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Abstract 

 

Osteogenesis Imperfecta (OI) is a genetic bone pathology with prenatal onset, characterised by 

brittle bones in response to abnormal collagen composition. There is presently no cure for OI. We 

previously showed that human first trimester fetal blood mesenchymal stem cells (hfMSC) 

transplanted into a murine OI model (oim mice) improved the phenotype. However, the clinical 

use of fetal MSC is constrained by their limited number and low availability. In contrast, human 

fetal chorionic stem cells (e-CSC) can be used without ethical restrictions and isolated in high 

numbers from the placenta during ongoing pregnancy. Here we show that intra-peritoneal 

injection of e-CSC in oim neonates reduced fractures, increased bone ductility and bone volume, 

increased the numbers of hypertrophic chondrocytes, and upregulated endogenous genes involved 

in endochondral and intramembranous ossification. Exogenous cells preferentially homed to long 

bone epiphyses, expressed osteoblast genes and produced collagen COL1A2. Together, our data 

suggests that exogenous cells decrease bone brittleness and bone volume by directly 

differentiating to osteoblasts and indirectly stimulating host chondrogenesis and osteogenesis. In 

conclusion, the placenta is a practical source of stem cells for the treatment of OI. 
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Introduction 

 

Osteogenesis Imperfecta (OI), or brittle bone disease, is a debilitating inherited skeletal dysplasia 

with prenatal onset that affects 1 in 15,000-20,000 births. OI is characterised by short stature, 

osteopenia and multiple fractures. The severity of the disease ranges across the 11 known types 

depending on the causative mutation in collagen type I or genes involved in its biosynthesis, with 

type III being the most severe that survive the neonatal period [1,2,3,4]. Existing treatments 

largely provide symptomatic relief, but there is currently no cure. The ‘gold standard’ 

bisphosphonates temporarily improve bone strength by inhibiting bone resorption, but do not 

improve growth or bone pain beyond a year [5] and do not reduce fracture incidence long term 

[6]. 

 

Cell therapy in OI aims to prevent morbidity and deformity as well as mortality, by introducing 

healthy cells, early in development, with the aim that exogenous cells will home to bones and 

contribute to bone formation to decrease the severity of the disease [7]. Cell therapy for OI holds 

much promise, with most studies showing beneficial effects. In humans, whole bone marrow and 

bone marrow mesenchymal stem cells (MSC) have been transplanted in OI children with gains in 

body length and bone mineralization [8,9], whilst allogeneic fetal liver derived stem cells 

transplanted in utero led to apparent phenotypic improvement in an OI fetus, although 

confounded by concomitant bisphosphonate use [10]. In rodent OI models, transplantation of 

whole bone marrow/ bone marrow MSC led to increased collagen content [11], improved bone 

strength, reduced perinatal lethality [12] and increased osteoblast differentiation [13,14]. Marked 

therapeutic benefits were shown following transplantation of fetal MSC from human first-

trimester blood in a mouse model of human type III OI (oim) including improved bone plasticity 

and a two-third reduction in long bone fractures [15,16].  
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However, there are a number of hurdles to overcome before fetal stem cell therapy can be 

translated to the clinic. For example, it is essential to have a source of stem cells that have high 

therapeutic potential and are easily accessible for clinical use. Extra-embryonic fetal tissues, such 

as the placenta, are readily available either from termination of pregnancy or surplus tissue at 

routine prenatal diagnostic procedures [17,18], or at term delivery [19,20,21,22]. Recently we 

have shown early gestation chorionic stem cells (e-CSC) isolated from human placental tissue 

accelerated tissue repair in dermal excision skin wounds and improved bone quality and plasticity 

in oim mice. This tissue repair capacity of e-CSC was greater than its late gestation counterparts 

in vivo, as was the osteogenic differentiation and cell expansion potential in vitro [23]. This may 

be due to the more primitive characteristics of e-CSC compared to term isolated CSC, which 

showed an intermediate phenotype between human embryonic stem cells (hESC) and MSC [23]. 

 

We hypothesised that transplantation of stem cells derived from first trimester placenta would 

have therapeutic benefits in a mouse model of OI. Here, we show that exogenous e-CSC 

engrafted at sites of bone growth and repair in the oim model, differentiated to osteoblasts that 

produced COL1A2 and mediated changes in endogenous ossification genes, which resulted in 

reduced fractures and increased bone flexibility.  

 

 

Materials and Methods 

 

Cells  

Collection of human early chorionic stem cells (e-CSC) was as previously described [23] from 

first trimester chorionic villous tissue sampled during pregnancy termination (9-10 weeks 
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gestation age) as approved by the Research Ethics Committee of Hammersmith & Queen 

Charlotte’s Hospital. Isolated cells were plastic adherent and cultured in Dulbecco’s modified 

Eagle’s medium high glucose (DMEM-LG) (Sigma) supplemented with 10% fetal bovine serum 

(BioSera), 2mmol/l L-glutamine, 50IU/ml penicillin, 50mg/ml streptomycin (Gibco-BRL) (D10 

medium). Cells were expanded at 70-80% confluence on plastic dishes and used at passage 6-8. 

The chondrogenic ATDC5 cells (generous gift from G.H.D Bassett and G.R. Williams) were 

expanded in D10 medium. Differentiation was induced chemically by culturing the cells with 10 

ng/ml TGF-beta3, 1X ITS (insulin, transferrin, selenium), 10 nanomolar dexamethasone and 100 

micromolar ascorbate-2-phosphate for 7 days.  

 

Fluorescence immunostaining and confocal microscopy 

Human e-CSC were fixed in 4% then 8% PFA in 125mM HEPES (pH7.6), then permeabilized in 

0.5% Triton X-100 (Sigma), incubated with 20µM glycine (Sigma) and blocked in PBS 

supplemented with 1% bovine serum albumin (BSA), 0.2% gelatine and 0.1% casein (pH7.6). 

Cells were stained with primary antibodies (listed in Supplementary Table S1) then secondary 

antibody; donkey anti-mouse or anti-rabbit IgG (Jackson ImmunoResearch Laboratories), before 

being mounted in VectaShield labelled with DAPI (Vector Labs) [24]. Fluorescence confocal 

laser scanning microscopy images were collected on a Leica TCS SP5 (X1000 PL APO oil 

objective). Positive controls were hESC and negative controls differentiated cells. 

 

Flow cytometry 

Cells were detached, blocked with PBS supplemented with 1% BSA (Sigma) and either fixed in 

0.01% PFA and permeabilized with 0.5% Triton X-100 for intracellular staining, or immediately 

stained with primary antibodies for cell surface staining (see Supplementary Table S1). For 

unconjugated antibodies, cells were subsequently washed with 1% BSA and incubated with 
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secondary goat anti-murine IgM PE (Santa Cruz) [23]. Otherwise cells were analyzed by FACS 

calibur flow cytometry (Becton Dickinson) using hESC as positive and antibody-specific isotypes 

as negative controls. 

 

Cell Differentiation 

Cells were differentiated along the osteoblast lineage for 2 weeks in DMEM-LG supplemented 

with 10 mM β-glycerophosphate, 0.2 mM ascorbic acid and 10-8 M dexamethasone, then fixed in 

10% formalin and stained with von Kossa (2% silver nitrate) or 2% alizarin red. Cells were 

differentiated along the adipocyte lineage over 2 weeks in DMEM supplemented with 0.5 mM 

hydrocortisone, 0.5 mM isobutyl methylxanthine and 60 mM indomethacin, then fixed and 

stained with oil red O [23]. Cells were differentiated along the chondrocyte lineage over 2 weeks 

in DMEM-LG supplemented with 0.01µg/ml TGF-β3, 0.1µM dexamethasone, 0.17mM ascorbic 

acid, 1mM sodium pyruvate, 0.35mM L-proline, 1% ITSS, 50µg/ml Linoleic Acid (reagents from 

Sigma), then cells were fixed in and stained with alcian blue (2%). 

 

Animals 

All experimental protocols complied with Home Office guidelines (PPL 70/6857). Heterozygous 

male and female (B6C3Fe a/a-Col1a2oim/Col1a2oim) mice (Jackson Laboratory) were housed in 

individual ventilated cages in 12:12-hour light dark cycle (21oC) with water and chow. Offspring 

were genotyped by sequencing the oim fragment then homozygous and wild type colonies 

established. Progeny were weaned at 30±1 day and culled at 8 weeks of age. Human e-CSC (106 

cells resuspended in 20 l of cold PBS) were injected intra-peritoneally (i.p.) into 3-4 day-old oim 

neonates (n=11 males, n=11 females) and mice were culled for analysis when they were 8 week 

old. We noted no variability between different isolated placenta specimens in terms of e-CSC 
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phenotype (data not shown) and donor cells injected in oim mice were from a single donor. 

Controls comprised age-matched non-transplanted oim and wild type mice. 

 

Immunohistochemistry 

Dissected tibias were decalcified in 10% EDTA pH7.4 and subsequently embedded in paraffin. 

Four micron sections were cut, deparaffinised in xylene and rehydrated. Heat-induced epitope 

retrieval was performed in a steamer (Dako), followed by incubation with peroxidise block 

(Dako). The presence of donor cells in transplanted 8 week old oim mice was determined in 3 

different regions of the non-fractured tibia (epiphysis, diaphysis and bone marrow) as well as in 

fracture callus. Donor cells were visualised using human-specific mouse monoclonal vimentin 

(Dako) primary antibody (Supplementary Table S1) and incubation with HRP-labelled anti-

mouse polymer followed by DAB+ substrate-chromogen staining. Positive cells were counted in 

bone marrow (n=4 samples and n=4 sections for each). Staining specificity was verified using 

non-transplanted negative controls.  

Detection of Collagen type X and Osteopontin (Supplementary Table S1) was performed on four 

micron sagittal sections of tibia from 8 week old mice, using HRP-labelled polymer followed by 

DAB+ substrate-chromogen staining. 

 

Engraftment measured by quantitative real time PCR 

Femurs of the same mice were dissected and separated into callus if present (n=8), epiphysis 

(n=6) and diaphysis (n=6). Liver (n=6) was also used. RNA was then extracted using TRIzol 

(Invitrogen) followed by cDNA synthesis with M-MLV reverse transcriptase (Promega). To 

calculate donor cell engraftment quantitative real time PCR (qRT-PCR) was performed using 

SYBR green dye (Applied Biosystem) and the ABI Prism 7700 Sequence Detection System with 

human specific and human-mouse non-specific β-actin primers (Supplementary Table S2). 
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Human:mouse chimerism was estimated as the ratio of human β-actin to total human and mouse 

β-actin in the total cDNA sample to give the 2-ΔCt value. Samples were considered positive with a 

human specific β-actin Ct above 36 at a threshold of 0.13ΔRn. Negative controls were non-

transplanted oim [15]. 

 

Quantitative real time RT-PCT 

Osteoblast gene expression was performed by quantitative real time RT-PCR (QRT-PCR) using 

SYBR green dye (Qiagen) and the MJ-Opticon with human specific Osteopontin and Osteocalcin 

primers (Supplementary Table S2). Results with a Ct below 36 were normalised to human β-actin 

to give the 2-ΔCt value. Expression in transplanted oim femurs (n=6) was compared to e-CSC 

(n=3) undifferentiated and grown in osteogenic permissive media for 2 weeks. Negative controls 

were non-transplanted oim [15]. Sox9 expression in ATDC5 cells was measured by QRT-PCR 

using the 2-ΔCt method. Manufactured mouse-specific primers were from SABiosciences (Qiagen).  

 

Western blot 

Collagen was extracted from ground bone over 72hrs at 4oC in a lysis buffer of 6M guanidine 

HCl and 100mM Tris pH7.4 containing protease inhibitor cocktail. Proteins were precipitated 

with 10% TCA, re-suspended in RIPAE buffer (1xTBS, 1% Nonidet P-40, 0.5% sodium 

deoxycholate, 0.1% SDS, 0.004% sodium azide; Sigma) containing PMSF (Sigma) and protease 

inhibitor cocktail, run on an 8% SDS-PAGE, transferred to nitrocellulose, blocked with milk and 

stained with a COL1A2 (129kDa) primary antibody (Abcam), then with an HRP-linked anti-

rabbit IgG secondary antibody (GE healthcare), followed by enhanced chemiluminescence 

detection (Thermo scientific). The loading control used was β-ACTIN (43kDa) (Santa Cruz) [23]. 

Detection of COL1A2 in transplanted oim bones was confirmed using wild type positive controls 

and specificity confirmed using non-transplanted oim negative controls (n=4 per group).  
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Mechanical testing 

Three-point bending tests were performed as described [23] using a materials testing machine 

(5866 Instron) on 8 week old unfractured frozen and thawed femurs (n=22 transplanted oim, n=34 

oim controls, n=14 wild type). Bones were bent mid-diaphysis to fracture on two supports 9 mm 

apart at a loading rate of 50 µm/s. Force deflection curves were analyzed (Matlab, MathWorks) to 

measure bending stiffness (slope of the linear elastic deformation; N/mm), load to fracture 

(maximum force sustained prior to fracture; N), maximum deflection (deflection at fracture in 

mm). 

 

X-ray microradiography 

Tibias from 8 week-old mice (n=19 transplanted, n=20 oim, n=11 wild type) were fixed in 

formalin for 24 hours and stored in 70% ethanol prior to removal of soft tissues. Digital X-ray 

images were obtained at a 10µm pixel resolution using a Faxitron MX20 variable kV point 

projection X-ray source and digital image system (Qados, Cross Technologies plc, Sandhurst, 

Berkshire, UK).  An X-ray image of a digital micrometer was used to calibrate ImageJ 1.41 

software (http://rsb.info.nih.gov/ij/) prior to determination of cortical bone thickness and diameter 

at 5 locations along the mid shaft, and bone length.  Relative bone mineral content (BMC) was 

determined by comparison with 1 mm diameter steel, aluminium and polyester standards included 

in each frame. 16 bit DICOM images were converted to 8 bit Tiff images using ImageJ and the 

image histogram stretched between the polyester (grey level 0) to steel (grey level 255) standards. 

Bone mineralization densities were represented by a pseudocolour scheme representing 16 equal 

intervals [25]. 

 

Counting of fractures 
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Fractures in both femurs, tibias and humeri were assessed at 8 weeks of age by determination of 

callus formation (n=120 transplanted, n=78 oim control). The number of mice with at least one 

long bone fracture and the fracture incidence (number of fractured bones/total bones assessed) 

were calculated by two independent observers blinded to transplantation status. Deformities and 

callus formation in the caudal vertebrae (n=16 transplanted, n=10 oim control) were counted on 

digital X-ray images and the fracture rate was calculated as above. The presence of vertebral 

deformity and callus formation detected by X-ray microradiography was verified by micro 

computerised tomography (µCT40 Scanco Medical) at 10µm voxel resolution (45kV, 177µA, 

200ms integration time). Unfractured oim vertebrae did not differ in shape from wild type 

vertebrae (Supplementary Fig.S1A) and had normal morphology (Supplementary Fig.S1B), 

while deformed vertebra had evidence of callus formation (Supplementary Fig.S1C and 

Fig.S1D) [16].  

 

Dynamic histomorphometry 

Animals (n=7 transplanted, n=6 wild type, n=5 oim) were injected 10 days and 3 days before 

sacrifice with 20mg/kg of calcein (Sigma). Tibias were then fixed in formalin for 24hrs and 

transferred to 70% ethanol, before being dehydrated in acetone for 48hrs, infiltrated over 6-9 days 

at -20oC and embedded in methylmethacrylate (MMA) [26]. Embedded samples were imaged on 

a Leica TCS SP5 confocal laser scanning microscope and analysed using ImageJ. Fluorescent 

images of calcein labels were taken 500µm and 1000µm below the proximal growth plate of the 

trabecular and endo-cortical regions respectively The amount of mineralizing surface per total 

bone surface (MS/BS;%), the daily mineral apposition rate (MAR;µm/day) and the bone 

formation rate (BFR;µm3/µm2/day) were calculated. 

 

Static histomorphometry 



11 

 

MMA embedded samples were cut into 8μm sections and stained using the Leucognost AP kit 

(Merck), according to the manufacturer’s instructions (n=6 transplanted, n=6 oim, n=5 wild type). 

Sections were analysed on a light microscope using the Osteomeasure system (OsteoMetrics Inc). 

Histomorphometric measurements of the secondary spongiosa were performed on stained 

sections 500µm from the end of the hypertrophic zone of the growth plate; % trabecular bone 

volume per total tissue volume (BV/TV) was quantified. For growth plate analysis dissected tibia 

were decalcified, paraffin embedded and 5µm sections were cut and stained with alcian blue 8GX 

(2%), Weigert’s haematoxylin and van Gieson, mounted and growth plate morphology analysed 

using ImageJ (n=14 transplanted oim, n=5 oim, n=5 wild type). 

 

Osteogenesis PCR array 

Total RNA was extracted from femoral epiphysis of 8 week-old mice using TRIzol (Invitrogen), 

followed by RNA clean up (RNeasy Qiagen) and cDNA synthesis using an RT2 First Strand Kit 

(Qiagen). Gene expression was investigated using an RT2 Profiler mouse osteogenesis PCR array 

(Qiagen) and analysed according to the manufacturer’s instructions (n=3 mice per group). To 

verify results, quantitative real time PCR was performed using RT2 qPCR Master Mix and 

primers (Supplementary Table S2) and analysed with MJ-opticon (Biorad). Data were normalised 

to 2 housekeeping genes (β-Actin and Hsp90ab1) and the 2-ΔCt of each sample calculated (n=8 

transplanted oim, n=5 oim controls). 

 

Protein measurement 

Cells were cultured either in D10 medium (non-primed) or in co-culture without cell contact with 

ATDC5 cells (primed with ATDC5) or in the presence of blood serum from oim or wild type 

mice (primed with oim or WT serum) for 7 days. The mouse cell line ATCD5 is chondrogenic 

and goes through a sequential process analogy to chondrocyte differentiation, constituting an 



12 

 

excellent in vitro model cell line for analysing skeletal development and studying the factors 

involved in chondrogenesis [27].  The presence of protein was measured in the medium using 

Mini ELISA development kits (Peprotech, London, UK) for the detection of human-specific basic 

fibroblast growth factor (bFGF), platelet-derived growth factor-BB (PDGF-BB) and connective 

tissue growth factor (CTGF), following the manufacturer’s protocol. Briefly, ELISA microplates 

(Corning) were incubated overnight with capture antibody, washed with 0.05% Tween-20 in PBS 

(Sigma), incubated with standards or samples for 2 hours, washed and incubated with detection 

antibody for 2 hours, followed by washing and incubation with Avidin-HRP conjugate for 30 

minutes. Finally, substrate was added to the wells and colour development was monitored at 

405nm with wavelength correction set at 650nm. For the detection of human factor IX in blood 

serum of transplanted oim mice, a kit containing microplates pre-coated with antibody was used 

(Abcam), using the protocol recommended by the manufacturer. Detection was carried out at 

450nm.  

 

 

Statistical analysis 

Data were expressed as mean ± s.e.m (standard error). Normally distributed data were analyzed 

by unpaired two-tailed Student’s t-test or one-way ANOVA followed by a Tukey’s multiple 

comparison post-hoc test. P < 0.05 was considered significant. Two-tailed 2x2 Fisher exact was 

used for categorical comparisons. Cumulative frequency distributions of bone mineral densities 

were compared using the Kolomogorov-Smirnov test. Chi-squared with Yates correction and to 

one degree of freedom was used to compare fracture incidence. 
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Results 

 

Characterisation of e-CSC 

The e-CSC transplanted in neonatal oim have a pre-pluripotent phenotype as previously described 

[23], showing some characteristics of both MSC [28] and human embryonic stem cells (hESC) 

[29,30]. MSC traits were demonstrated by positive expression of adhesion molecules CD29 and 

CD44, and the MSC-associated markers CD73, CD90 and CD105, and absent expression of the 

endothelial or hematopoietic markers CD14, CD34 and CD45, while presenting low levels of 

intracellular HLA I and no expression of HLA II, similar to fetal liver MSC [31] (Fig.1A). A sub 

fraction of cells expressed key hESC markers required for the maintenance of pluripotency; 

OCT4A, SOX2, TRA-1-60 and SSEA4 (Fig.1B and Fig.1C) As expected, e-CSC showed tri-

lineage differentiation capability; osteogenic differentiation by alizarin red staining of calcium 

deposits and von kossa staining of mineralisation, chondrogenic differentiation by Safranin O 

staining of cartilage matrix, and adipogenic differentiation by oil red O staining of lipid droplets 

(Fig.1D). 

 

Bones of transplanted mice are less liable to fracture  

Eight weeks after e-CSC were transplanted, 11/20 oim mice (55%) had no long bone (femur, tibia 

and humerus) fractures, whereas all non-transplanted oim controls (100%; n = 13) had at least one 

or more long bone fracture (Fig.2A). The fracture incidence in long bones, calculated as the 

number of fractured tibia, femur and humeri over the total number of these bones, was reduced 

from 29.5% (23/78 total bones) in non-transplanted oim to 10.0% (12/120 total bones) in e-CSC 

transplanted oim. This corresponds to a 66% decrease in fracture rate (X2=21, P<0.001) (Fig.2B). 
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We next counted the number of caudal vertebra fractures on digital X-Ray, with a fracture 

classified as any vertebra having a callus or evidence of bone remodelling (see Supplementary 

Fig.1 and Methods section for classification of normal and fractured vertebra by microCT). 

Compared to non-transplanted oim (n=10), which showed an average 46.6% ± 4.2 incidence of 

fractured vertebra per mouse, transplanted mice (n=16) had 29.2% fewer vertebral fractures at an 

average incidence of 33.0% ± 2.2 per mouse (X2=33.8, P<0.001) (Fig.2C). The reduction of 

vertebral fractures from the non-transplanted control group was widespread, with overall numbers 

of vertebrae with callus reduced across the majority of vertebral positions (Fig.2D). Most 

fractures were found in proximal caudal vertebrae, where force is exerted when rearing up to 

feed. 

 

Transplanted mice have bones with reduced stiffness and increased ductility 

We previously reported 3-point bending data from femurs of oim mice transplanted with either 

early (e-CSC) or late (l-CSC) gestation CSC [23]. Mice transplanted with e-CSC had greater 

plasticity and overall bone quality than l-CSC transplanted or control oim due to an increased 

post-yield strain. Here we further analysed the 3-point bending load-displacement curves to show 

that e-CSC transplanted oim were also more ductile due to a reduction in stiffness in the pre-yield 

region and an increase in maximum deflection before fracture (Fig.2E). Bone stiffness of e-CSC 

transplanted oim was reduced by an average of 16% compared to non-transplanted oim femurs 

(29.7 N/mm ± 2.1 s.e.m vs. 35.3 N/mm ± 1.7 s.e.m respectively, P<0.05) (Fig.2F), while the 

maximum deflection was increased in transplanted compared to control oim by an average of 

24% (0.26 mm ± 0.02 s.e.m vs. 0.21 mm ± 0.01, P<0.05 respectively) (Fig.2G). However, the 

maximal load sustained by transplanted and non-transplanted oim femurs prior to fracture was 

similar (4.5 N ± 0.3 vs. 4.8 N ± 0.3) (Fig.2H). In contrast, wild type compared to oim bones were 

stiffer (73.6 N/mm ± 2.0, P<0.001) (Fig.2F), with greater maximum deflection (0.88 mm ± 0.07, 
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P<0.001) (Fig.2G) and sustained higher loads before fracture (14.0 N ± 0.5, P<0.001) (Fig.2H). 

Thus the material properties of bones from transplanted oim were not intermediate between the 

properties of wild type and oim bone. Instead bones from transplanted oim were of similar 

strength to non-transplanted oim, but displayed greater plasticity and ductility which may explain 

their reduced fracture susceptibility. 

 

Transplanted e-CSC preferentially home to oim epiphysis 

We first performed an ELISA for human factor IX in blood serum of transplanted mice. Results 

showed absence of mouse anti-human antibodies, indicating an absence of immune reaction of 

the neonatal murine immune system (data not shown).  

Donor cells were visualised by immunohistochemistry in 8 week-old e-CSC transplanted oim 

using a rabbit monoclonal to human vimentin. Staining was localized at the epiphysis, diaphysis, 

and sites of fracture callus, with some cells present in the primary spongiosa below the growth 

plate (Fig.3A). Quantitative real time PCR (qRT-PCR) showed that donor cell engraftment in 

transplanted oim was highest in the epiphysis, the site of active bone formation. This was 7.1 fold 

(P<0.001) higher than in the non-fractured diaphysis where bone formation is less active, and 

11.7 fold (P<0.01) higher than engraftment in the liver (Fig.3B). Donor cells also preferentially 

homed to sites of bone repair, where engraftment was 4 fold (P<0.01) higher than engraftment in 

the liver. Engraftment in fractured and non-fractured diaphysis were not significantly different, 

but interestingly more mice were positive for human cDNA in the diaphysis if a fracture callus 

was present; 90% compared to 60%. Engraftment within the femoral epiphysis was inversely 

correlated (R2=0.64, y= -0.96x + 41.43, P<0.01 deviation from zero) with bone stiffness, 

indicating that bone flexibility increases with increasing numbers of donor cells (Fig.3C). 
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Exogenous cells undergo osteogenic differentiation in vivo  

To determine if transplanted cells underwent osteogenic differentiation in vivo expression using 

qRT-PCR was determined for human specific Osteopontin (OP); a major interfacial non-

collagenous extracellular matrix proteins found in bone and secreted by osteoblasts [32] and also 

for Osteocalcin (OC); an osteoblast specific gene [33] with an important role in osteoblast 

differentiation [34]. Results showed expression of human OP and OC in the transplanted mouse 

bones (0.38 2-ΔCt ± 0.08 s.e.m and 0.85 2-ΔCt ± 0.18, respectively), which was greater than 

expression in e-CSC after growth in osteogenic permissive media for 2 weeks (0.05 2-ΔCt ± 0.03, 

P<0.05 and 0.06 2-ΔCt ± 0.04, P<0.05, respectively) and greater than the low/null basal expression 

level of the undifferentiated cells (Fig.3D). Western blot analysis showed the COL1A2 protein, 

missing in non-transplanted oim [35], was present in the femoral bones of oim transplanted with 

e-CSC (Fig.3E), which demonstrates osteogenic differentiation of donor cells to functional 

osteoblasts. 

 

Transplantation of e-CSC did not affect bone length or cortical bone formation 

Tibial length was unaffected by transplantation being similar in transplanted oim compared to 

control oim (15.1mm ± 0.1 and 15.2mm ± 0.1 respectively), with both being shorter than wild 

type tibia (17.0mm ± 0.1, P<0.001) (Fig.4A). The diameter of the tibia at the mid-diaphysis was 

also similar in transplanted and control oim (1.01 mm ± 0.01 and 1.05mm respectively) but less 

than in wild types (1.28 mm ± 0.02, P<0.001) (Fig.4B). The cortical bone thickness was 

decreased in oim compared to wild type (17.9% ± 0.5 and 20.4% ± 0.3, P<0.001 respectively), 

and was similar in untransplanted and transplanted oim mice (17.9% ± 0.5  vs 17.2% ± 0.5) 

(Fig.4C). 
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Cortico-endosteal bone formation rate (BFR) was greater in wild type mice compared to oim (2.4 

µm3/µm2/day ± 0.21 s.e.m vs. 1.54 µm3/µm2/day ± 0.23, P<0.05 respectively) (Fig.4D). This 

difference resulted from an increased mineral apposition rate (MAR) at the cortico-endosteal 

interface (2.6 µm/day ± 0.3 vs. 1.7 µm/day ± 0.3, P<0.05 respectively) (Supplementary 

Fig.S2A), because there was no difference in mineralizing surface (92% ± 2 vs. 90% ± 2, 

respectively) (Supplementary Fig.S2B). The MAR and mineralizing surface, however, did not 

differ between transplanted and non-transplanted oim mice (Fig.4D and Supplementary Fig.S2A 

and Fig.S2B). 

 

Transplantation increases trabecular bone volume, but not BMC  

The total bone mineral content (BMC) of combined trabecular and cortical bone compartments 

did not differ between transplanted and non-transplanted oim mice, both of which had markedly 

reduced BMC compared to wild-type (P<0.001) (Fig.4E and Supplementary Fig.S3). 

Trabecular bone volume per total tissue volume (BV/TV), however, was increased in transplanted 

compared to non-transplanted oim mice (4.1% BV/TV ± 0.6 vs. 2.0% ± 0.4 respectively, P<0.05), 

but remained lower than in wild type mice (11.9% ± 0.9) (Fig.4F). Nevertheless, trabecular BFR 

did not differ between transplanted and non-transplanted oim mice (0.58 µm3/µm2/day ± 0.03 vs. 

0.52 µm3/µm2/day ± 0.03 respectively) and was reduced compared to wild-type (1.10 

µm3/µm2/day ± 0.1, P<0.001) (Fig.4G). Furthermore, transplanted and non-transplanted oim had 

similar trabecular bone MAR (0.86 µm/day ± 0.04 vs. 0.89 µm/day ± 0.04, P<0.05 respectively) 

that was reduced compared to wild-type (1.62 µm/day ± 0.09, P<0.001) (Supplementary 

Fig.S4A). MS/BS did not differ between transplanted oim, non-transplanted oim and wild type 

mice (Supplementary Fig.S4B). 
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Transplantation reduces endogenous Smad3 expression and increases expression of genes 

activated during endochondral ossification. 

The mouse osteogenesis array (SABiosciences) was used to analyse changes in endogenous gene 

expression within the femoral epiphysis, and showed a global increase in expression of cartilage 

gene groups in e-CSC transplanted mice compared to non-transplanted oim controls (Fig.5A). 

This included up regulation of genes involved in the early stages of endochondral ossification: 2.7 

fold for Sox9 (P<0.01), 1.6 fold for Twist1 (P<0.05), 6.8 fold for Col2α1 (P<0.01) and 3.3 fold 

for Col11α1 (P<0.05). In addition, late hypertrophic chondrocyte differentiation genes were up-

regulated 4.4 fold for Col10α1 (P<0.05) and 2.6 fold for alkaline phosphatase (P<0.05) [36], 

while chondrocyte assembly gene Comp was also up-regulated 1.7 fold (P<0.05) [37]. 

 

The array results were confirmed (Fig.5B) by qRT-PCR for the key chondrogenesis transcription 

factor Sox9 (5.6 x10-2 2-ΔCt ± 0.1 x10-2 in transplanted oim vs. 2.1 x10-2 2-ΔCt ± 0.01 x10-2 in oim 

controls, P<0.05) [38]. Downstream up-regulation of the Sox9 transactivation target Col2α1 

[39,40] was also confirmed in transplanted oim compared to oim controls (0.11 2-ΔCt ± 0.01 vs. 

0.04 2-ΔCt ± 0.01 respectively, P<0.05) and of the key cartilage matrix component aggrecan 

[41,42] (4.8 2-ΔCt ± 0.8 vs. 1.1 2-ΔCt ± 0.4 respectively, P<0.01), found in proliferating 

chondrocytes. However, expression of the Sox9 target gene Pthrp, which inhibits chondrocyte 

maturation [43,44,45] was similar in transplanted and non-transplanted oim (5.2 x10-4 2-ΔCt ± 0.7 

x10-4 vs. 4.8 x10-4 2-ΔCt ± 0.5 x10-4). Importantly, Smad3, which inhibits maturation of 

chondrocytes by mediating TGF-β signalling [46] was down-regulated in e-CSC transplanted 

mice compared to oim controls (1.8 x10-2 2-ΔCt ± 0.1 x10-2 vs. 4.4 x10-2 2-ΔCt ± 1.1 x10-2 

respectively, P<0.05). This correlated with increased expression of Col10α1, a marker of 

chondrocyte maturation [47], in transplanted mice compared to non-transplanted oim, (1.0 2-ΔCt ± 

0.2 vs. 0.2 2-ΔCt ± 0.1 respectively, P<0.01). 
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Up-regulation of genes activated during intramembraneous ossification in transplanted mice is 

associated with increased endogenous expression of Runx2 

The PCR array also identified genes involved in intramembraneous ossification that were up-

regulated in transplanted mice compared to oim controls. There was a 2.8 fold (P<0.05) increase 

in Phex and a 2.9 fold (P<0.05) increase in Dmp1, genes that are co-expressed by osteoblasts and 

osteocytes and which regulate osteoblast maturation as well as bone mineralization via FGFR 

signalling pathways [48,49]. Also up-regulated in transplanted oim was Bgn, which has a role in 

osteoblast differentiation and matrix mineralisation [50], and Serpinh1, which acts as a molecular 

chaperone in collagen biosynthesis [51] (2.6 fold, P<0.05, and 3.5 fold, P<0.05 respectively). 

These findings correlated with higher expression of extracellular matrix proteins in transplanted 

mice, including a 3.2 fold increase in Col1α1 (P<0.01), involved in fibril formation of the 

abundant collagen type I [1,52] (Fig.5A). 

 

Array results were confirmed by qRT-PCR and showed Runx2 expression, essential for osteoblast 

differentiation [53,54,55], was also increased in transplanted mice compared to non-transplanted 

oim (2.1 x10-2 2-ΔCt ± 0.2 x10-2 vs. 1.3 x10-2 2-ΔCt ± 0.3 x10-2 respectively, P<0.05) (Fig.5C). 

However, expression of the downstream transcription factor osterix, also required for osteoblast 

differentiation [56,57] was similar in both e-CSC transplanted oim and non-transplanted controls 

(3.7 x10-2 2-ΔCt ± 0.5 x10-2 vs. 3.3 x10-2 2-ΔCt ± 0.7 x10-2 respectively). In contrast Igf1, which 

regulates both osteoblasts [58] and osteoclastogenesis via induction of RANK-L synthesis [59,60] 

and stimulates linear growth [61] was up-regulated in transplanted mice (0.43 2-ΔCt ± 0.05 vs. 0.21 

2-ΔCt ± 0.02 for oim controls, P<0.05).  
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Expression of endogenous ossification genes correlated linearly with their co-activators and trans-

activation targets as expected when mice were analysed on an individual basis. For example, Sox9 

expression was positively correlated with expression of its transactivation target Col2α1 

(R2=0.84) (P<0.001) (Supplementary Fig.S5A). Likewise expression of the co-activators Dmp1 

and Phex were strongly correlated (R2=0.91, P<0.001) (Supplementary Fig.S5B), as was 

expression of the ECM genes Col1α1 and Bgn (R2=0.93, P<0.001) (Supplementary Fig.S5C). 

Protein evaluation was performed in situ by immunohistochemistry, confirming increased 

expression of cartilage hypertrophic marker Collagen Type X and increased expression of the 

osteoblastic marker osteopontin in mice treated with e-CSC compared to non-treated mice 

(Fig.5D and Fig.5E) 

 

Growth plate height is increased in e-CSC transplanted oim 

Analysis of growth plate height confirmed previous findings [15] that oim have larger growth 

plates than wild type mice (153μm ± 7 vs. 137μm ± 9 respectively, P<0.05).  Interestingly e-CSC 

transplanted oim had a substantially wider growth plate (184μm ± 6) than oim controls (P<0.05), 

primarily the result of a larger hypertrophic zone (84μm ± 4 for e-CSC transplanted oim vs. 60μm 

± 7 for oim controls, P<0.01) (Fig.6A and Fig.6B). When the relative proportions of the growth 

plate zones were calculated, the hypertrophic zone formed a larger proportion of the total growth 

plate in the transplanted mice than in non-transplanted oim mice (46.4% ± 1.1 vs. 39.5% ± 3.2 

respectively, P<0.05), in which the hypertrophic zone was similar to wild type (41.7% ±1.2) 

(Fig.6C). This finding was consistent with gene expression studies demonstrating that 

transplanted oim had a 10:1 ratio of expression of the late hypertrophic chondrocyte marker 

Col10α1 in the epiphysis compared to expression of the proliferating chondrocyte marker Col2α1, 

whereas in non-transplanted oim the ratio was 4:1 (P<0.05).  

 



21 

 

There was a positive correlation (R2=0.75, y=20.13x – 0.84, P<0.01) between endogenous 

Col10α1 expression and the size of the hypertrophic zone of chondrocytes in the growth plate 

(Fig.6D). Whilst Runx2 expression was also correlated with the expression of Col10α1 (R2=0.76, 

y=65.56x – 0.41, P<0.001) (Fig.6E) and may therefore be involved in mediating the larger 

hypertrophic zone in the growth plate. We also show a strong correlation between Igf1 and Bgn 

expression (R2=0.89, y=8.64x – 0.15, P<0.001), highlighting the importance of Igf1 in regulating 

genes activated during intramembraneous ossification (Fig.6F). 

 

We next wanted to provide mechanistic clues as to how e-CSC transplantation induces up-

regulation of endogenous genes involved in skeletogenesis. We hypothesized that donor cells 

produce growth factors that stimulate maturation of endogenous chondrocyte progenitors. To test 

this hypothesis, we cultured e-CSC with the chondrogenic cell line ATDC5 to investigate whether 

e-CSC would produce factors that stimulate chondrogenic differentiation and maturation of 

ATDC5 cells. Although expression of the chondrogenic marker sox9 was higher in ATDC5 cells 

cultured in chondrogenic differentiated medium compared to levels found in non-induced cells, 

sox9 levels were not up-regulated when ATDC5 cells were co-cultured without cell contact with 

e-CSC, indicating that e-CSC do not produce soluble factors that induce chondrocyte maturation 

in vitro (Fig.6G). Interestingly, although ELISA analysis showed e-CSC did not produce bFGF, 

CTGF and PDGF-BB when cultured in D10 medium, they produced CTGF, but not bFGF or 

PDGF-BB, when co-cultured with ATDC5 (Fig.6H). When primed with oim or wild type seri, e-

CSC produced both bFGF and CTGF, but not PDGF-BB, indicating the cells might respond to in 

vivo signals present in blood serum (Fig.6H).  
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Discussion 

 

This study demonstrates that fetal stem cells derived from human first trimester chorionic 

placental tissue  (e-CSC), have therapeutic benefits in the OI mouse model (oim) as evidenced by 

a two-third decrease in long bone fracture incidence and decreased bone brittleness compared to 

non-transplanted controls. These results are in line with our previous studies [15,16,62]. Fracture 

reduction in e-CSC transplanted mice was attributed to an increase in bone plasticity, as 

previously demonstrated [23], as well as greater bone ductility. Changes to the bone mechanical 

properties of transplanted oim were most likely mediated by the exogenous cells since higher 

engraftment levels in bones correlated with decreased bone stiffness. This is in agreement with 

recent work from our group showing that up regulation of CXCR4 in transplanted fetal blood 

MSC increased cell homing to sites of injury via the CXCR4-SDF1 pathway [62,63], which 

subsequently increased donor cell engraftment as well as bone plasticity and bone quality [62]. 

Transplanted e-CSC homed to areas of bone growth and fracture repair and expressed osteoblast 

differentiation genes Osteopontin and Osteocalcin as well as the COL1A2 protein, indicating 

their differentiation to functional osteoblasts. These findings are in agreement with previous 

studies in the oim model that demonstrated the direct differentiation of transplanted cells to 

osteoblasts [13,14,15,16] and subsequent improvements in disease pathology. In addition, we 

used the detection of human factor IX as an immunoassay to detect the presence of mouse anti-

human antibodies in the serum of mice transplanted with human cells and we were able to show 

the absence of immune reaction against allogeneic cells.   

The trabecular bone volume (BV/TV) of oim is lower than wild type mice due to the impaired 

osteoblast differentiation of oim [64,65], which results in a high numbers of preosteoblasts that 
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support greater osteoclast bone resorption [64]. Oim mice transplanted with e-CSC had a higher 

BV/TV than non-transplanted oim, despite bone formation rate remaining the same, which could 

be due to differentiation of exogenous cells to normal osteoblasts that better regulate bone 

remodelling. Increased BV/TV may also result from an indirect effect of the transplanted cells on 

osteoblast differentiation as demonstrated by the upregulated expression of endogenous genes in 

transplanted oim that were associated with osteoblast differentiation, including Dmp1, Phex and 

Bgn [48,49,50]. Others have also shown an effect of transplantation on endogenous osteoblast 

activity, for example transplantation of osteogenic differentiated MSC in SCID mice resulted in 

increased bone being produced by host cells [66], and endogenous osteoblast numbers were 

increased after transplantation of term placental stem cells in a SCID-rab mouse model of 

medullary myeloma-associated bone loss [67]. We also showed upregulation in transplanted oim 

of endogenous chondrogenesis genes including chondrogenesis regulator Sox9 [38] and Runx2, 

implicated in chondrocyte maturation through Col10α1 transactivation [68]. Whilst expression of 

chondrocyte maturation inhibitor Smad3 [46] was downregulated in transplanted mice. These 

changes were associated with a larger zone of hypertrophic chondrocytes within the growth plate, 

and indicate transplantation may have increased endogenous endochondral ossification.  

The larger growth plate of e-CSC transplanted oim compared to oim controls is in contrast to 

previous data with hfMSC that instead showed normalisation of growth plate height in prenatally-

transplanted oim compared to controls [15]. This may suggest different mechanisms of action 

between different transplanted cell sources. For example, recent work by Horwitz et al. in oim 

mice suggested different sources of cells contributed through different mechanisms when used in 

cell therapy, with non-adherent bone marrow cells differentiating to osteoblasts that produced 

normal collagen, whilst bone marrow MSC increased lumbar vertebrae length via paracrine 

mechanisms on chondrocyte proliferation at the growth plate, possibly through release of soluble 

growth factors [69]. 
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BMC measured at the whole bone scale did not increase in oim after transplantation of e-CSC, 

despite changes in bone mechanical properties. Others have shown the importance of the collagen 

matrix organization on bone mechanical properties [70,71] and recently we have shown using 

nanoindentation that compared to wild type mice, oim have greater mineralization of a poorly 

organized matrix [72]. Therefore exogenous cells may have affected the bone mineralization or 

improved organization of bone matrix collagen fibres in the oim bones at the microscopic matrix 

scale, potentially in response to production of normal COL1A2.  

To test the hypothesis that e-CSC produce growth factors which promote endogenous 

chondrocyte progenitor maturation and differentiation, we co-cultured e-CSC with ATDC5 in 

vitro. Interestingly, co-culture with ATDC5 cells induce e-CSC to produce connective tissue 

growth factor CTGF, which is known to induce chondrocytic proliferation, maturation and 

hypertrophy in vitro [73]. Interestingly, when primed with blood serum, e-CSC produced both 

CTGF and bFGF. CTGF is also known for stimulating proliferation and differentiation of 

cultured osteoblastic cells, and bFGF, which stimulates proliferation in the perichondrium [72]. 

Together, these results suggest e-CSC respond to in vivo signals to produce CTGF and bFGF, 

which may stimulate endogenous osteogenesis and chondrogenesis.  

In summary, our study demonstrates that fetal stem cells derived from first trimester chorionic 

tissue have the potential to treat osteogenesis imperfecta.  

 

 

List of Abbreviations 

e-CSC: early fetal placental chorionic stem cells, hESC: human embryonic stem cells, HZ: 

hypertrophic zone, i.p.: intraperitoneal, MSC: mesenchymal stem/stromal cells, OI: osteogenesis 

imperfecta, oim: osteogenesis imperfecta murine, PZ: proliferative zone, RZ: reserve zone 
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Figure Legends 

Figure 1 

e-CSC express MSC and hESC markers and differentiate down mesenchymal lineages (A) 

Representative confocal immunofluorescence images for expression (green) of adhesion 

molecules (CD29 and CD44), MSC-associated markers (CD73, CD90 and CD105), endothelial 

marker (CD14), hematopoietic markers (CD34 and CD45) and MHC antigens (HLA I and II). 

Nuclei stained with DAPI (blue). (B) Flow cytometry for percent of e-CSC population positive 

for OCT4A, SOX2, TRA-1-60 and SSEA4 (isotype control in black). (C) Confocal images for 

expression of OCT4A, SOX2, TRA-1-60 and SSEA4 in the e-CSC whole population. (D) Von 

Kossa staining of calcium mineralisation and alizarin red staining of mineralising nodules 

following osteogenic differentiation of e-CSC. Safranin O staining of cartilage matrix following 

chondrogenic differentiation. Oil red O staining of lipid droplets following adipogenic 

differentiation. Samples were either cultured in the presence of differentiation medium (induced) 

or in growth medium (un-induced, negative controls). All scale bars 100µm. 

 

Figure 2  

Transplanted oim show improvement in disease pathology (A) Percentage of mice with any 

long bone fracture. (B) Fracture rate; total proportion of fractured femurs, tibias and humeri over 

total number of these bones per mouse. (C) Percentage caudal vertebral fractures calculated over 

total number of vertebrae per mouse. (D) Percentage of mice with vertebral fractures shown per 

caudal vertebra from the base of the tail (vertebra number 1) to the tip of the tail (vertebra number 

30). (E) Three-point bending load (N) displacement (mm) curves shown up to the critical fracture 

point (F) Bending stiffness of femurs (slope of the linear elastic deformation; N/mm).  (G) 

Maximum deflection at fracture (displacement extension to the point of fracture; mm). (H) Load 

to fracture (maximum force sustained by femur prior to fracture; N). All mice were 8 weeks old 
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and either wild type (WT; red), non-transplanted oim (OIM; blue) or e-CSC transplanted oim (e-

CSC; black). n.s. not significant, * P<0.05, *** P<0.001; Student’s t-test or Fisher exact test. 

Error bars +/- s.e.m. 

 

Figure 3 

Transplanted e-CSC engraft and differentiate to osteoblasts in oim bone (A) Visualisation of 

human donor cells with DAB staining (brown) of human specific vimentin in the tibial epiphysis, 

growth plate, diaphysis and fracture callus of oim neonatally transplanted with e-CSC, compared 

to age-matched non-transplanted oim controls. Zoomed in human MSC in the fracture callus 

shown. Nuclei counter stained with Haematoxylin (blue). AC; articular cartilage, SOS; secondary 

ossification site, HC; hyaline cartilage, M; metaphysic, PS; primary spongosia, P; periosteum, 

CB; cortical bone, E; endosteum. Scale bars all 100μm. (B) Quantitative real time PCR of donor 

cell engraftment calculated as the 2-ΔCt of human specific β-actin normalised to human-mouse 

non-specific β-actin in the femoral epiphysis (Epi), diaphysis (Dia); with (+Fr) and without 

fracture callus (-Fr), and in the liver (Liv). * P<0.05, ** P<0.01, ***P<0.001; One-way ANOVA 

followed by Tukey’s post hoc test. Error bars are s.e.m. (C) Linear correlation and regression 

equation for donor cell engraftment (2-ΔCt) in the femoral epiphysis per mouse against femur 

stiffness (N/mm) calculated from the three point bending test. Linear line of best fit given. (D) 

Quantitative real time PCR of expression of human specific Osteopontin (OP) and Osteocalcin 

(OC) normalised to human specific β-actin (2-ΔCt) in the femurs of e-CSC transplanted oim (e-

CSC Tx bone; black) and compared to the basal expression level of e-CSC (basal cells; stripes) 

and expression level of cells grown in osteogenic permissive media for 2 weeks (differentiated 

cells; checks). * P<0.05; One-way ANOVA followed by Tukey’s post hoc test. Error bars are 

s.e.m. (E) Western blot of expression of COL1A2 protein in the femurs of e-CSC transplanted 
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oim (e-CSC) compared to age matched wild type (WT) control and non-transplanted oim (OIM). 

Loading control is GAPDH. 

 

Figure 4 

Increased BV/TV but not BMC (A) Tibial length (mm) for 8 week old wild type (WT; red), 

non-transplanted oim (OIM; blue) and e-CSC transplanted oim (e-CSC; black). (B) Tibial 

periosteal diameter (mm) at the mid shaft for each group shown medullary bone marrow cavity 

(light grey) and cortical bone (dark grey). (C) Relative thickness of tibial cortex compared to 

periosteal diameter. (D) Bone formation rate (BFR; µm3/µm2/day) for the endosteal cortex 

calculated from dual calcein labelling. (E)  Bone mineral content shown as relative frequency (%) 

across 16 equal intervals of mineralisation density (Displayed as a pseudocolour scheme where 0 

grey level (black): low mineralisation; 256 grey level (white): maximum mineralisation). (F) 

Percentage of trabecular bone volume in the tibial metaphysis per total tissue volume (BV/TV). 

(G) Bone formation rate (BFR; µm3/µm2/days) for trabecular bone calculated from dual calcein 

labelling. n.s. not significant, * P<0.05, *** P<0.001; Student’s t-test or Kolmogorov-Smirnov 

test. Error bars are s.e.m. 

 

Figure 5 

Transplanted oim have increased expression of genes involved in endogenous osteogenesis 

and chondrogenesis. (A) Fold changes in gene expression in the femoral epiphysis of oim 

transplanted with e-CSC when compared to non-transplanted oim controls, generated from a 

mouse osteogenesis PCR array (SABiosciences). (B) Expression of genes involved in 

endochondral ossification; Sox9, Col2α1, Aggrecan (Acan), Col10α1, Smad3 and Pthrp. (C) 

Expression of genes involved in intramembranous ossification; Dmp1, Phex, Biglycan (Bgn), 

Col1α1, Runx2, Osterix (Osx) and Igf1. Results are given as 2-ΔCt normalised to mouse β-actin and 
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hsp90ab1 for non-transplanted oim (OIM; blue) and oim transplanted with e-CSC (e-CSC; black). 

* P<0.05, ** P<0.01; Student’s t-test. Error bars are s.e.m. (D) Visualisation of Collagen Type X 

with DAB staining (brown) in the tibial epiphysis of oim neonatally transplanted with e-CSC, 

compared to age-matched non-transplanted oim controls. Scale bar 100μm. (E) Visualisation of 

Osteopontin with DAB staining (brown) in the tibial epiphysis of oim neonatally transplanted 

with e-CSC, compared to age-matched non-transplanted oim controls. Scale bar 100μm. 

 

Figure 6 

Transplantation increases hypertrophic chondrocytes (A) Tibial growth plate architecture of 8 

week old wild type (WT), non-transplanted oim (OIM) and oim transplanted with e-CSC (e-CSC). 

Chondrocyte matrix is stained blue and contains a reserve zone (RZ) of cells undergoing clonal 

expansion, a proliferative zone (PZ) containing columns of proliferating chondrocytes, and a 

hypertrophic zone (HZ) of differentiated hypertrophic chondrocytes. Scale bar is 20µm. (B) Mean 

widths of the tibial growth plate and growth plate zones (RZ, PZ, HZ). Significance shown for 

total growth plate height. n.s. not significant, * P<0.05, ** P<0.01, *** P<0.001; Student’s t-test. 

Error bars are s.e.m. (C) Ratio of zones (RZ, PZ, HZ) within the growth plate. (D) Correlation 

between Col10α1 gene expression (given as 2-ΔCt normalised to mouse β-actin and hsp90ab1) and 

width of the hypertrophic zone (HZ) of the growth plate. (E) Correlation of Runx2 and Col10α1 

gene expression. (F) Correlation of Igf1 and Bgn gene expression. Linear line of best fit given. 

(G) Sox9 expression in ATDC5 cells was measured by quantitative real time RT-PCR using the 

2-ΔCt method. ATDC5 cells were either cultured in D10 medium alone (non-induced), induced to 

differentiate chemically, or co-cultured without cell contact with e-CSC for 7 days. Samples were 

tested in triplicates, and results are shown as meanstdev. ** indicates P<0.01, when compared to 

non-induced ATDC5 cells; ANOVA variance analysis. (H) Measurement of bFGF, CTGF and 

PDGF-BB by e-CSC either cultured in D10 medium alone (non-primed), in co-culture with 
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ATDC5 cells without cell contact (primed with ATDC5), or the presence of blood serum from 

oim (primed with oim serum) or wild type mice (primed with WT serum). Samples were tested in 

triplicates, and results are shown as meanstdev. *** indicates P<0.001 when compared to non-

primed e-CSC; ANOVA variance analysis. 

 

Supplementary Figure Legends 

Supplementary Figure S1 

X-ray image of tail vertebra and the corresponding MicroCT images shown at 4 different points 

of rotation for (A) a normal wild type vertebra, (B) a normal oim vertebra, (C) an oim vertebra 

with an obvious callus, (D) an oim vertebra with evidence of bone remodelling suggesting 

previous callus. 

 

Supplementary Figure S2 

Parameters of bone formation for the endosteal region of the tibial cortex, analysed from dual 

calcein labelling for 8 week old wild type (WT; red), non-transplanted oim (OIM; blue) and e-

CSC transplanted oim (e-CSC; black). (A) Mineral apposition rate (MAR) in µm per day. (B) 

Percentage mineralizing surface per total bone surface (MS/BS). n.s. not significant, * P<0.05; 

Student’s t-test. Error bars are s.e.m. 

 

Supplementary Figure S3 

Digital X-ray images of tibia from 8 week old wild type (WT), non-transplanted oim (OIM) and 

oim transplanted with e-CSC (e-CSC), where grey level has been pseudocoloured according to a 

16-colour palette; ranging from black (low mineralization density) to white (high mineralization 

density). 
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Supplementary Figure S4 

Parameters of bone formation for the tibial trabecular bone, analysed from dual calcein labelling 

for 8 week old wild type (WT; red), non-transplanted oim (OIM; blue) and e-CSC transplanted 

oim (e-CSC; black). (A) Mineral apposition rate (MAR) in µm per day. (B) Percentage 

mineralizing surface per total bone surface (MS/BS). n.s. not significant, *** P<0.001; Student’s 

t-test. Error bars are s.e.m. 

 

Supplementary Figure S5 

Linear correlations of gene expression (given as 2-ΔCt normalised to mouse β-actin and hsp90ab1) 

(A) Sox9 and Col2α1, (B) Dmp1 and Phex, (C) Col1α1 and Bgn.  

 

Supplementary Table S1  

List of antibodies used for immuno-fluorescence (IF), immuno-histochemistry (IH) and western 

blot (WB). 

 

Supplementary Table S2  

List of primers used for RT-PCR and quantitative real time PCR. 

 


