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Chromatography operations are identified as critical steps in a monoclonal antibody (mAb)
purification process and can represent a significant proportion of the purification material costs.
This becomes even more critical with increasing product titers that result in higher mass loads
onto chromatography columns, potentially causing capacity bottlenecks. In this work, a mixed-
integer nonlinear programming (MINLP) model was created and applied to an industrially rele-
vant case study to optimize the design of a facility by determining the most cost-effective chro-
matography equipment sizing strategies for the production of mAbs. Furthermore, the model was
extended to evaluate the ability of a fixed facility to cope with higher product titers up to 15 g/
L. Examination of the characteristics of the optimal chromatography sizing strategies across dif-
ferent titer values enabled the identification of the maximum titer that the facility could handle
using a sequence of single column chromatography steps as well as multi-column steps. The crit-
ical titer levels for different ratios of upstream to dowstream trains where multiple parallel col-
umns per step resulted in the removal of facility bottlenecks were identified. Different facility
configurations in terms of number of upstream trains were considered and the trade-off between
their cost and ability to handle higher titers was analyzed. The case study insights demonstrate
that the proposed modeling approach, combining MINLP models with visualization tools, is a
valuable decision-support tool for the design of cost-effective facility configurations and to aid
facility fit decisions. VC 2013 The Authors. Published by Wiley Periodicals, Inc. on behalf of
American Institute of Chemical Engineers Biotechnol. Prog., 29:1472–1483, 2013
Keywords: biopharmaceutical facility design, monoclonal antibody purification, chromatog-
raphy, mixed integer non-linear programming, antibody titers

Introduction

As the monoclonal antibody (mAb) sector has matured, it
has become critical to rapidly identify the most cost-
effective purification processes that can handle increasing
upstream productivities in a timely manner and overcome
existing purification bottlenecks.1–3 Chromatography opera-
tions are identified as critical steps in a mAb purification
process and can represent a significant proportion of the
purification material costs, particularly due to the use of
expensive affinity matrices as well as the high amounts of

buffer reagents required. Higher product titers allow meeting
larger demands and decreasing the relative cost of upstream
activities. However they increase the protein load on chroma-
tography steps resulting in an increase in the number of cycles
or further investment in larger columns and hence the relative

cost of downstream increases.3,4 Although alternatives to tra-

ditional column chromatography platforms are emerging (e.g.,

non-chromatography operations, membrane adsorbers), indus-

try practitioners are still reluctant to perform major process

changes.1–3 At the same time, it is important to determine

how best to use existing installed production capacity for

mAbs.5,6 In this context, continuous improvement of existing

processes, particularly the optimization of chromatography

operations, is a valuable approach to address the current chal-

lenges. The development of computer-based decisional tools

for the bioprocess sector is an emerging area7–11 and frame-

works have been developed to assess different solutions for

the design and operation of chromatography steps. Joseph
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et al.12 present a simulation model to identify windows of

operation for a chromatography step, using productivity and

cost of goods (COG) as performance criteria. A model to find

combinations of protein load and loading flow rate that meet

yield and throughput constraints has been developed by

Chhatre et al.13 The discrete-event simulation framework pro-

posed by Stonier et al.14 allows the selection of optimal chro-

matography column sizes over a range of titers by brute force

simulation. However, such an approach may not be feasible

for very large decision spaces, and, particularly, when the var-

iables have integer domain, as is the case in the problem

addressed in the present article.

There are a large number of possible permutations and
trade-offs related to running packed-bed chromatography
operations such as opting for a smaller column run for sev-
eral cycles so as to reduce resin costs vs. a large column run
for fewer cycles so as to save time and labor costs. Decision
makers usually have empirical approaches to come to a solu-
tion, mainly based on previous experience, and so may be
missing good opportunities for improvement. The combina-
torial optimization (CO) nature of the decision problem con-
sists of selecting the most appropriate sizing strategy for the
chromatography operation. In this article, the decisions are
addressed using mixed-integer programming (MIP) techni-
ques due to their widely recognized ability to handle CO
problems.

Mixed-integer linear (MILP) and non-linear programming
(MINLP) models have been developed to address capacity
planning problems in the pharmaceutical15,16 and biopharma-
ceutical17,18 industries. At the process level, MIP models
have focused on determining optimal purification sequences,
using physicochemical data of protein mixtures and mathe-
matical correlations of the separation techniques.19–21 In
some cases, the process synthesis optimization has also con-
sidered product loss by incorporating the decisions on the
time of product collection and the start and finishing cut-
points.22,23 More recently, efficient MILP models were
developed using the discretization24 and piecewise lineariza-
tion approximation25 to overcome the computational expense
of MINLP models. These models use the number of chroma-
tography steps, purity, and yield as performance metrics, but
do not account for overall process costs.

Optimization of chromatography equipment sizing strat-
egies for a sequence of chromatography steps on the basis of
a global criterion, such as cost of goods per gram (COG/g),
requires the use of either MINLP approaches or heuristic
search methods such as evolutionary algorithms to handle
the complex model dependencies. Meta-heuristic methods
have been developed that integrate evolutionary algorithms
with detailed process economics models to determine the
most cost-effective purification sequences and chromatogra-
phy sizing strategies that meet purity constraints.26,27 MINLP
approaches have the advantage of providing exact solutions
in the cases where commercial solvers or linearization tech-

niques allow a feasible solution to be identified. However,
an MINLP model for this problem domain does not exist in
the literature. Hence, this article presents a novel mathemati-
cal programming model based on an MINLP formulation to
determine the best chromatography equipment sizing strat-
egies for the production of mAbs. The CO model addresses
the challenge of optimizing the chromatography sizing strat-
egy for a sequence of chromatography steps in a downstream
purification train whilst considering several key decision var-
iables for each step, including column bed height, column
diameter, number of columns, and number of cycles. Fur-
thermore, the model is used also to determine the optimal
facility fit configuration for products with higher titers. A
related problem has been previously addressed by Stonier
et al.28 using a stochastic simulation framework and multi-
variate analysis to identify root causes of facility
mismatches.

The problem under study in this work—optimization of
chromatography sizing strategies for facility design and facil-
ity fit—is formulated as an MINLP model, which can be
solved to global optimality using commercially available
global optimization solvers.

Problem Description

The problem addressed in this article is to determine the
optimal equipment sizing strategies for a sequence of
packed-bed chromatography columns used in the purification
of mAbs. A typical mAb platform process is used in this
study (as shown in Figure 1). In upstream processing (USP),
mammalian cells expressing the mAb of interest are cultured
in bioreactors. Then the broth moves to downstream process-
ing (DSP), where the mAb is recovered, purified, and cleared
from viruses using a variety of operations, such as different
types of filtration, and a number of chromatography steps.
The chromatography sequence includes three packed-bed
chromatography steps, namely affinity (AFF) chromatogra-
phy for product capture followed by cation-exchange (CEX)
chromatography for intermediate purification, and anion-
exchange (AEX) chromatography for polishing.

The problem addresses the challenges of dealing with
multiple decisions, criteria, and constraints. This is further
complicated by the sequential nature of decisions and their
interdependencies, e.g. in a multi-step purification process
the amount of resin required for a particular chromatography
step depends on the equipment sizing strategy that was
selected for the previous chromatography step. A schematic
of the decision choices in this chromatography sizing prob-
lem is shown in Figure 2. The decisions at each chromatog-
raphy step include the bed height, diameter, number of
cycles, and number of columns to run in parallel at each
step. The strategy selected has a direct impact on key met-
rics related to cost, time, and annual product output. This
captures the trade-offs of using large columns with a single

Figure 1. A typical mAb platform process.
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cycle vs. smaller columns with multiple cycles as illustrated in
the schematic. Small changes in bed height were also accom-
modated to account for typical ranges seen in industrial appli-
cations and the use of multiple parallel columns per step was
incorporated so as to determine whether this offered significant
advantages that might outweigh current preferences to avoid
parallel columns due to validation burdens.

In this problem, the USP trains work constantly so it is
necessary to monitor the real DSP time such that the sched-
uling of batches between the USP and DSP trains occurs as
originally planned. This model feature is very important as
scenarios of multiple USP trains feeding a single DSP train
are considered. It is assumed that multiple bioreactors oper-
ate in staggered mode and feed the DSP trains intermittently.
Ideally, as soon as the cell culture is complete the product
should enter the DSP train, hence an increase in the
USP:DSP trains ratio corresponds not only to a decrease in
the bioreactor(s) size, and hence on the batch size, but also
to a decrease in the DSP window, i.e. the time available to
perform the DSP operations. This might be a challenging
scenario which requires an appropriate column sizing strat-
egy in order to ensure that the DSP operations are performed
within the DSP window.

The COG comprises both direct costs based on resource uti-
lization (e.g., resin costs, buffer costs, and variable labor costs
associated with DSP time) and indirect costs (e.g. facility-
dependent overheads and capital costs). The total cost is then
divided by the product output to compute the cost of goods per
gram (COG/g). This is a standard approach7 which allows the
incorporation of multiple process features into a single metric.
Particularly relevant to the current work is the relationship
between annual product output and COG/g, as process configu-
rations which result in lower product outputs are automatically
penalized in terms of COG/g. The COG/g was used by the pro-
posed mathematical programming model as the objective func-
tion to be minimized.

In this problem, the annual demand is an input of the model
and it is used to calculate the bioreactor size and required num-
ber of batches, which is an upper bound of the number of com-
pleted batches. However, if a particular equipment sizing
strategy leads to long processing times, it may not be possible
to meet the required number of batches and hence the annual
product output would be below the production target. This
issue is indirectly addressed by the use of COG/g as objective
function, which favors solutions with higher product output
values. Thus, the annual product demand can be met, unless
the DSP time exceeds the DSP window.

Overall, the problem addressed in this work is described
as follows. The following parameters are inputs: the process
sequence of a mAb product, the annual demand, the product
titer, the ratio of USP to DSP trains, the key operating
parameters of the chromatography operations (e.g., yield, lin-
ear velocity, buffer usage, resin dynamic binding capacity),
the processing times of non-chromatography unit operations,
cost data (e.g., reference equipment costs, labor rate, resin,
buffer, and media prices), the column diameter and height
candidates, and the maximum number of cycles and col-
umns. Given these inputs, the goal is to determine the col-
umn sizing strategies (i.e., column diameter and height, the
number of cycles, number of columns at each step), the
number of completed batches, the total product output and
the total annual cost so as to minimize COG/g.

Mathematical Formulation

An MINLP model was developed for the chromatography
column sizing problem described in the previous section.
Only the equations most relevant to the case study discussion
are presented in the main text; the complete set of con-
straints is shown in Table A.1 (Appendix).

Calculation of input parameters

To initialize the model, the required number of batches to
meet the annual demand was estimated, given the number of
production bioreactors existing in the facility. This corre-
sponds to the maximum number of batches that can be com-
pleted within the planning horizon:

MaxNbatch5Nbior3
Tannu

Tbior
(1)

where Tannu is the annual operating time, Tbior is the bioreaction
time, and Nbior is the number of bioreactors. Then, the volume of
a single bioreactor was estimated by the following expression:

Vbior5
AnnuD

MaxNbatch � r � a � Titer �
Q

sYds
(2)

where AnnuD is the annual demand, Yds is the yield of
product at unit operation s, a is the bioreactor working vol-
ume ratio, “Titer” is the titer of the product and r is the
batch success rate. With the above two parameters defined
and calculated, the proposed mathematical programming
model is presented in the next section.

Product mass constraints

In each batch, the initial product mass entering the DSP
train depends on the titer of the product and the working
volume of production bioreactor (Eq. 3). The product mass
after each unit operation s depends on its yield (Eq. 4).

Figure 2. Comparison of alternative chromatography column
sizing strategies in terms of the decision variables of
the optimization problem (bed height, diameter,
number of cycles, and number of columns) and the
corresponding performance metrics of each configu-
ration (step time, resin cost, and equipment depreci-
ation cost). All the configurations allow processing
the same amount of product (volume and mass).
Column configurations with dotted outline indicate
multiple cycles.
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M05Titer � a � Vbior (3)

Ms5Yds �Ms21; 8s (4)

The annual product output was determined using the prod-
uct mass after the bulk fill operation (last operation in the
process) per batch multiplied by the number of batches and
the batch success rate.

AnnuO5r � Nbatch �Mbf (5)

Nbatchwas limited by the required number of batches to
meet the demand, i.e., its upper bound given by Eq. 1.

Nbatch � MaxNbatch (6)

Chromatography operation constraints

Resin Volume. The total column volume for chromatog-
raphy step s was defined as the number of columns multi-
plied by the corresponding column volume.

TotVcol
s 5

X
i

Vcol
si � Ncol

si ; 8s 2 CS (7)

where Vcol
si is the volume of the candidate column size i for

chromatography step s, determined by specific diameter
DMcol

si and height Hcol
si . Thus, if a column size i was selected,

the corresponding diameter and bed height were both known.
Here, it was assumed that only one column size could be
selected for each step, for ease of validation, as defined by:

X
i

Xcol
si 51; 8s 2 CS (8)

Ncol
si � MaxNcol

s � Xcol
si ; 8s 2 CS; i (9)

where Xcol
si is a binary variable to indicate whether column

size i is selected for step s and MaxNcol
s represents its maxi-

mum number of columns.

The total amount of resin available must be sufficient to
process all product mass entering this operation, so the num-
ber of cycles multiplied by the total column volume should
be greater than the minimum required resin volume:

Ncyc
s � TotVcol

s � MinVresin
s ; 8s 2 CS (10)

The amount of resin required per batch, for a particular
chromatography step, depends on the mass of product to be
processed, the dynamic binding capacity of the resin used in
that step, and the resin utilization factor:

MinVresin
s 5

Ms21

DBCs � l
; 8s 2 CS (11)

Also, the number of cycles for each chromatography oper-
ation cannot exceed its upper bound:

Ncyc
s � MaxNcyc

s ; 8s 2 CS (12)

Product and Buffer Volume. In both AFF and CEX oper-
ations, which operated in bind-and-elute mode (Eq. 13), the
volume of the output product was equal to the eluate vol-
ume. In the flow-through AEX operation, it was assumed

that the product volume did not change from the previous
step (Eq. 14). The total buffer volume necessary to run a
chromatography cycle was given by the buffer usage ratio
multiplied by the total column volume (Eq. 15).

Vprod
s 5EluCVs � Ncyc

s � TotVcol
s ; 8s5aff; cex (13)

Vprod
s 5Vprod

s21 ; 8s5aex (14)

Vbuff
s 5BuffCVs � Ncyc

s � TotVcol
s ; 8s 2 CS (15)

Processing Time. In each chromatography step, the total
processing time per batch was the summation of time for
adding buffer and loading product.

Tdsp
s 5Tprod

s 1Tbuff
s ; 8s 2 CS (16)

When there were parallel columns, the product volume
loaded to each column was the total product volume from
the previous operation divided by the number of columns.
The processing time for loading product was the product vol-
ume loaded to each column divided by the volumetric flow
rate.

Tprod
s 5

Vprod
s21

VFRs �
P

iN
col
si

; 8s 2 CS (17)

The volumetric flow rate (L/h) at a chromatographic oper-
ation was determined by the velocity (Vels) and column
diameter as follows:

VFRs5 Vels� p �
X

i

DMcol
si

2

� �2

� Xcol
si

 !�
1000; 8s 2 CS (18)

The processing time (h) for adding buffer is given by:

Tbuff
s 5

BuffCVs � Ncyc
s �

P
iðVcol

si � Xcol
si Þ

VFRs
; 8s 2 CS (19)

Batch time

As other non-chromatographic DSP operations are not the
main concern of this problem, it was assumed that their
operating times were constant. The total DSP time per batch
was defined as the sum of the processing times of all DSP
operations converted into days such that it reflects the shift
pattern of DSP operators.

BatchTdsp5

P
sT

dsp
s

Nhour
shift � Nshift

(20)

where Nhour
shift indicates the number of hours per shift and

Nshift indicates the number of shifts per day. If BatchTdsp is
greater than the DSP window, Windowdsp5 Tbior

Nbior, the required
number of batches cannot be completed and the annual
demand cannot be met.

The total annual DSP time was calculated by:

AnnuTdsp5Nbatch � BatchTdsp (21)

where AnnuTdsp cannot exceed its upper bound:
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AnnuTdsp � Tannu2Tbior (22)

Cost calculation

The total annual operating cost, AnnuC, comprises both
direct costs based on resource utilization (e.g., resin costs,
buffer costs, and variable labor costs associated with DSP
time) and indirect costs (e.g., facility-dependent overheads
and capital costs). Due to space constraints, the description
of the cost calculation constraints will be limited to the resin
and equipment costs. The full calculation is presented in
Table A.1 (Appendix).

Resin Cost. In this work, only the resin was considered
to calculate the consumables cost, as the resin volume is a
key decision in this problem. The cost for other consumables
was ignored. Assuming that the resin would be re-used until
it reaches its lifetime, the annual resin cost was calculated
by:

Cresin5
X
s2CS

A � Pcresin
s � Nbatch � Ncyc

s � TotVcol
s

L
(23)

where Pcresin
s is the resin price, A is the over-packing factor

for resin, and L is the resin lifetime (in terms of number of
cycles).

Equipment Cost. Given the nature of the optimization
problem addressed as well as the case study scenarios ana-
lyzed in this article, the two types of equipment considered
for the calculation of indirect costs were the production bio-
reactors and chromatography columns. For different sizes of
chromatography columns and bioreactors, the costs were cal-
culated by using the values of reference equipment sizes and
costs to scale-up the equipment cost:

Ccol
si 5RefCcol � DMcol

si

RefDMcol

� �SUFcol

(24)

Cbior5RefCbior � Vbior

RefVbior

� �SUFbior

; (25)

where RefCcol is the cost of a single chromatography column
with a diameter of RefDMcol, and RefCbior is the cost of a
single bioreactor with a volume of RefVbior. Both reference
costs are used to scale up the costs of chromatography col-
umns and bioreactors with different sizes, using SUFcol and
SUFbior as the scale-up factors for columns and bioreactors,
respectively. The equipment cost was then used to calculate
the capital investment value.

Objective function

In the work, the objective was to minimize COG/g, which
equals to the annual total cost divided by the annual product
output. Thus, COG/g can be expressed as:

z5
AnnuC

AnnuO
(26)

Overall, the problem was formulated as an MINLP model
with Eqs. (3–25) as key constraints and with Eq. 26 as the
objective function. A number of constraints in the proposed
model are nonlinear, which involve bilinear (e.g., Eq. 5) or
trilinear terms (e.g., Eq. 23). Also, the objective function is a
fraction of two variables. The nature of the nonlinearity in
the model leads to high computational complexity to find the
global optimum. The complete set of the model constraints
is presented in Table A.1 (Appendix).

Case Study Setup

The MINLP model was applied to an industrially relevant
case study, based on a biopharmaceutical company using a
platform process for mAb purification to manufacture a
single product with a demand of 500 kg/year and a titer of 3
g/L. The key parameters of the considered three packed-bed
chromatography steps are shown in Table 1 and the candi-
date values of the chromatography equipment sizing decision
variables are shown in Table 2. As there are 11 possible bed
heights and 10 possible diameters, a single column has 110
possible volumes. The number of cycles can be up to 10,
while at most 4 columns are allowed to be used in parallel.
The complete set of data used in the MINLP model for the
case study is shown in Table A.1 (Appendix), alongside the
corresponding model constraints. The parameter values used
in this case study were similar to the ones presented in
Simaria et al.26

The goal was to design a new facility that was able to (a)
manufacture the product in a cost-effective manner and (b)
cope with predicted future higher titers. To address the first
goal, the MINLP model described in Section “Mathematical
Formulation” was run using the current product titer (3 g/L)
and this model was named MINLPDesign. In order to address
the second goal, the original model was modified to account
for facility fit constraints, resulting in a second model
MINLPFacility-fit. In this model, the size of the production
bioreactor(s) was fixed to represent an existing facility
(instead of calculated by Eq. 2) and the maximum column
diameter was dictated by the existing facility and therefore
the degrees of freedom of the model to achieve the mini-
mum COG/g were the column bed height and number of
cycles. Future products in the pipeline were expected to
have titers up to 15 g/L and so the values 6, 9, 12, and 15g/

Table 2. Candidate Values of the Column Sizing Decision Variables

in the Case Study

Decision Variable Candidate Value

Bed height (Hcol, cm) 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25

Diameter (DMcol, cm) 50, 60, 70, 80, 90, 100, 120,
160, 180, 200

Number of cycles (Ncyc) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Number of columns (Ncol) 1, 2, 3, 4

Table 1. Characteristics of the Three Packed-Bed Chromatography Steps in the Case Study

Chromatography Step
Yield

(Yd, %)
Resin Dynamic Binding

Capacity (DBC, g/L)
Resin Price
(Pcresin, £/L)

Linear Velocity
(Vel, cm/h)

Eluate Volume
(EluCV, CV)

Buffer Volume
(BuffCV, CV)

AFF 91 30 6,400 300 2.3 37
CEX 92 40 400 300 1.4 26
AEX 95 100 700 300 – 10

1476 Biotechnol. Prog., 2013, Vol. 29, No. 6



L were considered in the study. Given the fixed bioreactor
volume, higher titers meant higher product masses entering
into each chromatographic purification operation, increasing
the required resin volume, as given by Eq. 11. However, as
the number of columns and column diameters were fixed,
and the maximum bed height and number of cycles were
limited, it was important to account for product being dis-
carded when the required resin volumes could not be met.

To model the above situation, a new continuous variable,
MLosss for the protein mass loss at chromatography step s was
introduced in the MINLPFacility-fit model. The product mass
entering chromatography operation s should be the product
mass after the previous operation, Ms21, minus the product
mass loss at this chromatography operation, MLosss, due to the
lack of resin capacity at step s. The product mass after opera-
tion s, Ms, and the amount of resin required per batch,
MinVresin

s , was formulated considering the mass loss, using two
new constraints to replace Eqs. 4 and 11, as shown in Table 3.
Also, an alternative objective to penalize the product loss was
introduced (Table 3), in which U was developed as a penalty
weight for mass loss. Computational tests on the case study
showed that when U< 100, the optimal solution could be
obtained. In this case study U was set to 10 in all scenarios.

In order to assess different strategies of increasing the
facility’s capacity, two versions of the MINLPFacility-fit model
were developed as presented in Table 3. In version A, the
number of columns running in parallel at each chromatogra-
phy step, Ncol

si , was fixed to the values obtained from the
MINLPDesign model, while version B allowed the installation
of additional columns by letting the decision variable Ncol

si
change. In the latter situation it was assumed that the parallel
columns were equally sized given industry preferences for
ease of validation and operation.

Three different ratios of USP to DSP trains were consid-
ered (1:1, 2:1, and 4:1) so as to evaluate which configuration
would be most suitable in terms of cost-effectiveness and
robustness to cope with higher titers. The different USP:DSP
configurations will have an impact of the size of the bioreac-
tor(s) as well as on the DSP window, i.e. the time available
to perform the DSP operations, as it is assumed that multiple

bioreactors are operated in a staggered mode, feeding a sin-
gle DSP train intermittently.

Results and Discussion

The proposed optimization models were implemented in
GAMS 23.929 using the global MINLP solver BARON on a
64-bit Windows 7 based machine with 3.20 GHz six-core
Intel Xeon processor W3670 and 12.0 GB RAM. The MIN-
LPDesign model, with 403 constraints, 73 continuous varia-
bles, and 664 discrete variables, took less than 1,200 sec to
find the optimal solution for each scenario. The number of
variables in the MINLPFacility-fit model depended on the solu-
tion of the MINLPDesign model, and its CPU time was tens
of seconds for all scenarios investigated in the case study.

New facility design for current titers (MINLPDesign)

Figure 3 summarizes the characteristics of the optimal sol-
utions provided by MINLPDesign model for the different
USP:DSP ratios analyzed in the case study, in terms of the
volume of the columns and number of cycles of each chro-
matography step (Figure 3a), cost metrics (Figure 3b), and
kg product output metrics (Figure 3c). In all the scenarios
examined, single columns were selected for each purification
step. With the increasing number of USP trains, the optimal
solutions were characterized by using similar column vol-
umes but running for fewer cycles to shorten the DSP time
such that it fitted within tighter DSP windows. The DSP
windows were 15, 7.5, and 3.8 days for 1USP:1DSP,
2USP:1DSP, and 4USP:1DSP configurations, respectively.

The value of the objective function COG/g was lowest for
the scenario of 1USP:1DSP, where a single bioreactor was
used, and it increased with the number of USP trains as
illustrated in Figure 3b. This can be attributed to the higher
investment cost and hence indirect costs (e.g., depreciation)
per gram associated with installing multiple smaller bioreac-
tors vs. a single large bioreactor due to economies of scale
as well as the increased labor costs associated with running
multiple bioreactors. Hence a trade-off exists between the

Table 3. Characteristics of the MINLP Models

Model MINLPDesign MINLPFacility-fit

Version A B
Goal Design a new facility

for current titer.
Fit process with higher

titers to existing facility.
Increase DSP capacity

Description As described in section 3. Bioreactor and column sizes given by
MINLPDesign; bed height and
number of cycles can change.

Bioreactor and column sizes given by
MINLPDesign; bed height and number of
cycles can change and additional
columns can be installed.

Model variables
Bioreactor size Calculated Given by MINLPDesign

Column diameter Decision variable Given by MINLPDesign

Number of columns Decision variable Given by MINLPDesign Decision variable
Handling of mass loss No mass loss occurs New continuous variable: MLosss

Modified constraints to replace Eqs. 4 and 11:

Ms 5 Yds � ðMs212MLosssjs2CPÞ; 8s (4a)

MinVresin
s 5 Ms212MLosss

DBCs �l ; 8s 2 CP (11a)

Modified objective function to replace Equation 26:

z5
AnnuC1U�

P
s2CP

MLosss

AnnuO (26a)

where U is a penalty weight for mass loss
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lower COG/g with a single bioreactor set-up vs. the lower
risk (and hence mass loss) consequences, greater equipment
utilization, and potentially greater agility with smaller stag-
gered bioreactor set-ups. Besides the value of COG/g, other
criteria were used to assess the different USP:DSP ratios,
and provide a more complete decision-support framework
for biopharmaceutical facility design. The next section
presents the results and discussion regarding the ability of a
facility to cope with higher titer values.

Impact of higher titers on facility design (MINLPFacility-fit)

In order to evaluate the impact of higher titers on the
facility design, the results obtained by the model MINLPDe-

sign (namely, bioreactor volumes and column diameters) were
used as inputs to the MINLPFacility-fit model (versions A and B).
The set of optimal solutions found by the MINLP models
for the different case study scenarios is presented in
Table 4 and visually displayed in Figure 5. The values in
bold in Table 4 represent scenarios where mass loss could
only be avoided by the installation of parallel chromatog-
raphy columns. For these situations, at least one of the
chromatography steps reached the maximum limit of all
column sizing variables allowed to change in the MIN-
LPFacility-fit_A (bed height and number of cycles) and any
excess mass entering the column was lost. The model
MINLPFacility-fit_B was solved in order to obtain a solution
without mass loss. This was observed for the 1USP:1DSP
scenario at titers equal to or greater than 6g/L and for the
2USP:1DSP configuration for titers 12 and 15 g/L.

Figure 4 shows a comparison between the optimal solutions
of MINLPFacility-fit_A (Figure 4a) and MINLPFacility-fit_B (Fig-
ure 4b) models in terms of COG/g and product output, for dif-
ferent titer values in the 1USP:1DSP scenario. As titer
increased more product mass was processed per batch hence
increasing the total annual product output. However, due to

Table 4. Characteristics of the Optimal Solutions Found by the MINLP Models for the Different Case-Study Scenarios

MINLP Model Design Facility-Fit A Facility-Fit B Facility-Fit A Facility-Fit B Facility-Fit A

USP:DSP 1:1 2:1 4:1 1:1 1:1 2:1 2:1 4:1

Titer (g/L) 3 3 3 6 15 6 15 6 15 15 6 15

DSP window (days) 15 7.5 3.8 15 15 7.5 7.5 3.8

Maximum number of batches/year 20 40 80 20 20 40 40 80

Bioreactor volume (L) 21,668 10,834 5,417 21,668 21,668 10,834 10,834 5,417

AFF bed height (cm) 16 16 16 25 25 16 16 16 25 20 16 20
AFF number of cycles 4 2 1 5 5 8 10 4 5 4 2 4
AFF diameter (cm) 180 180 180 180 180 180 180 180 180 180 180 180
AFF number of columns 1 1 1 1 1 1 2 1 1 2 1 1

CEX bed height (cm) 15 15 16 17 17 18 25 18 17 16 16 16
CEX number of cycles 6 3 2 10 10 10 9 5 10 7 4 10
CEX diameter (cm) 120 120 100 120 120 120 120 120 120 120 100 100
CEX number of columns 1 1 1 1 1 1 2 1 1 2 1 1

AEX bed height (cm) 22 22 24 25 25 22 22 22 25 21 24 24
AEX number of cycles 6 3 1 10 10 6 10 6 10 8 2 5
AEX diameter (cm) 60 60 70 60 60 60 60 60 60 60 70 70
AEX number of columns 1 1 1 1 1 2 3 1 1 2 1 1

Mass loss (kg/year) 0 0 0 70 2849 0 0 0 907 0 0 0

DSP time (days) 5.9 4.1 3.4 8.7 8.7 8.2 9.8 5.7 8.6 6.4 4.3 6.9

Number of batches/year 20 40 80 20 20 20 20 40 34 40 69 42

COG (£/g) 74.5 84.8 100.9 44.1 44.1 42.9 23.9 47.9 31.9 25.9 59.6 37.1

Product output (kg/year) 500 500 500 962 962 1000 2500 1000 1636 2500 863 1313

Note: The values in bold represent scenarios where mass loss could only be avoided by the installation of parallel chromatography columns. The under-
lined values represent input data of the corresponding model

Figure 3. Comparison of the characteristics of the optimal sol-
utions provided by the MINLP model for the differ-
ent USP:DSP scenarios in terms of (a) column
volume and number of cycles, (b) COG/g with corre-
sponding breakdown, (c) product output and number
of batches manufactured per year. Results are shown
for the scenario where a new facility was designed
for manufacturing a product with titer of 3 g/L and
demand of 500 kg/year.
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the mass loss that occurred in the optimal solutions of the
model MINLPFacility-fit_A, a flattening of the output and COG/g
curves was observed in Figure 4a. In this situation, the
increase in titer did not translate into a reduction in COG/g.
The penalization in the objective function given by Eq. 26a in
Table 3 minimizes the amount of mass loss but it does not
avoid its occurrence. The absence of mass loss was achieved
by the optimal solutions of the MINLPFacility-fit_B model and
this was obtained by increasing the number of columns run-
ning in parallel in the bottleneck steps, as shown in Table 4
and Figure 5. This resulted in an increase of product output
and consequent reduction in COG/g, depicted in Figure 4b.
For the scenario 2USP:1DSP, mass loss occurred for titers of
12 g/L and above. For the scenario of 4USP:1DSP, there was
no mass loss even for the highest titer values, and so both
MINLPFacility-fit_A and MINLPFacility-fit_B models produced the
same optimal solutions This was due to the low number of
cycles initially determined by the MINLPDesign model which
allowed the increase to a higher value without reaching the
maximum limit. Note that although there was no mass loss at
higher titers in the 4USP:1DSP scenario, the annual product
output was not fully achieved. The increase in the number of
cycles required to meet resin constraints led to DSP times
which exceeded the DSP window, reducing the total number
of batches that could be produced in a year. This is shown in
the last two columns of Table 4.

The results of the case study were used to predict the critical
titer levels where multiple parallel columns were needed to
remove bottlenecks. In a 2USP:1DSP configuration (2 3

10,834 L bioreactors) parallel columns were required for titers
of 12 g/L and above (harvest mass 5 130 kg) while for
1USP:1DSP configurations this occurred at titer values of 6 g/

L (1 3 21,668 L bioreactor, harvest mass 5 130 kg). For the
4USP:1DSP facility configuration, the titer would need to be
over 20 g/L for multiple columns to be required per step, given
the column sizes installed. This value exceeds expected titer
values for routine performance in the near future. Thus, it can
be seen that although the configurations with multiple smaller
bioreactors are more expensive to run they will be more robust
to titer increases that could be expected in the future.

Facility design selection

The case study considered different independent USP:DSP
scenarios that were used as model input parameters. In this
section, that approach was taken further and the results of
the case study were used to generate a decision-making
framework for selecting the best USP:DSP configuration.

Assuming that no mass loss is desired, there are three differ-
ent facility designs generated by the MINLP models described
in this work, one for each USP:DSP scenario considered in the
study, as shown in Figure 5. Each design is adapted to the
product titer (e.g., increasing the number of cycles or using
additional columns) but the facility is designed with that flexi-
bility inbuilt. For example, multiple columns in parallel are
installed and only used when necessary, as opposed to retrofit-
ting the facility in the future. In light of these assumptions, an
analysis of the trade-offs between the different alternatives is
displayed in Figure 6. The line represents the Pareto front with
the three solutions that establish a compromise between the
average COG/g (calculated over the titer range) and the num-
ber of columns in the facility necessary to cope with the high-
est titer value considered in the case study. Larger columns
with fewer batches per year offer economies of scale (e.g.,

Figure 4. COG/g and annual product output of the optimal solutions of the models (a) MINLPFacility-fit_A and (b) MINLPFacility-fit_B for
the 1USP:1DSP scenario across different titer values. (c) Total number of columns of the optimal solutions obtained by the
MINLPFacility-fit_B model for different USP:DSP ratios. The model MINLPFacility-fit_A allows the increase of bed height and
number of cycles of a chromatography step to cope with higher titers, while the model MINLPFacility-fit_B also allows increas-
ing the number of columns to run in parallel. The full details of these models are presented in Table 3.
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1USP:1DSP) but high titers will increase the load on the DSP
stage and additional columns will be required to avoid mass
loss. If companies are not keen to operate multiple parallel

columns for a particular step due to validation concerns, then a
facility design with smaller batches (e.g., 4USP:1DSP) could
be selected leading to higher COG/g values.

Conclusion

In this work, an MINLP modeling framework was pro-
posed and applied to an industrially relevant case study to
optimize the design of a facility by determining the most
cost-effective chromatography equipment sizing strategies
for the production of mAbs. Furthermore, the framework
was used to evaluate the ability of the facility to cope with
higher product titers, and to explore the trade-offs between
alternative facility designs. The case study insights demon-
strate that the proposed modeling approach can act as a valu-
able decision-support tool for the design of cost-effective
facility configurations and to aid facility fit decisions. Future
work will focus on extending the models to address chroma-
tography sequencing decisions, incorporate uncertainty, and
consider multi-objective optimization.
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Notation
The mathematical formulation of the MINLP model is

presented with the following notation:

Indices
aex = anion-exchange chromatography step
aff = affinity chromatography step
bf = bulk fill step

cex = cation-exchange chromatography step
i = column size
s = downstream step

Sets
CS = set of chromatography steps, 5faff; cex; aexg

Parameters
A = overpacking factor for resin

AnnuD = annual product demand, g
BuffCVs = total buffer usage of resin at chromatography

step s, column volume (CV)
DBCs = dynamic binding capacity of resin at chroma-

tography step s, g/L
DMcol

si = diameter of column size i at step s, cm
EluCVs = eluate volume of resin at chromatography step

s, CV
Hcol

si = bed height of column size i at step s, cm
L = resin life time, number of cycles

MaxNbatch = maximum number of batches per year
MaxNcol

s = maximum number of columns at chromatogra-
phy step s

MaxNcyc
s = maximum number of cycles at chromatography

step s
Nbior = number of production bioreactors
Nhour

shift = number of hours per shift
Nshift = number of shifts per day

Pcresin
s = resin price at chromatography step s, £/L

RefCbior = reference cost of bioreactor, £
RefCcol = reference cost of column, £

RefDMcol = reference diameter of column, cm
RefVbior = reference volume of bioreactor, L
SUFbior = scale-up factor of bioreactor
SUFcol = scale-up factor of column

Tannu = annual operating time, days
Tbior = bioreaction time, days
Titer = product titer, g/L
Vcol

si = volume of column size i at step s, L
Vels = linear velocity of resin at chromatography step

s, cm/h
Windowdsp = DSP window, days

Yds = product yield of operation s
a = bioreactor working volume ratio
l = chromatography resin utilization factor
r = batch success rate

Continuous Variables
AnnuC = annual cost, £
AnnuO = annual product output, g

AnnuTdsp = annual downstream processing time, days
BatchTdsp = processing time of each batch, days

Cbior = bioreactor cost, £
Ccol

si = cost of column of size i at chromatography
step s, £

Cresin = resin cost, £
MinVresin

s = minimum resin volume required at chromatog-
raphy step s, L

M0 = initial product mass entering DSP, g
Ms = product mass after operation s, g

Tdsp
s = processing time of operation s, h

Tprod
s = processing time for loading product at chroma-

tography step s, h
Tbuff

s = processing time for adding buffer at chroma-
tography step s, h

TotVcol
s = total column volume at chromatography step s,

L
VFRs = volumetric flow rate at chromatographic step s,

L/h
Vbuff

s = buffer volume used in chromatography step s,
L

Vprod
s = product volume after operation s, L

z = optimization objective, cost of goods per gram,
£/g

Binary Variables
Xcol

si = 1 if column size i is selected for chromatogra-
phy operation s; 0 otherwise

Integer Variables
Nbatch = number of completed batches

Ncol
si = number of columns of size i at chromatography

step s
Ncyc

s = number of cycles at chromatography step s
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Appendix

Notation (additional to Section “Mathematical
Formulation”)

Indices
h harvest step
ufdf ultrafiltration/diafiltration step
vf virus filtration step
vi virus inactivation step

Parameters
a,b,c utilities cost coefficients
DFVs diafiltration volume
FConc final concentration of product
FluVs flush volume
GEF general equipment factor
GU general utility unit cost
LangF Lang factor
NoperD number of operators for DSP
NoperU number of operators per bioreactor in USP
NeuVs neutralization volume
ny project length, year
Pcbuff buffer price
Pcmedia cell culture media price
r interest rate
W labor rate
h media overfill allowance
kotheq other equipment cost factor
kothindirect other indirect costs factor
kothlabor other labor cost factor
kmisc miscellaneous material cost factor

Continuous variables
AnnuVbuff annual buffer volume
Cbuff buffer cost
Ccapital capital cost
Cdirectlab direct labor cost
Clabor labor cost
Cmedia media cost
Cothindirect other indirect costs
Cutilities utilities cost
FCI fixed capital investment
Vprod

0 initial product volume entering DSP

Table A.1. Complete Set of Constraints of the MINLPDesign Model and Parameter Values Used in Case Study

Model Constraint Parameter Values Used in Case Study

Product mass
M05Titer � a � Vbior (A.1) a575%
Ms5Yds �Ms21; 8s (A.2) Ydhc595% ,

Ydvi590%, Ydvf595%, Ydufdf590%, Ydbf598%,
See Table 1 for s5aff; cex; aex values

Annual product output
AnnuO5r � Nbatch �Ms; 8s5bf (A.3) r 590%
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TABLE A.1. Continued

Model Constraint Parameter Values Used in Case Study

Nbatch � MaxNbatch (A.4)
Product volume
Vprod

0 5a � Vbior (A.5) a575%
Vprod

s 5ðFluVs11Þ � Vprod
0 ; 8s5h (A.6) FluVhc50:1

Vprod
s 5EluCVs � Ncyc

s � TotVcol
s ; 8s5aff; cex (A.7) See Table 1 for EluCVs values

Vprod
s 5Vprod

s21 ; 8s5aex (A.8)

Vprod
s 5ðNeuVs11Þ � Vprod

s21 ; 8s5vi (A.9) NeuVvi51:75

Vprod
s 5ðFluVs11Þ � Vprod

s21 ; 8s5vf (A.10) FluVvf50:3

Vprod
s 5 Ms

FConc
; 8s5ufdf (A.11) FConc575 mg=mL

Chromatography resin volume

TotVcol
s 5

P
i Ncol

si � Vcol
si ; 8s 2 CS (A.12)P

i Xcol
si 51; 8s 2 CS (A.13)

Ncyc
s � TotVcol

s � MinVresin
s ; 8s 2 CS (A.14)

MinVresin
s 5 Ms21

DBCs �l ; 8s 2 CS (A.15) l 595%, see Table 1 for DBCs values

Ncyc
s � MaxNcyc

s ; 8s 2 CS (A.16) MaxNcyc
s 510

Buffer usage

Vbuff
s 5FluVs � Vprod

0 ; 8s5h (A.17) FluVhc50:1

Vbuff
s 5BuffCVs � Ncyc

s � TotVcol
s ; 8s 2 CS (A.18) See Table 1 for BuffCVs values

Vbuff
s 5NeuVs � Vprod

s21 ; 8s5vi (A.19) NeuVvi51:75

Vbuff
s 5FluVs � Vprod

s21 ; 8s5vf (A.20) FluVvf50:3

Vbuff
s 5DFV � Ms

FConc
; 8s5ufdf (A.21) DFV57; FConc575 mg=mL

AnnuVbuff5Nbatch �
P

s Vbuff
s

(A.22)

Processing time

Tdsp
s 5Tprod

s 1Tbuff
s ; 8s 2 CS (A.23)

Tprod
s 5

Vprod

s21

VFRs �
P

i
Ncol

si

; 8s 2 CS
(A.24)

VFRs5 Vels � p �
P

i
DMcol

si

2

� �2

� Xsi

� �
=1; 000; 8s 2 CS

(A.25) See Table 1 for Vels values

Tbuff
s 5

Vbuff
s

VFRs
; 8s 2 CS (A.26)

BatchTdsp5

P
s
Tdsp

s

Nhour
shift
�Nshift

(A.27) Nhour
shift 58;Nshift51

Tdsp
hc 5Tdsp

vf 5Tdsp
ufdf54; Tdsp

vi 51.5, Tdsp
bf 56

AnnuTdsp5Nbatch � BatchTdsp (A.28)

AnnuTdsp � Tannu2Tbior (A.29) Tannu5340; Tbior515

Materials cost

Cresin5
P

s2CS
A�Pcresin

s �Nbatch �Ncyc
s �TotVcol

s

L
(A.30) A51:1; L5100 see Table 1 for Pcresin

s values

Cbuff5Pcbuff � AnnuVbuff (A.31) Pcbuff51 £=L

Cmedia5h � Nbatch � Pcmedia � a � Vbior (A.32) h51:2; a50:75; Pcmedia532 £=L

Cmaterials5
�

11kmiscÞ � ðCresin1Cbuff1CmediaÞ (A.33) kmisc50:1

Labor cost

Cdirectlab5W � Nbatch � ðNoperU � Tbior � 241 NoperD � BatchTdsp � Nhour
shift � NshiftÞ (A.34) W520 £=h; NoperU53;NoperD515;

Nhour
shift 58;Nshift51

Clabor5ð11kothlaborÞ:Cdirectlab (A.35) kothlabour52:2

Utilities cost

Cutilities5a � Nbior � Vbior1b � Nbatch � Vbior1c � AnnuVbuff (A.36) a514:1 £=L; b54:2 £=L; c50:07 £=L

Capital cost

Ccol
si 5RefCcol � DMcol

si

RefDMcol

� �SUFcol (A.37) RefCcol5170k £; �RefDMcol5100 cm; SUFcol50:8

Cbior5RefCbior � Vbior

RefVbior

� �SUFbior (A.38) RefCbior5612k £; �RefVbior52000 L; SUFbior50:6

Ccapital5FCI � r�ð11rÞny

ð11rÞny
21

(A.39) r510%; ny510

FCI5LangF � ð11GEFÞ � ðNbior � Cbior1
P

s2CS

P
i Ncol

si � Ccol
si 1kotheq � Nbior � Cbior

�
(A.40) LangF56; �GEF50:7; kothequip50:8

Other indirect costs

Cothindirect5FCI � kothindirect1GU � Nbior � Vbior (A.41) kothindirect50065; GU590 £=L

Total annual cost

AnnuC5Clabout1Cmaterials1Cutilities1Ccapital1Cothindirect (A.42)
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