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Abstract

Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity
with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small
differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of
around 1u at the midline. Acuity, a relative measure of localization ability, displays a non-linear variation as sound sources
are positioned more laterally. All species studied localize sounds best at the midline and progressively worse as the sound is
located out towards the side. To understand why sound localization displays this variation with azimuthal angle, we took a
first-principles, systemic, analytical approach to model localization acuity. We calculated how ITDs vary with sound
frequency, head size and sound source location for humans. This allowed us to model ITD variation for previously published
experimental acuity data and determine the distribution of just-noticeable differences in ITD. Our results suggest that the
best-fit model is one whereby just-noticeable differences in ITDs are identified with uniform or close to uniform sensitivity
across the physiological range. We discuss how our results have several implications for neural ITD processing in different
species as well as development of the auditory system.
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Introduction

The ability to localize sound sources accurately is critical to the

survival of many species and also contributes to the human ability

to follow conversations in noisy environments, the so-called

‘‘cocktail party effect’’ [1]. In order to achieve this, binaural

comparisons of several different features of the sound are made, as

first observed by Lord Rayleigh [2]. In the azimuthal plane

intensity differences caused by a head shadowing effect are the

major cue used by humans for source localization for high sound

frequencies (over 2 kHz). Below 1 kHz, these intensity differences

are much lower and so sound localization is dominated by

comparison of timing differences at each ear, so called interaural

time differences (ITDs) which are based on the detection of

interaural phase differences (IPDs). Brughera et al. [3] have

demonstrated that humans are sensitive to ITD fine structure in

sound up to a limit of 1.4 kHz. The split of localization cue usage

into two broad frequency ranges is known as the duplex theory

[2,4] and is most closely adhered to for pure tones [4–6]. For

broadband sounds the situation is more complex, with ITDs

contributing as a localization cue at higher frequencies [7,8].

However, the contribution from ITDs to sound localization is very

small for high frequencies [9] and our analysis of ITD sensitivity

concerns low frequencies (below 1.4 kHz). Additionally, there is

also some variation between individuals in their cue-usage [10].

Human speech uses frequencies in the low frequency range, with

fundamental frequencies of approximately 130 Hz for men and

220 Hz for women and first formants for vowel discrimination

below 1000 Hz [11–13]. Use of this low frequency range can also

be observed in sung vocalization, where the high note of a soprano

is roughly 1000 Hz and a low note by a bass singer is

approximately 100 Hz. Hence, use of the low frequency region

means that ITDs are the main cue for sound localization in human

vocal communication. Other animals use these interaural com-

parisons in different frequency regions, depending on head size

and cue sensitivity.

Several factors affect the magnitude of ITDs including the

distance separating the two ears (related to head size in most

animals), sound frequency and azimuthal position of the sound

source. For all head sizes and frequencies, a sound produced at the

midline reaches each ear at the same time, assuming symmetrically

placed ears across the midline. ITD increases as the sound source

is positioned at greater azimuth angles. For humans, a sound

located at one side of the head (90u azimuth) generates a

maximum ITD of around 750 ms for low frequency sounds [14].
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Although midline ITD is minimal, the rate of change of ITD

signal with angle is greatest at the midline and humans and other

animals are known to be best at localizing sounds from this

location. The sensitivity with which humans localize a sound is

known as auditory acuity or minimal audible angle (MAA). MAA

is a relative measure of localization ability and is the just-

noticeable difference (jnd) in sound angle. MAA displays a non-

linear variation with azimuthal angle for humans [15,16] and

experiments in barn owls have also uncovered a similar variation

in their localization ability [17]. In both cases, acuity was around

1u at the midline, increasing to around 10u laterally. Angular

variation of acuity depends upon two factors when sound is

localized using an interaural comparison cue [15]. These factors

are the variation of localization cue with azimuth angle and the

sensitivity of cue identification. Angular variation of ITD has been

established using both experimental measurements and modelling

studies [14,15,18,19]. However, sensitivity of ITD identification

depends on the auditory processing system and is less well

characterized. ITD sensitivity is considered to be the just-

noticeable difference in ITD (jnd ITD) and can encompass both

precision and accuracy errors. As discussed later, when accuracy

errors are low, ITD jnds are a measure of precision of ITD

identification [20].

There is some inconsistency in the literature concerning the

variation of jnd ITD with angle. It is sometimes attested that poor

acuity out at the sides (90u) is due to poor lateral ITD sensitivity

arising from fewer neurons detecting long ITDs [21–23].

However, it has been observed in birds that detection of ITDs

by brainstem neurons is equally spread across the ITD range.

There, the neural circuit for detection of the ITD cue uses

coincidence detection of bilateral synaptic input to the nucleus

Laminaris to produce a map of ITDs and hence sound location

[24–27]. In that circuit, longer ITDs are represented equally to

shorter ITDs [28,29]. There may be species differences in the

sensitivity with which ITDs are detected over the physiological

range, just as there are clear differences in how ITDs are coded

within the auditory brainstem [1,30]. Some studies have looked

directly at the sensitivity of ITD identification, observing just-

noticeable differences in perception of the ITD cue for pure tones

[31] and for broadband sounds [32]. For the human pure tone

data of Domnitz and Colburn [31], there are only a few data

points across the physiological ITD range. However, these data

points have been interpreted either as evidence for near constant

sensitivity across the ITD range [33] or as evidence of significantly

poorer sensitivity at longer ITDs compared to short ITDs [31].

Hafter and de Maio [34] also conducted measurements of jnds

ITD using a broadband, click stimulus. Their results demonstrated

a slight gradual increase in ITD jnds when ITD ranged from 0 ms

to 500 ms. Although this range is a significant proportion of the

maximum physiological human ITD, it only accounts for

approximately half the azimuth range, as 500 ms ITD corresponds

to approximately 45u azimuth for frequencies below 1 kHz. The

aim of this study is to gain further insight into the issue of how jnds

ITD vary with ITD magnitude and the overall contribution they

make to sound localization acuity.

Acuity is dependent on both ITD sensitivity and the rate of

change of angle with ITD. The rate of change of angle with ITD

increases as azimuth angle increases, meaning that the same

change in ITD corresponds to a larger change in angle at more

lateral azimuths. Acuity displays a similar overall variation, with

larger MAA values at greater azimuths. We explore the extent to

which acuity variation is influenced by the dual factors of ITD

sensitivity and the angular variation of ITD. Our analysis makes

no assumptions about the neural procedure for identifying ITD

and hence the results concerning sensitivity of ITD identification

are characteristic of the entire ITD processing system rather than a

single part of the auditory pathway.

This study uses previously published data on azimuthal

variation of auditory acuity between 0u and 90u by Mills [15]

and Schmidt et al. [16]. In those studies a psychometric function

was determined using a forced-choice method for constant stimuli

in which tones were presented in pairs and subjects were asked

whether the test sound was located to the left or right of a

reference tone. Acuity values (MAAs) were evaluated as half the

difference between 25% and 75% points on the psychometric

function. In order to utilize the available acuity data we firstly

investigated the most appropriate acoustic model for calculating

interaural comparisons (ITDs and ILDs) for the experimental set

up in those studies. Secondly, we compared ITD predictions from

the acoustic model to empirical measurements and determined

which acuity data sets could be analysed using the acoustic model.

We then calculated ITD jnds for individual acuity data points and

identified possible distributions for ITD jnds across the ITD range.

Finally, the candidate distributions were used to find best-fit acuity

curves for the original acuity data sets. Our results are most

compatible with uniform, or near uniform just-noticeable differ-

ences in ITD identification, increasing the evidence in this

direction from other studies. A similar, but approximate, approach

was used by Kuhn [35] to indicate that Mills’ acuity values could

be compatible with predicted acuity if ITD sensitivity is assumed

to be constant. However, the acoustic model used by Kuhn was

simplified and did not allow for frequency dependence or non-

negligible sound source distance, unlike the acoustic model used in

this study. Additionally, we perform a rigorous analysis of the

acuity data to both suggest and test potential distributions of jnds

in ITD. This leads us to an explanation of how auditory objects at

central angles are localized with greater sensitivity as a direct

consequence of non-linear ITD variation with sound source

location, which dominates over the angular variation of just-

noticeable differences in ITD. This further piece of evidence for

uniform sensitivity of ITD identification has implications for sound

localization acuity in other species and development of the ITD

processing system.

Methods

The acuity data from Mills [15] and Schmidt et al. [16] are for

pure tone sound sources at distances of 0.5 m and 1.35 m

respectively. These distances are not quite far enough to consider

the incident sound as a plane wave. Therefore, to calculate ITD

variation with azimuth angle, we used the Rabinowitz [18] model

based on the Rschevkin solution [36] to determine the pressure on

the surface of a sphere from a point sound source (form Sfe
22pift) at

distance r. We modelled the head as a sphere of radius a, with ears

set back at 100u from the midline [37] as shown in Figure 1A. The

radius of an adult human head is taken as 8.75 cm in all analyses

[38]. Angular frequency is v= 2pf and wave number is k = (2pf)/n
where f is frequency and n is speed of sound in air (340 ms21

based on an ideal gas at 15uC). The head-related transfer function,

H, relates the pressure that would be present in the free field,

Pfreefield, to the pressure developed at the surface of the sphere,

Psurface.

H~
Psurface

Pfreefield

~{
r

ka2
e{ikr

X?
m~0

(2mz1)Pm( cos A)
hm(kr)

h0m(ka)
ð1Þ
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Pmcos(A) are Legendre polynomials of order m and argument

cos(A). Angle A is the angle in radians between a ray from the

centre of the sphere to the sound source and a ray from the centre

of the sphere to the measurement point on the surface. When

considering the pressure at the two ears for a sound source at

azimuth angle h relative to the midline, A = 100u2h for the

leading ear and A = 100u+h for the lagging ear. hm(kr) are

spherical Hankel functions (first kind), order m and argument kr.

h’m(ka) are the derivatives of the spherical Hankel functions,

argument ka. The head-related transfer function, H, is a function

of k, a, r and h and is a complex wave with phase W.

H(k,a,h)~eiw~ cos wzi sin w ð2Þ

The phase for a particular k, a, r and h can be found using the

argument of H:

w~ arg (H)~ tan{1 Im(H)

Re(H)

� �
ð3Þ

By evaluating H at the leading ear (H+) and at the lagging ear

(H2) we were able to determine the IPD for a given incident sound

angle:

IPD~wz{w{~ arg (Hz){ arg (H{) ð4Þ

This allowed us to calculate the interaural time difference (ITD)

for a given frequency of sound from the relation:

ITD~
IPD

2pf
ð5Þ

Our evaluation of the head-related transfer function used a

maximum m value of 6. The difference in predicted ITDs using an

mmax value of 5 and mmax of 6 is less than 1 ms over the whole

0u,h,180u range for a sound of 1000 Hz at a distance of 0.5 m

and is less than this for lower frequencies or greater sound source

distances. The interaural level difference (ILD) in decibels was

calculated from the difference in magnitude of the head related

transfer function at each ear:

ILD~20Log Hzj j=H{j j
� �

ð6Þ

For calculations of acuity, the rate of change of azimuth angle

was determined using the following identity for total derivatives,

which is valid when derivatives are continuous and non-zero and

therefore can not be used at exactly 90u or 270u.

Figure 1. Model predictions for human ILDs and ITDs. A, Model to determine ITD or ILD variation with azimuth angle h for the experimental
set up in Mills [15], Schmidt et al. [16] and Kuhn [14]. The human head is modelled as a solid sphere, radius a (8.75 cm) and the sound source is
modelled as a point source, frequency f, and distance r from the centre of the head. Ears are positioned 100u away from the midline. B, Azimuthal
variation of interaural level difference (ILD) for sound source at 0.5 m, 250 Hz, 500 Hz, 750 Hz or 1000 Hz, as predicted by our acoustic model for the
experimental set up by Mills. C, Comparison of predicted curves for interaural phase differences (IPDs) and empirical data points from Mills [15],
r = 0.5 m. D, Comparison of model interaural time differences (ITDs) with empirical data from Kuhn [14], r = 3.0 m.
doi:10.1371/journal.pone.0089033.g001
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dh

dITD(h)
~

1

dITD(h)

dh

ð7Þ

All calculations for model predictions and best-fit comparisons

to human data were performed using Wolfram Mathematica

7.0.0, Wolfram Research Inc, Champaign, IL, USA. Best-fit

curves were determined using the NonLinearModelFit function for

a least-squares fit of data points to constant, linear or non-linear

functions. Best-fit curves were calculated using regression analysis,

determining best-fit parameters to a confidence level of 95%.

Variation of angle h with ITD in the time domain was determined

using numerical interpolation of data points of the angle at which a

given ITD occurs. Adjusted R2 and Corrected Akaike Information

Criterion (AICc) values were calculated for best-fit solutions. AICc

values are a measure of the relative quality of a statistical model for

a given set of data and are founded on estimates of the information

lost when a given model is used to represent the process that

generates the data [39]. AICc values are used for acuity model

comparisons as these are non-linear functions for which adjusted

R2 values can not be used as a goodness of fit measure.

Comparative predictions of acuity for human newborns and

adults were calculated for a distant 500 Hz sound source,

DITD = 15 ms and head radius for newborns calculated from

World Health Organization child growth standards [40], taking

the average of girl and boy 50th percentile values for head

circumference.

Results

Auditory acuity depends on both angular ITD variation and

ITD sensitivity (jnd ITDs). We used the data on the variation of

human acuity with azimuth angle from two studies, Mills [15] and

Schmidt et al. [16], for pure tone sounds at 250 Hz, 500 Hz,

750 Hz and 1000 Hz (Mills) or 500 Hz and 1000 Hz (Schmidt).

The Mills study displays acuity data in two figures (5 & 6). We

consider the data obtained from the figures both separately and

combined in this study. However, the acuity data from the Mills

study and the Schmidt study are not combined due to their

different experimental set ups. Firstly, we found the most

appropriate acoustic model for ITD variation in the Mills and

Schmidt experiments. We then determined the acuity data for

which ITD is used as the localization cue. Subsequently, we used

the acoustic model to calculate ITD jnds (DITDs) for each of the

individual acuity data points and investigated their distribution.

We used a standard and well-regarded model of the head as a

solid sphere, radius 8.75 cm, with ears at 100u away from the

midline. Although this is not an exact physical model for a head it

is a good analytical approximation and one that has been shown to

be a close approximation for ITD variation at low frequencies

around a morphologically human mannequin head [41]. In both

the Mills and Schmidt data, the incident sound is a pure tone from

a point source at distance r from the centre of the head. These

distances were 0.5 m for the data from Mills and 1.35 m for the

data from Schmidt et al. Interaural time differences (ITDs) or

interaural level differences (ILDs) were calculated by evaluating

the argument or magnitude respectively of the head-related

transfer function (H) at each ear (eqns 4,5 & 6). We calculated the

head-related transfer function (H) using the solution by Rabino-

witz et al. [18] (reproduced by Duda and Martens [19]), for a

point sound source of theform Sfe
22pift where Sf is a frequency-

dependent amplitude (Figure 1A). The acoustic model we

employed is appropriate for the experimental data and we retain

the frequency dependence of ITD by calculating the head-related

transfer function to a high degree of accuracy, in comparison to

the frequency-independent Kuhn approximation [42].

We aimed to investigate the sensitivity of ITD identification and

therefore only used the acuity data for which ITD could

reasonably be asserted to be the dominant sound localization

cue. To determine which acuity data sets were suitable, we

investigated whether ILDs were significant in the acuity studies, or

whether ITDs dominated in sound source localization. It has been

demonstrated that ILDs as well as ITDs are above threshold

detection in the low frequency region when the sound source is

close to the head [19,41]. To investigate whether this is the case

for the experiments in Mills and Schmidt et al., angular variation

of ILD and ITD were calculated for a sound source 0.5 m away, at

250 Hz, 500 Hz, 750 Hz and 1000 Hz (Figure 1B), as for the

Mills data. ILD is a monotonic function of azimuth at 250 Hz and

500 Hz, similar in form to IPD and ITD azimuthal variations

(Figure 1C,D). At 750 Hz and 1000 Hz the ILD variation

displays significant changes in gradient around 45u azimuth,

markedly different to ITD variation which does not display this

significant change in gradient. The sensitivity threshold to ILD

detection in humans is of the order of 0.5–1.5 dB [43]. We found

that ILD magnitude is greater than this sensitivity threshold for the

majority of azimuth positions and could therefore act as a sound

localization cue in the Mills experiment. ILD variation across the

azimuth range (approximately 6 dB at 500 Hz) is of the same

order of magnitude as the sensitivity of ILD detection (approx-

imately 0.5–2 dB [31,43]). However, the ratio of ITD range to

sensitivity is approximately 75:1 (755 ms range at 500 Hz and 10–

20 ms jnd ITD [31]). Therefore, it can be seen that localization is

dominated by the ITD based component. In addition, Wightman

and Kistler [44] have demonstrated that location judgements are

perceptually dominated by ITDs at low frequency when both ITD

and ILD cues are present. For the Schmidt data, ITD domination

of sound source localization is an even better approximation as the

extra distance between the head and sound source (1.35 m)

reduces ILDs at all angles and frequencies. However, owing to the

non-monotonic variation of ILD above 750 Hz as well as other

factors described below, ITD sensitivity was investigated using the

available acuity data at 250 Hz and 500 Hz only.

To test our model of angular ITD variation we compared IPDs

and ITDs measured by Kuhn [14] and Mills [15] respectively to

IPD and ITDs predicted by our model. We found a good fit

between empirical and modelled values at and below 500 Hz, but

above 500 Hz they diverge from each other in the 30u–60u
azimuth region (Figures 1C,D). This divergence could be due to

variables not included in our model such as non-spherical head

shape, which has been shown to influence ITDs in a frequency-

dependent manner for mid-range azimuth angles [41]. Addition-

ally, we excluded the use of acuity data at 750 Hz and 1000 Hz as

these frequencies lie above the phase ambiguity limit. The phase

ambiguity limit is the frequency at which the IPD first reaches

180u at any azimuth angle [45]. Above this frequency there is

ambiguity as a given IPD could correspond to a sound source from

more than one angle. Although the methodology used in Mills and

Schmidt studies are such that confusion between the hemispheres

is less likely as relative position (left/right) rather than absolute

position is ascertained [45], it is possible that phase ambiguity

could have affected the resultant acuity data. Using our ITD

model, the phase ambiguity limit is predicted to be at 695 Hz.

Further predictions of the phase ambiguity limit for different head

sizes are shown in Figure 2. As head size decreases, the phase

ambiguity limit increases so animals are able to use IPD and hence

Uniform jnds in Human ITD Identification
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ITD as a localization cue up to higher frequencies. We concluded

that ITDs can be considered as the dominant sound localization

cue for the Mills and Schmidt acuity data at or below 500 Hz and

we restricted further analysis to this frequency range. We also

concluded that there is a good fit between ITD data at these

frequencies and predictions of ITD using our acoustic model.

These conclusions allowed us to model ITD variation with sound

source angle and hence how the decrease in the rate of change of

ITD with azimuth angle contributes to the increase in MAA values

with angle.

Acuity, the sensitivity of relative sound localization (Dh), is

dependent on two factors; jnds in ITD (DITD) and the rate of

change of angle with ITD. The latter can be calculated using our

acoustic model. Our first approach used acuity data and the rate of

change of angle with ITD to consider the potential variation of

DITDs. Using the relationship shown in Figure 3A, each acuity

data point was considered separately and a value for DITD

determined. As shown for sample data in Figure 3B, these DITDs

were plotted against the predicted ITD from our model for the

corresponding angle. We observed that predicted DITDs for

individual acuity data points could potentially be described as either

a uniform distribution of DITD across available ITDs or as one

where DITD varied linearly across the range. These two candidate

distributions are shown schematically in Figure 3C and it is

assumed that only one distribution is implemented across the

physiological ITD range. We considered what the effect on acuity

would be if DITD was inversely proportional to ITD (smaller DITDs

for larger ITD magnitudes). In that case, localization acuity would

be poor at the midline, best between 30u and 60u and increasingly

poor again towards 90u (data not shown). As this is contrary to

observed human behaviour it was not considered further.

The best-fits for uniform or linear model distributions are shown

in Figure 3D for the 5 different data sets. The uniform

distributions all slightly overestimate DITD at the midline, except

for the Schmidt data set. The best-fit linear distributions are

better at accounting for midline ITDs. However, the overall

goodness of fit values are very similar for the two candidate

distributions, which is indicated by similar adjusted R2 values. The

proportionality constants (kp) for best-fit linear distributions are

low, ranging between 0.0045 and 0.011 for the Mills data. These

kp values relate to differences in DITD of only 3.4 ms and 8.3 ms

respectively, for sounds at 0u and 90u azimuth. We also observed

that the magnitude of our predicted DITDs are of a similar

magnitude to the just-noticeable differences in ITD found by

Dominitz and Colburn [31], demonstrating broad agreement

between an experimental approach to determine DITDs and our

modelling approach.

Both uniform and linear DITD candidate distributions were

tested against the original acuity data. Best-fit acuity curves for

uniform or linear distributions are shown in Figure 4 along with

their parameters and corrected Akaike information criterion

values (AICc). Our predicted acuity values rise steeply towards

infinity around 90u, where ITD is maximum (our idealised acuity

is discontinuous at ITDmax). Again, we found that the best-fit

linear jnd ITD distributions have low proportionality constants

and are essentially close to the uniform case. AICc values were

used to evaluate how well the non-linear acuity models account for

the data. The value of AICc is used to compare different models

for the same data set, a lower AICc value indicates a better

explanation of the data by the model. The AICc calculations take

into account the the number of parameters in a model, thus

including a measure of model complexity in order to prevent

overfitting of data. We used the corrected version of AIC owing to

the low number of data points per data set. We found that all of

the data sets except one (Mills figure 5) have lower AICc values for

the uniform DITD best-fit curves than for the linear DITD best-fit

curves. This indicates that uniform DITD is a slightly more

appropriate model for DITD variation than linear DITD as it

accounts for the data without introducing unnecessary complexity.

Linear DITD best-fit curves also have very low proportionality

constants, essentially making them close to the uniform model.

Our results demonstrate that uniform or near uniform ITD jnds

lead to poor lateral acuity compared to the midline. We next asked

whether constant acuity across all angles was hypothetically

possible for any binaural listener. We reasoned that any

physiological system is subject to a limit in DITD that relates to

the maximum available sensitivity of the ITD processing system

across all ITDs. In essence, it is not possible to have zero DITD, ie.

infinitely good sensitivity. We calculated the variation in DITD

that would be required to produce a constant acuity at all angles

(Figure 5). We found that in both the time domain and angular

domain the required ITD jnds decrease to zero for sounds located

at 90u. Thus, the minimum available DITD will become greater

than the DITD distribution producing constant acuity at some

point in the 0u to 90u range. In terms of acuity, this suggests that

acuity due to a limit in ITD processing will dominate at lateral

angles even if a processing system attempts to produce constant

acuity across all angles. This limitation of poor lateral acuity for

binaural pure tone detection is presumably overcome by a

listener’s ability to move their head and place the sound object

closer to the midline and hence towards best acuity. The form of

the lower bound on acuity would be different if the angular

variation of ITD changed. For example, the presence of large

pinnae results in deviation of ITDs from those predicted by a

spherical head model [46–49].

Overall, the non-linear angular variation of ITD creates a lower

bound on acuity for a given head size and minimum DITD

(sensitivity limit of ITD identification). These analyses also

demonstrate that the dominant component in human pure tone

localization acuity is due to the variation of ITD with angle and

that the sensitivity of ITD identification by the processing system is

uniform or close to uniform across the ITD range for low

frequency sounds.

Figure 2. Phase ambiguity frequency limit for varying head
size. This is the frequency at which interaural phase difference first
reaches 180u. This model is for ears at 90u away from the midline. In this
case the human phase ambiguity limit is 685 Hz (695 Hz for ears at
100u) for a head radius of 8.75 cm. As head size increases animals are
restricted to using IPD as a non-ambiguous sound localization cue at
lower frequencies. Animals with smaller heads have a greater range of
frequencies in which IPD is a non-ambiguous cue.
doi:10.1371/journal.pone.0089033.g002
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Discussion

We have taken an analytical approach to determine the most

appropriate description of just-noticeable differences in ITD

identification for pure tone sounds. Our analyses are based on

using angular acuity data where ITD can be considered as the

dominant interaural cue for the sound localization task. Our

results are most consistent with uniform or near uniform ITD jnds

to describe previously observed psychophysics of human pure tone

source localization. Additionally, we determined that there is a

Figure 3. Predicted values of DITD determined from acuity data. A, Relationship between localization acuity (Dh), just-noticeable difference
in ITD identification (DITD) and the angular variation of ITD. B, Example of how DITDs are determined for each individual data point in an acuity data
set. C, Candidate models for DITD distributions across ITD. Uniform distributions are described by parameter c0 and linear distributions are described
by parameters cp and kp. D, Best-fit uniform or linear distributions for each acuity data set under consideration. Overall goodness of fit is similar for
both distributions. Midline predictions of DITD are better for the linear distribution, but the proportionality constant is low in all cases and negative in
one case (Schmidt data), making them close to the uniform case.
doi:10.1371/journal.pone.0089033.g003

Figure 4. Best-fit acuity curves for uniform or linear DITD distributions. Candidate uniform and linear DITD models used to find best-fit
acuity (Dh) distributions for five acuity data sets. Uniform distributions are described by parameter c0 and linear distributions are described by
parameters cp and kp. As with the best-fit descriptions of DITD distributions, best-fit acuity distributions have low kp values for the linear DITD case,
close to the uniform case. AICc values indicate that the majority of acuity data sets are more appropriately described by uniform DITD distribution as
these have lower AICc values than for a linear DITD distribution (comparing the same data sets).
doi:10.1371/journal.pone.0089033.g004
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limiting form of acuity variation due to the maximum sensitivity

available to any binary ITD processing system. This limiting,

lower bound on acuity has the same form as for uniform jnd in

ITD, with good acuity at the midline which is fairly constant out to

60u but then becomes increasingly poor for more lateral pure tone

sound sources.

Our prediction of uniform or near uniform ITD jnds is a

property of the whole ITD processing system and is consistent with

the ITD jnds found by Dominitz and Colburn [31]. Although our

approach is not a direct measurement of ITD just-noticeable

differences it adds insight into the role they play in sound

localization on two accounts. Firstly, any human neural processing

model of auditory information for sound localization does not

require the system to be less sensitive at processing long ITDs in

comparison to shorter ones. The variation of ITD as a localization

cue results in poor lateral acuity compared to the midline when all

ITDs are identified with the same level of sensitivity. Secondly, no

matter what neural processing strategy is adopted, all binaural

listeners are subject to a limit in their ability to identify an ITD.

For listeners where the head can be modelled as a sphere, without

large pinnae, the limit of acuity takes a similar form to that shown

for humans. This minimum available DITD may be lower than

the actual DITD for any given interaural time difference, but it

results in a lower bound on acuity which dominates for lateral

angles.

Our analysis required us to ascertain which acuity data sets were

suitable for determining ITD jnds and led to us rejecting

frequencies higher than 500 Hz owing to the likelihood of ILD

as a significant localization cue and the additional potential

complications of the phase ambiguity limit in source localization.

An additional consideration we made in relation to the acuity data

was whether the data could be used as a measure of sensitivity of

angle identification. This requirement highlights the differing

effects of accuracy and precision errors. Accuracy errors affect the

ability of a listener to determine the absolute location of a sound

source and can be manifested as bias in the identified angle of a

sound source. In humans [50] and owls [51], there is evidence of a

bias towards the midline for sound source angles around 90u. This

behaviour may be influenced not only by ITD identification but

also by cues such as spectral shifting by the pinnae, which allows

discrimination between front and back [52]. In contrast, precision

errors are an indication of the spread around the perceived sound

source location for repeated localization attempts. The acuity data

used in this study are minimum audible angles, which are

measures of the ability to discriminate the relative location of two

sound sources and hence are just-noticeable differences in sound

location. Previous studies have reasoned that minimal audible

angles are a measure of localization precision [53–55]. However, it

has been shown by Moore et al. [20] that this relationship is only

valid when accuracy errors are small. As we do not have

information regarding the accuracy of location judgements for the

data sets from Mills or Schmidt et al., we regard the MAAs in this

study as just-noticeable diffferences in angle and hence our

conclusions concern just-noticable differences in ITD and could be

a combination of precision and accuracy errors in ITD

identification.

How do constant just-noticeable differences in ITD relate to

processing of the ITD signal? Our conclusion that ITDs are

processed with uniform jnds results from an analytical model that

encompasses the entire auditory system, irrespective of how ITDs

are actually coded within the nervous system. Just-noticeable

differences in ITD identification are often used as a behavioural

outcome to test models of binaural neural processing, which is one

of the reasons for undertaking this study. Early models for binaural

neural comparisons required the processing system to have fewer

nerve fibres encoding for long ITDs [21,56]. This distribution of

binaural-comparison detectors was needed in order for model

outcomes to agree with tone-in-noise experiments and has also

been used as weighting variable in straightness and centrality

models [22,23]. However, experimental studies have demonstrat-

ed a different distribution of ITD-sensitive neurons in the inferior

colliculus of the cat [33,57] and guinea pig [58], with a greater

number of neurons out towards long ITDs, including some outside

of the physiological range. A binaural comparison model

incorporating this mammalian distribution [33] predicts pure

tone just-noticeable ITD differences to be almost constant across

ITD when neural processing depends on phase differences as an

independent variable rather than time differences. Phase differ-

ence dependence is also demonstrated in the study by McAlpine et

al. [58]. When IPDs instead of ITDs are considered as the

binaural comparison cue, our results are qualitatively the same,

with the most appropriate model of DIPD as uniform across IPD,

but varying in magnitude between 250 Hz and 500 Hz.

Investigations into the most appropriate model for binaural

neural processing have also demonstrated a unifying principle

across species, that ‘‘the ITDs an animal encounters should be

coded with maximal accuracy’’ [59]. This principle results in

processing strategies that vary across species and across frequen-

cies for a single species in order to maximize the information

available. Across-species comparisons have also utilized over-

arching principles such as the ‘‘lower envelope principle’’ [60,61]

to explain variations and similarities of ITD and ILD cue-usage

and localization ability. It should be noted that the analytical

model we used to determine ITD variation with azimuth angle can

Figure 5. The effect of minimal available DITD on acuity. Just-noticeable differences in ITD identification (DITDs) required to produce the same
acuity (1u) at all angles, shown for the time domain (A) and angular domain (B). This is compared to an example of the minimum possible DITD
available in the ITD identification system (across all ITDs). At some point across the range, the minimum DITD is greater than the DITD required for
constant acuity, leading to poorer acuity laterally than at the midline (C). The crossover point depends both on the maximum sensitivity of the
system (minimum DITD) and the value of constant acuity.
doi:10.1371/journal.pone.0089033.g005
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be used to find the probability distribution of encountering any

given ITD. The probability distribution for ITD is often required

in neural processing models and Figure 6 demonstrates that if

there is an equal probability of a sound coming from any angle,

the probability of any given ITD increases as its magnitude

increases. Overall, our results suggest that predictions from human

neural processing models should result in uniform or near uniform

ITD sensitivity for low frequency, pure tone stimuli.

Within the brainstem of birds, constant ITD jnds are suggested

by physiological recordings of uniform, equally spaced ITD tuning

curves in the nucleus Laminaris [28,29]. Our results therefore also

predict that if avian ITD jnds are constant across ITDs then acuity

variaton will take the same form across ITDs as shown for

humans. However, it is possible that higher-order processing in the

auditory pathway may result in deviation from constant ITD jnds.

For owls, which rely heavily on sound localization for nocturnal

hunting, studies have been carried out on both localization

behaviour as well as the discriminatory properties of the midbrain

auditory space map. Sound localization ability is known to be

similar to humans, with best acuity at the midline, becoming

increasingly poor out towards 90u [17,51]. Further acuity

observations with pure tone stimuli and models of owl ITD

variation with angle, would be required to use the methodology

presented here to determine whether owls are similar to humans

and operate with constant sensitivity of ITD identification. Bala et

al. have conducted experiments that assess the discriminatory

performance of the auditory space map at the midbrain level of

auditory processing [62,63]. In order to determine whether jnds

ITD are uniform at this level of processing would require

extension of that assessment across the whole ITD range.

Sound localization acuity would be expected to show variability

with head size through head size dependence of ITD. Consider-

ation of head size raises some interesting questions concerning the

plasticity of auditory acuity during development. As an individual

matures and its head size increases, the maximum ITD increases.

The angular variation of ITD has been experimentally determined

for several different animals through their development, including

cat [48], chinchilla [64] and feret [46]. Those studies demonstrate

that the rate of change of ITD with angle (ITD slope) around the

midline increases during maturity. If just-noticeable differences in

ITD are assumed to be constant across the ITD range then

measurement of the ITD slope can be used as an indicator of

spatial acuity. The experimental measurements of ITD during

development agree with predictions from our model that even if

the sensitivity of ITD identification does not improve during

neural processing development, increased head size results in

better midline acuity as an animal matures.

The effect of head size on sound localization during human

development can be seen by comparing maximum ITD and acuity

between newborns and adults. Maximum ITD is 483 ms for a

newborn (5.44 cm head radius) compared to 755 ms for an adult

(see Methods) and the plasticity needed to accommodate this

change in ITD representation of azimuth can be seen from our

prediction that newborn maximum ITD corresponds to 38u
azimuth for an adult. Studies in owl [65] have demonstrated

plasticity in the auditory processing system during head develop-

ment and we postulate that plasticity would also be required for

humans in approximately the first 30 months of life, during which

the head reaches 95% of adult size [64,66]. Plasticity of the neural

system would be expected to affect jnds ITD, which would in turn

affect localization acuity. However, the change in head size also

affects angular ITD variation, resulting in a decrease in midline

MAA from 1.7u at birth to 1.07u as an adult (constant jnds ITD of

15 ms for both newborn and adult). These predictions demonstrate

how our method of acuity analysis could be used for further

investigation of jnds ITD and plasticity during human and animal

development.

We have demonstrated that the most appropriate model for

human sensitivity of ITD identification (just-noticeable differences

in ITD) is one that is uniform or near-uniform for all physiological

ITDs at a single low frequency. The non-linear angular variation

of ITD creates a lower bound on acuity for a given head size and

greatest available ITD sensitivity. Our results show that acuity

towards 90u is always predicted to be worse than at the midline,

whatever the neural basis for ITD processing.
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