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Abstract

Heat shock protein 70 (HSP70) has been implicated in infection-related processes and has been found in body fluids during
infection. This study aimed to determine whether pleural mesothelial cells release HSP70 in response to bacterial infection in
vitro and in mouse models of serosal infection. In addition, the in vitro cytokine effects of the HSP70 isoform, Hsp72, on
mesothelial cells were examined. Further, Hsp72 was measured in human pleural effusions and levels compared between
non-infectious and infectious patients to determine the diagnostic accuracy of pleural fluid Hsp72 compared to traditional
pleural fluid parameters. We showed that mesothelial release of Hsp72 was significantly raised when cells were treated with
live and heat-killed Streptococcus pneumoniae. In mice, intraperitoneal injection of S. pneumoniae stimulated a 2-fold
increase in Hsp72 levels in peritoneal lavage (p,0.01). Extracellular Hsp72 did not induce or inhibit mediator release from
cultured mesothelial cells. Hsp72 levels were significantly higher in effusions of infectious origin compared to non-infectious
effusions (p,0.05). The data establish that pleural mesothelial cells can release Hsp72 in response to bacterial infection and
levels are raised in infectious pleural effusions. The biological role of HSP70 in pleural infection warrants exploration.
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Introduction

Bacterial pleural infection is a centuries-old disease and its

global incidence continues to rise [1]. It affects 65,000 patients in

the United Kingdom and United States every year [2], and carries

a mortality as high as 20% [3]. Streptococcus pneumoniae is the leading

bacterial cause of pediatric pleural infection and one of the

commonest in adults [4]. Bacterial pneumonias are complicated

by a simple parapneumonic effusion (PPE) in up to 40% of patients

[5–7]. When secondarily infected, the effusion is characterised by a

low fluid pH and loculation (a complicated PPE) or the presence of

bacteria or frank pus (empyema) [5,6]. The mechanism of post-

pneumonic effusion development remains poorly understood [4].

Heat Shock Proteins (HSPs) are amongst the most abundant

and phylogenetically conserved proteins, present in all sub-cellular

compartments. HSP70 is one of the major HSPs expressed and

includes the constitutive Hsp73 and stress-induced Hsp72 family

members [8]. Although HSPs are traditionally thought to function

as intracellular proteins, their extracellular release and activity is

increasingly evident. In this regard, HSP70 can be released from

both necrotic [9] and viable cells [10–13] in culture and Hsp72 is

known to act as a potent cytokine secretagogue for various cell

types, including monocytes [14], macrophages [15], fibroblast-like

synoviocytes [16] and murine splenocytes [17].

The presence of extracellular HSP70 may have broad

biological significance in pleural infection. HSP70 is present in

various body fluids, including normal serum [18], cerebrospinal

[19,20], synovial [21] and bronchoalveolar lavage fluid [22].

Whether HSP70 is present in pleural fluid, especially in post-

pneumonic effusions, has not been studied. In addition, little is

known about the source of HSP70 within the pleura and the

biological effects of extracellular Hsp72 on mesothelial cells have

not been explored.

The present study is the first to describe the release of Hsp72

from mesothelial cells, particularly its increased release in response

to S. pneumoniae infection in vitro and in vivo, and examine the effect

of extracellular Hsp72 on mesothelial cell cytokine and chemokine

release. Further, this study determined the presence of Hsp72 in

human pleural fluids and describes its elevated levels in patients

with infectious-related effusions.
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Materials and Methods

Ethics statement
Animal experiments were performed on C57BL/6 and BALB/c

mice aged 8–10 weeks (Animal Resources Centre, Perth, Aus-

tralia). This study was carried out in strict accordance with the

recommendations within the ethics application approved by the

Animal Ethics Committee of the University of Western Australia

(Permit number 03/100/905). All efforts were made to minimize

animal suffering. Animals were anesthetized with methoxyflurane

before cervical dislocation. For the use of human serum and

pleural fluid samples, the Ethics Committees of Sir Charles

Gairdner Hospital and Hollywood Hospital (Western Australia),

the Mid- and South-Buckinghamshire and Central Oxford (UK)

and the Arnau de Vilanova University Hospital (Spain) Research

Ethic Committees approved the collection of the samples and all

participants provided written informed consent.

Mesothelial Cells
Primary murine mesothelial cells were harvested from the

omentum of C57BL/6 mice and cultures established as previously

described [23]. Primary culture of human pericardial mesothelial

cells were obtained as previously described [24]. The SV40-

transformed human mesothelial MeT-5A cell line was purchased

from the American Tissue Culture Collection (Manassas, VA,

USA). Cells were maintained in Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with 4 mM L-glutamine,

0.2 mg/ml streptomycin, 0.2 mg/ml penicillin and fetal calf serum

(FCS) at 15% (v/v) for primary cultured cells and 10% (v/v) for

MeT-5A.

Bacterial strains and culture
S. pneumoniae 262 (serotype 19F; ATCC #49619), TIGR4

(serotype 4; ATCC #BAA-334) and D39 (serotype 2) strains were

used in this study. The 262 and TIGR4 strains were stored in

Heart Brain Infusion Broth containing 15% (v/v) glycerol at

280uC and directly sub-cultured onto Blood agar plates for 18 hr

at 37uC in 5% (v/v) CO2. Following this, suspensions were

prepared in 0.85% (w/v) saline to a turbidity of 0.5 McFarland

using an Oxoid Turbidometer (Thermo Scientific; Victoria,

Australia). The 262 and TIGR4 strains were also subject to

heat-killing at 95uC for 45 min. Viability of the live bacteria and

successful heat-killing were verified by plate counts. Briefly, ten-

fold dilutions of each bacteria ranging from 1021 to 1026 colony

forming units (CFU)/ml were prepared in saline, with 20 ml

spotted onto blood agar plates, and incubated overnight at 37uC.

The following day, the number of CFU per 20 ml was counted and

the CFU/ml calculated. The D39 strain was kindly provided by

Dr Lea-Ann Kirkham (School of Paediatrics and Child Health,

University of Western Australia) and were cultured on blood agar

plates at 37uC over night under anaerobic conditions using the BD

GasPakTM EZ Anaerobic Pouch System (BD Diagnostics,

Australia). Colonies were inoculated into the relevant media,

grown to mid-log phase (OD600 nm 0.55-0.65) and counted using a

Helber bacteria counting chamber (ProSciTech; Queensland,

Australia). Heat-inactivated FCS was added to the mid-log phase

culture at a concentration of 20% (v/v) and stored at 280uC.

Before experimentation, the D39 strain was thawed, washed and

prepared to the appropriate concentration in saline.

Immunocytochemistry
Immunocytochemistry was performed as previously described

[23] using antibodies raised against Hsp72 or Hsp73 (Santa Cruz

Biotechnology; Santa Cruz, CA, USA). Cells were counterstained

in hematoxylin and Scott’s tap water.

Quantification of Hsp72 protein
The stressed-induced Hsp72 isoform in serum samples, pleural

effusions and culture supernatants was measured using the Total

HSP72/HSPA1A DuoSet IC ELISA kit, according to the

manufacturer’s instructions (R&D Systems; Minneapolis, MN,

USA).

Stimulation of mesothelial cells
For all experiments, cells were grown to confluence in 24-well

plates and deprived of serum 24 hr prior to stimulation. For

bacterial stimulations, cells were washed with antibiotic-free media

and incubated with live or heat-killed S. pneumoniae 262 or TIGR4

(105, 106 and 107 CFU/ml) for 2, 4, 6 and 24 hr. In separate

experiments, cells were stimulated with a low-endotoxin, purified

recombinant preparation of human Hsp72 (0.1–5 mg/ml) for

24 hr (Enzo Life Science; Farmingdale, NY, USA). Cells treated

with 10 ng/ml phorbol 12-myristate 13-acetate (PMA; Sigma-

Aldrich) were included as a positive control of cytokine release. In

other studies, cells were pre-treated with Hsp72 (1 mg/ml) for 2 hr,

washed and stimulated with TNF-a (5 ng/ml) (eBioscience; San

Diego, CA, USA) or thrombin (1 U/ml) (Sigma-Aldrich; St Louis,

MO, USA) for an additional 24 hr. Following all stimulations, the

supernatants were collected and stored at 220uC until required.

Determination of cytokine release
Monocyte chemotactic protein (MCP)-1, interleukin (IL)-10,

TNF-a, interferon (IFN)-c (eBioscience) and VEGF (R&D

Table 1. Baseline patient characteristics.

Transudates Malignant Tuberculosis UPPE CPPE Empyema
Miscellaneous
exudates p value

Spain cohort:

Subjects, n 40 36 48 54 54 23 18

Age, yr 82 (73–87)+ 75 (66–82) 35 (28–44)* 54 (40–71) 62 (43–80) 70 (51–75) 70 (59–61) ,0.001

Male sex, n 23 (58) 17 (47) 33 (69) 30 (56) 38 (70) 15 (65) 11 (61) 0.308

Hsp72, ng/mL 7 (4–13)* 13 (5–26)* 21 (10–38) 27 (11–161) 23 (12–72) 18 (10–356) 17 (11–23) ,0.001

Data are presented as median (quartile range) or n (%).
+Significantly higher than the respective values in other groups by post-hoc test.
*Significantly lower than the respective values in other groups by post-hoc test.
doi:10.1371/journal.pone.0063873.t001

Heat Shock Protein 72 in Pleural Infection
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Systems) levels in culture supernatants were determined using

ELISAs, following the manufacturer’s instructions.

Murine intraperitoneal challenge with S. pneumoniae D39
strain

BALB/c mice (n = 11) were given a single intraperitoneal

injection of live S. pneumoniae D39 (,16107 CFU in 0.1 ml of

saline) or saline as a control. The viability and quantity of

challenge doses were verified by parallel plate count. Mice were

monitored and sacrificed by cervical dislocation at 7 and 17 hours

post-injection and the peritoneal cavity was lavaged with 1 ml

PBS. The lavage was centrifuged at 2006g for 10 min and the

supernatant collected for quantification of Hsp72 protein (de-

scribed above).

Human pleural fluid and serum samples
Patient samples were obtained from three cohorts. Transudative

and exudative effusions were defined by Light’s criteria [25]. A

malignant pleural effusion was defined by the presence of cancer

cells on histocytologic examination of the pleural fluid or tissue

biopsies. Tuberculous pleural effusion was defined by the presence

of Mycobacterium tuberculosis on culture of pleural fluid, sputum, or

pleural tissue, and/or demonstration of typical caseating granu-

lomas on pleural biopsies. Parapneumonic effusions referred to

those associated with pneumonia and were subdivided into three

groups: UPPE (resolution with antibiotics alone), CPPE (non-

purulent effusions which required chest tube drainage), and

empyema (presence of bacteria and/or pus in the pleural cavity).

To compare the systemic and pleural fluid levels of Hsp72,

blood and pleural fluid samples from 20 patients with malignant

effusions and 20 with benign pleural effusions were randomly

selected from the Australian Mesothelioma Tissue Bank, a

member bank of the Australian Biospecimen Network-Oncology,

which is supported in part by an NHMRC enabling grant [26].

The malignant effusion group included patients with malignant

mesothelioma (n = 10), lung cancer (n = 4), breast cancer (n = 3)

and leukemia/lymphoma (n = 3). Patients with benign effusions

were tracked or followed-up until death or to last citation in the

Public Health database system (Western Australia) and none had

developed any pleural malignancies.

The levels of Hsp72 in different types of pleural effusions were

tested in two separate cohorts. Firstly, a cohort of 273 pleural fluid

samples randomly selected from a biobank of pleural fluid samples

from patients undergoing diagnostic thoracenteses at the Arnau de

Vilanova University Hospital (Lleida, Spain). This included 131

effusions related to bacterial infection (54 UPPE, 54 CPPE and 23

empyema), 48 tuberculous effusions, 36 malignant effusions, 18

other exudates and 40 transudates (34 congestive heart failures

and 6 hepatic hydrothoraces) (Table 1).

The results were further verified in a validation cohort

comprising pleural fluid prospectively collected from patients

(n = 243) presenting with pleural effusions for diagnosis/manage-

ment at the Oxford Pleural Unit (Oxford, UK), as reported

previously [27]. In brief, this cohort included 243 patients,

including 36 effusions related to bacterial infections (9 UPPE, 1

CPPE and 26 empyema), 3 tuberculosis effusions, 151 malignant

Figure 1. Mesothelial cells express Hsp72 and Hsp73 on the cell surface. Non-permeabilised mesothelial cells were assessed for expression
of cell surface-associated HSP70 proteins by immunocytochemistry. The constitutive Hsp73 and stress-induced Hsp72 forms were examined
separately. The figures are representative of three independent experiments. Bar = 20 mm.
doi:10.1371/journal.pone.0063873.g001
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pleural effusions, 37 others exudates and 16 transudates (12

congestive heart failures and 4 hepatic hydrothoraces).

Statistical analysis
Data are presented as mean 6 standard error of the mean

(SEM and median (range), where appropriate. A p value of ,0.05

was considered statistically significant.

The differences among groups were compared by one-way

analysis of variance (ANOVA) on-ranks with multiple comparisons

between groups performed using Dunn’s post hoc test. Student’s t

test with Bonferroni correction and Wilcoxon Rank Sum Test

were used to compare differences between two treatment groups

for parametric and non-parametric data, respectively. Paired t test

was used to compare differences between matched serum and

pleural fluid samples. The discriminative properties of Hsp72 were

evaluated using receiver operating characteristics (ROC) curve

analysis, selecting cut-off values with more than 80% specificity for

infectious effusions. Measures of diagnostic accuracy (sensitivity,

specificity, likelihood ratios (LR)) of pleural fluid Hsp72 for

differentiating effusions of infective causes (PPE and empyema)

from those of non-infective etiologies, PPE vs non-PPE, and CPPE

vs UPPE, were calculated. Analyses were conducted using

statistical softwares: SPSS v18.0 (Chicago, IL, USA) and

GraphPad Prism 4.0 (La Jolla, CA, USA).

Results

Mesothelial cells express HSP70
Using non-permeabilised mesothelial cells, we demonstrated for

the first time that mesothelial cells are a source of both the

constitutive Hsp73 and stress-induced Hsp72 isoforms of HSP70.

All human and murine mesothelial cells tested expressed Hsp73

and Hsp72, as judged by immunocytochemistry. The total cell

population of each mesothelial cell type stained for Hsp73 and

Hsp72. For MeT-5A cells, Hsp72 immunoreactivity was greater

compared to Hsp73, whereas Hsp73 staining was more intense for

the primary mesothelial cell types tested (Figure 1).

Live and heat-killed S. pneumoniae induce Hsp72 release
from mesothelial cells in vitro

MeT-5A cells were treated with live or heat-killed S. pneumoniae

strains and released Hsp72 measured in culture supernatants by

ELISA. Hsp72 was released from cultured MeT5A mesothelial

cells at all time points examined. Live S. pneumoniae 262 and

TIGR4 both induced Hsp72 release from mesothelial cells

(p,0.05) (Figures 2a and 2c). The stimulation of Hsp72 release

was still observed for both S. pneumoniae strains even when the

bacteria were heat-killed before experimentation, but, to a lesser

extent (Figures 2b and 2d).

Figure 2. Pleural mesothelial cells release Hsp72 in response to infection with Streptococcus pneumoniae. MeT-5A cells were treated with
live (A and C) or heat-killed (B and D) Streptococcus pneumoniae 262 strain (A and B) and S. pneumoniae TIGR4 strain (C and D) and Hsp72 levels
measured in culture supernatants at various time points up to 24 hr by ELISA. Significant release of Hsp72 was observed at all time points examined
(p,0.05) and was still evident following treatment with heat-killed S. pneumoniae. * Denotes significantly higher than vehicle control cells (p,0.05).
The data are presented as the mean 6 SEM of three independent experiments performed in triplicate.
doi:10.1371/journal.pone.0063873.g002
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Hsp72 does not induce selected cytokine release from
pleural mesothelial cells

The stress-induced Hsp72 isoform can induce cytokine release

in some cell types [14], and paradoxically inhibit cytokine-induced

mediator release from others [28]. Its ability to do so in mesothelial

cells has not been tested. MeT-5A cells were, therefore, stimulated

with highly purified recombinant Hsp72 and the supernatant was

measured for cytokine release. In contrast to PMA treatment,

Hsp72 stimulation had no effect on mesothelial cell release of

MCP-1 and VEGF (Figure 3a and 3b) or TNF-a, IL-10 and IFN-c
(data not shown). Pre-treatment of MeT-5A cells with Hsp72 did

not change TNF-a- or thrombin-induced MCP-1 levels released

from MeT-5A cells (Figures 3c and 3d).

S. pneumoniae induced Hsp72 release in vivo
To further confirm that bacterial infection contributes to Hsp72

release in serosal cavities lined by mesothelial cells, mice were

injected intraperitoneally with live S. pneumoniae D39. A 2-fold

increase in Hsp72 concentrations were found in the peritoneal

lavage of mice treated with S. pneumoniae D39 over saline controls

at 7 hr post-injection (p = 0.0087). A similar increase in Hsp72

levels was observed at 17 hr post-injection, with the peritoneal

lavage Hsp72 levels being ,2.5-fold higher in mice injected with

D39 (p = 0.0079) (Figure 4).

Hsp72 levels in patients with bacterial pleural infection
To further confirm that Hsp72 was released by pleural

mesothelial cells in response to bacterial pleural infection three

patient cohorts were used. First, systemic and pleural Hsp72 levels

were compared in an Australian cohort. Second, in a Spanish

cohort Hsp72 levels in infectious and non-infectious patients were

determined and the diagnostic accuracy of pleural fluid Hsp72

compared to traditional pleural fluid parameters. Third, these

results were further verified using a UK cohort.

Hsp72 was detected in all human pleural fluids obtained from

patients in all three cohorts (combined n = 536). In contrast,

Hsp72 was detectable in the sera of only 15 of the 20 patients

tested. The median Hsp72 concentration was 7.25 fold higher in

pleural fluid compared to serum (3.6 vs. 0.49 ng/ml; p,0.0001).

Pleural fluid Hsp72 concentration was higher (by up to 300 fold)

than the corresponding serum in the majority (92.5%) of patients

Figure 3. Extracellular Hsp72 does not induce or inhibit cytokine release from pleural mesothelial cells. The ability of a highly purified,
recombinant Hsp72 preparation to induce inflammatory cytokine release from pleural mesothelial cells was determined (A and B). MeT-5ACells were
treated with the indicated doses of Hsp72 or PMA as a positive control, and MCP-1 (A) and VEGF (B) release measured 24 hr post-treatment by ELISA.
In separate experiments, the anti-inflammatory effects of extracellular Hsp72 were examined (C and D). Cells were pre-treated with Hsp72 for 2 hr,
followed by treatment with TNF-a (C) or thrombin (D) for an additional 24 hr to induce MCP-1 release. In contrast to PMA stimulated MeT-5A cells,
treatment with Hsp72 had no impact on cytokine release. The data are presented as the mean 6 SEM of three independent experiments performed
in triplicate. NS, not significant.
doi:10.1371/journal.pone.0063873.g003
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tested (Figure 5a). These findings were consistent with a cellular

source of Hsp72 from within the pleural cavity.

Pleural fluids Hsp72 levels were compared among patients with

infective and non-infective effusions in the Spanish cohort. The

median pleural fluid Hsp72 concentrations were higher in

exudates compared to transudates (21.2 vs 6.5 ng/ml, p,0.0001)

(Figure 5b). Pleural fluid Hsp72 levels were significantly higher in

patients with infection-related pleural effusions (PPE and empy-

ema) over those with non-infective etiologies (23 vs 10.8 ng/ml,

p,0.0001) (Figure 6a). This finding remained robust if tubercu-

lous effusions were included in the infectious group over the non-

infectious group (22.9 vs 10.8 ng/ml, p,0.0001). When analysed

separately, the PPE and empyema groups had significantly

elevated Hsp72 levels compared to the non-infective effusion

group (p,0.001 and p,0.01, respectively). However, no signifi-

cant difference in pleural fluid Hsp72 was observed between PPE

and empyema patients (Figure 6b). Similar results were obtained

when pleural fluid Hsp72 levels were measured in the UK cohort.

The median pleural fluid Hsp72 levels were higher in exudates

compared to transduates by approximately 1.8-fold (p = 0.041).

Pleural fluid Hsp72 levels were elevated in patients with infection-

related effusions (PPE and empyema) compared to non-infective

etiologies by 1.5-fold (p = 0.02) and were the highest in patients

with empyema (p,0.05).

The value of pleural fluid Hsp72 to discriminate between

infection-related effusions and those of non-infective etiologies was

examined in the Spanish cohort. Using a threshold of 40 ng/ml,

pleural fluid Hsp72 could help separate infection-related effusions

from non-infective ones or PPE from other etiologies, although the

AUC was modest (0.688 and 0.658 respectively) and was inferior

to conventional biomarkers such as pH, glucose and LDH used for

the differentiation of UPPE and CPPE (Table 2).

Discussion

Although previous reports have demonstrated inducible changes

in HSP70 expression in peritoneal mesothelial cells [29], this is the

first study to show its extracellular release from pleural mesothelial

cells upon bacterial stimulation in vitro and in vivo. The findings

were further confirmed in three cohorts of human pleural fluid

samples, which showed significantly elevated Hsp72 levels in

infection-related effusions. Although our data suggests the

extracellular release of Hsp72 contributes to the elevated pleural

fluid levels in infection-related effusions, it is possible that impaired

clearance of Hsp72 from the pleural space can contribute to its

elevated levels in pleural fluid. Our data provide the platform for

future investigations of the role of Hsp72 in the pathophysiology of

bacterial pleural infection.

Pleural infection remains a significant global health problem

with a rising incidence in reports from most regions around the

world [1]. The pathobiology of pleural infection however remains

poorly understood. Mesothelial cells line the pleural, peritoneal

and pericardial cavities and are the most abundant cell type in all

these serosal cavities. Mesothelial cells are biologically active and

Figure 4. Hsp72 levels in peritoneal lavage are elevated
following intraperitoneal injection of mice with Streptococcus
pneumoniae. BALB/c mice were given a single intraperitoneal injection
of live Streptococcus pneumoniae D39 strain (,16107 CFU in 0.1 ml of
saline; n = 11) or saline as a control (n = 10). The peritoneal cavity was
lavaged 7 (n = 6) and 17 hr (n = 5) post-injection with 1 ml PBS for
quantification of Hsp72 protein. The results are presented as the fold-
increase in Hsp72 levels over the mean Hsp72 level in mice injected
with saline alone. An approximately 2- and 2.5-fold increase in Hsp72
was shown peritoneal lavage following infection with S. pneumoniae for
7 and 17 hr, respectively (p,0.01 for both).
doi:10.1371/journal.pone.0063873.g004

Figure 5. Hsp72 levels are elevated in exudative pleural effusions. Hsp72 was measured in human samples by ELISA and levels compared
between pleural fluid and serum (A), and transudates and exudates (B). A) Median Hsp72 levels were significantly elevated in pleural fluid compared
to their matched serum sample (n = 20 for each group) (3.6 vs. 0.49 ng/ml; p,0.0001). B) Median Hsp72 levels were higher in exudates (n = 233)
compared to transudates (n = 40) (21.2 vs 6.5 ng/ml, p,0.0001).
doi:10.1371/journal.pone.0063873.g005
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express a broad range of inflammatory mediators, especially in

response to undesirable infiltrating molecules including microbes

[30].

HSP70 is present in all organisms and, in unstressed conditions,

maintains intracellular protein homeostasis by mediating the

folding and translocation of naı̈ve proteins. Although produced

constitutively, HSP70 is abundantly expressed in response to

various physiological, environmental and pathological stressors

[8]. Bacterial infection is known to be a potent inducer of HSP70

expression in variety of cell types [31,32]. Previous reports have

associated infectious diseases with elevated HSP70 levels in body

fluids, including in plasma of children during septic shock [33], in

cerebrospinal fluid [19] and in seminal plasma of the prostate [34].

However, the presence and biological relevance of HSP70 in

pleural infection and the cellular source of pleural fluid HSP70

have not been clarified. This study demonstrates that pleural

mesothelial cells are a source of extracellular HSP70 in pleural

infection. Why MeT-5A cells demonstrated differential staining of

Hsp72 and Hsp73 is unclear and should be the focus of further

research.

Figure 6. Pleural fluid Hsp72 levels in infection-related and non-infective effusions. Pleural fluids Hsp72 levels were compared among
infection-related and non-infective effusions in the Spanish cohort. A) Median Hsp72 levels were significantly higher in infection-related pleural
effusions compared to effusions of non-infective etiologies (p,0.0001). B) Compared to non-infective effusions, Hsp72 levels were also higher when
in PPE (p,0.001) and empyema (p,0.01).
doi:10.1371/journal.pone.0063873.g006

Table 2. Measures of diagnostic accuracy of pleural fluid Hsp72.

Pleural fluid Hsp72, ng/mL Sensitivity, % Specificity, % LR+ LR- AUC

Infectious vs. Non-infectious

$15 62 (55–69) 62 (52–71) 1.6 (1.2–2.1) 0.62 (0.48–0.79) 0.688 (0.624–0.753)

$20 57 (50–64) 72 (63–80) 2.1 (1.5–2.9) 0.60 (0.48–0.73)

$25 49 (41–56) 82 (73–88) 2.7 (1.7–4.2) 0.63 (0.53–0.74)

$40 31 (25–38) 90 (83–95) 3.3 (1.7–6.3) 0.76 (0.68–0.86)

$50 28 (22–36) 90 (83–95) 3.0 (1.5–5.8) 0.79 (0.71–0.87)

PPE vs. other etiologies

$25 49 (40–57) 72 (64–79) 1.7 (1.3–2.4) 0.71 (0.59–0.87) 0.658 (0.593–0.723)

$30 45 (37–54) 80 (72–85) 2.2 (1.5–3.2) 0.69 (0.58–0.82)

$40 34 (27–43) 86 (79–91) 2.4 (1.5–3.9) 0.76 (0.66–0.88)

$50 33 (25–41) 88 (82–92) 2.7 (1.6–4.6) 0.76 (0.67–0.87)

CPPE vs. UPPE

pH #7.20 63 (50–75) 87 (74–93) 4.7 (2.3–9.7) 0.42 (0.29–0.61) 0.831 (0.75–0.912)

Glucose #60 mg/dL 63 (50–75) 93 (82–97) 8.5 (3.2–22.3) 0.4 (0.28–0.57) 0.826 (0.742–0.909)

LDH $1500 UI/L* 57 (44–70) 81 (69–90) 3.1 (1.7–5.7) 0.52 (0.37–0.73) 0.753 (0.662–0.845)

Hsp72 $40 ng/mL 37 (24–51) 69 (54–80) 0.9 (0.5–1.4) 1.1 (0.8–1.4) 0.55 (0.438–0.66)

Values in parentheses are 95% confidence intervals.
LR, likelihood ratio; AUC, area under ROC curve.
*This figure represents three times the upper normal limit for serum LDH.
doi:10.1371/journal.pone.0063873.t002
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We demonstrated that mesothelial cells produce Hsp72 through

three lines of experiments: in cell culture, in a murine model and

in three human pleural effusion cohorts totaling over 500 patients.

The finding is therefore robust, and is likely to be representative of

peritoneal and pericardial infections. In nearly all patients studied,

pleural fluid Hsp72 concentrations were higher than the corre-

sponding sera, suggesting Hsp72 was largely produced within the

pleural space. As such, our study is the first to demonstrate the

extracellular expression and release of Hsp72 by pleural meso-

thelial cells. Although mesothelial cells are a source of extracellular

Hsp72 within the pleural cavity, Hsp72 release from other cell

types such as neutrophils [35] and monocytes [36] likely

contribute to the overall HSP70 pool within pleural effusions.

Hsp72 release was upregulated from mesothelial cells in

response to S. pneumoniae, whether live or heat-killed. This finding

suggests that bacterial stimulation of Hsp72 release is mediated at

least in part via structural molecules within the bacteria and not

predominantly dependent on secreted bacterial products. It is

noteworthy that prior studies have shown HSP70 release by

necrotic, but not apoptotic, cells [9]. Therefore, the liberation of

intracellular Hsp72 following cell lysis as a result of bacterial

exposure may contribute to the elevated pleural fluid Hsp72

concentrations observed from patients with empyema in whom

mesothelial cell necrosis are common. When cocultured, S.

pneumoniae can induce death of mesothelial cells within 24 hr (data

not shown), a process that can contribute to the increased levels of

extracellular Hsp72 observed. However, increased Hsp72 release

is found when cells were treated with heat-killed bacteria (which

induce minimal cell death) as well as at earlier time points of

infection with live bacteria when no cell death was observed. We

are therefore confident that viable mesothelial cells release Hsp72

in response to bacteria. The precise interactions between bacteria

and mesothelial cells that trigger Hsp72 release was beyond the

scope of this study.

The purpose of the mesothelial release of Hsp72 upon bacterial

infection is unclear. Hsp72 is often described in the past as a

chaperone protein. However, recently extracellular functions have

been attributed to Hsp72 and it is now described as a

‘‘chaperokine’’ to reflect its dual role as a chaperone and cytokine.

Hsp72 is known to elicit intracellular calcium mobilisation [14],

induce NF-kB activity [17] and, most notably, stimulate the

release of pro-inflammatory cytokines [14,37]. We used a highly

purified preparation of Hsp72, but failed to induce cytokine and

chemokine release from mesothelial cells. This may be explained

by recent findings that the in vitro cytokine effects of Hsp72 are due

to molecules bound to Hsp72 or contaminants present in the

preparations used, namely bacterial endotoxin [38–41]. It is also

possible that higher concentrations of Hsp72 are required to

induce pro-inflammatory cytokine release from mesothelial cells,

as seen in macrophages [42]. Further, Hsp72 may act on other

(e.g. inflammatory) molecules and cells within the pleura directly,

or via paracrine pathways, which could coordinate/modulate

pleural inflammation via cytokine crosstalk in the pleural cavity

[43]. In addition, the constitutive Hsp73 isoform has also been

shown to have cytokine effects in vitro [44] and, therefore, may

induce similar responses in mesothelial cells.

In vitro, extracellular Hsp72 has also been shown to act as an

anti-inflammatory mediator inhibiting pro-inflammatory cytokine

release [28]. Further, an anti-inflammatory role has been proposed

in vivo using HSP70 deficient mice [45–47]. Inducible changes in

Hsp72 have been shown to contribute to the resolution of

inflammation in a rat model of carrageenin-induced pleurisy

[48,49]. Thus, contrary to its proposed pro-inflammatory activity,

HSP70 may play an anti-inflammatory role in pleural infection. In

vitro we were unable to demonstrate effect of extracellular Hsp72

on pro-inflammatory cytokine release. The precise biologic effect

of released HSP70 proteins in pleural infection warrants further

investigation.

A chaperone protein may be useful clinically as a biomarker for

pleural disease. In this regard, HSP70 expression of effusion

cytology has been shown to be a prognostic marker of poor

survival in malignant disease [50]. However, our study is the first,

to our knowledge, to assess extracellular HSP70 levels in pleural

fluid. The pleural fluid level of Hsp72 was indeed raised in

infection-related effusions, and showed a graded increase from

simple to CPPE to frank empyema. The discriminatory value of

Hsp72 was, however, inferior to conventional markers (eg pleural

fluid pH). This may be due to a variety of clinical reasons

including that confounding interactions among these markers (all

of which reflects pleural inflammation), timing of collection of fluid

and other patient comorbidity that may influence the Hsp72

levels. Nonetheless, the human fluid Hsp72 data further support

that HSP70 forms part of the mesothelial response to bacterial

invasion of the pleura, and the potent and consistent release of

Hsp72 may have a biologic role rather than acting purely as a

chaperone.

In summary, this study confirms the ‘sufficiency’ of the

mesothelium as a pleural source of extracellular Hsp72 and

provides a rationale for the elevated Hsp72 levels observed in

infectious pleural effusions. We demonstrate for the first time the

extracellular release of Hsp72 in response to live and heat-killed

bacteria from mesothelial cells. Further studies are required to

elaborate on the extracellular functions of HSP70 in pleural

infection.
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