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Abstract

Objective: To develop a model to simulate visual fields (VFs) in glaucoma patients, and to characterize variability of the
Mean Deviation (MD) VF summary measurement using real VFs and simulations.

Methods: Pointwise VF variability was previously approximated using longitudinal VF data (24–2 SITA Standard, Humphrey
Field Analyzer) from 2,736 patients; these data were used to build a non-parametric model to simulate VFs. One million VF
simulations were generated from 1,000 VFs (1,000 simulations per ‘ground-truth’ VF), and the variability of simulated MDs
was characterized as a function of ground-truth MD and Pattern Standard Deviation (PSD).

Results: The median (interquartile range, IQR) patient age and MD was 66 (56 to 75) years and 23.5 (28.3 to 21.1) decibels,
respectively. The inferred variability as a function of ground-truth MD and PSD indicated that variability, on average,
increased rapidly as glaucoma worsened. However, the pattern of VF damage significantly affects the level of MD variability,
with more than three-fold differences between patients with approximately the same levels of MD but different patterns of
loss.

Conclusions: A novel approach for simulating VFs is introduced. A better understanding of VF variability will help clinicians
to differentiate real VF progression from measurement variability. This study highlights that, overall, MD variability increases
as the level of damage increases, but variability is highly dependent on the pattern of VF damage. Future research, using VF
simulations, could be employed to provide benchmarks for measuring the performance of VF progression detection
algorithms and developing new strategies for measuring VF progression.
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Introduction

Glaucoma is the leading cause of irreversible blindness

worldwide [1], affecting more than 70 million people [2]. The

disease is characterized by damage to the optic nerve head and

retinal nerve fibers, which can often be observed using a slit-lamp

examination. Glaucoma is frequently, but not invariably, associ-

ated with raised intra-ocular pressure. Early detection is important

for blindness prevention, and regular monitoring for deterioration

(‘progression’) in vision is a fundamental aspect of clinical

management. The extent of damage to the visual field (VF),

which is the area of our vision in which objects can be seen, relates

to the reduction of vision-related quality of life in glaucoma

patients [3–5]. Glaucoma management aims to preserve the

patient’s vision and VF. Tests of vision, such as the VF test, are,

therefore, of considerable clinical importance. VF testing (also

known as perimetry) aims to locate damaged areas in a patient’s

field of vision using an automated machine that systematically

measures the patient’s ability to identify the presence of a small

spot of light at different locations in their VF (‘contrast sensitivity’).

Interpretation of results from standard automated perimetry (SAP)

is challenging because VF measurements are very variable, as

revealed by psychophysical experiments using frequency-of-seeing

(FOS) procedures [6–8] and test-retest clinical studies [9–16].

Variability of SAP measurements necessitates frequent monitoring

and/or a long period of time to accurately detect true disease

progression [17] [18].

There is no perfect technique for diagnosing glaucoma or

monitoring the disease. The lack of a definitive measurement

makes it very difficult to gauge the performance of instruments,

such as SAP, to evaluate glaucomatous progression. In particular,

quantitative assessment of any algorithm or test requires access to

ground truth, which is not available for the measurement of

contrast sensitivity in SAP. Hence, computer simulation provides a
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means for generating artificial VF data consistent with real results

obtained by SAP. For over twenty years, simple computer

simulations have been used to assess VF test strategies and

contrast simulated results with real VF data [18–26]. Simulation

provides a reproducible and adjustable way of investigating the

behavior of cross-sectional and longitudinal VF data in large

volumes. In a recent study, we explored the relationship between

VF variability and contrast sensitivity in VFs using a statistical

method to quantify heteroscedasticity in longitudinal data [27].

We investigated almost 15,000 VFs from over 2,700 patients tested

in standard clinic conditions. Approximately one million residuals

were extracted to characterize VF variability by sensitivity level by

fitting a linear model of pointwise sensitivity measurements

(measurements of contrast sensitivity at different locations in the

VF) against time of follow-up. The residuals associated with each

fitted-sensitivity level were used in the current study in order to

build a novel non-parametric computational model for generating

VF simulations.

Unlike previous VF simulations [18,25,26,28], our computer

model is non-parametric and simulates VF sensitivity using

empirical estimates of VF variability. In addition, previous

simulations [18,25,26] have been based on estimates of variability

in just tens of subjects in FOS studies [7], while our model is based

on VF variability in almost 3,000 clinic patients, constituting

almost one million data points. In this study, we describe the

model and apply it to generate one million VF simulations from

1,000 ‘ground-truth’ VFs (1,000 simulations per real VF). These

simulations were then analyzed to examine the variability

associated with the ‘Mean Deviation’ (MD) VF summary

measurement, as a function of the level of MD [29]. The MD is

a summary statistic, which measures the mean increase or decrease

of a patient’s overall VF compared to a person with healthy vision

of the same age. Another summary statistic, ‘Pattern Standard

Deviation’ (PSD), measures the irregularity of patients’ VFs. Large

PSD values tend to indicate localized damage; however, patients

with severe damage throughout their VF will have a relatively

small PSD measurement. Mean Deviation and PSD are routinely

used in clinical practice to identify glaucomatous defects and track

progression of the disease. Nevertheless, the relationship between

the levels of MD and PSD and the variability of MD is unclear.

Some reports suggest that MD variability is non-stationary,

increasing with disease severity in glaucoma patients [30–32].

However, no research to date has reported on the influence of

pointwise VF variability, and therefore, the pattern of VF damage,

on the variability of MD. A better understanding of MD variability

will help clinicians to decipher glaucomatous VF test results and

assess progression of this index.

Materials and Methods

Ethics statement
Patients’ data was anonymised prior to investigation and did not

contain personal or sensitive information. As such patients’ written

consent for their data to be used in the study was not required.

The study adhered to the tenets of the Declaration of Helsinki and

was approved by the research governance committee of City

University London, United Kingdom.

Study sample: VF variability
The study sample used to derive pointwise VF variability, which

forms the foundation of the simulation model, is described in detail

elsewhere [27]. In summary, a retrospective analysis of 14,887

anonymised VFs from 2,736 eyes from 2,736 patients (one eye

randomly selected from each patient) attending the Glaucoma

Clinics of Moorfields Eye Hospital, London between 1997 and

2009 was conducted. All VFs were carried out with the Humphrey

Field Analyzer (HFA; Carl Zeiss Meditec, Dublin, CA) using the

24–2 test pattern with a Goldmann size III target and the SITA

Standard testing algorithm. The median (interquartile range)

follow-up was 6 (5 to 7) VF tests spanning 5.5 (3.9 to 7.0) years.

Figure 1. Distributions of VF variability according to sensitivity levels (ŶY ): 0, 6, 14 and 22 dB. The blue line in the bottom right plot
illustrates a single simulated draw from this distribution.
doi:10.1371/journal.pone.0083595.g001
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The relationship between variability and measured-sensitivity was

analyzed by examining the residuals from linear regression of

pointwise sensitivity over time. Residuals from pointwise linear

regression of sensitivity (the Y variable in decibels (dB)) against

time (the X variable in years) were examined for each eye’s series

of VFs (2,736 eyes) using ordinary least squares linear regression

(OLSLR) and Tobit linear regression (TLR).[33] The residuals

extracted from linear regression were binned into single dBs bins

in the range [0 to 36] dB according to the fitted-sensitivity value

rounded to the nearest whole decibel; see Figure 1. The residuals

from OLSLR were then used to simulate pointwise VF sensitivity

in our model, described next. All test locations of a given patient

were included in the simulations.

Visual field simulations
The residuals extracted from OLSLR of longitudinal pointwise

VF sensitivity in [27] underpin our VF simulation model; given a

‘true’ sensitivity value, they tell us the range of measured-values

expected for any given test – thus allowing VF pointwise sensitivity

to be simulated. For example, to simulate VF sensitivity when the

‘true’ value is equal to 22 dB, we randomly sample from the

distribution of residuals associated with a fitted-sensitivity of 22 dB.

The simulation is demonstrated in the bottom right distribution of

Figure 1 (ŶY = 22 dB); in this plot approximately 50,000 residuals

are associated with an OLSLR fitted-sensitivity bin of 22 dB while

the blue line signifies the result from randomly drawing a single

residual from the distribution. In this simulation, the VF sensitivity

at that one location would be equal to 18 dB because the sampled

residual was equal to 24.07 dB. In order to simulate an entire VF

test, sensitivities are simulated one-by-one for each point in the

entire VF; see Figure 2. Next, MDs and PSDs were calculated by

first transforming raw sensitivities to total deviation values using

published normative values describing the relationship between

age and sensitivity in healthy individuals [29]. The MD was then

Figure 2. Ground-truth VF (A). The left hand grid of numbers illustrates pointwise sensitivity for all 52 locations in the VF, while the right hand
image shows the corresponding grayscale plot. The variability of the shaded VF point (sensitivity equal to 22 dB) is indicated in the bottom right
distribution in Figure 1. Simulated VF (B) derived from ground-truth VF shown in panel A. The left hand plot illustrates simulated pointwise
sensitivities for all locations in the above VF, while the right hand image shows the corresponding grayscale plot. The shaded VF point (sensitivity
equal to 18 dB) was derived by the simulated draw shown in the bottom right distribution in Figure 1.
doi:10.1371/journal.pone.0083595.g002
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calculated as the weighted mean of the total deviation values, with

weights equal to the inverse of the variance observed at each VF

location in the healthy reference group; as shown in Figure 3 of

[29]. The PSD, on the other hand, was calculated as the weighted

standard deviation of the total deviation values, with weights also

derived from Figure 3 of [29]; this is identical to taking the

weighted standard deviation of the pattern deviation values. Blind

VF points (displayed as ‘‘,0’’ in the HFA printout) were coded as

0 dB.

One thousand simulated VFs were generated from each of

1,000 patients’ VFs (1,000 eyes) visiting Moorfields Eye Hospital

between 1997 and 2009. These patients were not included in the

analysis to establish pointwise VF variability in [27]. All VFs were

carried out with the HFA using the 24–2 test pattern with a

Goldmann size III target and the SITA Standard testing

algorithm. Simulated pointwise VF sensitivities were generated

via random sampling from the corresponding distributions of

residuals for each ‘true’ sensitivity; the process was iterated for all

52 VF test points (excluding locations in the blind spot) in order to

generate 1000 simulated VFs for every ground-truth VF. Finally,

entire HFA-like VF printouts including greyscales were generated

using custom-written R code; see Figure 3.

All statistical analyses and computational work (including VF

simulations) were carried out using custom-written software in the

open source programming language, R [34].

Results

Table 1 summarizes the characteristics of the 1,000 patients that

make up the 1,000 ground-truth VFs.

Measurement variability in pointwise VF sensitivity varies

significantly with the level of measurement; variability is small at

high sensitivity levels, but markedly increases as sensitivity

decreases to a level of 10 dB, where residuals span almost the

entire measurement range of the instrument. At sensitivities less

than 10 dB, the observed reduction in variability can be explained

by the limited measurement range of SAP (0 to 50 dB), as revealed

by the negative skew in the distributions at 0 dB and 6 dB levels in

Figure 1.

We investigated the relationship between MD variability, the

levels of MD and PSD, and the pattern of pointwise VF damage,

through simulation. Figure 4 shows the variability of MD,

according to the standard deviation (SD) of 1000 simulated VFs

(MDs), as a function of the ground-truth level of MD (see

Figure 4A) and PSD (see Figure 4B). The dashed dark blue lines in

Figure 4 indicates the locally weighted polynomial regression [35]

(‘LOESS’ regression), which gives an indication of how variability

changes, on average, with the change in level of MD. The red

lines, on the other hand, illustrate the results of fitting a second

order model with a quadratic predictor: MD in Figure 4A

(adjusted R2 = 0.55) and PSD in Figure 4B (adjusted R2 = 0.38).

Figure 4A suggests that variability tends to increase as the level of

MD reduces, with some evidence that variability peaks around

220 dB. Figure 4B suggests that variability tends to increase as the

level of PSD increases, with some evidence that variability peaks

around 8 dB. For VF loss associated with early glaucoma, where a

significant amount of MD loss is approximately defined as 22 dB,

variability is half that observed when MD is equal to 210 dB,

which corresponds to VF loss associated with moderate glaucoma

[36]. Interestingly, as demonstrated by the considerable scatter in

Figure 4A and 4B, the standard deviation varied more than three-

fold between patients with approximately the same levels of

ground-truth MDs, from about 0.2 dB to over 0.7 dB (see Patients

A and B in Figure 4C).

Discussion

Standard automated perimetry continues to be the yardstick for

detecting and monitoring glaucoma in clinical practice and clinical

trials of new therapies for the disease. Nonetheless, SAP is affected

by factors including learning effects and patient fatigue [37,38].

Measurement variability is also induced by estimation errors

associated with testing strategies, such as staircases, used in clinical

SAP [21,24]. Several studies have shown that a reduction in VF

sensitivity is accompanied by an increase in response variability

[9–16]. This combination of issues leads to considerable difficulties

in differentiating true VF change from inherent noise, making

glaucoma management and treatment decisions very challenging.

Characterizing properties of VF measurements and assessing

the performance of VF progression algorithms requires an

independent gold-standard, which is not available for retinal

contrast sensitivity. This problem is widely recognized in glaucoma

research and many substitute approaches of classifying ‘true’

glaucomatous progression have been attempted [24,39]. Visual

field models offer an alternative benchmark and permit large

amounts of data to be simulated, with known characteristics, for

subsequent analysis. In this way, the importance of different

variables on VF measurements can be identified. Visual field

simulations have previously been used in glaucoma research to

evaluate testing strategies and progression detection tools [18–

25,40]. However, earlier models have been based on limited VF

data, and so may not accurately reflect clinical VF measurements.

For instance, some models [18,25,26,28] have been based on a

linear equation for VF variability in [7], which was based on FOS

curves with absolutely no data below 10 dB. Furthermore, these

previous models have assumed that variability is Gaussian-

distributed. Conversely, our simulations are based on SAP results

from thousands of clinic patients, and empirical estimates of VF

variability. Importantly, our simulations do not model VF

variability as a Gaussian distribution, which is clearly not

appropriate from inspection of Figure 1. In particular, Figure 1A

Figure 3. Simulated VF shown as a HFA-like printout. The grid of numbers in the top left represent the simulated sensitivities; while the
adjacent grayscale plot provides a graphical representation of the VF (darker areas represent defects). The number grids below represent the
difference in the patient’s VF sensitivities and those of a healthy individual of the same age: without correction for a general reduction in retinal
sensitivity (‘Total Deviation’); and with correction (‘Pattern Deviation’). Below these two grids are probability maps, which indicate whether the
reductions in sensitivities are significant.
doi:10.1371/journal.pone.0083595.g003

Table 1. Characteristics of glaucoma patients’ ground-truth
VFs.

Measurement Median (interquartile range)

Age 66.0 (55.8 to 75.5) years

Mean Deviation 23.5 (28.3 to 21.1) dB;
2.5th to 97.5th percentile: 222.0 to 1.4 dB

Pattern Standard Deviation 2.8 (1.7 to 6.8) dB;
2.5th to 97.5th percentile: 1.2 to 12.1 dB

Pointwise sensitivity 27 (22 to 30) dB

doi:10.1371/journal.pone.0083595.t001
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demonstrates that VF sensitivity is truncated at 0 dB (hence a lack

of negative residuals), which is also evident in Figures 1B and 1C,

and to some extent in Figure 1D. Nevertheless, it is important to

note that our VF simulations do not include variables that can

account for factors such as patient fatigue, learning effects, test

reliability, technician experience, time of day, and seasonal effects

[37,38,41]. Thus, the magnitude of variability simulated may be

less than observed in clinical practice due to these other factors. It

is also worth noting that our model is based on empirical estimates

of VF variability derived from linear modeling of VF decay, which

is only an approximation to ‘true’ VF variability.

Mean Deviation is routinely used to summarize overall VF

damage in individual patients, as well as in groups of patients

enrolled in clinical studies [30]. Since the MD index is a weighted

average, it is less sensitive to localized glaucomatous damage in the

VF; however, as a summary statistic, the MD is robust to

measurement noise at individual locations. Previous research

suggests that MD variability increases as the level of MD decreases

[30–32], but, until now, no study has investigated the impact of the

pattern of VF damage on the variability of MD. In the absence of

computer simulations, such a study would be very difficult to carry

out using clinical data as it would be almost impossible to

disentangle the relationship between patient error, algorithm error

and other measurement errors.

We carried out computer simulations to investigate the

association between MD variability, the levels of MD and PSD,

and the pattern of VF damage. Figure 4A illustrates how MD

variability increases, on average, as the level of MD decreases, with

some evidence that variability peaks around 220 dB. Figure 4B

demonstrates a strong association between MD variability and

PSD values; larger PSD values, suggesting greater glaucomatous

VF damage, are associated, on average, with higher variability.

For VF loss associated with early disease (MD <22 dB),

variability is half that in moderate glaucoma (MD <210 dB)

[36]. More interestingly, variability varies more than three-fold

between some patients with approximately the same levels of

MDs, suggesting that the pattern of pointwise VF damage has a

significant impact on MD variability. This is supported by

examining the VFs of patients with roughly equivalent MD

damage but very different levels of variability; see Patients A and

B, and Patients C and D in Figure 4C. These grayscale VF plots

indicate that VFs with global diffuse damage (Patients A and D)

tend to be more variable than VFs with localised damage and

other regions that are healthy (Patients B and C) despite the MD

Figure 4. Mean Deviation variability according to level of damage, and grayscale plots for four ground-truth VFs. The MDs of Patients
A–D are 211.4, 211.5, 220.4 and 220.5 dB, respectively, while the corresponding standard deviations of MD are 0.72, 0.19, 0.25 and 0.66,
respectively.
doi:10.1371/journal.pone.0083595.g004
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levels being almost the same. It is also interesting to note that the

PSD values of these two pairs of patients hint at the differences in

MD variability. For example, the PSD of Patient A’s VF is less

than half that of Patient B’s yet the patients share roughly the same

level of MD; the PSD of Patient A’s VF is much smaller than that

of Patient B due to the diffuse rather than localized damage seen in

the VF of Patients A and B respectively. This highlights the

importance of measuring VF progression using individualized

rather than population-based criteria.

Recently, there has been renewed interest in the MD index.

Junoy-Montolio et al. [41] showed that VF locations which test

blind on consecutive tests may result in an underestimation of the

MD index, which could affect MD-based progression detection

algorithms [41]. Their results also suggest that censoring of

pointwise sensitivity measurements at blind locations leads to a

reduced dynamic range of MD, and therefore, reduced variability

of this index. Our results are thus in good agreement with those

from Junoy-Montolio et al., and we support their conclusion that

VF points that have been shown to be reproducibly blind do not

contribute to progression detection. Figure 4A suggests that, on

average, this occurs at approximately 220 dB, since MD

variability starts to decrease at this value. This is not surprising

given that many points in the VF will likely be perimetrically-blind

at this level of damage, leading to the shrunken dynamic range of

MD described above. In addition, the 220 dB cut-off correlates

with the point at which pattern deviation calculations are deemed

unreliable and are not shown in HFA printouts [30]. Furthermore,

Junoy-Montolio et al. showed that the number of VF points

discarded by the HFA ‘Guided Progression Analysis’ software

[42,43] increases with disease progression up to an MD of about

220 dB but decreases beyond that point [41].

Wall et al. recently investigated the relationship of MD and its

variability for Goldmann size III and size V stimuli [31]. They

determined that the repeatability of size V MD was slightly better

than size III, but variability increased with increasing damage for

both stimuli. Depending on the size of the stimulus and the

amount of VF damage, a change of 1.5 to 4 dB in MD is necessary

to be outside normal 95% confidence limits [31]. Our results

suggest that any confidence limits also need to consider the pattern

of VF damage and not just the amount of VF damage. Wall et al.

concluded their research by stating that ‘‘further work needs to be

done to determine criteria for identifying visual field change’’. We

believe that VF simulations provide an excellent means by which

to provide benchmarks for measuring the performance of VF

progression detection algorithms and developing new strategies for

measuring VF progression. For example, if assessing the rate of VF

damage using linear regression of MD over time, it may be

important to account for the non-stationary variability observed

with disease worsening in the regression.

Visual field variability leads to false-positive diagnoses of

progression when patients actually have stable glaucoma, which

may lead to needless treatment changes and costs to both patient

and healthcare provider [32]. Conversely, glaucomatous progres-

sion may be missed if clinicians deem any change is due to

inherent measurement noise. In this study, computer simulations

have allowed us to gain a better understanding of MD variability;

on average, MD variability increases as the VF becomes more

damaged. Thus, detecting progression in MD will tend to be more

difficult in patients with moderate or advanced glaucoma than in

patients with early disease. Consequently, it may be advantageous

to carry out more frequent VF testing in glaucoma patients with

worse MDs and/or diffuse damage. Progression detection is

exasperated by the fact that MD slope variability is related to

shorter follow-up duration – research suggests that the phenom-

enon of ‘positive slopes’ and ‘rapid progressors’ is partly due to too

short series of VFs [44–46]. This study also suggests that clinicians

should be aware that variability can vary more than three-fold

between patients with roughly equivalent MDs; in particular, we

observe that VFs with global diffuse damage tend to be more

variable than VFs with localized damage and other regions that

are healthy. This information may help clinicians to differentiate

glaucomatous VF test results and assess progression of this index.
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