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Abstract

In this paper we present a numerical method to calculate the dynamics of
three spheres in a quiescent viscous fluid. The method is based on Lamb’s
solution to Stokes flow and the method of reflections, and is arbitrarily ac-
curate given sufficient computer memory and time. It is more accurate than
multipole methods, but much less efficient. Although it is too numerically
intensive to be suitable for more than three spheres, it can easily handle
spheres of different sizes. We find no convergence difficulties provided we
study mobility problems, rather than resistance problems.

After validating against the existing literature, we make a direct compar-
ison with Stokesian Dynamics (SD), and find that the largest errors in SD
occur at a sphere separation around 0.1 radius. Finally, we present results
for an example system having different-sized spheres.

Keywords: Viscous flow, Spherical particles, Method of Reflections,
Stokesian Dynamics

1. Introduction

The hydrodynamics of multi-particle suspensions in a Newtonian fluid
matrix have been of interest for many years (see, for instance, [1]). Appli-
cations range from suspension rheology, through sedimentation problems to
fluidized beds and beyond. Because colloidal particles are usually very small,
there has been sustained interest in systems in which inertia is neglected. In
this case the governing equations for the fluid matrix, the Stokes equations,
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are linear and quasi-static, which allows many mathematical tools to be used
to simplify their numerical study.

In order to further simplify the analysis of such problems, and thus (in
many cases) to permit the study of systems of larger numbers of particles, it
is usual to consider the solid particles in the suspension as spheres, usually of
identical size. Some progress has been made recently with ellipsoidal particles
(for example, by [2, 3, 4]) and with spheres of different sizes [5, 6] but the
bulk of the literature on viscous hard-sphere suspensions is concerned with
systems of identical spheres.

There are five main families of methods of simulating such systems nu-
merically.

The Finite Element Method (FEM) (see, for example, [7]) discretizes the
whole fluid (and possibly the particle interiors as well), and as such is rather
numerically intensive; however, it is easily extended to more general cases,
including non-spherical particles, nonzero inertia, and other (non-Newtonian)
constitutive equations for the fluid matrix.

Dissipative Particle Dynamics (DPD) discretizes space only on a square
grid, regardless of the positions of the particles. As such, it is very fast
but struggles to capture the lubrication interactions between close particles.
These may be added by hand, at the expense of some of the computational
speed and simplicity.

In the Boundary Element Method (BEM), used by [8, 9] and many others,
the surface of each particle is discretized and the linearity of the Stokes
equations used to reduce the problem to a set of linear equations involving
the variables on the surface of the spheres. The inherent difficulty here occurs
when two spheres are close together: then the inaccuracy of modelling of the
sphere surfaces becomes important and the lubrication forces between two
spheres may not be captured well. The method does not rely in any sense on
the spherical shape of the particles, so other shapes can be captured without
any difficulty.

Multipole methods (see, for instance, [10]) represent the geometry of the
spheres exactly and are therefore restricted to spheres (or, with substantial
effort, ellipsoids) and planes. The flow field is represented in terms of a resis-
tance matrix (extracted from a truncated multipole expansion) relating the
external forces and torques on all the spheres to their velocities and any back-
ground flow. The most popular method of this class is Stokesian Dynamics
(SD), introduced by [11], in which the multipole expansion is truncated after
the stresslets (force dipole) and the irreducible quadrupole.
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Finally, there are methods based on the Method of Reflections (MR) (de-
scribed in, for example, [1]) in which the flow field outside each sphere is
considered in the vicinity of another sphere, where the rigidity of the sec-
ond sphere causes a perturbation flow field, which is then reflected onto all
other spheres iteratively. These methods are only suitable for small numbers
of spherical particles, and converge quickly only when the spheres are well-
separated. Indeed, some authors have found problems which do not appear
to converge at all. However, if sufficient iterations are carried out and con-
vergence does occur, these methods may be considered exact. In the current
paper, we present a numerical scheme based on MR for three spheres, but
with some improvements over the previous published studies in the field.

The paper is arranged as follows. In section 2 we describe our numerical
method. In section 2.6 we discuss convergence issues and how problems may
be avoided, and in section 3 validate our method against existing results,
including a comparison with the BEM. Section 4 sees a quantitative compar-
ison with the standard multipole method, Stokesian Dynamics: this is the
first time the accuracy of SD has been quantified. Finally, in section 5 we
demonstrate an example system having spheres of different sizes.

2. Numerical method

We present here a numerical solution technique for Stokes flow of a fluid
surrounding solid spheres, based on the Method of Reflections [1], which
exploits fully the spherical geometry of our particles. Although the results
we present are primarily for three identical spheres, the method is capable of
handling spheres of different radius with no difficulty.

The equations we solve are the incompressible Stokes equations:

∇ · u = 0 ∇p = µ∇2u (1)

in which u is the fluid velocity and p the pressure; µ is the fluid viscosity. We
also wish to impose boundary conditions on the particles: either a velocity U
and angular velocity Ω for each particle, or an external force F and torque
T acting on each particle.

We begin by constructing, for each particle, the flow field that satisfies the
Stokes equations, and the boundary conditions on that particle, and decays
in the far field. Then we proceed iteratively as follows:
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repeat

for each particle α
for each particle β 6= α

compute a local representation of the flow outside α,
valid inside particle β

compute the correction to the flow field outside β, to

make the surface of particle β perform solid motion

end

end

until the norm of the updated flow fields < tolerance

The two central calculations are described in sections 2.2 and 2.3 respectively.
To carry out this process, we write the general solution to the Stokes

equations in spherical polar coordinates centred on a point xα, using Lamb’s
solution (and writing rα = x− xα and rα = |rα|):

u =
∞∑
n=1

n∑
m=−n

[
Anm∇(r−n−1

α Ynm(rα)) +Bnm∇× (r−n−1
α rαYnm(rα))

− (n− 2)Cnmr
2
α

2n(2n− 1)
∇(r−n−1

α Ynm(rα)) +
(n+ 1)Cnmr

−n−1
α

n(2n− 1)
rαYnm(rα)

]
+

∞∑
n=0

n∑
m=−n

[Dnm∇(rnαYnm(rα)) + Enm∇× (rnαrαYnm(rα))

+
(n+ 3)Fnmr

2
α

2(n+ 1)(2n+ 3)
∇(rnαYnm(rα))−

nFnmr
n
α

(n+ 1)(2n+ 3)
rαYnm(rα)

]
(2)

p = µ
∞∑
n=1

n∑
m=−n

Cnmr
−n−1
α Ynm(rα) + µ

∞∑
n=0

n∑
m=−n

Fnmr
n
αYnm(rα). (3)

In general, the spherical harmonic of order n is given by

Ynm(r) = (sgn(m))m
[
(2n+ 1)(n− |m|)!

4π(n+ |m|)!

]1/2
P |m|
n (cos θ) exp (imφ), (4)

in which θ and φ are the usual spherical polar angles (0 ≤ θ ≤ π, 0 ≤ φ < 2π)
and Pm

n (x) are the associated Legendre polynomials, defined in the standard
way from the Legendre polynomials Pn(x) [12]:

Pm
n (x) = (−1)m(1− x2)m/2d

mPn(x)

dxm
. (5)
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A flow field that decays at infinity has Dnm = Enm = Fnm = 0, so we can
store such a field, valid outside a particle centred at xα, simply as the set of
coefficients Aα

nm, B
α
nm and Cα

nm.
For convenience, we also define here the constants

hm
n =

[
(2n+ 1)(n− |m|)!

4π(n+ |m|)!

]1/2
gmνn =

(n+ ν)!

(ν + |m|)!(n− |m|)!
. (6)

2.1. Implementing initial conditions

Suppose that particle α, of radius aα, has associated with it polar co-
ordinates (rα, θ, φ) and also Cartesian coordinates x = rα sin θ cosφ, y =
rα sin θ sinφ and z = rα cos θ. Then to impose a velocity Uxx̂ + Uyŷ + Uzẑ
and angular velocity Ωxx̂+Ωyŷ+Ωzẑ on particle α, the initial flow field we
require, valid outside that particle α, is defined by the constants

A1,−1 =
[Ux + iUy]a

3
α

8h1
1

A10 =
Uza

3
α

4h0
1

A11 =
[−Ux + iUy]a

3
α

8h1
1

(7)

B1,−1 =
[Ωx + iΩy]a

3
α

2h1
1

B10 =
Ωza

3
α

h0
1

B11 =
[−Ωx + iΩy]a

3
α

2h1
1

(8)

C1,−1 =
3[Ux + iUy]aα

4h1
1

C10 =
3Uzaα
2h0

1

C11 =
3[−Ux + iUy]aα

4h1
1

(9)

with all other coefficients being zero. Similarly, a force F may be imposed
with the same coefficients as for a velocity U = F /6πµaα, and a torque T
with the same coefficients as an angular velocity Ω = T /8πµa3α.

2.2. Expressing a field valid outside one sphere as one valid inside another

We now consider the process required to express a field valid outside par-
ticle α (expressed as a set of coefficients Aα

nm, B
α
nm and Cα

nm) as an expansion
valid inside particle β: that is, coefficients Dβ

nm, E
β
nm and F β

nm.
We begin by rotating the flow field into a new set of coordinates, still

centred on xα, whose z-axis is aligned with the line joining xα and xβ.
This is achieved using a rotation formula derived by [13]. For two spherical
coordinate systems (r, θ, φ) and (r, θ′, φ′) whose axes φ = π/2 are aligned,
and whose θ = 0 axes differ by an angle θ0, we have

Ylm(θ, φ) =
m∑

t=−m

it−mQl
mt(θ0)Ylt(θ

′, φ′) (10)
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in which the rotation matrix is calculated through the recurrence relations

Ql
lt =

√
gtll

(
1− cos θ0

2

)(l−t)/2(
1 + cos θ0

2

)(l+t)/2

(11)

Ql
m−1,t√
gm−1
ll

+
2(t−m cos θ0)

(l +m) sin θ0

Ql
mt√
gmll

+
(l −m)

(l +m)

Ql
m+1,t√
gm+1
ll

= 0. (12)

Because we are only considering three spheres, we can fix the axes φ = 0 to lie
within the plane of the spheres’ centres, which means the axes φ = π/2 will
always lie perpendicular to that plane. In practice, we arrange the coordinate
systems on the three spheres to minimise these rotations: so spheres 1 and
2 have coordinate systems whose z-axes are parallel to the line joining their
centres, and sphere 3’s coordinate system has its z-axis pointing towards one
of the other two spheres. This leaves us with only three matrices Q(θ0) to
calculate, and these are stored in advance.

We now have a set of coefficients {A,B,C}αnm describing a flow field valid
outside particle α, in a coordinate system whose z-axis points towards the
centre of particle β. To convert this into a flow field valid inside particle β, we
use the generalized addition theorem [14], valid for two coordinate systems
with their θ = 0 axes aligned:

Ynm(rα)

rn+1
α

=
∞∑

ν=|m|

hm
n

hm
ν

(−1)n+m(±1)n+νgmνn
rn+ν+1
αβ

rνYνm(rβ) (13)

in which rαβ = |xβ − xα|. The appearance of the term rn+ν+1
αβ reduces the

magnitude of the coefficients in the new coordinate system relative to those
in the old coordinates: this is what drives the convergence of the numerical
method. The coefficients in the new coordinate system become

Dβ
νm =

∞∑
n=|m|

hm
n

hm
ν

(−1)n+m(±1)n+ν

rn+ν+1
αβ

[
gmνnA

α
nm ∓ im

gmνn
ν

rαβB
α
nm

+

{
gmν−1,n

(ν − |m|)((ν − 1)(n− 2)− (n+ 1))

ν(2ν − 1)
− gmνn

(n− 2)

2

}
r2αβC

α
nm

n(2n− 1)

]
(14)

Eβ
νm =

∞∑
n=|m|

gmνn
hm
n

hm
ν

(−1)n+m(±1)ν+n

rn+ν+1
αβ

[
− n

(ν + 1)
Bα

nm ∓ imrαβC
α
nm

nν(ν + 1)

]
, (15)
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F β
νm =

∞∑
n=|m|

hm
n

hm
ν

(−1)n+m(±1)n+νgmνn
rn+ν+1
αβ

Cα
nm. (16)

with each ± term being + if the centre of particle β is at θ = π in the axes
of particle α, − if it is at θ = 0.

The new set of coefficients {D,E, F}βnm may also need rotating again
into the standard coordinate system of particle β before we continue; this is
carried out just as it was at the beginning of this section.

2.3. Additional flow field to return particle β to solid-body motion

We now have a flow field uinside valid inside sphere β, and need to calculate
what additional flow field we need to ensure that the particle only undergoes
solid motion. Essentially, we wish to find a flow field uoutside, valid outside
particle β, such that on the particle surface,

uinside + uoutside = U +Ω× rβ (17)

for some constant vectors U and Ω. This requirement gives, for n > 1,

Aβ
nm = −

na2n+1
β

4(n+ 1)(2n+ 3)

[
2(2n− 1)(2n+ 3)Dβ

nm + (2n+ 1)a2βF
β
nm

]
, (18)

Bβ
nm = −a2n+1

β Eβ
nm, (19)

Cβ
nm = −

n(2n− 1)a2n−1
β

2(n+ 1)

[
2(2n+ 1)Dβ

nm + a2βF
β
nm

]
. (20)

The terms at n = 1 may be different as they include contributions from U
and Ω. Here there are two cases: if we are considering a resistance problem,
then we have already imposed our velocity and angular velocity, and the extra
velocities U and Ω added at this stage must be zero. Then the formulae of
equations (18–20) are also valid at n = 1.

If we are considering a mobility problem, however, the fixed quantity is
the force and torque imposed on each particle:

F imposed = −4πµ
1∑

m=−1

C1m∇(rY1m(r)), (21)

T imposed = −8πµ
1∑

m=−1

B1m∇(rY1m(r)). (22)
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Thus we cannot add to B1m and C1m with our perturbation field, and instead
we just have the condition

Aβ
1m = −

F β
1ma

5
β

30
. (23)

2.4. Finishing the calculation

When this process has been repeated, for each pair of particles, sufficient
times that the additional coefficients are negligibly small, we have three flow
fields (one valid outside each particle) each of which describes the flow every-
where in the fluid. It only remains to extract either the forces and torques
imposed on the particle (for the resistance question) or their velocities and
angular velocities (for the mobility question).

The resistance problem requires only the values B1m and C1m, as we saw
from equations (21–22). The force and torque, in the natural coordinate
system, are then given by

Fx = 4πµh1
1(C11−C1,−1), Fy = 4πµh1

1i(C1,−1+C11), Fz = −4πµh0
1C10, (24)

Tx = 8πµh1
1(B11−B1,−1), Ty = 8πµh1

1i(B1,−1+B11), Tz = −8πµh0
1B10. (25)

(in which, from equation (6), h0
1 = [3/4π]1/2 and h1

1 = [3/8π]1/2).
In the mobility problem, the values of C1m and B1m are unchanged from

their initial conditions, and instead we extract the velocity and angular ve-
locity of each particle. If we define the velocities as

U =
1∑

m=−1

Um∇(rY1m(r)) Ω =
1∑

m=−1

Ωm∇(rY1m(r)) (26)

then the coefficients are given by

Um =
3C1m

2a
− 5A1m

a3
+D1m Ωm = E1m +

B1m

a3
(27)

and the velocities,

Ux = h1
1(U−1 − U1), Uy = −h1

1i(U−1 + U1), Uz = h0
1U0, (28)

Ωx = h1
1(Ω−1 − Ω1), Ωy = −h1

1i(Ω−1 + Ω1), Ωz = h0
1Ω0. (29)
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2.5. Numerical parameters

The only question that remains is where to terminate the infinite sums:
that is, what value of N to use in the approximations (for any F)

∞∑
n=1

n∑
m=−n

F{Ynm(x− xα)} ≈
N∑

n=1

n∑
m=−n

F{Ynm(x− xα)}. (30)

If we are to iterate to a global error of ε, say, then how should we select N?
Answering an equivalent question, [13] argued that in terms of a dimension-
less particle separation defined as

ζαβ =
2rαβ

(aα + aβ)
(31)

the key quantity is qαβ < 1 which satisfies ζαβ = qαβ + q−1
αβ . He showed that

the error term caused by neglecting the Nth term of the expansion for the
flow around particle α caused by particle β is of magnitude

N−1/2qNαβ. (32)

The decay of this term is dominated by the exponential term qN , so in order
to achieve qNαβ < ε we set

Nαβ =

⌈
log ε

log qαβ

⌉
(33)

For all particles, we keep terms up to the largest Nαβ in the whole system;
but when storing the rotation matrices (which are calculated in advance) we
use the value of Nαβ appropriate to the pair of particles in question.

We terminate the calculation (that is, stop the iterations) when the most
recent iteration has added a contribution of magnitude less than 0.01ε to any
of the forces, torques, velocities and angular velocities.

The largest matrices stored are the rotation matrices (3 for the case of
three spheres), which each contain approximately 4N3

αβ elements. Given the
various occasions where these are passed as parameters, and the 32-bit limit
of addresses in many compilers, these large matrices effectively limit the
maximal value of Nαβ we can use to 150.

In terms of computational time, the most complex operation is also the
rotation stage: of order N3

αβ per rotation. For the case of M spheres, there
will be 2M(M − 2) rotations for each iteration.
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As an illustration, we look at the case of three equal spheres arranged
in an equilateral triangle, and fix ε = 10−5. If the surface gap is 0.1a,
then Nαβ = 37 and the calculation takes 55 iterations to converge. This
takes about 25 s on a standard laptop1: so each iteration takes roughly 0.45
seconds. With a surface gap of 0.01a, Nαβ = 116 and the calculation requires
around 1000 iterations. On the same laptop this took around 3 hours: so
each iteration is now taking 10.8 s. In each case the time taken per iteration
is of the order 10−5N3

αβ s.

2.6. Convergence of the method

Our program is formulated so that we can consider either the resistance
problem (impose velocities and angular velocities on the particles, and calcu-
late the required forces and torques) or the mobility problem (impose forces
and torques, and calculate the resultant velocities). Clearly in a philosophical
sense these two problems are equivalent: but numerically we have found em-
pirically that their convergence behaves very differently. For well-separated
spheres there are no convergence issues in either problem, but when the
spheres are close together the resistance problem is found to converge much
worse than the mobility problem.

As an example of this (revisited in much more detail in §3), we considered
a system of three identical spheres arranged in an equilateral triangle, moving
out of the plane of their centres. The resistance problem converges in this
case only when the triangle side is at least 2.3 times the particle radius; the
mobility problem seems to converge unconditionally (though of course there
are memory issues for very close spheres below a separation of 2.05 radius).

It is not entirely surprising that the mobility problem should behave bet-
ter than the resistance problem: for many flow arrangements, the resistance
functions are singular as particles approach contact, whereas the correspond-
ing mobility functions tend to zero. Indeed, [15] showed that for two-sphere
problems (using s as the dimensionless separation, with s = 2 at contact),
for many resistance functions the series of contributions decay as the terms
of the Taylor series for (1 + 2/s)−1 and (ln (1 + 2/s))−1, i.e. rather slowly
for s close to 2, whereas the mobility functions were at worst regular func-
tions with singularities in their derivatives at contact. However, in a system
such as the one described above, where there is no singularity and all forces,

1Intel Core 2 Duo 1.3GHz laptop with 2GB of RAM
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torques and velocities remain finite, we still retain the strong improvement in
performance by considering the mobility problem rather than the resistance
problem. The reason for this2 is that in the zero-th order (the single-sphere)
term, one already accounts for all the force and torque on the sphere. So
each subsequent reflection starts with a stresslet term as the leading term in
the multipole expansion for the reflection field.

Of course, the whole problem is linear, because of the linearity of the
Stokes equations, and can be thought of as a linear system whose unknowns
are the set of coefficient variables {A,B,C}. Thus we are talking about the
convergence of a linear system, with a sparse matrix of a particular structure.
Our iterative scheme is similar to a Gauss-Seidel iteration, with a particular
ordering of the unknowns; and the mobility and resistance formulations may
be considered as a form of preconditioning. Perhaps this insight could open
the possibility of other forms of preconditioning which are even more stable
than the mobility formulation.

The results in the rest of the paper are all calculated using the mobility
formulation of the problem.

2.7. Stability of the calculations

In this program we use relatively high degrees (up to 150) of spherical
harmonics. Most recurrence relations for computing these harmonics are
subject to cancellation and mild instabilities, and have problems for high
degrees and orders. However, the stability of the recurrence relation given
by equations (11–12) was discussed in Appendix B of [13] (in which it is
equation C6). They used degrees up to 550 without any loss of accuracy.

3. Validation of the method

We validated the program against all the two-sphere results available in
the literature, many of which are tabulated in [16], but there are only two
test cases available for three spheres.

3.1. Triangle of spheres

The first three-sphere test case is the setup discussed briefly in section 2.6,
which was first studied by [17]. He used a MR method, but without the

2Explanation by Sangtae Kim; private correspondence
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rotations included in our code, and he restricted himself to the resistance
problem, which we have seen has adverse effects on convergence. We can
easily reconstruct resistance results and in this section we carry out a detailed
comparison with his data. The same system was studied using a BEM by [8],
whose results for very close spheres illustrate the difficulty of finding accurate
solutions when lubrication interactions are involved.

Consider an equilateral triangle of three equal spheres, each of radius a,
with centres separated by a distance as, moving in the direction perpendicu-
lar to their plane of centres. The standard resistance problem for this setup
would be to impose the velocity (and zero angular velocity) and calculate
the required force and torque. This was the problem addressed by Kim, who
published only the force results (not those for torque). He also had conver-
gence problems for s ≤ 2.16, which were slightly improved by some clever
accelerated series. In figure 1 we reproduce part of his figure 1, showing his
numerical results for the drag. The crosses are from his original numerical
method, the asterisks from the accelerated series. The results from figure
10 of [8], which used the Boundary Element Method, are also plotted on
figure 1.

To reproduce this information using the mobility code requires two sep-
arate problems to be studied. In the first, we apply a unit force (out of the
plane) to each sphere. This results in an out-of-plane velocity but also in
rotations of each sphere about an axis which is parallel to the line joining
the centres of the other two spheres. We denote these values by MUF and
MΩF respectively. Second, we impose a symmetrical set of unit torques to
the spheres, in the same directions that the angular velocities occurred in the
previous problem. This results in a new set of angular velocities about those
same axes, MΩT , and a new set of equal velocities out of the plane, MUT . It
can be proved that MUT = MΩF using the reciprocal theorem.

Given this information, we can formulate the matrix systems:(
U
Ω

)
= M

(
F
T

)
=

(
MUF MΩF

MUT MΩT

)(
F
T

)
(

F
T

)
= R

(
U
Ω

)
=

(
RFU RFΩ

RTU RTΩ

)(
U
Ω

)
so that R = M−1 and Kim’s results for RFU can be reconstructed as

RFU =
MΩT

MUFMΩT −MΩFMUT

=
MΩT

MUFMΩT −M2
UT

.
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s MUF MΩF MΩT MUT RFU

3.00 1.53416156 0.140187608 0.771951396 0.140187608 0.662821
2.90 1.55461831 0.149081378 0.772261325 0.149081378 0.655377
2.80 1.57664602 0.158630515 0.771969753 0.158630515 0.647648
2.70 1.60039150 0.168801210 0.770692987 0.168801210 0.639623
2.60 1.62599574 0.179481457 0.767809702 0.179481457 0.631297
2.50 1.65356957 0.190411103 0.762285310 0.190411103 0.622662
2.40 1.68314045 0.201041187 0.752325593 0.201041187 0.613716
2.30 1.71452988 0.210224103 0.734617762 0.210224103 0.604460
2.25 1.73072508 0.213577673 0.720980855 0.213577673 0.599716
2.20 1.74703222 0.215412007 0.702342997 0.215412007 0.594897
2.15 1.76311004 0.214756269 0.676197489 0.214756269 0.590004
2.10 1.77826951 0.209731929 0.637667933 0.209731929 0.585039
2.05 1.79070892 0.195478184 0.573859459 0.195478184 0.580005
2.01 1.79223228 0.159607490 0.455596646 0.159607101 0.575932

Table 1: Mobility and resistance results for a system of three equidistant spheres moving
out of their plane.

In table 1 we give the results for the mobility calculations for a range
of values of s. In all cases except s = 2.01, the results have converged to
a global error of 10−13; at s = 2.01 memory constraints on the computer
available limited the number of terms which could be kept, so a global error
of 3× 10−6 was used.

We investigate the limit of touching spheres, RT
FU . Extrapolation of the

last six evenly spaced data points (the range s = 2.05–2.3) gives a linear fit
of

RFU = 0.5752 + 0.0978(s− 2).

The 90% confidence interval on the slope here is [0.0964,0.0993]; that on the
intercept, [0.5745,0.5759]. The resultant estimate for the drag coefficient for
a triangle of touching spheres is RT

FU = 0.5752. For comparison, Tran-Cong
with their Boundary Element Method had a value of 0.583; Kim (extrapolat-
ing from the separations at which his program converged) predicted 0.585;
and the only experimental data point available (from [18]) has RT

FU = 0.574.
We can see that the current method produces a value much closer to that
observed in experiments, than any of the previous attempts.

In figure 1 it is interesting to note that, while the BEM of [8] behaves
better than the Method of Reflections of [17] for small separations (as one
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Figure 1: Drag coefficient for three identical spheres arranged with centres forming an
equilateral triangle. The spheres each have radius a, the triangle has side as, and the
spheres are moving perpendicular to their plane of centres. The upper solid line is part
of figure 1 from [17], showing his raw results, and the asterisks ∗ are his results after
using accelerated series. The lower solid line is the numerical results from figure 10 of
[8]. The circles • are our numerical results (shown explicitly as RFU in table 1). The
linear extrapolation of our results to touching spheres (s = 2) gives a value for the drag
coefficient at contact of 0.575.
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would expect), for sphere separations greater than 2.6a the BEM results lose
accuracy. The reason for this is not clear; the discretisation of the sphere
surfaces must be the root cause of the inaccuracy, but why should it have
a more marked effect at this separation than when the spheres are close
together?

3.2. Spheres in a line

The second test case is also taken from [8]. Three spheres of radius a
are arranged equispaced on a line, with centre-to-centre separations as, and
allowed to sediment (under a force which would produce unit velocity on an
isolated sphere) perpendicular to that line. The two outer spheres fall at
equal speeds U1 and the centre sphere at speed U0; and the outer spheres
rotate at angular velocity Ω.

Results are available from [8] for touching spheres s = 2, and for sepa-
rations of s = 2.05, 2.1, 2.4, and 3; the same system at a separation s = 4
(for 3 spheres and also larger numbers) was studied in figure 6 of [19] using a
collocation method. The velocity values in the literature are all reported as
a dimensionless drag Di = 1/Ui, so we follow that convention. The angular
velocities in [8] are made dimensionless using U1/a; we follow the convention
of [19] instead, and make them dimensionless relative to Us/a, where Us is the
Stokes settling velocity of an isolated sphere. These literature results have
been read directly from figures with a ruler, and are thus only reproduced
to three decimal places. In table 2 we report our velocities (converged to a
global error of 10−8) along with those from the literature. We ignore the case
of touching spheres, as we cannot reproduce it. The velocity (or drag) for all
the spheres is reproduced to within graphical accuracy in all cases; the worst
calculation is the angular velocity at a separation of s = 2.05, and even there
the relative error is only 1.8%, which is within the magnitude of errors we
observed in section 3.1 with the BEM of [8].

4. Stokesian Dynamics: A Quantitative Study

In this section we compare the numerical method of Stokesian Dynamics,
SD [11], in its original form for a finite set of identical spheres in an un-
bounded fluid, against our exact results for three spheres. It should be borne
in mind that the current method is not a candidate to replace SD: it is far
too numerically intensive. Nonetheless, it is interesting to see what errors
are inherent in the SD formulation.
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Literature Current Method
s D0 D1 Ω D0 D1 Ω

4.00 0.720 0.777 0.058 0.7194 0.7755 0.0586
3.00 0.651 0.717 0.105 0.6522 0.7177 0.1036
2.40 0.595 0.666 0.159 0.5946 0.6663 0.1578
2.10 0.562 0.634 0.192 0.5610 0.6337 0.1919
2.05 0.557 0.629 0.197 0.5561 0.6277 0.1934

Table 2: The dimensionless drag D0 (centre sphere) and D1 (outer spheres) and angular
velocities Ω for three collinear spheres of radius a equispaced at a distance as, sedimenting
perpendicular to their line of centres. In the limit s → ∞, Di → 1 and Ω → 0. The
literature values for s ≤ 3 are taken from figures 12 and 13 of [8], those for s = 4 from
figure 6 of [19].

Stokesian Dynamics is based on the multipole expansion. Far-field inter-
actions are captured through a grand mobility matrix of two-body far-field
interactions, which is inverted to give many-body effects such as screening.
Then close-particle interactions are included by the addition of exact (tabu-
lated) two-body resistance functions (and then a correction to avoid double-
counting). As such, it is designed to be accurate for well-separated particles,
and lubrication forces between close particles with relative motion are also
captured accurately. In order to assess the systematic errors inherent in
the SD approximation, we consider several problems based on three spheres,
which highlight the strengths and weaknesses of SD.

4.1. Test case: Triangle moving out of plane

Our first geometry is similar to that discussed in section 3.1: a system
of three identical spheres of radius a arranged in an equilateral triangle of
side as. We apply a force 6πµa to each sphere, acting perpendicular to
the plane of the sphere centres. Since Stokesian Dynamics is formulated
for dynamic simulation, it naturally considers the mobility problem rather
than the resistance form, so we allow the spheres to rotate freely. To fully
reproduce the data of [17] and [8] we would need to constrain the spheres not
to rotate, or carry out two separate calculations as in section 3.1; since we
have already validated our code against those results, here we simply carry
out the mobility calculation and compare the resultant velocities and angular
velocities. In figure 2 we plot the sphere velocities and the magnitude of the
angular velocities against the dimensionless centre-to-centre separation s.
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Figure 2: Velocities (+) and angular velocities (•) for an equilateral triangle of spheres
forced perpendicular to their plane of centres. The curves are from Stokesian Dynamics
and the points from the current method. The angular velocities are captured by SD more
accurately than the velocities, but neither case produces a relative error of more than
around 1%.

As we can see, the SD results agree with our results (to within graphical
accuracy) for well-separated spheres; but as the spheres become close there
is a systematic error in SD. The sphere velocities are underpredicted by SD,
with the maximum relative error being for the closest spheres, where the
velocities predicted by SD drop off sharply. These are not large errors: at a
separation of 2.01, the true velocity is 1.792, whereas SD predicts a velocity
of 1.770; this is a relative error of only 1.2%. The angular velocities are
predicted to within graphical accuracy at all separations.

4.2. Test case: Triangle with motion within the plane

In this section we consider a problem which has only one (reflective)
symmetry, and in which true lubrication forces occur, through the approach
of close spheres. The spheres (each of radius a) are arranged in an equilateral
triangle of side s as before. A force of magnitude 6πµa is applied to sphere 1,
acting towards the centroid of the triangle, and spheres 2 and 3 are force-free
and torque-free. We denote the resultant velocity of sphere 1 as U1, and the
velocities of spheres 2 and 3 in the same direction as U2. Spheres 2 and 3
also move apart with equal and opposite velocities U3, and rotate with equal
and opposite angular velocities of magnitude aΩ. We show these velocities
in table 3. In all cases our results may be considered exact (converged to a
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Current Method SD
s U1 U2 U3 Ω U1 U2 U3 Ω

2.01 0.65528 0.63461 0.00498 0.037336 0.64739 0.62691 0.00451 0.034339
2.10 0.73857 0.59718 0.03517 0.052035 0.73126 0.58784 0.02570 0.051414
2.50 0.87765 0.49545 0.07393 0.045466 0.87482 0.48829 0.05853 0.045446
3.00 0.93905 0.41694 0.07824 0.035022 0.93806 0.41356 0.06970 0.034843
4.00 0.97964 0.31859 0.06925 0.021634 0.97945 0.31774 0.06639 0.021581
6.00 0.99581 0.21586 0.05078 0.010159 0.99579 0.21575 0.05019 0.010153

Table 3: Velocities and angular velocities for a triangle of spheres of radius a, arranged
in an equilateral triangle of side as, one of which is driven towards the triangle centroid
with a force 6πµa. It has resultant velocity U1; U2 is the induced velocity in the other two
spheres in the same direction, and ±U3 their velocity perpendicular to the forcing. They
rotate with angular velocity ±aΩ. Results are shown for our method and for Stokesian
Dynamics (SD).

global error of at most 10−7).
The quantity U3, which is the antisymmetric velocity of the unforced

spheres. is the most susceptible to errors, both in absolute and relative
terms. It is underrepresented by SD at all separations, with the worst errors
occurring at intermediate separations. At s = 2.01 the relative error is 9%;
at 2.1 it is 27% and even at 2.5, with relatively well-spaced spheres, the
relative error is 21%. Thereafter it decreases with increasing s, and for very
well-separated spheres at s = 6 the relative error is only around 1%.

4.3. Test case: Spheres in a line

In this final test case, we arrange our three spheres equispaced in a line
(with centre-to-centre separation as), and apply a force 6πµa to the middle
sphere, acting towards one of the others. The two outer spheres have equal
velocities U1, and the centre sphere velocity U0. Of course, as s → ∞, U0 → 1
and U1 → 0; and as s → 2, U0 → U1 as the three spheres move as a solid
object. These results for 2 ≤ s ≤ 3 are shown in figure 3. In this case, SD
and the current method agree to within graphical accuracy at all separations.

4.4. Stokesian Dynamics: Conclusions

In every geometry, we find that SD is highly accurate for well-separated
particles. The interesting study occurs when the particles are relatively close
– say, within half a radius gap between their surfaces.
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Figure 3: Velocities for three equispaced spheres in a line, with the centre sphere forced
towards one of the others, plotted against dimensionless separation. The upper line is the
velocity of the centre sphere (which tends to 1 for well-separated spheres) and the lower
line that of the outer two spheres. The points • are from the current method, and the
curves from Stokesian Dynamics.

Our third test case, in which the spheres were moving in direct approach
to (or separation from) one another, is one where the two-sphere lubrica-
tion interactions are very strong, so it is hardly surprising that Stokesian
Dynamics does very well here. The triangular geometries throw up more
surprises.

The out-of-plane triangular motion (almost a rigid motion, apart from
the sphere rotations) is captured reasonably well; the inability of SD to fully
capture the three-sphere interaction when the spheres are close causes only
minor errors. There are no strong lubrication interactions here, so the two-
body approximation for close spheres is not as good as in the straight line
problem above; but it does well nonetheless.

However, in the in-plane triangular motion we have a test case which
shows some genuinely erroneous behaviour in SD. At a worst case, relative
errors of over 25% are observed in the angular velocities. The absolute errors
are never very large, but it is clear that this geometry somehow highlights any
weakness inherent in SD. It is not surprising, given the relative motion and
the strong lubrication interactions, that very close spheres are well modelled
in this case. The errors occur in the intermediate regime where the spheres
are neither very close nor well separated. It is perhaps surprising that a
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Figure 4: Geometry for section 5. A force 12πµaẑ is applied to sphere 3.

separation of 0.1 radius should be in the intermediate rather than the close
regime; this is where we found the most significant errors.

5. System with Different Sized Spheres

Here we consider a family of problems involving two spheres of equal
radius a and a third sphere of radius 2a. The two spheres of radius a are
located with their centres a distance (6 + 3ξ)a apart, and the third sphere,
of radius 2a, lies in the plane of symmetry between them (so that the three
sphere centres define an isosceles triangle), a perpendicular distance ah from
the line joining the two smaller spheres. A force of magnitude 6πµ(2a) is
applied to the large sphere, acting directly away from the base of the triangle.
The geometry is illustrated in figure 4, along with a standardised numbering
of the spheres and a left-handed Cartesian basis system.

The resultant sphere velocities are

U 1 = Ax̂+Bẑ U 2 = −Ax̂+Bẑ U 3 = Dẑ

Ω1 = −Cŷ/a Ω2 = Cŷ/a Ω3 = 0

with all other components being identically zero by symmetry. We will con-
sider two special cases: the case ξ = 0, in which the two small spheres have
a space exactly 4a between their surfaces, into which the large sphere fits as
h → 0; and the case h = 0, in which the three spheres lie in a straight line,
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and A = 0 by symmetry. The contact situation h = ξ = 0 is a limiting case
of both these geometries.

5.1. Far-field

When the spheres are well-separated (h or ξ large) we can predict the
leading-order contributions to the velocities. The large sphere, moving under
a force of magnitude 6πµ(2a), where 2a is its radius, will have unit velocity
in the ẑ direction. The leading approximation to the small sphere velocities
is found from the flow field produced by a point force of that magnitude,
assuming that the small spheres are simply advected (and rotated) passively
with the fluid around them. The flow field and angular velocity due to a
point force of magnitude 12πµa in the ẑ direction are

u =
3a

r
cos θer −

3a

2r
sin θeθ, ω =

1

2
∇× u =

3a

2r2
sin θeφ, (34)

where (r, θ, φ) are spherical polar coordinates centred on the large sphere,
with the axis θ = 0 aligned with ẑ.

Substituting in the position of each small sphere, we obtain (with the
upper sign denoting sphere 1 and the lower, sphere 2):

U = ±9a3h(2 + ξ)

4r3
x̂+

3a3[8h2 + 9(2 + ξ)2]

8r3
ẑ Ω = ∓9a2(2 + ξ)

4r3
ŷ (35)

with r2 = a2(h2 + (3 + (3ξ/2))2), which gives the following leading-order
contributions to the velocity components:

ξ = 0, h → ∞ : A ∼ 9

2
h−2 B ∼ 3h−1 C ∼ 9

2
h−3 D → 1, (36)

h = 0, ξ → ∞ : A ≡ 0 B ∼ ξ−1 C ∼ 2

3
ξ−2 D → 1, (37)

all of which we reproduce correctly.

5.2. Contact

The contact case h = ξ = 0 is the limit of both our geometries. We know
that at contact the spheres must move as a single rigid object; by symmetry,
there will be no angular velocity, so we have only one variable, the linear
velocity of the triplet which we denote

U 1 = U 2 = U 3 = VC ẑ.
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This means that at contact we will have B = D = VC and C = 0.
As we approach contact, we feel the limitations of the Method of Re-

flections, and we cannot simulate an exactly touching system. Because of
memory constraints, we cannot keep more than 150 terms in each angular
expansion. This limits the accuracy of our solutions for gaps closer than
around 0.01a; however, we have iterated until convergence (a neglected con-
tribution per iteration below 10−6) in all cases.

In order to obtain an estimate of VC , we observe that in the pure contact
limit it does not matter whether the force is applied to the central sphere
(sphere 3), or symmetrically to the two end spheres, or indeed in any combi-
nation which has the same total force and no applied torque across the rigid
body. Thus we consider two scenarios, which must be equivalent at contact:

1. Force 12πµaẑ applied to the large sphere: resultant velocities UL
1 ẑ,

UL
3 ẑ, U

L
1 ẑ;

2. Force 6πµaẑ applied to each small sphere: resultant velocities US
1 ẑ,

US
3 ẑ, U

S
1 ẑ.

In fact US
3 = UL

1 . Then, using the linearity of Stokes flow, it is straightfor-
ward to show that a combination of input forces (with the same total force
as our two test cases)

F 1 = F 2 = α6πµaẑ F 3 = (1− α)12πµaẑ

would produce velocities

U 1 = U 2 = (αUS
1 + (1− α)UL

1 )ẑ U 3 = (αUS
3 + (1− α)UL

3 )ẑ

so that if we were to select α = (UL
3 −UL

1 )/(U
S
1 +UL

3 − 2UL
1 ) we would have

U 1 = U 2 = U 3 =

(
US
1 U

L
3 − (UL

1 )
2

US
1 + UL

3 − 2UL
1

)
ẑ.

We have calculated these velocities, and the resultant estimate for VC , at
various values of ξ in the case h = 0, and these results are shown in table 4.
All gaps ξ ≤ 0.01 predict VC = 0.800 correct to 3 decimal places, so this is
our result for contact.

5.3. Moderate separations

In figures 5 and 6 we show the velocities A, B, C and D as either h or ξ
is varied. The plots against h are on a linear scale, whereas those against ξ
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ξ US
1 US

3 = UL
1 UL

3 VC estimate
0.5000 1.0800821 0.44874295 0.99573622 0.741817
0.2000 1.0636104 0.53144811 0.98659225 0.776773
0.1000 1.0432806 0.57179602 0.97712348 0.789751
0.0500 1.0221154 0.59954901 0.96690727 0.796066
0.0200 0.9968676 0.62468302 0.95370717 0.799321
0.0100 0.9805922 0.63853121 0.94447949 0.800030
0.0050 0.9666076 0.64965058 0.93606716 0.800108
0.0020 0.9512996 0.66127634 0.92661956 0.799839

Table 4: Linear velocities of the outer spheres (U1) and the central, larger sphere (U3) for
two different distributions of the force 12πµaẑ along the triplet of spheres at h = 0: force
applied to the large sphere (UL) or distributed equally between the two small spheres
(US). The final column is the resultant estimate of the common contact velocity VC .

are on a log scale: this is simply to present two different perspectives, as the
two sets of curves look rather similar to one another.

At a first glance, figure 5 seems to indicate that we have a problem at
small separations, as the points for A and C are not obviously tending to zero
as h → 0, and those for B andD are not obviously tending to a common value
of 0.800. However, this is purely a result of the slow logarithmic dependence
of these velocities on inter-particle separation. This issue is made explicit in
the logscale figure, figure 6.

In this logscale plot against ξ (figure 6), we also give far- and near-field
approximations to the velocities. For the far field, these are the forms derived
in equation (36). We could, of course, have plotted the equivalent forms of
equation (37) in figure 5, but they are not good fits on the scale of that
figure. For the near field, we use a semi-empirical curve for each velocity for
small gaps, whose derivation we explain here. These curves use the extracted
contact velocities B = D = VC = 0.800 and the fact that C = 0 at contact,
and are based on the observation that the particle interactions are likely to
be dominated by the pair-interactions between particles 1 and 3 and particles
2 and 3; that is, direct interactions between the two small particles will be
less important. If we were to discard sphere 2, the resultant velocities for
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Dimensionless offset in the z-direction, h
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Figure 5: Plot of the velocities A (+), B (•), C (×) and D (∗) against h in the case ξ = 0.
In the contact limit h = 0, we expect A = C = 0 and B = D = 0.800.

small ξ are given [15, 16] by

U 1 =
4

3

0.53482(ln ξ−1)2 + 2.50225 ln ξ−1 + 1.23963

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
ẑ +O(ξ(ln ξ)3) (38)

U 3 =
0.92729(ln ξ−1)2 + 5.61052 ln ξ−1 + 4.40223

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
ẑ +O(ξ(ln ξ)3) (39)

Ω1 =
4

3a

−0.05355(ln ξ−1)2 − 0.99178 ln ξ−1 + 0.04487

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
ŷ +O(ξ ln ξ)(40)

Ω3 = − 3

4a

0.09519(ln ξ−1)2 − 0.03922 ln ξ−1 − 0.23881

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
ŷ +O(ξ ln ξ).(41)

We expect both the logarithmic dependence on gap, and the specific denom-
inator of the fractions, to carry over to our three-sphere problem. So we fit
the form

U =
α(ln ξ−1)2 + β ln ξ−1 + γ

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
(42)

to each of our scalar velocities B, C and D, forcing the known contact values
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Dimensionless sphere separation, ξ
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Figure 6: Plot of the non-zero velocities B (•), C (×) and D (∗) against ξ in the case
h = 0. The two dashed lines on the right of the plot (plotted only for ξ ≥ 2) are the
far-field forms for B and C from equation (36); in the far field D → 1. The dotted lines on
the left of the plot (plotted only for ξ ≤ 1) are the semi-empirical fit of equations (43–45).
The horizontal line is the extrapolated contact velocity VC , which is also the contact limit
of Bnf and Dnf .

α = VC , 0, VC respectively. The near field fits we obtain are

Bnf ∼ 0.800(ln ξ−1)2 + 3.086 ln ξ−1 + 1.413

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
(43)

Cnf ∼ 1.701 ln ξ−1 − 0.566

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
(44)

Dnf ∼ 0.800(ln ξ−1)2 + 5.960 ln ξ−1 + 3.924

(ln ξ−1)2 + 5.59906 ln ξ−1 + 4.17702
(45)

and these are included on the left-hand-side of figure 6. It is clear that the
data fit well with this model, so the appearance of non-convergence to the
known contact values is simply an artifact of the log-form of the mobilities.

We see that, as expected, in either geometry the velocity B of the small
spheres increases monotonically from zero in the far field, to 0.800 at contact,
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as the spheres are brought closer together and the small spheres feel more of
the force being applied to the large sphere.

The velocity D of the large sphere, similarly, decreases monotonically
as it is slowed by the presence of the smaller spheres, from 1 at very large
separations, to 0.800 at contact; but even for relatively close spheres its
velocity is still well approximated by the velocity for an isolated sphere.

The remaining velocities A and C, which are both zero at contact and
also when the particles are very well separated, each therefore have a max-
imum at some intermediate separation. For the antisymmetric velocities A,
the maximum velocity magnitude in the triangular geometry is 0.136 (at a
position h = 2.5); in the straight line geometry these velocities are identi-
cally zero. For the angular velocities C, the maximum velocity magnitude
in the triangular geometry is 0.143 (at a position h = 0.5, which repre-
sents a surface-to-surface gap of 0.041a); and in the straight line geometry,
the maximum velocity is 0.146 (at a position ξ = 0.05, which represents a
surface-to-surface gap of 0.075a). The close location of these maxima in the
angular velocities is an indication of how challenging the near-field solution
of this problem can be.

In isolation, this example gives only an idea of the interactions required
to properly model a flow containing polydisperse spheres; but the computer
program used to produce these data is available from the author by email on
request.

6. Discussion

We have presented a numerical method for the calculation of the motion
of three spheres in Stokes flow which is a slight modification to the standard
Method of Reflections, incorporating rotation of coefficient fields by an effi-
cient method introduced by [20]. The method has the potential to be more
accurate than multipole methods, but because of its numerical cost is unsuit-
able for problems involving more than three spheres. We observe that the
iterative scheme converges unconditionally for the mobility problem, whereas
the corresponding resistance problems often fail to converge when spheres are
close.

After validating our method against the existing literature, we first com-
pared Stokesian Dynamics with our results for a few simple test cases. In
most cases, as would be expected, Stokesian Dynamics is very accurate, but
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it was possible to find scenarios producing errors of up to 25%. These most
serious errors occurred at an inter-particle separation of around 0.1 radius.

Finally, we have produced a case study of a system having spheres of
different sizes: specifically, two spheres of radius a and one of radius 2a.
In the specific geometry we studied, we found that the angular velocities of
the small spheres (which would be zero at contact) had a maximum value
when the surface gap between the particles was around 0.05a, indicating that
lubrication theory in this instance is liable to produce a good approximation
to the true velocity only for spheres which are exceptionally close to contact.
For the simple case of the three spheres, arranged symmetrically, contacting
in a straight line, and feeling a force perpendicular to their line of centres,
we calculated the drag coefficient for the triplet as

U

F
=

0.800

12πµa
=

0.0667

πµa
.

The FORTRAN code used to produce all the results in this paper is available
from the author on request by email.
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