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Abstract

Background: Observational studies implicate higher dietary energy density (DED) as a potential risk factor for weight gain
and obesity. It has been hypothesized that DED may also be associated with risk of type 2 diabetes (T2D), but limited
evidence exists. Therefore, we investigated the association between DED and risk of T2D in a large prospective study with
heterogeneity of dietary intake.

Methodology/Principal Findings: A case-cohort study was nested within the European Prospective Investigation into
Cancer (EPIC) study of 340,234 participants contributing 3.99 million person years of follow-up, identifying 12,403 incident
diabetes cases and a random subcohort of 16,835 individuals from 8 European countries. DED was calculated as energy
(kcal) from foods (except beverages) divided by the weight (gram) of foods estimated from dietary questionnaires. Prentice-
weighted Cox proportional hazard regression models were fitted by country. Risk estimates were pooled by random effects
meta-analysis and heterogeneity was evaluated. Estimated mean (sd) DED was 1.5 (0.3) kcal/g among cases and subcohort
members, varying across countries (range 1.4–1.7 kcal/g). After adjustment for age, sex, smoking, physical activity, alcohol
intake, energy intake from beverages and misreporting of dietary intake, no association was observed between DED and
T2D (HR 1.02 (95% CI: 0.93–1.13), which was consistent across countries (I2 = 2.9%).

Conclusions/Significance: In this large European case-cohort study no association between DED of solid and semi-solid
foods and risk of T2D was observed. However, despite the fact that there currently is no conclusive evidence for an
association between DED and T2DM risk, choosing low energy dense foods should be promoted as they support current
WHO recommendations to prevent chronic diseases.

Citation: The InterAct Consortium (2013) The Association between Dietary Energy Density and Type 2 Diabetes in Europe: Results from the EPIC-InterAct
Study. PLoS ONE 8(5): e59947. doi:10.1371/journal.pone.0059947

Editor: Rocio I. Pereira, University of Colorado Denver, United States of America

Received October 17, 2012; Accepted February 20, 2013; Published May 16, 2013

Copyright: � 2013 van den Berg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The EPIC-InterAct Study received funding from the European Union (Integrated project LSHM-CT-2006-037197 in the Framework Programme 6 of the
European Community). DLvdA: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch
Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands; AMWS: Dutch Ministry of Public Health,
Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer
Research Fund (WCRF), Statistics Netherlands; EA: Health Research Fund (FIS) of the Spanish Ministry of Health; Navarre Regional Government and CIBER
Epidemiologı́a y Salud Pública (CIBERESP).; JWJB: Verification of diabetes cases in EPIC-NL was additionally funded by NL Agency grant IGE05012 and an Incentive
Grant from the Board of the UMC Utrecht.; FLC: Cancer Research UK; PWF: Swedish Research Council, Novo Nordisk, Swedish Diabetes Association, Swedish Heart-
Lung Foundation; JH: Danish Cancer Society; JMH: Health Research Fund of the Spanish Ministry of Health; Murcia Regional Government (Nu 6236); RK: German
Cancer Aid, German Ministry of Research (BMBF); KTK: Medical Research Council UK, Cancer Research UK; PN: Swedish Research Council; KO: Danish Cancer
Society; SP: Compagnia di San Paolo; JRQ: Asturias Regional Government; OR: The Västerboten County Council; AT: Danish Cancer Society; RT: AIRE-ONLUS
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Introduction

Over the past decades the prevalence of type 2 diabetes (T2D)

has increased dramatically, and it is estimated that the global

prevalence of diabetes will continue to rise, with an estimated 489

million cases in the year 2030, increased from an estimated 285

million in 2010 [1]. Major non-genetic risk factors for T2D such as

obesity, smoking, physical inactivity and diets high in (saturated)

fat and low in dietary fiber are potentially modifiable [2].

Targeting those risk factors by lifestyle intervention among high

risk individuals has shown to be effective in the prevention of T2D

[3,4,5].

The energy density of foods or diets is defined as the amount of

available energy per unit weight of foods or meals (kJ/g or kcal/g)

[6]. Experimental data suggest that people tend to eat a similar

volume of food to feel satiated, and accordingly consumption of

energy-dense foods could cause passive over-eating in terms of

energy [7]. Several observational studies have observed a positive

association between dietary energy density (DED) and subsequent

weight or waist circumference gain [8,9,10].

As obesity is an important and well known risk factor for T2D

[2], it is likely that consumption of energy dense foods might be

associated with an increased risk of T2D. Besides this indirect

effect, a direct effect of DED on T2D risk can also be
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hypothesized. High energy dense diets are associated with low diet

quality characterized by, amongst other features, a higher intake of

saturated fat and a higher glycemic load [10,11]. Both of these

dietary factors have been associated with the development of

insulin resistance [12,13]. So far, there is limited epidemiological

evidence for an association between DED and risk of T2D [14] or

related metabolic traits [15,16].

Our aim was to investigate the association between DED and

risk of T2D. A secondary objective was to perform stratified

analysis of the association between DED and T2D risk by BMI

status and energy under-reporting. We had the opportunity to do

this in the EPIC-InterAct project which assembled a large case-

cohort study in European populations with substantial diversity of

dietary intakes.

Materials and Methods

Ethics statement
This study complied with the Declaration of Helsinki. The

Internal Review Board of the International Agency for Research

on Cancer and the Institutional Review board of all centers, i.e.,

France, Heidelberg, Potsdam, Copenhagen, Aarhus, Asturias,

Granada, San Sebastian, Murcia, Navarro, Cambridge, Oxford,

Imperial, Florence, Milan, Ragusa, Turin, Naples, Bilthoven,

Utrecht, Malmö, and Umeä, approved the EPIC study. Written

consent was obtained from each EPIC participant at enrolment

into the study.

Study design
A case-cohort study was nested within the European Prospective

Investigation into Cancer and Nutrition (EPIC) [17] as part of the

InterAct Project, hereafter referred to as the EPIC-InterAct Study.

With the exception of Norway and Greece, all other eight EPIC

countries (France, Italy, Spain, UK, the Netherlands, Germany,

Sweden and Denmark) participated in the EPIC-InterAct study.

An extensive description of the study design and cohort has

been published elsewhere [18]. In brief, the EPIC-InterAct case-

cohort study consists of 12,403 verified incident T2D cases

recruited between 1991 and 1997. In addition, a center stratified

random subcohort of 16,835 individuals was selected from the

baseline cohort (n = 340,234; 3.99 million person years). After

exclusion of 548 individuals with prevalent diabetes and 133 with

unknown diabetes status, 16,154 subcohort individuals were

included, of whom 778 had developed T2D between 1991 and

2007. EPIC participants without stored blood or reported diabetes

status were not eligible for inclusion in the study. For the present

study, participants with missing information on diet and therefore

DED (n = 117) and on covariates (smoking status, physical activity,

BMI, energy intake from beverages; n = 364) were excluded to

allow a complete case analysis. In addition, participants who did

not complete the FFQ adequately, identified as the top and

bottom 1% of the ratio for energy intake to estimated basal

metabolic rate (EI/BMR), were excluded (n = 619). In total,

11,734 incident T2D cases and 15,434 subcohort individuals

(5,825 men and 9,609 women), of whom 733 had developed

incident T2D were eligible for analysis. An overlap between the

case set and the sub-cohort is a design feature of a case-cohort

study [19].

Assessment of T2D
A pragmatic, high sensitivity approach was used for case

ascertainment with the aim of identifying all potential incident

T2D cases and excluding all individuals with prevalent diabetes

[18]. Prevalent cases were identified on the basis of baseline self-

report of a history of diabetes, doctor diagnosed diabetes, anti-

diabetic drug use or evidence of diabetes, where the date of

diagnosis preceded recruitment. Ascertainment of incident diabe-

tes involved a review of the existing EPIC datasets at each center

using multiple sources of evidence including self-report (self-

reported history of diabetes, doctor diagnosed diabetes, anti

diabetic drug use), linkage to primary care registers, secondary

care registers, medication use (drug registers), hospital admissions

and mortality data. Cases in Denmark and Sweden were not

ascertained by self-report, but identified via local and national

diabetes and pharmaceutical registers and hence all ascertained

cases were considered to be verified. To increase the specificity of

the case definition for centers other than those from Denmark and

Sweden, identified cases were verified with further evidence,

including reviewing individual medical records in some centers.

The date of diagnosis for incident cases was set as either the date

of diagnosis reported by the doctor, the earliest date that diabetes

was recorded in medical records, the date of inclusion into the

diabetes registry, the date reported by the participant, or the date

of the questionnaire in which diabetes was first reported. If the

date of diagnosis could not be ascertained from any of the sources

listed above, the midpoint between recruitment and censoring was

used. Follow up was censored at the date of diagnosis, 31st of

December 2007 or the date of death, whichever occurred first.

Dietary assessment
The assessment of diet was undertaken using a self- or

interviewer-administered dietary questionnaire which was devel-

oped and validated within each country to estimate the usual

individual food intakes of study participants [17,20,21]. In a

previous study, DED measured by the Dutch FFQ was validated

against DED derived from the weighted average of multiple 24-

hour recalls in a subset of this study population [10]. Results

indicated a good validity of the DED values measured by this FFQ

(Spearman correlation coefficients: 0.64 in men and 0.56 in

women).

DED was calculated by dividing daily energy intake (kcal) from

foods (solid foods and semi-solid or liquid foods such as soups) by

the reported weights (g) of these foods. It was decided a priori to

exclude caloric and non-caloric beverages (including water, tea,

coffee, juices, soft drinks, alcoholic drinks and milk) from the DED

calculation. The main reason was that DED calculations based on

the inclusion of beverages were associated with higher day to day

variation within individuals [22]. This may diminish associations

when examining health outcomes [22]. Also, beverages may add

more weight than energy to diets, thereby lowering individual

DED values disproportionately [22].

To be able to identify under-reporters and over-reporters of

diet, the ratio of energy intake versus basal metabolic rate (EI/

BMR) was calculated and compared with Goldberg cut-off values

[23,24]. BMR was estimated using the Schofield equation [25].

Participants with a ratio of EI/BMR below 1.14 were classified as

under-reporters, those with a ratio of EI/BMR above 2.1 were

defined as over-reporters, whereas all other participants were

defined as plausible reporters of diet [26].

Other measurements
At baseline, information on lifestyle was collected via self-

administered questionnaires included amongst others age, sex,

educational level, physical activity, smoking and menopausal

status. Smoking status was divided into current, former or never

smoking. Women were classified as pre-, peri-, post- or surgical

postmenopausal. Education level was indicated as the highest level

of school achieved and participants were classified into either

Dietary Energy Density and Risk of Type 2 Diabetes
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primary school or less, technical-professional school, secondary

school, university or higher. Physical activity level was assessed

using a brief validated questionnaire covering occupational and

recreational activities and participants were classified as either

inactive, moderately inactive, moderately active or active [27].

Body weight, height and waist circumference were measured at

baseline by trained technicians using standard study protocols as

previously described [28]. BMI was calculated as body weight in

kilograms divided by the square of the height in meters. Normal

weight, overweight and obesity were defined as a BMI,25 kg/m2,

between 25 kg/m2 and 30 kg/m2 and $30 kg/m2, respectively.

Statistical analyses
Characteristics of the subcohort participants at baseline were

examined by quintiles of DED which were derived from the DED

distribution in the overall subcohort. Means and standard

deviations were presented for describing continuous data, except

when the data were not normally distributed, in which case

medians and interquartile ranges were given. For categorical

variables percentages were presented. The DED variable had a

normal distribution. Stepwise linear regression analysis was

performed (significance level entry = 0.15, significance level

stay = 0.15) to investigate the contribution of food groups and

nutrients to the inter-individual variation in DED in two separate

models. All standard derived main food groups [21], except

beverages, were entered into the regression model: potatoes,

vegetables, legumes, fruits, dairy products, nuts and seeds, cereals,

meat, fish, eggs, fats, sugar and confectionery, cakes and biscuits,

condiments and sauces, soups, and miscellaneous. Seven macro-

nutrients: saturated fatty acids, monounsaturated fatty acids,

polyunsaturated fatty acids, polysaccharides, mono-&disaccharide

carbohydrates, animal protein and plant protein were also entered

in a regression model.

Since we used data from a subcohort instead of the full cohort, a

weighted Cox regression suitable to case-cohort designs was

applied to derive the hazards ratios (HRs) for incident T2D [19].

Prentice weights were used i.e. all subcohort members (cases and

non-cases) are weighted equally and cases outside the subcohort

are not weighted before failure [29]. At failure these cases have the

same weight as the subcohort members (also called the unweighted

method). Models were fitted separately for each country with time

as the underlying timescale. HRs were calculated for incident T2D

per 1 kcal/g increase in DED and quintiles of DED. Random

effects meta-analysis was performed to pool hazard ratios across

countries and evaluate heterogeneity (I2) between countries. In

addition, forest plots were generated.

Age, sex, center, educational level, smoking, physical activity,

alcohol (g/day), energy intake from beverages (kcal/day), family

history of diabetes and misreporting of diet were considered as

potential confounding variables. These variables were added one

by one to the crude model. Variables that changed the b-

coefficient for DED by ten percent or more were added to the

multivariable models. The first model included sex and age.

Additional adjustments were subsequently made for known risk

factors of diabetes: smoking status, physical activity, consumption

of alcohol, energy intake from beverages (model 2). In model 3

further adjustments were made for misreporting of diet (under-,

plausible and over-reporters). Additional adjustment for meno-

pausal status was made in women only. In case of a statistically

significant association between DED and incident T2D (model 3),

potential mechanisms underlying the association were explored by

addition of BMI, waist circumference and several dietary factors

(energy intake, fiber, total fat, fruits and vegetables) one by one.

Potential interactions of DED with sex, age (2 groups based on

median of 54.1 years), BMI, waist circumference, physical activity

and misreporting of diet were investigated by the inclusion of

interaction terms to model 3. Under-reporting of diet is a known

phenomenon in epidemiological studies on diet-disease relation-

ships, especially among obese individuals [30]. To get more insight

in this potential bias, characteristics of BMI status and misreport-

ing of diet were explored by country. In addition, regression

models were stratified by status of misreporting of diet (except for

over reporters, due to small numbers) for normal weight,

overweight and obese individuals separately. To be able to

compare our results with previous related research by Wang et al14

within the EPIC NORFOLK cohort (which is also part of the

EPIC-InterAct study) and to get more insight in methodological

issues regarding DED calculation, a sensitivity analysis was

performed based on DED calculations including all foods and all

beverages except water.

Apart from the random-effect meta-analysis, which was

conducted using STATA 11.0 (Stata-Corp, Texas, USA), all

analyses were performed using SAS 9.2 (SAS, Institute, Cary, NC).

P-values,0.05 were considered to be statistically significant.

Results

Estimated mean DED was 1.5 kcal/g (SD 0.3) within the

subcohort as well as among incident diabetes cases. The highest

mean DED was observed in Germany (1.7 kcal/g) whereas the

lowest DED was found in France, Spain and the UK (1.4 kcal/g).

Participants with a higher DED were more often men and current

smokers with a higher educational level and had a higher ratio of

EI/BMR (Table 1). Furthermore, they were younger, had a lower

BMI and waist circumference and less often reported having

hypertension or hyperlipidemia. Although consuming a lower

amount (total grams) of foods, participants with a higher DED had

higher intake of total energy, total fat, dietary fiber and energy

from beverages and a lower intake of fruit and vegetables. These

differences in baseline characteristics were observed for both sexes

(data not shown).

Of all sixteen food groups, differences in consumption of fruits

explained most of the variation between DED in individuals

(30%), followed by vegetables (12%), fats (11%) and, cakes and

biscuits (6%) (Table 2). Of all macronutrients, saturated fat

explained most of the variation in DED (20%), followed by mono-

and disaccharide carbohydrates (9%) and plant protein (8%). DED

was inversely associated with consumption of fruits and vegetables

and intake of mono- and disaccharide carbohydrates, animal

protein and plant protein but positively associated with consump-

tion of fats, cakes and biscuits, and intake of saturated fat.

Pooled HRs for T2D per 1 kcal/g increase in DED are

presented (Table 3). After adjustment for sex and age (model 1)

an inverse association between DED and T2D was found, which

became statistically significant following adjustment for known risk

factors of diabetes (model 2, HR 0.88 (95% CI 0.79–0.99,

I2 = 23.0%). Thus an increase of 1 kcal/g in DED was associated

with 12% lower hazard of T2D, which corresponds with a shift

from the lowest to the highest quintile of DED. However, the

inverse association disappeared after further adjustment for dietary

misreporting (Model 3, HR 1.02 (95% CI 0.93–1.13; I2 = 2.9%).

HRs were also close to unity comparing quintiles of DED (data not

shown).

The association between DED and incidence of type 2 diabetes

by country is shown in Figure 1. HRs are all not statistically

significant, and showed weak positive associations in France, UK,

Dietary Energy Density and Risk of Type 2 Diabetes
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Table 1. Baseline characteristics of the subcohort (n = 15,434) across quintiles of dietary energy density: the EPIC-InterAct Study.

CHARACTERISTICS

OVERALL

N = 15,434

Q1

N = 3,035

Q2

N = 3,189

Q3

N = 3,134

Q4

N = 3,059

Q5

N = 3,017

ENERGY DENSITY
1 (kcal/g)2 1.5 (0.3) 1.1 (0.1) 1.4 (0.1) 1.5 (0.04) 1.7 (0.1) 2.0 (0.2)

AGE, years2 52.4 (9.1) 53.7 (8.9) 53.4 (8.9) 52.4 (9.2) 51.7 (8.9) 51.0 (9.4)

SEX (women)3 62.3 80.6 70.0 62.4 54.5 43.4

EDUCATION
3

Primary or lower 40.9 47.8 43.1 39.5 37.1 36.9

Technical/professional 23.2 18.9 22.0 23.4 25.0 27.0

Secondary school 15.1 14.6 16.0 15.9 14.9 14.3

University degree or higher 20.7 18.7 18.9 21.3 23.0 21.8

WAIST CIRCUMFERENCE, cm2

Men 95.1 (10.0) 96.6 (10.4) 96.3 (9.7) 95.5 (9.5) 94.6 (9.9) 94.0 (10.3)

Women 81.2 (11.2) 82.3 (11.2) 81.6 (11.0) 80.7 (11.1) 80.8 (11.2) 79.7 (11.2)

BODY MASS INDEX
2, kg/m2 26.0 (4.2) 26.5 (4.4) 26.2 (4.3) 25.9 (4.1) 25.9 (4.1) 25.6 (4.0)

SMOKING
3

Never 46.9 57.5 52.0 47.6 42.0 35.3

Former 27.2 26.7 25.3 28.2 28.3 27.6

Current 25.9 15.8 22.7 24.2 29.8 37.1

PHYSICAL ACTIVITY INDEX
3

Inactive 23.7 27.0 24.5 22.8 20.6 23.5

Moderately inactive 33.7 33.2 34.3 33.9 34.1 32.9

Moderately active 22.7 21.1 21.5 23.1 24.7 22.9

Active 20.0 18.8 19.7 20.3 20.6 20.7

FAMILY HISTORY DIABETES, yes3 19.1 19.6 20.0 18.7 19.9 17.6

HYPERTENSION, yes3 18.9 20.3 19.5 19.2 18.5 16.7

HYPERLIPIDEMIA, yes3 18.6 19.0 19.7 19.1 17.3 17.4

MENOPAUSAL STATUS, postmenopausal3 47.5 52.6 51.4 47.7 40.1 40.1

HORMONE REPLACEMENT THERAPY, users3 14.9 14.2 16.1 14.9 14.9 14.0

DIETARY INTAKE (per day)

ENERGY, kcal2 2137 (634) 1783 (501) 2041 (566) 2157 (602) 2278 (615) 2431 (681)

ENERGY FROM BEVERAGES, kcal4 239 (143; 368) 184 (108; 289) 215 (132; 334) 246 (149; 369) 269 (167; 409) 294 (185; 440)

TOTAL FOODS, g2 1236 (381) 1407 (412) 1309 (375) 1227 (360) 1169 (337) 1068 (326)

FAT, en%2 34.8 (5.9) 31.9 (6.0) 33.9 (5.2) 34.9 (5.3) 35.7 (5.3) 37.8 (5.9)

FIBER, g/1000 kcal4 10.6 (8.8; 12.7) 13.9 (12.0; 16.0) 11.5 (10.1; 13.1) 10.4 (9.0; 11.9) 9.6 (8.2; 11.1) 8.3 (7.0; 9.8)

ALCOHOL, g4 6.4 (0.8; 17.7) 2.7 (0.0; 11.2) 5.1 (0.6; 14.3) 6.8 (1.1; 19.4) 8.7 (1.7; 23.4) 8.4 (1.7; 23.3)

FRUIT AND VEGETABLES, g4 376 (241;554) 628 (474; 831) 472 (346; 613) 373 (265; 509) 300 (212; 407) 203 (137; 292)

OTHER DIET RELATED FACTORS

GLYCEMIC LOAD
4 126 (100;157) 106 (84;133) 122 (99;149) 127 (102;158) 134 (108;165) 142 (112;179)

GLYCEMIC INDEX
2 56 (3.9) 54 (4.0) 56 (3.4) 56 (3.4) 57 (3.5) 58 (3.8)

RATIO ENERGY INTAKE/BASAL METABOLIC RATE
2 1.4 (0.4) 1.2 (0.3) 1.4 (0.4) 1.4 (0.4) 1.5 (0.4) 1.5 (0.4)

MISREPORTING OF DIET
3,5

Under-reporters 27.5 44.3 28.4 25.7 21.0 18.1

Plausible reporters 67.4 54.3 68.2 69.5 72.6 72.3

Over-reporters 5.1 1.5 3.4 4.9 6.5 9.6

1DED Dietary energy density based on solid foods only.
2values are mean (SD).
3values are percentages.
4values are median (Q1, Q3).
5Misreporting of diet was estimated by using the ratio of reported energy intake to the predicted basal metabolic rate (EI/BMR). Individuals with an EI/BMR,1.14 were
defined as under-reporters, EI/BMR.1.14 and ,2.1 as plausible reporters and EI/BMR.2.1 as over-reporters.
doi:10.1371/journal.pone.0059947.t001
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the Netherlands Germany, Sweden and Denmark, whereas

inverse associations were observed in Italy and Spain.

There was no evidence of interaction between DED and sex

(p = 0.17), age (p = 0.41), BMI (p = 0.49), waist circumference

(p = 0.63), physical activity (p = 0.96) or misreporting of diet

(under- vs plausible reporters; p = 0.38).

The highest percentage of normal weight individuals (79.4%)

and the lowest percentage of individuals classified as under-

reporters of diet (9.5%) were observed in France (Table 4). The

lowest percentage of normal weight individuals was observed in

Spain (22.2%), whereas the highest percentage of under-reporters

was observed in Germany (36.1%). Stratified analysis by

misreporting of diet affected the HRs especially in individuals

with a normal weight at baseline (Table 5). Among plausible

dietary reporters with a normal body weight, a positive but not

statistically significant association between DED and incident T2D

was observed (HR 1.15, 95% CI (0.84–1.58) I2 = 25.9; Figure 2))

whereas among those defined as dietary under-reporters DED

tended to be inversely associated with incident T2D (HR 0.64,

95% CI (0.41–1.02). Among overweight and obese individuals, no

clear differences in HRs between under- and plausible reporters

were observed. Results from sensitivity analysis showed a

statistically significant positive association between DED and

incident T2D (HR 1.54 95% CI: 1.13–2.10, figure S1) when all

foods and all beverages except water were included in the DED

calculation. There was a large increase in heterogeneity (from

2.9% to 71.3%) when using this DED estimate.

Discussion

Overall, this large European case-cohort study among 11,734

incident T2D cases and a subcohort of 15,434 participants showed

no evidence for an association between DED of solid and semi-

solid foods and risk of T2D. This observation was consistent across

the eight participating countries, located in different geographical

areas in Northern and Southern Europe.

The results of this study should be interpreted with caution

because of the difficulties involved when assessing obesity related

diet-disease relationships in epidemiological studies [31]. One of

the limitations of this study is the use of DED estimates based on

self-report of habitual food intake, which might have caused bias

due to conscious or sub-conscious under- or over-reporting of

specific food items [32]. In this study we observed large differences

between countries in the number of participants classified as

under-reporters. This could be due to the use of country-specific

questionnaires. Also, the prevalence of overweight and obesity

varied between countries. Under-reporting of energy intake has

been shown to be more prevalent and severe among individuals

with a higher body mass index [23,33]. As obesity is a well-

established risk factor for T2D the association between DED and

Table 2. Relationships of food groups and macronutrients with dietary energy density (DED; kcal/g) in the subcohort (n = 15,434):
the EPIC-InterAct Study.

FOOD GROUPS
2 CORRELATION WITH DED3 LINEAR RELATIONSHIP WITH DED1

b4 PARTIAL R25 CUMULATIVE R26

FRUITS 20.59 20.09 0.30 0.30

VEGETABLES 20.48 20.12 0.12 0.42

FATS 0.32 0.57 0.11 0.53

CAKES AND BISCUITS 0.27 0.19 0.06 0.58

MEAT AND MEAT PRODUCTS 0.23 0.11 0.03 0.61

SOUPS AND BOUILLON 20.16 20.08 0.03 0.64

POTATOES AND OTHER TUBERS 0.11 0.03 0.02 0.66

DAIRY (EXCL MILK BEVERAGES) 20.09 20.04 0.02 0.68

CEREAL AND CEREAL PRODUCTS 0.21 0.05 0.02 0.70

NUTS AND SEEDS 0.11 0.30 0.02 0.72

SUGAR AND CONFECTIONARY 0.34 0.13 0.01 0.73

MACRONUTRIENTS
7 CORRELATION WITH DED3 b8 PARTIAL R25 CUMULATIVE R26

SATURATED FAT 0.42 0.04 0.20 0.20

MONO- & DISACCHARIDES 20.34 20.02 0.09 0.29

PLANT PROTEIN 20.23 20.02 0.08 0.37

ANIMAL PROTEIN 20.31 20.07 0.06 0.43

1Results obtained from stepwise linear regression analyses among the subcohort.
2Sixteen food group variables (grams per day) were included: potatoes, vegetables, legumes, fruits, dairy products (except milk beverages), nuts and seeds, cereals,
meat, fish, eggs, fats, sugar and confectionery, cakes and biscuits, condiments and sauces, soups, and miscellaneous.
3Spearman’s rank correlation coefficient presented which represent the correlation between DED and food groups or nutrients.
4b regression coefficient represents the energy density (kcal/g) difference explained by 100 g foods.
5Partial R2 (explained variance) represents the inter-individual variation in DED explained by the individual food group or nutrient. Only food or nutrient items had
Partial R2.0.01 were listed here.
6Cumulative R2 represents the sum of the inter-individual variation in DED explained by the specific food group or nutrient and previously listed food groups or
nutrients.
7Seven macronutrients (en% per day) were included: saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, polysaccharides, mono-
&disaccharides, animal protein and plant protein.
8b regression coefficient represents the energy density (kcal/g) difference explained by 1% of the energy contributed by the individual nutrient.
doi:10.1371/journal.pone.0059947.t002
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T2D may be prone to bias due to obesity-related under-reporting.

A recent analysis in EPIC showed that the BMI effect on under-

reporting is the same across countries and that exclusion of

individuals who misreported energy according to the Goldberg

cut-off removed the obesity-related bias [34]. Results from our

stratified analysis showed that among overweight and obese

individuals HRs were close to unity for those categorized as under-

reporters and those categorized as plausible reporters. However, in

normal weight individuals categorized as under-reporters an

inverse association between DED and risk of T2D was seen,

whereas DED tended to be positively associated with incidence of

T2D among normal weight individuals classified as plausible

reporters. Risk of T2D was 15% higher per 1 kcal/g increase in

DED, which corresponds to a change in DED from the lowest to

the highest quintile. This association was not statistically signifi-

cant, despite the large sample size in this sub group analysis.

Overall, our results indicate that the obesity related underreport-

ing did not affect our overall results much. Still, we cannot exclude

an overall bias in energy reporting across all BMI categories.

The main strengths of this study are the large sample size, the

large number of verified T2D cases, its prospective design, the

variation in dietary intake across participants from eight European

countries and the availability of information on important

potential confounding variables such as smoking behavior, alcohol

consumption, physical activity and measured waist circumference

and body weight.

Table 3. Pooled hazard ratios1 for the association between
dietary energy density (DED; kcal/g) and incident type 2
diabetes in Europe: the EPIC-InterAct Study.

DIETARY ENERGY DENSITY
2

HR (95% CI) I23

MODEL

1: age sex 0.95 (0.86–1.06) 21.3

2: model 1 + risk factors DM4 0.88 (0.79–0.99) 23.0

3: model 2 + misreporting of diet5 1.02 (0.93–1.13) 2.9

BMR = basal metabolic rate; CI = confidence interval; DED = dietary energy
density; DM = diabetes mellitus; EI = energy intake; HR = hazard ratio;
1Analysis stratified by country and pooled using a random effect meta-analysis;
based on 11,734 T2DM cases and 15,434 subcohort members (overlap n = 733).
2Dietary energy density based on solid foods only.
3I2 represents the variation in the estimate between countries attributable to
heterogeneity.
4Smoking status (current, never, former), physical activity (inactive, moderately
inactive, moderately active, active), alcohol (g/day), energy intake from
beverages (kcal).
5Misreporting of diet was estimated by using the ratio of reported energy
intake to the predicted basal metabolic rate (EI/BMR). Individuals with an EI/
BMR,1.14 were defined as under-reporters, EI/BMR.1.14 and ,2.1 as plausible
reporters and EI/BMR.2.1 as over-reporters.
doi:10.1371/journal.pone.0059947.t003

Figure 1. Association between dietary energy density and incident type 2 diabetes in Europe1,2. HR: hazard ratio per 1 kcal/g increase in
energy density; 95% CI: 95% confidence interval for the HR. 1 Dietary energy density based on solid and semi-foods only. 2 Adjusted for age, sex,
misreporting of diet (under-, plausible, over-reporter), smoking status (never, former, current), physical activity (inactive, moderate inactive, moderate
active, active), alcohol (g/day), energy intake from beverages (kcal).
doi:10.1371/journal.pone.0059947.g001
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To our knowledge, the association between DED and risk of

T2D has been investigated only once, by Wang et al. [14]. DED

was calculated using FFQs and included all beverages except

water. They reported a 20% higher risk of diabetes per unit (kJ)

increase in DED in the EPIC-Norfolk study (n = 21,919) which

included 725 incident T2D cases (HR 1.20 (95% CI 1.05–1.37).

This positive association is in line with the result of our sensitivity

analysis in which we used the same DED calculation method.

So far, no clear consensus has been reached on the calculation

of DED. A previous review of the literature identified eight

Figure 2. Association between dietary energy density and incident type 2 diabetes in Europe among plausible dietary reporters of
energy with a normal body weight1–3. HR: hazard ratio per 1 kcal/g increase in energy density; 95% CI: 95% confidence interval for the HR.
1 Dietary energy density based on solid foods only. 2Adjusted for age, sex, smoking status (never, former, current), physical activity (inactive,
moderate inactive, moderate active, active), alcohol (g/day), energy intake from beverages (kcal). 3 Normal weight is defined as a BMI,25 kg/m2 and
plausible reporting of diet is defined as a ratio of energy intake versus estimated basal metabolic rate between 1.14 and 2.1.
doi:10.1371/journal.pone.0059947.g002

Table 4. Characteristics of BMI status and misreporting of diet by country in the subcohort (n = 15,434): the EPIC-InterAct Study.

Country N % Women BMI status (%)1 Misreporting of diet (%)2

Normal
weight Overweight Obesity Under-reporters

Plausible
reporters Over-reporters

France 549 100 79.4 15.7 4.9 9.5 78.3 12.2

Italy 1,921 66.9 46.8 39.6 13.7 16.9 71.9 11.2

Spain 3,457 61.7 22.2 48.8 29.0 29.1 66.4 4.5

UK 1,200 61.4 52.2 37.4 10.4 32.3 61.9 5.8

Netherlands 1,366 83.2 53.4 35.5 11.1 30.2 68.6 1.2

Germany 2,012 58.4 47.4 38.4 14.2 36.1 60.3 3.5

Sweden 2,852 57.1 53.7 35.6 10.7 29.0 67.0 4.1

Denmark 2,077 46.6 44.1 42.7 13.2 24.5 71.9 3.7

1Normal weight was defined as a BMI,25 kg/m2, overweight as a BMI between 25 and 30 kg/m2 and obesity as a BMI $30 kg/m2.
2Misreporting of diet was estimated by using the ratio of reported energy intake to the predicted basal metabolic rate (EI/BMR). Individuals with an EI/BMR,1.14 were
defined as under-reporters, EI/BMR.1.14 and ,2.1 as plausible reporters and EI/BMR.2.1 as over-reporters.
doi:10.1371/journal.pone.0059947.t004
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different calculation methods which mostly differed in the

inclusion or exclusion of water, other energy-free beverages and

energy-containing beverages [22]. In the current study, data on

consumption of bottled and tap water was not available in all

centres. Because detailed water intake is generally not collected in

epidemiologic studies, excluding other energy-free beverages such

as coffee and tea eliminates potential bias that could be created by

excluding only water [22]. However, coffee and tea often provide

energy through added sugar or milk and this should be taken into

account. Unfortunately, in our study (as in many others) no such

information was available. Independent of the limitations men-

tioned above, we decided a priori to include only solid and semi-

solid foods and to exclude caloric and non-caloric beverages from

the DED calculation while partially adjusting for energy intake

from beverages in the models. The rationale for this choice was,

amongst others (see Methods section) that inclusion of beverages

into DED calculation is associated with higher day to day variance

within individuals. This may lead to biased associations when

examining health outcomes [22]. This is supported by the result of

our sensitivity analysis in which DED was calculated including all

food and beverages except water. The pooled estimates showed a

large increase in heterogeneity (I2 = 71.3%) compared to our main

results (I2 = 2.9%).This means that the association between DED

and risk of T2D is less consistent across countries when drinks are

included into the DED calculation. To compare, an I2 of 25%,

50% and 75% could roughly be interpreted as indicating low,

medium and high heterogeneity [35]. Furthermore, when

individual study results are inconsistent (i.e. heterogeneity is

considerable), the obtained pooled estimate is less valid [35,36].

Together, this favors the exclusion of drinks from DED calculation

and adjusting models for the energy intake from beverages. On the

other hand, it could be speculated that, despite the methodological

limitations, the observed higher T2D risk when drinks are

included in the DED calculation is driven by a positive association

between energy-containing beverages and risk of T2D as reported

in literature [37,38]. This would suggest that energy density of

drinks rather than the energy density of solid foods is important in

determining the risk of diabetes.

It has been hypothesized that diets high in DED affect risk of

T2D indirectly via an increase in body fat mass. Literature shows

that foods with a higher energy density are more palatable and less

satiating as compared to foods with a lower energy density and can

thus lead to passive over consumption and a higher energy intake

[39,40]. Moreover, prospective studies have shown that DED is

positively associated with risk of (abdominal) obesity, a well-

established risk factor of T2D [8,9,10].

On the other hand, it can be postulated that high DED diets

have a direct effect on T2D risk. In the current study, a diet high

in DED is characterized by a lower intake of fiber, fruit and

vegetables, a higher intake of energy and saturated fat and a

higher glycemic index (GI) and glycemic load. This is in

agreement with findings of previous studies [6,10,41]. Saturated

fat has been suggested to adversely affect insulin sensitivity of

muscles as well as glucose stimulated insulin secretion [12]. High

GI diets can rapidly increase postprandial glucose concentrations.

This may lead to pancreatic exhaustion as a result of the increased

demand for insulin [42]. In addition, high GI diets can increase

postprandial free fatty acid release, directly increasing insulin

resistance [13].

The composition of low energy dense diets meet the dietary

recommendations given by WHO to promote human health and

to prevent diet-related chronic diseases [43]. In addition, high

energy-dense diets have been found to predict (abdominal) obesity

[8,9,10]. Therefore, despite the fact that there currently is no

conclusive evidence for an association between DED and risk of

T2D, choosing low energy dense foods should be promoted as they

support the current dietary recommendations.

In conclusion, the results of this large European case-cohort

study do not provide evidence for an association between DED of

solid and semi-solid foods and the risk of T2D. However, we found

some indication that misreporting of diet and BMI status may

have obscured a positive association between DED and risk of

T2D, and that such an association, if any, would most likely be

small.

Supporting Information

Figure S1 Association between dietary energy density
and incident type 2 diabetes in Europe1,2. HR: hazard ratio

per 1 kcal/g increase in energy density; 95% CI: 95% confidence

interval for the HR. 1 Dietary energy density based on all foods

and beverages (except water). 2 Adjusted for age, sex, misreporting

Table 5. Pooled hazard ratios1 for the association between dietary energy density and incident type 2 diabetes in Europe stratified
by BMI status and misreporting of diet: the EPIC-InterAct Study1–3.

BMI

MISREPORTING OF DIET
4 HR (95% CI) ,25 kg/m2 25–30 kg/m2 $30 kg/m2

HR (95% CI) HR (95% CI) HR (95% CI)

Under-reporters 1.00 (0.85–1.18) 0.64 (0.41–1.02) 1.03 (0.79–1.35) 1.04 (0.72–1.48)

Plausible reporters 1.02 (0.88–1.19) 1.15 (0.84–1.58) 0.96 (0.78–1.19) 0.96 (0.74–1.24)

HR (95% CI)5 1.01 (0.92–1.12) 0.98 (0.78–1.25) 0.97 (0.83–1.13) 0.93 (0.77–1.12)

BMI = body mass index; BMR = basal metabolic rate; CI = confidence interval; DED = dietary energy density; EI = energy intake; HR = hazard ratio.
1Analysis stratified by country and pooled using a random effect meta-analysis; based on n = 11,045 T2DM cases and n = 14,162 subcohort members, (overlap n = 704).
Due small numbers no reliable estimates could be calculated for over-reporters (n = 1,220), and under-reporters in France (n = 88), which therefore are excluded from
this analysis.
2Dietary energy density based on solid foods only.
3Adjusted for age, sex, smoking status (current, never, former), physical activity (inactive, moderately inactive, moderately active, active), alcohol (g/day), energy intake
from beverages (kcal).
4Misreporting of diet was estimated by using the ratio of reported energy intake to the predicted basal metabolic rate (EI/BMR). Individuals with an EI/BMR,1.14 were
defined as under-reporters, EI/BMR.1.14 and ,2.1 as plausible reporters and EI/BMR.2.1 as over-reporters.
5Additionally adjusted for misreporting of diet.
doi:10.1371/journal.pone.0059947.t005
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of diet (under-, plausible, over-reporter), smoking status (never,

former, current), physical activity (inactive, moderate inactive,

moderate active, active), alcohol (g/day).

(TIF)
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