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LEADING ARTICLE

Hydrogen sulphide and the hyperdynamic circulation in
cirrhosis: a hypothesis
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Cirrhosis is associated with the development of a
hyperdynamic circulation, which is secondary to the
presence of systemic vasodilatation. Several mechanisms
have been postulated to be involved in the development of
systemic vasodilatation, including increased synthesis of
nitric oxide, hyperglucagonaemia, increased carbon
monoxide synthesis, and activation of KATP channels in
vascular smooth muscle cells in the systemic and splanchnic
arterial circulation. Hydrogen sulphide (H2S) has recently
been identified as a novel gaseous transmitter that induces
vasodilatation through activation of KATP channels in
vascular smooth muscle cells. In this brief review, we
comment on what is known about H2S, vascular and
neurological function, and postulate its role in the
pathogenesis of the vascular abnormalities in cirrhosis.
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E
ndogenous gaseous transmitters such as
nitric oxide (NO) and carbon monoxide
(CO) constitute a unique class of mediators

which play an important role in cell physiology.
The high membrane permeability of these gases
enables their rapid transfer across the cell
membrane where they bind directly to the haeme
group of guanylate cyclase or cytochrome oxi-
dase, resulting in cell signalling in a receptor
independent manner. A number of other biolo-
gically active gases such as nitrous oxide,
ammonia, and hydrogen sulphide (H2S) may
also participate in the regulation of cell function.
Among them, recent reports have proposed H2S
as a novel endogenous transmitter with potential
roles in both physiology and disease.

FORMATION AND METABOLISM OF H2S
H2S is produced endogenously from desulphy-
dration of cysteine (or cystine) by three different
enzymes.1 2 The reaction is catalysed by
cystathionine-c-lyase (sometimes termed
cystathionase), cystathionine-b-synthase, or
3-mercapto-sulphurtransferase (fig 1). The first
two enzymes are cytosolic haeme proteins, and
the latter is a zinc dependent protein which is
present in both the cytoplasm as well as
mitochondria.2 Cystathionase is currently the
only identified H2S generating enzyme present
in the vasculature3 whereas cystathionine-b-
synthase is the only H2S generating system
found in the nervous system.4 However, all three
enzymes are present in the liver and kidney, with

cystathionine-b-synthase being most prominent
in the liver.5

H2S is permeable to plasma membranes as its
solubility in lipophilic solvents is fivefold greater
than in water.6 It can be hydrolysed to hydro-
sulphide and sulphide ions in the following
sequential reactions:
H2S « H+ + HS2 « 2H+ + S22

However, even in an aqueous solution,
approximately one third of H2S remains undis-
sociated at pH 7.4.6 Cellular concentrations of
H2S are reported to be in the micromolar range
(50–160 mM reported in the brain and 45 mM in
plasma)4 7 with a short half life due to its rapid
reaction with haeme groups or disulphide con-
taining proteins, or its oxidation to thiosulphate
(S2O3) and sulphate.2 6 These relatively high
concentrations, together with its short half life,
suggest that generation or flux of H2S is high.
The amounts of urinary thiosulphate as well as
sulphaemoglobin in erythrocytes are currently
believed to be among the best markers of H2S
formation in vivo,2 6 although these do have
limitations, and recent studies have suggested
that fluxes of H2S can be measured using
polarographic techniques.8

PHYSIOLOGICAL ACTIONS OF H2S AND
UNDERLYING MECHANISMS
The first and most important evidence for a
physiological role of H2S was obtained in 1989
when endogenous sulphide levels in rat brain
tissues (1.6 mg/g)9 and in normal human post
mortem brainstem (0.7 mg/g) were reported.10

The study by Awata et al in 199511 provided the
enzymatic mechanisms for this endogenous H2S
in rat brain, in which the activities of cystathio-
nine-b-synthase and cystathionine-c-lyase in
six different brain regions were measured, with
the activity of cystathionine-b-synthase being
.30-fold that of cystathionine-c-lyase.

‘‘There has been an explosion of interest in
the biochemistry, physiology, and pharma-
cology of H2S, which is rapidly emerging as
a new biological mediator’’

Further evidence for a physiological role of
H2S was reported by Abe and Kimura in 1996,
who suggested that it may act as a neuromodu-
lator as physiological concentrations of H2S
enhance glutamate mediated transmission via

Abbreviations: H2S, hydrogen sulphide; NO, nitric
oxide; CO, carbon monoxide; NMDA, N-methyl-D-
aspartate
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N-methyl-D-aspartate (NMDA) receptors which promote
neuronal long term potentiation.4 Since these initial publica-
tions there has been an explosion of interest in the
biochemistry, physiology, and pharmacology of H2S, which
is rapidly emerging as a new biological mediator.
At present, the functional role of endogenous H2S in the

cardiovascular system is still the subject of much ongoing
research and so far there have been no human studies on the
physiological role of endogenously produced H2S in the
cardiovascular system. However, expression of cystathionine-
c-lyase mRNA and endogenous production of H2S have been
demonstrated in the aorta,3 7 mesenteric artery,12 portal vein,3

as well as cardiac tissue13 in rats. Hosoki et al have
demonstrated that H2S could be produced in the portal vein,
mesenteric artery, pulmonary artery, and thoracic aorta.3 H2S
is only generated from vascular smooth muscle cells as no
H2S generating enzyme systems are expressed in the
endothelial layer.7 This is in contrast with NO and CO which
can be produced from both endothelial and vascular smooth
muscle cells. Moreover, unlike NO or CO, H2S relaxed
vascular tissues independent of activation of the cGMP
pathway.8

‘‘H2S induces vasorelaxation through activation of ATP
sensitive K+ channels in vascular smooth muscles in vitro
and in vivo’’

Whereas vasorelaxation induced by NO is virtually
abolished by ODQ, a specific inhibitor of soluble guanylyl
cyclase, H2S induced vasorelaxation is not inhibited by ODQ.7

The vasorelaxant activity of H2S is mimicked by ATP sensitive
K+ channel (KATP) openers, and antagonised by glibencla-
mide (a KATP channel blocker).12 In a series of studies, Wang
and colleagues have shown that H2S induces vasorelaxation
through activation of ATP sensitive K+ channels (KATP) in
vascular smooth muscles in vitro and in vivo.7 12 13 H2S may
also exert effects on adjacent cell types. Thus H2S released
from vascular smooth muscle cells may stimulate endothelial
cells of small peripheral resistant arteries to release endothe-
lium derived hyperpolarising factor which further hyperpo-
larises vascular smooth muscle cells and potentiates vascular
relaxation.12 13 In vitro studies have also shown that H2S
exerts a negative inotropic effect on cardiac function,
primarily through activation of KATP channels.14 A summary
of the major physiological effects of H2S is presented at fig 2.

INTERACTION OF H2S WITH NO AND CO
NO can regulate endogenous production of H2S in vascular
tissues by increasing cystathionine-c-lyase gene expression;
this is evident by the fact that incubating cultured vascular
smooth muscle cells with an NO donor significantly increased
the transcriptional level of cystathionine-c-lyase.7 On the
other hand, H2S, even at a very low concentration, can
enhance relaxation of smooth muscle induced by NO by
approximately 10-fold.3 This effect is independent of free
thiol groups as both cysteine and glutathione do not have
such an effect.3

‘‘There is a dynamic interplay between not only the H2S
and NO pathways but also between the H2S and CO
systems’’

H2S has also recently been shown to upregulate CO
synthesis through induction of haeme oxygenase.15 Altered
synthesis of H2S may also affect the pulmonary circulation.15

Thus Qingyou et al have shown that administration of sodium
hydrosulphide (a donor of H2S) causes a decrease in
pulmonary artery pressure in rats with hypoxic pulmonary
hypertension, and administration of an inhibitor of cystathio-
nine-c-lyase led to an increase in pulmonary artery pressure
and a decrease in CO synthesis.15 This suggests that there is a

L-Cysteine

Pyruvate + H2S 

3-Mercaptopyruvate

Cystathionine

Homocysteine

Pyruvate + NH3 + H2S L-Serine + H2S

Cystathionine-β-synthase

3-mercapto-sulfurtransferase

Cystathionine-β-synthase

Cystathionine-γ-lyase

Cystathionine-γ-lyase

Figure 1 There are three enzymatic pathways involved in the synthesis
of hydrogen sulphide (H2S) from cysteine in mammals. Of these only
cystathionine-c-lyase is found in the vasculature. All three enzymes are
present in the liver and kidney, with most activity residing in
cystathionine-b-synthase.

L-Cysteine

H2S

Cystathionine-β-synthase Cystathionine-γ-lyase

Nervous system

Hyperpolarisation (activation of KATP channels)
Promotion of neuronal long term potentiation

Cardiovascular system

Vasoorelaxtion (activation of KATP channels)
Negative inotropic effect on cardiac function

Figure 2 Major physiological actions of endogenously produced hydrogen sulphide (H2S). Activation of ATP sensitive K+ channels (KATP) is a common
mechanism of H2S physiological effects, which induce vasorelaxation and neuronal hyperpolarisation in the cardiovascular system and nervous system,
respectively. H2S can also promote glutamate medicated transmission via N-methyl-D-aspartate receptors which enhance neuronal long term
potentiation.
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dynamic interplay between not only the H2S and NO
pathways but also between the H2S and CO systems.

POTASSIUM CHANNELS AND CONTROL OF
VASCULAR FUNCTION IN CIRRHOSIS
Hypotension, low systemic vascular resistance, and reduced
responsiveness to vasoconstrictors are all features of the
hyperdynamic circulation in cirrhosis. These changes have
been attributed to increased synthesis of NO, CO, ananda-
mide, and calcitonin gene related polypeptide16–19; however,
the precise mechanisms underlying the cardiovascular
changes in cirrhotic subjects are not completely understood.
In 1994, Moreau et al showed that there was activation of
KATP channels in vascular smooth muscle cells in rats with
cirrhosis, and that this was partly responsible for the
development of systemic vasodilatation in this animal
model.20 21 In arterial smooth muscle cells, plasmalemmal
KATP channels play an important role in arterial vasodilata-
tion by modulating membrane potential.22 In cirrhosis,
activation of KATP leads to membrane hyperpolarisation
which results in closure of the L-type Ca2+ channel and
subsequent decrease in Ca2+ entry and vasorelaxation.20 21

One potential mechanism of KATP channel activation involves
prostaglandins such as prostacyclin as KATP activation can be
partially inhibited by cyclooxygenase inhibitors.20 However,
the observation that H2S can cause KATP activation in a
variety of experimental systems lends support to the idea that
H2S may be involved in KATP channel activation in cirrhosis.

H2S AND THE HYPERDYNAMIC CIRCULATION
In this paper, we suggest that H2S may contribute to the
pathogenesis of vascular dysfunction in cirrhosis (fig 3). This
hypothesis is based on the following evidence.

(1) Plasma H2S concentrations increase in rats with endo-
toxaemia.23 Endotoxaemia is a common feature of
cirrhosis24 and high concentrations of circulating endo-
toxins are observed in cirrhotic patients with no clinical
evidence of infection, and this may be due to impaired
clearance of gut bacteria in cirrhotic liver.24 25 Studies are
emerging which increasingly link the development of

extrahepatic complications of cirrhosis (for example,
hyperdynamic circulation, cirrhotic cardiomyopathy, and
hepatic encephalopathy) to the advent of endotoxaemia
or sepsis in cirrhosis.26–28 As endotoxin can induce the
synthesis of H2S, this may have two consequences.
Firstly, there may be increased H2S synthesis leading to
increased KATP activation in vascular smooth muscle cells
and a resulting systemic vasodilatation. Secondly,
increased H2S formation may lead to altered cardiac
function as it has been shown that H2S exerts a negative
inotropic effect on cardiac function, primarily through
activation of KATP channels.14

(2) Increased synthesis of NO is well recognised in cirrhosis
and portal hypertension,16 and may lead to increased
expression of cystathionine-c-lyase, the main H2S produ-
cing enzyme in vascular smooth muscle cells.7 Thus
increased NO synthesis may enhance the formation of
H2S in cirrhosis, thus leading indirectly to activation of
KATP channels.

(3) Increased activity of serum cystathionine-c-lyase has
been demonstrated in rats with liver injury due to carbon
tetrachloride.29 Whether this is applicable to other forms
of liver injury is unknown but increased cystathionine-c-
lyase activity would be expected to increase H2S
formation in this model.23

In conclusion, we propose a mechanism by which
endotoxaemia, either alone or in combination with increased
NO synthesis, leads to upregulation of cystathionine-c-lyase
activity and H2S synthesis. Increased synthesis of H2S leads
to activation of KATP channels and systemic vasodilatation
(fig 3). Studies in the future will determine the validity of
this hypothesis in humans.
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Robin Spiller, Editor

An unusual cause of diarrhoea

Clinical presentation
A 70 year old Caucasian female presented with a six month
history of intermittent diarrhoea, abdominal pain, and
weight loss of 3 stone. Routine blood tests and liver
ultrasound were normal.

Question
What abnormalities do the computed tomography scan (fig 1)
and histology slide (fig 2) demonstrate? What was the cause
of her diarrhoea?
See page 1713 for answer
This case is submitted by:

A Sainsbury, D Clements
Airedale General Hospital, Yorkshire, UK

Correspondence to: Dr A Sainsbury, Airedale General Hospital, Skipton
Rd, Yorkshire BD20 6TD, UK; anitabansal@yahoo.com

doi: 10.1136/gut.2005.068452

Figure 1 Computed tomography scan of the abdomen.
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