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A B S T R A C T

We investigate the role of structure and chemical composition on the uptake of poly(ethyl-

ene oxide) by a series of graphite oxides (GOs) and thermally reduced GOs, leading to the

formation of polymer-intercalated GO and polymer-adsorbed graphene nanostructures.

To this end, a series of poly(ethylene oxide) (PEO) - GO hybrid materials exhibiting a variable

degree of GO oxidation and exfoliation has been investigated in detail using a combination

of techniques including X-ray photoelectron spectroscopy, X-ray diffraction, thermogravi-

metry, scanning-electron microscopy, and nitrogen adsorption. Intercalation of the poly-

mer phase into well-defined GO galleries is found to correlate well with both the degree

of GO oxidation and with the presence of hydroxyl groups. The latter feature is an essential

prerequisite to optimize polymer uptake owing to the predominance of hydrogen-bonding

interactions between intercalant and host. Unlike the bulk polymer, these intercalation

compounds show neither crystallisation nor glass-transition associated with the polymer

phase. Exfoliation and reduction of GO result in high-surface-area graphene layers exhib-

iting the highest polymer uptake in these GO-based materials. In this case, PEO undergoes

surface adsorption, where we observe the recovery of glass and melting transitions associ-

ated with the polymer phase albeit at significantly lower temperatures than the bulk.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Graphite oxide (GO) offers unique opportunities associated

with its subnanometer multilayer structure, hydrophilic char-

acter, and possibilities for the large-scale production of high-

quality specimens. Although this material was first prepared
er Ltd. All rights reserved
so-Bujans).
well over a century ago, great efforts are nowadays devoted

to understand its structure and composition as well as its

thermal, electrical, and optical properties owing to its promis-

ing applications as graphene precursor [1]. GO exhibits

excellent swelling and exfoliation behaviour very similar to

what is found for clay minerals and metal-based graphite
.
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intercalation compounds. Unlike the case of layered silicates

[2], a significantly smaller body of literature has been focused

on the use of GO for polymer intercalation.

GO is highly hydrophilic as expected from its high oxygen

content in the interlamellar regions. It can accommodate

water or other solvent molecules (e.g. methanol, 1-propanol,

benzene and CHCl3) [3,4] between its layers with a

surprisingly high degree of long-range order. GO can also

accommodate cationic surfactants [5], alkylamines [6], alkyl-

chlorosilanes [7] as well as macromolecular systems includ-

ing high-molecular-weight polymers without inducing

delamination of the GO layers. Matsuo et al. [8,9] were the first

to prepare poly(ethylene oxide) (PEO)- and poly(vinyl alcohol)

(PVA)-intercalated GO materials in alkaline aqueous media.

This series of seminal studies demonstrated that these poly-

mers penetrated the GO interlayer and formed stable com-

pounds. The formation of sodium-hydroxide or copper-

acetate colloidal particles was regarded as a prerequisite for

the intercalation of mono or bilayers of PEO within the GO

interlayer, respectively. Using Fourier-transform infrared

spectroscopy (FTIR), these authors proposed zig-zag confor-

mations for the PEO intercalant [10]. Unlike the intercalation

of PEO into GO, they observed that the interlayer distance

for intercalated PVA increased as a function of the polymer-

to-GO ratio as a result of an inherent spread of polymer con-

formations within the interlayer. Matsuo et al. [8–10] also re-

ported interlayer distances in the range 12.3–16.3 Å, whereas

Bissessur and Scully [11] measured an interlayer spacing of

9.4 Å. It is now understood that such a difference in layer

thickness was the result of the use of different synthetic

routes to produce GO, as Matsuo et al. relied on a Brodie-

based procedure [12] whereas Bissessur and Scully used the

Hummers–Offeman method [13]. In addition, Matsuo et al.

used sodium hydroxide and copper acetate to produce these

intercalation compounds, whilst Bissessur and Scully used

sodium hydroxide followed by successive washings with

aqueous hydrochloric acid. Although none of these works

clarify the effects of the metal cation on the intercalation pro-

cess, it is very likely that the overall structure of GO is strongly

dependent on the presence of these species as, for example,

sodium hydroxide can be used quite effectively to reduce

the oxygen content of GO [14]. Furthermore, the strong elec-

trostatic interactions of PEO chains with mobile cations such

as K+, Li+, and Na+ are likely to dictate both the structural and

dynamical behaviour of the intercalated polymer phase, as it

is the case in clays and other layered minerals [15].

In a recent study [16], we have investigated the intercala-

tion of PEO into GO as a function of intercalant molecular

weight, as well as a function of host topology in the absence

of NaOH [17]. GO synthesis was effected using a Brodie-based

method to attain interlayer distances of 8.7–9.1 Å in the

resulting PEO/GO intercalates. The expansion of the GO inter-

layer did not depend strongly on intercalant chain length, fur-

ther reinforcing the notion that the oligomer and polymer

chains adopt a planar conformation approaching atomic

dimensions, i.e., well-defined and extreme 2D confinement.

In addition, high-resolution inelastic neutron scattering

(INS) unequivocally showed that the resulting zig-zag confor-

mation of the intercalated species departs significantly from

the characteristic 72 helical structure of the bulk crystal.
These works demonstrated that polymer intercalation into

GO constitutes an excellent platform for much-needed stud-

ies of macromolecular structure and dynamics under extreme

two-dimensional confinement where the confined polymer

shows a conspicuous absence of crystallization as well as

the suppression of collective alpha-relaxation phenomena

accompanied by a slow-down of local beta-relaxation pro-

cesses in the dielectric response [18]. The primary advantage

of using GO as a host material lies in the ability to control and

tune its degree of oxidation and exfoliation [19] and, there-

fore, the strength of the interaction between host and interca-

lated species.

The present study explores the role of the chemical nature

and composition of GO on polymer uptake leading to the for-

mation of polymer-intercalated GO and polymer-adsorbed

graphene nanostructures. To this end, we have prepared a

series of PEO-GO hybrid materials with a variable degree of

GO oxidation and exfoliation. Section 2 describes in detail

our synthesis and characterization protocols. The GO materi-

als and their associated polymer intercalates/adsorbates were

characterized by X-ray photoelectron spectroscopy (XPS),

elemental analysis (EA), nitrogen physisorption, X-ray diffrac-

tion (XRD), scanning electron microscopy (SEM), temperature-

modulated differential scanning calorimetry (TM-DSC), and

thermogravimetric analysis (TGA). Section 3 presents the

main results of this study, including the chemical composi-

tion, structure, and morphology of the GO and thermally re-

duced GO, as well as of the polymer-intercalated GO and

polymer-adsorbed graphene nanostructures. We close by

summarizing the main findings of this work as well as by

highlighting the need for both state-of-the-art synthesis pro-

tocols in conjunction with advanced characterization tech-

niques so as to gain fresh insights into the nature of

confined matter at the nanoscale.
2. Experimental

2.1. Materials

2.1.1. Synthesis and reduction of graphite oxide
GO was produced using natural graphite from Alfa Aesar, ref-

erence 40799, universal grade, 200-mesh, 99.9995% (metal ba-

sis). Graphite oxidation was achieved using a modified Brodie

method [12,19]. Briefly, a reaction flask containing 200 mL of

fuming nitric acid (Fluka) was cooled to 0 �C with a cryostat

bath for 20 min, followed by the addition of 10 g of graphite.

Next, 80 g of potassium chlorate (Fluka) was slowly added

over a period of 1 h to avoid sudden increases in temperature.

In order to vary the degree of oxidation of the GO samples,

reaction times and temperatures were varied as reported in

Table 1. To purify the final reaction product, the mixtures

were diluted in distilled water and filtered until the superna-

tant had a nitrate content lower than 1 mg/L [AQUANAL-plus

nitrate (NO3) 1–50 mg/L]. The resulting GO slurry was dried at

80 �C for 24 h in a vacuum oven (P < 0.1 mbar) and stored in

this oven at room temperature until further use.

Reduced graphite oxides (RGOs) were produced by thermal

treatment of specimen GO(21;0) (cf. Table 1). RGO(2;200) and

RGO(18;200) were heated at a rate of 10 �C/min from room



Table 1 – Elemental composition and oxygen-to-carbon atomic ratio (O/C) of GO, RGO, and G as a function of reaction
conditions as determined by EA and XPS. Interlayer spacings (d) obtained from the (001) Bragg reflection are reported in the
fourth column.

Sample Time (h) Temp. (�C) d (Å) C (at) H (at) O (at) N (at) O/C EA O/C XPS

Chemical Oxidation Route
GO(2;0) 2 0 5.6 8.00 1.08 2.29 0.06 0.286 0.338
GO(5;0) 5 0 5.6 8.00 1.02 2.42 0.05 0.303 0.321
GO(21;0) 21 0 5.7 8.00 1.14 2.72 0.03 0.340 0.364
GO(21;25) 21 25 5.8 8.00 1.13 3.09 0.03 0.386 0.363
GO(40;25) 40 25 5.8 8.00 1.51 3.23 0.01 0.403 0.374

Thermal Reduction Route
RGO(2;200)a 2 200 5.5 8.00 0.81 2.37 0.02 0.297 0.337
RGO(18;200)a 18 200 5.5 8.00 0.39 2.00 0.01 0.250 0.271
RGO(600)b –c –c 3.5 8.00 0 1.05 0.02 0.132 0.116
Gb (1 min) 1000 3.5 8.00 0.11 1.04 0.02 0.130 0.127

a In vacuo.
b In Argon.
c Dynamic heating from room temperature to 600 �C at a rate of 1 �C/min.
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temperature to 100 �C, followed by a ramp at 1 �C/min to the

indicated temperature (200 �C). At this stage, the samples

were heated for either 2 or 18 h. RGO(600) was obtained by

heating GO from room temperature to 600 �C at 1 �C/min in

a tube furnace under an Argon flux. Graphene-like sheets

(specimen G in Table 1) were obtained by placing GO on a

glass boat and inserting it into a quartz tube under an Argon

flux. This tube was then loaded into a tube furnace preheated

to 1000 �C. After 1 min, the tube was removed and cooled

down to room temperature. The composition of the different

GO samples and the oxygen-to-carbon atomic ratio (O/C) ob-

tained by EA and XPS are shown in Table 1.

2.1.2. Polymer uptake
PEO (Aldrich) with a molecular weight Mn = 9.4 · 104 g/mol

and polydispersity index 1.08 was used in all experiments.

PEO uptake by the GO-based materials listed in Table 1 was

performed in aqueous solution by stirring 0.5 g of PEO previ-

ously dissolved in 20 mL water with 0.5 g of GO, RGO, and G

for 15 days. Hereafter, the resulting adducts are denoted as

PEO/GO, PEO/RGO, and PEO/G. Excess PEO was removed by fil-

tration and thorough aqueous washings. The resulting PEO/

GO, PEO/RGO, and PEO/G were then dried at 80 �C for 24 h in

a vacuum oven (P < 0.1 mbar) connected to a dry scroll rota-

tory pump. All samples were kept dry in the vacuum oven

at room temperature before testing.

2.2. Characterization

2.2.1. X-ray photoelectron spectroscopy
XPS spectra were recorded using an Escalab 200R spectrome-

ter equipped with a hemispherical analyzer and operated in a

constant-pass energy mode with unmonochromatized MgKa

X-ray radiation (hm = 1253.6 eV) powered at 10 mA and 12 kV.

The binding energies (BE) were referenced to the C1s peak

at 284.9 eV. Data processing was performed with the XPS Peak

program. The spectra were decomposed with the least-

squares fitting routine provided by the software using a

Gauss/Lorentz product function and a Shirley background.

Atomic ratios were calculated from background-subtracted
peak areas using sensitivity factors provided by the data-

analysis system.

2.2.2. X-ray diffraction
XRD patterns were measured using a Bruker D8 Advance pow-

der diffractometer equipped with a CuKa radiation source

(k = 1.54 Å), a LynxEye detector and an Anton-Paar TTK450

temperature stage. The radiation source was operated at a

generator voltage of 40 kV and a current of 40 mA. XRD data

were collected at 25 �C over the angular range 2h = 5–60� with

a stepsize of 0.026� in Bragg–Brentano parafocusing geometry.

Each diffractogram was measured over short intervals of ca.

110 s in order to ensure that the (highly hygroscopic) GO

materials were not exposed to air for unnecessarily long peri-

ods of time. Under these experimental conditions, the result-

ing XRD data correspond to dry GO-based materials.

2.2.3. Thermogravimetry
Thermogravimetry (TGA) was carried out with a Q500 Ther-

mogravimetric Analyzer from TA Instruments. Samples were

heated from room temperature to 600 �C at a rate of 1 �C/min

upon a constant N2 flow of 60 mL/min. The amount of PEO in

PEO/GO, PEO/RGO, and PEO/G was calculated from sample-

residue analysis as described in [18]. Isotherms were collected

at 200 �C using the following heating ramps: 10 �C/min from

room temperature to 100 �C, followed by 1 �C/min up to the

isothermal temperature.

2.2.4. Scanning electron microscopy
SEM images were recorded with a TM3000 Tabletop micro-

scope from Hitachi in composition mode and operating at

an accelerating voltage of 15 kV.

2.2.5. BET surface
Nitrogen adsorption isotherms at 77 K were obtained using

the static volumetric method on an ASAP 2020 from Microm-

eritics. All samples were degassed at 95–180 �C for 3 h to a

residual vacuum <10 lm Hg. Isotherms were analysed using

the Brunauer–Emmett–Teller (BET) equation [20], and

BET areas were calculated using a value of 0.162 nm for the
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Fig. 1 – (a) Routes for the synthesis of GO materials: (1)

Chemical oxidation route where GOs with an increasing

degree of oxidation were produced from the oxidation of

graphite by a modified Brodie method (different times and
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molecular radius of nitrogen [21]. Micropore areas were ob-

tained from standard t-plots, where t is the statistical thick-

ness of the adsorbed film calculated using the Harkins–Jura

equation [22]. Pore-size distributions were obtained via the

Barrett–Joyner–Halenda (BJH) method [23] on the adsorption

branches of the isotherms assuming a cylindrical-pore model.

2.2.6. Temperature-modulated differential scanning
calorimetry
DSC measurements were carried out on �12 mg specimens

using a Q2000 TA instrument in both standard and tempera-

ture-modulated (TM) modes. Standard DSC measurements

were performed by placing the samples in sealed Aluminium

pans, holding the temperature for 10 min at 353 K, and cool-

ing to 100 K at the highest attainable cooling rate. Bulk PEO

was melted on a hot plate at 353 K and quenched by immers-

ing the sample in liquid nitrogen followed by insertion into

the DSC cell at 100 K. After the cooling run, all samples were

heated back to 353 K in TM mode with a 0.48 K temperature

amplitude, 60 s modulation period, and 3 K/min underlying

heating rate. A Helium flow rate of 25 mL/min was used all

throughout.
temperatures of reaction); (2) Thermal reduction route

where GO(21;0) was heated with different temperature

programs in isothermal and dynamic modes (fast and slow

rates) to reduce and exfoliate GO. (b) Graphical summary of

the laboratory procedure used to intercalate and/or adsorb

PEO into GO-based materials.
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3. Results and discussion

3.1. Chemical composition of GO materials

In order to produce GO materials with variable oxygen-to-car-

bon (O/C) ratios, two different synthetic routes were followed.

The first route was chemical, whereby GOs with an increasing

degree of oxidation were produced by increasing the time and

temperature of oxidation. The second route was thermal,

where GO was reduced and exfoliated by implementing dif-

ferent temperature programs under an inert atmosphere.

Fig. 1a outlines both chemical and thermal routes and Table

1 provides a summary of all samples of relevance to this work

specifying the temperature and time of reaction as well as

their chemical composition obtained from EA and XPS mea-

surements. As observed for the GO obtained by the chemical

oxidation route, its composition is characterised by O/C ratios

between 0.29–0.40, leading to interlayer distances from 5.6 to

5.8 Å.

The experimental protocol that defines our thermal reduc-

tion route (Fig. 1b) is based on our previous study of the ther-

mal behaviour of GO using isothermal and dynamic

thermogravimetry [19]. This study determined that the iso-

thermal reduction of our Brodie-based GO followed two dis-

tinct kinetic mechanisms associated with either diffusion or

autocatalytic decomposition. In the first process, carbon diox-

ide (CO2) and water are released and diffuse within the inter-

layers virtually without altering the GO-layer stacking. In the

second process, further heating leads to the production of

CO2 and water in large amounts, ultimately resulting in the

exfoliation of GO sheets. To determine the time needed to re-

duce the graphite oxide at 200 �C following either of these two

mechanisms, we performed isothermal thermogravimetric

scans on sample GO(21;0) (cf. Table 1). Fig. 2 shows that the

weight loss and the first thermogravimetric derivative exhibit

the two processes discussed above. On the basis of these
findings, isothermal treatments were carried out for periods

of 2 and 18 h. In this manner, RGO(2;200) and RGO(18;200)

were obtained by heating GO(21;0) at 200 �C for 2 or 18 h, a

period after which the resulting O/C ratios decreased to 0.30

and 0.25, respectively. The interlayer distance as determined

by XRD was 5.5 Å for both samples.
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RGO(600) was obtained by dynamic heating at 1 �C/min

from room temperature to 600 �C and sample G was obtained

from rapid heating to 1000 �C, a process currently used to pro-

duce graphene-like sheets in large quantities for a variety of

applications [1,24]. These samples showed the lowest oxygen

content of the series amounting to an O/C ratio of 0.13.

As a result of these heating procedures, part of the oxygen

in GO is removed leaving residual hydroxyl groups and other

oxygen-containing moieties [25]. To determine the nature and

relative amount of these functional groups in pristine and

thermally reduced GO, samples were characterized by XPS.

Table 1 shows the O/C ratios for the different GO hosts of rel-

evance to this work as determined by this technique, which

compare reasonably well with those determined by EA.

Fig. 3 displays C1s XPS data for representative samples. All

spectral peaks were decomposed into a linear combination

of symmetric components. The XPS data for GO and RGO

specimens were satisfactorily described by two and three dis-

tinct contributions, respectively, in agreement with the litera-

ture [25]. The peak at 284.8 eV corresponds to sp2 C–C bonds

in graphitic carbon whereas that at 286.5 eV is assigned to

epoxy and hydroxyl C–O bonds. The third component at

287.7–288.3 eV in RGO specimens is assigned to carbonyl

(C@O) groups. The C1 peak for G was adequately described

by five components. In addition to the bands of native GO,

we observe three peaks at 287.7, 289.3, and 291.3 eV. The

two first peaks are assigned to C@O and carboxyl (COOH) spe-

cies, respectively. The peak at 291.3 eV corresponds to the

plasmon/shake-up satellite (p–p* transition) of graphitic

carbon.

The relative concentration of C–O bonds relative to C–C

bonds increases by a factor of �1.5 in going from GO(2;0)

(0.89) to GO(40;25) (1.32) as a result of a higher extent of oxida-

tion during synthesis. In the case of thermally reduced GO,

this ratio is gradually reduced and it is accompanied by the

appearance of new C@O groups in RGO and both C@O and

COO groups in G, as a result of the rearrangement of hydroxyl,

epoxy, and carbonyl groups upon heating [26]. Moreover, it is

quite apparent that the rearrangement of these functional

groups depends quite strongly on heating rate, an observation

that is yet to be explored either via experiment or computer

simulation.
Fig. 3 – C1s core-level spectra of GO and thermally reduced

GO. For more details on sample composition see Table 1.
3.2. Structure and morphology of poly(ethylene oxide)
nanostructures

3.2.1. Chemically modified graphite oxide
PEO chains of molecular weight 94 kg/mol were intercalated

into GO by diffusion in aqueous liquid media (see Fig. 1b).

Such a process is facilitated by strong hydrogen-bonding

interactions between the polymer and the GO. As a result,

the PEO chains are strongly retained by GO and further PEO

recovery following the intercalation process is not feasible.

As shown in Fig. 4, the amount of intercalated PEO in chemi-

cally modified GO varies from 9 to 27 wt.% as the degree of

oxidation is increased, ultimately reaching a maximum at

an O/C ratio of ca. 0.38. From this point onwards, the amount

of intercalated PEO undergoes, if anything, a slight decrease.

These results indicate that the oxygen content in GO plays a

central role in the intercalation of PEO chains. According to

the model of Lerf et al. [27], GO is mainly decorated by tertiary

alcohols and epoxy (1,2-ethers) on the basal planes. In our

particular case, FTIR has been used in previous studies

[16,18] to establish that hydrogen-bonding interactions occur

predominantly between PEO ether groups and GO hydroxyls

(OH), as expected on the grounds of their chemical structure.

For long polymer chains, hydrogen bonds between OH end-

groups of the polymer and both OH and epoxy groups in GO

are also plausible, yet these can be neglected given their

exceedingly low occurrence in high-molecular-weight PEO

chains.

With these considerations in mind, the degree of interac-

tion between PEO chains and the different GO hosts can be

evaluated by calculating the molar content of oxygen in the

polymer relative to OH in GO. The latter quantity has been

estimated from the total hydrogen content in GO assuming

that all hydrogen occurs in OH form. These data are shown

in Fig. 5 and exhibit a very similar trend to that observed in

Fig. 4, implying that the higher the amount of PEO in PEO/

GO, the higher the amount of PEO oxygen per mol of OH in

GO owing to a stronger interaction between the polymer

and the host. Interestingly, these data reaches a maximum

when the ratio of PEO oxygens to GO OH reaches unity, indi-
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cating that in PEO/GO(21;25) each PEO oxygen atom corre-

sponds to one OH group in the GO host. This result strongly

suggests that the maximum amount of PEO chains in the

GO interlayer is reached when the polymer - host interaction

is maximised via hydrogen bonding interactions where PEO/

GO acts as hydrogen acceptor/donor. It is somewhat surpris-

ing that a further increase in the amount of OH groups in

the host does not translate into an increase in PEO uptake,

as observed in sample PEO/GO(40;25) where the amount of

intercalated PEO decreases to 23 wt.%. We surmise that this

behaviour might be caused by changes in the morphology

or chemical make-up of GO at these high levels of oxidation.

Polymer uptake in thermally reduced GO is discussed in the

next section.

Fig. 6 shows XRD data for representative PEO/GO and GO

specimens. XRD data for bulk PEO are also included in this fig-

ure. The interlayer spacings for all GOs investigated in this

work are also reported in Table 1. Graphite oxide is a paracrys-
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Fig. 6 – Representative XRD data of PEO/GO intercalates. The

reaction time and temperature at which each GO sample

was synthesized are indicated in brackets and are related to

their corresponding degree of oxidation (see Table 1). For

clarity of presentation, XRD profiles have been offset

vertically by an arbitrary numerical constant. Dotted lines

correspond to XRD data for bulk PEO.
talline material characterised by turbostratic layer stacking,

i.e., irregular shifts and/or rotations of individual planes along

the crystallographic c-axis. The layers are also irregular since

epoxide and hydroxyl groups, as well as remaining C@C dou-

ble bonds are not distributed evenly within a given two-

dimensional layer. As a consequence, the XRD data display

a prominent (001) reflection at 1.10 Å�1 followed by a much

weaker (002) Bragg reflection at 2.23 Å�1 indicative of in-plane

ordering [4]. Fig. 6 shows that the (001) Bragg reflection in GO

shifts to slightly lower Q values as a function of the degree of

oxidation, giving interlayer distances in the range 5.6–5.8 Å.

Moreover, the absence of any remaining peaks associated

with the starting graphite material even for the least-oxidized

GO sample [GO(2;0)] indicate that all GO planes are oxidized.

Intercalated PEO/GO samples display XRD patterns with

two well-defined (001) and (002) reflections, which account

for the significant expansion of the GO interlayer along the

crystallographic c-axis upon intercalation, from 5.6–5.8 to

9.1–9.5 Å. These data show a slightly shorter interlayer thick-

ness for PEO/GO(2;0) and PEO/GO(5;0) (9.1 Å) compared to

other PEO/GO composites [9.2 Å for PEO/GO(21,0), 9.4 Å for

PEO/GO(21;25), and 9.5 Å for PEO/GO(40;25)], as expected given

the slightly tighter interlayer distances of the starting GO(2;0)

and GO(5;0) hosts (cf. Table 1). The presence of a Bragg peak at

1.06 Å�1 for PEO/GO(2;0), corresponding to an interlayer spac-

ing of 5.92 Å (close to that of GO), indicates that there exist re-

gions in the sample where the polymer cannot intercalate

and, therefore, remain empty. This result is in line with the

lower amount of PEO content in GO(2;0) shown in Fig. 4. More-

over, the XRD pattern for bulk crystalline PEO shows well-de-

fined and intense peaks at �1.36 and �1.66 Å�1 arising from

its well-known 72 helical structure. This structure is charac-

terized by seven chemical units –CH2–CH2–O– executing two

turns with an angular period of 19.3� [28]. In our intercalation

compounds, no diffraction features are observed which can

be assigned to crystalline PEO. This finding is most evident

in PEO/GO(40;25), whose (002) reflection at 1.33 Å�1 does not

overlap with that of the PEO crystal at �1.36 Å�1. In the case

of PEO/GO(5;0) and PEO/GO(2;0), the (002) reflection does ap-

pear at �1.36 Å�1, yet no Bragg reflections around 1.66 Å�1

attributable to bulk PEO have been observed. These results

are a strong indicator that the polymer chains inside the GO

interlayer remain amorphous.

3.2.2. Thermally reduced graphite oxide
Similar experimental procedures to those used for the inter-

calation of PEO in GO were used to produce PEO/RGO and

PEO/G samples. The amounts of PEO absorbed in thermally

reduced GO as a function of O/C ratio are shown in Fig. 4. In

this case, the amount of absorbed PEO decreases with

decreasing oxygen content in RGO samples from RGO(2;200)

to RGO(600) and it increases quite significantly in PEO/G.

When a comparison is made in terms of the molar ratio of

PEO oxygen per mol of host OH (see Fig. 5), a different trend

is observed. Interestingly, the PEO-oxygen-to-host-hydroxyl

ratio in the thermally reduced GO samples was �1 and in-

creased noticeably with the degree of reduction [note that

for RGO(600), the amount of hydrogen is zero and, therefore,

no OH groups are present in the sample]. A value of unity

for this ratio implies maximal interaction via hydrogen bonds
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between intercalate and host. With this picture in mind, val-

ues >1 denote a regime of saturation whereby there exist

more PEO oxygen atoms per host OH. PEO/G displays an

exceedingly high value for this ratio (8.9) indicating the high-

est level of saturation of the series. Somewhat surprisingly,

this sample also exhibits the highest amount of absorbed

polymer (28 wt.%). To explain these results, the XRD data of

RGO, G, PEO/RGO, and PEO/G samples as well as the SEM

images of PEO/RGO and PEO/G shown in Fig. 7 must be exam-

ined in closer detail. To facilitate comparison, XRD and SEM

data of the precursor GO(21;0) are also presented in this

figure.

The SEM images shown in Fig. 7 demonstrate that the

overall morphology of all PEO/GO-based materials studied in
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Fig. 7 – Left: SEM micrographs of PEO/GO(21;0), PEO/

RGO(2;200), PEO/RGO(18;200), and PEO/G samples. Right:

corresponding XRD patterns. For comparison, the XRD data

of GO(21;0), RGO(2;200), RGO(18;200), and G are shown using

grey symbols (for more details see Table 1).
this work is dominated by the presence of the graphitic ma-

trix, a result which is consistent with its dominant abundance

relative to the polymer phase. Furthermore, comparison of

these SEM data with that of bulk PEO (cf. Fig. S1) also confirms

the absence of the latter in our specimens. The heat treat-

ment applied to GO at 200 �C for 2 h and 18 h appear not to

cause GO exfoliation, as can be deduced from the intense

(001) diffraction peak at Q = 1.15 Å�1 for RGO(2;200) and

RGO(18;200) shown in Fig. 7, although in the latter sample

the SEM image reveals the presence of expanded zones

resembling accordion-like structures. On the other hand,

the slow dynamic heating of GO to 600 �C gave rise to an

exceedingly low concentration of oxygen, similar to that of

G (Table 1) yet structurally very different. Both RGO(600) and

G are characterised by a broad diffraction feature around

1.8 Å�1, corresponding to a characteristic pair-correlation dis-

tance of �3.5 Å, in reasonable agreement with the interlayer

distance in pristine graphite (3.4 Å), and clearly affected by

disorder at the atomic scale. This result is suggestive of a sig-

nificant restacking of graphite planes upon heating [19]. How-

ever, the SEM images of both RGO and G reveal a distinct

stacking for both materials, namely, RGO showing densely

packed sheets and G exhibiting fluffy and accordion-like

structures.

The XRD diffraction patterns of PEO/RGO(2;200) and PEO/

RGO(18;200) shown in Fig. 7 show (001) and (002) reflections

at 0.68 and 1.36 Å�1, respectively, as in PEO/GO(21;0), indicat-

ing that PEO chains are intercalated in an interlayer space of

9.2 Å. This is not the case for PEO/RGO(600) and PEO/G, in

which the diffractograms do not show any changes with re-

spect to the bare substrate. This result suggests that PEO

chains cannot enter the interlamellar regions and remain ab-

sorbed in the external surface of RGO(600) and G samples

with an uptake of 2.5 wt.% and 28 wt.%, respectively.

To gain further insight into the morphology and texture of

RGO and G samples, BET surface areas, micropore areas, pore

volumes, and average pore diameters for RGO(18;200),

RGO(600), G, and their corresponding GO precursors were ob-

tained from an analysis of nitrogen adsorption–desorption

isotherm data collected at 77 K (cf. Table 2). Isotherms and

pore-size distributions are reported in the Supplementary

Information (see Figs. S2 and S3, respectively). All data con-

form to a type-IV isotherm characterized by a broad pore-size

distribution. Moreover, these data indicate the occurrence of

multilayer adsorption at low pressures and nitrogen conden-

sation inside the matrix pores, as evidenced by an enhance-

ment of nitrogen adsorption at a reduced pressure of 0.4. A

large hysteresis denotes the presence of small pores that

block the escape of nitrogen molecules from some large

pores. However, only G shows a high surface area (632 m2/

g), a moderate micropore area (55 m2/g), and a high mesopor-

ous pore volume (3.6 cm3/g). For sample G, the fast annealing

of GO at 1000 �C represents the key factor leading to the pres-

ence of nano/micropores. However, the micropore area

amounts to just 9% of the total BET area, indicating that the

amount of gas adsorbed in those micropores is negligibly

small. Sample G is characterized by a large available surface

area capable of accommodating significant amounts of PEO.

Moreover, although the average pore diameter obtained for

the G sample from the adsorption branch of the isotherm



Table 2 – Average surface areas, pore volumes, and pore diameters obtained from an analysis of nitrogen-adsorption
isotherm data as detailed in the text.

Host materials BET Area (m2/g) Micropore Area (m2/g) Vmeso(BJH) (cm3/g) Average pore diameter (nm)

GO(21;0) 2.5 2.1 0.02 52
RGO(18;200) 2.5 1.0 0.01 30
RGO(600) 6.6 3.0 0.03 22
G 632 55 3.6 23
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amounts to 23 nm, the pore distribution is very broad, a result

consistent with the presence of exfoliated graphite layers

showing an aerogel-like texture. The GO and RGO samples

show low porosity as evidenced by their low BET areas and

associated mesoporous volumes. It is evident from the data

shown in Table 2 that the reduction of GO in both isothermal

mode at 200 �C [in sample RGO(18;200)] and dynamic mode up

to 600 �C [RGO(600)] does not change significantly the texture

of the material.

Specimen G is characterized by a large BET area which is

comparable to other graphene materials reported in the liter-

ature [29]. Although this value is sensibly lower than the the-

oretical surface area of 2630 m2/g for individual graphene

sheets and it is indicative of the existence of �4 stacked lay-

ers, this material is qualitatively and quantitatively different

from our RGO’s. The nitrogen-adsorption data unequivocally

show that the G sample has been exfoliated and that

RGO(18;200) and RGO(600) remained primarily stacked. The

TEM image for G (see Fig. S4 in the Supplementary Informa-

tion) shows the expected morphology for an exfoliated spec-

imen containing wrinkles, a result in line with the BET results

described above.

3.3. Nature of polymer-host interactions

The ability of GO-based materials to intercalate or adsorb PEO

is clearly related to their structure and morphology. Based on

the results presented so far, Fig. 8 depicts two extreme cases:

(a) an intercalated PEO chain between two GO sheets; and (b)

PEO chains adsorbed on expanded G sheets. In the first case,
Fig. 8 – Schematic representation of (a) intercalated PEO in

GO and (b) adsorbed PEO on thermally reduced/exfoliated

GO sheet.
polymer-host interactions are strong as the whole polymer

chain is forced to interact with two adjacent GO sheets via

both specific (hydrogen bonds linking polymer ether groups

and GO hydroxyls) and less specific and weaker interactions

(polymer CH2 - host carbon and oxygen atoms). It is impor-

tant to note that PEO/GO is confined within a GO interlayer

space of 9.2–9.5 Å. Taking into account a thickness of 5.6–

5.8 Å for the GO interlayer, the polymer layer amounts to a

thickness of about 3.6–3.7 Å. This result implies that PEO is ar-

ranged into a two-dimensional monolayer within the GO

planes [16,18]. Maximal intercalant uptake is reached when

there is one polymer oxygen per GO OH. This simple physical

picture explains the observed dependence of polymer uptake

on the degree of host oxidation. More importantly, it high-

lights a suitable strategy to control the chemical composition

and properties of graphite-oxide-based polymer intercalates.

In the second case, polymer-host interactions via hydro-

gen bonds are much weaker as the OH content in the ther-

mally reduced GO samples is extremely low. For instance,

the hydrogen (OH) content is ten times lower than in non-re-

duced GO (see Table 1). Moreover, from our nitrogen physi-

sorption data of G where we find a high pore volume of

3.6 cm3/g with a broad pore-size distribution (see Fig. S3 in

the Supplementary Information), we infer that there exist re-

gions in the material as those schematically depicted in

Fig. 8b, which arise from both the expansion of G sheets

and the formation of wrinkles on the G surface. In this situa-

tion, the topology of the substrate dictates the adsorption of

polymer chains, filling the different cavities and re-organizing

intra- and inter-molecularly. The interplay between polymer–

polymer and polymer-substrate interactions ultimately deter-

mines the equilibrium geometry of these macromolecular

assemblies as depicted in the figure.

To validate the above physical picture, Fig. 9 shows TM-

DSC results for representative PEO/GO and PEO/RGO(G) sam-

ples. To aid comparison, TM-DSC data for bulk PEO is also

shown in the figure. Bulk PEO shows a large endotherm at

333 K and a small feature at 255 K corresponding to the melt-

ing of crystalline regions in PEO, as well as a step at 218 K cor-

responding to the glass transition of amorphous PEO. On the

contrary, PEO/GO and PEO/RGO samples exhibit neither a

melting nor a glass-transition associated with the PEO phase,

in agreement with previous studies [16–18] as well as with the

absence of XRD peaks associated with a PEO crystalline

phase. A very different picture emerges for PEO adsorbed onto

graphene sheets (PEO/G). In this case, PEO exhibits a clear

glass transition (Tg) at 209 K and melting events (Tm) at 304

and 252 K, all noticeably lower than those in the bulk. These

large differences can be explained by invoking additional



160 200 240 280 320 360

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

bulk PEO

252K

255K

218K

333K

R
ev

 H
ea

t F
lo

w
 (W

/g
)

T (K)

304K

209K

 PEO/GO(40;25) 
 PEO/RGO(18;200)

PEO/G

Fig. 9 – TM-DSC data of bulk PEO and representative PEO/GO,
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phase shows no signs of glass or melting transitions but, in

contrast, the adsorbed PEO on G exhibit well-defined glass

and melting transitions at temperatures below those of the

bulk phase. For more details on sample composition see

Table 1.
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conformational flexibility in the adsorbed PEO sample,

although the presence of a surface still affects quite notice-

ably its thermal behaviour, as evidenced by a significant

reduction of both Tm and Tg for PEO in PEO/G compared to

the bulk. In this scenario, the reduction of accessible chain

configurations close to an impenetrable wall lead to the loss

of configurational entropy and packing constraints, both of

which clearly affect the thermal response of the polymer

phase [30].

4. Conclusion

Polymer uptake and intercalation into graphite oxide is a

complex process. In this work, we have explored in detail

how the chemical composition and structure of a series of

graphite-oxide materials exhibiting varying degrees of oxida-

tion and exfoliation affect the uptake of PEO, a ubiquitous

polymer. Our results highlight how appropriate control of

polymer uptake can be achieved by a judicious choice of the

properties of the graphite-oxide host. Specific polymer-host

interactions also act to constrain the behaviour of the result-

ing composite material in a profound way. For PEO, the spe-

cific chemical nature (presence of OH groups) in the

underlying host above a certain threshold determines both

the resulting geometry (e.g., two-dimensional monolayers vs

soft macromolecular assemblies) as well as its thermody-

namic phase behaviour (e.g., absence or depression of the

glass transition). The physical insights gained in this detailed

study also provide us with a suitable strategy for the future

deployment of a similar methodology to other and more com-

plex polymer systems.
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