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ABSTRACT. Markov chain Monte Carlo methods explicitly defined on the manifold of proba-
bility distributions have recently been established. These methods are constructed from diffusions
across the manifold and the solution of the equations describing geodesic flows in the Hamilton–
Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte
Carlo further by considering methods to simulate from probability distributions that themselves are
defined on a manifold, with common examples being classes of distributions describing directional
statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of
support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel
manifold of orthonormal matrices.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods that originated in the physics literature have
caused a revolution in statistical methodology over the last 20 years by providing the means,
now in an almost routine manner, to perform Bayesian inference over arbitrary non-conjugate
prior and posterior pairs of distributions (Gilks et al., 1996).

A specific class of MCMC methods, originally known as hybrid Monte Carlo (HMC), was
developed to more efficiently simulate quantum chromodynamic systems (Duane et al., 1987).
HMC goes beyond the random walk Metropolis or Gibbs sampling schemes and overcomes
many of their shortcomings. In particular, HMC methods are capable of proposing bold long
distance moves in the state space that will retain a very high acceptance probability and thus
improve the rate of convergence to the invariant measure of the chain and reduce the autocor-
relation of samples drawn from the stationary distribution of the chain. The HMC proposal
mechanism is based on simulating Hamiltonian dynamics defined by the target distribution
(see Neal (2011) for a comprehensive tutorial). For this reason, HMC is now routinely referred
to as Hamiltonian Monte Carlo. Despite the relative strengths and attractive properties of
HMC, it has largely been bypassed in the literature devoted to MCMC and Bayesian statistical
methodology with very few serious applications of the methodology being published.

More recently, Girolami & Calderhead (2011) defined a Hamiltonian scheme that is able
to incorporate geometric structure in the form a Riemannian metric. The Riemannian man-
ifold Hamiltonian Monte Carlo (RMHMC) methodology makes proposals implicitly via
Hamiltonian dynamics on the manifold defined by the Fisher–Rao metric tensor and the
corresponding Levi-Civita connection. The paper has raised an awareness of the differential
geometric foundations of MCMC schemes such as HMC and has already seen a number
of methodological and algorithmic developments as well as some impressive and challeng-
ing applications exploiting these geometric MCMC methods (Konukoglu et al., 2011; Martin
et al., 2012; Raue et al., 2012; Vanlier et al., 2012).

In contrast to Girolami & Calderhead (2011), in this particular paper, we show how
Hamiltonian Monte Carlo methods may be designed for and applied to distributions defined
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on manifolds embedded in Euclidean space, by exploiting the existence of explicit forms for
geodesics. This can provide a significant boost in speed, by avoiding the need to solve large lin-
ear systems as well as complications arising because of the lack of a single global coordinate
system.

By way of specific illustration, we consider two such manifolds: the unit hypersphere, cor-
responding to the set of unit vectors in R

d , and its extension to Stiefel manifolds, the set of
p-tuples of orthogonal unit vectors in R

d . Such manifolds occur in many statistical applica-
tions: distributions on circles and spheres, such as the von Mises distribution, are common
in problems dealing with directional data (Mardia and Jupp, 2000). Orthonormal bases arise
in dimension reduction methods such as factor analysis (Jolliffe, 1986) and can be used to
construct distributions on matrices via eigendecompositions.

The problem of sampling from such distributions has not received much attention. Most
methods in wide use, such as those used in directional statistics for sampling from spheres, have
been developed for the specific problem at hand, often based on rejection sampling techniques
tuned to a specific family. For the various multivariate extensions of these distributions, these
techniques are usually embedded in a Gibbs sampling scheme.

There are relatively few works on the general problem of sampling from manifolds. The
recent paper by Diaconis et al. (2013) provides a readable introduction to the concepts of geo-
metric measure theory, and practical issues when sampling from manifolds, with the motivation
of computing certain sampling distributions for hypothesis testing. Brubaker et al. (2012),
somewhat similar to our approach, develop an HMC algorithm using the iterative algorithm
for approximating the Hamiltonian paths.

In the next section, we provide a brief overview of the necessary concepts from differen-
tial geometry and geometric measure theory, such as geodesics and Hausdorff measures. In
section 3, we construct a Hamiltonian integrator that utilizes the explicit form of the geodesics
and incorporate this into a general HMC algorithm. Section 4 gives examples of various man-
ifolds for which the geodesic equations are known, and section 5 provides some illustrative
applications.

2. Manifolds, geodesics and measures

2.1. Manifolds and embeddings

In this section, we introduce the necessary terminology from differential geometry and informa-
tion geometry. A more rigorous treatment can be found in reference books such as do Carmo
(1976, 1992) and Amari & Nagaoka (2000).

An m-dimensional manifold M is a set that locally acts like R
m: that is, for each point

x 2M, there is a bijective mapping q, called a coordinate system, from an open set around x
to an open set in R

m. Our particular focus is on manifolds that are embedded in some higher-
dimensional Euclidean space R

n, (i.e. they are submanifolds of Rn). Note that Rd is itself a
d -dimensional manifold, which we refer to as the Euclidean manifold.

Example 2.1. A simple example of an embedded manifold is the hypersphere or .d � 1/-sphere:

S
d�1 D

°
x 2 R

d W kxk D 1
±
:

This is a .d � 1/-dimensional manifold, as there exists an angular coordinate system � 2

.0; 2�/ � .0; �/d�2 where
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x1 D sin�1 : : : sin�n�2 sin�n�1;

x2 D sin�1 : : : sin�n�2 cos�n�1;

x3 D sin�1 : : : cos�n�2;

:::

xn�1 D sin�1 cos�2;

xn D cos�1:

Note that this coordinate system excludes some points of Sd�1: such as ıd D .0; : : : ; 0; 1/.
As a result, it is not a global coordinate system (in fact, no global coordinate system for Sd�1

exists); nevertheless, it is possible to cover all of Sd�1 by utilizing multiple coordinate systems
known as an atlas.

A tangent at a point x 2 M is a vector v that lies ‘flat’ on the manifold. More precisely, it
can be defined as an equivalence class of the set of functions ¹� W Œa; b�!M W �.t0/ D xº that
have the same ‘time derivative’ d

dt q.�.t//jtDt0 in some coordinate system q. For an embedded
manifold, however, a tangent can be represented simply as a vector v 2 R

n such that

v D P�.t0/ D
d
dt
�.t/jtDt0 :

The tangent space is the set Tx of such vectors and form a subspace of Rn: this is equal to the
span of the set of partial derivatives @xi=@qj of some coordinate system q.

Example 2.2. A function on the sphere � W Œa; b� ! S
d�1 must satisfy the constraintP

i Œ�i .t/�
2 D 1. By taking the time derivative of both sides, we find that

d
dt

dX
iD1

Œ�i .t/�
2 D 2

dX
iD1

�i .t/ P�i .t/ D 0:

Therefore, the tangent space at x 2 S
d�1 is the .d � 1/-dimensional subspace of vectors

orthogonal to x:

Tx D ¹v 2 R
d W x>v D 0º:

A Riemannian manifold incorporates a notion of distance, such that for a point q 2 M,
there exists a positive-definite matrix G, called the metric tensor, that forms an inner product
between tangents u and v

hu; viG D u
>G.q/v:

Information geometry is the application of differential geometry to families of probability
distributions. Such a family ¹p.� j �/ W � 2 ‚º can be viewed as a Riemannian manifold, using
the Fisher–Rao metric tensor

Gij D �EXj�

"
@2

@�i@�j
logp.X j �/

#
:

Example 2.3. The family of d -dimensional multinomial distributions

p.´ j �/ D �
´1
1
� : : : � �

´d
d
; ´ D ı1; : : : ; ıd ;
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where ıi is the i th coordinate vector, is parametrized by the unit .d � 1/-simplex,

�d�1 D

8<
:� 2 R

d W �i � 0;
X
j

�j D 1

9=
; :

This is a .d � 1/-dimensional manifold embedded in R
d and can be parametrized in .d � 1/

dimensions by dropping the last element of � , the set of which we will denote by �d�1
.�d/

.

The Fisher–Rao metric tensor in �d�1
.�d/

is then easily shown to be

Gij

8<
:
1
�i
C 1

1�
Pd�1
kD1 �k

if i D j;

1

1�
Pd�1
kD1 �k

otherwise:

A smooth mapping from a Riemannian manifold to R
n is an isometric embedding if the

Riemannian inner product is equivalent to the usual Euclidean inner product. That is,

s>G.q/t D u>v; where ui D
X
j

@xi

@qj
si ; vi D

X
j

@xi

@qj
ti ;

or equivalently,

Gij D

dX
lD1

@xl

@qi

@xl

@qj
: (1)

The existence of such embeddings is determined by the celebrated Nash (1956) embedding
theorem; however, it does not give any guide as how to construct them. Nevertheless, there are
some such embeddings we can identify.

Example 2.4. There is a bijective mapping from the simplex �d�1 to the positive orthant of
the sphere S

d�1 by taking the element-wise square root xi D
p
�i (Fig. 1). If we consider it as

a mapping from �d�1
.�d/

, then the partial derivatives are of the form

@xl

@�i
D

8̂̂<
ˆ̂:
1
2
�
�1=2

i
if i D l < d;

0 if i ¤ l < d;

1
2

�
1 �

Pd�1
kD1 �k

��1=2
if i D l D d:

Note that by (1), this is an isometric embedding (up to proportionality) of the Fisher–Rao
metric from example 2.3.

Fig. 1. Unit 2-simplex �2 and the positive orthant of the two-sphere S
2. The lines on the simplex are

equidistant: the transformation to the sphere stretches these apart near the boundary.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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2.2. Geodesics

The affine connection of a manifold determines the relationship between tangent spaces of dif-
ferent points on a manifold: interestingly, this depends on the path � W Œa; b� ! M used to
connect the two points, and for a vector field v.t/ 2 T�.t/ along the path, we can measure the
change by the covariant derivative.

Of course, the time derivative P�.t/ D d�.t/
dt is itself such a vector field: when this follows the

affine connection, the covariant derivative is 0; in which case, � is known as a geodesic.
This property can be expressed by the geodesic equation

R�i .t/C
X
j;k

�ijk .�.t// P�j .t/ P�k.t/ D 0; (2)

where �i
jk
.x/ are known as the connection coefficients or Christoffel symbols. A Riemannian

manifold induces a natural affine connection known as the Levi-Civita connection.
In the Euclidean manifold R

n, the Christoffel symbols �i
jk

are zero, and so the geodesic (2)
reduces to R�.t/ D 0. Hence, the geodesics are the set of straight lines �.t/ D at C b.

In a Riemannian manifold, the geodesics are the locally extremal paths (maxima or minima
in terms of calculus of variations) of the integrated path length

Z b
a

k P�.t/kG dt; where kvk2G D v
>Gv:

Moreover, the geodesics have constant speed, in that k P�.t/kG is constant over t . As the geodesics
can be determined by the metric, they are consequently preserved under any metric-preserving
transformation, such as an isometric embedding.

Example 2.5. A standard result in differential geometry is that the geodesics of the n-sphere
are rotations about the origin, known as great circles (Fig. 2):

x.t/ D x.0/ cos.˛t/C
v.0/

˛
sin.˛t/;

where x.0/ 2 S
n is the initial position, v.0/ is the initial velocity in the tangent space (i.e. such

that x.0/>v.0/ D 0) and ˛ D kv.0/k is the constant angular velocity.

Fig. 2. A geodesic ( ) and great circle ( ) on the sphere S
2 and its path in the spherical polar

coordinate system x D .sin�1 sin�2; sin�1 cos�2; cos�1/. The ellipses correspond to equi-length
tangents from each marked point.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.



830 S. Byrne and M. Girolami Scand J Statist 40

For any geodesic � W Œa; b�!M, the geodesic flow describes the path of the geodesic and its
tangent .�.t/; P�.t//. Moreover, it is unique to the initial conditions .x; v/ D .�.a/; P�.a//, so we
can describe any geodesic flow from its starting position x and velocity v: this is also known as
the exponential map. If all such pairs .x; v/ describe geodesics, then the manifold is said to be
geodesically complete, which is true of the manifolds we consider in this paper.

2.3. The Hausdorff measure and distributions on manifolds

As our motivation is to sample from distributions defined on manifolds, we introduce some
basic concepts of geometric measure theory that will be useful for this purpose. Geometric
measure theory is a large and active topic and is covered in detail in references such as Federer
(1969) and Morgan (2009). However, for a more accessible overview with a statistical flavour,
we suggest the recent introduction given by Diaconis et al. (2013).

Our key requirement is a reference measure from which we can specify probability density
functions, similar to the role played by the Lebesgue measure for distributions on Euclidean
space. For this, we use the Hausdorff measure, one of the fundamental concepts in geometric
measure theory. This can be defined rigorously in terms of a limit of coverings of the mani-
fold (see the aforementioned references); however, for a manifold embedded in R

n, it can be
heuristically interpreted as the surface area of the manifold.

The relationship between Hm, them-dimensional Hausdorff measure and 	m, the Lebesgue
measure on R

m, is given by the area formula (Federer, 1969, theorem 3.2.5). If we parametrize
the manifold by a Libschitz function f W Rm ! R

n, then for any Hm-measurable function
g W Rn ! R,Z

A

g.f .u// Jmf .u/ 	
m.du/ D

Z
Rn
g.x/ j¹u 2 A W f .u/ D xºj Hm.dx/:

Here, Jmf .x/ is the m-dimensional Jacobian of f : this can be defined as a norm on the
matrix of partial derivativesDf.x/ (Federer, 1969, section 3.2.1), and if rankDf.x/ D m, then
ŒJmf .x/�

2 is equal to the sum of squares of the determinants of allm�m submatrices ofDf.x/.

Example 2.6. The square root mapping in example 2.4 from �d�1
.�d/

to S
d�1 has

.d � 1/-dimensional Jacobian

1

2d�1

dY
iD1

�
�1=2

i
:

The Dirichlet distribution is a distribution on the simplex, with density

1

B.˛/

dY
iD1

�
˛i�1

i

with respect to the Lebesgue measure on �d�1
.�d/

. Therefore, the corresponding density with

respect to the Hausdorff measure on S
d�1 is

2d�1

B.˛/

dY
iD1

x
2˛i�1

i
:

In other words, the uniform distribution on the sphere arises when ˛i D 1=2, whereas ˛ D 1

gives the uniform distribution on the simplex (Fig. 3).

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 3. Densities of different beta.˛; ˛/ distributions for u 2 .0; 1/ (left) and their corresponding
transformations to the positive quadrant of the unit circle S1, by the mapping u 7! .

p
1� u;

p
u/ (right).

˛ D 0:1 ( ), ˛ D 0:5 ( ) and ˛ D 1:0 ( ).

The area formula allows the Hausdorff measure to be easily extended to Riemannian
manifolds (Federer, 1969, section 3.2.46), where

Hm.dq/ D
p
jG.q/j	m.dq/:

This construction would be familiar to Bayesian statisticians as the Jeffreys prior, in the case
where G is the Fisher–Rao metric.

When working with probability distributions on manifolds, the Hausdorff measure forms
the natural reference measure and allows for reparametrization without needing to compute
any additional Jacobian term. We use �H to denote the density with respect to the Hausdorff
measure of the distribution of interest.

Example 2.7. The von Mises distribution is a common family of distributions defined on the
unit circle (Mardia and Jupp, 2000, section 3.5.4). When parametrized by an angle � , the
density with respect to the Lebesgue measure on Œ0; 2�/ is

�.�/ D
1

2�I0.
/
exp¹
 cos.� � �/º:

The embedding transformation x D .sin �; cos �/ has unit Jacobian, so the density with respect
to the one-dimensional Hausdorff measure is

�H.x/ D
1

2�I0.kck/
exp

°
c>x

±
;

where c D .
 sin�; 
 cos�/ and Ik is the modified Bessel function of the first kind. In other
words, it is a natural exponential family on the circle.

The von Mises–Fisher distribution is the natural extension to higher-order spheres (Mardia
and Jupp, 2000, section 9.3.2) with density

�H.x/ D
kckp=2�1

.2�/p=2Ip=2�1.kck/
exp

°
c>x

±
:

Attempting to write this as a density with respect to the Lebesgue measure on some
parametrization of the surface, such as angular coordinates, would be much more involved, as
the Jacobian is no longer constant.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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3. Hamiltonian Monte Carlo on embedded manifolds

RMHMC is an MCMC scheme whereby new samples are proposed by approximately solving a
system of differential equations describing the paths of Hamiltonian dynamics on the manifold
(Girolami and Calderhead, 2011).

The key requirement for Hamiltonian Monte Carlo is the symplectic integrator. This is a
discretization that approximates the Hamiltonian flows yet maintains certain desirable proper-
ties of the exact solution, namely time-reversibility and volume preservation that are necessary
to maintain the detailed balance conditions. The standard approach is to use a leapfrog
scheme, which alternately updates the position and momentum via first order Euler updates
(Neal, 2011).

Given a target density �.q/ (with respect to the Lebesgue measure) in some coordinate
system q, RMHMC, Girolami & Calderhead (2011) utilize a Hamiltonian of the form

H.q; p/ D � log�.q/C
1

2
log jG.q/j C

1

2
p>G.q/�1p;

where G is the metric tensor. This is the negative log of the joint density (with respect to the
Lebesgue measure) for .q; p/, where the conditional distribution for the auxiliary momentum
variable p is N.0;G.q//.

The first two terms can be combined into the negative log of the target density with respect
to the Hausdorff measure of the manifold

H.q; p/ D � log�H.q/C
1

2
p>G.q/�1p: (3)

By Hamilton’s equations, the dynamics are determined by the system of differential equations

dq
dt
D
@H

@p
D G.q/�1p; (4)

dp
dt
D �

@H

@q
D rq

�
log�H.q/ �

1

2
p>G.q/�1p

�
: (5)

As this Hamiltonian is not separable (i.e. it cannot be written as the sum of a function of q and
a function of p), we are unable to apply the standard leapfrog integrator.

3.1. Geodesic integrator

Girolami & Calderhead (2011) develop a generalized leapfrog scheme, which involves compos-
ing adjoint Euler approximations to (4) and (5) in a reversible manner. Unfortunately, some
of these steps do not have an explicit form and so need to be solved implicitly by fixed-point
iterations. Furthermore, these updates require computation of both the inverse and deriva-
tives of the metric tensor, which are O.m3/ operations; this limits the feasibility of numerically
naive implementations of this scheme for higher-dimensional problems. Finally, such a scheme
assumes a global coordinate system, which may cause problems for manifolds for which none
exist, such as the sphere, where artificial boundaries may be induced.

In this contribution, we instead construct an integrator by splitting the Hamiltonian (Hairer
et al., 2006, section II.5): that is, we treat each term in (3) as a distinct Hamiltonian and
alternate simulating between the exact solutions.

Splitting methods have been used in other contexts to develop alternative integrators for
Hamiltonian Monte Carlo (Neal, 2011, section 5.5.1) such as extending HMC to infinite-
dimensional Hilbert spaces (Beskos et al., 2011) and defining schemes that may reduce
computational cost (Shahbaba et al., 2011).

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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We take the first component of the splitting to be the ‘potential’ term

H Œ1�.q; p/ D � log�H.q/:

Hamilton’s equations give the dynamics

Pq D
@H Œ1�

@p
D 0 and Pp D �

@H Œ1�

@q
D rq logH �.q/:

Starting at .q.0/; p.0//, this has the exact solution

q.t/ D q.0/ and p.t/ D p.0/C trq log�H.q/jqDq.0/: (6)

In other words, this is just a linear update to the momentum p.
The second component is the ‘kinetic’ term

H Œ2�.q; p/ D
1

2
p>G.q/�1p: (7)

This is simply a Hamiltonian absent of any potential term, and the solution of Hamilton’s
equations can be easily shown to be a geodesic flow under the Levi-Civita connection of
G (Abraham and Marsden, 1978, theorem 3.7.1) or to be more precise, a co-geodesic flow
.q.t/; p.t//, where p.t/ D G.q.t// Pq.t/.

Thus, if we are able to exactly compute the geodesic flow, then we can construct an inte-
grator by alternately simulating from the dynamics of H Œ1� and H Œ2� for some time step �.
Each iteration of the integrator consists of the following steps, starting at position .q; p/ in the
phase space:

(i) Update according to the solution to H Œ1� in (6), for a period of �=2 by setting

p  p C
�

2
rq log�H.q/; (8)

(ii) Update according toH Œ2�, by following the geodesic flow starting at .q; p/, for a period
of �.

(iii) Update again according to H Œ1� for a period of �=2 by (8).

As H Œ1� and H Œ2� are themselves Hamiltonian systems, their solutions are necessarily both
reversible and symplectic. As the integrator is constructed by their symmetric composition, it
will also be reversible and symplectic.

Therefore, the overall transition kernel for our Hamiltonian Monte Carlo scheme from an
initial position q0 is as follows:

(i) Propose an initial momentum p0 from N .0;G.q0//.
(ii) Map .q0; p0/ 7! .qT ; pT / by running T iterations of the aforementioned integrator.

(iii) Accept the qT as the new value with probability

1 ^ exp ¹�H.qT ; pT /CH.q0; p0/º :

Otherwise, return the original value q0.

As with the RMHMC algorithm, the metric G need only be known up to proportionality:
scaling is equivalent to changing the time step �.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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3.2. Embedding coordinates

The algorithm can also be written in terms of an embedding, which avoids altogether the
computation of the metric tensor and the possible lack of a global coordinate system.

Given an isometric embedding  WM! R
n, then the path x.t/ D .q.t//, such that

Pxi .t/ D
X
j

@xi

@qj
Pqj .t/:

Therefore, we can transform the phase space .q; p/, where Pq D G�1p, to the embedded phase
space .x; v/, such that

v D Px DMG.q/�1p DM
�
M>M

��1
p where Mij D

@xi

@qj
;

because G DM>M , from (1).
By substitution, the Hamiltonian (3) can be written in terms of these coordinates as

H D � log�H.x/C
1
2
v>v: (9)

Note that the target density �H is still defined with respect to the Hausdorff measure of the
manifold, and so no additional log-Jacobian term is introduced.

We can rewrite the solution to H Œ1� in (6) in these coordinates. The position x.t/ remains
constant, and by the change of variables of the operator rq D M>rx , the velocity has a
linear path

v.t/ D v.0/C tM
�
M>M

��1
M>rx log�H.x/jxDx.0/:

The linear operator M
�
M>M

��1
M> is the ‘hat matrix’ from linear regression: this is the

orthogonal projection onto the span of the columns of M , that is, the tangent space of the
embedded manifold.

Although it is possible to compute this projection using standard least squares algorithms, it
can be computationally expensive and prone to numerical instability at the boundaries of the
coordinate system (e.g. at the poles of a sphere). However, for all the manifolds that we consider
there exists an explicit form for an orthonormal basis N of the normal to the tangent space, in
which case we can simply subtract the projection onto the normal:

v.t/ D v.0/C t
�
I �NN>

�
rx log�H.x/jxDx.0/:

Finally, we require a method for sampling the initial velocity v0. Because p0 � N.0;G.q//,
it follows that

v0 � N
�
0;M

�
M>M

��1
M>

	
D N

�
0; I �NN>

�
:

We do not need to compute a Cholesky decomposition here: because .I�NN>/ is a projection,
it is idempotent, so we can draw ´ from N.0; In/ and project v0 D .I � NN>/´ to obtain the
necessary sample.

The resulting procedure is presented in Algorithm 1. In order to implement it for an
embedded manifold M � R

n, we need to be able to evaluate the following at each x 2M:

(i) the log-density with respect to the Hausdorff measure log�H, and its gradients;
(ii) an orthogonal projection from R

n to the tangent space of x 2M;
(iii) the geodesic flow from any v 2 TxM.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Note that by working entirely in the embedded space, we completely avoid the coordi-
nate system q and the related problems where no single global coordinate system exists. The
Riemannian metric G only appears in the Jacobian determinant term of the density: in certain
examples, this can also be removed, for example by specifying the prior distribution as uniform
with respect to the Hausdorff measure, as is performed in section 5.3.

4. Embedded manifolds with explicit geodesics

In this section, we provide examples of embedded manifolds for which the explicit forms for
the geodesic flow are known and derive the bases for the normal to the tangent space.

4.1. Affine subspaces

If the embedded manifold is flat, for example an affine subspace of Rn, then the geodesic flows
are the straight lines

Œx.t/; v.t/� D Œx.0/; v.0/�

"
1 0

t 1

#
:

In the case of the Euclidean manifold R
n, then the normal space to the tangent is null, and

no projections are required. Hence, the algorithm reduces to the standard leapfrog scheme
of HMC.

In standard HMC, it is common to utilize a ‘mass’ or ‘preconditioning’ positive-definite
matrix M , in order to reduce the correlation between samples, especially where variables are
highly correlated or have different scales of variation. This is directly equivalent to using the
RMHMC algorithm with constant a Riemannian metric, or our geodesic procedure on the
embedding of x D L>q, where L is a matrix square root such that LL> D M (such as
the Cholesky factor).
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4.2. Spheres

Recall from earlier examples that the unit .d � 1/-sphere S
d�1 is an .d � 1/-dimensional

manifold embedded in R
d , characterized by the constraint

x>x D 1;

with tangent space

¹v 2 R
d W x>v D 0º:

Distributions on spheres, particularly S
1 and S

2, arise in many problems in directional statistics
(Mardia and Jupp, 2000): examples include the von Mises–Fisher distribution (example 2.7)
and the Bingham–von Mises–Fisher (BVMF) distribution (section 5.1.). For many of these
distributions, the normalization constants of the density functions are often computationally
intensive to evaluate, which makes Monte Carlo methods particularly attractive.

As mentioned in example 2.5, the geodesics of the sphere are the great circle rotations about
the origin. The geodesic flows are then

Œx.t/; v.t/� D Œx.0/; v.0/�

"
1 0

0 ˛�1

#"
cos.˛t/ � sin.˛t/
sin.˛t/ cos.˛t/

#"
1 0

0 ˛

#
; (10)

where ˛ D kv.t/k is the (constant) angular velocity. The normal to the tangent space at x is x
itself, so .I �xx>/u is an orthogonal projection of an arbitrary u 2 R

d onto the tangent space.
Other than the evaluation of the log-density and its gradient, the computations only involve

vector–vector operations of addition and multiplication, so the algorithm scales linearly in d .

4.3. Stiefel manifolds

A Stiefel manifold Vd;p is the set of d � p matrices X such that

X>X D I:

In other words, it is the set of matrices with orthonormal column vectors, or equivalently, the
set of p-tuples of orthogonal points in S

d�1, and is a Œdp� 1
2
p.pC 1/�-dimensional manifold,

embedded in R
d�p . In the special case where d D p, the Stiefel manifold is the orthogonal

group Od : the set of d � d orthogonal matrices.
These arise in the statistical problems related to dimension reduction such as factor analysis

and principal component analysis, where the aim is to find a low dimensional subspace that
represents the data. They can also arise in contexts where the aim is to identify orientations,
such as projections in shape analysis, or the eigendecomposition of covariance matrices.

Previously suggested methods of sampling from distributions on Stiefel manifolds, such as
Hoff (2009) and Dobigeon & Tourneret (2010), have relied on column-wise Gibbs updates.
Such an approach is limited to cases where the conditional distribution of the column has a
conjugate form and requires the computation of an orthonormal basis for the null space of X ,
requiring O.d3/ operations.

Again, we can find the constraints on the phase space by the time derivative of the constraint
for an arbitrary curve X.t/ in Vd;p

d
dt

h
X.t/>X.t/

i
D PX.t/>X.t/CX.t/> PX.t/ D 0:
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That is, the tangent space at X is the set°
V 2 R

d�p W V >X CX>V D 0
±
:

If we let Qx denote the matrix X written as a vector in R
dp by stacking the columns

x1; : : : ; xp , then an orthonormal basis N for the normal to the tangent space has p vectors of
the form2

66664
x1

0
:::

0

3
77775 ;
2
66664
0

x2
:::

0

3
77775 ; : : : ;

2
66664
0

0
:::

xp

3
77775

and
�
p

2

�
vectors of the form2

66666664

1p
2
x2

1p
2
x1

0
:::

0

3
77777775
;

2
66666664

1p
2
x3

0
1p
2
x1

:::

0

3
77777775
;

2
66666664

0
1p
2
x3

1p
2
x2

:::

0

3
77777775
: : :

For an arbitrary vector Qu 2 R
dp , the projection onto the tangent space is then

Qu �NN> Qu D

2
664
u1 � x1

�
x>
1
u1
�
� 1
2
x2
�
x>
1
u2 C x

>
2
u1
�
� : : :

u2 � x2
�
x>
2
u2
�
� 1
2
x1
�
x>
2
u1 C x

>
1
u2
�
� : : :

:::

3
775 :

This can be more easily written in matrix form: for an arbitrary U 2 R
d�p , the orthogonal

projection onto the Stiefel manifold is

U �
1

2
X
�
X>U C U>X

�
:

The geodesic flows are more complicated than the spherical case. For p > 1, they are no
longer simple rotations but can be expressed in terms of matrix exponentials (Edelman et al.,
1999, page 310)

ŒX.t/; V .t/� D ŒX.0/; V .0/� exp

´
t

"
A �S.0/

I A

#μ"
exp¹�tAº 0

0 exp¹�tAº

#
;

where A D X.t/>V.t/ is a skew-symmetric matrix that is constant over the geodesic, and
S.t/ D V.t/>V.t/ is non-negative definite.

Although matrix exponentials can be quite computationally expensive, we note that the
largest exponential of these is of a 2p � 2p matrix, which requires O.p3/ operations. Other
than this and the evaluations of the log-density and its gradients, all the other operations are
simple matrix additions and multiplications, the largest of which can be performed in O.dp2/
operations; hence, the algorithm scales linearly with d .

For the orthogonal group Od , the geodesics have the simpler form (Edelman et al., 1999,
equation 2.14)

ŒX.t/; V .t/� D ŒX.0/; V .0/�

"
exp¹tAº 0

0 exp¹tAº

#
:
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As A is skew-symmetric, Rodrigues’ formula gives an explicit form of exp¹tAº when d D 3

in terms of simple trigonometric functions, and this can be extended into higher dimensions
(Gallier and Xu, 2002; Cardoso and Leite, 2010).

4.4. Product manifolds

Given two manifolds M1 and M2, their Cartesian product

M1 �M2 D ¹.x1; x2/ W x1 2M1; x2 2M2º

is also a manifold.
Product manifolds arise naturally in many statistical problems; for example, extensions of

the von Mises distributions to S
1 � S

1 (a torus) have been used to model molecular angles
(Singh et al., 2002), and the network eigenmodel in section 5.3. has a posterior distribution on
Vm;p � R

p � R.
The geodesics of a product manifold are of the form .�1; �2/, where each �i is a geodesic

of Mi . Likewise, the tangent vectors are of the form .v1; v2/, where each vi is a tangent to
Mi . Consequently, for an arbitrary vector .u1; u2/, the orthogonal projection onto the tangent
space is

�

I �N1N

>
1

�
u1;



I �N2N

>
2

�
u2
�
, where Ni is an orthonormal basis of Mi .

As a result, when implementing our geodesic Monte Carlo scheme on a product manifold,
the key operations (addition of gradient, projection and geodesic update) can be essentially
performed in parallel, the only operations requiring knowledge of the other variables being the
computation of the log-density and its gradient. Moreover, when tuning the algorithm, it is
possible to choose different � values for each constituent manifold, which can be helpful when
variables have different scales of variation.

5. Illustrative examples

5.1. Bingham–von Mises–Fisher distribution

The BVMF distribution is the exponential family on S
d�1 with linear and quadratic terms,

with density of the form

�H.x/ / exp
°
c>x C x>Ax

±
;

where c is a vector of length d , and A is a d � d symmetric matrix (Mardia and Jupp, 2000,
section 9.3.3).

The Bingham distribution arises as the special case where c D 0: this is an axially bimodal
distribution, with the modes corresponding to the eigenvector of the largest eigenvalue. The
BVMF distribution may or may not be bimodal, depending on the parameter values.

Hoff (2009) develops a Gibbs-style method for sampling from BVMF distribution by first
transforming y D E>x, where E>ƒE is the eigendecomposition of A. Each element yi of

y is updated in random order, conditional u 2 S
d�2, where uj D yj =

q
1 � y2

i
for j ¤ i .

The yi j u are sampled using a rejection sampling scheme with a beta envelope; however,
as noted by Brubaker et al. (2012), this can give exponentially poor acceptance probabilities
(of the order of 10�100) for certain parameter values, particularly when c is large in the
direction of the negative eigenspectra.

Implementing our geodesic sampling scheme for the BVMF distribution is straightforward,
as the gradient of the log-density is simply c C 2Ax, and extremely fast to run, with run times
that are independent of the parameter values. However, as with any gradient-based method, it
has difficulty switching between multiple modes (Fig. 4).
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Fig. 4. Trace plots of x5 from 200 samples from the spherical geodesic Monte Carlo sampler (with
parameters � D 0:01; T D 20) for a Bingham–von Mises–Fisher distribution, with parameters A D
diag.�20;�10; 0; 10; 20/ and c D .c1; 0; 0; 0; 0/. When the distribution is bimodal (c1 D 0; 40), the
sampler has difficulty moving between the modes.

A common method of alleviating this problem is to utilize tempering schemes (Neal, 2011,
section 5.5.7): these operate by sampling from a class of ‘higher temperature’ distributions with
densities of the form

Œ�H.x/�
� where 0 � � � 1:

Note that this constitutes a simple linear scaling of the log-density and so can be easily incor-
porated into our method. Parallel tempering (Geyer, 1991; Liu, 2008, section 10.4) utilizes
multiple chains, each targeting a density with a different temperature. The scheme operates by
alternately updating the individual chains, which can be performed in parallel, and randomly
switching the values of neighbouring chains with a Metropolis–Hastings correction to maintain
detailed balance. The results of utilizing such a scheme are shown in Fig. 5

5.2. Non-conjugate simplex models

We can use the transformation to the sphere to sample from distributions on the simplex�d�1.
These arise in many contexts, particularly as prior and posterior distributions for discrete-
valued random variables such as the multinomial distribution.

If each observation x from the multinomial is completely observed, then the contribution to
the likelihood is then �x , giving a full likelihood of at most d terms of form

L.�/ D

dY
iD1

�
Ni
i
;

which is conjugate to a Dirichlet prior distribution.
Complications arise if observations are only partially observed. For example, we may have

marginal observations, which are only observed to a set S , in which case the likelihood term
is
P
s2S �s , or conditional observations, where the sampling was constrained to occur within

1

0.5

0

-0.5

-01

5

0 40 80

Fig. 5. Trace plots of a simulated tempering scheme applied to the target of Fig. 4, using 10 parallel chains
to transition between multiple modes. The values of � were 0:1; 0:2; : : : ; 1:0, and 10 random exchanges
were applied between parallel geodesic Monte Carlo updates.

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.



840 S. Byrne and M. Girolami Scand J Statist 40

a set T , with likelihood term �x=.
P
t2T �t /. These terms destroy the conjugacy and make

computation very difficult.
Such models arise under a case-cohort design (Le Polain deWaroux et al., 2012), the risk

factors of a particular disease: for the case sample, the risk factors are observed conditional
on the person having the disease, and for the cohort sample, the risk factors are observed
marginally (as disease status is unknown). Overall population statistics may provide some
further information as to the marginal probability of the disease.

The hyperdirichlet R package (Hankin, 2010) provides an interface and examples for
dealing with this type of data. We consider the volleyball data from this package: the data
arise from a sports league for nine players, where each match consists of two disjoint teams of
players, one of which is the winner. The probability of a team T1 beating T2 is assumed to be

P
t2T1

ptP
t2T1[T2

pt
;

where p D .p1; : : : ; p9/ 2 �8. We compare three different methods in sampling from the
posterior distribution for p under a Dirichlet .˛1/ prior, for different values of ˛. The results
are presented in Table 1.

The first is a simple random-walk Metropolis–Hastings algorithm. To ensure that the pla-
nar constraint

P9
iD1 pi D 1 is satisfied, the proposals are made from a degenerate N.x; �2

ŒI � nn>�/, where n D d�1=21 is the normal to the simplex.
The second is a random walk on the sphere, based on the square root transformation to the

sphere from example 2.4, using proposals of the form

xproposed D x cos.kık/C
ı

kık
sin.kık/; where ı � N

�
0; �2

h
I � xx>

i�
:

Although this only defines the distribution on the positive orthant, we can extend this distribu-
tion to the entire sphere by reflecting about the axes (because we only require knowledge of the
density up to proportionality, we can ignore the fact that it is now 2d times larger). One benefit
of this transformation is that the surface is now smooth and without boundaries, so proposals
outside the positive orthant can be accepted.

The third is the geodesic Monte Carlo algorithm on the simplex. We can ensure that the
planar constraint is satisfied via the affine constraint methods in 4.1.; however, we need to
further ensure that the integration paths satisfy the positivity constraints, which can be achieved
by reflecting the path whenever it violates the constraint (see the Appendix for further details).

The fourth is our proposed geodesic scheme based on the spherical transformation. As the
integrator does not pass any boundaries, no reflections are required.

Table 1. Average effective sample size (ESS) across coordinates per 100 samples, and per second, of the
Volleyball model under a Dirichlet .˛1/ prior from 1 000 000 samples. For all samplers, � D 0:01, and for the
HMC algorithms, T D 20 integration steps were used. We attempted some tuning of the parameters but were
unable to obtain any noticeable changes in performance

˛ D 0:1 ˛ D 0:5 ˛ D 1:0 ˛ D 5:0

ESS % ESS/ ESS % ESS/ ESS % ESS/ ESS % ESS/
second second second second

RW-MH 0.0064 6.10 0.113 71.1 0.36 158 0.84 290
Spherical RW 0.0089 2.48 0.143 37.6 0.19 51 0.45 123
Simplex HMC 0.0034 0.0079 0.037 0.12 53.4 611 75.6 976
Spherical HMC 0.0187 0.327 77.3 1374 92.6 1616 187.4 3262
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For small values of ˛, both geodesic Monte Carlo samplers perform poorly, due to the
concentration of the density at the boundaries. These peaks cause particular problems for
the Hamiltonian-type algorithms, as the discontinuous gradients mean that the integration
paths give poor approximations to the true Hamiltonian paths, resulting in poor acceptance
probabilities. Moreover, for the algorithm on the simplex, the frequent reflections add to the
computational cost.

However, when ˛ D 0:5, the spherical geodesic sampler improves markedly: recall from
example 2.6 and Fig. 3 that the Dirichlet .0:5/ prior is uniform on the sphere, giving continuous
gradients. On the simplex, however, the density remains peaked at the boundaries. The simplex
sampler improves considerably for values of ˛ � 1 (where the gradient is now flat or negative);
however the spherical algorithm still retains a slight edge. Interestingly, the spherical random
walk sampler performs poorly in all of the examples.

5.3. Eigenmodel for network data

We use the network eigenmodel of Hoff (2009) to demonstrate how Stiefel manifold models
can be used for dimension reduction and how our geodesic sampling scheme may be used for
Stiefel and product manifolds. This is a model for a graph on a set of m nodes, where for each
unordered pair of nodes ¹i; j º, there is a binary observation Y¹i;jº indicating the existence of
an edge between i and j .

The specific example of Hoff (2009) is a protein interaction network, where for m D 270

proteins, the existence of the edge indicates whether or not the pair of proteins interact.
The model represents the network by assuming a low (p D 3) dimensional representation

for the probability of an edge

P.Y¹i;jº D 1/ D ˆ
�
ŒUƒU>�ij C c

�
;

where ˆ W R ! .0; 1/ is the probit link function, U is an orthonormal m � p matrix and ƒ
is a p � p diagonal matrix. U is assumed to have a uniform prior distribution on Vm;p (with
respect to the Hausdorff measure), the diagonal elements of ƒ have a N.0;m/ distribution and
c � N.0; 102/.

Hoff (2009) uses column-wise Gibbs updates for sampling U , exploiting the fact that the
probit link provides an augmentation that allows these to be sampled as a BVMF distribu-
tion. However, as mentioned in section 4.3., this requires computing the full null space of U at
each iteration.

0 100 200 300 400 500 600 700 800 900 1,000

− 100

0

100

200

Λ

Fig. 6. Trace plots of 1000 samples of the diagonal elements of ƒ from geodesic Monte Carlo sampler
on the network eigenmodel. One chain ( ) converges to the same mode as Hoff (2009), while the other
( ) converges to a local mode, with approximately 10�36 of the density. By incorporating this into a
parallel tempering scheme ( ), the sampler rapidly finds the higher mode and is able to switch between
the various permutations.
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We implement geodesic Monte Carlo on the product manifold, details of which are given in
the Appendix. Trace plots from two chains of the diagonal elements ofƒ appear in Fig. 6: note
that one chain appears to get stuck in a local mode, while the other converges to the same as
the method of Hoff (2009).

By incorporating this approach into a parallel tempering scheme, the model is able to find
the larger mode with greater reliability. Moreover, unlike the algorithm of Hoff (2009), it is
capable of switching between the permutations of ƒ, which would further suggest that this is
indeed the global mode.

6. Conclusion and discussion

We have presented a scheme for sampling from distributions defined on manifolds embedded in
Euclidean space by exploiting their known geodesic structure. This method has been illustrated
using applications from directional statistics, discrete data analysis and network analysis. This
method does not require any conjugacy, allowing greater flexibility in the choice of models: for
instance, it would be straightforward to change the probit link in section 5.3. to a logit. More-
over, when used in conjunction with a tempering scheme, it is capable of efficiently exploring
complicated multimodal distributions.

Our approach could be widely applicable to problems in directional statistics, such as the
estimation of normalization constants that are often otherwise numerically intractable. The
method of transforming the simplex to the sphere could be useful for applications dealing
with high-dimensional discrete data, such as statistical genetics and language modelling. Stiefel
manifolds arise naturally in dimension reduction problems, and our methods could be particu-
larly useful where the data are not normally distributed, for instance the analysis of survey data
with discrete responses, such as Likert scale data. Furthermore, this method could be utilized
in statistical shape and image analysis for determining the orientation of objects in projected
images.

The major constraint of this technique is the requirement of an explicit form for the geodesic
flows that can be easily evaluated numerically. These are not often available; for instance, the
geodesic paths of ellipsoids require often computationally intensive elliptic integrals.

Of the examples we consider, the geodesics of the Stiefel manifold case are the most demand-
ing, due to the matrix exponential terms. An alternative approach would be to utilize a
Metropolis-within-Gibbs style scheme over subsets of columns, for example by updating a pair
of columns such that they remain orthogonal to the remaining columns.

However, once the geodesics and the orthogonal tangent projection of the manifold are
known, the remaining process of computing the derivatives is straightforward, and could be
easily implemented using automatic differentiation tools, as is used in the StanMCMC library
(Stan Development Team, 2012), currently under development.
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Appendix A: Reflecting at boundaries of the simplex

Neal (2011, section 5.5.1.5) notes that when an integration path crosses a boundary of the
sample space, it can be reflected about the normal to the boundary to keep it within the desired
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space. He considers boundaries that are orthogonal to the i th axis, with normals of the form
ıi . Whenever such a constraint is violated, the position and velocity are replaced by

x0i D bi C .bi � xi / v0i D �vi ;

where bi is the boundary (either upper or lower). As no other coordinates are involved in this
reflection, this can be performed in parallel for all constrained coordinates.

However, for the simplex �d�1, the normals are not of the form ıi , as this would result in
the path being reflected off the plane ¹x W

P
i xi D 1º. Instead, we need to reflect about the

projection of ıi onto the plane, that is,

Qni D
Qmi

k Qmik
D

dıi � 1p
d.d � 1/

where Qmi D ıi �
�
d�1=21

� �
d�1=21

�>
ıi :

A procedure for performing the position updates is given in Algorithm 2.

Unfortunately, this procedure cannot be applied to the RMHMC integrator proposed by
Girolami & Calderhead (2011), as the implicit steps involved make it difficult to calculate the
reflections.

Appendix B: Network eigenmodel

Define the p � p symmetric matrices � D UƒU> C c and Y �, where

Y �ij D

8̂̂<
ˆ̂:
1 Y¹i;jº D 1

0 i D j

�1 Y¹i;jº D 0

:

Then using the property that 1 �ˆ.x/ D ˆ.�x/, the log-density of the posterior is

log�H.U;ƒ; c/ D
X
¹i;jº

logˆ
�
Y �ij �ij

�
�

pX
rD1

ƒ2rr
2m
�
c2

200
C constant:
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The gradients with respect to the parameters are

@log�H

@Uir
D

mX
jD1

@log�H

@�ij
Ujrƒrr ;

@log�H

@ƒrr
D
X
¹i;jº

@log�H

@�ij
UirUjr �

ƒrr

m
;

@log�H

@c
D
X
¹i;jº

@log�H

@�ij
�

c

100
;

where the gradients with respect to the linear predictors are

@log�H

@�ij
D Y �ij

�
�
Y �
ij
�ij

�
ˆ
�
Y �
ij
�ij

� :
The programme was implemented in MATLAB (The MathWorks Inc., Natick,

Massachusetts, USA). To avoid numerical overflow errors, the ratio �.x/=ˆ.x/, as well as
logˆ.x/ for negative values of x, are calculated using the erfcx function. The matrix exponen-
tial terms were calculated using the inbuilt expm function, which utilizes a Padé approximation
with scaling and squaring.

Different � values were used for each parameter: �U D 0:005, �ƒ D 0:1 and �c D 0:001.
T D 20 integration steps were run for each iteration. The parallel tempered version utilized 20
parallel chains, with 10 proposed exchanges between parallel updates.
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