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Abstract

Objective: The evaluation of HIV treatment programs is generally based on an estimation of survival among patients
receiving antiretroviral treatment (ART). In large HIV programs, loss to follow-up (LFU) rates remain high despite active
patient tracing, which is likely to bias survival estimates and survival regression analyses.

Methods: We compared uncorrected survival estimates derived from routine program data with estimates obtained by
applying six correction methods that use updated outcome data by a field survey targeting LFU patients in a rural HIV
program in Malawi. These methods were based on double-sampling and differed according to the weights given to survival
estimates in LFU and non-LFU subpopulations. We then proposed a correction of the survival regression analysis.

Results: Among 6,727 HIV-infected adults receiving ART, 9% were LFU after one year. The uncorrected survival estimates
from routine data were 91% in women and 84% in men. According to increasing sophistication of the correction methods,
the corrected survival estimates ranged from 89% to 85% in women and 82% to 77% in men. The estimates derived from
uncorrected regression analyses were highly biased for initial tuberculosis mortality ratios (RR; 95% CI: 1.07; 0.76–1.50 vs.
2.06 to 2.28 with different correction weights), Kaposi sarcoma diagnosis (2.11; 1.61–2.76 vs. 2.64 to 3.9), and year of ART
initiation (1.40; 1.17–1.66 vs. 1.29 to 1.34).

Conclusions: In HIV programs with high LFU rates, the use of correction methods based on non-exhaustive double-
sampling data are necessary to minimise the bias in survival estimates and survival regressions.
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design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rene.ecochard@chu-lyon.fr

Introduction

In the last five years, antiretroviral treatment (ART) programs

have scaled-up in Sub-Saharan Africa to provide ART to millions

of people. One of the main indicators used to evaluate the

effectiveness of these programs is survival after ART initiation;

however, this indicator is often biased because of underreporting

and unrecorded deaths [1].

Several approaches have been proposed to minimise the

attrition of study cohorts and ascertain the vital status of lost to

follow-up (LFU) patients [2–5]. However, high rates of loss to

follow-up represent a persistent challenge in program evaluation

[6] and, there is yet no validated and commonly accepted method

to analyse program data taking into account loss to follow-up data

in the absence of vital registration systems.

Generally, program evaluations use estimates of the probability

of remaining in care considering deaths and losses to follow-up as

program failures [7]. These estimates may be difficult to interpret.

Indeed, the death rate is frequently higher among LFU than

among non-LFU patients for several reasons [8–10]: i) death can

be the cause of the loss to follow-up; ii) patients prone to loss to

follow-up might be frailer than the others and have higher risks of

death; and, iii) after a few weeks or months without treatment,

LFU patients become frailer than the others.

The traditional (uncorrected) approach considers that loss to

follow-up is equivalent to administrative censoring at loss to

follow-up date. Whenever human and financial resources are

available, a double-sampling approach is used to ascertain the

outcome of all or a subset of LFU patients and to correct the death

rates either by updating the routine information or by applying a

weighted average of the death rates observed among LFU and

non-LFU patients [11]. In the absence of resources, external data

from meta-analyses may be used to estimate the death rate among

LFU patients [12]. More recent and sophisticated correction
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methods based on double-sampling have been shown optimal and

provided unbiased estimations under some assumptions [13,14].

Whenever no correction or a non-optimal correction is made, the

magnitude of the bias may be significant.

Within the context of cohort attrition, some methods for

regression analysis [15] are able to provide unbiased results when

the probability of loss to follow-up does not change over the

follow-up duration. An alternative method used herein provides

also unbiased results even when the probability of loss to follow-up

changes over time after follow-up onset.

In the present study, we use six different methods to correct data

from a large HIV program in rural Malawi and compare the

corresponding estimates of one-year survival to quantify bias

reduction. We also propose a method to correct survival regression

analyses.

Methods

The HIV program in Chiradzulu and data sources
Since 2001, Médecins Sans Frontières (MSF) and the Malawian

Ministry of Health and Population have provided free ART to

HIV-infected persons in Chiradzulu district, Malawi. Individual

basic socio-demographic, clinico-immunological, and treatment

data were collected at each clinical visit.

Later, a survey was conducted, as part of an internal audit of

programme activities, to trace LFU patients and determine their

outcomes and reasons for care discontinuation. All patients with

an available address in Chiradzulu district and followed-up in one

of MSF-supported health facilities were traced. Eleven district-

wide catchment areas were defined according to the access to the

facilities where care was provided. One survey worker from the

community was hired within each catchment area and paid during

the whole survey period. The survey workers had to cover the

catchment areas by teams of two (on bicycles with car support

when necessary) and each worker, in turn, was the team leader in

his catchment area. All the workers were supervised by a long-

term MSF worker. LFU patients were traced at least three times

before the end of the ten-day search allotted for each catchment

area. Various findings from this survey have been reported

elsewhere [5].

In the present study, we analysed routine monitoring data on

6,727 ART-naive patients initiated on ART in the Chiradzulu

program between July 2004 and July 2007 and aged 15 years or

more at ART initiation. To facilitate comparisons of our results

with previous literature, we limited the analysis to the first year

after ART initiation. Thus, patient follow-up started at ART

initiation and was censored at the earliest of the following dates:

house moving, last clinical visit, or end of a one-year follow-up. A

patient was considered LFU if he (she) missed a scheduled

appointment by more than one month. The same censoring, one

year after ART initiation, was used for traced patients.

During the study period, 610 (9.1%) patients died, 583 (8.7%)

were LFU, and 413 (6.1%) were transferred out of the program.

Among LFU patients, 305 (52%) could be traced and the vital

status was ascertained for 202 (66%) (Figure 1).

Statistical analyses
The characteristics of LFU and non-LFU patients were first

described and compared using proportions and chi-square tests for

categorical variables and medians, interquartile ranges (IQRs),

and Kruskal-Wallis tests for continuous variables.

Patient survival estimates obtained using six different data

correction methods were compared to the estimates obtained

from uncorrected monitoring-program data. The six correction

methods were: 1) the updated-dataset approach, 2) the stratified

Kaplan-Meier approach, 3) the nomogram approach, 4) the time-

dependent stratified Kaplan-Meier approach, 5) the time- and

frailty-dependent stratified Kaplan-Meier approach, and, 6) a

regression method corrected for missing information on death

(Table 1). Survivals were estimated separately for men and

women. Table 2 provides a list of assumptions necessary to obtain

unbiased estimates.

For the updated-dataset approach, the data on outcome were

updated using the data collected during the survey ignoring that a

subset of LFU patients cannot be traced or found. Moreover, a

sensitivity analysis was carried to investigate the way in which the

results would be modified if all LFU patients were assumed to die

immediately after the last visit.

For the stratified Kaplan-Meier approach, mortality was first

calculated separately for non-LFU patients and LFU patients who

were traced and had their vital status ascertained. The two

mortalities were then combined applying weights that correspond

to the proportions LFU and non-LFU patients recorded at one

year after ART initiation.

With the nomogram approach, graphical estimates of the death

rates were obtained taking into account mortality in LFU and non-

LFU patients up to time t [12] and the proportion of LFU patients

at end of follow-up.

The time-dependent stratified Kaplan-Meier approach was

used to account for changes in the probability of loss of follow-up

over time [13]. The estimated death rate at each time point was

calculated using the updated weighted averages of the death rates

among non-LFU patients and among LFU patients who were

traced and had their vital status ascertained. The weights were,

respectively, the proportions of non-LFU and LFU patients at

each time point t. This method ignores a crucial heterogeneity

between the patients at time t; actually, LFU patients could be

frailer than regularly followed-up ones.

Figure 1. Flow chart of the study cohort.
doi:10.1371/journal.pone.0031706.g001
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The time- and frailty-dependent stratified Kaplan-Meier

approach was proposed by An et al. [14] to account for that

frailty. It was applied using weighted averages within strata of

subjects having the same propensity to be lost-to-follow-up.

Regression methods were finally used to compensate for the lack

of information on death. In a first step, a logistic regression was

applied to a dataset that included only deceased patients. In this

logistic regression, the dependent variable was coded 1 when death

was ascertained from the routine program data and 0 when death

was ascertained after tracing LFU patients. This logistic regression

provided an estimate of the probability for a death to be recorded

in routine program data for each subgroup of patients. This

probability may be considered as the sensitivity of the routine

program to detect death; i.e., this sensitivity corresponds to the

likelihood of a death to be recorded in routine program data. In

the model, we included sex, age (as a continuous variable),

tuberculosis and Kaposi sarcoma diagnosis, CD4 cell count at

ART initiation (# or .150 cells/mm3), the year of therapy start

Table 1. Methods to correct survival estimates.

Method Presentation

1 Updated dataset The information obtained on the subset of LFU patients who were traced and whose vital status was ascertained was used to
update the dataset.

2 Stratified Kaplan-Meier First, the death rates were calculated separately for non-LFU and for LFU patients who were traced and whose vital status was
ascertained. These death rates were then combined to yield a weighted average. The weights used were the proportions of LFU
and non-LFU patients at the end of the study.

3 Nomogram See reference 12

4 Time-dependant stratified
Kaplan-Meier

The death rates were first separately calculated for non-LFU and for LFU patients who were traced and whose vital status was
ascertained at each event-time. These death rates were then combined to yield a weighted average. The weights used were the
proportions of LFU and non-LFU patients at each event-time.

5 Time- and frailty-dependent
stratified Kaplan-Meier

Step 1: A Cox proportional hazards model was used to identify factors predictive of LFU. The linear predictor of this model was
calculated. Quintiles of this linear predictor were used to create strata of subject having the same propensity to be lost-to-follow-
up. Step 2: Within each stratum, the death rates of non-LFU and traced LFU patients were computed. A global death rate was
finally obtained combining all strata estimators.

6 Regression analysis Step 1: A weighted logistic regression was applied to a dataset limited to dead patients using both the first-phase and the
second-phase sample. This logistic regression predicted the probability of a death to be reported as a function of the covariates.
This predicted probability was considered as a sensitivity. Step 2: The follow-up of each patient was split into successive time
periods of one month each. Step 3: A Poisson regression model was used to estimate the death rate within each month period,
the logarithm of the sensitivity being included in a standard Poisson regression model as an offset. Thus, the number of observed
deaths was supposed to follow a Poisson distribution having as mean the product: number of patients at risk6rate of
death6sensitivity. NB. The weight used in step 1 was 1 for patients whose death was identified in the first sample. The weight
given to patients in the second-phase sample was used to take into account that only a subset of LFU patients were traced and
had their vital status ascertained

+wt1 Weight = 1; i.e., ignores that only a subset of LFU patients were traced and had their vital status ascertained.

+wt2 Weight = the inverse of the proportion of patients traced and who had their vital status ascertained (see method 2)

+wt3 Weight = the inverse of the proportion of patients traced and who had their vital status ascertained, at each time band (see
method 4)

doi:10.1371/journal.pone.0031706.t001

Table 2. Conditions to be fulfilled to obtain unbiased estimates.

Condition

Method

Patients traced and who had
their vital status ascertained are
representative of LFU patients

The death rate
among LFU equals
that of non-LFU

No change in the
probability of being
LFU over time

The probability of LFU
does not depend on the
covariates

1 Updated dataset 3 3 3 3

2 Stratified Kaplan-Meier 3 3 3

3 Nomogram 3 3 3

4 Time-dependent stratified
Kaplan-Meier

3 3

5 Time and frailty dependent
stratified Kaplan-Meier

3

6 Regression analysis

+wt1 3 3 3 3

+wt2 3 3 3

+wt3 3 3

doi:10.1371/journal.pone.0031706.t002
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(2004–2005 or 2006–2007), and the delay between ART initiation

and death. Note that the national ART program was implemented

in 2004 in centralized hospitals throughout Malawi (approximately

55 sites). By the end of 2007, 109 sites were providing care. The

Chiradzulu program scaled up the decentralization of HIV

services in 2006. This was the reason for the choice of 2006 as a

threshold.

Three weighting options were applied to the logistic regression

to take into account that only a subgroup of LFU patients were

traced: 1) weight set to one (wt1), ignoring that only a subset of

LFU patients were traced and had their vital status ascertained; 2)

weight set to the inverse of the proportion of the above-mentioned

subset among LFU patients (wt2); and 3) weight set to the inverse

of the time-specific proportion of the above-mentioned subset

among LFU patients (wt3), allowing for changes in this proportion

over time. Poisson regression models were then fitted after splitting

individual patient follow-ups into successive one-month time

periods. Observed deaths in routine program data were assumed

to follow a Poisson distribution whose mean was equal to the

product of three factors: number of patients at risk6rate of

death6sensitivity. The results are presented as adjusted mortality

ratios (RR) with 95% confidence intervals (CI).

All the analyses were conducted using Stata 10 (StataCorp LP,

College Station, TX, USA), except the time- and frailty-dependent

stratified Kaplan-Meier approach for which a specific program,

developed in R software, was provided by the author of the

original publication [14].

Ethics
The protocols of the Chiradzulu project were approved within

the framework of formal agreements between MSF and the

Malawian Ministry of Health. The present observational study was

conducted under the supervision of the Malawi National Health

Science Research Committee with an agreement on collection and

use of routine programmatic data for monitoring and evaluation.

The study type did not require a formal submission for ethical

approval.

Results

Patient characteristics at ART initiation
From July 2004 to July 2007, 6,727 patients aged 15 years or older

were initiated on ART in the Chiradzulu program. At initiation, the

median patient age was 35.2 years (IQR: 30.0–43.0), 65% of the

patients were women, 5% had tuberculosis, and 4.7% had Kaposi

sarcoma (Table 3). Among the 3,271 patients with available CD4 cell

count at ART initiation, 24.9% had less than 150 cells/mm3.

The proportion of men was higher among LFU than among

non-LFU patients (66% vs. 54.4%; p-value = 0.0001). Compared

to patients in care, LFU patients were younger (median age 34.3

vs. 35.2, p-value = 0.0138) and more frequently diagnosed with

tuberculosis (8.1% vs. 4.9%; p-value = 0.0001) or Kaposi sarcoma

(12.2% vs. 4%; p-value = 0.0001) at ART start.

Sixty percent of the 202 LFU patients who were traced and had

their vital status ascertained during the survey were reported dead

whereas just 10% of non-LFU patients died during the first year of

ART (p-value = 0.0001).

Within the context of these comparisons, it should be noted that

the differences between LFU and non-LFU patients should

probably not be evaluated with p-values because these differences

are due to selection not to sampling error.

Comparison between survival estimates with and
without correction

As expected, with the uncorrected method based on the use of

routine program data, the highest one-year survival estimates were

84% in men and 91% in women (Figure 2).

With the updated-dataset method and the regression method

with wt1 (i.e., ignoring that only a subset of LFU patients were

traced and had their vital status ascertained), the corrected one-

year estimates were 2% lower in men and women. The estimates

obtained with the time-dependent stratified Kaplan-Meier ap-

proach as with the survival regression were 7% and 6% lower than

the uncorrected estimates in men and women, respectively. With

the nomogram method, the results were intermediate; i.e., the

Table 3. Patient characteristics and mortality among lost to follow-up and non-lost-to-follow-up patients.

Characteristics Cohort Non-LFU LFU p-value *

Number 6,727 6,144 583

Women 4,372 (65.0%) 4,055 (66.0%) 317 (54.4%) 0.0001

Age at ART start 35.2 [30.0;43.0] 35.2 [30.0;43.1] 34.3 [29.0;42.2] 0.0138

Tuberculosis at ART start 349 (5.2%) 302 (4.9%) 47 (8.1%) 0.001

Kaposi sarcoma at ART start 315 (4.7%) 244 (4.0%) 71 (12.2%) 0.0001

Year of ART initiation 0.0001

2004–2005 2,455 (36.5%) 2,170 (35.3%) 285 (48.9%)

2006–2007 4,272 (63.5%) 3,974 (64.7%) 298 (51.1%)

First CD4 cell count 0.0001

,150 cells/mm3 1,673 (24.9%) 1,573 (25.6%) 100 (17.1%)

$150 cells/mm3 1,598 (23.7%) 1,530 (24.9%) 68 (11.7%)

Missing 3,456 (51.4%) 3,041 (49.5%) 415 (71.2%)

Patients with known vital status 6,346 6,144 202

Deaths among patients with known vital status in the first year of ART 731 (10.9%) 610 (9.9%) 120 (20.6%) 0.0001

All values are expressed as number (percentage) but ‘‘Age at ART initiation’’ expressed as Median [Interquartile range].
*Pearson chi-square test was used for binary covariates and Student t-test for continuous covariates.
doi:10.1371/journal.pone.0031706.t003
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corrected estimates were about 3% and 2.5% lower than the

uncorrected ones in men and women, respectively.

With the updated-dataset method, supposing that, for the

sensitivity analysis, all LFU patients died immediately after their

last visit, the one-year survival estimates were 72% in men and

82% in women. These estimates were lower than the estimates

obtained using alternative methods.

Comparisons between regression methods with and
without correction

Table 4 shows the results of the regressions of the death rate on

the studied factors, with and without correction for lack of

information on death.

Uncorrected mortality ratios decreased with time of follow-up

(uncorrected RR = 0.80, 95% CI; 0.77–0.88 per month of follow-

up). These ratios were lower in women vs. men (0.62; 0.53–0.73)

and lower in patients with high vs. low CD4 cell counts (0.64;

0.48–0.86 for .150 vs. #150 cells/mm3). These ratios were also

higher in patients with vs. without an initial diagnosis of Kaposi

sarcoma (2.11; 1.61–2.76) and in those who started ART more

recently (1.40; 1.17–1.66 for start in 2006–07 vs. 2004–05).

Compared to the uncorrected estimates, the estimates obtained

with correction showed slower decreases in mortality over time

(RR ranged from 0.85, 95% CI; 0.82–0.87 with wt1 to 0.87; 0.84–

0.90 with wt2 regression) and lower mortality ratios in patients

who started ART more recently (RR ranged from 1.29; 1.08–1.54

with wt3 to 1.34; 1.12–1.60 with wt1 regression, for 2006–07 vs.

2004–05). Higher ratios were observed in patients with vs. without

initial diagnosis of Kaposi sarcoma (RR ranged from 2.64; 2.01–

3.48 with wt3 to 3.09; 2.35–4.06 with wt2 regression) and in

patients diagnosed with vs. without tuberculosis at ART start (RR

ranged from 2.06; 1.46–2.90 with wt3 to 2.28; 1.62–3.22 with wt1

regression). In contrast, mortality ratios in patients with high vs.

low CD4 cell counts were similar before and after correction (RR

ranged from 0.66; 0.49–0.87 with wt3 to 0.69; 0.51–0.92 with wt1

regression, for .150 vs. #150 cells/mm3).

Discussion

A number of previous studies have raised concerns regarding

poor patient retention in HIV care and warned that ART

program effectiveness could thus be overstated [16,17]. Our

findings illustrate the ways in which different statistical methods

based on double-sampling can be used to correct survival estimates

and how the reduction of bias varies according to the method

used. In this large HIV treatment cohort in rural Malawi where

survival estimates were 91% in women and 84% in men, the

Figure 2. Patient survival in men and women. The upper and lower packs of line identifiers correspond respectively to the visibly grouped
graphs or methods. SKM = stratified Kaplan-Meier method, wt = weight.
doi:10.1371/journal.pone.0031706.g002
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corrected estimates ranged from 89% and 82%, respectively, with

the simplest methods, to 85% and 77%, respectively with the most

sophisticated ones. These findings highlight the importance of

accounting for the unknown mortality in LFU patients and the

benefit of using sophisticated methods [14].

Broadly speaking, there are two ways of obtaining survival

estimates. The first is ‘‘retrospective’’; it uses outreach data –not

collected for weighting– through double sampling but adjusts

patient retention to be as representative as possible. The second is

‘‘prospective’’; it identifies the sampling frame ahead of time,

which ensures the representativeness of the double-sampled data

by design. Each way has its proper use, but two advantages of the

prospective approach are that it requires fewer assumptions and

subject only to sampling error.

As in previous studies, we observed a higher risk of death among

LFU patients than among patients retained in care [18]. The use of

uncorrected survival estimates would have therefore led to an

overestimation of the program performance. As described in a

South African study, linking patient data from HIV programs to

vital registers would be the ideal way to obtain unbiased estimates of

patient survival [19,20]. However, in many Sub-Saharan Africa

settings, vital registration is not available, which requires the use of

alternative correction methods. In the Chiradzulu program, the use

of data from a survey conducted to ascertain the vital status of LFU

patients and update the routine information did not succeed in

correcting for loss of follow-up because of the small proportion of

LFU patients who were traced and had their vital status ascertained.

The survival estimates given by the updated-dataset and the

regression methods corrected for lack of information on death

using the first weight option were only slightly lower that those

obtained without correction. This is because these two methods

ignore that a subset of LFU patients were not traced or their vital

status not ascertained. Higher estimates were obtained using the

nomogram and the stratified Kaplan-Meier approaches by

applying to all LFU patients the estimated death rate observed

among LFU patients who were traced and had their vital status

ascertained. Two advantages of the nomogram are that it is easy to

implement and does not require prior double-sampling because it

uses external data. Nomogram-derived estimates can be consid-

ered as a preliminary correction; however, caution is necessary in

the absence of double-sampling data.

The methods that take into account the proportion of LFU

patients at each time point during follow-up gave lower survival

estimates than the above-cited ones and may be considered as

gold-standards [13].

The regression method with the weighting option 2 (wt2)

proposed in the present study is close to another method proposed

recently within the same context [15]. The regression method with

the weighting option 3 (wt3) is a variant that accounts for changes

in the probability of loss to follow-up over time [13]. In our cohort,

the regression method proposed to correct survival estimates

taking into account the uneven likelihood of outcome ascertain-

ment among patients gave similar results to the uncorrected

regression methods but only for some factors. The uncorrected

survival regression analysis was sufficient to estimate the effects of

factors such as the initial CD4 cell count; this highlights the

importance of this predictor of mortality independently of patient

gender or other factors. However, the mortality ratios related to

tuberculosis doubled and the ratios related to Kaposi sarcoma

diagnosis at ART start increased by 25–40% when corrected

regression methods were used. These higher ratios may be

explained by the expected increased risk of loss to follow-up and

death among the patients presenting severe tuberculosis and

Kaposi sarcoma disease. This finding highlights the need to

correct survival regression models for the missing information on

death within the context of program evaluation in large HIV

cohorts with high loss to follow-up rates. However, this approach

might be too complicated to be implemented in routine programs.

Simpler statistical methods, such as the simulation-extrapolation

method (SIMEX) [21,22], could be good alternatives but they

require double-sampling.

Survival regression assumed that the sensitivity to correctly

identify deaths in the program was known and equal to the

observed estimation; however, this assumption may be wrong.

Structural equation modelling would avoid the need for separate

estimations of sensitivity and the death rate and provide accurate

confidence intervals.

The present study has several limitations. In our cohort, the

proportion of patients who were traced and had their vital status

ascertained represented only one third of all LFU patients. A study

by Anglaret et al. suggested that unfound LFU patients are at

higher risk of death than found ones [3]. This means that the

approaches that assume that traced LFU patients are a

representative sample of all LFU patients would overestimate

survival. A selection process could have affected the distribution of

the outcomes in the traced sample. Patients with no recorded

residence could be more vulnerable to mortality or have poor

access to health services. Patients living outside Chiradzulu district

may also differ from the others; however, there was no evidence to

suggest that a geographical selection would bias the results. Finally

Table 4. Relative mortality estimated with Poisson regression on uncorrected or corrected data.

Characteristics at ART initiation Uncorrected Weight 1 Weight 2 Weight 3

Duration of follow-up (months) 0.80 [0.77–0.82] 0.85 [0.82–0.87] 0.87 [0.84–0.90] 0.86 [0.93–0.89]

Sex (women vs. men) 0.62 [0.53–0.73] 0.67 [0.57–0.79] 0.69 [0.58–0.81] 0.67 [0.57–0.79]

CD4 cell count (vs. ,150 cells/mm3)

$150 cells/mm3 0.64 [0.48–0.86] 0.69 [0.51–0.92] 0.67 [0.51–0.90] 0.66 [0.49–0.87]

Missing 1.51 [1.23–1.86] 1.33 [1.07–1.64] 1.41 [1.14–1.74] 1.43 [1.16–1.77]

Tuberculosis (Yes vs. no) 1.07 [0.76–1.50] 2.28 [1.62–3.22] 2.27 [1.61–3.21] 2.06 [1.46–2.90]

Kaposi sarcoma (Yes vs. no) 2.11 [1.61–2.76] 2.96 [2.25–3.89] 3.09 [2.35–4.06] 2.64 [2.01–3.48]

Year of ART start (2006–07 vs. 2004–05) 1.40 [1.17–1.66] 1.34 [1.12–1.60] 1.33 [1.11–1.59] 1.29 [1.08–1.54]

Three different weightings were considered for correction: Weight 1 = 1, Weight 2 = the inverse of the proportion of LFU patients who were traced and had their vital
status ascertained, Weight 3 = the inverse of the time-specific proportion of them.
All the values are expressed as mortality ratios [95% confidence interval].
doi:10.1371/journal.pone.0031706.t004
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and interestingly, one out of six patients traced was not found. A

number of recorded addresses were probably not correct but no

address checking was carried out neither at inclusion nor when

patients moved out of the district. It should also be noted that

Chiradzulu district was one of the first places in Malawi to provide

ART. As the access to treatment increased, a number of patients

may have moved out of the district to receive care closer to their

homes or home villages.

Some relevant patient characteristics, such as the WHO stage or

the adherence to treatment, could not be used in the regression

models because of missing or unavailable information. For

example, the CD4 cell counts were not available in half of the

patients. The lack of information on these counts is known to be

frequent among patients with advanced HIV disease at ART start.

This is why a category for missing CD4 count was included in the

regression analysis even though this practice is not generally

advisable. Finally, a comparison between long-term survival

estimates (one year after ART start) obtained with various

correction methods should be performed because the proportion

of deaths among LFU patients and the factors associated with

outcome ascertainment in a program are likely to change with the

increase of time on ART.

In conclusion, evaluations of HIV programs with high loss to

follow-up rates should be based on corrected survival estimates.

Though all the correction methods proposed in this article may be

carried out using standard statistical software, their routine use in

field surveys is not straightforward. The future development of a

simple application should help program managers use these

methods in routine program evaluation.
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