Indian Ocean southwest monsoon form the main sources of 

precipitation in China. Thus, the eastern and southern parts are humid and 

north-western parts are arid. Based on humidity levels, China can be divided chiefly 

from the southeast to the northwest into a humid zone, a sub-humid zone, a sub-arid 

zone, an arid zone and an extremely arid zone, with forests being mainly distributed in 

the humid and sub-humid zones (Chen et al., 1997). The vegetation clearly reflects 

this with its latitudinal distribution from north to south. In western China, the 

Qinghai-Tibet Plateau has a distinct local climate, leading to a clear and distinct 

vegetation zonation in this area. Overall, there are six main forest zones in China 

along the latitudinal gradient: a cool temperate coniferous forest zone, a temperate 

mixed coniferous and deciduous broad-leaved forest zone, a warm temperate 

deciduous broad-leaved forest zone, a subtropical evergreen broad-leaved forest zone, 

a tropical rainforest and monsoon rainforest zone and the forests of the Qinghai-Tibet 

Plateau (Figure 5). According to climatic conditions, China’s temperate forests can be 

further subdivided into cool temperate deciduous coniferous forests, cool temperate 

evergreen coniferous forests, central temperate mixed coniferous and deciduous 

broad-leaved forests, warm temperate coniferous forests and warm temperate 

coniferous and deciduous broad-leaved mixed forests (Chen et al., 1997). 

Nonetheless, cool temperate forests and warm temperate forests are usually combined. 

They harbour a range of conifer-dominated forests, including Dahurian Larch (Larix 

gmelinii Kuzen) forests, Olgan larch (Larix olgensis Henry) forests, Yezo spruce 

(Picea jezoensis Carr) forests, Korean Spruce (Picea koraiensis Nakai) forests, 

Manchurian Fir (Abies nephrolepis Maxim) forests and Korean Pine (Pinus koraiensis 
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Siebold et Zuccarini) forests. It should be pointed out that Scots Pine (Pinus sylvestris 

var. mongolica Litv) forests were widely distributed in China, but were cut largely 

during the 1930s. Remaining Scots Pine forests are mainly located at the 

mid-elevation (450 – 1000m) of the Daxing'an Mountain range. On the boundary 

between Inner Mongolia and Hebei province, there are also some afforested Scots 

Pine forests to resist desertification. Japanese Red Pine (Pinus densiflora Siebold et 

Zuccarini) forests are usually successions of deforestation of the Yezo spruce forests, 

spruce forests or Korean Pine and broad-leaved mixed forests. These are mainly 

located in the Changbai Mountain range, Jilin Province. 
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Figure 5 Simplified vegetation regionalization map of China, based on ‘Vegetation 
Regionalization Map of China’ by the Chinese Academic of Sciences (Zhang, 2007).  

Coniferous forests in warm temperate areas are less abundant compared with cold and 

central temperate areas. These forests mainly include Chinese Red Pine (Pinus 

tabuliformis Carrière) forests and Chinese Arborvitae (Platycladus orientalis Franco) 

forests at low elevations, Japanese Red Pine forests, Chinese White Pine (Pinus 

armandii Franch) forests in mid-elevation, and Prince Rupprecht's Larch (Larix 

principis-rupprechtii Mayr) forests at high elevations (Chen, 1995). The 

representative forest types of deciduous broad-leaved forests in warm temperate areas 
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are mixed forests composed of oak (Quercus spp.), lime (Tilia spp.), maple (Acer spp.) 

and Korean Hornbeam (Carpinus turczaninowii Hance), where deciduous trees 

dominate in the north and the proportion of evergreen trees increases with decreasing 

latitude.  

1.4.2.  Forest plantations in China 

The loss of biodiversity due to deforestation has been of increasing global concern. 

Only 36% of the world’s forest cover of 4 billion ha consists of primary forests, 

whereas 53% of the forest ecosystems are modified natural forests, 7% are 

semi-natural forests and 4% are plantation forests (FAO, 2006). Secondary and 

plantation forests are therefore becoming an increasingly important component of 

global forest cover (Bass, 2004; FAO, 2006; Liu et al., 2008). 

Forest surveys show that China’s forest cover was only 8% in 1949 after World War 

II and the Chinese Civil War (Chinese Ministry of Forestry, 1977), although this 

figure might be a slight underestimation (Zhang & Song, 2006). Forest cover reached 

20.36% (195 million ha) in 2010 (Chinese State Forestry Bureau, 2011), and the 

increase can chiefly be attributed to active afforestation and reforestation. In fact, 

from 1949 to 2003, accumulated planted areas accounted to 241 million ha (Zhang & 

Song, 2006). Due to the combined impacts of afforestation, deforestation and 

reforestation, many afforested areas actually failed to reach the minimum requirement 

of being classified as forests, with only 37% of afforested areas eventually forming 

plantation forests (Zhang & Song, 2006). Nonetheless, China currently still harbours 

the world’s largest plantation forest cover, totalling about 62 million ha (Chinese 

State Forestry Bureau, 2011). This represents about 31.8% of China’s total forest 

cover.  

Deforestation historically posed a serious threat for China’s forest ecosystems, 

resulting in more than 200 plant species and 61% of large animal species suffering 

from local extinction since 1950 (Li & Zhao, 1995). Nonetheless, the resulting habitat 
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degradation and a series of environmental issue changed past deforestation policies, 

and the central Chinese government has established a variety of large-scale ecological 

restoration programmes. The Six Key Forestry Programmes (SKFPs) in China cover 

more than 97% of China’s counties and target 76 million ha for afforestation (Wang et 

al., 2007). These SKFPs are the Natural Forest Protection Programme (NFPP), the 

Conversion of Cropland to Forest Programme (CCFP) (also called the Grain for 

Green Project), the Sand Control Programmes for the Beijing and Tianjin area (SCP), 

the ‘Three-North (north, northeast and northwest China) Shelterbelt Programme’ and 

the ‘Yangtze River Basin’ Shelterbelt Development Programme (TYSDP), the 

Wildlife Conservation and Nature Reserves Development Programme (WNDP) and 

the Fast-Growing and High-Yielding Timber Base Construction Programme in Key 

Areas (FTP),.  

The NFPP aims to fundamentally restore natural forest resources by the end of 2050, 

with most timber demands coming from plantation forests, and to establish a 

sustainable forestry industry system. According to the NFPP, logging in the middle 

and upper reaches of the Yangtze and Yellow Rivers is completely banned. The CCFP 

includes two aspects: transferring unsuitable farmland which mainly refers to land on 

slopes of more than 25° to forest, and establish plantations on barren, degraded land. 

The SCP and TYSDP both aim to prevent desertification via the establishment of 

forests in semi-arid areas. These programmes have reduced desertification from an 

annual increase of 3436 km2 by 2000 to an annual reduction of 1283 km2 in 2005 

(Wang et al., 2007). The WNDP aims to protect endangered wildlife species, such as 

giant panda (Ailuropoda melanoleuca David), Yangtze alligator (Alligator sinensis 

Fauvel), golden monkey (Rhinopithecus roxellana Milne-Edwards) and chiru 

(Pantholops hodgsoni Abvel). China had established 363 national natural reserves and 

more than 2000 county or provincial level natural reserves by the end of 2012. The 

FTP was established to solve the short supply of timber in order to protect natural 

forest. Key plantation areas are located in regions with substantial annual precipitation 

on flat areas, including in the tropical and subtropical regions of Guangdong, Guangxi, 
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Hainan and Fujian Province, but also in the northern subtropical Yangtze River region, 

the temperate region around the Yellow River region and the cool temperate northeast 

and Inner Mongolia region. 

These large scales of plantations were partly motivated by the demands in timber and 

partly by concerns for biodiversity and other natural resources. Policy-makers believe 

that plantations benefit the environment, but plantation programmes still lack precise 

restoration objectives (Sayer et al., 2004). For example, reforestations of China’s 

Three-North SDP play an important role in preventing sand storms and in retaining 

soil water, but they lack a clear strategy how to support further ecological issues such 

as biodiversity conservation, and some researchers even claim that they may destroy 

the entire regional ecosystem (Xu, 2011).  

1.4.3.  Plantation and secondary forest and biodiversity 

Although it is believed that ‘primary’ forests are irreplaceable for sustaining 

biodiversity (Gibson et al., 2011), secondary and plantation forests play an 

increasingly important role in maintaining forest biodiversity (Barbaro et al., 2005). 

The overall contribution these forests make towards biodiversity conservation has 

been vigorously debated (Brockerhoff et al., 2008; Gibson et al., 2011; Hartley, 2002; 

Lawton et al., 1998; Sayer et al., 2004). It is impossible to assess the diversity status 

of all species in secondary and plantation forests, while to compare and even study a 

wide range of different taxa needs substantial time, manpower and economic 

resources. Consequently, a possible way to evaluate the role of secondary and 

plantation forests in supporting biodiversity is to find suitable bioindicator taxa 

(Larsson, 2001), with highly species-rich and habitat-sensitive insect taxa being ideal 

candidates (Maleque et al., 2009). 

Plantation forests have been reported to host low insect biodiversity levels in 

comparison with mature forest ecosystems because of their generally more 

homogenous habitat composition (Fahy & Gormally, 1998; Maeto et al., 2002; 
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Makino et al., 2007). Some studies have however pointed out that plantations forests 

can provide important habitats for forest arthropod species (Barbaro et al., 2005; 

Brockerhoff et al., 2005; Felton et al., 2010). For example Holcaspis brevicula 

Butcher, a locally endangered ground beetle species, is currently restrictedly known 

from the plantation forests of Pinus radiata D. Don in New Zealand (Brockerhoff et 

al., 2005). Overall, results are incongruent for different insect taxa (Barlow et al., 

2007a; Lawton et al., 1998; Meng et al., 2012; Schulze et al., 2004) and also strongly 

dependent on the tree species composition used in the plantations (Bremer & Farley, 

2010; Coote et al., 2012).  

Similar to forest plantations, the role of secondary forests in biodiversity conservation 

is also widely unclear. It has been argued that the increasing cover of secondary 

forests provides important refuges for species endangered by the declining old-growth 

forest cover particularly in tropical regions (Wright & Muller-Landau, 2006). 

According to the intermediate disturbance hypothesis (IDH) (Connell, 1978; Grime, 

1973), the relationship between species richness and disturbance is hump-shaped, 

with diversity peaking at intermediate levels of, and age since, disturbance events. In 

relation to forest succession states, particularly older unmanaged secondary forests are 

hence hypothetically able to support high levels of diversity in plants and animals. 

Nontheless, whether secondary forest can maintain high levels of insect biodiversity is 

again being controversially debated (Barlow et al., 2007b; Bobo et al., 2006; Brook et 

al., 2006; Laurance, 2007; Schulze et al., 2004).  

In temperate regions of Europe and North America, studies have already reviewed the 

biodiversity patterns of bioindicator taxa in primary forest (Chumak et al., 2005; 

Lövei & Sunderland, 1996), and some have explored the effect of plantation and 

secondary forests on biodiversity patterns (Elek et al., 2001; Maeto & Sato, 2004; 

Magura et al., 2002). In China as the world’s largest plantation forests country, very 

limited studies have been conducted concerning the biodiversity status of planted 

temperate forests. One of the most important reasons is that the understating of the 
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biodiversity status in temperate primary forests is still widely lacking. Studying 

biodiversity patterns of important, diverse target taxa in China’s primary forests is a 

first step which will be significantly meaningful for setting conservation objectives 

for forest restoration and afforestation projects. 

1.5.  The insects research gap in Northern China 

China has a very rich insect fauna, and the study of insect diversity patterns in China 

has great value. Some estimates render insects in China to account for 10% of the 

total global species number (You, 1997), with Wu (1992) indicating an even bigger 

contribution. In addition to the high species diversity, there are many rare and 

endangered species in China. For example, the country harbours 120 species of 

Protura, the most primitive insect order, of the 400 species currently known (You, 

1997). Compared with the extensive vegetation studies in China, very limited 

attention has been given to the country’s species-rich insect communities, their 

conservation status, the likely influence of past and future climate change on these 

communities, and to the interactions between vegetation and insects. 

Ecological models indicate that China’s forest ecosystems are shifting northwards in 

response to global warming, and that the alpine forests are shrinking (Ni et al., 2000; 

Zhao et al., 2002). In northern China, particularly north of 33° latitude, forests 

ecosystem productivity reacts more sensitive to climate change than in southern China, 

so that forests in northern China provide ideal study objects to investigate forest 

ecosystem reactions to climate change (Yu et al., 2001). The main research area of 

this study is located in a mature temperate forest in northeast China—Changbaishan 

Natural Reserve (CNR). In temperate regions of northern China, ground beetles have 

chiefly been studied in grassland and agricultural ecosystems (for example, Duan et 

al., 2012; Liu et al., 2010b, 2006, 2012; Yu et al., 2007), with few studies 

investigating the diversity patterns of ground beetles in temperate mountain forests 

(Axmacher et al., 2011; Ji & Hu, 2007; Jiang, 2006; Yu et al., 2006a; Yu et al., 2002). 

Nearly all of these latter studies were based in secondary forests and forest plantations, 
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while very little information has so far become available on insect assemblages from 

the last remaining pristine temperate forests of China. In comparison to ground 

beetles, geometrid moths have already been studied in Changbai Mountain in the past 

(Chen et al., 2007; Liu et al., 2007a). These studies, however, mainly focused on 

general fauna diversity and distribution surveys, and none of these investigations 

analysed how the diversity of geometrids is linked to vegetation and environmental 

factors. The authors also considered their studies to be premature and encouraged 

more detailed studies of geometrids at CNR (Chen et al., 2007). 

1.6.  Research aim and objectives 

In this thesis, I aim to establish the diversity patterns of insect assemblages in CNR in 

relation to vegetation and environmental conditions, focussing on the distribution 

patterns of different insect taxa and functional groups at various spatial scales. The 

resulting patterns furthermore form the basis for an assessment into the effects of 

different environmental change scenarios on biodiversity patterns, as well as 

providing a baseline for biodiversity studies in the large-scale secondary and 

plantation forests in northern China. The following research questions hence will be 

addressed:  

1) What are the elevational α-diversity patterns of different insect taxa and 

functional groups in CNR?  

2) What is the insects’ species turnover status in relation to elevation and associated 

climatic factors?  

3) How does insect α-diversity relate to vegetation diversity and composition and 

prevailing environmental conditions?  

4) What is the trend of historical and future diversity patterns of insects at the CNR?  

5) How does insect diversity differ among primary, secondary and plantation forest 

in northern China? 

In particular, the main hypotheses will be tested in the following chapters:  



 

 53

1) Insect diversity decreases monotonically with increasing elevation in CNR 

(Chapter 3); 

2) A distinct altitudinal vegetation zonation exists at the CNR, and species turnover 

of insects will mirror this zonation (Chapter 3); 

3) There is a significant, positive relationship between plant diversity and diversity 

of carabids and geometrids (Chapter 4); 

4) The diversity of insects is significantly linked with changes in the composition of 

the vegetation (Chapter 5);  

5) Statistic models indicate that insects will move to higher elevational levels due to 

changes in the climatic conditions (Chapter 5); 

6) In Dongling Mountain, the secondary forest harbours a higher α-diversity of 

insects than more homogeneous plantation forests, while each forest habitat type 

harbors a distinctive insect species composition (Chapter 6); 

7) When comparing primary, secondary and plantation forest on a wider 

geographical area, primary forest harbors the highest insect diversity, followed by 

secondary forest, while plantation forest has the lowest diversity level (Chapter 

7). 
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Chapter 2.   Methodology 

2.1.  Study area 

The main study area is located at the Changbaishan Natural Reserve (CNR), Jilin 

Province, China (N 41°41' to 42°51' and E 127°43' to 128°16'). Changbaishan is a 

sleeping volcano with a peak of 2745m. The southern, North Korean side of the 

mountain has mostly been used for agricultural production, causing dramatic changes 

in the natural environment. The Northern sections of the mountain form part of CNR 

which was established in the 1960s. This reserve comprises an area of about 20,000 

ha, forming one of the best-protected Chinese large-scale natural forested 

environments, and also one of the world’s largest coherent temperate forest 

ecosystems. The area was classified as cool temperate moist forest based on 

Holdridge (1967)’s life zone system (see Cao & LI, 2008; Zhang, 1993). Forests with 

strong Korean pine (Pinus koraiensis Siebold et Zuccarini) components are 

widespread in this area. There are many valuable and endangered species of flora and 

fauna inhabit the CNR, such as Ginseng (Panax ginseng Meyer), Scots pine (Pinus 

sylvestris var. mongolica Litv) Japanese Yew (Taxus cuspidate Siebold & Zucc), 

Chosenia arbutifolia Skvortsov, while animals recorded in the vicinity of Changbai 

Mountain include the Amur tiger (Panthera tigris Linnaeus), sika deer (Cervus 

nippon Temminc), sable (Martes zibellina Linnaeus) and Imperial Eagle (Aquila 

heliaca Savigny). The abundant flora and fauna of the CNR does not only provide an 

important economical resource for local people, but also maintains a complex and 

stable set of ecosystems, as well as an excellent scientific research object. 

Along the altitude gradient, a clear plant community zonation can be distinguished in 

Changbai Mountain (Bai et al., 2011; Chen et al., 1964; Sang & Bai, 2009; Xu et al., 

2004; Zhao et al., 2004). There are four main forest zones, the mixed coniferous and 

broad-leaved forest zone (MCBF) from 700m to1100m, the mixed coniferous forest 

zone (MCF) between 1100m and 1500m, the sub-alpine mixed coniferous forest zone 
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(SMCF) between 1500m and 1800m and the birch forest zone (BF) distributed from 

1800m to the forest boundary at 2100m. In this study, annual mean climatic data was 

only available from Songjang meteorological station (at 720m asl) that is located on 

the northern section of the natural reserve (42°25′N, 128°07′E). Hence, climatic 

condition in respective forest zones was according to researcher’s description.  

The mixed coniferous and broad-leaved forests (MCBF) zone below 1100m  

This forest type, which is widely distributed along the base of the mountain, can be 

divided into two parts: the secondary forest at 500m – 800m, which is dominated by 

broad-leaved trees but contains a few conifers, and the primary forest chiefly above 

800m, which consists of a more even mixture of coniferous and broad-leaved tress 

(Chen et al., 1964). The annual average temperature is 3.4 °C and the annual 

precipitation amounts to 654mm (according to observations from Songjang 

meteorological station 1996 to 2006, see Sang & Bai, 2009). Soils are loams or sandy 

loams, representing brown or dark brown forest soils (Chen et al., 1964). The forest 

canopy height is 18-28m (Chen et al., 1964). The flora of the study area is extremely 

species-rich, containing more than 1100 plant species of more than 130 families and 

480 genera (Cao & LI, 2008). The mixed tree layer including deciduous broad-leaved 

species and evergreen conifers is dominated by Pinus koraiensis Siebold et Zuccarini, 

Acer mono Maxim, Quercus mongolica Fisch. et Turcz, Tilia amurensis Rupr and 

Ulmus davidiana Planch. Shrubs include Lonicera maximowiczii Regel, Spiraea spp., 

Acanthopanax senticosus Maxim., Corylus mandshurica Maxim. et Rupr., and herbs 

are dominated by Anemone spp., Carex spp. and Meehania urticifolia Makino (Chen 

et al., 1964; Xu et al., 2004).  
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Figure 6 The mixed coniferous and broad-leaved forest in Changbai Mountain  

The mixed coniferous forests (MCF) zone between 1100m and 1500m  

Compared with the MCBF zone, the proportion of coniferous species increases and 

the density of broad-leaved trees decrease dramatically in their distribution in the 

MCF (Figure 7); the coverage of shrubs and herbs also significantly decreases (Xu et 

al., 2004). Transition from MCBF to MCF is not abrupt, with mixture forest at 

1000-1100m. This area together with the sub-alpine mixed coniferous forest zone 

between 1500-1800m represents cold temperate forests with an annual average 

temperature below 2°C (Xu et al., 2004). Geological parent material is mainly 

composed of gravel and volcanic ash, leading to the formation of brown coniferous 

forest soils. The average forest canopy height is 16-24m. The MCF is mainly 

dominated by Picea koraiensis Nakai and Larix olgensis Henry, but also contains 

Picea jezoensis Carr. and Abies nephrolepis Maxim. The common shrub species at 

lower altitudes such as Spiraea spp. and Acanthopanax senticosus Maxim are rare, 
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with the shrub layer mainly consisting of Lonicera maximowiczii Regel, Rosa 

davurica Pall. and Euonymus verrucosus Scop. Herbs are dominated by 

Maianthemum dilatatum Nelson & Macbr and a variety of Carex spp.. 

 

Figure 7 The mixed coniferous forest in Changbai Mountain  

The sub-alpine mixed coniferous forest (SMCF) zone between 1500m and 1800m  

This forest type (see Figure 8) experiences high precipitation and low evaporation 

levels. The average forest canopy height is about 20m (Chen et al., 1964). Transition 

between MCF to SMCF is again not abrupt. This forest is dominated by Abies 

nephrolepis, Larix olgensis and Picea jezoensis, forming a dark and wet environment 

under the canopy; it is also called “dark coniferous forest” (Yu et al., 2003). Shrubs 

and herbs are rare, chiefly composed of suppressed Rosa acicularis Lindl, Ribes 

maximowiczianum Kom, Linnaea borealis Linnaeus and Pyrola renifolia Maxim. 

Mosses are very well-developed, covering the whole ground and the tree trunks (Xu et 

al., 2004). 
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Figure 8 The sub-alpine mixed coniferous forest in Changbai Mountain  

The birch forest (BF) zone between 1800m and 2100m  

The BF zone (Figure 9) forms the upper forest boundary on Changbai Mountain. 

Abrupt transition occurs between SMCF and BF. This forest is dominated by Betula 

ermanii Cham, interspersed by Alnus mandshurica Hand.-Mazz. and Sorbus dacica 

Borbás at 1800m to 2100m. Annual temperature is very low, with high humidity 

levels and strong winds, which is unsuitable for the survival of tall trees. As a pioneer 

species, the birches are usually small with an average height of 8-12m, reducing 

further to only 5-6m at the upper forest boundary. In some lower areas between 

1600m and 1650m that experience strong winds, birch forests also occur; birches can 

reach up to 14-16m in height at these lower elevations (Xu et al., 2004). Undergrowth 

shrubs are scarce and mostly dominated by Rhododendron aureum Georgi, with 

Vaccinium uliginosum Linnaeus and Phyllodoce caerulea Babington also noteworthy 

components. The herb layer is highly diverse with more than 90% of the coverage, 
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including species such as Aquilegia japonica Nakai et Hara, Campanula glomerata 

Linnaeus, Deyeuxia angustifolia Kunth, Petasites saxatilis Toman and Saussurea 

tenerifolia Kitagawa (Xu et al., 2004).  

 

Figure 9 The birch forest on Changbai Mountain 

Tundra zone above 2100m 

Forest disappears abruptly from BF to tundra zone. The annual average temperature in 

the tundra zone (Figure 10) is lower than -5°C and precipitation reaches about 

1700mm with extremely strong wind. Low shrubs such as Phyllodoce caerulea, 

Rhododendron redowskianum Maxim., Rh. Parvifolium Wahlenb, Rh. chrysanthum, 

Salix rotundifolia Trautv. and Vaccinium uliginosum dominate in this area. Some 

typical herbaceous mountain plants can also be found, such as Kobresia spp., Phleum 

alpinum Linnaeus, and Ptilagrostis mongholica Griseb., mixed with high-elevation 

mosses and lichens (Xu et al., 2004). 
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Figure 10 The tundra zone in Changbai Mountain   

Apart from the main study area at CNR, research was also conducted at a second 

study area, Dongling Mountain (DLM) (40°00’N, 115°26’E). This area is located in 

the Beijing Xiaolongmen Forest Park that belongs to the Taihang Mountain range that 

is about 110 km southwest of Beijing city centre near the boundary between Beijing 

and Hebei Province. The altitude of this area ranges from 800m to 2300m. It was 

originally dominated by Oak (Quercus liaotungensis Mayr), but was extensively 

deforested and partly re-forested with pine (Pinus tabulaeformis Carrière) and larch 

(Larix principis-rupprechtii Mayr) plantations in the 1960s (Yu et al., 2010). Natural 

regeneration also generated mixed conifers and broadleaved forest patches. It hence 

results in a fine forest mosaic within a relatively small geographical area formed of 

oak, pine, larch, birch (Betula platyphylla Suk. and B. dahurica Pall.) and mixed 

forests. Forests harbors canopy of 8-15 metres with a maximum of 20m (Yu et al., 

2010). This area experiences a warm temperate and continental monsoon climate, 

with an annual mean temperature at 1100m of 4.8°C and an average annual 

precipitation of 612mm (Sang, 2004).  

Results were furthermore used in comparisons with original data generated in 
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collaborative research between members of the UCL Department of Geography and 

the China Agricultural University, who sampled carabids and geometrid moths in 

plantation forests on the Bashang Plateau (BSP) in 2006 and 2007. The BSP is located 

in the mountain ranges in Hebei Province between Beijing and Inner Mongolia, in the 

transition zone between the sub-humid monsoon climate and the semi-arid steppe 

climate (Zhao et al., 2005). The vegetation therefore falls within the boundary 

between the warm temperate deciduous broad-leaved forest zone and the temperate 

grassland zone (Zhang, 2007). In the past, the area has experienced severe land 

degradation due to overgrazing and forest transformations into cropland (Zhao et al., 

2005). At the end of the 20th century, a wide range of forest plantations was 

established in this area under policies such as the “Grain for Green” Project and the 

“Sand Control Program” (Cao, 2011), with larch (Larix principis-rupprechtii Mayr) as 

the main plantation tree species. For comparisons with data from Changbai Mountain 

and Dongling Mountain, I used the secondary data, described below, from two forest 

plantation areas, Baiqi Village (41°3’N, 116°11’E) at the elevation of about 1400m asl 

and Shizigou Village (41°13’N, 115°23’E) at about 1650m asl, each containing 4 

sampling plots. Apart from one site in Shizigou which is a poplar (Populus tomentosa 

Carr) plantation, all sites are larch plantations. The annual mean temperature at Baiqi 

is 4-6°C, with an average annual precipitation of 515mm, whereas the annual mean 

temperature at Shizigou is 2-4°C, with precipitation of less than 500mm (Wang, 

2010). 

2.2.  Research design 

The primary forest at CNR provides ideal conditions to study the biodiversity status 

of insects in a pristine environment. With plots established from the mountain base to 

its uppermost forest boundary, research in this area can provide general information 

of how insects are distributed along elevational gradients. As vegetation was surveyed 

both in 1960s and 2000s (see details in following) (Bai et al., 2011; Chen et al., 1964; 

Sang & Bai, 2009), it is also possible for me to investigate long-term vegetation 
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changes in the study area and to model how these changes reflect the long-term 

change of insect biodiversity. The secondary and plantation forest mosaics at DLM, in 

addition, provide an opportunity to generate a basic overview of how insect diversity 

differs between different forest habitats, also providing a reference for comparisons 

with the primary forests in CNR. Details of the research design are introduced in the 

following paragraphs.  

At the CNR, scientists of the Institute of Botany, Chinese Academy of Sciences 

(IB-CAS) established a set of 68 study plots in the research area and conducted 

detailed vegetation surveys (method of vegetation survey can be found in 2.5) and 

recording of a baseline of environmental parameters in 1963 (Chen et al., 1964). 

These initial surveys were repeated in 2006, when 60 plots were revisited by scientists 

from the IB-CAS to investigate vegetation changes over the last four decades in 

relation to climate and environmental change (Bai et al., 2011; Sang & Bai, 2009). I 

used these data sets to establish models describing the insect diversity patterns in 

relation to vegetation and environmental factors. This study used 27 plots that had 

been surveyed by IB-CAS, and which were located at the four main forest types. Plots 

were found according to the GPS location and the guidance from staff of the CNR 

Management Centre who also participated in the vegetation surveys of 2006. In 

addition, I selected three plots in a habitat strongly dominated by Korean pine (Pinus 

koraiensis) between 1000m and 1100m. This forest type was contained in the MCBF 

by previous studies (Chen et al., 1964), but here is referred to as Korea Pine Forest 

(KPF). In addition, one plot was added in the MCF forest. In the upper-most birch 

forest, 2 additional plots were also added resulting in 5 plots established in this forest. 

The 33 sampling plots investigated in this study were distributed across the five 

different forest zones with increasing elevation from 770m to 2000m as follows: 11 

plots in MCBF, 3 plots in KPF, 6 plots in MCF, 8 plots in SMCF and 5 plots in BF 

(Figure 11, Table 1). The closest distance between two plots was 60m, which is 

regarded sufficient to avoid light influencing neighbouring sites (Truxa & Fiedler, 

2012). 
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In DLM, the main sampling was conducted at areas surrounding at elevations ranging 

from 1100m to 1500m asl the Beijing Forest Ecosystem Research Station (BFERS) of 

the Chinese Academy of Sciences. In this study area, a total of 12 sampling plots were 

selected covering the typical secondary forest habitats types, with four plots each 

located in oak, mixed broad-leaf forests and birch forests, and 8 plots with four each 

located in pine and larch plantations, respectively (Figure 12b). In addition, 4 plots 

were located at an elevation of about 900m, and 12 plots were situated between 1450 

and 1700 (Figure 12a). Apart from four plots at 1700m were in the birch forest, all 

additional plots were located in oak forest or oak woodland. In this area, I was also in 

charge of vegetation survey, but was helped with plant identification from botanists of 

IB-CAS (see also 2.5).  
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Figure 11 Satellite image of the study area at CNR with my sampling plots marked as 

white triangles (a) and schematic vertical cross-section of the study transect with 

distinct vegetation zones (b) (MCBF: mixed coniferous and broad-leaved forest; KPF: 

Korean Pine Forest; MCF: mixed coniferous forest; SMCF: sub-alpine mixed 

coniferous forest; BF: birch forest). 

(b) 

(a) 
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Figure 12 Satellite image of the study area at DLM; (a) shows all sampling plots and 

(b) shows the main sampling area 
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2.3.  Sampling plot design 

A total of 33 plots were selected in CNR; each study plot had a size of 20×20m2 and 

was divided equally into four subplots. In the centre of each sub-plot, a pitfall trap 

was placed, and the light trap was located in the middle the study plot (Figure 13). 

Pitfall sampling was conducted on all plots, while light sampling was conducted on 25 

of the 33 plots, excluding the most remote sites that were difficult and potentially 

dangerous to reach and work at night (Table 1). As the snow within the birch forest 

does not melt until mid-June and most of the forest areas are closed off due to fire 

precautions from late August, pitfall trap sampling was carried out from early July to 

early August in 2011, and from late June to late August in 2012, with empty-refill trap 

of ten days. Hence, typical autumnal carabids are potentially underrepresented in the 

samples. Nonetheless, the sampling period was standardized for the entire transect, so 

that this bias will have similar effects on all samples. Light trap sampling was carried 

out in July and August in 2011 and in June in 2012. 

 

 

Figure 13 Sketch of the sampling design used in the CNR.  
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Table 1 Sampling methods and information of each plot in CNR, where “+” represents 
the use of a specific sampling method 

Plot No. Forest types Altitude (m) Pitfall trap Light trap Window trap
1 MCBF 770 + - -
2 MCBF 780 + + -
3 MCBF 790 + + -
4 MCBF 790 + + -
5 MCBF 800 + - -
6 MCBF 820 + + +
7 MCBF 850 + + -
8 MCBF 870 + + -
9 MCBF 870 + + -

10 MCBF 900 + - -
11 MCBF 910 + + +
12 KPF 1040 + + -
13 KPF 1050 + + +
14 KPF 1060 + + -
15 MCF 1150 + + +
16 MCF 1170 + + -
17 MCF 1200 + + -
18 MCF 1330 + + -
19 MCF 1340 + + -
20 MCF 1350 + + -
21 SMCF 1520 + + -
22 SMCF 1600 + + -
23 SMCF 1600 + + -
24 SMCF 1620 + + -
25 SMCF 1660 + - +
26 SMCF 1730 + - -
27 SMCF 1740 + + -
28 SMCF 1750 + - -
29 BF 1820 + + -
30 BF 1950 + + +
31 BF 2000 + + -
32 BF 1990 + - -
33 BF 1960 + - -  

Study plots also measured 20×20m2 in DLM, while two pitfall traps separated by a 

2m distance of apart and a light trap were located in the middle of the plot (traps in 

some plots were not exactly in the middle due to terrain situation). Pitfall sampling 

was carried out on all plots, while light trapping was only conducted on the 20 plots in 

the main study area surrounding BFERS (Table 2). Carabids were sampled over ten 

weeks between June and August in 2011 for all plots, and over thirteen weeks 
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between June and September in 2012 for the 20 main plots, again with ten days 

interval collecting and refilling traps; moths were sampled between June and August 

in 2011.  

Table 2 Sampling methods and further information on vegetation type and altitude for 

each plot in DLM, where “+” represents the use of a specific sampling method 

Plot No. Plot info. Forest types Altitude (m) Pitfall trap Light trap
1 Main plot Larch 1280 + +
2 Main plot Larch 1290 + +
3 Main plot Larch 1290 + +
4 Main plot Larch 1265 + +
5 Main plot Pine 1165 + +
6 Main plot Pine 1160 + +
7 Main plot Pine 1170 + +
8 Main plot Pine 1180 + +
9 Main plot Mixed 1220 + +

10 Main plot Mixed 1230 + +
11 Main plot Mixed 1220 + +
12 Main plot Mixed 1250 + +
13 Main plot Oak 1280 + +
14 Main plot Oak 1260 + +
15 Main plot Oak 1260 + +
16 Main plot Oak 1260 + +
17 Main plot Birch 1390 + +
18 Main plot Birch 1400 + +
19 Main plot Birch 1410 + +
20 Main plot Birch 1410 + +
21 Additional Plot Oak 905 + -
22 Additional Plot Oak 910 + -
23 Additional Plot Oak 930 + -
24 Additional Plot Oak 925 + -
25 Additional Plot Oak 1460 + -
26 Additional Plot Oak 1500 + -
27 Additional Plot Oak 1530 + -
28 Additional Plot Oak 1500 + -
29 Additional Plot Oak 1600 + -
30 Additional Plot Oak 1580 + -
31 Additional Plot Oak 1610 + -
32 Additional Plot Oak 1615 + -
33 Additional Plot Birch 1700 + -
34 Additional Plot Birch 1700 + -
35 Additional Plot Birch 1700 + -
36 Additional Plot Birch 1700 + -  
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2.4.  Sampling methods for carabids and geometrids1  

2.4.1.  Pitfall trapping 

Surface-dwelling carabids can be sampled using cost-effective pitfall trapping. A 

pitfall trap consists of a container buried in the ground with its rim at surface level, 

and often with a roof above the trap to limit evaporation and dilution of the killing 

liquid in the container by rain water. The container can have different size, with 

materials also ranging from glass and plastic to metal (Greenslade, 1964; Luff, 1975; 

Oliver & Beattie, 1996). In sampling carabids, liquids to kill the samples and preserve 

them are commonly added to the container. These are usually covering the bottom of 

the container, ensuring that the specimens are easier to identify after prolonged 

sampling periods and limiting their chances to escape (Pekar, 2002). Solutions can be 

water, saturated salty water, diluted formaldehyde, ethylene glycol, benzoic acid and 

alcohol. In water-based solutions, a little detergent is often added to lower the surface 

tension and prevent samples from floating on the surface (Gullan & Cranston, 2005). 

The capture results of pitfall traps are affected by the design of the traps (Woodcock, 

2005). For example, small traps are more efficient in catching small beetles (Luff, 

1975); round traps catch more carabids than rectangular ones (Spence & Niemelä, 

1994); glass traps are more capture-effective as compared to plastic and metal traps 

(Luff, 1975) and traps without covers are more effective than those with covers 

(Spence & Niemelä, 1994).  

Pitfall trapping was the main sampling method used for the collection of carabids in 

this study. Plastic cups with an open diameter of 7.5cm and a volume of 250ml were 

used as pitfall traps. Although glass cups can potentially catch more specimens (Luff, 

1975), plastic cups were selected because they are cost-effective, light and robust and 

hence easy to carry and extremely solid when buried in soil in forests for several 

                                                        
1 Part of this information has been published in Zou et al. (2012). In this paper, I was the main, 
lead author, with the other authors mainly commenting on the manuscript I had prepared and 
edited some of the grammar. 
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months. An aluminium roof of 10x10cm2 was placed about 10cm above the cup 

(Figure 14). As the study area experiences high levels of precipitation during the 

sampling period, the roof was seen as essential to protect the killing solution from 

dilution by rain and litter contamination. Saturated salt-water solution, which is very 

cost-effective and minimizes attractant bias (Kotze et al., 2011), was used as the 

solution for killing and preserving specimens in the traps.  

 

Figure 14 Pitfall trap with aluminium roof  

2.4.2.  Leaf litter collection 

Leaf litter collecting is mainly used to sample microarthropods and small ground 

beetles. In this approach, the complete litter layer on top of the mineral soil is 

normally collected over a standardized area. Leaf litter arthropods can then be 

extracted with Berlese-Tullgren funnels (Crossley & Hoglund, 1962) or with 

litter-washing, where specimens appear on the water surface when litter is positioned 
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in a water-filled tray (Spence & Niemelä, 1994). This is a very inexpensive method, 

but often relatively destructive as large amounts of litter are often required to sample 

sufficient numbers of specimens, which is also highly time consuming. Leaf litter 

washing requires dealing with the samples quickly to avoid the death of specimen. 

Leaf litter sampling can form a good composite technique with pitfall trapping, as 

specimen with small body size rarely appear in the latter (Olson, 1991; Spence & 

Niemelä, 1994). In this study, I collected 0.25x0.25m2 leaf litter samples which were 

washed to sample small carabids, but for the first attempts based on 26 plots at DLM, 

only a single individual was found in all combined samples. In CNR, similarly, the 

first attempt from 9 plots with 0.25x0.25m2 leave litter samples yielded not a single 

specimen. While an extension of the overall sample area might yield better results, the 

very low sample efficiency suggests that this method is very labour-intensive and was 

hence not followed through in the context of this study.   

2.4.3.  Window trapping 

A window trap is a type of flight interception trap based on similar principles to a 

Malaise trap (Malaise, 1937). The construction of a window trap includes a pane of 

glass, perspex, silk or fine mesh which is considered invisible to the target arthropods. 

This pane or net is located in the centre of a suspected flight path as a barrier for 

arthropods using this path, and a container or gutter filled with liquid preservatives is 

placed beneath the net (Figure 15). Flying arthropods are collected once they fall into 

the preserving liquid after hitting the barrier. A roof is added on the top if the trap 

needs to resist rain. 

Window trapping is an easily standardized, replicable sampling method and can 

capture large quantities of flying arthropods (Bouget et al., 2008). Small-scale 

diversity patterns are not always well reflected in samples from window traps, though, 

(Jonsson et al., 1986). The efficiency of window traps is also affected by the material 

of the barrier, with large beetles flying at high speed potentially bouncing off hard 

barriers without falling into the sampling containers below (Boiteau, 2000). The exact 
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shape, silhouette and height of the barrier also has a strong influence on sampling 

efficiency (Bouget et al., 2008), as has the exact placement of the trap. Disadvantages 

of window traps include that they catch only flying arthropods; they are relatively 

expensive per unit especially in traps using hard barriers, can be easily damaged by 

high winds, have a relatively small flight interception area, and often suffer additional 

problems relating to the efficient installation and sample retrieval, and logistical 

problems can occur when sampling is to occur in the forest canopy (Bouget et al., 

2008; Carrel, 2002; Gullan & Cranston, 2005; Peck & Davies, 1980). 

In this study, window trapping was carried out using black silk mesh as the barrier. As 

the traps yielded extremely large amounts of beetles (more than 1000 individuals each 

time) but very low abundances of ground beetles (<<1% of the caught specimens), 

they were unsuitable for a robust analysis of carabids, and window trap results were 

not included in the analysis. 

 

Figure 15 Window trap using black silk mesh of 1.5m x 3m with a plastic roof 
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2.4.4.  Light trapping 

The majority of moths are night-flying and are easily attracted by artificial light 

sources (Axmacher & Fiedler, 2004; Nag & Nath, 1991). Light traps are highly 

effective and can preserve specimens in relatively good condition, which is very 

important for sampling many of the relatively frail geometrid specimens. Light traps 

are often relatively expensive and not very robust sampling devices which can 

nonetheless collect large numbers of specimens (Basset et al., 1997; Liu et al., 2007b). 

Light sources vary greatly, ranging from gas lamps to mercury vapour lamps and 

fluorescent UV light tubes, and collection of samples can either be manual or 

automatically (Brehm & Axmacher, 2006). There are two basic types of light trapping 

devices: “light towers” or more basic devices such as white sheets spread behind light 

sources which are suitable for selective, manual collection, and automatic light traps. 

In the case of light towers, insects are collected in a jar equipped with a chemical to 

stun and kill the specimens after they land on the surface of the light tower.  

Automatic light traps were used at both, CNR and DLM, while manual collections 

were additionally used as complementary to automatic light trapping in DLM. The 

light trap used in this study consisted of a 12V, 20W UV mercury light tube with a 

length of 60cm, a metal cover, three glass vanes and a collection box underneath 

containing the battery powering the device (Figure 16). Moths were attracted to the 

light, hit the glass vanes and then slipped through a metal funnel into the collection 

box. A plastic sheet was used to wrap up the trap when it was being carried through 

the forest to prevent damage from undergrowth. This plastic sheet was opened to the 

bottom of the trap during sampling, and the sheet was pulled around the trap again 

when sampling was completed, when moths staying on the outside of the trap and on 

this plastic sheet were also collected. A piece of chloroform-dipped tissue was 

dropped inside the trap to stun specimens. 
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Figure 16 Light trap used in this study.  

2.5.  Treatment and identification of insect specimens 

All beetles were preserved in 75% alcohol after collecting and all ground beetles were 

subsequently pinned. Moths were kept in a -24°C freezer after collection before they 

were pinned. The main insect collections are kept in the Institute of Zoology, Chinese 

Academy of Sciences (IZ-CAS), Beijing, and identification of both, carabids and 

geometrids, was aided by the taxonomic experts from this institute. In addition, 

geometrids materials were also send to Canadian Centre for DNA Barcoding (CCDB) 

identification. As yet results from barcoding have not come out, all analysis was then 

based on identification results from IZ-CAS. 
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2.6.  Vegetation survey 

In CNR, raw vegetation data were obtained from IB-CAS, for the 27 plots that had 

previously been surveyed by the institute (Bai et al., 2011; Sang & Bai, 2009). 

Vegetation surveys for newly added plots were based on the same sampling methods 

used in the earlier sampling. Hence, all vegetation-related data in CNR in the 

following chapters refers to a combination of secondary data collected in 2006 and 

my own surveys. The new study plots were positioned at random locations. Plants 

were separated into three layers: tree layer or canopy layer including all trees with a 

height extending 2m; shrub layer including trees with a height between 0.4m and 2m 

and shrubs with a height extending 0.4m and the herb layer or 

understory/undergrowth layer, which included all woody plant species with the height 

of less than 0.4m and all herbaceous species. Species in tree and shrub layers were 

recorded in each of the four 10m×10 m sub-plots, while herbaceous species were 

recorded in four plots of 1m2 that were randomly located within the sub-plots (Figure 

13). In CNR, the breast height of each tree specimen was measured and the abundance 

and average height of each shrub and herb species were recorded, with plant species 

identified by botanists from IB-CAS and the CNR management centre. At DLM, only 

the average % cover for each species was recorded, and plants were identified with 

the help of botanists from IB-CAS.  

2.7.  Data analysis 

Fisher’s α value was calculated measuring α-diversity of carabids and geometrids; 

several species richness estimators were used to analysis the sampling completeness. 

Chord-normalized expected species shared (CNESS) dissimilarity matrices was used 

for analysis the β-diversity of insects, and ‘Jaccard’ dissimilarity matrices was used 

for plants. Stepwise linear regression was used to analysis the relationship between 

plant variables and insect α-diversity. Multivariate analysis was used to investigate 

relationship between plant and insect compositions. Rarefactions were used to 

compare the diversity status among different forests and areas. Details of specific 
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approaches to data analysis used to address the different research questions are 

outlined in each individual respective chapter (see chapters 3-7). 
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Chapter 3.  Altitudinal diversity patterns of ground beetles 

and geometrid moth in the forests of Changbai Mountain1 

Summary 

This chapter focused on the α- and β-diversity patterns of ground beetles and 

geometrids at Changbai Mountain. Ground beetles were sampled on 33 plots and 

geometrid moths on 25 plots distributed across the five main distinct mature forest 

ecosystems occurring at altitudes between 700m and 2000m on Changbai Mountain. 

Pitfall trapping yielded a total of 4834 ground beetles representing 47 species, while 

light traps yielded 9285 geometrid moths representing 155 species. The abundance of 

both carabids and geometrids increased with increasing elevation while α-diversity 

decreased. For both taxa, no significant correlation was observed between the 

abundance of common species and their altitudinal distribution. Insect assemblages 

originating from the high elevation forest types formed a partly overlapping cluster, 

while assemblages at lower elevations were more strongly differentiated according to 

forest type, again a trend clearly apparent in both taxa. Results support the assumption 

that both carabids and geometrids are highly sensitive to climate change. The Korean 

pine-dominated forest, which has not previously been distinguished as a discrete 

forest type, showed a distinct species composition for both taxa, indicating its 

requirement of specific conservation attention.  

3.1.  Introduction 

Species diversity and distribution patterns show clear altitudinal patterns (Brehm et al., 

2007; Herzog et al., 2005; Lomolino, 2008; Rahbek, 1995, 2005). As altitudinal 

changes are closely linked to changes in a wide range of environmental parameters 

such as temperature and precipitation, species diversity patterns along elevational 

gradients may also provide important insights into the possible effects of climate 

                                                        
1 The main results have been published in Zou, et al., 2013b, where I was the lead author and did the analysis and 
wrote the main content.  
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change on biotic communities (Moritz et al., 2008; Parmesan, 2006; Wilson et al., 

2007).  

In general, along increasing altitude, four diversity patterns have been proposed: a 

continuous decline, a hump-shaped distribution with a distinct mid-elevation peak, a 

diversity plateau and a general increase in diversity (García-López et al., 2011; 

McCain & Grytnes, 2010). A monotonic decrease and a hump-shaped response are 

two most commonly observed patterns. A monotonic decrease can be explained by the 

Productivity Hypothesis (Chase & Leibold, 2002; Currie, 1991; Fargione et al., 2007; 

Mittelbach et al., 2001; Rahbek, 1995; Roy, 2001), the Harsh Environment 

Hypothesis (Rapoport, 1982; Stevens, 1989, 1992), the Resource Diversity 

Hypothesis (Price, 1984) and the Species-Area Hypothesis (Rosenzweig, 1995). 

Explanation of a hump-shaped distribution include climatic models combining 

temperature and precipitation (Brown, 2001; Rahbek, 1995) and the mid-domain 

effect (MDE) (Colwell & Lees, 2000; Colwell et al., 2004; Dunn et al., 2007; 

Hawkins et al., 2005; McClain et al., 2007). More details of the above-mentioned 

hypotheses can be found in Chapter 1.  

Globally, the elevational distribution patterns of geometrid moth diversity has been 

studied in Southeast Asia (Beck & Chey, 2008), America (Brehm et al., 2003b), Africa 

(Axmacher et al., 2004a) and North China (Axmacher et al., 2011; Chen et al., 2007; 

Liu et al., 2007a). Results of these studies are mixed, with a monotone decrease (Chen 

et al., 2007; Liu et al., 2007a), hump-shaped distributions (Beck & Chey, 2008) and 

other, more complicated distribution patterns (Axmacher et al., 2004a; Axmacher et 

al., 2011; Brehm et al., 2003b) becoming evident. In comparison to primarily 

phytophagous insect groups whose distribution is partly restricted by the distribution 

of their potential host plant species (Warren et al., 2001), the distribution of predatory 

insects such as many ground beetle species is even more variable (Axmacher et al., 

2011; Greenslade, 1968; Olson, 1994; Skalski et al., 2011). Nonetheless, the dispersal 

abilities of many ground beetle species is limited due to their lack of flight ability 
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(Lamoreux, 2004; Larochelle, 1990). Their elevational diversity patterns furthermore 

appear to be inconsistent, with also both a general decrease and mid-elevation-peaks 

in carabid species richness with increasing altitude being reported along elevational 

gradients (Greenslade, 1968; Skalski et al., 2011). Other studies support more 

complex patterns (Olson, 1994) or no significant changes in carabid α diversity in 

response to altitudinal changes (Axmacher et al., 2011). 

Information on insect distribution patterns along elevational level in primary 

temperate forest is crucial in assessing how well the substantial reforested areas in 

temperate China serve in providing habitat for a proportion of China’s highly diverse 

temperate insect taxa and their associated ecosystem services. The investigations into 

the diversity of ground beetles and geometrid moth of pristine forest ecosystems on 

Changbai Mountain allow unique insights in this respect. Given the very high levels 

of plant species richness in China’s temperate forests (Chen et al., 1997; Chinese 

State Forestry Bureau, 2011; Qian & Ricklefs, 2000) and the associated habitat 

complexity, it is expected that both carabid and geometrid assemblages will be highly 

diverse in this area. The species richness plants on Changbai Mountain has previously 

been reported to decrease with increasing elevation (Hao & Yang, 2002) potentially in 

response to a general decrease in ambient temperature. It is therefore hypothesised 

that the diversity of these two taxa in these forests will also decrease with increasing 

elevation. Furthermore, species occupying a wide ecological niche often occur at high 

local abundance (Brown, 1984), and it was hypothesised accordingly that overall 

abundance and altitudinal range of individual species are positively correlated, with 

altitudinal generalists also being the most abundant species. The final postulation of 

this chapter is that the distinct altitudinal zonation of the vegetation in the Changbai 

Mountain forests is mirrored by parallel shifts in the insect species composition. 

3.2.  Method and data analysis 

A total of 33 sampling plots were selected between 700m and 2000m at Changbaishan 

Natural Reserve (CNR) representing the five main forest types with increasing 
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elevation: mixed coniferous and broad-leaved forest (MCBF) between 700m and 

1000m, Korean Pine Forest (KPF) between 1000m-1100m, mixed coniferous forest 

(MCF) between 1100m and 1500m, sub-alpine mixed coniferous forest (SMCF) 

between 1500m and 1800m and birch forest (BF) between 1800m and 2000m. 

Carabids were sampled using pitfall traps at all sampling plots, while geometrids were 

sampled using light traps at a subset of 25 sampling plots. Pitfall trap sampling was 

carried out from early July to early August in 2011, and from late June to late August 

in 2012; light trap sampling was carried out in July and August in 2011 and in June in 

2012. More details of study area and sampling design can be found in Chapter 2.  

The abundance of all insect species for each plot over the entire sampling period were 

pooled to have large-enough sample sizes for robust statistical analyses as well as to 

avoid a strong influence of inter-annual variations on results. Elevational ranges for 

each species were established as the difference between the maximum and minimum 

elevations where the species was recorded. Only common species (i.e. ≥ 25 

individuals) were considered for the analysis. Elevational ranges of rare species are 

subject to large uncertainty in range size.  

Fisher’s α (see Appendix 1, equation 5) was used as a measure of α-diversity, as this 

index is widely independent from sample size variations and has been commonly used 

in studies of insect α-diversity patterns (Axmacher et al., 2009; Axmacher et al., 

2004b; Brehm et al., 2003b). To check the robustness of the Fisher’s α patterns, 

rarefied species numbers (see Appendix 1, equation 1) (Hurlbert, 1971) were 

calculated as a further measure suitable to compare species richness for samples of 

highly variable sizes (Axmacher et al., 2004a; Axmacher et al., 2004b; Brehm et al., 

2003b; Liu et al., 2012; Liu et al., 2006). In addition, the mean of the species richness 

estimators Abundance-based Coverage Estimator (ACE) (Appendix 1, equation ) and 

Chao1 (see Appendix 1, equation 6) was used to estimate of the true species richness 

in each forest type. These two estimators were chosen because grain sizes vary in my 

samples, while both ACE and Chao1 are relatively independent from grain size 
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(Hortal et al., 2006). As sample sizes were too small for a meaningful calculation of 

diversity estimators generated for individual plots, only Fisher’s α was used to analyse 

values of individual plots. In the analysis of abundance-elevation relationship, activity 

abundance was used. Due to differences in sampling intensity, activity abundance in 

this case refers to mean catches per trapping day (number of individuals/catching days) 

for both carabids and geometrids. 

For the analysis of species turnover patterns between plots (β-diversity), 

chord-normalized expected species shared (CNESS) dissimilarity matrices (Trueblood 

et al., 1994) was calculated (see Appendix 1, equation 9). The CNESS matrices can be 

calculated for different sample sizes via changes of the sample size parameter m. The 

resulting matrix either puts a strong focus on dominant species when low numbers are 

selected (extreme: m=1) or on rarer species for large numbers of m. The matrix for 

m=1 as well as for m=number of individuals in the least well-sampled plot (m=47 for 

carabids and 87 for geometrids) as the largest common sample size were calculated. 

Non-metric multidimensional scaling (NMDS) of the CNESS matrices was 

subsequently used to visualize the species turnover patterns between different forest 

plots and types. 

Species estimator richness was calculated using the software EstimateS (Colwell, 

2013) and CNESS matrices were calculated by the programme COMPAH (Gallagher, 

1998). All other calculations and statistics were carried out in R language (R 

Development Core Team, 2011) with the use of ‘vegan’ package (Oksanen et al., 

2012).  

3.3.  Results 

3.3.1.  Species compositions 

In total, 4834 ground beetles representing 47 species were caught (see Appendix 2) in 

summer of 2011 and 2012. Among the 47 species, 34 of them were identified to 

species level, which represented 91.2% of all sampled specimens. The remaining 13 
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morphospecies were all formally identified to genus level. The most dominant species 

in the study area belonged to the genera Carabus and Pterostichus, with Pterostichus 

comorus Jedlicka and Carabus aurocinctus Motschulsky contributing 18.7% and 

18.6% of all individuals, respectively, Pt. vladivostokensis Lafer a further 10.2% and 

Pt. orientalis Motschulsky 10.0%. When comparing different forest types, there was a 

clear differentiation in regard to most common species for respect forest. Pt. 

vladivostokensis and Pt. orientalis dominated in the MCBF below 1000m, where 

these two species accounted for 27.1% and 21.7% of all individuals caught, 

respectively. Pt. adstrictus Eschscholtz dominated in the KPF between 1000m and 

1100m, where it accounted for 34.7% of all individuals. Above 1100m, C. venustus 

Morawitz dominated in the MCF (18.7%), C. aurocinctus in the SMCF (37.5%) and 

Pt. comorus in the BF (38.1%). 

The light traps yielded 9285 geometrid moths, of which 1072 specimens (11.5%) 

were badly damaged chiefly due to strong rains occurring during some sampling 

nights. These specimens had to be excluded from further analysis, while the 

remaining 8213 individuals were divided into 155 morphospecies, of which 85 

species representing 6165 individuals (75% of all specimens) were identified to 

species level, with a further 32 species identified to genus and 38 to subfamily level 

(see Appendix 3). Ennominae and Larentiinae were the most abundant subfamilies, 

accounting for 56.2% and 41.6% of all individuals, respectively. Each forest type 

again differed in relation to dominant species, but with the most common species at 

individual forest being generally less pronounced than in the carabid assemblages: 

Abraxas suspecta Warren was dominant in MCBF (23.0%), Hypomecis roboraria 

Denis & Schiffermüller in KPF (14.4%), Euchristophia cumulate Christoph in MCF 

(17.3%), Hydriomena impluviata Denis & Schiffermüller in SMCF (18.7%) and 

Venusia cambrica Curtis in BF (27.6%) assemblages. 

With the exception of KPF, all forest types contained at least two species of ground 

beetles that were not encountered in any of the other forest types. Furthermore, all 
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forest types had at least 5 geometrid species that were not observed in other types. In 

particular, MCBF had 38 “unique” geometrid species that were not encountered in 

samples from other habitats, while this number in other forest types only ranged from 

5 to 7 species. 

For the subfamily composition of geometrid moths, individuals of Ennominae 

dominated most plots at lower elevations, while Larentiinae became increasingly 

dominant at altitudes above 1600m. Sterrhinae were restricted to elevations below 

1100m (Figure 17a). With increasing elevation, the proportion of individuals in both 

Ennominae and Geometrinae decreased (Spearman rank correlation: r=-0.75, P<0.001, 

and r=-0.68, P<0.001), while the proportion of Larentiinae significantly increased 

(r=0.82, P<0.001). A similar trend is visible for the number of species (Figure 17b), 

although the patterns are much less pronounced. Again, both the proportion of species 

representing Ennominae and Geometrinae decreased with increasing elevation 

(r=-0.45, P=0.02, and r=-0.62, P=0.001), while the proportion contributed by species 

representing Larentiinae increased (r=0.73, P<0.001). Apart from one site at 1820m 

where Larentiinae species dominated, Ennominae dominated the species spectra on all 

plots.  
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Figure 17 Subfamilies’ proportion for geometrid moths of each sampling plot, plotted 

for the number of individuals (a) and the number of species (b) 

3.3.2.  Elevational distribution ranges 

For carabids, the mean elevational range of the 17 species represented by more than 

25 individuals each in this samples was 984m (SD=207.4m). Nonetheless, many of 

the common species had a much more limited distribution range, with 8 out of 17 

species (47%) recorded over less than 1000m. Carabus aurocinctus, C. seishinensis 

Lapouge and C. vietinghoffi Adams were distributed over less than 700m. With one 
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exception (480m in Pterostichus sp.1 for the shortest altitudinal range), all abundant 

Pterostichus spp. had relatively wide elevational distribution ranges exceeding 1100m, 

with three Pt. spp. encountered along the entire transect. No significant correlation 

was found between the overall abundance and the elevational distribution range of the 

common carabid species (Figure 18a). When the average distribution range of all 

common ground beetle species occurring at 100m elevational bands was investigated, 

the average distribution range increased initially, but then decreased again at higher 

elevations. It must nonetheless be taken into account that the elevational gradient only 

covered the section from the mountain base to 2000m, and it can be speculated that 

many of the species commonly encountered in the undergrowth of the light birch 

forest also extend further upwards into the tundra vegetation of the mountain, where 

both structure and composition of the herbaceous vegetation is very similar. Under the 

assumption that the distribution range of all species occurring in the uppermost birch 

forest plots extends well into the tundra zone, there is a clear linear trend of increasing 

distribution ranges throughout the transect (Pearson correlation: r=0.95, p<0.001, 

Figure 18b).  

For geometrid moths, 46 species had more than 25 individuals in this sample and 

were hence treated as ‘common species’, with an average distribution range of 882m 

(SD=350m). A total of 21 out of the 46 species (45%) had the distribution range of 

less than 1000m. A weak positive relationship was observed between the abundance 

and the elevational range of common geometrid moths (Pearson correlation: r=0.45, 

p=0.002, Figure 18c). Again assuming an upwards extension of species occurring at 

the highest birch forest plots into the tundra zone, a highly significant positive linear 

trend was found between distribution range and an increase in elevation for geometrid 

moths (r=0.97, p<0.001, Figure 18d), reflecting the patterns observed in carabids.  
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Figure 18 Comparison of mean altitudinal distribution ranges (m) of common species plotted against the log-transformed species abundance for 

carabid (a) and geometrid (b), and against changes in elevation for carabid (c) and geometrid (d) (Assumption for (c) and (d): species occurring 

at the uppermost open birch forest plots extend on average 500m into the alpine tundra vegetation).
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3.3.3.  Abundance and diversity change with increasing elevation 

Fisher’s α and rarefied species numbers for the largest common sample size (n=47 for 

carabids and n=87 for geometrids) were strongly correlated for both carabids and 

geometrid moths (Pearson correlation: r=0.92, p<0.001 for carabids and r=0.95, 

p<0.001 for geometrid moth), confirming the robustness and similarity of information 

content of these diversity measures. Accordingly, only Fisher’s α was subsequently 

used to analyse the relationship between α-diversity and elevation. Along the entire 

elevational gradient, Fisher’s α for both carabids (r=-0.53, p=0.002, see Figure 19a) 

and geometrids (r=-0.74, p<0.001, Figure 19b) strongly decreased with increasing 

elevation. The decrease was also observed in the two most common subfamilies, 

Ennominae and Larentiinae (Pearson correlation, r=-0.68, P<0.001, and r=-0.63, 

P<0.001, respectively, see Figure 19c and d).   

The picture of activity abundance (number of individuals caught per sampling day) is 

different from α-diversity. Along the increasing elevation, the activity abundance of 

both ground beetles and geometrid moths increased significantly (,r=0.75, p<0.001, 

and r=0.52, p=0.008, see Figure 20) 
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Figure 19 Changes in Fisher’s α-diversity for carabids (a), geometrids (b), Ennominae (c) and Larentiinae (d) over an elevational gradient 

(MCBF: mixed coniferous and broad-leaved forest; KPF: Korean Pine Forest; MCF: mixed coniferous forest; SMCF: sub-alpine mixed 

coniferous forest; BF: birch forest).
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Figure 20 Changes in the activity abundance (number of individuals caught per 

sampling day) for carabids (a) and geometrids (b) with increasing elevation (MCBF: 

mixed coniferous and broad-leaved forest; KPF: Korean Pine Forest; MCF: mixed 

coniferous forest; SMCF: sub-alpine mixed coniferous forest; BF: birch forest) 

3.3.4.  Insects diversity in different forest types 

Results based on the species richness estimators indicate that the mean sampling 

completeness of carabids in the five habitats was 87%, with an overall estimated 

species richness of 54 species in entire study area. In particular, samples already 

represent more than 85% of the expected species richness in all forests except for 

SMCF, where they contained 70% of the expected species (see Appendix 1). The 

estimated species richness is highest in the SMCF, followed closely by MCBF 

assemblages. MCF and BF harbour a distinctly lower diversity, while species 

assemblages in the KPF contain the lowest estimated species number. These trends are 
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partly reflected in the rarefaction curves (Figure 21a), where MCF and BF species 

numbers appear to approach a species plateau, while no strong levelling off can be 

observed for MCBF and SMCF. Nonetheless, according to rarefaction results (n=771), 

MCBF is the most diverse forest type (27.7 spp.), while the remaining three forest 

types SMCF, BF and MCF all had similar rarefied species numbers (20.0-20.4 spp).  

The overall sampling completeness for geometrids was 84%, with an overall 

estimated 185 species occurring in the sampling area. Sampling completeness in all 

forests exceeded 80% with the exception of BF with 77% (Appendix 3). According to 

the estimators, species richness was highest in MCBF, followed by MCF, SMCF and 

BF. Trends again were clearly consistent with rarefaction curves (Figure 21b). 

Excluding KPF due to the small sample size, rarefaction for the maximum common 

sample size (n=1327) of the remaining forest types showed highest species richness in 

the low elevation MCBF (95.9 spp.) and then decreased with the increase in elevation 

(76 spp. in MCF, 59.3 spp. in SMCF and 51.7 spp. in BF).  
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Figure 21 Rarefaction curves for pooled samples of different habitat types for (a) 

carabids and (b) geometrids (MCBF: mixed coniferous and broad-leaved forest; KPF: 

Korean Pine Forest; MCF: mixed coniferous forest; SMCF: sub-alpine mixed 

coniferous forest; BF: birch forest). 
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3.3.5.  Species turnover 

In NMDS ordination plots based on the turnover patterns in carabid assemblages for 

both the minimum m=1 (Figure 22a) and the maximum shared sample size m=47 

(Figure 22b), plots at high elevations form a joined cluster. For m=1, this cluster 

contains the highest MCF as well as all SMCF and BF plots, whereas for larger 

sample sizes, there is a more distinct separation of the MCF plots from plots 

representing the other two forest types, while the overall cluster density also decreases. 

For the forest types at lower elevation, MCBF plots form a tight cluster, with KPF and 

lower elevation MCF plots located at intermediate positions. Overall, there appears to 

be a strong shift in the carabid species assemblages of MCF plots with increasing 

elevation, which can partly be related to the wide elevational range occupied by these 

forests. In all ordination plots, the 1st axis reflects primarily an increase in elevation 

(Pearson correlation: r=0.91 for m=1 and r=0.95 for m=47, p<0.001 in both cases). 

For geometrid moths, NMDS ordination plots showed distinctive clusters between 

different forest types for both minimum (m=1) and maximum shared sample size 

(m=87), with KPF assemblages appearing more distinct from other forest type 

assemblages than in carabids (Figure 22). For both ordination diagrams, the 1st axis 

was again strongly correlated with an increase in elevation (Pearson correlation: 

r=0.95 for m=1 and r=0.89 for m=87, with both p<0.001).  
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Figure 22 Non-metric two-dimensional scaling ordination plot based on the CNESS dissimilarity matrix between all sampling plots of carabids 

for a minimal sample size (m=1, stress=0.11) (a) and the maximum common sample size (m=47, stress=0.11) (b), and of geometrids for a 

minimal sample size (m=1, stress=0.12) (c) and the maximum common sample size (m=87, stress=0.11) (d) 
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3.4.  Discussion 

3.4.1.  Overall diversity and species composition of carabids and geometrids 

A total of 47 carabid species were observed, with estimated species richness for the 

entire study area of 54 species. This species richness in the Changbai Mountain 

forests is well within the range previously reported from China’s Northern and 

North-eastern mountain ranges (Axmacher et al. (2011); Jiang, 2006; Yu et al., 2006b). 

Along an elevational transect ranging from 500m to 1650m in Hebei Province which 

comprised forest, grassland and agricultural habitats, Axmacher et al. (2011) recorded 

a total of 59 species, while 43 species were recorded in the secondary and plantation 

forests on Ziwu Mountain in the Gansu Province between elevations of 1100m and 

1750m (Jiang, 2006). The species richness recorded in the Changbai Mountain area is 

also comparable with the species richness recorded from Chinese temperate forests in 

more southerly regions, with 46 species reported from Wolong Natural Reserve at 

elevations between 2200m and 2650m in Sichuan Province (Yu et al., 2006b), and 

from temperate forests in Europe, with 31 species recorded in the Başkonuş 

mountains in Turkey between 300m and 1780m (Avgın, 2006) and 21 species from 

the Eastern Carpathians between 910m and 1300m (Skalski et al., 2011).  

For geometrid moths, the total of 155 species in my sample is the highest species 

number recorded in the study area to date, with Liu et al. (2007a) reporting 97 species 

and 2092 individuals in the inventory of geometrid moth species in CNR, while Chen 

et al. (2007) recorded 136 species and 3000 individuals when studying the elevational 

distribution of geometrid moths in the CNR. Both of these two previous studies also 

covered the entire altitudinal gradient from MCBF at about 700m to the tundra zone 

up to 2600m.  

When compared with the results published by Chen (2007; Liu did not present a full 

species list), species similarity in sample composition is low. This is partly due to a 

large number of my morphospecies (70) that were not identified to species level. 

Nonetheless, the species number and also their exact identification will become 

clearer once results from DNA barcoding are reported back and fully analyzed. 

Another possible reason for the current low overlap in species names could be relating 

to the difference in sampling locations between our sampling sites and the associated 
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differences in environmental conditions. Nonetheless, the heterogeneity in the 

geometrid species composition also reflects an overall remarkably high geometrid 

diversity in the CNR. In addition, my records of species richness are also comparable 

with other studies in Northern and North-eastern mountain ranges in China. For 

example, studies recorded only 110 species based on 14692 individuals collected 

between 500m and 1650m in the Bashang Plateau of Heibei Province (Axmacher et 

al., 2011), and 187 species in 1950 specimens collected between 600m and 3450m in 

the Baishuijiang Nature Reserve of Gansu Province (Yang et al., 2010).  

As hypothesised, the composition of both carabid and geometrid assemblages varied 

strongly between different forest types. One mechanism to potentially explain the 

distinctive species composition of insects in different forest types would be that these 

two taxa are closely linked with changes in vegetation composition reflected by the 

forest types. Alternatively, the distinctive insect composition between different forests 

might reflect a simultaneous reaction in both insect taxa and the vegetation in 

response to the same environmental factors, precipitation and temperature. This would 

indicate that both carabids and geometrids are highly sensitive to climate change and 

might hence be suitable climate change indicator groups. In the subsequent Chapters 4 

and 5, I will test further whether changing α-diversity and composition of carabids 

and geometrids in the research area are driven by core environmental factors or 

changes in the vegetation.  

The observed decrease in Ennominae and increase in Larentiinae along the elevational 

gradient are consistent with other studies carried out in South America (Brehm, 2002) 

and Africa (Axmacher et al., 2004a). The increased proportion of Larentiinae with 

increased elevation reflects this subfamily’s good adaptation to cooler and wetter 

environmental conditions in comparison to other geometrid subfamilies (Brehm, 2002; 

Holloway, 1987). In this study, members of the Sterrhinae did not occur above 1100m, 

which is again somewhat mirrored in findings by Axmacher et al. (2004a) who 

reported that no Sterrhinae were present above 2600m on the afrotropical Mt 

Kilimanjaro. This result indicates that Sterrhinae are likely to be strongly sensitive to 

the changes in climatic conditions.  
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3.4.2.  α-diversity and species distribution with increasing elevation 

In support of the original hypothesis, Fisher’s α of both ground beetle and geometrid 

moth assemblages decreased with increasing elevation at CNR. The α-diversity 

pattern of ground beetles corresponded with the diversity changes observed for 

example by Greenslade (1968) in Scotland, although hump-shaped patterns with 

mid-elevation diversity peaks have also been regularly documented in studies from 

Europe’s temperate region (Schuldt & Assmann, 2011; Skalski et al., 2011). Decrease 

trends were also observed for previous studies of geometrid (Chen et al., 2007) and 

noctuid (Liu et al., 2007a) moth assemblages in CNR. Furthermore, results are also 

consistent with the trends observed in the vegetation communities in CNR that 

showed a general decrease in species richness with increasing elevation (Hao & Yang, 

2002). 

It could be assumed that these patterns are an effect of increasingly extreme climatic 

conditions and annual climatic variations experienced on Changbai Mountain with 

increasing elevation. The respective Harsh Environment Hypothesis is supported by 

the observed significant linear increase in species’ altitudinal ranges with increasing 

elevation. According to this hypothesis, species at high latitudes, but also high 

altitudes, experience harsh climatic conditions which require them to have broader 

overall tolerance ranges than species at low latitudes and altitudes, which in term also 

leads to wider distribution ranges with increasing elevation, and to a higher species 

richness at low altitudes (Rapoport, 1982; Stevens, 1989, 1992). This hypothesis is 

supported by the observed significant linear increase in species’ altitudinal ranges 

with increasing elevation. In addition, the decrease in net primary productivity in the 

forest ecosystems at Changbai Mountain with increasing elevation (Sun et al., 2004) 

could arguably further reinforce a diversity decline. 

The strong increase in carabids species’ abundance with increasing altitude has 

similarly been reported from tropical forests (Olson, 1994). In fact, for both 

geometrids and carabids, the higher activity abundance at higher elevations is chiefly 

as a result of very high abundances in a few dominant species that appear particularly 

well adapted to the conditions at higher altitudes, such as Hydriomena impluviata 

(Geometridae: Larentiinae) and Carabus aurocinctus (Carabidae). The decrease in 

α-diversity with increasing elevation further supports these trends. One possible 
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explanation for the increase in abundance but decrease in diversity along increasing 

elevation is the existence of evolutionary barriers due to lower temperature in higher 

elevation area leading to the presence of highly evolved successful high-elevation 

specialists, which due to lack of competition might occur at very high abundances. 

Lower temperature are also likely to reduce speciation rates (Rohde, 1992). For 

carabids, for example, the decrease in species and abundance of many warm-adapted 

species (and also other key predatory insect taxa such as ants (Olson, 1994)) results in 

a strong decrease in competition for prey, and could hence explain the strong increase 

of the few cold-adapted species.  

3.4.3.  Species composition and abundance-distribution relationships 

Many studies have reported a positive correlation between abundance and altitudinal 

distribution ranges of species (Bock, 1987; Gaston & Lawton, 1988; Gotelli & 

Simberloff, 1987; Pollard et al., 1995). The mechanism of this positive 

abundance-distribution relationship is that generalist species as species able to exploit 

a wider range of resources tend to become widespread and more abundant than 

specialists (Brown, 1984). The lack of this trend in this study is not necessarily 

surprising. In fact, positive abundance-distribution relationships are commonly 

observed when the difference between sampled habitats (reference habitats) and their 

surrounding are small, while a lack of clear positive trends can occur when 

between-habitat differences are more pronounced (Schoener, 1987; Thomas & 

Mallorie, 1985). If the reference habitat differs distinctly from its surrounding regions, 

species generalists are also unlikely successfully spreading to other areas (Gaston & 

Lawton, 1990). It hence will result in a high abundance of species gathering in a 

relatively small area, and eventually leads to a negative abundance-distribution 

relationship (Gaston & Lawton, 1990). A lack of significant correlations might hence 

relate to differences between the survey plots and their wider environment is at an 

intermediate level, id est reference habitats are neither sufficiently different from the 

wider region to result in a negative relationship, nor sufficiently similar to lead to a 

positive trend (Gaston & Lawton, 1990).  

The distinct zonation of the vegetation on Changbai Mountain (Bai et al., 2011; Chen 

et al., 1964; Sang & Bai, 2009; Xu et al., 2004; Zhao et al., 2004) is reflected in the 

occurrence of distinct insect assemblages. This is shown by the clear distinction of 
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plots in relation to their dominant species, which mirrors the strong turnover in 

dominant species between forest types, a trend which becomes less pronounced for 

the highest elevation plots.  

3.4.4.  Potential threats to insect diversity at CNR 

The similarity in both, beetle and moth assemblages, at the high elevation birch and 

conifer forest types may be surprising given the great dissimilarity in environmental 

conditions expected under these morphologically distinct different tree species. 

Nonetheless, a long-term vegetation study in this area (Bai et al., 2011) revealed that 

herbaceous plant species typically encountered in sub-alpine coniferous forests have 

increasingly started to colonize the birch forest above the current distribution limit of 

the coniferous forests in response to changing climatic conditions. The resulting 

increasing homogeneity in the ground vegetation could partly explain the similarity in 

insect assemblage compositions between these forest types.  

The composition of rare species for both ground beetles and geometrid moths in 

SMCF and BF was distinctly more dissimilar than that of common species, while it is 

also true that rare species are more specialized to their respective habitats. The 

shrinking extent of typical birch forest plant communities at the upper forest boundary 

and the increasing colonization of the undergrowth of these forests by plant species 

formerly restricted to conifer forests could therefore put rare, specialised birch forest 

insects under increasing pressure and might even lead to their eventual local 

extinction, although further research is needed to establish if these species also occur 

above the current forest distribution line in the alpine tundra vegetation of Changbai 

Mountain. In response to global warming, insect species are likely to move upwards 

on mountain ranges (Chen et al., 2009). For geometrids in this case, warm-adaptive 

species such as Ennominae and Sterrhinae can move to higher elevations and possibly 

increase their overall distribution range. For insects adapted to cooler conditions such 

as many members of the Larentiinae, however, it is likely that they get under 

increasing pressure due to the restricted height and negative relationship between area 

and elevation on mountains, which is a particularly serious concern for upper-most 

forest specialists. A further analysis of links between insect and vegetation diversity 

patterns under climate change at CNR will be presented in Chapter 5. 
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Apart from the threats beetles face at the upper forest boundary, for both ground 

beetles and geometrid moths, low-elevation communities may also be under pressure. 

These investigations have revealed that assemblages for both these taxa particularly at 

the mixed broad-leaved and conifer forests are highly diverse in comparison to 

communities at higher-elevation forest types. Nonetheless, Bai et al. (2011) reported 

that particularly the forest tree composition in these forests is becoming increasingly 

homogenized again as a result of changes in the climatic conditions over the last four 

decades.  Both beetles and geometrids have been likely going through the same 

pressure due to the same climate changes in the past decades.  

Results also highlight the faunal distinctiveness of the KPF in the diversity patterns of 

its insect assemblages, particularly with reference to geometrid moths. While this 

forest is already of high conservation concern due to the Korean pine, a species of 

high conservation value (Wu, 1980), the distinct composition of beetle and moth 

assemblages inhabiting these forests indicates that the entire habitat is special 

and—not least due to its extreme rareness—requires particular conservation attention. 

3.4.5.  Synthesis 

In general, the CNR area harbours a high diversity level of both carabid beetles and 

geometrid moths, which is comparable to other temperate forests in North China, as 

well as to forests in the temperate region of Europe. The α-diversity of both carabids 

and geometrids decreases significantly with an increase in elevation. This trend 

supports the Harsh Environment Hypothesis, which can also be used to explain the 

observed increase in species’ altitudinal range with increasing altitude. Distinctive 

changes in species composition was observed with increasing elevation for both 

carabids and geometrids, which indicates that these taxa are highly sensitive to 

climate change. The distinctive Korean pine-dominated forest, which was included in 

other forest types in previous studies, harboured a distinct insect composition that in 

my view will require specific conservation attention in the future. 
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Chapter 4.  Statistical models of the links between insect 
and plant diversity1 

Summary  

The “Resource Concentration Hypothesis” and the “Enemies Hypothesis” are two 

commonly mentioned hypotheses based on bottom-up and top-down control theories, 

respectively. These hypotheses have been analyzed using experiments and 

investigations of agricultural and grassland ecosystems, while evidence from more 

complex mature forest ecosystems is limited. In this chapter based on Changbai 

Mountain as study area, I investigated the relationship between the diversity of insects 

and the vegetation via the establishment of a series of statistical models. My results 

show that variables describing plant diversity were not commonly included in models 

predicting α-diversity patterns of carabids and geometrids. Elevation was the most 

important predictor of changes in both carabid abundance and α-diversity, as well as 

in the α-diversity of geometrid moths. This indicates that, along the entire elevational 

gradient, relationships observed between plant and insects diversity are mainly driven 

by the underlying changes in abiotic factors. Results from this chapter also highlight 

that traditional bottom-up and top-down control theories that are suitable in less 

species-rich ecosystems might play a less pronounced role in the complex mature 

temperate forest ecosystems in Northern China.  

4.1.  Introduction 

Bottom-up and top-down controls are two theoretical concepts of how biotic forces 

can determine the distribution of organisms in an ecosystem (Power, 1992; Rzanny et 

al., 2012). Accordingly, Root (1973) suggested two possible hypotheses to explain 

plant-arthropod interactions based on bottom-up and top-down actions, respectively: 

the “Resource Concentration Hypothesis” and the “Enemies Hypothesis”. According 

to the “Resource Concentration Hypothesis”, specialized herbivore abundance and 

diversity decrease with an increase in plant diversity. Higher plant diversity usually 

results in the decrease of host plant density and limits host-detection of herbivores, 

leading to a lower herbivore abundance (Root, 1973). If strong bottom-up effects 
                                                        
1 The main results were published in Zou et al. (2013a). In this paper, I was the main, lead author, 
did the analysis and wrote the main content.  
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affect a species assemblage, the abundance and diversity of generalist herbivores, but 

also of organisms at higher trophic ranks will be directly affected by plant species 

richness via the food chain (Scherber et al., 2010). An increase in plant diversity will 

howlever possible enhance net primary productivity (Hooper et al., 2005; Tilman et al., 

1996) (although this still is a controversial topic, see Chapter 1), which in turn 

provides more food resources for herbivorous arthropods, hence increasing the overall 

biomass of arthropod consumers (Borer et al., 2012; Hunter & Price, 1992).  

A positive association between phytodiversity and both diversity and abundance of 

herbivorous arthropods has been found in a variety of ecological experiments (Borer 

et al., 2012; Mulder et al., 1999; Scherber et al., 2010; Scherber et al., 2006), in 

low-diversity grassland (Pearson & Dyer, 2006; Perner et al., 2003; Siemann et al., 

1999) and in agriculture fields (Cook-Patton et al., 2011; Padmavathy & Poyyamoli, 

2011). Nonetheless, reports of negative relationships between plant diversity and the 

diversity of arthropod taxa are also common, backed again with results from 

experiments (Andow, 1991), grassland ecosystems (Unsicker et al., 2006; Wardle et 

al., 1999) and agricultural landscapes (Axmacher et al., 2011). In complex forest 

ecosystems, a number of studies report a positive feedback between the diversity of 

plants and herbivorous insects (Novotny et al., 2012; Schuldt et al., 2010; Sobek et al., 

2009a). Other studies nonetheless again report a lack of significant relationships 

(Axmacher et al., 2009; Hawkins & Porter, 2003) or even negative correlations 

(Axmacher et al., 2004b; Cuevas-Reyes et al., 2003).  

As arthropod consumers are known to be influenced by their natural enemies, it forms 

the key bias of top-down control effects (Hairston et al., 1960; Russell, 1989; Walker 

& Jones, 2003). The “Enemies Hypothesis” is one of the common top-down control 

theories which postulates that vegetation diversity can provide more refuges for 

predators and more stable prey resources for them (Root, 1973). Higher plant 

diversity can therefore enhance the effectiveness of catching and the feeding rate for 

predators (Root, 1973). Consequently, the hypothesis also predicts a positive 

relationship between plant diversity and both the diversity and abundance of predatory 

species (Jactel et al., 2005; Russell, 1989).  

For studies investigating links between the phytodiversity and the diversity and 

abundance of predatory arthropods, the Enemies Hypothesis has been supported by a 
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range of experimental studies (Haddad et al., 2011; Moreira et al., 2012; Scherber et 

al., 2010; Wenninger & Inouye, 2008) and by studies in agricultural (Cook-Patton et 

al., 2011; Varchola & Dunn, 1999) and grassland (Jonsson et al., 2009) ecosystems 

with relatively low phytodiversity levels. It is predicted that top-down control of 

herbivores by natural enemies would be more predominant in year-round growing 

ecosystem than in an annual one due not least to the more consistent prey availability 

(Andow, 1991; Risch et al., 1983). The associated positive link between plant 

diversity and the diversity and abundance of predatory arthropods is therefore 

predicted to be stronger in natural forest ecosystems in comparison to annual 

grassland and agriculture fields (Andow, 1991). Nonetheless, very little research has 

been conducted to date into these links in the world’s remaining mature forest 

ecosystems. The limited published data suggest that areas of high phytodiversity do 

not automatically support a high diversity in predatory arthropods (Schuldt et al., 

2011). The underlying patterns are not yet well-understood, and more studies into the 

links between the vegetation and predatory arthropod taxa in natural forest ecosystems 

are urgently needed (Dinnage et al., 2012; Zhang & Adams, 2011).  

The aim of this chapter is to use carabids and geometrid moths, with focus on carabids, 

as target groups to analyze the relationship between plant diversity and the diversity 

and abundance of species-rich arthropod taxa in CNR. The main objectives addressed 

in this chapter are 1) to test if positive links between ground beetle abundance and 

diversity and the diversity in plant species exist as predicted by the Enemies 

Hypothesis, 2) to test the whether the relationship between plant diversity and the 

diversity of geometrids moth is positive, and 3) to establish how environmental 

factors affect the observed links. 

4.2.  Sampling method and data analysis 

This chapter is again based on the plots located at the Changbaishan Natural Reserve 

(CNR). As indicated in Chapter 2, 33 plots between altitudes of 700m and 2000m 

were selected on the mountain. Each study plot had a size of 20×20m2 and was 

divided equally into four subplots. In the centre of each sub-plot, a pitfall trap was 

placed. A light trap was also placed in the middle of each 20×20m2 plot on 25 of the 

plots. For the recording of the vegetation, all trees and shrubs were recorded in each 

of the resulting 100m2 sub-plots. Herbaceous species were recorded at four plots of 
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1m2 that were randomly located within each of the sub-plots (see Figure 13). The 

number of individuals or % cover was recorded for each plant species in each layer. 

The breast height area was recorded for each tree specimen and the average height 

was recorded for each shrub and herb species. More details of vegetation survey and 

insect sampling method can be found in Chapter 2.  

Carabid activity abundance of each plot was calculated as the overall number of 

sampled individuals divided by the total sampling period in days, resulting in a mean 

daily sampling rate for each plot. As the abundance of moths caught from light traps is 

sensitive to different sampling conditions such as microclimatic conditions (Choi, 

2008; Intachat et al., 2001) and background illumination (Bowden & Church, 1973; 

McGeachie, 1989), and these conditions cannot be standardized, geometrid abundance 

data are considered unreliable for direct comparisons and were not included in the 

analysis. α-diversity of both carabids and geometrid was measured as Fisher’s α (see 

Appendix 1, equation 5). Shannon diversity (see Appendix 1, equation 4) of the 

vegetation was calculated individually for each plant layer based on the importance 

value (IV) of each plant species to avoid the bias from simple abundance-based 

calculations (Lamont et al., 1977; Sang & Bai, 2009). The IV contains three aspects 

reflecting the relative contributions of each plant species towards each layer: relative 

abundance (d), relative frequency (f) and relative dominance (h). The IV for ith species 

in jth sample plot is calculated according to Formula 1. 
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Formula 1 Importance value calculation, where d is the number of individuals, f is the 

number of subplots in which the species occurred, n is the total number of subplots in 

a sample plot (4 in this case), and h is the dbh for tree species and the height for shrub 

and herb species.  

Modelling of plant-insect relationships was based on multiple linear regressions 

(MLR), where carabid activity abundance, α-diversity of carabids and geometrids 

were used as response variables, respectively. A series of stepwise linear regression 
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analyses was performed to identify the most important independent variables. 

Stepwise regression was used with both forward selection for selection of variables 

contributing significantly (P = 0.05) towards the model and backward elimination to 

verify that variables made no significant contribution in the selection of new variables. 

Vegetation variables included the total number of plant species (PS), the Shannon 

diversity (H) for trees (TH), shrubs (SH) and herbs (HH), and the abundance density 

(D) for trees (TD), shrubs (SD) and herbs (HD), respectively. Modelling included all 

vegetation parameters as independent variables first and then added elevation as 

additional independent variable.  

To account for the substantial forest vegetation changes with changing elevation, 

Principal Components Analysis (PCA) based on the presence-absence data of plant 

species was used to establish the existence of distinct sample clusters representing a 

relatively homogeneous vegetation composition and re-ran the linear regression 

models separately for different clusters.  

All statistical analysis was carried out in R (R Development Core Team, 2011), using 

the packages ‘spaa’ (Zhang et al., 2010) to calculate the Shannon diversity index and 

‘vegan’ (Oksanen et al., 2012) to carry out the PCA and to calculate Fisher’s α values. 

4.3.  Results 

Total sampling results for carabids and geometrids are presented in Chapter 3. The 

overall average daily activity abundance of carabids for the entire study area was 1.83 

individuals per plot. Additionally, the 33 plots where plant surveys were conducted 

contained a total of 178 plant species belonging to 128 genera and 58 families. The 

tree layer was comprised of 32 species belonging to 20 genera and 12 families; the 

shrub layer contained 43 species of 28 genera and 15 families and the herb layer 

comprised 112 species representing 88 genera and 43 families.   
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Figure 23 α-diversity and number of plant species of each sampling plot for carabids (a and b) and geometrids (c and d) 
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4.3.1.  Insect-plant relationships  

Total number of plant species (PS) neither correlated with species richness and 

Fisher’s α-diversity of carabids nor geometrid moths (Pearson correlation: P>0.05, 

Figure 23). Stepwise regression entering all vegetation parameters produced two 

subsequent models predicting carabid activity abundance. The first model (adjusted 

R2=0.43, F1,31=24.6, P<0.001) included SH as significant negative (β=-0.93, P<0.001) 

predictor of carabid abundance, while the second model (adjusted R2=0.51, F2,30=17.3, 

P<0.001) additionally included HH as positively (β=0.43, P=0.02) affecting beetle 

abundance. The Akaike information criterion (AIC) slightly decreased from 79.4 to 

75.3 between the models (Table 3, Models 1 and 2). The model predicting carabid 

α-diversity included SH as main predictor (β=0.57, P=0.039), which in this case was 

positively correlated with Fisher’s α values. Overall, this model performed not good 

either (Table 3, Model 4, adjusted R2=0.10, F1,31=4.7, AIC=102.5). When elevation 

was entered as additional independent variable, MLR models for both, carabid activity 

abundance and α-diversity, only included this parameter as significant, with model fits 

markedly improved (AIC=71.7, adjusted R2=0.54, F1,31=39.1, beta=1.75, P<0.001 for 

beetle abundance, and AIC=96.3, adjusted R2=0.26, F1,31=12.1, beta=-1.45, P=0.002, 

for beetle α-diversity, Table 3 Models 3 and 5). Models therefore predict a linear 

increase in beetle abundance at a reduced diversity with increasing elevation. 

When predicting the α-diversity of geometrid moths by vegetation parameters, 

stepwise regression also produced two models. The first model contained TD as the 

only predictor, with a negative beta value indicating a negative relationship between 

tree density and moth diversity (Table 3, Model 6, AIC=138.4, adjusted R2=0.28, 

F1,23=10.5, beta=-0.04, P=0.004), while the second model included both TD 

(beta=-0.04, P=0.011) and HD (beta=-0.01, P=0.05) as negative predictors (Table 3, 

Model 7, AIC=135.9, adjusted R2=0.38, F1,23=8.2, P=0.002). When adding elevation 

as additional independent variable, elevation again was the only significant predictor, 

with models indicating a linear decrease of α-diversity of geometrids with increasing 

elevation (Table 3, Model 8, AIC=128.0, adjusted R2=0.53, F1,23=27.9, P<0.001).  
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Table 3 Stepwise linear regression models using carabid activity abundance and Fisher’s α-diversity of both, carabids and geometrids, as 

dependent variables, respectively, and using vegetation parameters as independent variables (Model 1, 2, 4, 6 and 7), as well as models 

additionally including elevation (km) (ASL) as independent variable (Model 3, 5 and 8). (SH: Shannon diversity for shrubs; HH: Shannon 

diversity for herbs; TD: tree density; HD: herb density; ASL: elevation) 

Dependent variable Model 
No. 

Adjusted 
R2 F Model 

P-value
Model 
AIC 

Selected 
independent 
variable(s) 

β 
Std. 

Error of 
β 

t P-value 

1 0.43 24.6  <0.001 79.4  SH -0.93 0.186 -4.96 <0.001 

SH -0.90 0.173 -5.17 <0.001 
2 0.51 17.3  <0.001 75.3  

HH 0.43  0.174 2.45 0.02 
Carabid abundance 

3 0.54 39.1  <0.001 71.7  ASL(km) 1.75  0.280 6.26 <0.001 

4 0.1 4.7  0.039 102.5  SH 0.57  0.265 2.16 0.039 
Carabid α-diversity 

5 0.26 12.1  0.002 96.3  ASL(km) -1.42 0.530 -3.48 0.002 

6 0.28 10.5  0.004 138.4  TD -0.04 0.013 -3.25 0.004 

TD -0.04 0.013 -2.78 0.011 
7 0.38 8.2  0.002 135.9  

HD -0.01 0.003 -2.08 0.05 
Geometrid α-diversity 

8 0.53 27.9  <0.001 128.0  ASL(km) -8.02 1.518 -5.28 <0.001 
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4.3.2.  Insect-plant relationship in the different vegetation types 

The ordination plot of the first two principle components (PCs) based on vegetation 

composition showed three distinctive clusters along the elevational gradient (Figure 

24). I therefore separated the plots into the respective clusters, which chiefly 

coincided with the different forest zones. Nonetheless, sub-alpine mixed coniferous 

forest and birch forest were combined into a highest forest area and three plots within 

the mixed broad-leaved and coniferous forest between 1000m and 1100m were 

included in the mixed coniferous forest cluster. Accordingly, for pitfall traps, 11 plots 

represented the low-elevation zone below 1000m, 9 plots were located in a 

mid-elevation zone between 1000m and 1500m, and the remaining 13 plots 

represented the high-elevation zone above 1500m. As light trapping was only 

conducted on 25 of the 33 plots, geometrid moth samples were split into 8 plots in the 

low-elevation zone, 9 in the mid-elevation zone and 8 in the high-elevation zone.  
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Figure 24 PCA ordination plot based on vegetation composition showing three 

distinct clusters (proportion variance explained for PC1=24% and for PC2=11%). 

Below 1000m in the mixed coniferous and broad-leaved forest zone, the first model 

using vegetation parameters as independent variables indicated that carabid activity 

abundance was negatively associated with TH (β=-1.67, P=0.002) (Table 4, Model 9, 

AIC=5.4, adjusted R2=0.62, F2,8=17.4, P=0.002), while the second model additionally 

included a positive relationship with SD (β=0.01, P=0.012), with a highly significant 
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overall model fit (Table 4, Model 10, AIC=-1.8, adjusted R2=0.82, F2,8=23.1, 

P<0.001). At the intermediate elevation forest area, only TD (β=0.002, P=0.011) was 

included in predicting carabid activity abundance (Table 4, Model 11, AIC=14.1, 

adjusted R2=0.57, F1,7=11.7, P=0.011). For the highest forest area, SH (β=-1.44, 

P<0.001) was the only independent variable included in the model (Table 4, Model 12, 

AIC=21.1, adjusted R2=0.73, F1,11=32.65, P<0.001).  

None of the vegetation diversity variables was significantly linked with carabid 

α-diversity in any of the three distinct elevation zones. Nonetheless, carabid 

α-diversity was linked to the vegetation density parameters SD (β=-0.06, P=0.021) in 

the low elevation zone (Table 4, Model 13, AIC=21.8, adjusted R2=0.40, F1,11=7.74, 

P=0.021) and TD (β=-0.004, P=0.041) at high elevations (Table 4, Model 14, 

AIC=22.4, adjusted R2=0.27, F1,11=5.4, P=0.041). Neither herb diversity nor herb 

density appears to be linked with either activity abundance or α-diversity of carabids 

at any of the three elevation zones. 

No vegetation variable was included in predicting α-diversity of geometrid moths at 

low and middle elevation zones. At the high elevation zone, TD was again the only 

predictor, being negatively correlated with geometrid diversity (Table 4, Model 15, 

AIC=34.5, adjusted R2=0.64, F1,6=10.8, P=0.017).  
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Table 4 Results of stepwise linear regressions for the three elevational zones using carabid activity abundance, carabid activity abundance, 
α-diversity of carabids and geometrids as dependent variables and vegetation parameters as independent variables (TH: Shannon diversity for 
trees; SH: Shannon diversity for shrubs: TD: the abundance density for trees; SD: the abundance density for shrubs; Low: low elevation zone of 
less than 1000m; Middle: intermediate elevation zone of 1000-1500m; High: high elevation zone of 1500-2000m) 

Dependent variable Elevation 
Zone 

Model 
No. 

Adjusted 
R2 F Model 

P-value
Model 
AIC 

Selected 
independent 
variable(s) 

β 
Std. 

Error of 
β 

t P-value 

9 0.62  17.4 0.002 5.4  TH -1.670 0.401 -4.17 0.002 

TH -1.236 0.310 -3.99 0.004 Low 
10 0.82  23.1 <0.001 -1.8  

SD 0.012 0.004 3.24 0.012 

Middle 11 0.57  11.7 0.011 14.1  TD 0.012 0.003 3.41 0.011 

Carabid abundance 

High 12 0.73  32.7 <0.001 21.1  SH -1.435 0.251 -5.71 <0.001 

Low 13 0.40  7.7 0.021 21.8  SD -0.058 0.021 -2.78 0.021 
Carabid α-diversity 

High 14 0.27  5.4 0.041 22.4  TD -0.004 0.157 -2.32 0.041 

Geometrid α-diversity High 15 0.64  10.8 0.017 34.5  TD -0.028 0.008 -3.28 0.017 
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4.4.  Discussion 

4.4.1.  Plant diversity and insect diversity 

Firstly, it is important to recognize that overall plant species richness did not act as a 

significant predictor of α-diversity in either of the two insect taxa; no plant diversity 

variable was included in predicting α-diversity of carabids and geometrids in 

separating vegetation types; and the only plant diversity variable, SH, which was 

included in predicting α-diversity of carabids for the entire area (Model 4), potentially 

reflects the same response in the diversity of plants and carabids to changing 

environmental conditions with increasing elevation. These results indicate that plant 

diversity poorly represents the diversity patterns of the species-rich arthropod 

assemblage in these forest ecosystems, adding further support to the caution urged for 

the use of plant-based biodiversity hotspots (Myers, 2003; Myers et al., 2000) in 

setting overall biodiversity conservation strategies (Axmacher et al., 2011).  

The results further underline that elevation is the predominant driver of changes in 

both, carabid abundance and α-diversity, as well as in the α-diversity of geometrid 

moths. Shifting in elevation mainly associates changes in temperature and 

precipitation, indicating that these factors are more important in influencing the 

diversity of carabids and geometrids than plant diversity per se, which is also 

consistent with findings for previous studies that similarly revealed a closer link of 

insect diversity patterns with abiotic environmental factors rather than the vegetation 

in a wide range of geographical scales and areas (Axmacher et al., 2009; Condon et al., 

2008; Hawkins & Porter, 2003; Rodríguez-Castañeda et al., 2010). Accordingly, it is 

believed that the observed relationships between vegetation variables and activity 

abundance of carabids and the α-diversity of both carabids and geometrids recorded 

for the entire elevational gradient are mainly driven by the underlying changes in 

abiotic factors. 
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4.4.2.  Plant diversity and insect abundance 

The observed, highly significant negative correlation between carabid activity 

abundance and the diversity of shrubs stands in direct contradiction to the Enemies 

Hypothesis, which predicts a positive relationship with carabid abundance. This 

observations also stands in contrast to many studies conducted in agricultural 

(Cook-Patton et al., 2011; Varchola & Dunn, 1999) and grassland ecosystems 

(Jonsson et al., 2009), which differ from my study site by their markedly lower 

overall phytodiversity. As species richness generally is higher in forests in comparison 

to most other terrestrial ecosystems, which results in a more complexity in food webs 

(Scherer-Lorenzen et al., 2005), traditional top-down control theories that are suitable 

in less species-rich ecosystems may overall be difficult to apply in forest ecosystem 

(Zhang & Adams, 2011).  

Similar to this study, Koricheva et al. (2000) also reported a negative relationship 

between plant diversity and activity abundance of predatory arthropods in a grassland 

ecosystem. One of the explanations they present for this negative trend was a 

reduction in predator activity density with an increase in herb density, but this trend 

was not supported by my investigations. My results however are consistent with 

observations by Schuldt et al. (2011) who observed that activity abundance of spiders 

was also reduced in areas with an increased woody plant diversity in a natural forest 

at Zhejiang Province. Schuldt et al. (2008) and Vehviläinen et al. (2008) state that the 

abundance of predatory species depends more strongly on the presence of specific tree 

species rather than on overall tree diversity. The lack of validity of the Enemies 

Hypothesis for complex forest ecosystems might therefore relate to the multifaceted 

interactions between specific plant species, their herbivores and the predatory insect 

assemblages inhabiting these ecosystems (Heil, 2008; Zhang & Adams, 2011). 

Carabids are also likely to have individual preferences for specific plant species and 

specific functional groups which provide suitable micro-climatic conditions, shelter or 

even direct food resources for carabids or their key prey (Vehviläinen et al., 2008). 
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Although the role of specific tree or shrub species and their functional groups were 

not investigated here, high woody plant diversity might potentially reflect a reduction 

in the overall dominance of specific, favourable species.  

Alternatively, Schuldt et al. (2011) also suggested that a high plant diversity can 

potentially support a higher density of herbivorous arthropods in natural forests, 

which might also result in a reduction of predators’ overall foraging time and hence 

their recorded activity density. Higher plant diversity and the associated assumed 

increase in the abundance of herbivores can furthermore provide an increase in food 

sources and niches for competing predatory arthropod taxa such as spiders and ants, 

increasing the overall competition levels for prey and consequently reducing the 

overall abundance of carabids. Unfortunately, due to the inconsistent sampling efforts 

among different sites for light traps in catching geometrids mentioned above, it was 

not possible to test the actual density of geometrids for comparison. A variety of 

studies have nonetheless reported positive links between plant diversity and the 

biomass of herbivorous and detrivorous arthropods (Cook-Patton et al., 2011; Dyer et 

al., 2010; Gámez-Virués et al., 2010; Novotny et al., 2012; Schuldt et al., 2010; Sobek 

et al., 2009a; Spehn et al., 2000). These studies can potentially provide evidences of 

Schuldt et al. (2011)’s suggestion that more food resources are available for predator 

arthropods in higher plant diversity communities.  

4.4.3.  Plant density and insect diversity 

Different mechanisms might explain the observed negative correlations between 

woody plant density and the α-diversity of carabid and geometrid communities at 

certain elevation zones. Many carabid species appear to prefer open-canopy areas in 

forests (Butterfield et al., 1995; Humphrey et al., 1999), where an increase in the 

woody plant density will hence likely result in the observed decrease of carabid 

diversity. For geometrid moths, where negative correlations between α-diversity and 

woody density were restricted to the high elevation zone with assemblages dominated 

by members of the Larentiinae, changes in the woody plant species composition 
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might be a key driver (Riihimäki et al., 2005; Unsicker et al., 2006). It can be 

speculated that the dense crown cover affects undergrowth plant diversity and hence 

indirectly reduces host species diversity (Thompson & Price, 1977) particularly for 

Larentiinae species at high elevational area. Woody plant density can furthermore be 

associated with the concentration of available nectar in the flowering plants forming 

the forest undergrowth, their nutritional quality as hosts and the local microclimate 

(Price et al., 1980), so that the relationship between vegetation and the diversity of the 

insect communities requires further investigations.  

4.4.4.  Plant density and insect abundance 

The reported positive relationship between carabid activity abundance and woody 

plant density at low and intermediate elevation forests potentially reflects a bottom-up 

effect: plots with a higher density in woody plants are likely to be more productive. 

High woody plant density can not only enhance shading and soil moisture levels and 

hence create favourable microhabitats for carabids and their larvae (Niemelä et al., 

1992), but also producing more leaf litter, which can in term improve soil fertility and 

increase food availability for carabids (Koivula et al., 1999; Magura et al., 2005).  

Finally, the results presented in this chapter showed that the density of herbaceous 

plants did not significantly influence carabid activity abundance nor their diversity, 

which stands in strong contrast to studies in grassland ecosystems that commonly 

record negative relationships between herbaceous plant density and carabid activity 

abundance (Greenslade, 1964; Melbourne, 1999; Thomas et al., 2006a). Pitfall traps 

have been widely used in surveys of ground-dwelling arthropods (Greenslade, 1964; 

Liu et al., 2012; Luff, 1975; Oliver & Beattie, 1996; Rainio & Niemelä, 2003; Spence 

& Niemelä, 1994) and can be considered as a standard method in ground beetle 

sampling (Rainio & Niemelä, 2003). Nonetheless, one of the main known pitfalls of 

pitfall trapping is the dependency of the sampling rate on both, the target population 

density and the individual specimen’s activity (Gotelli & Colwell, 2001; Greenslade, 

1964; Jansen & Metz, 1979; Mitchell, 1963). Factors affecting this activity need to be 



 

 115

taken into consideration when comparing pitfall samples, and it has commonly been 

suggested that vegetation density particularly of herbaceous species needs to be 

considered in the respective data interpretation (Melbourne, 1999; Thomas et al., 

2006a; Woodcock, 2005). The negative impact of this density in grassland ecosystems 

is believed to be due to a reduction in the ground beetle mobility caused directly by a 

dense herb layer (Melbourne, 1999; Thomas et al., 2006a). My results however 

strongly suggest that the density of this layer in the old-growth forests on Changbai 

Mountain is not high enough to significantly affect carabids’ movements, supporting 

the argument that the influence of the density in understory vegetation can be 

neglected when studying forest carabid assemblages (Schuldt et al., 2011). 

Nonetheless, controlled capture-recapture experiments would be needed to strengthen 

this argument. 

4.4.5.  Synthesis 

Overall, results in this chapter clearly indicate that, when studying the relationship 

between plant diversity and arthropods in forest ecosystems, neither predatory 

arthropod abundance and diversity patterns support traditional top-down control 

theories, nor does the herbivorous arthropod diversity support traditional bottom-up 

control theories. These hypotheses might be suitable for less species-rich ecosystems, 

only. To substantiate these conclusions and establish if these theories are generally 

unsuitable for high species-rich forest ecosystems, further, long-term monitoring of a 

wider range of predatory arthropod groups (e.g. spiders, ants and centipedes) and of 

further herbivorous insect taxa, with detailed monitoring techniques such as 

caterpillar collection and detailed leaf damage assessments. These should not only be 

conducted in temperate, but also in tropical and subtropical forests where the 

complexity of food-webs is even greater. Other temperate mature forests in Northeast 

China, such as Liangshui and Fenglin Natural Reserves in Heilongjiang Province, 

would nonetheless form ideal study areas to substantiate results from species-rich 

temperate forests. Studies in the last remaining highly diverse large mature temperate 
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forest ecosystems in NE China would also allow a better understanding of the 

complex inter-linkages between arthropod taxa at the same and across different 

trophic levels, with particular foci on the role of the woody plant species composition 

on predator arthropod distribution patterns and on the mechanisms governing 

responses of herbivorous arthropods to changes in plant diversity and species 

composition.  
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Chapter 5.  Implications of climate and vegetation change 

for spatial diversity patterns of insects 

Summary 

The lack of long-term monitoring of insect assemblages is a major challenge in 

predicting insect diversity changes in response to climate change. In Changbai 

Mountain, a series of vegetation surveys were conducted in 1963, and these surveys 

were repeated 43 years later in 2006. In this chapter, I investigated the relationship 

between plant species composition and the α-diversity of both carabids and 

geometrids as a basis to get a better understanding of the potential long-term 

α-diversity changes in the two insect taxa. Results from principal component analysis 

(PCA) identified a variety of plant families that were positively linked to the diversity 

of carabids and geometrids. Most of these plant families showed a decline in species 

richness since 1963. The analytical section of this chapter concludes with a basic 

model predicting the α-diversity of carabids and geometrids in relation to their 

temperature requirements since the 1960s, indicating a strong upward shift of insects 

in recent decades. Although this model is only basic, it still highlights the high 

potential risk of extinction for species specializing on the uppermost forest ecosystem.  

5.1.  Introduction 

Global climate change resulting in changes of temperature and precipitation has been 

proposed as a key factor affecting biodiversity and species distribution patterns (Beck 

et al., 2011; Hawkins et al., 2003; Rahbek et al., 2007; Sala et al., 2000). To 

understand long-term diversity and distribution pattern of insects on distinct mountain 

ranges has significant value, as this can form the basis of tailored management to 

address and potentially reverse any adverse affects on a site’s biodiversity and might 

allow an extrapolation of trends also for the future. A major challenge for both the 

exploration of past and prediction of future insect species changes in response to 
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climate change however is the lack of detailed historical data on insect diversity and 

distribution. Nonetheless, plant investigations are commonly conducted in China 

before the establishment of a natural reserve. A possible way to analysis the diversity 

changes in insect communities is therefore to establish the relationships between plant 

species composition and diversity and the diversity of insect taxa. Based on the 

detailed understanding of the plant-insect relationships gained in the process, the 

long-term changes in plant composition in combination with an understanding of 

relationships between insects and various climatic factors, it is possible to obtain 

strong indications of insect assemblages’ changes in response to climate change. 

Results from previous chapters have indicated that the link between insect alpha- 

diversity and the alpha-diversity of plants is overall weak. This does nonetheless not 

rule out that plant species composition may play an important role in determining 

insect diversity. This suggestion is supported by previous studies where insect-plant 

relationship often appear to be linked to specific plant species or functional groups 

(Jactel & Brockerhoff, 2007; Riihimäki et al., 2005; Schaffers et al., 2008; Unsicker et 

al., 2006; Vehviläinen et al., 2007, 2008; Wardle et al., 1999).  

It appears obvious that herbivores are determined by particular host plant species 

rather than overall plant diversity (Sobek et al., 2009b). Predatory insects are also 

likely to display preferences for specific plant species and groups which provide 

favourable micro-climatic conditions or shelter (Vehviläinen et al., 2008), while these 

plant species also benefit from the predatory insects by saving resources in pest 

defence (Heil et al., 1997). Areas with high plant diversity might therefore not provide 

the specific habitat structures predators are adapted to for example in relation to their 

foraging behaviour, leading to a decline in predatory insects’ predation efficiency 

(Riihimäki et al., 2005). Hence, abundance and diversity of predatory insects are also 

potentially more strongly influenced by specific plant species and functional groups 

rather than overall plant species richness (see reviews by Zhang & Adams, 2011).  

At the Changbai Natural Reserve (CNR), a group of scientists from the Institute of 
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Botany, Chinese Academy of Sciences (IB-CAS) conducted a series of vegetation 

surveys in 1963 (Chen et al., 1964). Vegetation surveys were re-conducted in 2006 at 

the identical plots, again by scientists from IB-CAS (Bai et al., 2011; Sang & Bai, 

2009) (see Chapter 2). These surveys were used as baseline to understand of how the 

vegetation composition changed during recent decades. The aim of this chapter is to 

provide some suggestions how insect assemblages have changed according to climate 

change, trying to explore how insect α-diversity relates to vegetation composition and 

environmental conditions; how these relationships differ between the trophic levels 

occupied by herbivorous geometrid moth and predominantly predatory ground beetles. 

Additionally, the chapter also aims to provide a general overview of shifts in 

vegetation composition between the two vegetation surveys of 1963 and 2006, and of 

how the long-term changes of climate and vegetation composition in CNR have 

therefore potentially affected the diversity and composition of these two insect taxa. 

The main hypotheses are that the vegetation composition is significantly linked with 

the diversity of insects, and that insects are generally expected to move to higher 

altitudes based on the predictions of the statistic model.  

5.2.  Sampling plots and data analysis 

All carabid data from the 33 plots and geometrid data from 25 plots in CNR were 

included as a basis for the investigations conducted here (see general results in 

Chapter 3). As indicated in Chapter 2, of the 33 plots, 27 were surveyed twice: in 

1963 by Chen et al. (1964) and in 2006 by Sang and Bai (2009). I selected 27 plots 

using plot descriptions, GPS locations and guidance from staff from CNR 

Management Centre who also participated in the vegetation survey in 2006. I added 6 

additional plots, forming a total of 33 sampling plots. This part formed a basis for the 

analysis of the insect-plant relationships. The 27 plots also surveyed in 1963 were 

used to investigate the long-term changes in the vegetation composition at CNR. All 

vegetation surveys were based on the same approach; detailed survey method can be 

found in Chapter 2.  
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Principal Components Analysis (PCA) was use to condense vegetation data into 

principal components (PCs) reflecting the main gradients in the changes of the 

vegetation composition. Two different sets of PCs were created: the first PCA was 

based on the number of species in individual plant families (family-based principal 

components, FPCs); the second PCA was based on the importance value (see Formula 

1, Chapter 4) for individual species (species-based principal components, SPCs). 

Fisher’s α was used to represent α-diversity of carabids and geometrids. To model and 

predict the α-diversity of carabids and geometrids, multiple linear regression (MLR) 

analyses was performed to select the most important independent variables which 

contributed significantly towards the explained variance (P<0.05). In the MLR, 

independent variables first include FPCs and SPCs, respectively, before elevation was 

entered as an additional variable.  

Redundancy analysis (RDA) was used to analyze insect species composition changes 

in relation to vegetation composition. Within RDA, stepwise regression was used 

entering plant principal components as independent variables, again differentiating 

between FPCs and SPCs. Stepwise regression was stopped based on the reduction of 

the Akaike information criterion (AIC) (Johnson & Omland, 2004; Pakeman & 

Stockan, 2013; Rushton et al., 2004). Meanwhile, whether individual selected 

predictor variable contributed significantly (P<0.05) towards the model in explaining 

insect diversity was also considered after the regression was stopped at a minimum 

AIC. If the AIC difference between a model entering all ‘significant’ variables and the 

model with minimum AIC was small (<1%), the former model was selected; 

otherwise, the minimum AIC model was selected as the final model.  

Nonmetric Multidimensional Scaling (NMDS) based on the ‘Jaccard’ (Appendix 1, 

equation 8) similarity indices for the number of species of each plant family was used 

to observe the species turn-over in the vegetation composition between the two survey 

times (1963 and 2006). To observe the overall climate change in CNR over the past 

50 years, climatic data from 1958 to 2006 was obtained from records of the Songjiang 
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meteorological station (at 720m asl) that is located on the northern section of the 

natural reserve. Finally, a series of linear models was established to predict the 

α-diversity changes of carabids and geometrids over time.  

5.3.  Results 

5.3.1.  Vegetation principal components 

The first PCA based on the number of species in each plant family generated a total of 

32 components (FPCs), with the 5 principle components (FPC1 – FPC5) individually 

explaining more than 5% of the total variance and representing an accumulated 76.5% 

of the original variance (Table 5) being used in subsequent analysis. Aceraceae, 

Saxifragaceae, Caprifoliaceae, Pinaceae, Rosaceae, Liliaceae, Ranunculaceae and 

Compositae all had high loading (absolute value >0.5) on these components (Table 5). 

The first component (FPC1), which already explained 37.1% of the total variance, 

was highly positively correlated with altitude (Pearson correlation: r=0.85, P<0.001). 

It was also positively correlated with herb species richness (r=0.38, P=0.031) and 

negatively with woody species richness (r=-0.66, P<0.001). FPC2 representing 14.5% 

of the explained variance was significantly correlated with total plant species richness 

(r=0.72, P<0.001), woody species richness (r=0.43, P=0.013) and herb density 

(r=-0.53, P=0.002). FPC3 (variance explained=12.5%) correlated with woody species 

richness (r=-0.51, P=0.002), total plant species richness (r=-0.57, P=0.001) and shrub 

density (r=0.47, P=0.008) (see Table 6). 
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Table 5 Loading of plant families on FPCs with eigenvalue proportions high than 5% 

(PCA based on the number of species in each plant families; vegetation data from 33 

plots of which 27 plots surveyed in 2006 and 6 in 2012), and number of species of 

each family observed from 2006 and 1963 from a total of 27 study plots (‘*’ refers to 

FPCs with absolute loading value higher than 0.5% for respective families; ‘**’ refers 

to cases where less species were observed in 2006 than 1963 for respective families). 

Plant Families FPC1 FPC2 FPC3 FPC4 FPC5 

Number 
of 

species 
(2006) 

Number 
of 

species 
(1963) 

Vitaceae -0.01  -0.03 -0.02 -0.02 -0.01 1 0 
Violaceae** 0.41  -0.12 -0.27 -0.04 -0.06 2 5 
Valerianaceae 0.27  0.03 -0.07 0.02 -0.05 1 1 
Urticaceae -0.22  0.38 0.15 -0.10 0.03 4 1 
Umbelliferae** -0.07  0.25 0.17 0.07 0.02 4 7 
Ulmaceae** -0.34  0.41 -0.02 -0.06 0.10 3 4 
Tiliaceae -0.31  0.00 -0.17 0.14 0.26 2 1 
Thelypteridaceae 0.26  -0.07 -0.13 -0.10 -0.06 2 2 
Sinopteridaceae -0.04  -0.02 -0.01 0.00 -0.01 1 0 
Saxifragaceae -1.11 * 0.86 * -0.22 -0.40 -0.19 8 8 
Salicaceae 0.02  -0.01 -0.12 0.06 -0.15 3 2 
Rubiaceae 0.07  0.40 -0.25 -0.02 0.17 3 3 
Rosaceae** 0.67 * 0.49 -0.41 -0.72 * 0.65 * 15 17 
Rhamnaceae -0.05  0.09 0.01 -0.06 0.08 1 1 
Ranunculaceae** 1.25 * 0.97 * -0.10 0.41 -0.23 15 18 
Pyrolaceae** 0.15  -0.09 0.00 0.09 -0.06 2 3 
Primulaceae** 0.02  -0.19 0.04 -0.05 0.00 1 2 
Polypodiaceae 0.03  -0.01 0.00 -0.01 -0.02 1 0 
Pinaceae 0.04  -0.61 * -1.14 * -0.10 -0.12 5 4 
Phrymaceae -0.09  -0.04 -0.06 0.09 0.05 1 1 
Papaveraceae -0.06  0.10 0.04 -0.02 0.01 1 1 
Oxalidaceae -0.22  -0.22 -0.26 0.04 0.06 1 1 
Osmundaceae -0.05  0.06 0.01 -0.08 -0.01 1 1 
Orchidaceae** 0.14  0.01 -0.09 -0.02 -0.04 1 3 
Onocleaceae? -0.06  0.10 0.04 -0.02 0.01 1 0 
Onocleaceae -0.06  0.10 0.04 -0.02 0.01 1 1 
Onagraceae 0.17  -0.25 -0.20 -0.17 -0.08 2 1 
Oleaceae -0.40  0.45 -0.02 -0.06 0.03 3 3 
Lycopodiaceae 0.14  -0.03 -0.07 -0.07 0.03 2 2 
Liliaceae** 1.08 * 0.22 -0.38 -0.26 0.18 9 14 
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Leguminosae** -0.04  0.08 0.00 -0.04 0.06 1 4 
Labiatae** -0.34  0.42 0.08 -0.01 0.01 3 4 
Juglandaceae -0.02  0.04 0.01 0.01 0.01 1 0 
Guttiferae? 0.07  0.03 -0.04 0.05 -0.04 1 0 
Grossulariaceae 0.15  0.16 -0.13 -0.02 -0.17 1 1 
Gramineae** 0.49  -0.04 0.17 -0.08 0.08 4 6 
Geraniaceae** 0.25  0.03 0.09 0.02 -0.05 1 2 
Fagaceae -0.16  0.17 0.06 -0.05 -0.11 1 1 
Ericaceae 0.27  -0.12 0.33 -0.20 0.19 3 2 
Equisetaceae -0.16  0.11 -0.01 -0.04 -0.15 2 2 
Dryopteridaceae 0.16  0.09 -0.06 -0.03 0.00 3 2 
Cyperaceae** -0.36  0.38 0.13 -0.25 -0.34 7 8 
Cupressaceae 0.01  -0.03 0.07 0.01 0.04 0 0 
Cruciferae -0.19  0.16 0.06 0.01 -0.14 1 1 
Compositae** 1.77 * 0.23 -0.42 0.25 -0.32 9 10 
Chenopodiaceae 0.03  0.00 0.07 0.03 -0.01 1 0 
Celastraceae -0.27  -0.05 -0.10 0.04 -0.02 2 2 
Caprifoliaceae -0.18  -0.28 -0.25 -0.78 * -0.62 * 8 7 
Campanulaceae 0.00  0.19 -0.05 0.10 0.01 1 1 
Boraginaceae** -0.07  0.42 -0.08 0.04 -0.12 2 3 
Betulaceae** 0.04  0.22 0.09 -0.06 -0.08 3 4 
Berberidaceae -0.20  0.09 -0.15 0.05 0.05 2 2 
Balsaminaceae -0.19  0.24 0.01 0.03 0.08 1 1 
Athyriaceae 0.03  0.03 -0.35 -0.07 0.15 3 3 
Asteraceae** 0.09  -0.05 0.13 0.00 -0.04 1 3 
Araliaceae -0.13  0.25 0.07 0.03 -0.19 1 1 
Araceae -0.08  0.10 0.02 -0.07 0.00 1 1 
Aceraceae -1.3 * 0.23 -1.03 * 0.55 * 0.08 8 7 
Aristolochiaceae - - - - - 0 1 
Asclepiadaceae - - - - - 0 1 
Caryophyllaceae - - - - - 0 2 
Chloranthaceae - - - - - 0 1 
Cupressaceae - - - - - 0 1 
Euphorbiaceae - - - - - 0 1 
Gentianaceae - - - - - 0 1 
Gracilariaceae - - - - - 0 1 
Paeoniaceae - - - - - 0 1 
Podophyllaceae - - - - - 0 1 
Polemoniaceae - - - - - 0 1 
Sapindacea - - - - - 0 1 
Thymelaeaceae - - - - - 0 1 
Proportion 
explained / total 
species number 

37.10% 14.50% 12.50% 7.20% 5.20% 169 199 
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The second PCA, which was based on the importance value of individual plant 

species, also generated 32 components (SPCs), of which the first 4 principle 

components (SPC1–SPC4) individually explaining more than 5% of the total original 

variance and jointly accounted for 68.9% of the total variance. Species with high 

loading (>0.1) were primarily from the plant families Aceraceae, Betulaceae, 

Oleaceae, Pinaceae, Caprifoliaceae, Ericaceae, Grossulariaceae and Gramineae (Table 

7). Trees and shrubs generally had higher loadings than herbaceous species. SPC1 

representing 32.1% of the total variance and was positively correlated with altitude 

(Pearson correlation: r=0.78, P<0.001), but negatively correlated with tree species 

richness (r=0.45, P=0.009), woody species richness (r=-0.70, P<0.001) and total plant 

species richness (r=0.39, P=0.024). This component was also positively correlated 

with vegetation density of the respective layers (see Table 6). The second component 

(SPC2) explained 18.2% and was correlated with altitude (r=-0.55, P<0.001), herb 

species richness (r=-0.42, P=0.017) and shrub density (r=0.42, P=0.019). SPC3, 

which explained 37.1% of the total variance, mainly correlated with overall plant 

species richness (r=-0.58, P<0.001) (see Table 6).  
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Table 6 Pearson correlations between vegetation principle components and altitude and plant diversity/density factors (*: 0.01<P≤0.05, **: 

0.001<P≤0.01, ***: P≤0.001).  

PCs Altitude (m) Tree species 
richness 

Shrub 
species 
richness 

Herb 
species 
richness 

Woody 
species 
richness 

Total plant 
species 
richness 

Tree density Shrub 
density 

Herb 
density 

FPC1 0.85*** -0.46** - 0.38* -0.66*** - - - - 
FPC2 - - 0.36* - 0.43* 0.72** - - -0.53** 
FPC3 - - - - -0.51** -0.57*** - 0.47** - 
FPC4 - - - - - - - - -0.60*** 
FPC5 - - - - - - - - - 
SPC1 0.78*** -0.45** - - -0.70*** -0.39* 0.36* 0.58*** 0.40* 
SPC2 -0.55*** - - -0.42* - - - 0.42* - 
SPC3 - - - - -0.37* -0.58*** - - - 
SPC4 - - - - - - - - 0.40* 
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Table 7 Loading of plant species on SPCs with eigenvalue proportions high than 5% 

(PCA based on the importance value of individual plant species; T: tree layer, S: shrub 

layer, H: herb layer); only species with absolute loading value higher than 0.1 were 

shown here 

Vegetation 
layer 

Family Species SPC1 SPC2 SPC3 SPC4

T Aceraceae Acer mono - 0.12  - - 
T Betulaceae Betula ermanii 0.87 - - - 
T Oleaceae Syringa reticulata - - -0.11  - 
T Pinaceae Larix gmelini - -0.15  - 0.21 
T Pinaceae Pinus koraiensis -0.21 0.23  0.18  - 
S Aceraceae Acer buergerianum - 0.10  0.25  -0.18 

S Betulaceae Corylus mandshurica - 0.11  -0.16  - 

S Caprifoliaceae Lonicera edulis - - 0.10  0.24 

S Caprifoliaceae Lonicera maximowiczii - - -0.11  - 

S Celastraceae Euonymus pauciflorus - - 0.14  - 

S Ericaceae 
Rhododendron 
chrysanthum 

0.60 - - - 

S Grossulariaceae Grossularia burejensis - -0.61  - -0.21 

S Pinaceae Abies nephrolepis - -0.26  0.18  - 
S Pinaceae Picea jezoensis - -0.26  - - 
S Rosaceae Rosa marretii - - - 0.13 
S Saxifragaceae Philadelphus schrenkii - - -0.10  - 

S Saxifragaceae Philadelphus tenuifolius - - -0.12  - 

H Boraginaceae 
Brachybotrys 
paridiformis 

- - -0.12  - 

H Gramineae 
Calamagrostis 
angustifolia 

0.19 - - - 

H Liliaceae Maianthemum dilatatum - - - 0.11 

H Onagraceae Circaea alpina - - 0.13  - 
H Oxalidaceae Oxalis acetosella -0.12 0.10  0.31  - 
- - Proportion explained  32.1% 18.2% 11.4% 6.9%
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5.3.2.  Models predicting insect α-diversity  

The MLR model based on a stepwise regression entering the plant family-based PCs 

only included FPC1. This PC was negatively correlated with the α-diversity of 

carabids (model AIC=99.1, adjusted R2=0.19, F1,31=8.6, β=-0.55, P=0.006). In 

predicting the α-diversity of geometrid moths, FPC1 (β=-2.55, P=0.001), FPC2 

(β=1.83, p=0.008) and FPC4 (β=1.45, P=0.03) were all included in the model 

(AIC=131.4, adjusted R2=0.50, F3,21=8.8, P<0.001).  

When SPCs were selected in the MLR, SPC2 was the only predictor included. This 

PC showed a weak positive correlation with the α-diversity of carabids (model 

AIC=104.6, adjusted R2=0.12, F1,31=2.5, β=0.39, P=0.026). Two MLR models were 

generated predicting the α-diversity of geometrid moths. The first model contained 

SPC1 as the only predictor. This PC was negatively correlated with the dependent 

variable (model AIC=138.8, adjusted R2=0.27, β=-6.7, F1,23=10.0, P=0.004). The 

second model (adjusted R2=0.44, F1,23=10.3, P=0.001) additionally included SPC2 as 

a positive (β=0.42, P=0.011) predictor, with the AIC reduced to 133.4.  

When calculating predictive models containing core environmental parameters, 

elevation alone was a better predictor for the α-diversity of both carabids and 

geometrids than any of the vegetation-based principal components. Both the 

α-diversity of carabids and geometrids decreased highly significantly with increasing 

elevation, with the trends being stronger in geometrids. The detailed model results for 

the correlations between elevation and insect alpha-diversity had already been shown 

and discussed in Chapter 4 (see Table 3, model 5 for carabids and model 8 for 

geometrids).  

5.3.3.  Insect species composition and vegetation  

The stepwise regression of the first RDA based on the species composition changes of 

carabids and entering family-based vegetation principle components (FPCs) as 
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independent variables resulted in 2 components (FPC1 and FPC3) that significantly 

contributed to the model (P<0.05) with an AIC of 254.9. The AIC was only slightly 

higher than the model that contained three components (FPC1, FPC2 and FPC3, AIC 

= 254.4). The first two axes generated in the RDA accounted for an overall explained 

variance of 52%. The first axis was highly correlated with FPC1 (Pearson correlation: 

r=0.89, P<0.001), while the second axis was significantly correlated with FPC3 

(Pearson correlation: r=0.63, P<0.001). Overall, FPC1 explained 46% of the original 

variance (F1,31=29.0, P=0.001), while FPC3 only explained an additional 6% 

(F1,30=3.8, P=0.002). Carabid species compositions at low elevational habitats (MCBF 

and KPF) formed a tight cluster, while species assemblages at higher elevation 

habitats did not group together (Figure 25a). Most of the 17 carabid species with more 

than 30 individuals in the samples were clustered towards the centre of the RDA plot, 

indicating that the distribution patterns of these species were not strongly influenced 

by plant compositions. Meanwhile, Carabus aurocinctus Motschulsky, Pterostichus 

comorus Jedlicka, Pterostichus sp.1 and Carabus venustus Morawitz were positively 

associated with increases in value of FPC1 (Figure 25b).   

Similar to the results from carabids, stepwise regression of RDA based on geometrid 

moth distribution patterns resulted in the same two components (FPC1 and FPC3) 

showing significant contributions (P<0.05) to the resulting model, with an AIC of 

242.3, which was also only very slightly larger than the AIC (241.6) for the model 

that included all five FPCs. The overall explanation of geometrid moth composition 

by these two components was 40%, where FPC1 contributed 26% (F1, 22=9.6, P=0.001) 

and FPC3 contributed 14% (F1,22=5.0, P=0.001) to the overall variance, respectively. 

In addition, FPC1 was also significantly correlated with the first Axis (Pearson 

correlation: R2=0.62, P=0.001), and FPC3 was significantly correlated with the 

second Axis (Pearson correlation: r=0.6, P=0.002). Geometrid moth assemblages at 

low elevational habitats were negatively associated with FPC1 (Figure 25c). Different 

forest types had strongly differentiated clusters, where KPF, MCF and SMCF were 

grouped adjacent to each other, while MCBF and BF communities appeared more 
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heterogeneous (Figure 25c). Most common species of geometrid moth represented by 

more than 50 individuals in the samples were also grouped in the centre of the RDA 

plot. Of the remaining common species that had relatively high loadings on the 

ordination axes, most were positioned in the middle between FPC1 and FPC3, such as 

Triphosa dubitata Linnaeus, Odontopera bidentata harutai Inoue, Xanthorhoe 

biriviata Borhauson, Venusia cambrica Curtis and Hydriomena impluviata Denis & 

Schiffermüller, indicating that those species were somewhat influenced by 

environmental parameters underlying both FPC1 and FPC3 (Figure 25d).  

Table 8 Species-abbreviations of carabids and geometrids for Figure 25 and Figure 26 

Taxa Species Abbreviations 
Carabus aurocinctus Motschulsky CarAur 
Pterostichus comorus Jedlicka PteCom 
Pterostichus sp PteSp 
Carabus venustus Morawitz CarVen 
Pterostichus adstrictus Eschscholtz PteAds 

Carabids 

Carabus seishinensis Lapouge CarSei 
Venusia cambrica Curtis VenCam 
Hydriomena impluviata Denis & Schiffermüller HydImp 
Abraxas suspecta Warren AbrSus 
Xanthorhoe sp XanSp 
Triphosa dubitata Linnaeus TriDub 
Heterothera serraria Lienig HetSer 
Odontopera bidentata Clerck OdoBid 
Alcis sp AlcSp 
Xanthorhoe biriviata Borhauson XanBir 

Geometrids 

Arichanna melanaria Butler AriMel 
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Figure 25 RDA ordination plots of the species distribution of ground beetles showing locations of study sites (a) and of common species (>30 

individuals, b), and of geometrid moths again indicating the location of study sites (c) and common species (>50 individuals, d) on the 

ordination plots, where independent variables were selected from the FPCs (species abbreviations can be found in Table 8) 
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The second RDA stepwise regression based on the plant species-based principle 

components (SPCs) as independent variables also resulted in 2 components (SPC1 

and SPC2) that significantly (P<0.05) contributed to the model. The AIC (249.9) of 

the finally selected model again was only slightly larger than the minimum AIC model 

(249.8) that contained three components (SPC1, SPC2 and SPC3). Thus, the model 

with two significant variables was selected. Again, two constrained axes were 

generated for the RDA ordination plot, where SPC1 (F1,30=14.4, P=0.001) and SPC2 

(F1,30=28.6, P=0.001) contributed 50% and 9% towards the original variance. Pattern 

of carabid assemblages were very similar to the model from the first RDA, with 

assemblages originating from low elevational forest habitats again forming one dense 

cluster, while plots from higher elevational habitats were more dispersive (Figure 26a). 

Most common species grouped in the middle, and those species strongly influenced 

by the two SPCs were the same mentioned already above in the FPC-based models 

(Figure 26b).  

In analysing species composition changes of geometrid moths, the overall diagram of 

the resulting second RDA using SPCs as independent variables was again similar to 

the RDA based on FPCs. Again, two significant components (SPC1 and SPC2) were 

included, with an overall explained variance of 40%, towards which SPC1 contributed 

36% and SPC2 only contributed 4%. The AIC (242.1) of this model was very similar 

to the minimum AIC (241.9) model that additionally included component SPC3 which 

nonetheless did not contribute significantly (P≥0.05) towards the explained variance. 

Sampling sites from low and middle ranges of the elevational gradient were again 

grouped together, while the higher elevation sites (BF) were more heterogeneous 

(Figure 26c). Common species of geometrids again strongly grouped in the middle of 

the ordination plots. For those species with relatively high loading on ordination axes, 

most were negatively associated with SPC2, but positively associated with SPC1 

(Figure 26d).  
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Figure 26 RDA of the species distribution of ground beetles focuses on study sites (a) and common species (>30 individuals, b), and geometrid 

moths focuses on study sites (c) and common species (>50 individuals, d), where independent variables were selected from the SPCs (species 

abbreviations can be found in Table 8) 
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5.3.4.  Long term vegetation composition changes 

In 1963, 199 plant species of 63 families were recorded on the 27 plots, and the same 

plots contained 169 plant species of 57 families in 2006. Seven of the 12 most 

species-rich families had fewer species observed in 2006 than 1963, with a total loss 

of 17 species. Number of plant species in the top 3 most species-rich plant families 

(Ranunculaceae, Rosaceae and Compositae) all had lower species numbers in the 

2006 surveys compared with the 1963 surveys (Table 5).  
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Figure 27 NMDS ordination plot based on ‘Jaccard’ similarity matrices of the 

comparison of vegetation family composition for different forest types (stress=0.09); 

symbols with the same shape refer to the same habitat, where white background refers 

to data from the past (P, surveyed in 1963) and grey background refers to current data 

(C, surveyed in 2006) (MCBF: mixed coniferous and broad-leaved forest; KPF: 

Korean Pine Forest; MCF: mixed coniferous forest; SMCF: sub-alpine mixed 

coniferous forest; BF: birch forest) 

Results from the NMDS based on the plant family composition showed a shift in 

species composition between 1963 and 2006. In particular, vegetation composition of 

the low elevational forest types mixed coniferous and broad-leaved forest (MCBF) 
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showed two distinctive, non-overlapping clusters for 1963 and 2006. The MCBF in 

1963 also showed a greater heterogeneity than in 2006, reflecting a reduction in the 

β-diversity within this forest. The middle elevational forest types, mixed coniferous 

forest (MCF) and sub-alpine mixed coniferous forest (SMCF), on the contrary, 

showed a lower variation in plant species composition in 1963 than in 2006. 

Furthermore, the species composition of high elevation birch forests appears to 

resemble SMCF more closely in 2006 than in 1963 (Figure 27). 

5.3.5.  Long-term Climate change and insect diversity predictions 

Long-term climatic data showed that annual mean temperature increased gradually 

over time since the 1950s (linear regression, R2=0.5, F1,47=47.2, β=0.035, P<0.001). 

No significant trend was observed for precipitation (Figure 28).  
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Figure 28 Changes in annual mean temperature and precipitation in CNR from 1958 

to 2006 measured at Songjiang meteorological station (data from China 

Meteorological Data Sharing Service System, 2007) 

Results from this chapter and Chapter 4 all indicated that elevation was the most 

significant factor in predicting α-diversity changes of both carabids and geometrids. 

Considering the main climatic factor correlated with elevation was temperature, a 
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basic model based solely on temperature change already allows a first prediction of 

the trends of α-diversity in carabids and geometrids over time and with the changing 

elevation. According to Figure 28, the predicted annual mean temperature at the 720m 

where Songjiang meteorological station is located was 2.12°C in 1963 and 3.81°C in 

2012. The predicted temperature change with increasing elevation was according to 

Bai et al. (2011)’s suggestion a decrease of 0.51°C with an increase of 100m in 

altitude. Hence, the temperature for year ‘i’ at altitude ‘j’ can be expressed by Formula 

2, while the annual predicted mean temperatures for 2012 and 1963 can be seen in 

Table 9.  
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Formula 2: Change of temperature with change of altitude, where ‘Ti,j’ is the predicted 

temperature for year ‘Yi’ and altitude ‘Hi’ (700m<Hi<2600m), ‘Hbase’ is the elevation 

of the reference area at 720m, ‘β1’ is the annual temperature changing rate 

(0.0345°C/year), ‘β2’ is the temperature change per unit altitude (-0.51°C/100m), and 

‘C’ is a constant based on the temperature-year regression (-65.6).  

In analyzing the relationship between elevation and α-diversity of carabids, using log 

transformed elevation as independent variable resulted in better model fits than using 

elevation directly, with the model AIC improved from 96.3 to 94.3, and with the 

adjusted R2 improving from 0.26 to 0.30 (P<0.001 in both cases). Predicted 

temperature in 2012 was used to establish the relationship between temperature and 

α-diversity of carabids (Formula 3).  
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Formula 3: Predicting α-diversity of carabids (Dcar,i,j) in year ‘Yi’ and altitude ‘Hi’, 

where βcar=-3.79 and Ccar=15.04. 

For predicting α-diversity of geometrids, log transformed elevation did not improve 
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the model fit; so that a direct linear regression model was established (Formula 4). 

[ ] geobasejigeoji CCHHYD ++−+= )(21,,geo βββ  

Formula 4: Predicting α-diversity of geometrids (Dgeo,i,j) in year ‘Yi’ and altitude ‘Hi’, 

where βgeo=1.57 and Cgeo=12.21. 

Consequently, an overall predicted α-diversity of carabids and geometrids in each 

sampling plot in 1963 and 2050 can be found in Table 9. According to the model, 

temperature increased by about 1.7°C between 1963 and 2006. The model predicts an 

overall increase in α-diversity of insects at the elevational gradient in response to 

warming. As only one climate variable (temperature) was included, this basic model 

reflects the strength of species responses to temperature shifts according to their 

temperature requirements.  
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Table 9 Predicted Fisher’s α-diversity for carabids and geometrids in 1963 and 2050 

(C.: carabid; G: Geometrid; α: Fisher’s α-diversity; Pre: predicted value; Obs: observed 

value) 

Pre. Obs. Pre. Obs. Pre. 
Plot 
No. 

Alt 
(m) 

2012 
Temp 
(°C)

1963 
Temp 
(°C) 

2050 
Temp 
(°C)

C. α
C. α 

(1963)
C. α 

(2050)
G. α

G. 
α(1963) 

G. 
α(2050)

P1 770 3.55 1.86  4.86 5.23 3.51 4.77 - 15.14  19.85 
P2 780 3.50 1.81  4.81 7.61 3.50 4.74 12.17 15.06  19.77 
P3 790 3.45 1.76  4.76 3.09 3.48 4.71 13.23 14.97  19.69 
P4 790 3.45 1.76  4.76 6.17 3.48 4.71 15.16 14.97  19.69 
P5 800 3.40 1.71  4.71 3.89 3.47 4.68 - 14.89  19.61 
P6 820 3.30 1.61  4.61 2.30 3.44 4.62 22.09 14.73  19.45 
P7 850 3.15 1.45  4.46 5.07 3.40 4.53 17.71 14.49  19.21 
P8 870 3.04 1.35  4.35 4.56 3.37 4.48 15.16 14.33  19.05 
P9 870 3.04 1.35  4.35 4.08 3.37 4.48 11.46 14.33  19.05 

P10 900 2.89 1.20  4.20 3.48 3.33 4.40 - 14.09  18.81 
P11 910 2.84 1.15  4.15 3.27 3.31 4.37 17.58 14.01  18.73 
P12 1040 2.18 0.49  3.49 2.78 3.15 4.07 13.62 12.97  17.69 
P13 1050 2.13 0.43  3.44 4.10 3.14 4.05 13.41 12.89  17.61 
P14 1060 2.07 0.38  3.39 3.02 3.13 4.03 15.03 12.81  17.53 
P15 1150 1.62 -0.08  2.93 4.43 3.02 3.86 14.62 12.09  16.81 
P16 1170 1.51 -0.18  2.82 4.15 3.00 3.82 14.82 11.93  16.65 
P17 1200 1.36 -0.33  2.67 3.50 2.97 3.77 13.45 11.69  16.41 
P18 1330 0.70 -0.99  2.01 2.57 2.83 3.55 7.64 10.65  15.36 
P19 1340 0.65 -1.04  1.96 3.23 2.82 3.54 6.07 10.57  15.28 
P20 1350 0.60 -1.10  1.91 3.53 2.81 3.52 7.83 10.49  15.20 
P21 1520 -0.27  -1.96  1.04 2.71 2.66 3.29 7.58 9.12  13.84 
P22 1600 -0.68  -2.37  0.63 2.82 2.59 3.18 9.70 8.48  13.20 
P23 1600 -0.68  -2.37  0.63 2.71 2.59 3.18 7.68 8.48  13.20 
P24 1620 -0.78  -2.47  0.53 2.82 2.57 3.16 11.47 8.32  13.04 
P25 1660 -0.99  -2.68  0.33 2.64 2.54 3.11 - 8.00  12.72 
P26 1730 -1.34  -3.03  -0.03 3.05 2.48 3.03 - 7.44  12.16 
P27 1740 -1.39  -3.08  -0.08 3.50 2.47 3.02 11.15 7.36  12.08 
P28 1750 -1.44  -3.14  -0.13 2.60 2.46 3.01 - 7.28  12.00 
P29 1820 -1.80  -3.49  -0.49 3.85 2.41 2.93 10.95 6.72  11.44 
P30 1950 -2.46  -4.16  -1.15 3.26 2.31 2.80 6.31 5.68  10.39 
P31 2000 -2.72  -4.41  -1.41 2.38 2.28 2.76 4.38 5.28  9.99  
P32 1990 -2.67  -4.36  -1.36 3.22 2.28 2.77 - 5.36  10.07 
P33 1960 -2.52  -4.21  -1.20 3.05 2.31 2.79 - 5.60  10.31 
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5.4.  Discussion 

5.4.1.  Vegetation composition and insect diversity 

The responses in α-diversity and species composition of geometrid moths and ground 

beetles in relation to plant species composition and environmental parameters were 

similar, while the response magnitude was different. In models predicting insects’ 

α-diversity based on the FPCs, both ground beetles and geometrid moths were 

negatively correlated with increases in FPC1. As Aceraceae, Saxifragaceae, Oleaceae, 

Cyperaceae and Ulmaceae all have high negative loadings on this component, the 

diversity of these families appears to be positively linked with the α-diversity of both 

insect taxa. In term of specific plant species, the positive correlation between SPC2 

and α-diversity of both taxa indicates that those species with positive loading seems to 

be positively associated with the α-diversity of carabids and geometrids. These 

species include Acer mono Maxim, A. buergerianum Miq, Corylus mandshurica 

Maxim.et Rupr, Pinus koraiensis Siebold et Zuccarini and Oxalis acetosella Linnaeus. 

P. koraiensis and O. acetosella also appear positively associated with insect diversity 

via their negative association with SPC1. 

As FPC1, SPC1 and SPC2 are however also highly correlated with elevation, it can be 

speculated that the relationship between the insect taxa and the aforementioned plant 

species and families are actually driven by their similar responses to changes in the 

same underlying abiotic factors such as temperature and precipitation, which are both 

significantly linked with changes in elevation. This assumption is strengthened when 

environmental parameter are added in the model, which resulted in elevation 

appearing as the best predictor, which has also been commonly reported by other 

studies (Axmacher et al., 2009; Brehm et al., 2007; Hawkins & Porter, 2003).  

FPC1 and SPC1 were also the most important factors in explaining the variance of 

species turnover of insect assemblages, while the interactions were again more likely 

caused by the changes in the same environmental factors that resulted from the 
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change in elevation. This finding is again in line with findings from Brehm et al. 

(2003a) and Rodríguez-Castañeda et al. (2010) in South America and from Axmacher 

et al. (2009) in Africa.  

The overall elevational trends of the α-diversity of both geometrids and carabids were 

very similar – a linear decrease with an increase in elevation; but with a stronger trend 

in geometrid moths than in carabids. A possible reason of this difference might be due 

to the difference in dispersal ability for the two groups. Regional species diversity is 

determined by the combination of species immigration and extinction rate, while 

species dispersal ability can obviously influence species immigration (MacArthur, 

1967). The higher dispersal ability of geometrids is an important factor potentially 

also determining the larger regional species richness in the moths in comparison to the 

ground beetles that are often unable to fly. Historically, in facing environmental 

fluctuations, geometrid species have better options to colonize other suitable habitat 

patches than ground beetles, resulting in more habitat generalists remaining in ground 

beetles as forest habitat specialists suffered when parts of the forests especially at 

lower elevations were logged (Shao et al., 1994). This pattern can also potentially 

explain that the species composition in different forests for ground beetles were less 

well distinguishable in comparison to geometrid moths.  

The link between α-diversity of geometrid moths and both family-based and 

species-based plant composition was stronger than in carabids, which probably 

reflects bottom-up effects (Halaj & Wise, 2001; Kagata & Ohgushi, 2006; Randlkofer 

et al., 2010; Rzanny et al., 2012). Accordingly, the change of climate and plant species 

composition over the past half-century can be expected to have had a stronger impact 

on the α-diversity of geometrid moths than on ground beetles. RDA results, however, 

showed that vegetation principle components can explain a greater proportion of the 

species compositions of carabids in comparison to geometrid moths. The observed 

trends have also been reported by Voigt et al. (2003) who reported that species at 

different tropic levels have differing sensitivity in response to changes of core 
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climatic factors, i.e. that species representing higher trophic level (here: carabids) 

have a higher sensitivity than species at lower trophic levels (here: geometrid moths). 

A possible explanation for this pattern is that carnivores are more active in their 

foraging and thus have higher metabolic rates than herbivores (Townsend & Hughes, 

1981), resulting in carnivore ground beetles being more sensitive to resource and 

environmental changes than geometrids. 

5.4.2.  Long-term vegetation change and insect diversity 

For the α-diversity of geometrid moths, the model results suggest positive links with 

the diversity of a number of plant families, including Ranunculaceae, Rosaceae, 

Compositae, Aceraceae and Saxifragaceae. Nonetheless, most of these families are 

not currently known to be important host plants for geometrid caterpillars, and the 

links between these plant families and the diversity of geometrid moth are therefore 

again likely to be due to the same response in moths and plants to environmental 

factors. Notwithstanding, these families could still be potentially used as indicators 

for the diversity of geometrids. Unfortunately, most of these plant families have 

decreased in species richness over the past half-century, indicating that geometrid 

moths may have also experienced decreases in diversity due to the climate changes 

occurring at CNR. In fact, apart from Ulmaceae and Betulaceae which lost one 

species from their local species pool according to the vegetation surveys, the 

remaining woody plant families are all still present, although partly with shifting 

abundances and distribution ranges. The main species loss for plants has occurred in 

the understory layer, as reported by Sang and Bai (2009). 

In relation to the more subtle changes in the vegetation, there are distinctive shifts in 

the family-based plant compositions particularly at the lower elevation habitats MCBF. 

This indicates that species composition of insect taxa particularly in geometrids is 

likely to have changed significantly in these forests, too. These changes are most 

likely due to long-term climate change and particularly due to the increase in 

temperature. Climate change also results in a reduction in environmental 
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heterogeneity at low elevation areas over time. Furthermore, as the undergrowth of 

the uppermost birch forest is becoming increasingly colonized by herbs previously 

restricted to the lower SMCF, it is likely that the respective moth species primarily 

restricted to the BF and its undergrowth will also come under increasing pressure (see 

also discussion in Chapter 3, and reports from Bai et al., 2011). The final model 

predicting α-diversity of carabids and geometrids reflects the pattern of species 

tracking temperature requirements and moving toward higher altitudes. The 

increasing temperature from 1963 to 2012 has as resulted in a theoretical upwards 

shift of temperature zones by about 400m, resulting in a high risk of extinction for 

species living in the uppermost forests. Meanwhile, the observed higher plant 

heterogeneity in 2006 compared with 1963 at middle elevations, which is probably 

partly due to human disturbances and especially the developing of roads with the 

development of tourism, could also pose further risks for insects. The increasing 

habitat heterogeneity resulting from forest fragmentations may prevent insects from 

successfully migrating to higher elevation habitats in the course of climate change 

(Noss, 2001).  

5.4.3.  Synthesis 

Overall, given that links between the diversity and composition of plants and carabids 

and geometrids were weak and partly indirect, the long-term vegetation composition 

changes in CNR can only provide a first indication of the diversity changes of the 

insects. In order to get a more detailed view of how insects respond to climate change, 

long-term detailed insect monitoring is required. To predict insect diversity pattern in 

response to climate change more precisely, additional factors such as precipitation 

need to be included. Climatic data from more than one meteorological station are 

essential for such an approach, which nonetheless proves very difficult to obtain for 

the study region.  
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Chapter 6.  Insect diversity patterns in secondary and 

plantation forests in central Northern China—a case study 

from Dongling Mountain, West Beijing 

Summary 

Secondary and plantation forests have become important components of the global 

forest cover, while it is unclear to what degree these forests contribute towards global 

biodiversity conservation. This question is particularly important for China, as China 

harbours the world’s largest plantation forests. This chapter focused on the diversity 

of ground beetles and geometrid moths in the Dongling Mountain (DLM) range in 

Beijing, which contains a range of different secondary and plantation forests. Results 

showed that the overall α-diversity was high in this area compared with other 

temperate forest ecosystems in northern China. α-diversity was not significantly 

different between some of the plantation and secondary forest types, while species 

composition, particularly for carabids, differed distinctively between forest types. In 

this chapter, I also calculated species indicator values for carabids and geometrids in 

different forests. Results suggested that carabids species composition performs better 

than single carabid species, while single species are better indicators than species 

composition for geometrids moths.  

6.1.  Introduction 

Harbouring the world’s largest plantation forests (Chinese State Forestry Bureau, 

2011; FAO, 2006), China’s large-scale afforestation and reforestation programmes 

have been criticized of lacking clear conservation and habitat restoration objectives 

and may hence result in biodiversity degradation (Cao et al., 2010b; Sayer et al., 2004; 

Xu, 2011). In north China, nearly all primary temperate forests have been destroyed, 

resulting in a widespread cover of secondary forests and forest plantations. 

Nonetheless, not least due to the marked regeneration of native forest vegetation in 
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the undergrowth of many forest plantations, logging beyond normal stand 

management has now been strictly banned even in most plantation forests (Wang et 

al., 2007), generating a number of extremely large-scale, well-protected plantation 

and secondary forest mosaics (Li, 2004). This development has been underpinned by 

a number of government programmes aimed at conserving reforestation and 

afforestation forests resources (see also Chapter 1).  

The forest of Dongling Mountain (DLM), located in the Taihang Mountains in 

north-western Beijing, represents a typical mosaic of secondary forest and forest 

plantation ecosystems. The restored secondary forests and plantations of larch and 

pine forests about 50 years of age in this area harbour overall high levels of 

phytodiversity and a more complex structure than many similar representatives of 

these forest types (Huang & Chen, 1994; Jiang et al., 1994; Ma et al., 1995; Sang, 

2004). Secondary and plantation forests are seen as instrumental in addressing a 

number of environmental issues like soil erosion and carbon sequestration. 

Nonetheless, their role in biodiversity conservation in DLM and elsewhere is widely 

unknown. 

In spite of extensive vegetation studies conducted in the DLM area (Huang & Chen, 

1994; Jiang et al., 1994; Liu et al., 2010a; Ma et al., 1995; Ren et al., 2006; Sang, 

2004; Su et al., 2000; Su & Sang, 2004; Wang et al., 2000; Zhang et al., 2012), very 

little attention has been given to the species-rich insect groups. Within their limited 

study, Yu et al. (2010) proposed a lower species richness of ground-dwelling beetles 

in plantation forests of native pine than in oak-dominated secondary forests. The aim 

of this Chapter is to provide a basic overview of the species diversity of carabids and 

geometrids in the different forest types in DLM, to compare the α-diversity and 

species composition amongst the forests and to identify indicator species associated 

with individual forest types. The main hypotheses are that the secondary forest types 

(oak, mixed and birch forest) harbour a higher α-diversity of both insect taxa than 

larch and pine plantation forests, and that each forest type contains a distinctive insect 
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species assemblage.  

6.2.  Sampling plots and data analysis  

In DLM, a total of 36 sampling plots were selected. Of these, 20 plots were located 

near the Beijing Forest Ecosystem Research Station (BFERS) at elevations between 

1100m and 1500m asl. At these plots pitfall trapping was carried out in the summers 

of 2011 and 2012, and light trapping in 2011. At the remaining 16 plots, pitfall 

trapping was limited to 2011 and did not yield enough specimens for further analysis 

(see also Chapter 2). The 20 main sampling plots were located at five distinct forest 

types with four plots each at plantation larch forest, plantation pine forests, secondary 

oak forests, mixed broad-leaf forests and birch forests. Each plot measured 20×20m2, 

and two pitfall traps were set two metres apart in the centre of the plot. Light traps 

were located at the very centre of each plot where the topography allowed for this. In 

cases where the topography of the plots prevented the setting of traps in the plot 

centre, the equipment was moved to more level areas within the plot.   

As the number of observed individuals sampled at individual plots was too small to 

calculate reliable α-diversity values (Hayek & Buzas, 2010) (11 plots for carabids and 

5 plots for geometrids with number of individual less than 50), data for all plots 

representing the same forest type hence were pooled. To compare the α-diversity of 

carabids and geometrids among different forests, individual-based rarefaction was 

used (see Chapter1, equation 1).  

The species indicator value (IndVal) (De Cáceres et al., 2010) was calculated to 

identify the most characteristic insect species of each forest type. This index is the 

combination of relative abundance and relative occurrence frequency of species in 

respective forest types (Formula 5), which has been widely used in identifying 

bioindicator species and taxa in ecology studies (Bachand et al., 2014; Brunet et al., 

2011; Ding et al., 2011; Franssen et al., 2011; Hartmann et al., 2012; Keith et al., 

2012; Schröder et al., 2013). The significance value of individual species was 
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evaluated by Monte Carlo tests.  
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Formula 5: Indicator Value ‘IndVali,j’ for species ‘j’ in site group ‘i’, where ‘Ni’ is the 

number of sites belonging to the ‘ith’ group, ‘ni’ is the number of sites in the ‘ith’ group 

where a species occurs, ‘a’ is the sum of abundance of the target species for all sites, 

and ‘ai’ is the sum of abundances of that species in ‘ith’ group  

CNESS dissimilarity matrices (see Appendix 1, equation 9) were subsequently ran 

among the different forest types. NMDS ordination was used to visualize the resulting 

turnover patterns. Understory vegetation species were used to analysis species 

composition of plants because the tree cover is partly planted and hence not a very 

good representation of the site-specific environmental conditions. The plant species 

composition was analyzed using NMDS based on “Jaccard-Index” (see Appendix 1, 

equation 8) similarity matrices calculated using presence/absence data for the 

understory plant species. Mantel tests were used to analyse the correlation between 

species turnover of the two insect taxa and the vegetation.  

CNESS results were calculated using the software COMPAH (Gallagher, 1998). All 

other calculations and statistics were computed in R (R Development Core Team, 

2011), using the package ‘indicspecies’ (Cáceres & Legendre, 2009) to calculate 

species indicator values, the package ‘vegan’ (Oksanen et al., 2012) to carry out the 

NMDS analysis and the package ‘permute’ (Simpson, 2012) to carry out Monte Carlo 

permutation tests.  

6.3.  Results  

In the main study area near the BFERS, vegetation surveys showed that the 20 study 

plots contained 24 mature tree species and 68 understory shrub and herb species. 

Pitfall traps caught 1488 ground beetles representing 24 species across the entire 
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DLM study area. As the additional area (see Chapter 2) was only sampled in 2011 and 

did not yield enough specimens for sufficient analysis, only samples from the main 

study area near the BFERS were used in the subsequent analysis. The 20 main 

sampling plots contained a total of 1191 carabid individuals representing 23 species 

(see Appendix 4). Among the five forests (pine, oak, mixed, larch and birch forests), 

the abundance of carabids was highest in birch forest where 413 individuals were 

sampled, followed by larch forests with 327 individuals, while the remaining three 

forests yielded very similar abundances of about 150 individuals, each. Pterostichus 

acutidens Fairmaire was the most abundant species for the main sampling area, 

accounting for 44.5% of all individuals caught. This species was dominant in mixed 

(57.0%), larch (63.6%) and birch (50.4%) forests, whereas the most dominant species 

in pine forest was Carabus crassesculptus Kraatz (40.7%) and Carabus vladimirskyi 

Dejean (42.0%) had the highest abundance in oak forest.  

A total of 2047 geometrid moths were sampled in the five forest types, of which 105 

specimens (5.1%) had to be discounted due to the substantial damage that obtained 

during sampling under very wet conditions, which prevented their secure 

identification. The remaining 1942 individuals were separated into 165 species 

representing the four families Ennominae (1309 individuals), Larentiinae (346 

individuals), Sterrhinae (199 individuals) and Geometrinae (88 individuals) 

(Appendix 5). Overall, Phanerothyris sinearia Guenée was the most common species, 

accounting for 11.1% (215 individuals) of the total specimens. This species was 

dominant in pine (11.4%), mixed (25.3%) and larch (9.6%) forests. Arichanna 

melanaria Butler was the most abundant species in the birch forest (11.2%), and 

Ctenognophos sp. contributed the highest abundance in the oak forest samples (9.3%).    

In term of all geometrid moths, automatic light traps recorded a total of 1238 

individuals representing 140 species, while manual light tower allowed the catching 

of an additional 740 individuals representing 116 species. Subfamily compositions of 

both number of individuals and number of species were very similar for the two 
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sampling techniques (Figure 29). Nonetheless, manual sampling yielded 25 species 

that were not recorded in the automatic sampling, while the light traps caught 49 

species not recorded in the manual samples. Manual sampling resulting in 18 

additional species in both larch and pine forest and 20 additional species in mixed 

forest, 10 in oak forest and 13 in birch forest when compared to the trap samples.  
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10%
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Figure 29 Subfamily composition for automatic sampling of number of individuals (a) 

and number of species (b) and for manual sampling of number of individuals (c) and 

number of species (d)  

6.3.1.  Comparison of α-diversity between different forests 

The number of carabid species sampled was highest in mixed forest with 17 species, 

while pine and oak forests contained a recorded species richness of 16 and 14 species, 

respectively. Larch and birch samples had the joint lowest species richness with 13 
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species Rarefied species numbers were significantly higher for mixed, oak and pine 

forests, with the naturally regenerated mixed forest harbouring the highest beetle 

diversity, followed closely by oak forests and subsequently the pine plantations. Larch 

and birch forests had significantly lower rarefied species richness than the 

aforementioned three forest types (Figure 30). 

 

Figure 30 Rarefaction curves of carabids in different forest types (shaded areas 

represent 95% confidence intervals) 

The sampled number of geometrid moth species was highest in pine forest (104 

species) and lowest in birch (69 species), with the other three forests accounting for 

very similar recorded species richness values (79, 80 and 81 species for oak, mixed 

and larch forests, respectively). Rarefaction curves showed that oak forest had the 

highest rarefied number of species followed by pine plantations with a slightly lower 

rarefied species number, while birch forest accounted for the lowest number, with 

Larch and mixed forests harbouring similar, intermediate numbers of rarefied species 
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(Figure 31). Overall, rarefaction curves were closely aligned, with only relatively 

small differences observed between the five curves.  

 

Figure 31 Rarefaction curves of geometrids in different forest types (shaded areas 

represent 95% confidence intervals) 

6.3.2.  Indicator species 

No carabid species was found to be a good indicator of any single forest type. 

Harpalus laevipes Zetterstedt and Carabus canaliculatus Adams were good indicators 

for the combination of larch and birch forests, while C. vladimirskyii Dejean and C. 

sui Imura & Zhou were characteristic for both pine and oak forest (see Table 10). Ten 

geometrid moth species were characteristic of single forest types, with seven of these 

being indicators of pine forest (see Table 10), and Horisme tersata Denis et 

Schiffermüller was a good indicator species for the two plantation forests, stocked 

with either larch or pine.  
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Table 10 Significant indicator species for ground beetles and geometrid moths 

Indicator species Forest IndVal P 

Ground beetles     
Harpalus laevipes Larch+Birch 0.844 0.011 
Carabus canaliculatus Larch+Birch 0.824 0.025 
Carabus vladimirskyi Pine+Oak 0.973 0.001 
Carabus sui Pine+Oak 0.791 0.045 
Pseudotaphoxnus 
mongolicus Pine+Oak+Birch 0.904 0.049 

Pterostichus acutidens  Larch+Pine+Oak+Brich 0.994 0.011 
    
Geometrid Moths    
Larentiinae sp.4 Larch 0.853 0.011 
Comibaena nigromacularia Mixed 0.866 0.02 
Selenia sordidaria Mixed 0.816 0.002 
Xenortholitha propinguata Pine 0.941 0.014 
Naxa seriaria Pine 0.866 0.019 
Thetidia albocostaria Pine 0.866 0.011 
Larentiinae sp.2 Pine 0.866 0.006 
Larentiinae sp.1 Pine 0.853 0.013 
Plagodis pulveraria  Pine 0.804 0.033 
Ennominae sp.5 Pine 0.802 0.046 
Horisme tersata Larch+Pine 0.819 0.047 
Arichanna melanaria Pine+Birch 0.985 0.001 
Lomaspilis marginata Pine+Birch 0.791 0.033 
Scopula sp. Pine+Mixed 0.894 0.007 
Iotaphora admirabilis Pine+Oak 0.886 0.006 
Larentiinae sp.10 Larch+Pine+Oak 0.816 0.045 
Epholca auratilis Larch+Mixed+Oak+Birch 0.967 0.036 
Phanerothyris sinearia Larch+Pine+Mixed+Oak 0.995 0.005 

6.3.3.  Insect species turnover rates  

The NMDS ordination plots based on the CNESS dissimilarity matrices showed that, 

for dominant ground beetle species (minimum shared sample size, m=1), pine and oak 

forest harboured distinct communities from other forest types, whereas other sites 

formed one cluster, with two outliers representing mixed forest habitats. This pattern 

was slightly different for rare species, where pine and oak forests still reflected 
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distinct species compositions, but the other forest types were also more notably 

differentiated by their species composition. Overall, oak, pine and mixed forests 

showed a greater β-diversity in both dominant and rare species of carabids than birch 

and larch forest (see Figure 32). The picture was pronouncedly different for geometrid 

moths, where birch forests showed the greatest dissimilarity in species composition, 

with the other forest types forming a relatively close cluster. Plots showed a similar 

pattern for both common and rare species, with overall differentiation according to 

forest types being much weaker than in ground beetles (Figure 32 c, d).  
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Figure 32 NMDS ordination plots based on the CNESS dissimilarity matrix between all sampling plots of carabids for sample size m=1 (a, 

stress=0.1) m=23 (b, stress=0.14), and of geometrids for sample size m=1 (c, stress=0.13) and m=29 (d, stress=0.18) 
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6.3.4.  Species composition of plants  

Two dimensional scaling based on the “Jaccard” similarity for incidence data of the 

understory plant layer composition showed that there was no distinctive cluster for 

any of the five habitats. Oak forests harboured the most distinct assemblages, but also 

contained one outlier (Figure 33). Mantel tests showed that the CNESS matrix of 

carabids emphasizing the most common species (m=1) was significantly correlated 

with the matrix of understory plants (r=0.32, P=0.003). No correlation was observed 

between species composition of common geometrid species and the undergrowth 

vegetation layer. When focusing on rare species (m=23 for carabids and m=29 for 

geometrids), neither carabids nor geometrids was correlated with undergrowth 

vegetation layer.  
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Figure 33 NMDS ordination plots based on ‘Jaccard’ index for understory layer 

(stress=0.11). 

6.4.  Discussion 

6.4.1.  Overall number of species on Donling Mountain 

Based on previous studies, a total of 23 carabid species caught in the study area is a 

high number recorded. In a previous study, Yu et al. (2010) discovered 19 species of 
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carabids in their study area near BFERS in DLM; another study by the same group 

later reported 17 carabid species (Yu et al., 2014) from that area. Additionally, Yu et al. 

(2002) also sampled 10 species in the genus Carabus in DLM between 1000m and 

2300m.. In comparison, I only recorded 7 Carabus species, with 6 of these being the 

same species already found by Yu et al. (2002). One of the missing species in my 

sample, Carabus brandti Faldermann, was actually found in the sample sites outside 

my main study area. Carabus granulatus Linne and one unidentified morpho-species 

were rare in Yu et al. (2002)’s sample and therefore will most likely have been missed 

in my sampling. Similarly, species only represented by very few individuals in my 

sample, such as Carabus kruberi Fischer, could easily have been missed by Yu et al. 

(2002)’s sampling. The only common species missing from my samples is Carabus 

sculptipennis Chaudoir, of which Yu et al. (2002) reported 84 individuals in sampling 

sites near BFERS. As species sorting and identification for both of our studies were 

carried out by the IZ-CAS, the lack of this species in my samples is unlikely due to 

misidentification. A possible reason is due to the seasonal variation, as Yu et al. 

(2002)’s sampling was carried out from April to October, while mine was restricted to 

the period from June to September. Unfortunately, very little information is available 

for the ecological status of Carabus sculptipennis. Another possible cause for this 

species to lack from my samples is that I used saturated salt-water as killing agent, 

while Yu et al. (2002) used a mixture of vinegar, sugar, alcohol and water as trapping 

fluid (see Yu et al., 2006b), and Carabus sculptipennis might be specifically attracted 

to this latter mixture. The above two reasons can also potentially explain the lack of 

other missing species in comparison to Yu et al.’s studies (e.g. Yu et al., 2002, 2010, 

2014) in this area. Finally, as Yu et al. (2002)’s sampling was conducted in 1998-2000, 

differences could also be related to environmental change or other factors leading to 

an overall change in the local species pool over the last 12 years.  

To the best of my knowledge, my study represents the first occasion that an extensive 

study of geometrid moths is conducted in DLM. The recorded 165 species is a 

substantial number, which is even higher than my records from Changbai Mountain of 
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155 species despite the substantially smaller study area and lack of strong altitudinal 

variations between plots at DLM (see Chapter 3). This number of geometrid moths is 

also relatively high when compared with other studies of plantation and secondary 

forests in northern China. A total of 75 species from 1000 specimens were recorded in 

secondary forests in the Ziwu mountains, Gansu province (Jiang & Zhang, 2001), and 

110 species based on 14,692 individuals were collected in plantation forests and 

agricultural fields on the Bashang Plateau of Heibei Province (Axmacher et al., 2011, 

see discussion in Chapter 3). Additionally, results also indicated that manual 

collection will add a number of species that are otherwise missed by automatic light 

trapping, rendering manual sampling a very good complementary approach to 

automatic light traps (see also Axmacher & Fiedler, 2004; Brehm & Axmacher, 2006). 

6.4.2.  α-diversity and species composition for different forests 

The general α-diversity levels of both carabids and geometrids were similar for native 

oak forest and pine plantation forest. It contrasts Yu et al. (2010)’s suggestion that 

plantation forests of native pine support fewer ground-dwelling beetle species than 

secondary oak forest. This outcome also contrasts studies from other temperate 

regions such as North America and Europe, where a higher α-diversity of carabids has 

been recorded in native forest types in comparison to conifer plantations (Elek et al., 

2001; Fahy & Gormally, 1998; Finch, 2005; Magura et al., 2003). The slightly lower 

diversity of carabids in larch than pine plantation may partly be attributable to a 

higher density of ground cover in this latter forest (Warren-Thomas, 2011), as higher 

density of ground cover can potentially reduces the activity of forest specialist carabid 

species (Niemelä et al., 1996; Niemelä et al., 1992). Nevertheless, rarefaction of the 

samples showed a similar number of geometrids species occurring in these two 

plantation forests when standardized for sample size.  

The observed significant differences in carabid assemblage composition between 

plantation and secondary forests are consistent with the study by Maeto and Sato 

(2004) in the temperate region of Japan. These authors reported that the species 
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composition of ants allowed a clear differentiation between plantation and secondary 

forests. This also resonates with previous studies (Magura et al., 2003; Magura et al., 

2000; Ohsawa, 2004; Yu et al., 2006a, 2010) reporting that conifer plantations support 

an altered species composition and distribution of beetles compared to native 

broad-leaved forests. In contrast to carabids, differences in species composition of 

geometrid moths for both rare and dominant species between mainly secondary (oak 

and mixed) forests and plantation (larch and pine) forests were very limited. This 

possibly relates to the fact of geometrid moths have a higher mobility than carabids, 

resulting in geometrids moving more commonly across the finely grained mosaic of 

different forest types and hence showing a lower dissimilarity in the species 

composition. This pattern can also partly explain the significant correlation between 

β-diversity of carabids and vegetation, but not for geometrid moths. The difference in 

species composition pattern between the two investigated insect groups also 

highlights their varying associations with vegetation and environmental conditions 

(Axmacher et al., 2011).   

Although the study area comprises a distinctive forest mosaic (Ma et al., 1995), 

species compositions in the understory layer were not very heterogeneous. The 

differences in carabid assemblages between different forest types within the forest 

mosaic indicates that carabid species composition can indicate habitat fragmentation, 

whereas single carabid species may perform poorly in doing so. In contrast, geometrid 

species appear to contain good indicator species for different habitat type(s) within a 

relatively small geographical area, while overall species composition performs poorly 

in differentiating between different habitats. The difference between carabid and 

geometrid assemblages in their responses to habitat mosaics may result from the 

difference of their feeding guilds. Although the food sources of many geometrid 

species are not yet clearly established, selected indicator geometrids are likely 

depending on specific host plant species or small host plant groups, while predatory 

carabids are more likely to be more indirectly affected via the different micro-climatic 

conditions at different forest habitats (Rykken et al., 1997). My results suggest that 



 

 157

different arthropod taxa have a distinctly varying suitability to be used as bioindicator 

in forest management practices (Maleque et al., 2009).   

6.4.3.  Synthesis  

Overall, all sampling plots were contained in a relatively small area in this study. The 

high α-diversity of carabids and geometrids in this study suggest that DLM harbours a 

high insect biodiversity that needs to be more widely recognized. My results also 

indicate that in DLM, old age conifer plantation forests can harbour insect diversity 

levels similar to secondary oak forests of similar age. These plantation forests 

therefore have a high biodiversity conservation importance. Nonetheless, the low 

distinctiveness in the species composition of geometrid moths between different forest 

habitats indicates that some species might acutally have migrated in from 

neighbouring forest types. For a comprehensive comparison of the diversity between 

secondary and plantation forests, studies in a wider geographical area are required. 



 

 158

Chapter 7.  Comparison of insect diversity patterns in 

mature, secondary and plantation forests in temperate 

North China 

Summary 

Results from Chapter 6 showed that plantation forests harboured similar levels of 

α-diversity to secondary forests in Dongling Mountain. The vicinity of different forest 

mosaics in DLM may however have affected the results due to edge effects. This 

chapter investigated three wider geographical areas in the temperate region of 

northern China: Changbaishan Natural Reserve (CNR), Dongling Mountain (DLM) 

and Bashang Plateau (BSP), where sampling plots representing primary forest, 

secondary forest and plantation forest habitats were selected, respectively. The chapter 

focused on a comparison of α- and β-diversity of the three core study taxa; understory 

plants, ground beetles and geometrid moths. Results showed that the α-diversity of 

understory plants and carabid beetles was highest at BSP and lowest at DLM; while 

α-diversity for geometrids peaked at DLM and was lowest at BSP. For β-diversity, 

CNR showed the lowest dissimilarity values in species composition for all three taxa. 

Results therefore suggested that in temperate areas in northern China, the wide range 

of protected larch plantation forests potentially play a considerable role in biodiversity 

conservation in relation to understory plants and ground-dwelling arthropods. 

Nonetheless, specific attention still needs to be paid to the last remaining primary 

forests like the ones encountered at CNR.  

7.1.  Introduction 

In Chapter 6, I have established that plantation forests in Dongling Mountain (DLM) 

harboured similar levels of α-diversity to secondary forest. One potential problem of 

this comparison is nonetheless the relative vicinity of the different forest types 

(Carnus et al., 2006; Chazdon et al., 2009), as transient species particularly in mobile 
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geometrid moths may be infrequently recorded amongst each forest types (Barlow et 

al., 2007b). It is often difficult to avoid the impact of edge effects in diversity studies 

based in finely grained forest mosaics (Lopez-Barrera et al., 2005; Pardini et al., 2009) 

such as DLM. To enhance the general understanding of the role plantation and 

secondary forests play in biodiversity conservation, an additional comparison between 

mature, plantation and secondary forest sites from a wider geographical area will have 

great significance.  

Chapter 3 already provided baseline information on the diversity of carabids and 

geometrids in a primary forest in northeast China—Changbaishan Natural Reserve 

(CNR), while Chapter 6 provided a basic overview of the diversity status of these two 

taxa in a major secondary forest region with some plantation elements in forests near 

Beijing (DLM). Large scale pure plantation forests have been planted in large areas of 

neighbouring Hebei province including the mountains between Beijing and the Inner 

Mongolian Plateau, where both carabids and geometrids have been studied by staff 

from UCL and the China Agricultural University on the Bashang Plateau (BSP) 

Mountains (see Chapter 2). A comparison of these three study regions which chiefly 

represent pristine, secondary and plantation forests can therefore allow valuable new 

insights into the larger-scale importance of these forests to biodiversity conservation.  

Apart from geometrids and carabids, plant diversity was also recorded in all three 

areas. Given that tree species have been planted in BSP and partly also DLM, they are 

not very suitable indicators of phyto-diversity. Understory plants were therefore 

selected as key representatives of the forest plant diversity status. The understory 

layer plays a dominant role in forest ecosystem functioning because of its high 

functional and compositional diversity, its numerous interactions across tropic levels 

and its key role in forest succession (Dyer et al., 2010; Hosseini et al., 2010; Nilsson 

& Wardle, 2005; Pringle & Fox‐Dobbs, 2008). Understory plants have been used 

successfully in diversity studies investigating different land use types and forest 

succession stages (Aubin et al., 2008; Brunet et al., 2011; Hosseini et al., 2010; 
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Ramadhanil et al., 2008; Xiong et al., 2008).  

The overall objectives of this chapter are to compare the α-diversity of understory 

plants, carabids and geometrids in the three areas dominated by primary, secondary 

and plantation forests, respectively, and to analysis the similarity in species 

composition of the three taxa in these areas. The main hypotheses are that the primary 

forest (CNR) harbours the highest diversity for all three taxa, following by the 

secondary forest (DLM), with the plantation forest (BSP) harbouring the lowest 

diversity levels. It is furthermore hypothesised that the generally patterns in the 

species composition are distinctly different between the study areas, while there is 

also a notable overlap in species between the different areas, with both primary forest 

and forest plantation sharing more species with the secondary forest habitats than with 

each other.   

7.2.  Sampling sites selection and data analysis 

As indicated in Chapter 2, the plantation forest area investigated at BSP contained 8 

plantation forest plots (details of sampling methods can also be found in: Axmacher et 

al., 2011; Wang, 2010). In DLM, samples of all 12 secondary forest plots located in 

oak, mixed and birch forest near BFERS were used for comparison. In CNR, all 11 

sites in mixed coniferous and broad-leaved (MCBF) forests below 1000m were 

selected. The MCBF sites were selected to account for the latitude differences 

between the study areas and as this is the forest zone in CNR with the most similar 

annual temperature and precipitation regimes to both DLM and BSP. In the following 

sections of this chapter, CNR, DLM and BSP will specifically refer to data coming 

restrictedly from the 31 above-mentioned sampling plots.  

To minimize between-sample variations in the same area, data were pooled for 

α-diversity analysis. Individual-based rarefaction methods (see Appendix 1, equation 

1) were use to compare the α-diversity of geometrids and carabids. Sample-based 

rarefactions for incidence data were used for understory plants (Appendix 1, equation 



 

 161

2), as plant species abundance was not recoded in DLM and BSP. In addition, species 

rank-abundance plots were used to compare species dominance patterns between the 

study areas.  

Compositions of geometrid subfamilies and carabid feeding guilds were also 

calculated. Carabid feeding categories were classified according to Harvey et al. 

(2008), Yu et al. (2010), Oelbermann and Scheu (2010), ElSayed and Nakamura 

(2010), Zhu et al. (1999), Hering and Plachter (1997) and based on personal 

communications with experts from the IZ-CAS. Species were classified as either 

carnivores, omnivores or phytophagous. Species from the same genus were 

considered as belonging to the same feeding guilds when detailed information was 

missing. To analyse the β-diversity, dissimilarity matrices were calculated for each 

taxa. The matrices for understory plants were calculated based on the ‘Jaccard’ index 

(Appendix 1, equation 8) according to incidence (presence-absence) data, while 

dissimilarity matrices for carabids and geometrids were calculated based on 

chord-normalized expected species shared (CNESS) with emphasis on dominant 

species (m=1, Appendix 1, equation 9) based on abundance data. Non-metric 

multidimensional scaling (NMDS) ordinations were used to visualize similarity 

patterns in the three taxonomic groups.  

CNESS results were calculated by the software COMPAH (Gallagher, 1998). The 

remaining calculations and statistics were carried out in R (R Development Core 

Team, 2011), using the package ‘vegan’ (Oksanen et al., 2012) to calculate the 

‘Jaccard’ index and to carry out the NMDS. 

7.3.  Results 

7.3.1.  α-diversity  

In total, the three study sites contained 295 understory plant species. Of these, 69 

species were recorded in CNR and 61 were observed in DLM, whereas 190 species 

were recorded in BSP. Incidence based sample-size rarefaction showed a similar 
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pattern to the observed specie richness, with BSP being substantially more diverse in 

the number of understory plant species. Rarefaction curves showed a slightly higher 

number of understory plant species at CNR than DLM (Figure 34).  

 

Figure 34 Rarefaction curves of understory plant species richness in the different 

study areas (shaded areas represent 95% confidence intervals) 

A total of 2571 carabids representing 74 species were collected in the plots 

representing the three study areas. Of these, 1178 individuals representing 30 species 

were recorded at CNR; 714 individuals representing 21 species at DLM and 679 

individuals representing 33 species at BSP. Rarefaction curves again showed a similar 

trend to the observed species richness, with BSP having the highest rarefied species 

richness and DLM reaching the lowest estimated value (Figure 35). In comparison 

between the three areas, the dominant ground beetle species take up similar 

proportions in the assemblages (Figure 36). In CNR, carabid assemblages were 

dominated by Pterostichus vladivostokensis Lafer, Pt. orientalis Motschulsky and Pt. 
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interruptus Dejean, accounting for 62.5% of all individuals. The assemblages in DLM 

were dominated by Pt. acutidens Fairmaire, Carabus crassesculptus Kraatz and 

Carabus manifestus Kraatz, which accounted for 65.8% of all individuals. At BSP, the 

three dominant species Pt. fortipes Chaudoir, Pseudotaphoxenus mongolicus Jedlicka 

and Pt. gebleri Dejean accounted for 60.1% of the sampled individuals. The pattern of 

rare species (accounting for less than 1% of the specimens in the samples, and with a 

log value lower than -2) was different between the three areas: BSP had 21 species 

and CNR had a very similar number of 20 species, while samples at DLM only 

contained 12 rare species (Figure 36).  

 

Figure 35 Rarefaction curves of carabids in different areas (shaded areas represent 

95% confidence intervals) 
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Figure 36 Rank–abundance distribution of carabid species in CNR, DLM and BSP.  

A total of 6980 geometrid moths representing 286 species were observed in the three 

study areas. At the study sites in the CNR where 2589 individuals were collected, 

these represented 111 species. At DLM, 1017 individuals were sampled which were 

separated into 128 species. At BSP, the 3374 geometrid moths sampled represented 76 

species. Rarefaction showed that DLM had a notably higher species richness of 

geometrids than the other sites. CNR occupied an intermediate position in relation to 

species richness, while BSP contained the lowest species richness (Figure 37). The 

high α-diversity in DLM was partly related to the low level of dominance and high 

proportion of rare species (Figure 38). In DLM, the three most specimen-rich species 

Phanerothyris sinearia Guenée, Hypomecis punctinalis Scopoli and Alcis picata 

Butler accounted for only 22.8% of the overall individuals. In CNR, the most 

dominant species Abraxas suspecta Warren, Endropiodes abjecta Butler and 

Hypomecis sp. represented 41.4% of sampled specimens, while in BSP, the three most 

abundant species Alcis repandata Linnaeus, Epirrhoe hastulata Hübner and Alcis 

castigataria Bremer accounted for a total of 39.8%. For rare species, DLM had 100 

species accounting for less than 1% towards the total number of individuals, which is 

higher than CNR (93 species) and BSP (57 species).  
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Figure 37 Rarefaction curves of geometrids for the different study areas (shaded areas 

represent 95% confidence intervals) 
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Figure 38 Rank–abundance distribution of geometrid species in CNR, DLM and BSP. 



 

 166

7.3.2.  Species composition, turnover and similarities 

In relation to species composition, CNR shared more understory plant species with 

DLM than with BSP (Figure 39). In BSP, 175 out of the 190 understory plant species 

were unique (92%), while the proportion of unique species for understory plants in 

CNR was also high (84%), but much lower in DLM (64%).  

For carabids, CNR again shared more species with DLM than with BSP. Both CNR 

and BSP had as high number of unique species of carabids (26 species), but the 

structure of the assemblages was quite different. In total, unique species accounted for 

70.6% of the sampled individuals in CNR, while this number decreased to 62.3% and 

36.8% in DLM and BSP, respectively. The 5 species BSP shared with DLM already 

accounted for 62% of all specimens caught at BSP.  

 

Figure 39 Proportion of shared and unique species between the three study areas (blue 

dots represent understory plants and red dots represent carabid species, with dot size 

representing the proportion of the number of species). 
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Omnivores were the most abundant carabid feeding guild at all three study areas, with 

13 species representing 77.3% of all sampled individuals at CNR, 8 species (60.9%) 

at DLM and 13 species (49.3%) at BSP (Figure 40). Nontheless, at both DLM (11 

species) and BSP (14), carnivores were the most species-rich group (Figure 40). For 

phytophagous, CNR and DLM harboured only 2 species, each, accounting for 0.2% 

and 6.7% of the total number of individuals, respectively, while this number was 

much higher at BSP. Here, 13 phytophagous species accounted for 16.9% of all 

individuals.  
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Figure 40 Carabid feeding guild composition in relation to (a) abundance and (b) 

species richness at CNR, DLM and BSP 
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As specimens of geometrids were sorted and identified together for CNR and DLM 

and some of these species were only sorted to morphospecies level pending DNA 

analysis, while most species from BSP were identified to species level using DNA 

barcoding, BSP was not included in the analysis of shared common species of 

geometrid moths. When comparing geometrid species between CNR and DLM, 25 

species occurred at both areas, with the remaining 86 species (representing 65.9% of 

specimens) and 103 species (representing 76.1% of the sampled specimens) were 

unique at CNR and DLM, respectively. Among the 25 shared species, 17 accounted 

for less than 1% of abundance at CNR and 16 at DLM.  

For the composition of individual subfamilies of geometridae moths, the subfamily 

Ennominae was the most abundant subfamily in all three areas, but their proportion 

decreased from 84.5% in CNR to 74.1% in DLM and 44.0% in BSP (Figure 41a). The 

proportional abundance of Larentiinae, on the contrary, increased from 11.3% to 

13.1% and 36.3% when comparing CNR with DLM and BSP, respectively. In addition, 

very few members of the subfamily Sterrhinae were observed in CNR which only 

accounted for 0.6% of the overall abundance, while this group was much more 

strongly represented in samples from DLM (7.5%) and BSP (15.4%) (Figure 41a). 

However, differences of proportional species richness were not as pronounced 

between the three areas (Figure 41b), with the proportion of species belonging to 

Ennominae being slightly higher in CNR (56.8%) than DLM and BSP, where they 

accounted for similar values of 43% and 44.7%, respectively. 
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Figure 41 Geometrid subfamily composition in relation to (a) abundance and (b) 

species richness at CNR, DLM and BSP 

When comparing the β-diversity between the three areas, plant species composition of 

the understory layer showed three very distinctive clusters, each representing one of 

the study areas. Sampling sites at CNR and BSP formed two particularly tight clusters, 

while sites in DLM were more spread-out, indicating a higher β-diversity in DLM 

than at the other two sites (see Figure 42a). The species composition pattern for 

carabids again was clearly differentiated again into the three study areas in the 

ordination diagram. In this diagram, CNR assemblages were still grouped into a 

denser cluster than BSP and DLM (Figure 42b). Species composition for geometrids 
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was again only compared between CNR and DLM because morphospecies are not 

comparable with species from BSP. Results also showed two distinct clusters for 

these two areas, and DLM again had a higher β-diversity than CNR.   

 

Figure 42 NMDS ordination plots for (a) understory plants based on ‘Jaccard’ 

(incident data) dissimilarity matrices, and based on CNESS dissimilarity matrices for 

sample sizes m=1 for (b) carabids and (c) geometrids .  
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7.4.  Discussion 

7.4.1.  Plants and carabids 

Probably the most striking finding presented in this chapter is the extremely high 

diversity in undergrowth plants in the plantation forests of BSP. BSP also harboured 

unique species other than other two areas. In BSP, the earliest larch plantations were 

planted in the late 1980s with the aim of forest habitat restoration, and since then, 

these forest plantations have been well protected. A few previous studies have shown 

that native timber plantations can increase biodiversity though the provision of 

opportunities for understory plant regeneration (Ashton et al., 2001; Carnevale & 

Montagnini, 2002). This relates for example to increasing topsoil nutrient contents, 

facilitating the influx of site-sensitive tree, shrub and herb species (Grubb, 1995). 

Another possible reason is that trees in plantation forests at BSP are less densely 

planted than trees in naturally generated secondary forest (DLM) and mature forest 

(CNR) ecosystems. This would result in less canopy closure in the BSP forests and 

hence a higher species richness and density in understory plants (Lemenih et al., 

2004). The factor can also partly explain the high species richness for carabids at BSP, 

as many carabid species prefer areas with open canopies (Butterfield et al., 1995; 

Humphrey et al., 1999). Unfortunately, tree density or canopy closure were not 

recorded here. Unfortunately, tree density or canopy closure were not recorded here. 

The high diversity of understory plants in the BSP could also be interpreted as fitting 

the intermediate disturbance hypothesis (IDH) (Grime, 1973; Connell, 1978). The 

IDH not only refers to direct human disturbance in forest management, but also seems 

fitting in forest succession (Bongers et al., 2009; Chazdon, 2003; Kessler, 1999; 

Molino & Sabatier, 2001). With more than 30 years of restoration history, vegetation 

succession is arguably at an intermediate stage, resulting in a high diversity of 

understory vegetation assemblages.  

In addition, the high diversity of understory plants also relates to the fact that forest 

plantations in BSP were established on former grassland habitats. These habitats were 
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relatively weakly disturbed before the plantations were established but harboured 

typical, highly diverse steppe grassland assemblages, resulting in the plantation area 

harbouring a mixture of grassland and forest species of an overall high diversity. This 

is also reflected in the great similarity in carabid species composition between forests 

and grasslands in this area (Liu et al., 2012). The observed, high diversity of carabids 

could also partly be contributed to the high diversity of understory plants in BSP, 

which is likely to result in a wide range of microclimatic conditions and humus layer 

depths, hence providing suitable habitats for a wide range of ground-dwelling 

invertebrates (Carnus et al., 2006) such as carabids.  

Due to the high diversity of understory plants at BSP, it is not surprising that carabid 

phytophages account for a higher proportion at BSP than at the other two areas. 

Previous studies have reported positive relationships between the abundance of 

carabid phytophages and plant species richness (Harvey et al., 2008), as high plant 

diversity will potentially provide more food resources for those herbivore species 

(Haddad et al., 2001). It nonetheless needs to be pointed out that 10 of the 13 

phytophagous species at BSP were Harpalus spp. This genus was classified as 

phytophagous according to Harvey et al. (2008)’s sorting, while some other studies 

classified members of this group as omnivores (ElSayed & Nakamura, 2010). 

7.4.2.  Geometrid moths 

As limited geometrid species appear in grassland, it is therefore also resonablethat 

BSP did not harbour a high diversity of geometrid moths. Amongst the three study 

areas, the highest diversity of geometrids occurs in DLM, which can be related to two 

reasons. The first possible reason relates to the slight difference in sampling methods. 

Automatic light trapping was used in BSP and CNR, while manual catching was 

additionally used as complementary approach to the automatic light trapping in DLM 

(see Chapter 2), and manual collection techniques generated additional species that 

were not collected at the light traps (see Chapter 6).  
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Another possible explanation for such a high diversity in DLM relates to the 

environmental heterogeneity of this area, which relates to the strong heterogeneity in 

the tree species composition. In this area, deforestation started more than 200 years 

ago, resulting in the natural forest being almost completely depleted. As already 

introduced in the previous chapter, forest reforestation and afforestation conducted in 

this area result in a fine forest mosaic. The high vegetation heterogeneity in DLM can 

also be expected to relate to the high β-diversity observed here. In contrast to carabids, 

geometrids have generally a higher mobility, so that catches of geometrids in 

secondary forest plots might also contain some species originating from other forest 

types such as the pine and larch plantations (see discussion in Chapter 6).  

7.4.3.  Species composition overlap 

In spite of the large geographical distance between the three forest areas, there is still 

substantial overlap in understory plant and insect species. Interestingly, most species 

of geometrids shared between CNR and DLM are not dominant species, with the 

same trend observed for carabids in these two areas, too. This is in contrast to the BSP, 

where the most dominant carabid species was also recorded in DLM, while the unique 

species were mainly rare. Endangered carabid species have been reported from 

plantation forests also in other countries, such as the species Holcaspis brevicula 

Butcher in New Zealand pine plantation forests (Brockerhoff et al., 2005), and three 

nationally spare species in the genera Trechus and Pterostichus in pine and spruce 

plantation forests in Britain (Jukes et al., 2001). It can therefore be speculated that 

plantation forests in BSP can also potentially sustain suitable habitats for rare species 

of carabids, although the knowledge base for ground beetles in China is insufficient 

for a detailed evaluation of the occurrence patterns of nationally or regionally rare and 

threatened species.  

7.4.4.  Synthesis 

The comparison of the primary forests in CNR with secondary forest sites at DLM 
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and plantation forests at BSP, α-diversity showed different patterns for understory 

plants, carabid beetles and geometrid moths. It therefore again indicates that diversity 

correlations across trophic levels may be weak under natural conditions and results of 

between-area comparisons depend on target taxa, so that results from a simple taxon 

are insufficient in providing clear guidance for the development of overarching 

biodiversity conservation strategies. All three areas harboured relatively high levels of 

α-diversity for the three taxa investigated, suggesting a high conservation value of the 

forests in the wider region. It should also be noticed in this regard that criticism raised 

about China’s plantations causing an overall decrease of species diversity primarily in 

the vegetation (e.g. Cao, 2008; Cao et al., 2010a) were mainly focused on 

fast-growing, water-inefficiency Populus spp. plantations. Different choices of tree 

species used in plantations however commonly result in very different ecological 

outcomes for forest ecosystem communities (see reviews by e.g. Aubin et al., 2008; 

Brockerhoff et al., 2008; Carnus et al., 2006). My results indicate that the wide range 

of protected larch plantation forests in northern China might potentially be of 

considerable conservation value, not only for vegetation restoration and in preventing 

soil erosion and land degradations, but also in sustaining high biodiversity levels for 

ground-dwelling arthropods such as carabids. Furthermore, the remaining primary 

forests in northern China such as that encountered at the CNR harbour a distinct 

composition of insect and plant species and require particular conservation attention.  
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Chapter 8.  Discussion and conclusion 

8.1.  General diversity of ground beetles and geometrid moths in study areas 

Insects are extremely important ecosystem components, while their diversity patterns 

are widely ignored in current approaches to biodiversity conservation and widely 

unknown, which is also true for the temperate forest ecosystems of Northern China. 

The main focus of this research was to investigate insect diversity patterns in 

mountain forests of northern China, and to establish the relationship between different 

insect assemblages, the vegetation and core environmental condition. In addition, the 

research also aimed to provide insights into the insect diversity status in large-scale 

secondary and plantation forests in northern China.  

This study focuses on two distinct insect taxa: ground beetles (Coleoptera: Carabidae) 

as a family mainly representing predatory insects, and geometrid moths (Lepidoptera: 

Geometridae), a group of chiefly herbivorous insects. The main study area was 

located on Changbai Mountain in Jilin Province, which is covered by one of the last 

pristine forests in Northern China. To the best of my knowledge, the total catches 

(4844 individuals of carabids and 9285 individuals of geometrids, representing 47 and 

155 species, respectively) is the highest number of species recorded from the study 

area to date (Chen et al., 2007; Liu et al., 2007a), and the number is also comparable 

with catches from other temperate regions in China (Axmacher et al., 2011; Jiang, 

2006; Yu et al., 2006b) and Europe (Avgın, 2006; Skalski et al., 2011). The 

comparatively high diversity of Changbai Mountain’s insect fauna supports the 

general assumption that this area generally harbours high levels of biodiversity. It also 

reflects the importance of the establishment of the National Natural Reserve in the 

1960s at the Changbai Mountain region, which contributes significantly towards the 

protection of its biodiversity from human disturbances.   

The second study area, Dongling Mountain which is located on the western boundary 

of Beijing, contributes a substantial proportion towards the overall forest cover of 
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Beijing. A total of 23 species of ground beetles recorded from this area is a high 

number in comparison with previous studies (Yu et al., 2002, 2006, 2010, 2014). I 

also present the first comprehensive sample of geometrid moths for a forested area in 

Beijing. A total of 165 moth species is a substantial number when compared to other 

studies in temperate forests in China (Axmacher et al., 2011; Jiang & Zhang, 2001). 

The vast majority of my samples are kept at the Institute of Zoology, Chinese 

Academy of Sciences, where it can provide a valuable reference for further studies of 

geometrids in Beijing and the Hebei Province.  

8.2.  Main findings and lessons for biodiversity conservation 

When modelling the relationship between plant diversity, principal components 

representing the main gradients in plant species composition and elevation with the 

diversity of carabids and geometrids, the changing elevation was the most important 

predictor of changes in both the α-diversity of carabid and geometrid moths. This 

trend suggests that phytodiversity poorly represents the diversity patterns of the 

species-rich arthropod assemblages in the invesigated temperate forest ecosystems. 

My work highlights that previous plant-focused conservation strategies might be risky 

to ensure the conservation of mega-diverse arthropods, and that it is important to 

establish a baseline knowledge of the biodiversity status for different taxa, so that 

biodiversity conservation strategies can adequately consider the diversity status of 

arthropods representing the bulk of species in most terrestrial habitats. Additionally, 

neither recorded patterns in predatory arthropod abundance and diversity support 

traditional top-down control theories, nor does the herbivorous arthropod diversity 

support traditional bottom-up control theories. These traditional hypotheses that are 

suitable for less complex ecosystems of low diversity appear to play a much less 

pronounced role in highly complex forest ecosystems.  

The impact of climate change on the biodiversity status of invertebrates in particular 

is another important topic that requires substantial attention. My work unfortunately 

can only provide a basic and indirect insight into changes of insect diversity with 
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changes in the environmental conditions. Results nonetheless showed that a variety of 

plant families have positive links to the diversity of carabids and geometrids, and 

many of these families declined in species richness over the past half-century. Due to 

the pressure of raising temperature, both plants and insects are also assumed to move 

toward higher altitudes, a trend which was clearly demonstrated for parts of the 

vegetation which indicates the high risk of extinction for species living in the 

uppermost forest ecosystems.  

This work also highlights the importance of plantation and secondary forests in 

biodiversity conservation. Over the past 50 years, large-scale, well-protected 

plantation and secondary forests have been established throughout China, but the 

conservation value of these forests has been widely unclear. The establishment of 

these forests has been criticized for lacking proven biodiversity conservation value. 

Some have even argued that they may result in substantial ecosystem and biodiversity 

degradation (Cao et al., 2010b; Sayer et al., 2004; Xu, 2011). My results however 

suggest that the wide range of protected larch plantation forests in northern China 

might potentially be of considerable biodiversity conservation value, providing 

suitable habitats for ground-dwelling arthropods such as carabids. Nonetheless, the 

distinct species composition of insects and plants in the primary forest clearly reflect 

that the remaining pristine forest remnants require particular attention in relation to 

biodiversity conservation. 

8.3.  Further work 

Further work is still required for a better understanding of arthropod diversity patterns 

in temperate forests in China and how these patterns respond to global change. First, 

more diverse arthropod groups should be included in further studies. The selection of 

these taxa could include a wider range of predatory arthropod taxa such as spiders and 

ants, and herbivores such as butterflies and bark beetles, with additional detailed 

surveying techniques employed such as caterpillar collection and detailed leaf damage 

assessments. This could decrease the taxon-specific bias in the information of 
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arthropod diversity patterns.  

Additionally, long-term monitoring of insect diversity patterns is suggested in order to 

get better insights how arthropod diversity changes with the changing environment. 

This research has provided basic information of how plant species composition 

changed in the last five decades. The relationships between insects and plants are 

however indirect; hence plant information can only give a first indication of how 

insect diversity might change over time. Insect diversity trends based on 

temperature-focussed models (Chapter 5) are also very limited and basic, while 

information from long-term monitoring is probably the only way to get a direct 

indication of the real developments.  

Furthermore, climate data from more than one meteorological station are required to 

realistically create a spatial model and subsequently map the insect distribution in the 

entire CNR area and also to better understand the potential interactions between insect 

diversity and climatic variables,. According to my knowledge, there are at least three 

meteorological stations located at CNR at different elevational levels. Apart from the 

Songjiang station from which my climatic data was obtained, a station is located at 

about 1300m asl and another is located at the top of Changbai Mountain (about 

2600m), but their data are chiefly inaccessible. Apart from meteorological stations, 

there are also many small data loggers set by different research groups in a variety of 

the forests on Changbaishan. Unfortunately, there is no proper information-sharing 

system, and this wealth of climatic data was not available for my research. Further 

works based on this study should hence include the obtaining of detailed climatic 

records from different locations across the mountain.   

Finally, studies from other temperate forests in North China can provide 

complementary information to substantiate results from this study. Ideal study areas 

for mature forests in northeast China include Liangshui and Fenglin Natural Reserves 

in Heilongjiang Province that belong to the Xiaoxinganling Mountain range, and 

Hanma Natural Reserves in the Daxinganling Mountain range located at the boundary 
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between Heilongjiang Province and Inner Mongolia. Both Xiaoxinganling and 

Daxinganling Mountain ranges also include large-scale plantation forests. 

Additionally, Saihanba plantation forest located between Hebei Province and Inner 

Mongolia is also an ideal place to study the biodiversity status of forest plantations. 

Detailed large scale studies can give a much better overall view of insect diversity 

patterns in China’s temperate forests, while to establish such a broad study area and 

monitoring networks requires huge financial inputs.   

8.4.  Conclusion 

The primary focus of this thesis was to investigate the biodiversity status of two 

species-rich insect taxa, ground beetles and geometrid moths, in the forested mountain 

habitats of Northern China. This thesis demonstrated that α-diversity of the two insect 

taxa decreases significantly with increasing elevation. In the complex forest 

ecosystems in northern China, the relationship between plant diversity and the 

diversity of insects are only weakly established, with observed positive links believed 

to be chiefly driven by changes in the same underlying environmental factors. 

Traditional ecological theories such as top-down control that work well in grassland 

and agricultural ecosystems may therefore not be applicable in the complex temperate 

forest ecosystems. In practice, my work highlights some areas that require specific 

attention for insect biodiversity conservation in the Changbai Mountain region. These 

areas include more attention given to Korean Pine forests, a forest habitat that has a 

unique species composition of plants and insects, but was ignored in previous 

conservation strategies, as well as the diverse impacts of climate change on the 

different forest habitats. When designing future conservation strategies, the traditional 

plant-focus approaches may not be sufficient for the conservation of mega-diverse 

insect taxa, and more biodiversity knowledge for these individual taxa needs to be 

considered. Finally, my work also suggests that in my study region in Northern China, 

secondary and plantation forests not only harbour high level of insect diversity, but 

they also harbour unique species, which underlines the potential value of China’s 
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large-scale afforestation and reforestation projects for biodiversity conservation.  
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Appendix 1. Expression of used biodiversity measurements 

Equation 
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Equation Name Equation Expression Explanation 

1 Hurlbert-Rarefaction ∑
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−=
S

i
n

n
N
n

NN

SE
1

i

1)(  

‘E(Sn)’ is the expected number of species for samples containing 

‘n’ individuals collected randomly without replacement; ‘n’ is the 

rarefied number of individuals; ‘N’ is the total number of 

individuals and ‘Ni’ is the observed number of individuals of the 

‘ith’ species 
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Assumes that the study area is divided into ‘Q’ quadrats of which 

‘q’ quadrats are sampled, while ‘Fi’ individuals are observed for the 

‘ith’ species 

3 Simpson’s diversity static 
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‘γ’ refers to the Simpson’s proportion-based  static;  ‘S’  refers 

to the number of observed species; ‘pi’ refers to the individuals’ 

proportion for the ‘ith’ species; ‘Ni’ is the observed number of 

individuals of the ‘ith’ species and ‘N’ is the total number of 

individuals 
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‘H’ represents the Shannon-Wiener  diversity or entropy; ‘S’ is the 

number of species observed; ‘pi’ refers to the individuals’ 

proportion for the ‘ith’ species; ‘Ni’ refers to number of individuals 

in the ‘ith’ species and ‘Nt’ is total number of individuals in the 

sample 

5 Fisher’s α )N(1 ln
α

α +=S  

‘α’ is the value of Fisher’s α index; ‘S’ is the number of species, 

and ‘N’ is total number of individuals. The ‘N’ is very large in most 

cases, resulting in ‘
α
N1+ ’ approximately equalling to ‘

α
N

’, so 

that the equation can simply be expressed as ‘ )N( ln
α

α=S ’. 

6 Chao 1 
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‘Sest’ is the estimated number of species and ‘Sobs’ is the observed 

number of species; ‘F1’ is the number of singletons (species 

represented by only one individual) and ‘F2’ is the number of 

doubletons (species represented by only two individuals in the 

sample) 
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Abundance-based Coverage 
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‘Sabund’ is the number of abundant species with more than 10 

individuals; ‘Srare’ is the number of rare species with no more than 

10 individuals; ‘F1’ is the number of species with one individual, 

‘Fi’ is the number of species with i individuals; ‘Nrare’ is the overall 

number of individuals for rare species; and ‘CACE’ refers to the 

sample coverage estimate for the sub-sample, which is equal to 

‘
rareN
1F1− ’ 

8 Jaccard index aaa
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‘a’ is the number of species in common for both samples, ‘a1’ is the 

number of species in sample 1 and ‘a2’ is the number of species in 

sample 2 
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‘S’ is the total number of species; ‘i’ and ‘j’ are the ‘ith’ and ‘jth’ 

sample, ‘Nik’ is the abundance of the ‘kth’ species in the ‘ith’ 

sample; ‘Ni’ is the number of individuals in the ‘ith’ sample, ‘m’ is 

the sample size. 
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Appendix 2. Number of carabid individuals for each species sampled in different 

forests in Changbai Mountain (MCBF: mixed coniferous and broad-leaved 

forest; KPF: Korean Pine Forest; MCF: mixed coniferous forest; SMCF: 

sub-alpine mixed coniferous forest; BF: birch forest). 

Forest Type 
Species 

MCBF KPF MCF SMCF BF 
Total 

Agonum sp.1 9 0 0 1 1 11 
Amara tumida Morawitz 0 0 0 0 5 5 
Asaphidion sp.1 1 0 0 0 0 1 
Carabus aurocinctus 
Motschulsky 0 0 116 645 138 899 
Carabus billbergi Mannerheim 14 15 0 1 0 30 
Carabus canaliculatus Adams 52 0 31 0 7 90 
Carabus constricticollis Kraatz 0 0 1 0 0 1 
Carabus fraterculus Reitter 3 0 0 1 0 4 
Carabus granulatus Linne 8 0 0 0 0 8 
Carabus seishinensis Lapouge 70 7 12 0 0 89 
Carabus venustus Morawitz 0 11 144 117 52 324 
Carabus vietinghoffi Adams 15 0 23 0 0 38 
Cychrus morawitzi Gehin 14 0 12 3 0 29 
Harpalus laevipes Zetterstedt 0 1 0 1 0 2 
Harpalus ussuricus Mlynar 1 0 0 0 1 2 
Harpalus xanthopus 
Gemminger & Harold 1 0 0 0 0 1 
Leistus niger Gebler 67 11 24 12 12 126 
Leistus sp.1 0 0 0 7 8 15 
Loricera pilicornis Fabricius 0 0 0 2 16 18 
Morphodactyla coreica Solsky 0 0 8 157 70 235 
Nebria pektusanica 
Horvatovich 0 0 0 1 0 1 
Notiophilus reitteri Spaeth 0 0 1 1 0 2 
Pristosia sp.1 5 0 9 2 0 16 
Pristosia sp.2 5 4 0 0 0 9 
Pristosia sp.3 0 0 2 6 0 8 
Pterostichus adstrictus 
Eschscholtz 117 82 32 33 1 265 
Pterostichus comorus Jedlicka 2 3 129 415 354 903 
Pterostichus gibbicollis 
Motschulsky 3 0 0 0 0 3 
Pterostichus horvatovichi 
Kirschenhofer 6 0 0 1 0 7 
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Pterostichus interruptus Dejean
176 3 83 26 5 293 

Pterostichus jankowskyi 
Tschitscherine 7 0 0 0 0 7 
Pterostichus mandzhuricus 
Lustshnik 2 0 0 0 0 2 
Pterostichus microcephalus 
Motschulsky 1 0 0 0 0 1 
Pterostichus nigrita Paykull 2 0 0 0 0 2 
Pterostichus orientalis 
Motschulsky 256 54 79 79 16 484 
Pterostichus sp.1 0 0 0 106 160 266 
Pterostichus sp.2 3 0 13 59 11 86 
Pterostichus sp.3 0 0 0 0 1 1 
Pterostichus sp.4 0 0 0 0 2 2 
Pterostichus subovatus 
Motschulsky 0 0 0 0 2 2 
Pterostichus tuberculiger 
Tschitscherine 0 0 3 0 0 3 
Pterostichus vladivostokensis 
Lafer 319 34 40 38 63 494 
Synuchus agonus 
Tschitscherine 7 10 9 4 3 33 
Synuchus sp.1 9 0 0 1 0 10 
Synuchus sp.2 1 0 0 0 0 1 
Trechus sp.1 0 0 0 2 0 2 
Trichotichnus coruscus 
Tschitscherine 2 1 0 0 0 3 
Total observed number of 
individuals 1178 236 771 1721 928 4834 
Total observed number of 
species 30 13 20 26 21 47 
Estimated number of species 33  14 21 37  24  54  
Sampling completeness 91% 93% 95% 70% 88% 87% 
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Appendix 3. Number of geometrid moth individuals for each species sampled in 

different forests in Changbai Mountain (MCBF: mixed coniferous and 

broad-leaved forest; KPF: Korean Pine Forest; MCF: mixed coniferous forest; 

SMCF: sub-alpine mixed coniferous forest; BF: birch forest) 

Forest Type 
Species 

MCBF KPF MCF SMCF BF 
Total 

Abraxas grossudariata 
Linneaus 8 3 2 0 0 13 

Abraxas suspecta Warren 595 21 28 14 5 663 
Agathia carissima Butler 4 0 0 0 0 4 
Alcis sp.1 0 30 191 119 10 350 
Alcis sp.2 12 14 5 28 17 76 
Amraica superans Butler 2 0 0 0 0 2 
Angerona prunaria Linneaus 40 7 29 0 0 76 
Anticypella diffusaria Leech 15 0 0 0 0 15 
Aracima muscosa Butler 1 0 0 0 0 1 
Arichanna melanaria Butler 0 11 69 23 108 211 
Asthena sp.1 2 0 3 0 0 5 
Baptria sp.1 0 0 0 1 0 1 
Biston betularia Linnaeus 1 8 3 0 4 16 
Brabira artemidora Oberthur 0 2 0 0 1 3 
Bupalus vestalis Staudinger 0 0 7 2 0 9 
Cabera griseolimbata 
apotaeniata Wehrli 49 3 8 0 0 60 

Carige cruciplaga Walker 9 0 0 0 0 9 
Cepphis advenaria Hubner 3 0 1 0 0 4 
Chiasmia sp.1 1 0 147 61 7 216 
Cleora insolita Butler 9 0 2 2 1 14 
Comibaena tancrei Graeser 0 2 0 0 0 2 
Comostola sp.1 3 1 0 0 0 4 
Crocallis elinguaria Linnaeus 0 0 1 0 0 1 
Culpinia diffusa Walker 1 0 1 0 0 2 
Cusiala sp.1 10 0 0 0 0 10 
Cusiala stipitaria Oberthur 1 0 0 0 0 1 
Deileptenia mandshuriaria 
Bremer 17 0 0 0 0 17 

Deileptenia sp.1 0 5 4 39 0 48 
Dysstroma cinereata Moore 2 2 0 0 11 15 
Dysstroma citrate Linnaeus 0 0 4 0 17 21 
Dysstroma latefasciata 
Staudinger 1 0 0 12 63 76 
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Dysstroma sp.1 0 0 0 1 0 1 
Dysstroma truncate Hufnagel 2 0 1 12 14 29 
Ecliptopera silaceata Denis et 
Schiffermüller 42 25 3 13 2 85 

Ectropis sp.1 6 0 0 0 1 7 
Eilicrinia wehrlii Djakonov 2 0 0 0 1 3 
Endropiodes abjecta Butler 241 0 12 33 3 289 
Ennominae sp.1 6 0 0 0 0 6 
Ennominae sp.2 0 0 3 0 0 3 
Ennominae sp.3 0 0 3 0 0 3 
Ennominae sp.4 0 0 0 0 4 4 
Ennominae sp.5 1 0 0 0 0 1 
Ennominae sp.6 10 0 2 2 0 14 
Ennominae sp.7 0 1 0 0 0 1 
Ennominae sp.8 0 0 0 1 0 1 
Ennominae sp.9 0 3 0 0 0 3 
Ennominae sp.10 2 0 0 0 0 2 
Ennominae sp.11 0 0 0 0 7 7 
Ennominae sp.12 0 0 12 0 0 12 
Ennominae sp.13 1 0 0 0 0 1 
Ennominae sp.14 2 0 0 0 0 2 
Ennominae sp.15 0 7 1 0 0 8 
Ennominae sp.16 12 0 0 0 0 12 
Ennominae sp.17 1 0 0 0 0 1 
Ennominae sp.18 1 1 2 1 0 5 
Ennominae sp.19 0 0 14 0 0 14 
Ennominae sp.20 1 0 0 0 0 1 
Ennominae sp.21 2 0 0 0 0 2 
Epholca arenosa Butler 24 0 4 0 0 28 
Epirrhoe supergressa Prout 14 0 0 2 0 16 
Euchristophia cumulate 
Christoph 6 4 230 13 0 253 

Euliptopera umbrosaria 
Motschulsky 3 2 5 4 3 17 

Eulithis convergenata Bremer 4 1 0 0 0 5 
Eulithis ledereri Bremer 2 0 0 0 0 2 
Eulithis prunata Linnaeus 15 0 4 5 2 26 
Eulithis pyropata Bubner 11 0 0 0 0 11 
Euphyia cineraria Butler 9 1 1 5 3 19 
Eupithecia gigantean 
Staudinger 3 0 1 0 0 4 

Eupithecia sp.1 2 0 0 0 3 5 
Eupithecia sp.2 1 0 21 0 0 22 
Eustroma aerosa Butler 33 13 4 14 8 72 
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Eustroma reticulate obsdeta 
Djakonov 4 3 5 3 0 15 

Eustroma sp.1 0 5 0 1 0 6 
Exangerona prattiaria Leech 44 0 0 0 0 44 
Gandaritis fixseni Bremer 14 13 0 0 0 27 
Garaeus mirandus Butler 2 0 5 12 3 22 
Geometra glaucaria Menetries 58 2 0 0 0 60 
Geometra rana Oberthur 17 14 18 5 3 57 
Geometrinae sp.1 0 4 17 0 0 21 
Geometrinae sp.2 3 0 0 0 0 3 
Geometrinae sp.3 1 0 0 0 0 1 
Geometrinae sp.4 4 0 0 0 0 4 
Glaucorhoe undaliferaria 
Motschulsky 17 1 0 0 0 18 

Heterarmia sp.1 18 5 13 0 0 36 
Heterolocha laminaria 
Herrich-Schhäffer 24 0 6 0 0 30 

Heterothera serraria Lienig 0 0 13 132 1 146 
Hydrelia flammeolaria 
Hufnagel 7 3 5 1 1 17 

Hydriomena impluviata Denis 
& Schiffermüller 0 0 3 368 449 820 

Hydriomena sp.1 0 0 0 0 1 1 
Hypomecis roboraria Denis & 
Schiffermüller 126 47 1 1 2 177 

Hypomecis sp.1 235 6 16 9 2 268 
Hypomecis sp.2 12 0 1 0 0 13 
Hypomecis sp.3 88 0 61 6 9 164 
Hypomecis sp.4 1 0 0 0 0 1 
Hypomecis sp.5 15 0 33 0 0 48 
Hypomecis sp.6 0 0 63 35 0 98 
Hysterura sp.1 11 3 0 10 1 25 
Iotaphora admirabilis Oberthur 2 0 0 0 0 2 
Jankowskia fuscaria Leech 28 0 4 0 0 32 
Larentiinae sp.1 12 1 0 1 1 15 
Larentiinae sp.2 1 0 0 0 0 1 
Larentiinae sp.3 0 0 0 0 1 1 
Larentiinae sp.4 0 0 0 0 1 1 
Larentiinae sp.5 1 0 0 0 0 1 
Larentiinae sp.6 16 22 21 16 1 76 
Larentiinae sp.7 1 0 0 0 0 1 
Larentiinae sp.8 0 0 0 1 6 7 
Larentiinae sp.9 5 0 0 0 0 5 
Larentiinae sp.10 3 0 0 0 0 3 
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Larentiinae sp.11 0 0 1 2 0 3 
Larentiinae sp.12 0 0 2 1 0 3 
Larentiinae sp.13 1 0 0 0 0 1 
Lomaspilis marginata Linnaeus 3 0 0 0 0 3 
Lomographa bimaculata 
Fabricius 99 0 0 0 0 99 

Lomographa sp.1 16 0 4 2 6 28 
Lomographa sp.2 7 0 3 0 0 10 
Lomographa sp.3 27 0 18 0 0 45 
Lomographa sp.4 1 0 3 0 0 4 
Lomographa sp.5 14 1 0 0 0 15 
Lomographa sp.6 11 0 8 2 2 23 
Menophra senilis Butler 4 0 2 3 0 9 
Mesastrape fulguraria Walker 19 1 1 2 1 24 
Mesoleuca albicillata Linnaeus 0 0 1 7 2 10 
Mesoleuca mandshuricata 
Bremer 0 0 5 1 4 10 

Naxa psilonaxa seriaria 
Motschulsky 11 0 0 0 0 11 

Odontopera bidentata harutai 
Inoue 15 0 13 137 83 248 

Ophthalmitis albosignaria 
Bremer & Grey 11 0 0 1 0 12 

Ophthalmitis irrorataria 
Bremer & Grey 3 0 3 0 0 6 

Ourapteryx similaria Leech 0 4 0 0 0 4 
Parectropis extersaria Hubner 97 0 3 3 1 104 
Pareulype consanguinea Butler 0 0 4 0 0 4 
Pareulype sp.1 6 0 0 2 2 10 
Philereme transversata 
Hufnagel 0 0 0 0 1 1 

Photoscotosia atrostrigata 
Bremer 0 0 0 1 1 2 

Phthonosema tendinosaria 
Bremer 1 0 0 0 0 1 

Plagodis pulveraria Linnaeus 46 0 7 75 81 209 
Plagodis reticulata Warren 14 0 3 4 0 21 
Plemyria rubiginata Denis et 
Schiffermüller 5 0 0 0 0 5 

Psyra boarmiata Graese 53 3 1 15 0 72 
Rheumaptera latifasciaria 
Leech 0 0 0 1 0 1 

Selenia sp.1 0 2 0 7 29 38 
Selenia sp.2 48 2 2 2 1 55 
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Selenia tetralunaria Hufnagel 0 0 0 1 2 3 
Semiothisa sp.1 0 0 0 0 4 4 
Spilopera debilis Butler 15 3 29 96 9 152 
Tanaoctenia dehaliaria Wehrli 0 1 0 0 0 1 
Thera variata Denis et 
Schiffermüller 0 0 0 1 0 1 

Timandra apicirosea Prout 4 1 0 0 0 5 
Triphosa dubitata Linnaeus 5 7 25 13 165 215 
Venusia cambrica Curtis 3 2 34 328 553 920 
Viidaleppia quadrifulta Prout 0 0 0 1 0 1 
Xanthorhoe biriviata 
Borhauson 20 0 4 124 28 176 

Xanthorhoe fluctuate malleda 
Inoue 0 1 0 3 1 5 

Xanthorhoe sp.1 14 2 39 123 251 429 
Xenortholitha exacra Wehrli 1 0 0 0 0 1 
Total observed number of 
individuals 2589 326 1328 1966 2004 8213 

Total observed number of 
species 111 50 76 66  59  156  

Estimated number of species 130 57 84 82  77  185  
Sampling completeness 85% 88% 90% 80% 77% 84% 
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Appendix 4. Number of carabid individuals for each species sampled in different 

forests in Dongling Mountain 

Forest Type 
Species 

Pine Oak Mixed Larch Birch 
Total

Amara sp. 2 0 0 1 0 3 
Asaphidion semilucidum 
Motschulsky 0 1 1 0 0 2 

Carabus canaliculatus Adams 0 0 2 11 8 21 
Carabus crassesculptus Kraatz 61 15 27 54 38 195 
Carabus kruberi Fischer 2 0 1 0 0 3 
Carabus manifestus Kraatz 23 6 1 6 67 103 
Carabus smaragdinus Duftschmid 1 0 0 0 0 1 
Carabus sui Imura & Zhou 3 2 0 0 0 5 
Carabus vladimirskyi Dejean 7 63 3 1 0 74 
Harpalus bungii Chaudoir 1 0 0 0 0 1 
Harpalus coreanus Tschitscherine 2 0 3 2 0 7 
Harpalus laevipes Zetterstedt 0 0 1 14 5 20 
Notiophilus impressifrons 
Morawitz 5 3 0 1 0 9 

Panagaeus davidi Fairmaire 0 0 1 0 0 1 
Pristosia sp 2 5 1 3 0 11 
Pseudotaphoxenus mongolicus  14 7 3 1 12 37 
Pterostichus acutidensFairmaire 6 22 86 208 208 530 
Pterostichus adstrictus Eschscholtz 9 1 8 5 60 83 
Pterostichus fortipes Chaudoir 0 14 0 0 2 16 
Pterostichus interruptus Dejean 0 0 2 0 5 7 
Pterostichus subovats Motschulsky 3 2 4 0 1 10 
Synuchus sp. 9 8 6 20 5 48 
Trichotichnus sp.  0 1 1 0 2 4 
Total number of individuals 150 150 151 327 413 1191
Total number of species 16 14 17 13 12 23 
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Appendix 5. Number of geometrid individuals for each species sampled in 

different forests in Dongling Mountain 

Forest Type  
Species 

Pine Oak Mixed Larch Birch Total
Abraxas grossudariata Linneaus 1 0 0 0 29 30
Abraxas sp.1 1 0 0 0 12 13
Agathia carissima Butler 2 1 0 0 0 3
Alcis picata Butler 7 2 2 2 15 28
Alcis sp.1 0 0 0 1 0 1
Alcis sp.2 0 0 0 0 1 1
Angerana prunaria Linneaus 7 2 8 2 7 26
Anticypella diffusaria Leech 2 1 0 0 1 4
Arichanna melanaria Butler 19 1 0 1 45 66
Auaxa cesadaria Walker 0 0 0 1 0 1
Bizia aexaria Walker 2 0 0 0 0 2
Bupalus vestalis Staudinger 2 0 0 0 0 2
Cabera exanthemata insulate 
Inoue  2 0 2 1 1 6

Cabera griseolimbata 
apotaeniata Wehrli 20 8 2 9 5 44

Cabera sp.1 3 0 2 3 2 10
Cabera sp.2 1 7 3 1 2 14
Cabera sp.3 4 5 11 10 6 36
Chartographa ludovicaria 
praemutans Prout 4 2 1 1 0 8

Chartographa tabiolaria 
Oberthür 2 2 0 0 0 4

Chlorissa gelida Butler 1 0 0 0 1 2
Cleora insolita Butler 0 0 0 0 13 13
Comibaena cassidara Guenee 2 0 1 1 0 4
Comibaena nigromacularia 
Leech 0 0 5 0 0 5

Conchia mundataria Cramer 0 1 0 0 0 1
Ctenognophos sp.1 11 22 10 29 32 104
Ctenognophos sp.2 1 1 1 0 0 3
Ctenognophos tetarte Wehrli 1 0 0 0 0 1
Ctenognophos ventraia kansubia 
Wehrli 0 0 1 0 0 1

Deileptenia sp.1 1 4 8 14 4 31
Deileptenia sp.2 0 3 0 0 0 3
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Diaprepesilla flavomarginaria 
Bremer 4 1 0 0 0 5

Ecliptopera umbrosaria 
Motschulsky 0 1 0 0 0 1

Ectropidia expramata Walker 2 2 3 3 6 16
Endropiodes abjecta Butler 13 2 12 5 11 43
Ennominae sp.1 0 0 0 0 1 1
Ennominae sp.2 2 2 9 2 0 15
Ennominae sp.3 1 0 0 0 0 1
Ennominae sp.4 0 0 0 0 2 2
Ennominae sp.5 6 1 0 0 0 7
Ennominae sp.6 2 0 2 1 0 5
Ennominae sp.7 0 0 0 0 2 2
Ennominae sp.8 1 0 0 0 0 1
Ennominae sp.9 0 0 0 0 1 1
Ennominae sp.10 0 0 0 1 0 1
Ennominae sp.11 0 1 0 0 0 1
Epholca auratilis Prout 5 12 17 26 17 77
Epipristis transiens Sterneck 1 0 0 0 0 1
Epirrhoe supergressa albigressa 
Prout 18 4 4 3 3 32

Eucosmabraxas placida 
propinqua Butler 0 2 1 3 0 6

Eulithis convergenata Bremer 2 1 1 2 2 8
Eulithis ledereri Bremer 0 0 0 1 1 2
Eustroma aerosa Butler 0 2 1 1 0 4
Euthecia sp.1 0 0 0 2 0 2
Euthecia sp.2 1 1 0 0 0 2
Euthecia sp.3 0 0 0 1 0 1
Euthecia sp.4 4 1 2 5 0 12
Exangerona prattiaria Leech 3 3 32 15 6 59
Gandaritis flavomacularia Leech 0 0 1 1 0 2
Geometra glaucaria Menetries 1 2 13 0 4 20
Geometra valida Felder et 
Rogenhofer 6 5 2 2 0 15

Geometrinae sp.1 2 0 0 0 0 2
Geometrinae sp.2 0 0 0 0 1 1
Geometrinae sp.3 1 0 1 0 0 2
Geometrinae sp.4 0 1 0 0 0 1
Gnophos serratilinea Sterneck 4 4 5 12 4 29
Gnophos sp.1 1 0 0 1 0 2
Hemistola parallelaria Leech 1 0 1 1 1 4
Hemithea aestivaria Hübner 0 1 1 0 0 2
Heterarmia conjunctaria Leech 23 6 19 15 27 90
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Heterolocha laminaria 
Herrich-Schäffer 1 0 1 2 0 4

Heterophleps sp.1 2 0 0 2 0 4
Hirasa sp.1 1 0 1 6 2 10
Hirasa sp.2 1 1 1 0 0 3
Horisme brevifasciaria Leech 8 4 5 5 1 23
Horisme radicaria Harpe 2 1 0 1 0 4
Horisme sp.1 0 1 1 6 1 9
Horisme tersata Denis et 
Schiffermüller 9 0 1 8 1 19

Hydrelia flammeolaria Hufnagel 0 0 0 4 2 6
Hydrelia sp.1 3 2 1 7 3 16
Hypomecis punctinalis Scopoli 0 0 0 0 1 1
Hypomecis roboraria Denis & 
Schiffermüller 2 0 0 1 0 3

Hypomecis sp.2 1 0 0 0 0 1
Idaea sp.1 6 4 1 4 0 15
Iotaphora admirabilis Oberthür 4 7 2 0 1 14
Laciniodes denigrate abiens Prout 0 0 0 0 1 1
Larentiinae sp.1 8 0 1 2 0 11
Larentiinae sp.2 15 3 1 1 0 20
Larentiinae sp.3 4 3 1 7 0 15
Larentiinae sp.4 0 1 0 8 2 11
Larentiinae sp.5 3 1 2 0 0 6
Larentiinae sp.6 0 0 0 4 0 4
Larentiinae sp.7 5 2 1 1 5 14
Larentiinae sp.8 2 2 0 0 0 4
Larentiinae sp.9 1 1 1 1 0 4
Larentiinae sp.10 4 2 0 5 0 11
Larentiinae sp.11 3 2 0 0 0 5
Larentiinae sp.12 2 2 2 0 0 6
Larentiinae sp.13 0 2 0 1 0 3
Larentiinae sp.14 0 3 0 0 0 3
Larentiinae sp.15 0 0 1 0 4 5
Larentiinae sp.16 0 2 0 0 0 2
Larentiinae sp.17 0 1 1 0 0 2
Larentiinae sp.18 0 1 0 0 0 1
Larentiinae sp.19 0 0 0 1 0 1
Larentiinae sp.20 0 1 0 0 0 1
Larentiinae sp.21 1 0 0 0 0 1
Larentiinae sp.22 1 0 0 0 0 1
Larentiinae sp.23 0 0 0 0 1 1
Larentiinae sp.24 1 0 0 0 0 1
Larentiinae sp.25 0 0 1 0 0 1
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Larentiinae sp.26 1 0 0 0 0 1
Larentiinae sp.27 0 0 0 0 1 1
Larentiinae sp.28 0 0 0 0 1 1
Larentiinae sp.29 1 0 0 0 0 1
Larentiinae sp.30 1 0 0 0 0 1
Larentiinae sp.31 0 0 1 0 0 1
Larentiinae sp.32 0 0 0 1 0 1
Lobophora halterata Hufnagel 0 1 0 0 2 3
Lomaspilis marginata Linnaeus 5 0 0 0 2 7
Lomographa simplicior Butler 1 1 1 0 0 3
Maxates sinuolata Inoue 0 1 0 1 0 2
Maxates sp.1 2 0 0 0 0 2
Medasina sp. 1 3 3 0 6 13
Melanthia procellata inexpectata 
Warnecke 0 1 1 1 0 3

Menophra harutai Inoue 4 3 9 11 18 45
Microcalicha melanosticta 
Hampson 2 0 0 0 0 2

Micronidia sp1 1 4 10 9 6 30
Naxa seriaria Motschulsky 26 0 0 0 0 26
Odontopera bidentata harutai 
Inoue 1 0 1 0 0 2

Odontopera bilinearia Wehrli 1 0 0 0 0 1
Ophthalmitis albosignaria 
albosignaria Bremer & Grey 4 0 1 5 0 10

Ophthalmitis cordularia Swinhoe 3 0 1 1 2 7
Ophthalmitis irrorataria Bremer 
& Grey 3 0 0 1 0 4

Ourapteryx similaria Leech 14 4 4 3 10 35
Paradaria sp.1 0 0 1 0 0 1
Parectropis sp.1 2 0 0 0 0 2
Phanerothyris sinearia Guenée 64 18 96 35 2 215
Phthonosema tendinosaria 
Bremer 0 0 0 1 0 1

Plagodis pulveraria Linnaeus 11 2 3 1 0 17
Plagodis reticulata Warren 3 13 1 5 18 40
Pomecis sp.1 0 0 0 4 0 4
Pseudostegania defectata 
Christoph 3 0 0 0 0 3

Psyra sp.1 3 0 0 2 2 7
Scopula sp. 45 5 8 0 0 58
Selenia sordidaria Leech 0 0 4 0 2 6
Semiothisa sp.1 0 0 0 0 3 3
Stegania cararia Hübner 0 0 1 0 0 1
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Sterrhinae sp.1 3 5 6 5 9 28
Sterrhinae sp.2 0 1 2 5 7 15
Sterrhinae sp.3 4 0 1 0 0 5
Sterrhinae sp.4 18 2 4 3 2 29
Sterrhinae sp.5 0 0 0 0 2 2
Sterrhinae sp.6 0 1 0 0 1 2
Sterrhinae sp.7 0 0 1 0 1 2
Sterrhinae sp.8 1 0 2 2 7 12
Sterrhinae sp.9 0 0 0 1 0 1
Sterrhinae sp.10 0 1 0 0 0 1
Sterrhinae sp.11 0 2 1 0 0 3
Thera Britannica Truner 0 0 3 3 1 7
Thetidia albocostaria Bremer 3 0 0 0 0 3
Thetidia chlorophyllaria 
Hedemann 3 1 1 0 0 5

Venusia sp.1 4 1 1 3 2 11
Venusia sp.2 1 0 0 1 0 2
Xanthorhoe quadrifasciata Clerck 1 0 0 2 4 7
Xenortholitha propinguata Kollar 31 0 2 2 0 35
Total number of individuals 561 236 380 364 401 1942
Total number of species 104 79 80 81 69 165 

 
 
 


