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Dynamics of the BCS-BEC Crossover in a Degenerate Fermi Gas

M. H. Szymańska,1 B. D. Simons,1 and K. Burnett2
1Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom

2Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
(Received 16 December 2004; published 3 May 2005)
0031-9007=
We study the short-time dynamics of a degenerate Fermi gas positioned near a Feshbach resonance
following an abrupt jump in the atomic interaction resulting from a change of magnetic field. We
investigate the dynamics of the condensate order parameter and pair wave function for a range of field
strengths. When the jump is sufficient to span the BCS to Bose-Einstein condensation crossover, we show
that the rigidity of the momentum distribution precludes any atom-molecule oscillations in the entrance
channel dominated resonances observed in 40K and 6Li. Focusing on material parameters tailored to the
40K Feshbach resonance at 202.1 G, we comment on the integrity of the fast sweep projection technique as
a vehicle to explore the condensed phase in the crossover region.
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Ultracold alkali atomic gases provide a valuable arena in
which to explore molecular Bose-Einstein condensation
(BEC) [1] and fermionic pair condensation [2,3]. Further,
the facility to control interparticle interactions via a mag-
netically tuned Feshbach resonance (FR) provides a unique
opportunity to investigate the BCS-BEC crossover and the
dynamics of condensate formation. As well as the adiabatic
association of molecules [1], both fast sweep ‘‘projec-
tions‘‘ of fermionic pair condensates onto the molecular
BEC [2,3] and atom-molecule Ramsey fringes [4] have
been reported in the recent literature. Lately, motivated by
earlier work on the BCS system [5,6], it was shown [7,8]
that the mean-field equations of motion of a Bose-Fermi
(BF) model, commonly used to describe the FR system, are
characterized by an integrable nonlinear dynamics. From
these works, three striking predictions emerged: First, after
an abrupt change in the strength of the pair interaction, the
condensate order parameter exhibits substantial oscilla-
tions which range in magnitude between some initial state
value, �I, and that expected for the equilibrium final state
�eq. Second, in the absence of energy relaxation processes,
these oscillations remain undamped, suggesting the poten-
tial to observe coherent atom-molecule oscillations in the
FR system. Third, a spectral ‘‘hole-burning’’ phenomenon
in the atomic momentum distribution, at one-half of the
molecular binding energy, provides a signature of such
oscillations [8].

In the following, we argue that this behavior rests on an
auxiliary constraint that, in the present system, seems hard
to justify. Drawing on the results of numerical analysis of
the unconstrained dynamics, we show that, in the absence
of relaxational processes, the oscillations of the order
parameter are damped substantially, even at the level of
mean field. When the abrupt change of the interaction
spans the BCS-BEC crossover, for both the single-channel
and BF systems, the magnitude of oscillations are small
and die out, leaving � close to the initial, and much smaller
than the equilibrium value, �eq. The distribution remains
essentially ‘‘frozen’’ and the hole-burning oscillations pre-
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dicted in Ref. [8] do not occur. This rigidity of the initial
state prevents BCS-BEC atom-molecule oscillations but
validates fast sweep techniques [2] as a probe of the cross-
over region.

A full microscopic theory of FR phenomena relies on all
matrix elements connecting different spin states. In prac-
tice, an accurate description of the resonance can be ob-
tained by using a magnetic field dependent effective
interaction between atoms in the entrance channel or,
more generally, in the two most relevant channels. For
low relative momenta, relevant to cold atom physics, the
full form of complex atomic potentials are not resolved.
Indeed, separable potentials with parameters drawn from
experiment and exact multichannel calculations can be
used to recover all low-energy binary scattering observ-
ables [9,10]. As often only one bound state of the closed
channel potential is relevant, it has been traditionally re-
placed by a fictitious Bose particle and FR phenomena
captured by a BF Hamiltonian [11].

For the entrance channel dominated resonances ob-
served in 40K and 6Li formal calculations [9,10] support
a picture in which the BCS-BEC crossover is mediated by
only a small admixture of closed channel states—in the
40K FR at 202.1 G, the admixture of the closed channel is
less than 8% of the total [10]. In fact, the weakly bound
molecular state appears at a detuning E0 which lies far
from the value where the resonance state of the closed
channel crosses the dissociation threshold. Since the two-
body observables drawn from the exact numerical solution
of the Shrödinger equation within finite-range single- and
two-channel models do not differ over a wide range of
fields [10], FR phenomena in 40K can be equally well
described by a single-channel theory,
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involving Fermi operators ayks and aks. In the following, to
account for the entire region of the crossover (and not only
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FIG. 1. Variation of the chemical potential � with field B at
T � 0 for a mixture of fermionic 40K atoms prepared in the �f �

9=2; mf � �9=2	 and �f � 9=2; mf � �7=2	 Zeeman states at
a density of n � 1:5� 1013 cm�3 (i.e., TF � 0:35 �K). The FR
takes place at B0 � 202:1 G while the BEC-BCS crossover
(� � 0) occurs when B� B0 ’ �0:3 G. Note that, since the
density is nonzero, � reaches zero below the two-body FR. The
inset indicates the scattering length a�B	 � abg�1�

�B
B�B0

	 in the
universal regime, where abg is the background potential scatter-
ing length and �B the width of the resonance. Note that, in the
present theory, we use finite-range potentials with parameters
which also describe the FR far beyond the universal region [10].
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the universal regime), we take as matrix elements Vkk0 �

V0�B	
k��bg	
k0 ��bg	 with 
k��bg	 � exp
��k�bg	
2=2�

and the parameters V0�B	 and �bg chosen to recover the
correct magnetic field dependence of the scattering length
and the energy of the highest vibrational bound state [10].

The Heisenberg equations of motion are

i _k � 2�kk ��k�2�k � 1	;
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k0 ��bg	k0 denotes the complex order
parameter. Similarly for a BF theory, defining gk �
g0
k��	 as the coupling of the entrance channel to the
bosonic field bk associated with the Feshbach resonance
level of the closed channel, the equations acquire the
same form as (2) with �k � g0
k��	b0 �
Vbg
k��bg	

P
k0
k0 ��bg	k0 and b0 � hbk�0i obeying the

supplementary equation i _b0 � E0�B	b0 � g0
P

k
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As with the single-channel theory, the five parameters
which characterize the resonance, the background poten-
tial strength Vbg and range �bg (which define the entrance
channel scattering length and its highest vibrational bound
state), the interchannel coupling g0 and its range �, and the
detuning E0�B	 (which specify the position and width of
the resonance), are determined from experiment and exact
multichannel calculations [10].

Before turning to numerics, it is instructive to contrast
our approach to that adopted in [5,7,8]. Given an initial
condition, the Heisenberg equations (2) present a determi-
nistic time evolution of the density distributions. Indeed,
conservation of total density n, implicit in the dynamics
(2), provides a check on the integrity of the numerical
integration. By contrast, the integrability of the equations
of motion as described by Refs. [5,7,8] relies on an addi-
tional constraint involving density and an auxiliary pa-
rameter playing the role of a ‘‘chemical potential.’’ The
constraint is needed in this case to fix the value of a
momentum-dependent sign in the solution which should
properly be determined by the initial conditions. A similar
phenomenology describes the effect of a classical laser
source on a semiconductor electron-hole system where
the laser frequency ‘‘imprints’’ a chemical potential onto
the system [12]: While equilibration processes are suffi-
ciently small, the electrons and holes assume a nonequi-
librium distribution around the externally imposed
chemical potential resulting in a phenomenon of
‘‘spectral-hole burning’’ in which the density distribution
is depleted at the laser frequency. In the atomic gas, where
the degrees of freedom remain internal, it is difficult to see
how such a choice is motivated or justified. Crucially, we
will see that the unconstrained dynamics (2) lead to be-
havior very different from that obtained from the con-
strained [5,7,8].

With this background, let us now turn to the results of the
numerical investigation of the dynamics (2). Although we
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find that the qualitative behavior of BCS and BF dynamics
is generic, we focus specifically on potentials tailored to
the 40K resonance at B0 � 202:1 G with a density of n �
1:5� 1013 cm�3 comparable to that used in experiment
[2]. With these parameters, the equilibrium properties of
the effective single-channel and BF models essentially
coincide (for further details and values of parameters, we
refer to Ref. [10]). Therefore, to keep our discussion con-
cise, we focus on the single-channel theory, noting that the
parallel application to the BF model with appropriate
physical parameters generates quantitatively similar
results.

At a field of ca. 1.0 G above the FR, the condensate has
an essentially BCS-like character while the experiment
using the fast sweep technique observed the condensate
starting from 0.5 G above B0. To explore the entire region
of interest, we choose as initial conditions field values BI

which span the entire crossover region (marked by stars in
Fig. 1). Starting from the ground state T � 0 distribution,
we follow the dynamics of the condensate after an abrupt
switch to some different value of magnetic field BF.

Figure 2 shows the time evolution of j�k�0j, normalized
by �eq (the value that it would acquire were the system to
reach the T � 0 ground state at the final field BF). Here we
have chosen a field BF � B0 � �10 G deep within the
BEC phase where the large binding energy of molecules
allows their momentum distribution to be inferred from
time of flight measurements [2]. For comparison, insets of
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Fig. 2 show BF � B0 � �1:0 G. In contrast to the predic-
tions of the constrained dynamics [5,7,8], these results
show that (a) the coherent oscillations are substantially
damped even at the mean-field level, (b) the amplitude of
the oscillations is small, and (c) the order parameter j�k�0j
asymptotes to a value much less than the expected final
state equilibrium value �eq. Referring to the insets of
Fig. 2, one may note that, when the initial and final con-
ditions are drawn closer, the period of the oscillations
becomes longer and the effects of the damping more
pronounced. Moreover, although the period of the oscilla-
tions decreases monotonically with �eq, the dependence is
nonlinear and, referring to the bottom inset of Fig. 3, one
may note that �eq does not provide a ceiling for the
magnitude of the oscillation.

To interpret the generic behavior, it is instructive to
access the time dependence of the pair wave function k
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FIG. 2 (color online). Time dependence of the order parameter
j�k�0j=�eq following an abrupt switch from a field of �BI �

B0	=G � �0:5 (top), 0:0, 0:5, 1:0 (bottom) to �BF � B0	=G �
�10, and from �BI � B0	=G � �0:5 (top inset) and �BI �
B0	=G � 0:5 (bottom inset) to �BF � B0	=G � �1:0. In addition
to the constant phase velocity of �k�0 (found numerically to be
set by the final state equilibrium �), there is an additional time-
dependent phase modulation whose characteristics mirror
closely that of the amplitude oscillations.
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and the distribution �k. Figure 3 shows that, when the
abrupt switch takes place from BI � B0 � 0:5 G to BF �
B0 � �10 G, although there is a slight tendency to shift
towards the final state equilibrium distribution, the pair
wave function and the density distribution remain essen-
tially frozen close to the initial BCS-like distribution,
exhibiting only small oscillations in time. In the absence
of energy relaxational processes, the system is unable
to significantly redistribute weight. By contrast, when
the switch takes place from BI � B0 � 0:5 G to
0

0.1

0.2

0.3

|κ
k|

0 1 2 3
Time [ms]

0.8

0.9

1

1.1

|∆
k=

0|/∆
eq

0 0.5 1 1.5 2 2.5 3
k/k

F

0

0.2

0.4

0.6

0.8

1

Φ
k

0 40 80

Time [µs]

0.1

0 1 2 3 k/k
F

0

0.2

0.4

 |κ
k|

B
I
 = B

0
 + 0.3 G

B
F
 = B

0
 + 0.2 G

B
I
 = B

0
 + 0.5 G

B
F
 = B

0
 - 10 G, -1 G

FIG. 3 (color online). The pair wave function jkj (upper
panel) and the density distribution �k (lower panel) shown as
a function of k � jkj with BI � B0 � 0:5 G (dashed lines) and
BF � B0 � �10 G after 50 �s (dash-dotted line) and BF �
B0 � �1:0 G after 800 �s (solid line) following the abrupt
switch as in Fig. 2. The dotted lines signify the ground state
equilibrium distributions at BF � B0 � �1:0 G included for
comparison. The upper inset shows oscillations of jk�0j for
BF � B0 � �10 G. The lower two insets refer to a weak per-
turbation on the BCS side from BI � B0 � 0:3 G (dashed line) to
BF � B0 � 0:2 G. The dotted line shows the equilibrium distri-
bution while the solid line provides a snapshot of the distribution
at 3 ms after the switch. Note that the harmonic modulations
visible in the distribution functions translate to a single energy
scale of the same order of magnitude as the period of oscillations
seen in j�k�0j.
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FIG. 4 (color online). Time dependence of the condensed
molecule density 
nmc�t	 � nmc�0	�=nmc�0	. Here we have used
the same field values as that used in Fig. 2 (main) with �BI �
B0	=G � �0:5 (top), 0:0, 0:5, and 1:0 (bottom) and �BF �
B0	=G � �10. When normalized to one-half of the total atomic
density, nmc�0	 � 0:3, 0:1, 0:012, and 0:0005, respectively.
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BF � B0 � �1:0 G, the proximity of the two phases al-
lows the system to converge to a (nonstationary) modulated
distribution whose (stationary) envelope reflects more
closely the final state equilibrium distribution. The lower
insets in Fig. 3 show that a weakly perturbed condensate on
the BCS side approaches equilibrium with the pair distri-
bution showing small modulations around the equilibrium
one in accord with the linear stability analysis of the
weakly perturbed BCS system (2) (Refs. [13,14]). In par-
ticular, one may note that here (and, indeed, for other initial
and final conditions) the hole-burning predicted by the
constrained dynamics [8] does not appear.

To assess the potential of observing coherent atom-
molecule oscillations, we now look at the time evolution
of the number of condensed molecules, nmc�t	 �
j
R
d3kk�t	�B�k; BF	j

2. Here �B�k; BF	 is the wave func-
tion of the highest bound eigenstate of the two-body prob-
lem [10]. Referring to Fig. 4, we see that the amplitude of
oscillations is negligible. Although one may adjust the final
field BF to lie closer to the FR, the amplitude of the
oscillations increases only slightly while the damping
rate is enhanced. Moreover, the inclusion of processes
beyond mean field would simply increase the damping
rate and not enhance the oscillations. We therefore con-
clude that the observation of atom-molecule oscillations,
after an abrupt change in the interaction strength, is infea-
sible for the entrance channel dominated resonances cur-
rently studied in 40K and 6Li.

To conclude, we have presented a numerical analysis of
the dynamical mean-field equations for the single-channel
theory of the FR following an abrupt field change. In the
range of physical parameters appropriate to the 40K sys-
tem, consideration of the two-channel BF theory does not
change the results. When applied to a theoretical regime
where the population of the closed channel states below
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resonance is high, the numerical findings do not change
qualitatively. Relying on the deterministic time evolution
of the initial state according to the Heisenberg equations,
our results differ substantially from the findings of the
constrained dynamics [5,7,8]. Over a wide range of initial
conditions, we observe substantially damped oscillations
with an amplitude strongly dependent on initial conditions
and a frequency set by the interaction strength after the
switch. To assess the capacity for BCS-BEC-like atom-
molecule oscillations following an abrupt change in the
interaction, we have chosen initial and final conditions to
span the crossover from the BCS to the BEC limits. We
have found that the amplitude of atom-molecule oscilla-
tions is negligible and the distribution is essentially frozen
to the initial one, a behavior reminiscent of an orthogonal-
ity catastrophe. We conclude that, in the entrance channel
dominated resonances observed in 40K and 6Li, BCS-BEC
atom-molecule oscillations cannot be observed. The rigid-
ity of the condensate wave function distribution at short-
time scales, where the time evolution is mean field in
character, supports the method of the fast sweep as a
reliable technique to probe the fermionic pair condensate.
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