

Optically jointed probing systems for large volume coordinate metrology

Stephen Kyle

Concepts presentation

- "Walk around" probing is here but does it do enough?
 - Leica T-System, API Intelliprobe, Metris K-Scan and iGPS, Metronor Solo ...
- This concepts presentation visualizes metrology systems which:
 - Reduce the need for direct visibility to the feature point
 - Provide a deeper reach into measured objects
 - Offer scope for automation and integration into a manufacturing environment
- Concepts mostly take forward, combine or extend existing ideas
- The first part of the presentation looks at full systems
- The second part examines some possible detailed components
- Feedback on potential applications is welcomed!

Access hidden points: reach around corners

- Joints in the fixed link arm enable probing around corners
- A typical "walk-around" system (example: Leica) is equivalent to an arm with one less joint, one variable length link and a (relatively) short link to the probing point

Working in and around objects – some issues

- Probes on optically linked systems (e.g. Leica, Metris) are potentially easier to handle in confined spaces
- Arms (e.g. Romer) have deeper reach, potentially better for larger objects such as aircraft components
- Trackers have panoramic view, hence large working volume, camera systems have directionally restricted volumes
- In contrast to tracker probes, camera probes can adopt almost any rotation and are particularly robust to viewing interruptions

FARO TrackArm – deep reach, large volume

- Unstable platforms not possible, e.g. mobile tripod, manlift
- Difficult situations exist, see Romer turbine blade measurement (inset photo)
- Not (yet) an automated solution

micronSpace
Stephen.Kyle@micronspace.com
s.kyle@ucl.ac.uk

Real-time (robot) arm tracking with iGPS?

- iGPS positioning of a CMM arm already demonstrated at previous CMSC
- Could Metris use the newest version of iGPS to drive their new robot arm for a fully automated, large volume metrology system?

Alternative "TrackArm" designs?

- Leica T-Mac on a manual or motorized arm
 - Needs a wider acceptance angle at reflector? (N2 sphere, dynamic target switching?)
- API SmartTrack on a mobile arm platform motorized pan, tilt and roll
 - Good horizontal and vertical link, platform handles restricted roll
 - A "big brother" version of the hand-held device (photo)

Motorized pan&tilt target + full roll detection

- Full roll enables greater flexibility in TrackArm design
- Concept on left has a motor-driven, tracked camera which views multiple reference targets (Metronor patent application).
 - Could work at short range with tracking theodolite only (Kyle, CMSC05)
- Concept on right finds roll from laser beam retro-reflection (details later)
- Target arms could potentially be developed independently of trackers
- Scope for mechanizing/automating

Cascaded optical tracking systems

 Move the elbow under computer control to optimize the link from fixed base to probing point?

Easier to use than concepts incorporating fixed links?

Dynamic network configuration for iGPS

- iGPS extends coverage by adding more fixed transmitters
- Alternatively, extend the "moving elbow" concept to a dynamic network of iGPS transmitters, some fixed, some moving as required?
- Map the current dead areas and re-configure as required to optimize the current measurement needs?

Design details – 6DOF joints for trackers

- Joints in the optically linked probing systems are 6DOF connections
- For laser trackers, pan&tilt targets have wide acceptance angles and work in automated systems. Roll is a critical missing element.
- Pinhole prism on left (Boeing, Leica patents) gives 3D + pan & tilt
- Prism on right, with min. 1 additional target and on-board imaging, also gives roll
- Pan and tilt also possible using camera, here with optimized coded roll target
- Diagram on left shows possible implementation in full system
- Mostly external add-ons required
- Potential option to make laser scanner act as a tracker?

micronSpace

Roll from projected structure/pattern in beam

- Tech. University of Vienna developed 6DOF tracker in 1990s
 - Target's angular orientation from backprojected shadow image of reflector edges
- Concept here extracts the roll element only
- Target mask on laser tracker beam, e.g. 2 dots, projects shadow or interference pattern onto target CCD image, hence roll of beam

s.kyle@ucl.ac.uk

 Problems due to imperfections in optics, range limitations, etc?

Adding pan and tilt to projected roll angle

- One concept resembles mini version of Faro retro probe (or Leica surface probe)
- Partially reflecting mirror takes part of beam through a mask at the reflector's virtual image
- The mask, e.g. opaque dot, is projected onto a CCD chip. Like an inverse pinhole, the xy chip location of the dot is a measure of pitch and yaw
- Roll is detected from remaining structure, inserted at source and projected with the beam

Alternative beam-splitting prism reflectors

- An alternative way of including semi-reflection in a prism is shown on the left,
 effectively a cube beam splitter attached to the front of a normal prism reflector
- The middle diagram shows a more compact version where the prism surfaces are semi-reflective and mate with prisms having the same refractive index
- A more practical version with a liquid interface is on the right

micronSpace Stephen.Kyle@micronspace.com s.kyle@ucl.ac.uk

Conclusions

- This presentation is intended to stimulate discussion on future large volume metrology systems and encourage their development
- Not all concepts are necessarily workable in practice but they can provide alternative ideas which lead to other more practical solutions
- All designs require further simulation and analysis, particularly regarding potential accuracy
- A deeper reach and multiple connections require accurate link lengths and, more critically, higher angular orientation accuracy at the joints
- Development is an iterative process between system designer and end user but ultimately applications determine needs and drive the future
- Feedback on application requirements is very welcome