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Vortices in polariton OPO superfluids 

Francesca Maria Marchetti and Marzena H. Szyma´nska 

 

Abstract  

This chapter reviews the occurrence of quantised vortices in polariton flu ids, primarily when polaritons are driven in the 

optical parametric oscillator (OPO) regime. We first review the OPO physics, together with both its analytical and nu -

merical modelling, the latter being necessary for the description of finite size sys tems. Pattern formation is typical in 

systems driven away from equilibrium. Simi larly, we find that uniform OPO solutions can be unstable to the 

spontaneous formation of quantised vortices. However, metastable vortices can only be injected ex ternally into an 

otherwise stable symmetric state, and their persistence is due to the OPO superfluid properties. We discuss how the 

currents charactering an OPO play a crucial role in the occurrence and dynamics of both metastable and spontaneous 

vortices. 

1 Introduction 

Quantised vortices are topological defects occurring in macroscopically coherent systems, and as such have been 

broadly studied in several area of physics. Their existence was first predicted in superfluids [1, 2], and later in coherent 

waves [3]. Nowadays, quantised vortices have been the subject of extensive research across several areas of physics 

and have been observed in type-II superconductors, 4He, ultracold atomic gases, non-linear optical media (for a 

review see, e.g., [4]) and very recently microcavity polaritons [5, 6, 7, 8, 9, 10, 11, 12], the coherent strong mixing of 

a quantum well exciton with a cavity photon.  
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This chapter reviews the occurrence of quantised vortices in polariton fluids, primarily when polaritons are driven in the 

optical parametric oscillator (OPO) regime. The interest in this area of research is manifold. To start with, the search for 

condensation in solid state excitonic systems has been arduous and lasted more than two decades: Unambiguous evidence 

for condensation has been reported for microcavity polaritons for the first time in 2006 [13]. These results have been 

followed by a wealth of experimental and theoretical advances on aspects related to macroscopi c coherence, condensation, 

superfluidity, quantum hydrodynamics, pattern formation, just to mention few (for a review, see Ref. [14]). Two 

different schemes of injecting polaritons and spontaneously generating a macroscopically coherent state can be 

employed: (i) non-resonant pumping, and (ii) parametric drive in the opticalparametric-oscillator (OPO) regime. What 

both condensates have in common is the phenomenon of spontaneous phase symmetry breaking (and the consequent 

appearance of a Goldstone mode), and the non-equilibrium ingredient. However, the way polaritons are pumped has 

strong effects on the type of condensed regime that can be reached. In both regimes (i) and (ii), the quest for superfluid 

behaviour has been and is being widely investigated. How it has been recently discussed in Refs. [15, 16, 17], one of 

the aspects that makes condensed polariton systems novel compared to known superfluids at thermal equilibrium, is that 

now all the paradigmatic definitions of a superfluid, such as the appearance of quantised vortices, the Landau criterion, 

the existence of metastable persistent flow, the occurrence of soli tary waves, have to be singularly examined and might in 

general be fundamentally different from the equilibrium case. Several of these popu lar topics are examined in other 

chapters of this book cross-refer to : A. Bramati and A.  

Amo, B. Deveaud, D. Krizanovskii and M. Skolnick, F. Laussy, G. Malpuech, M. 

Wouters and V. Savona, D. Snoke, Y. Yamamoto . 

Resonantly pumped polaritons in the OPO regime [18, 19] have been recently shown to exhibit a new form of 

non-equilibrium superfluidity [20, 8]. Polaritons continuously injected into the pump state, undergo coherent 

stimulated scattering into the s ignal  and i d ler  states. Superfluidity has been tested through as frictionless flow 

[20] of a travelling signal triggered by an additional pulsed probe laser (the TOPO regime). In addition, the 

study of quantised vortices imprinted using pulsed Laguerre-Gauss laser fields has attracted noticeable interest 

both experimentally [8] and theoretically [21, 22, 23, 24], providing a diagnostic for superfluid properties of such 

a non-equilibrium system. In particular, vorticity has been shown to persist not only in absence of the rotating 

drive, but also longer than the gain induced by the probe, and therefore to be transferred to the OPO signal, 

demonstrating metastability of quantised vortices and persistence of currents [8, 22].  

The chapter is arranged as follows: after a very short introduction to microcavity polaritons in Sec. 2, we describe 

the optical parametric oscillator regime in Sec. 3, stressing the analogies and differences with an equilibrium 

weakly interacting Bose- Einstein condensate (Sec. 3.2.1) and the numerical modelling that is necessary to use 

for finite size pumps (Sec. 3.3). In Sec. 3.5 the occurrence of spontaneous stable vortices in OPO is described for 

clean cavities, while the case of disordered cavities is studied at the end of Sec. 3.3. Next we describe in 

general terms the role of  
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adding a pulsed Gaussian probe to the OPO regime (the so called TOPO regime) in Sec. 4, while metastable vortices 

triggered by a Laguerre-Gauss probe are discussed in Sec. 5. Here, in Sec. 5.2, we also describe the onset and 

dynamics of vortexantivortex pairs. Stability of multiply quantised vortices is analysed in Sec. 6 and finally we 

mention the occurrence of vortices in polariton fluids in other regimes than OPO in Sec. 7. 

2 A very short introduction to microcavity polaritons 

Before focusing on the main topic of this review, we give here a very short in troduction to microcavity polaritons in 

order to fix the notation for later on. A more complete introduction can be found in several review articles [25, 26, 27, 28,  

29, 14] and books [30, 31, 32, 33] on microcavity polaritons. 

Microcavity polaritons are the normal modes resulting from the strong coupling between quantum well (QW) excitons 

and cavity photons. In semiconductor micro- cavities, the mirrors employed to confine light are distributed Bragg 

reflectors, i.e., alternating quarter wavelength thick layers of dielectrics with different refractive indices. Between the 

Bragg reflectors, the cavity light forms a standing wave pattern of confined radiation, which can be described by an 

approximatively quadratic dispersion, oC(k) = o0 C + k2/(2mC) (from here onwards we fix h¯ = 1). Excitons are the 

hydrogenic bound states of a conductance band electron and a valence band hole, therefore their mass is much larger 

than the cavity photon mass (typically m C  ∼  10− 5 m e , where m e  is the free electron mass). For this reason, exciton 

dispersion can be neglected, oX(k) = o0
 X. In microcavities, one or multiple QWs are grown in between the mirrors, so 

that excitons are at the antinodes of the confined light, giving rise to strong coupling. In addition, cavity mirrors are 

built with a wedge, so as to change the detuning between the normal incidence energy of the cavity field and the 

exciton one, δ ≡  o0
C  − o0

 X. Typical parameter values for a GaAs- based microcavity are listed in Tab. 1. 

The polariton normal modes can be found by solving the coupled Schr¨odinger equations for exciton and photon fields, 

ψX , C = ψX , C(r, t) 
(ψ X "\ (ψ X  "\  ( o0 "\ 
X  − iκX ΩR/2 
i∂t = ˆH0 ˆH0 = , (1) 
ψC ψC Ω R / 2  o C ( − i∇ )  −  i κ C  

where ΩR  is the Rabi splitting and κX , C  are the decay rates of exciton and photon. For an ideal cavity, κX , C = 0, the 

eigenstates of this equations in momentum space, ψX , C(r, t) = e io t k e ik·rψX , C ,k , are the lower (LP) and upper 

polaritons (UP) 
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Fig. 1 Lower (LP) and upper polariton (UP) energy dispersions (solid black), together with the dispersions of the photon (C) and exciton (X) 

fields (red dashed) as a function of either the wave- vector k [um-1
] or the emission angle cp [degree] for mC = 2.3 x 10-5, S2R = 4.4 meV, 

co0 X =  1.5280 eV, and a detuning 3 = 1 meV. 

(ViCk) = (cos Ok - sin Ok ViLP,k (2) 

,k sin Ok cos Ok ViUP,k 

⎛2 • 2 coC(k) - (3) 

c030, 

-  )  

cos Ok ,s111 O k  =  1 1 ±   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _   

2 V(coC(k) - co0X)2, _i_ s2R2 

with an energy dispersion given by (see Fig. 1):  

1 

coLP,UP(k) = 2 [coC(k) + co4] + 2 V[coC(k) - coYc] 2 + S21?. (4) 

At zero detuning (3 = 0) and normal incidence (k  = 0) polaritons are exactly half- light and half-matter quasi-particles 

(cos2 O0 = 0.5 = sin2 O0). The value of the momentum k  of polaritons inside the cavity is related to the emission angle 

cp (with respect to normal incidence) of photons outside the cavity by ck = coLP(k) sin cp.  Thanks to this property, 

microcavity polaritons can be directly excited by a laser  field and detected via reflection, transmission or 
photoluminescence measurements.  In Fig. 1, the energy dispersion of the lower and upper polariton are plotted as a  

function of both wave-vector, k [um-1], or the emission angle, cp [degree], for typical values of microcavity parameters.  
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2.1 Exciton-exciton and exciton-photon interaction  

A fundamental property of polaritons is their non-linear behaviour inherited from  the exciton-exciton interaction and 

the saturation of the exciton-photon coupling. In  this review, we treat excitons as bosonic particles, therefore the 

effective excitonexciton interaction can be written as  

X X  =  1 ∑  V q I lX  , k+q I lX ∗  −q I lX  , k I lX  ,  2A k,k ',q  

where the effective interaction potential Vq can be determined starting from the microscopic electron-hole Hamiltonian 

[34, 35]. The typical wave-vectors involved  in the physics described by this review are much smaller than the 

inverse exciton Bohr radius, q  <  a i 1 , where a X  =  e /  (2p.e 2)  is the two-dimensional exciton Bohr radius, e the 

dielectric constant, and p.−1 = m−1 e+ mh
−1 the electron- hole reduced mass. In this limit, it can be shown [34] that 

the momentum dependence of V q  can be neglected, thus approximating it with a contact interaction,  Vq  gX = 

6e2aX/e = 6MyXa2
X, where MyX = e2/ (eaX) = 1/(2p.a2

X) is the exciton Rydberg. Typically, for GaAs quantum 

wells (see Tab. 1), e = 13, aX  7 nm, and MyX 17 meV , therefore gX  0.005 meV (p.m)
2
. We will see, however, 

that  the exact value of the coupling constant gX has no relevance for the mean-field dynamics we are going to describe, 
i.e., gX can be rescaled to 1.  

QW 

e 13  

me = 0.063m0
e mh = 

0.3m0
e 

aX 70 A˚ 

M y X  17 meV  IcX  ∼  

p.eV 

cavity 

ω0 C  ω0 X 1.53 eV δE  
[−10,10]  meV  mC = 2.3 x 

10−5m0
e 

PC R =04. 8. 468mp.meV 

IcC = 0.1 meV 

Table 1 Characteristic parameters of a GaAs-based microcavity, divided between the parameters  of the quantum well (left) and those 

describing the microcavity (right). Here, PC = A/1 / (mCfR)  is a characteristic length for the cavity photons. The photon decay rate IcC 

refers to a cavity mirror with typically 25 bottom pairs and 15 lower pairs (see, e.g., Ref. [8]).  

The composite nature of excitons, as a bound state of an electron and a hole,  is 

also visible in the saturability of the exciton-photon coupling, resulting in an  anharmonic interaction term which adds 

to the usual harmonic one:  

A lcC = fR f dr [16c (r)IlC(r)+Il∗C(r)IlX(r)] [1−| IlX (r)|21  

2 nsat

 , 

(5) 

 

where n s a t  =  7/(167ra 2
X)  is the exciton saturation density [35]. In GaAs,  n s a t  2842 (p.m)−2  and for a Rabi 

splitting of fR = 4.4 meV, the ratio between satu- 
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ration and exciton-exciton interaction strength, 

ΩR 
'  0 1 , 

2gXnsat  

allow us to neglect the anharmonic term in (5) for the kind of physics we want to describe in this review.  

Therefore, the mean-field evolution of the coupled cavity photon–exciton dynamics is described by the following 

non-linear Schr¨odinger equation or GrossPitaevskii equation (GPE): 

(ψ X )  [  (gX|ψX|2
 0 )] (ψX ) 

i∂t = ˆH0 + (6) 

ψC 0 VC(r) ψC 

Here, we have also added an external potential VC(r) acting on the photon component, which later on we will use to 

describe the effect of photonic disorder present in the cavity mirrors. Note that Eq. (6) is a classical field description, 

which assumes the macroscopic occupation of a finite number of states, each described by a complex classical function 

ψ . 

3 Optical parametric oscillator regime 

An accurate control of the polariton dynamics can be achieved by directly injecting polaritons at a given wave-

vector and frequency with a properly tuned external laser — the resonant excitation scheme. In within this scheme two 

regimes can be singled out: (i) the regime where only the polariton state generated by the pump is a stable 

configuration of the system (we refer to this as the pump-on l y  state); (ii) the regime where the polaritons 

continuously injected into the pump state undergo coherent stimulated scattering into the s igna l  state (close to the 

normal direction) and the i d ler  state (on the other side of the pump). Parametric scattering from pump to signal and 

idler can be self-induced by the continuous-wave (cw) laser above a pump strength threshold, in which case one refers 

to the optical parametric oscillator (OPO) regime. However, below the threshold for OPO, a second weak probe beam 

shined close to either the (expected) signal or idler states, can be used to ‘seed’ the parametric scattering processes and 

amplify the probe; in this case, one refers to the optical parametric amplification (OPA) regime.  

We introduce the concept of polariton parametric scattering and review the main experimental results on optical 

parametric amplification in the next section. In Sec. 3.2, we use a simplified theoretica l model in terms of plane 

waves, for both the pump-only resonant state and the OPO state, summarising the main properties of both regimes 

and drawing an analogy with equilibrium weakly interacting Bose- Einstein condensates (BECs). Finally, in Sec. 3.3, we 

explain the necessity for carrying out a numerical analysis of the OPO. Much experimental work has been carried out 

on polaritons in the OPO regime [18, 36, 19, 37, 38, 39, 40, 41, 42, 43, 44, 45]  
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(for a review on the experiments, see Ref. [46]). We wil l discuss the experimental achievements along with the 

theoretical description. 

3.1 Polariton parametric scattering and optical parametric amplification 

In the parametric scattering process, two polaritons from a pump mode, with wave- vector and frequency {kp, op}, 

scatter into a lower energy signal mode {ks, os} and a higher energy idler mode {k i , o i}. This scattering process has 

to conserve energy and momentum, therefore requiring that 

2kp =ks+k i  2op=os+o i. (7) 

This condition cannot be satisfied by any particle dispersion, for example parametric scattering is forbidden for 

particles with a quadratic dispersion. In order to check whether parametric scattering is allowed for polaritons, one has to 

verify if the condition 

2oLP(kp) = oLP(ks) + oLP(|2kp − ks|) (8) 

can be satisfied. If k s  = 0, then the momenta of pump and idler are uniquely se lected (see left panel of Fig. 2). In this 

case, the value of the pumping angle is also referred to as the “magic angle”, and is located close to the inflection 

point of the LP dispersion. However, for a generic signal wave-vector, ks = k = (k x, k y) , then for a fixed pump angle k 

p (assumed to be oriented along the x-direction, (kp, 0), in the right panel of Fig. 2), the final states allowed in the 

parametric scattering process describe a figure-of-eight in momentum space [47, 28, 48]. 

In the case of optical parametric amplification experiments, parametric scat ter ing is stimulated by a weak 

additional probe f ie ld. OPA was f irst observed in an InGaAs/GaAs/AlGaAs microcavity [49], where a 

substant ia l  s ignal ga in of up to 70 was measured. Much experimental work has followed this first re sult [50, 51, 

52, 53, 54, 55, 56, 57, 58, 59]. Pump-probe parametric amplification of polaritons with an extraordinary gain up to 

5000 and at temperatures up to 120K has been reached in GaAlAs-based microcavities and up to 220K in CdTe-based 

microcavities [55]. In three-beam pulsed experiments [51], polaritons scatter from two equal and opposite angles, k p  

and −kp , into the LP and UP states at k = 0 — note that at zero detuning, = 0, 2o0 X = oLP(0) + oUP(0). Interestingly, 

parametric amplification has been also obtained for ultracold atom pairs confined in a moving one-dimensional optical 

lattice [60]. The role of the periodic optical lattice is to deform the atom dispersion from the quadratic one, allowing 

parametric scattering to happen. 

The stimulated scattering regime can be reached also in the OPO configuration, i.e., without an additional probe beam. 

Now, stimulated scattering is self-initiated at pump powers above a threshold intensity, where the final state 

population is close to one. We will see that in this case, there is no special significance of the “magic  
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Fig.  2 Illustration of the basic idea of parametric scattering. Left: two LPs scatter from the pump state {kp, wp} towards the signal {k5, w5} 
(here at zero momentum) and the idler state {k = 2k p  − k 5 , w = 2wp  − w5} (at higher momentum), conserving momentum and energy. 

Right: Following Refs. [47, 28], we plot |wLP(k) + wLP(|2k p  − k|) − 2
wLP(kp)| as a function of k = (kx,ky). The white line is the zero 

value of the contour and the pump is oriented along the x -direction, k p  = (kp, 0). The parameters used in both panels are the same as the 

ones of Fig. 1. 

angle”, rather a broad range of pumping angles larger than a critical value, (Op  10◦
 for the parameters in Ref. [61]) 

allow OPO with a signal emission close to normal incidence, O5 ' 0◦ . In addition, for finite size pumping (see later Sec. 

3.3), the pump, signal, and idler momenta are smeared in a broad interval, while their frequency still satisfy the matching 

conditions (7) exactly. In the next three sections, we will focus mainly on the theoretical description of polariton resonant  

excitation with a cw laser field, describing the properties of first the pump-only state and then the OPO state. 

3.2 Bistability and OPO in the plane-wave approximation 

The theoretical description of polaritons in the resonant excitation regime can be formulated in terms of the same 

classical two-field non-linear Schr¨odinger equation previously introduced in Eq. (6), where now an external driving field 

F  p(r, t) is added in order to describe the coherent injection of photons into the cavity:  

( y X  )  (  0  )  [  ( g X |y X |2
 0 )~  (y X  )  

¶t = + ˆH0 + . (9) 

yC Fp(r,t) 0 VC(r) vC 

A continuous-wave (cw) pumping laser can be written as 

F p(r, t) =  f p , a p( r)e  ( k p · r−w p t )  ,  (10) 
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where ,
fp,ap(r) can either describe a homogeneous pump with strength  fp, ,

fp,ap(r) =  fp, or, as we will assume later 

in Sec. 3.3, a Gaussian or a top-hat spatial profile with strength fp and full width at half maximum (FWHM) ap. 

For a homogeneous pump, ,
fp ,ap  (r) =  fp, and for a clean system, VC(r) = 0, the conditions under which a 

stable OPO switches on can be found by making use  of an analytical treatment [28, 61, 62, 63]. In fact, in this 
limit, each mode can be approximated as a plane wave. To simplify the analytical expressions, it is useful  to 
rotate Eq. (9) into the LP and UP basis, as described by Eq. (2), and to neglect  the contribution from the UP 
states, assuming that the LP and UP branches are not  mixed together by the non-linear terms. In this case, 

working in momentum space,  VfLP (r, t) = Ek eik.rVfLP,k (t), Eq. (9) can be written as 

idtVfLP,k = [coLP(k) — i!C(k)] VfLP,k+ 
gk,k1 ,k2Vf∗LP,k1+k2—kVfLP,k1VfLP,k2 + sin ekfpe

—ico
p tekkp,(11) 

, 

where !C(k) = !CX cos2 ek + !CC sin2 ek is the effective LP decay rate and the interaction 

reads as gk,k1,k2 = gX cos ek cos e|k1 +k2 —k| cos ek1
 cos ek2. strength now 

If we consider solutions of the Eq. (11) where only the pump mode, k = kp, is populated, we can find an exact 

solution in the form 

VfLP(r,t) = pei(k p.r—co pt) VfLP,k( t) =  pOk ,kpe
— icop t ,(12) 

where the complex amplitude p is given by  

[coLP(kp) — cop — i!C(kp)+ gXcos4 ekp |p|2
1 p + sin ekp fp = 0 . (13) 

For practical purposes, one can substitute gX cos4 ekp 1 by redefining the pump  

strength fp ' = VgXcos2 ekp sin ekp fp, and rescaling the field strength p by |p '| =  VgX cos2 ekp |p|. Note that the 

2((3)
-non-linear interaction term, |p'|2

p', renormalises the effective detuning of the pump mode from the LP 

dispersion, 

Ap cop — coLP(kp) —|p'|2 , (14) 

which now includes the blue-shift of the LP dispersion due to interactions.  

The general solution of the cubic equation (13) is well known, and exhibits a  qualitatively different behaviour 
depending whether the pump frequency is blue- or red-detuned with respect to the LP dispersion. In particular, if 

cop — coLP(kp) < V3!C(kp), the system is in the optical limiter regime, where the population |p '|2
 grows 

monotonically as a function of the pump intensity f 'p. If instead cop —  coLP(kp) > V3!C(kp), the system 

displays bistable behaviour, with a characteristic S-shape of |p '|2
 as a function of f 'p, the second turning point 

coinciding with  the point where the effective detuning Ap (14) changes sign (see Fig. 3). Because  the branch 

with negative slope is unstable, the polariton density in the pump-only mode follows a hysteretic behaviour: 
Increasing the pump intensity, eventually the  

∑ 

k1,k2 
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Fig. 3 Dimensionless LP population |p '|2
/ ic(kp) = gX cos4 Okp|p|2

 / ic(kp) as a function of the dimensionless pump intensity fp '  = Vg X  cos2  

Ok p  s i n
 O k p  f p  for different values of the parameter S˜= [cop — coLP(kp)]/ ic(kp). When S˜ < V3 (left panel), the system is in the optical limiter 

regime, while for sufficiently blue-detuned pump frequencies, S˜ > V3, a bistable behaviour is obtained  (right). The sign of the interaction 

renormalised detuning, Ap  (14), is also given.  

pump-only mode jumps abruptly into the upper branch, while if the intensity is then  decreased, the polariton population 

decreases and jumps back down to the lower  branch for smaller values of the pump intensity. Optical bistability in 

microcavity polaritons has been observed in Refs. [64, 65], with evidence of a hysteresis  cycle of the polariton 

emission as a function of the pump intensity. Multistability  of two different polariton states, generated by either 

populating two different spin  states [66, 67, 68] or by injecting two states with two different pumps [69] has been  also 

recently proposed and, in the spin case, observed. Part of the interest in this  field is to realise all-optical switches 

[70] and memories.  

The dynamical stability of the pump-only solution (12) can be established by  allowing other states than the pump (i.e., 

the signal and idler states) to be perturbatively populated via parametric scattering processes,  

iLP,k (t) = pSk,kpe—icopt + sSk,kp—qe—i(cop—co)t + i*Sk,kp+qe—i(co
p+co*)t ,(15) 

where, {ks,i = kp + q, cos,i = cop + co}, and by assessing whether the time evolution of these states grows 

exponentially in time or not. Expanding to the first order in s  and i, one obtains an eigenproblem for the amplitudes  s 
and i [61, 62, 63],  

co — As — iic(ks) gXcscic2
pp2

 g X c s c i c 2
p p * 2 — c o — + i i c ( k i ) ) ( i  

 = 0, (16) 

where As,i = cop — coLP(ks,i) — 2gXc2
s,ic2

p|p|2 and
 cp,s,i = cos ekp,ks,ki. The complex 

eigenvalues co can be obtained imposing that the determinant of the matrix in (16)  

( 
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is zero. The dynamical stability is ensured if 3 (co) > 0. Therefore, the threshold  for instability of the pump-only 

solution (12) can be found imposing the condition 3 (co) = 0. By fixing the pump wave-vector and energy (lcp, coP) 
and the signal wave-vector lcs (as well as the exciton and photon lifetimes, ICX , C), this provides a criterion for establishing 

the boundaries of the instability region, i.e., the lowest and  highest values of the LP population |p|2 for which the 
pump-only solution is not  stable. As shown in Refs. [61, 62, 63], one can classify the instability as a single  mode 

instability when q = 0 and therefore lcp = lcs = lc i — the Kerr instability.  In particular, the branch with negative 

slope of the bistable curve (dashed line in  Fig. 3) is always single mode unstable [61, 63]. If instead q =6 0, the 

instability is parametric-like. Now, the total extent of the instability region corresponding to dif ferent values of lcs is 

significantly larger than just the branch with negative slope. In addition, the OPO state does not require a bistable 
behaviour and can turn on also in  the optical limiter case. In particular, it is possible to plot a “phase diagram” [61] of  

pump energy coP as function of pump wave-vector lcp, showing the regions where a pump-only solution is always stable, 

where the OPO switches on, and where instead  a Kerr-type instability is only possible. In this way, in Ref. [61], it was 
shown that there is no particular significance to the “magic angle” for the pump. Rather, OPO  conditions can be found for 

all angles larger than a critical value, Op > Oc (,,, 10° for the parameters of Ref. [61]), as also confirmed experimentally 

[39, 40]. In addition, the energy renormalisation of the polariton dispersion due to interactions moves the  emission angles 

for the signal always close to Os ,,, 0 [61, 40]. This is also confirmed by the numerical simulations we have carried out 

and illustrated later on in Sec. 3.3.  

The method described above implies negligible populations of the signal  s  and  the idler i and therefore it allows to 

find the conditions for the OPO threshold. In  order to find the OPO states, one cannot linearise in  s and i , but 

instead include  the contributions of finite signal and idler populations to the dispersion renormalization [61]. In this 

way, in the region unstable for parametric scattering determined  with the method described above, one can describe first 

the increase (switch-on) and later the decrease (switch-off) of the signal and idler populations as a function of  the 

pump power. It is interesting to note that by doing that, i.e., by substituting (15)  into (11), “satellite states” oscillating with 

energies cos2 = 2cos — cop = cop — 2co and co i2 = 2co i — cop = cop + 2co automatically appear. In fact, above OPO 

threshold, when signal and idler populations are not negligible, parametric scattering from the  signal (idler) state into the 

pump and second-signal (second-idler) satellite state take place, i.e., 2s i→ p + s2 (2i i→ p+ i2) and therefore 2cos = cop + 

cos2 (2coi = cop + coi2). This is clearly seen in the “exact” OPO solution obtained numerically (see, .e.g.,  Fig. 4), as 

well as it has been observed experimentally (see, e.g., Ref. [37]). One has to note however that the population of the 

“satellite states” by multiple scattering  processes is always negligible w.r.t. that one of pump, signal, and idler (see 

right  panel of Fig. 4). 

We will introduce the numerical modelling used to describe the problem for a  finite-size pump later in Sec. 3.3. 

Before doing that, in the next section , we concentrate on the analogies and differences between an OPO state and an 

equilibrium weakly interacting Bose-Einstein condensate (BEC).  
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3.2.1 Spontaneous U( 1) phase symmetry breaking and Goldstone mode 

The OPO state looks at first sight very different from an equilibrium weakly interacting BEC. In particular, the OPO is 

an intrinsically non-equilibrium state characterised by the (macroscopic) occupation of three polariton states only, one 

directly populated by the external pump and the signal and idler states populated by parametric scattering. Contrast 

this with the thermodynamic phase transition in a BEC, where the macroscopic occupation of the ground state occurs 

when, for a thermal distribution of bosons, either the temperature is lowered below a critical value or the density is 

increased. The OPO state does however share with a BEC the fundamental property of spontaneous symmetry 

breaking of the phase symmetry [61, 71]. In fact, the external laser fixes the phase of the pump state Ø ,  and parametric 

scattering processes constraint the sum of the signal and the idler phase only, 2Ø ,  = Øs + Ø j, but leaves the system to 

arbitrarily choose the phase difference Øs  −  Ø j. In other words, one can easily show that the system of three equations 

one obtains by imposing the OPO solution (15) into the mean-field equation (11) is invariant for a simultaneous phase 

rotation of both signal and idler states: 

s 7→ s e j Ø  j  7→  je− j Ø. (17) 

This U (1) phase rotation symmetry gets spontaneously broken in the OPO regime, where the signal and idler 

spontaneously select their phase, though not independently. Note that in this respect the OPO regime differs very much 

from the optical parametric amplification (OPA) regime, where both signal and idler phases are fixed by the external 

probe, and therefore the U( 1) phase rotation symmetry is explicitly broken by the probe and no phase freedom is left in 

the system. 

Goldstone’s theorem states that the spontaneous symmetry breaking of the U( 1) phase symmetry in OPO is 

accompanied by the appearance of a gapless soft mode, i.e., a mode a(k) whose both frequency 9[a(k)] and decay 

rate [a(k)] tend to zero in the long wave-length k →0 limit. The dispersion for the Goldstone mode in OPO has 

been derived in Ref. [71], where also an experimental set-up to probe it’s dispersion has been proposed. In addition, the 

appearance of spontaneous coherence in OPO have been shown via quantum Monte Carlo simulations [72] through the di-

vergence of the coherence length when the pump intensity approaches the threshold. In contrast, in the OPA regime, 

where the phase rotation symmetry is explicitly broken by the probe, there is no Goldstone mode and a gap opens in 

the imaginary part of the elementary excitation dispersion,  [a(k)] . 

We would like to stress here that, even though an equilibrium weakly interacting BEC and an OPO state share the 

fundamental property of spontaneous symmetry breaking of the phase symmetry, some care needs to be applied in 

pushing this analogy further. In particular, the existence of a free phase alone is not sufficient to ensure the 

paradigmatic properties of a superfluid, such as the Landau criterion, the stability of quantised vortices, and the 

persistency of metastable flow. For example, let us consider here the case of the Landau criterion: In an equilibrium 

weakly interacting BEC, the existence of the soft Goldstone mode (the Bogoliubov mode),  
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with it’s characteristic linear dispersion for k →  0, a (k)  c s k  , implies the existence of a critical velocity, v c  ≡  

minka(k)/k  = c s  (the speed of sound), below which a perturbative defect dragged through the fluid cannot dissipate 

energy (superfluid regime). In the non-equilibrium OPO regime instead, similarly to what happens for incoherently pumped 

polaritons condensates [73, 74, 21], the unusual form of the excitation spectrum — diffusive at small momenta — 

poses fundamental questions on the fulfilling of the Landau criterion and the possibility of dissipationless super- flow. 

Similarly, properties such as the appearance and stability of quantised vortices and the persistency of metastable 

flow need to be independently assessed in polariton fluids in the three different pumping schemes available — (i) non-

resonant pumping; (ii) parametric drive in the optical-parametric-oscillator regime; (iii) coherent drive in the pump-only 

configuration. In fact, in the case of an equilibrium condensate, the ground state is flow-less, i.e. a vortex solution is 

unstable in non rotating condensates 1 . In contrast, in a polariton fluid, its intrinsic non-equilibrium nature implies the 

presence of a flow even when a steady state regime is reached. In this sense, not always the presence of vortices can 

be ascribed to the superfluid property of the system. We will discuss these aspects more in depth later in Sec. 5.  

3.3 Numerical modelling 

We have seen in Sec. 3.2 that, for homogeneous pumps,F f p , σ p  = f p ,the conditions under which a stable OPO 

switches on can be found analytically by assuming that pump, signal, and idler states can be described by plane wave 

fields (15) and therefore are characterised by single wave-vectors kp , s , i  and by uniform currents, the intensity and direction 

of which are given by k p , s , i  2  . However, for pumping lasers with a finite excitation spo t ,F f p , σ p ( r ) , such as the ones 

employed in experiments, one can only resort to a numerical analysis [78] of the coupled equations (9). A fi nite size 

pump implies that, in the OPO regime, pump, signal, and idler states are broaden in momentum; as a consequence, 

these states are going to be characterised by non-trivial configurations of the currents (see Fig. 5). We will see later 

on that these currents play a crucial role in the occurrence and dynamics of both metastable and spontaneous vortices 

in OPO. 

1 In rotating condensates, a vortex can be created if the angular velocity is higher than a critical value [75, 

76]. When rotation is halted, then the vortex will spiral out of the condensate [77].  

2 Given a complex field or wave-function, |V(r ,  t)|e i φ
( r , t ), describing either a quantum particle of mass m or a macroscopic number of 

particles condensed in the same quantum state, the current is defined as [76]: 

 
following, with a slight abuse of notation, we will refer to the current as the gradient of  the phase only,  ∇φ ( r , t ) .  

j (r , t)  = h  ̄

m 
|V(r , t)|2

∇φ(r , t )  =  |V(r , t )|2
v s (r , t)  ,  (18) 
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In particular, we numerically solve Eqs. (9) on a 2D grid of typically  N x  N  =  28 x 28 points and a separation of 0.47 

Am (i.e., in a box L x L = 140 Am x 140 Am) by using a 5th-order adaptive-step Runge-Kutta algorithm. We have checked 

that our results are converged with respect to both the resolution in space  L/N and the one  in momentum K/L. Note 

also that of course the extension of the momentum box  kmax = KN/L has to be big enough to contain the idler state. In 

the specific case of Figs. 4, 5, and 6, we have chosen a smoothed top-hat profile  , f p ,a p( r) with FWHM  ap = 70 Am and 

(maximum) strength fp (later for Fig. 8 we have chosen instead a  FWHM ap =  35 Am). Considering the case of zero 

detuning, 3  =  0, we pump at  kp = 1.6 Am—1 in the x-direction, kp = (kp, 0), and at wp — w0
X = —0.44 meV, i.e. roughly 

0.5 meV above the bare LP dispersion, and gradually increase the pump  strength until the OPO switches on. We find 

that broader LP linewidths imply a  wider range in pump strength of stable OPO and for this reason we fix 1cX = 1cC =  

0.26 meV in these particular runs. We define fp
th

 as the pump strength threshold for OPO emission — here and in the 

following, we only select OPO solutions which  reach a dynamically stable steady state (dynamical stability is studied 

in Sec. 3.5.1). In the case of Figs. 4 and 5, the pump strength is fixed just above threshold,  fp =  1.25 fp
th
 . 

 

Fig. 4  Left panel: OPO spectrum |WC , X  (k, w)  |2
 for a top-hat pump of FWHM ap  =  70 Am and intensity fp  = 1.25fp

th
 above the threshold 

pump power for OPO, 4 ,
t h ) . For this particular run we  resonantly pump at kp = 1.6 Am—1 in the x-direction, kp = (kp, 0), and at wp — w0

X = —0.44 

meV. Polaritons at the pump state undergo coherent stimulated scattering into the signal and idler states,  which are blue-shifted with respect to 
the bare lower polariton (LP) dispersion (green dotted line)  because of interactions. Cavity photon (C) and exciton (X) dispersions are 

plotted as gray dotted lines. Above threshold, as discussed in the text, we observe the population of the satellite  states in addition to 

the one of signal and idler. Right panel: Momentum integrated spectrum,  ∑k | WC , X (k, w) |2
, as a function of the rescaled energy w — 

w0
X. Pump, signal, idler and satellite states are all equally spaced in energy by roughly 1 .19 meV.  
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The numerical analysis provides the time evolution of both photon and exciton  fields either in space, lifC,X(r,t), or in 

momentum, lifC,X (k, t). The OPO implies the simultaneous presence of (at least) three states emitting at different 

momenta, and therefore, at a fixed time t, the full emission lifC,X (r, t) is characterised by interference fringes. Because, 

as for the pump, the dominant wave-vectors for signal and  idler are in the x-direction, the fringes are vertical, i.e. 
predominantly oriented along  the y -axis (see first panel of Fig. 5). We plot the photon component only, which  is 
what can be measured experimentally. Note, however, that in cw experiments  emission is always integrated in time, 
which clearly washes away the interference  fringes. The OPO phase information can instead be recovered by obtaining 
interference fringes with a reference beam in a Michaelson configuration. In addition  to the full emission, either in 

space or momentum, one can also evaluate the spectrum resolved in momentum lifC,X (k, co) by taking the Fourier 

transform in time of lifC,X (k, t) (in Fig 4, a grid in time of 29 points spaced by 0.3 ps has been used). As shown in Fig. 4, for 

the chosen parameters, a signal at cos — co0
X = —1.66 meV and an idler at cos — co0

X = 0.75 meV appear with a sharp 3-

like emission in energy, which satisfies exactly the energy matching condition (7), 2cop = cos + coi, as clearly shown by the 

momentum integrated spectrum on the right panel of Fig. 4. In contrast, the  momentum distribution is broad (because of the 

pump being finite size) and peaked respectively at ks ,-, —0.2 p.m—1 and k i ,-, 3.5 p.m—1, which only roughly satisfies the 

momentum matching condition, 2kp = ks + k i. Note that the idler intensity is  always weaker than the signal one 

because of the small photonic component at the  idler. Further, note that, in addition to signal and idler, the spectrum also 

shows the appearance of satellite states (s2, s3, ... and i2, i3, ... ) all equally spaced at around 1.19 meV one from the 

other. As discussed at the end of Sec. 3.2, their presence  is a consequence of the secondary parametric scattering 

processes 2s -3  s2 +  p , 2i -3  i2 +  p, 2s2 -3  s2 +  s3, and so on, which trigger on automatically as soon as  signal and 

idler have finite populations. The occupation of the satellite states gets  gradually suppressed the further we move higher 
in energy above the idler and lower  in energy below the signal — which is why they are usually neglected in the plane  

wave approximation, as discussed in the end of Sec. 3.2. Note also that the satellite  states just described do not imply 

the presence of phase symmetries additional to  the U (1) one described in Sec. 3.2.1. These satellite states therefore 

differ from the states which one could obtain as a result of secondary instabilities, e.g. 2s -3  s ' 2 +s ' ' 2  with s ' 2 ' =6 p and 2i -

3  i ' 2 +  i ' ' 2 with i ' '  2=6  p, and successive spontaneous symmetry breaking mechanism [79]. 

In order to analyse the OPO properties, similarly to what is done in experiments,  it is also useful to filter the full 
emission in order to select only the emission coming from the signal, pump or idler. This can be equivalently done either 

filtering in momentum space in a cone around the momenta kp,s, i or filtering in energy, bringing to the same results. 

We indicate the filtered spatial profiles of pump, signal, and  

idler by | lif t , ,I i i(r,  t) |  eiq : , i(r, t) . The associated currents, ∇Or; i, are a superposition of a dominant uniform flow 

kp,s, i (which is subtracted from the images of the second panel of Fig. 5) and more complex currents (caused by the 

system being finite size), which move particles from gain to loss dominated regions. Note that because  
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Fig. 5  Full emission (first panel) and filtered emission of signal (second), pump (third, with super - 
imposed currents), and idler (fourth) states for the same parameters of Fig. 4. We plot the rescaled  

currents of the signal in the second panel by subtracting the dominant uniform flow, i.e.,  ∇(/)s C , X  —  lcs .  

we select only steady state OPO solutions, the profiles of pump, signal, and idler,  | le,:nr, t) |, are time 

independent. In addition, note that, the fact that the pump is  shined on the microcavity with a finite angle respect to 

the normal incidence, implies that, for rotationally symmetric pump profiles, the symmetry inversion  r  i→  —r  is 

broken in the direction of the pump wave-vector lcp. For example, if the pump is shined on the x-direction, lcp  = (kp ,  

0), as in the case of Fig. 5, only the symmetry y  i→  —y is left intact. Clearly, this symmetry, while allowing vortex-

antivortex  pairs, does not in principle permit OPO solutions carrying single vortices, which  can spontaneously appear 
in presence of a symmetry breaking perturbation, such as disorder (next paragraph) or a noise pulse (see Sec. 3.5.1).  

The typical changes of the signal space profile as the pump power is increased  above threshold, together with the 

pump, signal, and idler intensities, are shown in  Fig. 6. For these runs we fix the parameters, such as cop, lcp, and the 

pumping spot size a p , as in Fig. 4, but we also include a static photonic disorder potential — see Eq. (6). In 

particular, here we consider a disorder potential with zero average,  (VC (r)) = 0 and a spatial distribution, 

(VC (r)VC(r0)) = a2de—|r—r0|2/2i2d , (19) 

with a correlation length id ,-, 20 p.m and strength ad ,-, 0.1 meV. Below threshold the system is in a pump-only state. 

By increasing the pump power fp, above threshold, the OPO signal first switches on only in a small (compared with 

the pump  spot FWHM ap = 70 p.m) region (see inset 1). At fp = 1.2fp
th

 (inset 2) the signal becomes large and quite 

homogeneous, though, already at fp = 2.3fp
th

 , the OPO signal starts switching off in the middle (inset 4), and then it 

slowly switches off  everywhere. A similar behaviour has been found in the numerical simulations of  Ref. [78] 

(though there a small pump beam of FWHM ap ,,, 20 p.m has been used), as well as observed experimentally in Ref. 

[42]. 

The qualitative behaviour of the signal (as well as the idler) profiles, in particular  their switching on and then off, as a 

function of the pump power that we have just  
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Fig.  6 Evolution of the signal, idler and pump state intensities as a function of the pump intensity fp / f  p  th  (left). Space profiles of the 

filtered signal at different values of the pump intensity (right). The parameters are the same as in Fig. 4, with the addition of a photonic 

disorder potential VC(r) , correlation length L d  20 µm and strength σd  0.1 meV (contour-level lines in the panels on the right). 

described for a disordered sample is very similar to the case of an OPO in a homogeneous sample 3  (i.e., with no 

photonic disorder, VC(r )  = 0). One of the main differences is that for homogeneous samples the profiles are y  7→  —y  

symmetric, while this symmetry is explicitly broken by the photonic disorder. In addition, the fun damental difference 

between the homogeneous and the disordered case, is that the presence of photonic disorder promotes stable vortex 

solutions in large pump spot OPOs at intermediate pumping strengths, fp  1.4f p  t h— such as the one shown in panel 3 

of Fig. 6 which carries two vortices. Single or multiple vortex solutions are generally not allowed in the homogeneous 

case because of the y  7→  — y  symmetry, which instead only allows pairs of vortex-antivortex solution y  7→  — y  

symmetric. In large pump spots, such as the one of Fig. 6, vortex-antivortex solutions in the clean case tend to be 

dynamically unstable, i.e. easily destabilised by a weak noise pulse, while, as analysed later in Sec. 3.5, spontaneous 

vortex solutions in homogeneous cavities can be stabilised by a small pump spot (see Fig. 8) confining the vortex in side. 

Note finally that, spontaneous vortices in disordered cavities with a large pump spots are not pinned into minima of the 

disorder potential, rather, as analysed in the Sec. 5.2.2, are the OPO steady state currents in the signal to play an 

essential role in the stabilisation of vortices. 

3.4 Vortex phase and profile 

Before moving on to describe the occurrence of stable vortices in OPO, and, later,  

the onset and dynamics of metastable vortices, let us briefly remind the definition of  

a quantised vortex in an i r ro tat ional  fluid. In general, a quantised vortex with charge 

3 Note also that we find that the value of the pump threshold for OPO is not altered by the presence of a 

weak photonic disorder. 
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m  is described by a wave-function, 

ψ (r )  = ψ0 ( r)e imϕ ( r )  ,  (20) 

the phase of which, mϕ  ( r ) , linearly winds around the vortex core from 0 to 2πm  (with m  integer) — i.e., in 

cylindrical coordinates centered at the vortex core, ϕ  is the azimuthal angle. This implies that the vortex carries a 

quantised angular momentum, ¯hm . In addition, the phase has a branch-cut and therefore is not defined at the vortex 

core, implying the vortex wave-function has to be zero at the vortex core. An example of an m = —1 vortex, with ψ0 ( r) = 

re— r2/(2σ2 v ) , has been plotted on the left panel of Fig. 7. Here, the phase winds clock-wise around the core, from 0 to 

2π , and therefore the vortex current, 

∇ϕ ( r )  =  
ϕ

 ̂

r 

, (21) 
 

is constant at fixed distances from the vortex core, r, while decreases inversely proportional to the distance (right panel 

of Fig. 7). Contrast this with the case of a r o ta t i ona l  vortex in a classical fluid which rotates as a solid body with an 

angular velocity Q: Now, the fluid tangential velocity is zero at the vortex core and increases linearl y with the distance, i.e., 

vϕ  = Q r  ˆϕ . Quantised vortices can be detected in interference fringes (middle panel of Fig. 7) as fork -like 

dislocations, the difference in arms giving the charge |m| of the vortex. 

 

Fig.  7 Typical profile (left), phase and currents (21) (right), and interference fringes (middle) of an m = —1 vortex (20). 

3.5 Stable vortices in a small sized OPO 

As explained later in Sec. 5, spontaneous stable vortices differ from metastable vor - 
tices (described in Sec. 5.1): Metastable vortices can only be injected exte rnally, 
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e.g. by an additional Laguerre-Gauss beam probe, into an otherwise stable symmetric state, and their persistence is due 

to the OPO superfluid properties [8, 22]. The metastable vortex is a possible but not unique stable configuration of the 

system. In contrast, as for non-resonantly pumped polaritons [80, 5], the appearance of spontaneous vortices is not a 

consequence of the polariton condensate being superfluid, but rather to the presence of currents related to the non-

equilibrium nature of these condensates. This strongly differs from the case of equilibrium superfluids, the ground state 

of which is flow-less. Later, in Sec. 7 we will briefly discuss how, for polaritons non-resonantly injected into a microcavity, 

the presence of a confining potential can generate currents favourable to the spontaneous formation of vortices [5, 81] 

and vortex lattices [80]. 

For resonant excitation, currents arise in the OPO regime due to the simulta neous presence of pump, signal, and 

idler emitting at different momenta, as well as by the fact the system is finite size (see Fig. 4). We have seen in Fig. 

6 that, similarly to non-resonantly pumped polaritons, the presence of a disorder potential can lead to the spontaneous 

appearance of vortices. However, it is remarkable that, even in the absence of disorder or trapping potentials, the OPO 

system can undergo spontaneous breaking of the y  7→  —y  symmetry and become unstable towards the formation of a 

quantised vortex state with charge m  = ± 1 if the size of the OPO is small enough [22]. This is the subject of this 

section. Further, as discussed in some detail later in Sec. 3.5.2, like for equilibrium superfluids, both stable and 

metastable vortices are characterised by a healing length which is determined by the parameters of the OPO system 

alone. Spontaneous stable vortex solutions are robust to noise (Sec. 3.5.1) and to any other external perturbation, 

and thus should be experimentally observable. However, while spontaneous vortex solutions in OPO have been 

observed for a toroidal pump spot 4 , so far they have not been observed in OPO with a ‘simply connected’ pump 

profile, e.g., either a Gaussian or a top-hat. 

3.5.1 Dynamical stability 

As mentioned in Sec. 3.3, if the pump is shined on the x-direction, k p = (kp ,  0), only the symmetry y  7→  —y  is left intact 

in the system. Clearly, this symmetry, allows for OPO solutions where the signal (and therefore also the idler) have 

vortex-antivortex pairs, with the vortex core position at (x c , yc )  and the antivortex core position at ( x c ,  — y c ) . 

However, both single and multiple vortex solutions explicitly break the y  7→  —y  symmetry and cannot be accessed by 

the dynamics — Note that two vortices located at opposite sides with respect to the x -axis break the y  7→  —y  

symmetry because of the currents. 

In order to check the dynamical stability of OPO states, one has to add small fluctuations to the steady state mean -

field solution: The existence of modes with positive imaginary part in the excitation spectrum indicate dynamical 

instability towards the growth of different modes. The dynamical stability analysis for 

OPO 

4 D. Sarkar (University of Sheffield), private communication.  
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Fig.  8  Appearance of a spontaneous stable vortex solution in a homogeneous small sized OPO.  Filtered signal profile |11,sC(r, t)| with 

superimposed currents ∇0s
C(r, t) (upper panels (a-c)) and full momentum emission |11,C(kx,0, t)| (lower panels (d-f), in arb. units) at three 

different times: t =  0 (a,d), t =  432ps (b,e), and 1.2ns (c,f). At t =  0 a pulsed weak random noise of strength 0.01 (see text) is added to 

the OPO steady state (in (d) both OPO momentum profiles without and with the  added noise are shown for comparison) and at t =  432ps a 

vortex, with m = —1, enters the signal and settles into a steady state. Note that, because of phase matching conditions, the presence of  

an m = —1 vortex in a signal implies the presence of an m =  1 antivortex in the idler. A vortex  (antivortex) in the signal (idler) space 

emission appears also as a dip in momentum space at the  signal (idler) momentum (e,f). Parameters used: smoothed top-hat pump with 

FWHM ap =  35p.m,  pump strength f p = 1.124 ,
t h ) , kp = 1.6 p.m—1 in the x-direction, cop — co0

X = —0.44 meV, zero detuning 3 =  0, and KX 

=  KC =  0.22 meV. Adapted from [22]. 

described in within the plane-wave approximation of Sec. 3.2 has been discussed in  Refs. [61, 71]. Equivalently, 

stability can be numerically checked by introducing a  weak noise. In particular, we add white noise as a quick (3- like 

in time) pulse at a certain time t 0  to both modulus and phase of excitonic and photonic wavefunctions  in momentum 

space, |11,X ,C(k, t)|e i0X ,C (k, t ): 

 |11,X,C(k,t0)| |11,X,C(k,t0)|+ 3|11,X ,C(k)| 

 0X,C(k,t0) |0X,C(k,t0)+ 30X,C(k) . 

Both 3| 11,X , C(k) | and 30X , C(k) are white noise functions, with an amplitude 27r for the the phase 30X , C (k), while the 

amplitude of the noise in the modulus 3 |11,X  , C (k)|  is specified in units of the maximum of the pump intensity in 
momentum space. 
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Following this procedure, we have been able to single out symmetric OPO states, as shown in Fig. 8(a), which are 

unstable towards the spontaneous formation of stable vortex solutions. After the y  7→  —y  symmetry is broken by 

the noise pulse, we have observed a vortex with quantised charge m = ± 1 (m = +1) entering and stabilising into the 

OPO signal (idler) — Note that parametric scattering constrains the phases of pump, signal, and idler by 2Øp = Øs + Ø i  

(see Sec, 3.2.1), therefore an m  = —1 vortex in the signal at a given position implies an m  = 1 antivortex in the idler 

at the same position and vice versa. In the case of Fig. 8 and the right panel of Fig. 9, the noise strength is 0 .01 

and 432ps after the noise pulse, a vortex with m = —1 (m = +1) enters the signal (idler) and stabilises. The strength 

of the noise has no relevance on the final steady state, and in particular it can be infinitesimally weak. Different noise 

strengths do only affect the t r a n s i e n t  time the system needs to accommodate the vortex and reach the new steady 

configuration. We have in addition examined whether the vortex steady state is dynamically stable by applying an 

additional noise pulse. For weak noise, with a strength up to 0 .1, the vortex is stable and can only drift around a little 

before settling again into the same state. For strong noise, with strength 1 and above, the vortex gets washed away, but 

after a transient period, the very same state enters and stabilises again into the signal, with the possibility of flipping 

vorticity 5 . Different noise strengths do not affect the final steady state, but only the transient time. 

 

Fig.  9 Steady state filtered signal profile (dotted line)ψs
 C( x ,0, t) for y  0 before the arrival of either a Laguerre-Gauss vortex probe (24) 

with a p b  1tm (left panel, red dashed line) or a noise pulse of strength 0.01 (right panel, red dashed line) — same OPO conditions as Fig. 8. 

After the arrival of any perturbation breaking they 7→ —y symmetry, the same vortex with charge m = ±1 (solid shaded curve) stabil ises 

into the signal. [From [22] ask for copyright permission! ] 

5 When generated by a noise pulse, both stable and metastable vortices have equal probability to have 

either charge ±1. Similarly, when vortices are triggered via a Laguerre-Gauss probe, their vorticity can flip during the transient period. 

In particular, flipping can follow the appearance of two antivortices at the edge of the signal, one recombining with the triggered 

vortex. Note that the vorticity flipping conserves the total orbital angular momentum, in the sense that when for the signal m flips, say, from 

+1 to —1, for the idler the opposite happens, i.e. m  flips from—1to +1. 
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As discussed later in Sec. 5, one can alternatively break the y  7→  — y  symmetry by a pulsed vortex probe (24), and 

assess whether the stable steady state is in any way dependent on the external perturbation. The homogeneous OPO 

states which are unstable towards the spontaneous formation of stable vortices following a white noise pulse, exhibit 

the same instability following a vortex Laguerre-Gauss (LG) probe pulse (see the left panel of Fig. 9). The steady 

state vortex is independent on both the probe intensity f p b  and size ap b , however the weaker the probe the longer the 

vortex takes to stabilise, between 30 and 400ps for our system parameters. As shown in Fig. 9, the stable vortex 

following the LG probe is exactly the same as the one triggered by a weak white noise, indicating that the probe acts 

only as a symmetry breaking perturbation. 

Summarising, one can find OPO conditions where the y  7→  — y  symmetric solution is dynamically unstable and any 

symmetry breaking perturbation allows the signal and idler to relax into a stable steady state carrying a vortex with 

charge ± 1. For homogeneous cavities, i.e., in absence of any disorder or confining potential, we found that this 

requires either a small Gaussian or small top-hat like pump spot which can confine the vortex inside or a doughnut-

shape pump spot. Instability of the uniform state to spontaneous pattern (e.g., vortex) formation is a typical fea ture 

of systems driven away from equilibrium [79]. Similarly we find condit ions for which the uniform OPO solution is 

unstable to spontaneous formation of a quantised vortex. In alternative, a disorder potential breaks the symmetry 

explicitly and allows the pinning of stable vortex solutions in OPO, which is less surprising.  

3.5.2 Healing length 

In contrast to their classical counterpart, quantised vortices with the same angular momentum |m| are all identical, with 

a size (or healing length) determined by the system non-linear properties [76]. In the case of a superfluid in 

equilibrium with a typical interaction energy g i i  ( i i  is the average density) and mass m , the heal ing length, = 

1/√2m g i i , is the typical distance over which the condensate wave- function recovers its ‘bulk’ value around a 

perturbation. In particular, for an |m| = 1 vortex (20), is the typical size of the vortex.  

Similarly, in OPO, one case show that, like in equilibrium superfluids, both sta ble (see Sec. 3.5) and metastable (see 

Sec. 5) vortices are characterised by a healing length which is determined by the parameters of the OPO system alone. 

In particular, shape and size of the metastable vortices described in Sec. 5 are independent on the external probe. In 

the case of vortices in OPO, an approximate analytical expression for the vortex healing length can be derived for 

homogeneous pumping [22, 9], assuming that only signal and idler can carry angular momentum with opposite sign, 

±m , r s , i ( r )  =√ i i s , i e i k s , i · r e ± i m
ϕW s , i ( r ) , while the pump remains in a plane-wave state, p ( r )  = √ i i p e i k

p · r , as also 

supported by our numerical analysis. For pump powers close to OPO threshold, it can be shown [22, 9] that signal 

and idler steady state spatial profiles are locked together and satisfy the following complex GP equation 
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[ ~ d2 ) ( )l 
_  1 + a Ws2 _ 1 
dr2 + 1 dr _ m2 d Ws = 0 , 
2mC r r2 

where |  a|  '  gX/n sn i . This equation describes a vortex profile [76] with a healing length given by: 

x  =  ( 2 m C g X  / n s n i ) _ 1 / 2  . ( 2 2 )  

This expression is similar to the one of an equilibrium superfluid, with the condensate density replaced by the 

geometric average of signal and idler densities. Further above threshold, one can show that signal and idler profiles are 

no longer locked together, and that they start to develop different radii. In both the simulations of Figs. 9 and 6, we 

find x '  4im, compatible with the estimate (22). 

In Ref. [9], vortices in OPO have been created in a controlled manner by adding a weak continuous probe in 

resonance to the signal. Even if the phase freedom of the OPO system is explicitly broken in this configuration  by the 

vortex cw probe, because the ratio of the probe to signal power density is low, the size of the vortex has been 

demonstrated to be determined by the OPO non-linear properties only rather than by the imprinting probe. In 

particular, a systematic study of the decrease of the vortex core radius with increasing pump power above threshold 

has allowed to confirm the behaviour described by the Eq. (22). 

4 Triggered optical parametric oscillator regime 

Before moving on into the description of metastable vor tices in OPO, i.e. vortices which are transferred by a pulsed 

vortex probe into the OPO signal and idler, and their relation to superfluidity (Sec. 5), we describe here first the 

effect of an additional pulsed probe on OPO in general terms. As described previously, in the OPO regime, polaritons 

are continuously injected into the pump state, and undergo coherent stimulated scattering into the signal and idler states. 

The OPO is a steady state regime, where the filtered profiles of signal, idler, and pump, | v' p , s , i  

C,X (r, t) |, are time independent. This also is reflected in the typical flat dispersion around pump, signal, and idler which 

can be observed in the OPO spectra (see Fig. 4). The group  ve loc i ty  of pump, signal, and idler, defined as the 

derivative of the energy dispersion at k p , s , i , is therefore zero. This however does not mean that there is no flow of 

polaritons, which instead is described by the phase  ve loc i t y  or current, ∇Ø p , s , i  
C , X  (see footnote 2 

on page 13), with a dominant uniform flow given approximatively by k p , s , i . 

In resonantly pumped polaritons, in order to initiate a travelling wave-packet characterised by a finite group velocity, 

one needs to use an additional pulsed laser beam on top of the cw one. The description of the system is therefore still 

in terms of the Eqs. (9), with a total pump term given by the sum of the cw laser (10) and a probe beam Fpb(r, t): 

F(r,t) =Fp(r,t)+Fpb(r,t) . (23) 
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For the moment being we will consider the generic case of a pulsed probe with a Gaussian space profile, shined at a 

momentum and energy {k p b ,  0) p b }  6 : 

Fpb (r, t) = fpbe−|r−rpb|2/(
2

a2  pb)ei(kpb·r−0)pbt) e−(t−tpb)2/(2a2 t ) . (24) 

A pulse duration of 3 ps (defined as the FWHM in time of F p b ( r , t ) ) corresponds to a t  = 1.3 ps. The idea, first 

introduced by Ref. [20], is that the pulsed probe triggers parametric scattering 7 between the probe state at momentum and 

energy {kpb , 0
)pb}  and a con juga te  state at {k c  =  2k p  −  k p b ,  0 ) c  = 20 ) p  −  0 )p b }  — because one can either have k p b  > 

k p  or k p b  <k p , we use the state labels ‘probe’ and ‘conjugate’, rather than ‘signal’ and ‘idler’; by doing so, one also 

doesn’t confuse the states generated by the OPO with the additional ones generated by the probe. Both probe and 

conjugate states are travelling decaying states which can evolve freely from the laser probe constraints once the pulse 

switches off. Such states are referred to as triggered-OPO (TOPO) states. Note that a TOPO can be triggered in two 

regimes: either (i) in a regime where the cw laser drives the system above threshold for OPO, in which case the probe 

and conjugate states are the extra population states on top of the steady-state OPO signal and idler states, or (ii) 

when no OPO is present, i.e. for the cw pump strength below threshold. For simplicity, the numerical analysis 

discussed below in Sec. 4.1 is conducted in the regime (i i), but we have checked that the qualitative results also 

hold in the regime (i) — where, now, the steady state OPO population needs to be subtracted so that one studies the 

properties of the population triggered by the probe only. 

4.1 Theoretical description of the TOPO 

cross-refer to Fabrice Laussy’ chapter Inordertoanalysethedynamical evolution of a TOPO wave-

packet, we study numerically the time-dependent solutions of the equations (9), with a total pump given by (23) and (24). 

The probe triggers parametric scattering between a probe state and a conjugate state. In the majority of cases, as 

discussed in Ref. [23], the parametric scattering is too weak to induce any significant amplification, and an 

exponential decay of both probe and conjugate populations is observed immediately after the probe F p b  ( r ,  t )  

switches off. Here, the spectrum shows a strong emission from the pump state and a weak emission from the LP 

states mainly at momenta k p b  and k c . 

However, we have found conditions under which both signal and conjugate states get initially strongly amplified by the 

parametric scattering from the pump, then de- 

6  Note that, differently from the cw laser beam, the energy distribution spectrum of which is  

essentially 8-like, a pulsed beam has an intrinsic width in energy, proportional to the inverse pulse 
duration, a−1 
t . 

7 If the cw pump drives the system into the OPO regime, then the parametric scattering triggered by the pulsed probe will be in addition 

to the one related to OPO. However, as discussed later, the TOPO regime can be reached also in absence of the OPO. 
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Fig. 10 Spectrum (left) and spatial profiles of pump and filtered signal|ψs
 C (x ,  0,  t)| (right) for the TOPO regime. A short, o t  = 1ps, m  = 2 

Laguerre-Gauss (25) (left) or Gaussian m  = 0 (24) (right) probe shined at k p b  = (1.4,0)  tm− 1  triggers the propagating probe and 

conjugate states, which lock to the same group velocity (for these simulations we fix 1CX  = 0 and 1CC= 0.02meV). Adapted from [23]. 

 

Fig.  11 TOPO signal intensity (black line) and the intensity of an external Gaussian probe (red line) as a function of time. Parameters 

are the same ones of the right panel in Fig. 10. The TOPO signal gets initially strongly amplified, then decays slowly, and finally 

exponentially. 

cay slowly and, only at later times, decay exponentially (see Figs. 10 and 11) — we refer to this as the ‘proper’ 

TOPO regime. A similar behaviour has been also observed in experiments 8 . Now, the spectrum is observed to be linear, 

CO = vg · k (see Fig. 10). A linear spectrum can be explained by the fact that, in order to have efficient parametric 

scattering, probe and conjugate state must have a large spatial overlap and therefore similar group velocities. Thus 

signal and conjugate group velocities need to lock, which is only possible if the dispersion becomes linear — a similar 

result has been also found in 1D simulations (see Fabrice Laussy’ s Chapter ), as well as in experiments [20]. 

The group velocity is defined as the 

8  See, for example, Fig. 3 of Ref. [82], where the intensity maximum of the extra population is reached 

within 4ps after the maximum of the pulsed probe, is followed by a slow decay.  
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derivative of the energy dispersion with respect to the momentum. However, we can also measure it from the probe 
and the conjugate density variations in time, i.e., as vpb,c 
g= d r p b , c  m  /d t , where r p b , c  
m is the maximum of either the probe or conjugate spatial profile, which we use as a reference. By analysing the 
change in time of the spatial profile of the TOPO probe state|ψ p b  

C,X(r, t) |, it is possible to show [23] 
that its group velocity v p b  

g is g iven exactly by the der ivat ive of the lower polari ton (LP) dispersion evaluated at k p b , i.e., for zero detuning 
and low densities by 

/ ______________________  
vLP 

k p b  ≡ kp b/(2mC) - k3/(2mC k4 +4m2
 C(22

 R) (see Fig. 12). This behaviour is con- 
sistent with the form of the spectrum shown in Fig. 10 9 . Further, we have been able to determine [23] that the TOPO 

linear dispersion is tangential to the LP branch at kp b , thus its slope is given in this case also by vL P  

kpb. 

 

Fig.  12 Left panel: Probe (solid lines) and conjugate (dashed lines) density profiles at different times after the arrival of the pro be 

(same parameters as in Fig. 10). Right panel: Group velocity, vs
g, of the propagating probe state as a function of the probe momentum k p b .  

The black dots are determined from simulations, whereas the solid (red) line is the derivative of the LP dispersion evaluated at kpb, vLP 

k p b . The blue dashed line is a guide for eye to indicate where the LP dispersion deviates from the quadratic. Adapted from [23].  

From the PL spectrum we can also deduce the nature of the wave-packet propagation. For systems characterised by a 

linear dispersion, like in the TOPO regime, one expects a soliton-like behaviour, where probe and conjugate states 

propagate without changing neither their shape nor intensity. For quadratic dispersion, a Gaus sian wave-packet moves 

at a constant velocity vL P  
kpb = kpb  

2m C  and it preserves its overall shape in time but its width grows (FWHM=(a2  p b + (  t   

2m Ca p b)2)1/2) [76]. Note, how- 
ever, that, due to the finite polariton lifetime, the total density decays exponentially,  

9 In the regime where the probe generates only a weak parametric scattering, aside the strong emission 

from the pump state, the dispersion is simply that of the LP, and thus is not surprising that the signal propagates with a group velocity 

given by v L P  

k p b . Remember that here the cw pump is 
below threshold for OPO. 
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with a rate given byκC+κ X   

2  at zero detuning. Finally, for non-quadratic dispersion, propagation becomes complex: The wave-packet gets 

distorted and there are beatings in the spatial profiles. In general, due to the dynamical nature of the TOPO state, 

the system evolves between these different scenarios. In particular, only in the strong amplification regime the spectrum 

is linear, while it evolves back to the LP one at longer times. However, for a one-dimensional version of the 

equations (9), and for uniform, infinitely extended in space, pumping spots, non -decaying, soli- ton solutions have 

been recently found [83]. This has been also generalised to a two-dimensional infinite systems [84], where, for 

some narrow range of pumping strengths, a soliton-like behaviour has been predicted for k p b  = 0 and k p b  = k p . 

However, to date, a non-decaying wave-packet propagation has not been found in experiments. 

Finally we would like to note that, the typical behaviour of probe and conjugate states (left panel of Fig. 12) is 

analogous to the one discussed in four-wave-mixing experiments [85, 86]: when the probe arrives, and shortly after that, 

the conjugate propagates faster then the probe, before getting locked to it with a small spatial shift of their 

maximum intensities. At later times, when the density drops and the parametric process becomes inefficient, the two 

wave-packets start unlocking — the conjugate slows down with respect to the signal if k  <kp b  as in Fig. 12, or it moves 

faster when k  > kp b . 

4.2 Experiments 

The TOPO regime has been recently studied in experiments in Refs. [20, 45] (for a review see Ref. [87]). As previously 

described, the additional pulsed probe has been used to create a travelling, long-living, coherent polaritons signal, 

continuously fed by the OPO. A large increase of the signal lifetime has been observed for a pump intensity approaching 

and exceeding the OPO threshold [45]. This observation can be explained in terms of a critical slowing down of the 

dynamics following appearance of a soft Goldstone mode in the spectrum close to threshold. It is a lso consistent 

with the nature of wave-packet propagation in systems with linear dispersion. This has been used to interpret 

subsequent experiments, where the linearisation of dispersion leads to the suppression of weak scattering and therefore 

to a polariton motion without any dissipation [20, 87] cross refer to Fabrice Laussy’ chapter . Due to 

the finite size of the excitation spot, the travelling TOPO signal lives only as long as it reaches the edge of the 

excitation spot. However, as discussed in detail in Ref. [87], in order to asses the sustainability in time of the TOPO 

process, both pump and probe beams can be chosen so that the probe state forms at k p b 0. In such a case, the polaritons 

in the probe state are not travelling and therefore and it is thus possible to measure the lifetime of the TOPO wave-

packet, which is of the order of a nanosecond. The decay of the TOPO population in time, as well as the finite lifetime of 

TOPO pulses, indicate that the soliton behaviour predicted in Ref. [84] is not the explanation of the current 

experiments. However, the linearisation of the 
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system’s dispersion due to the parametric process, as well as the appearance of the Goldstone mode, provide a sufficient 

explanation of dissipationless propagation in free space, as well as frictionless flow against an obstacle, during the 

part of the dynamics when parametric processes are strong and the spectrum linear.  

5 Triggered metastable vortices as a diagnostic of the OPO superfluid properties 

OPO condensates, as well as polariton condensates pumped incoherently, share with weakly interacting Bose-Einstein 

condensates at equilibrium phenomena like the spontaneous breaking of the phase symmetry and the appearance of 

a Goldstone mode (see Sec. 3.2.1). However, being intrinsically non-equilibrium, all polaritonic systems need 

continuous pumping to balance the fast decay and maintain a steady state regime. In strong contrast with 

equilibrium superfluids, the ground state of which is flow-less, pump and decay lead to currents that carry 

polaritons from gain to loss dominated regions. This can lead to the spontaneous formation of vortices: The presence 

of currents in polariton condensates can lead to the spontaneous appearance of vortices without invoking any 

superfluid properties. This is true for incoherently pumped polaritons in presence of a confining potential [5, 80, 81], 

as well as for polaritons in the OPO regime, with the difference that here, even in the absence of disorder or a trapping 

potential, the system becomes unstable towards the formation of a quantised vortex state with charge m = ± 1 (see Sec. 

3.5). In addition, the hydrodynamic nucleation of quantised vortices can appear as a consequence of the collisions of 

a moving polariton fluid with an obstacle, as will be briefly discussed in Sec. 7. Therefore, in general, for 

polaritonic systems, one has to apply some care when using the appearance of vortices as a diagnostic for the 

superfluid properties of such a non-equilibrium system. 

In the case of equilibrium superfluids, the rotation of a condensate is accompanied, above a critical angular velocity 

[76,75], by the creation of quantised vortices. Here, vortices are stable as far as the system is kept rotating and 

become unstable when the imposed rotation is halted [77]. However, persistent flow can be observed when a BEC is 

confined into a toroidal trap and the quantised rotation is initiated by a pulsed Laguerre-Gauss beam [88, 89, 90]. 

The toroidal trap is essential to allow the vortex stability, because of the energy cost of the vortex core to move 

through the high density region from the center of the torus where the density is zero. The very same idea of 

questioning the persistency of flow in a BEC via a pulsed Laguerre-Gauss beam as a diagnostic for superfluidity, can 

be applied to polaritons 1 0 . As recently proposed for non-resonantly pumped polariton condensates in Ref. [21], this 

definition of superfluidity as metastable flow is equally meaning ful in non-equilibrium systems as in equilibrium ones. 

However, as we will see, the 

10 Note, however, that even if in the atomic and polaritonic case the same Laguerre -Gauss laser field is 

used, the mechanism of spinning the BEC atoms is different from the one which rotates polaritons.  
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important difference is that, in the OPO regime, flow persistency is possible even in a simply connected geometry, i.e., 

without the need of a toroidal trap which pins the vortex. 

A pulsed Laguerre-Gauss (LG) probe beam carrying a vortex of charge m can be described by: 

Fpb (r, t) = fpb |r _ rpb||m| eim9 e_|r_rpb |2/(2a2 pb) ei(kpb·r_(')pbt) e_(t_tpb)2/(2a2 t ) , (25) 

with {k p b ,  ( ' ) p b} can be tuned resonantly to either the OPO signal or idler. As discussed in the next section, by using a 

pulsed LG beam (25), vorticity has been shown to persist not only in absence of the rotating drive, but also longer than 

the gain induced by the probe, and therefore to be transferred to the OPO signal, demonstrating metastability of quantised 

vortices and persistence of currents in OPO. Experiments and theory will be discussed in the next Sec. 5.1.  

 

Fig.  13 Time evolution of the polariton signal following the arrival of a LG pulsed beam carrying a vortex of m = 1. The first raw are 

the interference images obtained by overlapping the vortex with a small expanded region of the same image far from the vortex core, 

where the phase is constant, while the second raw are the space profiles of the signal. The sequence demonstrates that the vortex 

remains steady as a persisting metastable state for times much longer than the extra population created by the probe pulse and eventually gets 

imprinted in the steady state of the OPO signal. This is revealed by the strong contrast of the fork in the interference images for as long 

as the core remains within the condensate area. From Ref. [8]. 

5.1 Theory and experiments 

In the case of metastable vortex solutions, the symmetric vortex -less OPO steady 

state is dynamically stable, but, because of its superfluid properties, can support  

persistent metastable currents injected externally. From a theoretical point of view, 
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metastable solutions can be equally induced by either a vortex probe pulse (25) or a noise pulse. However, differently 

from the case of stable vortices, metastable solutions require a threshold in the perturbation breaking the system y  7→  

−y  symmetry. For the simulations of Ref. [8], as we were interested mainly into the transfer of angular momentum 

from the probe into the OPO signal and idler, we have been considering conditions where the parametric scattering 

induced by the probe is too weak to induce any significant long-lasting amplification, and the gain introduced by 

the probe on top of the OPO disappears quite quickly. We have found conditions where the vortex is transferred from 

the probe into the signal 1 1  (and antivortex in the idler) immediately 1 2  when the probe is shined. The transfer is 

followed by a transient time during which the imprinted vortex drifts around inside the signal and in certain cases 

settles into a metastable solution. Similarly to what happens to stable vortex solutions, we have found that the spatial 

position of the metastable steady state vortices is close to the position where the OPO signal has the currents pointing 

inwards (see second panel of Fig. 5). The influence of currents on the formation of vortices is discussed further in Sec. 

5.2. Such metastable solutions do not always exist: if the probe is positioned well inside a wide OPO signal, as 

the creation of a vortex is accompanied by the creation of an antivortex (see Sec. 5.2), often, the vortex-antivortex 

pair quickly recombines; in other cases, during the transient period, the excited vortex can spiral out of the signal. 

Finally note that, as discussed in Sec. 3.5.2, the shape and the size of metastable vortices are independent on the 

external probe but are only determined by the parameters of the OPO. 

In the experiment of Ref. [8] also shown in Fig. 13, a vortex is excited by a probe smaller than that of the signal to allow 

free motion of the vortex within the condensate. Vortices are detected, and their evolution in time followed by a 

streak camera, in interference images, generated by making interfere the OPO signal with a con stant phase 

reference beam in a Michelson interferometer (second row of Fig. 13). As single shot measurements would give a too 

low signal to noise ratio, every picture is the result of an average over many pulsed experiments taken always for the 

same OPO conditions. The probe triggers a TOPO response, creating a strong gain and an extra decaying population on 

top of the OPO signal (TOPO). In experiments, dif ferent regimes have been investigated. In particular, it has been 

possible to establish that, only under very high pump power and at specific points in the sample, the vor ticity was 

transferred from the TOPO into the OPO signal, generating a metastable vortex solution. This not only demonstrates 

that the OPO polariton condensate can show unperturbed rotation, but also that a vortex can be another metastable 

solution of the final steady state, demonstrating therefore the superfluid behaviour in the non-equilibrium polariton OPO 

system. After the vortex is imprinted into the OPO 

11 We checked that m = ±1 (m = +1) vortex solutions can appear only into the OPO signal (idler). A vortex 

probe pulse of any charge m injected resonantly to the pump momentum and energy gets immediately transferred to an m = ±1 (m = +1) 

vortex in the signal (idler), leaving the pump vortex-less. 

12 Later, in Sec. 6.1, in connection to the stability of multiply quantise vortices, we also describe vortices in the TOPO regime, where we 

follow the vortex dynamics not of the OPO like here, but of the extra population only. 
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signal, it has been possible to observe the vortex core slowly drifting, changing in shape and moving with different 

velocities. Note that, because these are metastable solutions, a minimum probe power is required for the polaritons to 

acquire enough angular momentum to be able to transfer it to the steady state. However, once the transfer is achieved, 

the probe power does not change significantly the duration and depth of the vortex in the steady state. 

5.2 Onset and dynamics of vortex-antivortex pairs 

There is an aspect that we have been neglecting in the discussion of the previous section on the occurrence of 

metastable vortex solutions in OPO triggered by an external LG probe. If the extension of the probe carrying a 

vortex with charge m  = + 1 is smaller than the size of the vortex-free OPO signal, continuity of the polariton wavefunction 

requires that necessarily an antivortex with charge m = —1 has to form at the edge of the probe (see Fig. 14). Indeed, 

‘unintended’ antivortices have been shown to appear in the signal at the edge of the imprinting vortex probe and we 

have explained in Ref. [91], both theoretically and via experiments , the origin of the deterministic behaviour of the 

antivortex onset and dynamics, i.e. where antivortices are more likely to appear in terms of the currents of the 

imprinting probe and the ones of the underlying OPO. 

5.2.1 Random phase between pump and probe 

As mentioned earlier in Sec. 5.1, single shot measurements would give a too low signal to noise ratio, therefore an 

average is performed over many pulsed experiments taken always for the same OPO conditions. What differs at each 

probe arrival is the random relative phase tI r d m  between pump and probe, 

F(r,t) = Fp(r,t) +Fpb(r,t)e itIrdm , (26) 

with t I r d m  uniformly distributed between 0 and 2g . We s imulate the dynamics of the vortex-free signal OPO 

(same conditions of Fig. 6 at f p  = 1.2 f p
t h

) following the arrival of a vortex probe (24) for 1000 realisations of 

t I r d m  and then average the complex wavefunctions over such realisations at fixed time and space, (|ψs
 C(r,t) |eiφs 

C(r,t)itIrdm. 

The steady state currents of the OPO signal before the arrival of the probe have a dominant component pointing leftwards 
and an equilibrium position where all currents point inwards (bottom left part of the panel (a) in Fig. 14). In single shot 

simulations of Fig. 14(d,f) (one realisation of the phase tI r d m ), we find that if the probe is positioned well inside the 

OPO signal, then the imprinting of a vortex m  = + 1 (antivortex m  = —1) forces the system to generate, at the same 

time, an antivortex m = —1 (vortex m = + 1) at the edge of the probe. This is a consequence of the con- 



 

 

Vortices in polariton OPO superfluids 32 

 

Fig. 14 Profile and currents of the steady state OPO signal before the arrival of the probe (a) and associated interference fringes (d) — 

parameters for OPO are exactly the same as the ones of the inset 2 in Fig. 6 (fp  = 1 .2f  p  t h  ). Location of antivortices (dots (b)) and 

vortices (stars (c)) at the arrival of a vortex (stars (b)) or an antivortex (dots (c)) probe, for 1000 realisations of the r andom relative phase 

between pump and probe, " r d m .  The size of dots in (b) (stars in (c)) is proportional to the number of times the antivortices (vortices) appear 

in that location. Panel (e) ((f)) shows single shot interference fringes relative to the plot in (b) ((c)). Contour -level lines in (b) and (c) 

represent the photonic disorder VC(r) . The white circle represents the edge of the probe. From Ref. [91] ask 

for copyright permission! .  

tinuity of the polariton wavefunctions: If the signal OPO phase is homogeneous and vortex-free before the arrival of the 

probe, then imposing a topological defect, i.e., a branch cut, on the signal phase at the probe core, requires the branch 

cut to terminate where the phase is not imposed by the probe any longer and has to continuously connect to the freely 

chosen OPO signal phase, i.e. at the edge of the probe. As repeatedly mentioned in this review, OPO parametric 

scattering processes constrain the sum of signal and idler phases to the phase of the laser pump by 2Øp = Øs + Ø i. Thus, 

at the same positions where the V-AV pair appears in the signal, an AV-V pair appears in the idler, so that locally the 

phase constraint described above is satisfied. This agrees with the experiments in [9], though there only a single V 

(AV) in the signal (idler) could be detected, because the signal size was comparable to the probe one. 

Different relative phases " r d m  cause the antivortex (vortex) to appear in different locations around the vortex 

(antivortex) probe. However, on 1000 realisations of the random phase uniformly distributed between 0 and 2 ir, we 

observe that the antivortices (vortices) are more likely to appear on positions where the current of the steady state OPO 

signal before the probe arrival and the probe current are opposite. For example, for them = +1 (m = —1) probe of Fig. 

14(c) (Fig. 14(e)), the current constantly winds anti-clockwise (clockwise), therefore, comparing with the signal 

current of Fig. 14(a), the two are anti-parallel in the bottom right (top left) region on the probe edge, region where 

is very likely that an antivortex (vortex) is formed. 
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Note also that the onset of antivortices (vortices) privileges regions where the steady OPO signal has a minimal intensity. 

This agrees remarkably well with it has been recently measured experimentally, in Ref. [91].  

5.2.2 Multi-shot averaged dynamics 

Crucially, via numerical simulations, we elucidate the reason why an experimental average over many shots allows 

detecting a vortex by direct visualisation in density and phase profiles. Recently, it has been suggested by stochastic 

simulations [21] that vortices in non-resonantly pumped polariton condensates undergo a random motion which will 

hinder their direct detection, unless they are close to be pinned by the stationary disorder potential and thus follow a 

deterministic trajectory [7]. In the case considered here of a superfluid generated by OPO, we can instead explain a 

deterministic dynamics of the V-AV pair in terms of the OPO steady state currents, which determine a unique trajectory 

for the pair, allowing their observation in multi- shot measurements. 

By averaging the 1000 images obtained at the probe arrival, e.g., in Fig. 14(c), neither the imprinted vortex nor the 

antivortex can be detected: Both phase singularities are washed away by averaging the differently positioned branch-

cuts. However, the steady state signal currents push the V and AV, initially positioned in different locations, towards 

the same equilibrium position where all currents point inwards. Thus, exactly at the time where the probe is shined, 

on average there is no V-AV pair, after ∼ 10ps, both V and AV appear and last ∼ 75 ps (see Ref. [91]), till they 

eventually annihilate. 

It is interesting to note that it has been experimentally shown [91] that the onset of vortices in polariton superfluids does 

not require a LG imprinting beam, but instead vortex-antivortex pairs can be also generated when counter-

propagating currents are imposed, similarly to what happens in normal (classical) fluids. In Ref. [91] a Gaussian 

pulsed beam has been shined either at rest with respect to the OPO signal, kp b  = k5  0, or moving kp b  =6 k5 . While 

no vortex-antivortex pair appears in the first case, in the second, a vortex-antivortex pair appears on opposite sides 

of the probe edge. 

6 Stability of multiply quantised vortices 

The energy of a vortex is proportional to its quantum of circulation squared [76], m2 . Thus, ignoring interactions, a 

doubly charged m = 2 vortex, has higher energy than two single m = 1 vortices. However, including interactions 

between vortices, the energy of an m = 2 vortex turns to be the same as the energy of two m = 1 interacting 

vortices close together. The behaviour of doubly quantised vortices has been the subject of intensive research in the 

context of ultra-cold atomic gases. In particular, it has been established that the nature of the splitting is the 

dynamical 

instability. Nevertheless, m = 2 vortices have been predicted to be stable for specific ranges of density and interaction 

strength [92,93], though, so far, they have not been observed experimentally [94]. As for single vortices, multiply 

quantised vortices can be however stabilised in multiply connected geometry. Indeed, stable pinned m = 2 persistent 

vortices have been recently observed [89] by using a toroidal pinning potential generated by an external optical plug, 

and demonstrated to split soon after the plug was removed. In this case, the presence of a plug beam at the vortex 

center can pin both m = 1 and m = 2 vortex states and stabilise them against respectively spiralling out of the condensate 

for m = 1 and splitting for m =2. In other words, the external trap mechanically prevents the persistent flow to undergo 

any movement. 

In contrast to equilibrium superfluids, such as atomic gases, both stable and unstable m  = 2 vortices has been 

experimentally realised in polariton OPO superfluids [8]. In this section we provide a theoretical explaination of 

the stability and splitting of doubly charged polariton vortices. As done previously, vortices in OPO are generated by 

an external pulsed probe (25). As such, we classify the response of the system to an m = 2 LG probe, depending 

whether the probe generates a TOPO state (and the vortex is only carried by the extra population but is not 

transferred into the OPO signal), as described in Sec. 6.1, or instead is transferred in  the OPO signal (Sec. 6.2). 
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6.1 TOPO regime 

We first consider the TOPO regime (see Sec. 4), i.e., when the vortex propagates inside the triggered probe and 

conjugate wave-packets. It has been found [8, 23] that, in the TOPO regime, m  = 2 vortices are stable within their 

lifetime when triggered at small momenta k p b (see Fig. 15 panels (a) and (b)), while they split into two m = 1 vortices for 

large values of k p b  (see Fig. 15 panels (c) and (d)). This conclusion was reached both by experimental observations [8] 

and theoretical analysis [8, 23]. The numerical analysis shows that the crossover from non-splitting to splitting 

happens for the probe momenta where the LP dispersion deviates from the quadratic one (see Fig. 12). The two different 

cases are shown in Fig. 15: For kp b  = 0.2µm− 1 , at short times, the probe propagates without changing shape and with 

little change in intensity (not shown in the Fig. 15), consistent with the linear dispersion of spectrum characterising 

this regime. However, at longer times the density of the triggered probe and conjugate states drops more then two 

orders of magnitude, the dispersion changes to the quadratic one and the wave-packet expands (panel (b)). A uniform 

expansion of the wave-packet leads to the decrease of the probe and the conjugate polariton densities and thus to an 

increase of the vortex core, but it does not cause the vortex to split. In contrast, for kp b  = 1.4µm− 1 , where the LP 

dispersion is not quadratic, the m = 2 vortex state splits into two m = 1 vortices shortly after the arrival of the probe 

(panel (d)). This behaviour can be understood by analysing the evolution of the system’s excitation spectrum in time : 

the dispersion of the time- dependent TOPO evolves from LP (before the probe arrival) to linear (at early times  
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after the probe arrival, when the stimulated scattering is strong), and back to the LP at later times. For large k p b  

the LP dispersion deviates strongly from quadratic (see Fig. 12 right panel). Wave-packets propagating with non-

quadratic dispersion do not keep their shapes (as discussed in Sec. 4.1), and the simulations show that the distortion can 

be very pronounced in particular at later times of the evolution. The distortion during the early times of the 

propagation leads to the mechanical splitting of an m = 2 vortex, analogous to the structural instability discussed in 

Ref. [95]. Additionally, as discussed in Ref. [8], for small k p b , within the quadratic part of the dispersion, the group velocity 

of the wave-packet carrying the vortex equals the velocity of the net super-current (given by k p b )  associated with 

phase variations. This is not however the case for larger k p b , beyond the quadratic part of the dispersion. In this case, the 

propagating vortex feels a net current in its moving reference frame, which may provide additional mechanism for 

splitting. 

 

Fig.  15 Intensity of the TOPO probe profile |ψ p b  

C (r, t)| after the arrival (at t  = 0) of an m = 2 vortex pulsed probe (25) with σ p b  87µm. Small k p b  is shown in panels (a) and (b), while 

a large k p b  in panels (c) and (d). While in the case (a,b) them  = 2 vortex does not split within its lifetime, in (c,d) the vortex splits soon 

after the probe arrives. The intensity scale in (b) is 200 times smaller then in (a) – signal expands as the density drops two orders of 

magnitude (see text). Adapted from [23]. 

6.2 OPO regime 

In contrast to the TOPO regime described above, it has been shown both experimentally and theoretically [8, 23] that 

m = 2 vortices that do get imprinted into the steady-state OPO signal are never stable and splits into two m = 1 vortices 

almost immediately, even before the probe reaches its maximum intensity (see Fig. 16). By  analysing the system’s 

dispersion in different regimes, as well as the dynamics of currents visible in the simulations, we have been able to 

identify several causes for the splitting: Before the arrival of the probe, the steady-state OPO dispersion is flat around 

the pump, signal, and idler. However, the triggering probe favours the signal and conjugate to lock and propagate 

with the same velocity v L P  

k p b . This behaviour 
corresponds to a linear dispersion. Further, once the vortex gets imprinted into the  
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stationary OPO signal and idler, the system’s dispersion changes back to be flat. The evolution of the dispersion between 

flat, linear and again flat leads to a complicated dynamics of both signal and idler (the t r a ns i en t  p e r i o d  described in 

[22]), causing the structural instability and splitting of the m = 2 vortex during the transient time. Another reason for 

the structural instability and splitting are the non-uniform currents (see Fig. 16) present in the OPO signal caused by the 

interplay between spatial inhomogeneity, pump and decay, which the OPO vortex experiences in its reference frame.  

 

Fig.  16 Filtered signal profile and currents above threshold for OPO ( fp  = 1•12f  ( t h )  

p  ) for a top-hat pump with FWHM σp = 35 µm at t  = —3 ps (first panel) before the arrival of an m = 2 probe. The doubly quantised 

vortex gets transferred from the probe into the OPO signal and splits into two m = 1 vortices even before the probe reaches it’s 

maximum intensity at t  =0 ps (second panel). In this simulation the vortices coexist for sometime (roughly 15 ps), then one gets expelled 

from the signal (fourth panel). Adapted from [23]. 

7 Vortices in other polariton fluids 

We do not pretend to give an exhaustive review of the broad field which studies vortices in polariton fluids in this 

chapter, where we have mostly focussed on the occurrence of vortices in polariton OPO superfluids. However, we 

would l ike at least to briefly mention what happens for polariton fluids other than OPO. 

Spontaneous vortices in trapped incoherently pumped polaritons 

For incoherently pumped polaritons, the presence of a harmonic trapping potential, can make the non -rotating solution 

unstable to the spontaneous formation of a vortex lattice [80] (this work has been generalised to include the effects 

of polarisation in Ref. [96]). In experiments, spontaneous vortices in incoherently pumped systems, have been observed 

in Refs. [5, 97] and their existence explained in terms of pinning by the disorder present in the CdTe sample. 

Adding the polarisation degrees of freedom, can give rise to the appearance of half -vortices [98, 6]. Polariton vor- 
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tices have been also observed in cavity mesas [81]. cross refer to Benoit Deveaud’ s chapter? 

Vortex-antivortex pairs have been observed in the non-resonantly pumped experiments of Ref. [10], where the 

mechanism of V-AV generation is explained in terms of density fluctuations originating from the cw multi -mode 

pumping laser, while for a single-mode laser no V-AV pairs have been observed. In this sense, their motivation and 

interpretation is in terms of the BKT transition. The pair dynamics inthe condensate has been studied in Ref. [99]. 

cross refer to Yoshisha Yamamoto’ s chapter? 

Finally, as mentioned previously in Secs.5 and 5.2.2, generation and detection of metastable vortices have been also 

recently discussed for polariton condensates generated by toroidal non-resonantly pumping in Ref. [21], where vortices 

have been seeded with an external LG probe. Interestingly, very recently in Ref. [100], it has been observed an all -

optical spontaneous pattern formation in a polariton condensate non-resonantly pumped with a ring geometry. 

Resonantly pumped-only polaritons 

In Ref. [11, 12], the hydrodynamic nucleat ion of V-AV pairs is studied by making 

collide the polariton fluid with a large defect. In particular, polaritons are resonantly  

(coherently) injected with a pulsed laser beam, creating a population in the pump state only. The focus and interest 

of these studies are the possibility of exploring quantum turbulence, the appearance of dissipation and drag above a 

critical velocity because of the nucleation of vortices in the wake of the obstacle.  
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