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Abstract

Background: Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis
(CF) via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they
are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis
transmembrane conductance regulator gene (CFTR) is expressed predominantly in the epithelium of the submucosal glands
and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach
applicable to treatment of CF lung disease by gene therapy.

Methodology: The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes
and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN) of
approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes
produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next
Generation Pharmaceutical Impactor (NGI). We also investigated the yield of intact plasmid DNA by agarose gel
electrophoresis and densitometry, and transfection efficacies in vitro and in vivo.

Results: RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene
delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while
the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 mm–1.4 mm cut off (NGI stages 3–6)
compatible with deposition in the central and lower airways.

Conclusions: RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for
therapeutic interventions of cystic fibrosis and other respiratory disorders.
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Introduction

Cystic fibrosis (CF) is one of the most common autosomal

recessively inherited disorders with a carrier frequency of 5% in

the Caucasian population [1,2]. CF predominantly affects the

exocrine epithelium in a number of secretory tissues and organs.

Respiratory insufficiency is the major cause of CF mortality. The

defect is caused by mutations in the gene for the cystic fibrosis

transmembrane conductance regulator (CFTR) [3,4], which is a

cAMP-activated chloride channel in the apical membrane

of the surface epithelium (for review see [5]). The mutated CFTR

causes an ion imbalance leading to a reduced volume of the

airway surface liquid, mucus dehydration and reduced muco-

ciliary clearance [6]. This provides a favourable environment for

bacterial infections leading to a progressive decline of lung

function [7].

The aim of CF gene therapy is to deliver the corrective gene to

the airway epithelium to restore chloride channel activity.

However, several gene therapy trials with vectors including

adenovirus (Ad), adeno-associated virus (AAV) and liposomes did

not achieve clinically relevant levels of CFTR gene transfer [7,8].

In addition, the administration of adenoviral vectors [9,10] and

AAV [11,12] augmented inflammation, due to the presence of

neutralizing antibodies and T cell responses in the already-

compromised respiratory system. The aerosol administration to

the lungs of a cationic liposome, GL67, complexed with plasmid

DNA caused febrile flu-like symptoms in some patients [13,14].

We have shown previously that a novel nanocomplex for-

mulation was effective at delivering genes to the lungs of mice by

direct instillation [15]. These receptor-targeted nanocomplexes

(RTNs) comprised peptides (K16GACSERSMNFCG), cationic

liposomes (DHDTMA/DOPE) and plasmid DNA. The peptide
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motif SERSMNF displays close similarity to receptor binding

proteins of two intracellular pathogens, rhinovirus and Listeria

monocytogenes [16]. Rhinoviruses of the major group bind

intercellular adhesion molecule-1 (ICAM-1, CD54) [17], which

is upregulated in chronically inflamed airway epithelium [18,19],

hence suggesting it could be an appropriate receptor target for CF

vectors.

Nebulisers are used extensively for the administration of

medication by inhalation, typically generating aerosol particles

less than 5 mm in diameter that can reach the lower respiratory

tract. Thus nebulisation is an attractive option to deliver genes

directly to the affected epithelial cells in the lungs of patients with

CF. A crucial step towards this goal is to find an appropriate

formulation and a compatible nebuliser. Vector suspensions should

maintain their stability and biophysical characteristics, protecting

the plasmid DNA from shearing forces during nebulisation so that

its biological activity is preserved. In addition, the yield from the

nebuliser must be maximised [20]. A careful evaluation of the

delivery device is therefore an essential requirement for designing a

CF gene therapy protocol. Different types of nebuliser technologies

are available commercially including jet, vibrating mesh and

ultrasonic nebulisers. In the present study we assessed the delivery

of RTN suspensions with jet and vibrating mesh nebulisers, as the

ultrasonic devices are not suitable for liposome-based vectors [21].

The aerodynamic particle sizes of RTN aerosols were

determined by sample deposition in a Next Generation Pharma-

ceutical Impactor (NGI). The stage at which the aerosol is

deposited in the seven-stage cascade impactor, reveals the terminal

settling velocity of the nebulised suspension dependent upon the

aerodynamic diameter (specific density, shape and gravity) of the

aerosolised particles [22].

RTN formulations in an AeroEclipse II BAN nebuliser

displayed particle stability following nebulisation and retained

transfection efficiency in vitro and in vivo, while aerosol aerody-

namic sizes were compatible with deposition in the airways and in

the lung. Therefore, RTN formulations delivered by an Aero-

Eclipse nebuliser showed the characteristics desirable for CF gene

therapy.

Results

Influence of the nebuliser on RTN delivery
Although convenient for administration of therapeutics to the

airways, the nebulisation process of transforming a liquid

medication into a respirable mist can involve strong shearing

forces, particularly in jet nebulisers. These devices are usually

operated until no more useful aerosol is generated, although in jet

nebulisers a residual volume of the suspension usually remains in

the sample reservoir. We examined the aerosolisation of the RTN

suspensions, based on the LED-1 formulation described previously

[15] comprising a cationic liposome (DHDTMA/DOPE), a

peptide E (K16GACSERSMNFCG) and a plasmid DNA using

different nebulisation systems and focused on their suitability for

treating CF patients. At the transfection weight ratio of 1.5:4:1

(L:P:D), the formulation contained, per plasmid, approximately

2,750 peptide molecules, 4,550 molecules of DHDTMA and 3,750

molecules of DOPE. The calculated N/P ratio was approximately

5, supporting the observation that the nanocomplexes were

positively charged.

Two jet nebulisers, the AeroEclipse II BAN and PARI-LC Plus,

which use rapidly expanding compressed air to atomise drug

solutions and suspensions, were compared with a vibrating mesh

nebuliser, the AeronebH Pro. The vibrating mesh nebuliser has the

potential advantage of lower shearing forces and a more efficient

aerosolisation process, with a negligible residual volume following

nebulisation. In comparison experiments, all the nebulisers were

operated for 10 min and the AeroEclipse was used in open vent

mode which allows for prolonged admission of gas through the

vent which results in shrinkage of the aerosol droplets due to

evaporation, increasing the nebuliser performance [20]. The

aerosolised nanocomplex suspension was collected from the NGI.

The air flow rate in the NGI was 15 L/min and the equipment

was chilled before each experiment to reduce evaporation of the

deposited material during the experimental procedure [23].

The average output efficiency of RTNs from the three different

nebulisers, compared by quantifying DNA in the nebuliser

chamber prior and after completion of the aerosolisation, was

approximately for the Aeroneb 43%, PARI 86% and AeroEclipse

85%, respectively (n = 2). The transfecting activity of the aerosolised

nanocomplexes, collected from the different stages of the NGI, was

measured in normal bronchial epithelial (16HBE14o-) cells

(Figure 1A and Table 1) or CF bronchial epithelial (CFBE41o-)

cells (Figure 1B and Table 1), after diluting them with OptiMEM

serum-free medium. The b-galactosidase activity measured in cell

lysates transfected with samples from the different stages of the NGI

suggested that the Aeroneb generated smaller aerosol droplets than

the other two nebulisers, with most activity recovered from stage 7

(particles with an aerodynamic diameter of less than 0.98 mm) and

the micro-orifice collector (S8), while in CFBE14o- cells expression

was also found in stages 6–8, with peak activity in stage 7 (Figure 1A,

1B and Table 1). The pattern of nanocomplex distribution was

comparable for both the AeroEclipse and PARI jet nebulisers,

where the vast majority of the transfection activity was found in the

aerosol particles deposited between stages 2 to 6 representing

aerodynamic diameters of 8.6 mm to 1.4 mm, respectively.

Samples from the Aeroneb showed no difference in either the

sizes (160 nm) or the f (electrokinetic or zeta) potentials (+46 mV)

between the post-nebulisation residual material in the nebuliser

reservoir (LO) and the suspension prior to nebulisation (PN)

(Figure 1C). However, the RTNs nebulised with the PARI-LC

Plus were larger post-nebulisation (210 nm) than pre-nebulisation

(158 nm) with the f potential decreased from +46 mV to +39 mV

(Figure 1C). RTNs collected from the AeroEclipse post-aerosol

and the leftover in the nebuliser chamber (Figure 1C, last two bars

and diamonds), showed a slight decrease in the geometric sizes

(144 nm and 126 nm, respectively) and a slight increase in the f
potential (+48 mV and +53 mV, respectively).

To further compare the AeronebH Pro and the AeroEclipse II

BAN, an in vivo study, with nine mice per cohort, was performed

by whole-body nebulisation with a 2 ml single dose of RTNs

containing the luciferase reporter gene plasmid pCILuc at a

concentration of 160 mg/ml of pDNA. Luciferase assays of lung

extracts (n = 7/group) at 24 h after aerosolisation indicated that

the AeroEclipse was the most efficient nebuliser for in vivo delivery

to mice (Figure 1D). Indeed, 71% of the C57BL6 mice (5/7)

showed luciferase expression in their lungs, versus 29% (2/7) of

those aerosolised with the Aeroneb (one of which was positive at

very low level). Values of luciferase activity (Relative Light Unit)

from the lungs of mice nebulised with the AeroEclipse were

statistically different at 0.05 level, compared to those aerosolised

with the Aeroneb, however when normalised to the protein

concentration there was no difference between the two groups.

Lungs from the two remaining mice were used for immunohis-

tochemical localisation of luciferase. Luciferase enzyme was

detected predominantly in ciliated tracheal epithelial cells

following nebulisation with the AeroEclipse (Figure 1F). No

positive staining was observed in the lower airways or parenchyma

of either mouse. No staining was observed in sections from naı̈ve
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mice or in sections of lung from nebulised mice where incubation

with the primary antibody was omitted (Figure 1E).

In summary, the RTN formulations nebulised with the

AeroEclipse II BAN, preserved almost unchanged the parameters

of the colloidal suspension and was the most effective nebuliser in

vivo and therefore was used for further investigations. The

AeronebH Pro, distributed to later stages of the NGI (particles

with an aerodynamic diameter less than 2 mm) and presumably

would deposit aerosol deeper in the lung in vivo. It also tended to

block during nebulisation making its use problematic. The

nanocomplexes nebulised through this device remained intact by

particle size measurements thus indicating a preserved activity, but

its efficacy in vivo was not as good as the AeroEclipse. The PARI-

LC Plus showed some alterations in the physical properties of the

suspension nebulised and so was not investigated further.

Yield of DNA from nebulised nanocomplexes
To better characterise the RTN suspension nebulised by the

AeroEclipse, DNA degradation and/or particle disruption was

then assessed. RTN suspension (3 ml) was nebulised into the NGI

and samples were collected from the different stages by rinsing

each cup and the throat with 1 ml of water. DNA was released

from the nebulised nanocomplexes and non-nebulised suspensions

by detergent treatment, then analysed by agarose gel electropho-

resis and the DNA was quantified by densitometry. The amount of

DNA recovered was higher from stages 3–5 (aerodynamic

diameter of 5.4 – 2.1 mm, respectively), though stage 6 (1.4 mm)

showed some positivity (Figure 2A). The packaging of DNA in the

suspension of liposomes and peptides appeared to protect the

DNA from breakage. In a few experiments we noticed a slight

increase in the amount of nicked/relaxed circles, but this could

have arisen during the sample processing.

Quantification of the plasmid DNA bands by densitometry,

expressed as a percentage of the total (PN), indicated that the yield

of nebulised nanocomplexes obtained from the NGI was 63% of

DNA (Figure 2A). The vast majority of the DNA was found in

stages 2–6 (8.6 mm – 1.4 mm), accounting for about 45% of the

total DNA nebulised and approximately 70% of that recovered

after nebulisation.

The distribution of quantified DNA from two independent

experiments (Figure 2B) followed essentially the same pattern of a

single experiment shown in the gel in figure 2A. The yield of DNA

collected from the NGI compared to the starting material on

average was around 77%, for the nanocomplexes, at a DNA

concentration of 160 mg/ml, formulated in H2O.

The physical size and stability of the nebulised
nanocomplexes collected from the NGI

The average geometric size of the nanocomplexes from the

aerosol collected in the NGI cups was compared to pre-nebulised

samples to further determine the stability of the nanocomplexes to

nebulisation. In this experiment the nanocomplexes increased in

size after nebulisation, from 150 nm to about 200–230 nm

(Figure 3), suggesting that the increase of the size may have

occurred during the passage of the aerosolised suspension through

the NGI. The f potential also increased from +45 mV to +54–

56 mV indicating that the nanocomplexes bearing a higher

colloidal stability were preferentially aerosolised.

Quantification of the cells transfected
The samples retrieved from the different stages of the NGI were

also used to determine their post-nebulisation ability to transfect

cells, using the enhanced green fluorescent protein (EGFP)

reporter gene. Equal volumes of nebulised material were added

to cultures of normal (16HBE14o-) or CF (CFBE41o-) bronchial

epithelial cells to detect the EGFP expression by flow cytometry.

The viable cells were selected by staining with propidium iodide as

shown in the control panel. The percentages of live EGFP-

transfected cells at each stage of the NGI are shown in comparison

with the EGFP-negative population. Pre-nebulisation suspension

(PN) and nanocomplexes remaining in the nebulisation chamber

upon completion of the nebulisation (LO) transfected the highest

number of cells, while fewer positive cells were found in trans-

fections performed with material collected from the throat and

stages 1, 7 and 8. The number of cells transfected seemed to

display a normal distribution trend from stage 2 (aerodynamic

diameter of 8.6 mm) to stage 6 (1.4 mm), having its maximum

peak at stage 4 (aerodynamic diameter cut-off of 3.3 mm). Flow

cytometry profiles of 16HBE14o- cells transfected with pEGFP

(Figure 4) clearly demonstrated that the distribution of EGFP-

positive cells transfected with nanocomplexes recovered from the

Figure 1. Comparison of vector delivery with three nebulisers (AeroEclipse II BAN, PARI-LC Plus and AeronebH Pro). A and B
Transfections of 16HBE14o- and CFBE41o- cells mediated by RTNs nebulised through the NGI: RTNs were made in clinical grade H2O at
weight ratio of 1.5:4:1 of DHDTMA/DOPE (1:1 molar ratio), peptide E and pCpG-free lacZ plasmid DNA, respectively. 3 ml of RTN suspension was used
for each nebulisation and all three nebulisers were operated at a flow rate of 15 L/min for 10 min. After aerosolisation nebulised nanocomplexes,
deposited in the different stages of the NGI, were collected by adding to each stage 1 ml of water. A volume of the collected samples, diluted in
OptiMEM, was added onto cells. The expression of the reporter gene was assessed 48 h after delivery. Representative results of transfection
experiments in both cell lines for each nebuliser (AeroEclipse II BAN, PARI-LC Plus and AeronebH Pro) are shown. The error bars represent the
standard error of the mean of quadruplicate wells. Nebulisations through the NGI were repeated 3 times with each nebuliser for both cell lines and
cumulative results are reported in Table 1. RLU = Relative Light Unit; Thr = throat; S1–S8 = stages 1–8 of the NGI, S8 = micro-orifice collector. C
Physicochemical properties pre- and post-nebulisation: The size and the f (electrokinetic or zeta) potential were measured using a Malvern
Nano ZS Zetasizer on aliquots of pre-nebulised nanocomplexes, of nebulised samples collected in a 50 ml tube, and of residual RTN suspension
remaining in the nebuliser chamber upon completion of the nebulisation. The average values of three independent measurements of each sample
were automatically performed. Bars represent the average values of the sizes of two independent experiments 6 the standard deviation whereas the
diamonds indicate the f potentials in the same samples 6 the standard deviation. PN = pre-nebulisation RTN suspension; post = post-nebulised
nanocomplex suspension; LO = (leftover) RTNs retained in the nebuliser chamber. D In vivo delivery of RTNs containing luciferase reporter
gene in C57BL6 mice: 2 ml of RTNs, prepared with pCILuc plasmid, were nebulised using either the AeronebH Pro or the AeroEclipse II BAN, into a
Plexiglas chamber in which 9 mice (C57BL6 strain) were confined. 24 h later, 7 of the murine lungs were then analysed for luciferase expression as
described in the methods. Luciferase activity is expressed as Relative light Unit (RLU) per milligram of protein. There was not statistical difference
between the two groups when the readings were normalised to protein content, but there was a statistical difference (p,0.05) in the luciferase
activity (Mann-Whitney test). E and F Localisation of luciferase expression by immunohistochemistry: Trachea of C57BL6, following a single
nebulisation of 2 ml of RTNs containing pCILuc were stained with 3,39-diaminobenzadine (F), and counterstained with haematoxylin. The transfected
tissue was localised in the ciliated airway epithelium whereas the negative control section (E) was not probed with the primary antibody. Objective
magnification: 406.
doi:10.1371/journal.pone.0026768.g001
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NGI, correlated with the transfection data (Figures 1A and B) and

the amount of DNA recovered (Figure 2). Similar results were

obtained for the same experiment repeated in 16HBE14o- cells

and in two independent experiments in CFBE41o- cells (Table 2).

Gene expression from nebulised delivery to mice
The reporter gene for b-galactosidase regulated by an EF1a

promoter was selected for reporter gene studies in vivo to minimize

the immune response to hypomethylated CpG repeats found in

most plasmid DNA. In addition, the EF1a promoter was shown

previously to confer more persistent expression in vivo [24,25].

Groups of six CD1 mice were subjected to whole body

nebulisation with RTN suspensions at 160 mg/ml pCpG-free lacZ

DNA. Mice were killed after 48 h then lung and trachea samples

were analysed for b-galactosidase expression by the CPRG assay

(Figures 5A and B, respectively), or by b-galactosidase immuno-

detection on dot blots (Figures 5C and D) in tissue lysates.

The enzymatic activity measured in the lungs (Figure 5A) was

not statistically different between the treated (nebulised with

RTNs) and the control group (nebulised with water). However, in

the tracheas (Figure 5B) the difference between the control and the

cohort nebulised with the reporter gene was statistically significant

(p,0.05). In all the experiments high levels of endogenous b-

galactosidase activity was found in the controls, consistent with

previous reports [26,27,28]. In the lungs, the quantification of the

b-galactosidase protein (Figure 5C) showed a more substantial

difference than the enzymatic activity. The results in the tracheas

appeared consistent between the two different assays (Figures 5B

and D).

Discussion

Despite the many therapies in the pipeline targeting specific

defects in CFTR transcription and expression or modulation of the

channel functions [8], there is still a clinical need for gene therapy-

based treatment for cystic fibrosis [29]. In the current study, we

aimed to optimise the previously developed molecular conjugates

for in vivo delivery via aerosolisation. We have described previously

the RTN formulation, a modular, self-assembling receptor-

targeted nanocomplex (RTN) formulation comprising a mixture

of cationic liposomes, a receptor-targeting/DNA-binding peptide

and plasmid DNA (D). This formulation displayed receptor-

targeted transfection mediated by the peptide, with endosomal

release of DNA to the cytoplasm enhanced by the liposome

component [30]. In developing the RTN formulation for gene

therapy of cystic fibrosis we have demonstrated its capacity to

transfect non-dividing epithelial cells in vitro [31], and optimised

the lipid and peptide components of the formulation for gene

delivery to airway epithelial cells [16,32]. In vivo studies performed

in rats [33], mice [15,34] and pigs [35] demonstrated high

efficiency of transfection in airway epithelium combined with low

inflammatory potential.

The RTN formulation used in this study is the same as that

delivered to mice in recent studies by intratracheal instillation [15].

The peptide contains the targeting motif SERSMNF, an epithelial

targeting peptide identified by our group in phage display

biopanning experiments [16]. SERSMNF is almost identical to

the ICAM-1 targeting sequence of rhinovirus a respiratory

pathogen. The K16 region of the peptide is important for DNA

packaging. The lipid component is DHDTMA/DOPE where

DHDTMA is a cationic lipid based on a glycerol backbone with

two unsaturated C16 alkyl chains linked by diether linkages [32].

RTN particles target cells by both ICAM-1 receptor and by non-

specific cationic properties, and are internalised endocytically. The
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Figure 2. Analysis of the DNA recovered from nanocomplexes collected from the NGI stages. A Visualisation of bands on agarose
gel: After nebulisation of RTNs through the NGI with the AeroEclipse, the DNA (pEGFP-N1 plasmid) was released from samples collected from each
stage, the throat (Thr), as well as the suspension pre-nebulisation (PN) and the leftover (LO) in the nebuliser reservoir. The released DNA was
electrophoresed on agarose gel, alongside the original plasmid used to form the complexes (ctrl), and visualised by EtBr staining under UV light. A
representative experiment is shown. The total yield of DNA of the experiment shown was 63% and the yield relative to each band of DNA in the gel is
also indicated underneath. B Quantification of bands of DNA released from the RTNs: Nanocomplexes prepared at the DNA concentration of
160 mg/ml were nebulised through the NGI and the RTNs pre-nebulisation (PN), the leftover in the nebulisation chamber (LO) or deposited in the throat
(Thr) or in the various stages (S1–S8) were collected. The DNA extracted from the samples was analysed by agarose gel electrophoresis. The agarose gel
images acquired were analysed by ImageJ. To compare the density values per area, the region of interest (ROI) of each independent experiment was
normalised to 1, before calculating the mean values. The experiments were performed twice and the error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0026768.g002
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lipid component mediates endosomal release of the DNA, which is

subsequently transported to the nucleus. This step may be

facilitated by the K16 peptide domain interacting with nuclear

importins. Thus there is a high degree of synergy between the lipid

and peptide components that contribute to its transfection

efficiency.

Aerosol therapy, with mucolytics, antibiotics and other

treatments, is widely used to treat CF patients and would be the

best option for gene therapy interventions. Different nebulisers

were compared to determine if their mode of operation resulted in

delivery of RTNs likely to reach the lower airways whilst retaining

their transfection efficiency.

Three nebulisers were selected for comparison. The AeronebH
Pro was tested as it has been shown to generate aerosol particles

appropriate for delivery to the lower respiratory tract and it has

the added advantage of yield efficiency, due to the vibrating mesh

design. Unfortunately, in these experiments, RTN delivery

efficiency of the AeronebH Pro was significantly less than that of

the two jet nebulisers. The pores in the mesh appeared to block

during nebulisation. The reason for this is unclear, but may be

related to the high positive charge of the RTNs adhering to the

mesh. The PARI-LC Plus is a commonly used breath-enhanced

nebuliser that has an advantage over conventional jet nebulisers in

that the amount of suspension delivered during inspiration is

greater. This is achieved through a valve on the top of the

nebuliser opening due to the negative pressure developed by the

patient during inspiration pulling more air through the nebuliser

and with it more aerosol particles. On expiration, the valve closes

and during this time the nanocomplex suspension is lost from the

device in a similar amount to that of a standard jet nebuliser. The

AeroEclipse II BAN is a newly designed nebuliser that only

nebulises during inspiration when the negative pressure pulls a

central ‘column’ down that enhances the Bernoulli effect of the

rapidly expanding gas from the compressor. This results in fluid

being pulled up from the reservoir for nebulisation only during

inspiration. Unlike the PARI-LC Plus no nanocomplex suspension

is lost during expiration from the AeroEclipse resulting in more

RTNs being available for inhalation. The option of operation in

breath-actuated mode would be extremely useful in the clinical

setting as the aerosol is produced in response to the patient

inspiration rate.

As both nebulisers otherwise produced aerosolised nanocom-

plexes that retained their transfection properties the AeroEclipse II

BAN was chosen for the remaining experiments. The AeroEclipse

nebuliser was examined in more detail for DNA degradation or

particle disruption during the aerosolisation process, for biophys-

ical properties, for the ability of transfecting a sufficient number of

cells to be clinically relevant and for its efficacy in a small animal

model.

The nebulised nanocomplexes not only retained the ability to

transfect, but the integrity of their DNA content was also

preserved (Figure 2) in agreement with what was previously

reported by others [36,37]. Those RTNs showed enhanced

colloidal stability (Figure 3), therefore were less prone to

aggregation or flocculation.

Several reports indicate that as little as 6–25% of epithelial cells

with restored CFTR functions are sufficient to correct the disease

[38,39,40]. The result in figure 4 not only quantified the number

of cells transfected by nanocomplexes, but provided also a good

indication at which level of the airways the gene expression could

be expected. The NGI data predicted that the majority of cells that

are likely to receive the reporter gene resided in the central

(trachea) and lower ciliated thoracic portion of the respiratory tree,

and not in the alveoli or in the upper airways.

The AeroEclipse aerosolised RTNs demonstrated productive

gene expression in most of the C57BL6 mice lungs and luciferase

expression was found in ciliated cells in immunohistochemical

sections of the trachea. In vivo experiments in another murine

strain, CD1 mice, confirmed that the delivery of the gene occurred

both in the trachea and in the lungs and demonstrated that the

delivery and the expression are not strain related. The CD1 mice

are a bigger strain than the C57BL6, and were able to reach easily

the nozzle, thus were more effective at breathing in the aerosol. No

changes were observed in the breathing pattern of either strain

during nebulisation. Apoptotic activity of the RTNs on the

epithelium as well as the inflammation associated to pCILuc was

assessed in a previous study [15]. It has been previously reported

that plasmids devoid of unmethylathed CG dinucleotides (CpG)

were less inflammatory [41].

We used pCpG-free lacZ plasmid-based RTNs to nebulise CD1

mice and the expression of the reporter gene was measured with

different methods in both lungs and tracheas. Although similar

trend was shown in both tissues, the enzymatic activity in the lungs

of treated animals was not statistically different when compared to

the controls. The interpretation of the data was complicated

because b-galactosidase activity is more difficult to detect in lung

tissue than in other tissue types, especially with low gene

expression levels [42]. Although the lacZ reporter gene delivered

is derived from Escherichia coli, mammalian tissues also express

endogenous b-galactosidase or enzymes with similar catalytic

(metabolic) activity, which determines high background level

[28,43,44]. A further hurdle is due to the presence of blood in

tissues, which interferes with the read-out of several colorimetric

substrates as the haemoglobin has a broad spectrum of absorption

[44]. To minimise the potential misinterpretation of the results

(Figure 5) when measuring the enzymatic activity, we used chloro-

phenol-red-b-D-galactopyranoside (CPRG) as substrate, which is

more sensitive and accurate [43], and to detect the protein (dot

blots) we probed the tissue lysates with an antibody specific for the

bacterial b-galactosidase.

Figure 3. Geometric diameters and electrokinetic potentials (f)
of RTNs before and after nebulisation through the NGI. The
aliquots of the same samples nebulised through the NGI (as in
Figure 2A) were used to measure the size (bars) and the f potential
(diamonds) using the Malvern Nano ZS Zetasizer. The average values of
three independent measurements per each sample were automatically
performed. Results of two independent experiments 6 the standard
deviation, from samples providing accurate readings are shown:
PN = pre-nebulisation RTN suspension; LO = (leftover) RTNs retained in
the nebuliser chamber upon completion of the nebulisation and
samples from stages 3–6 of the NGI.
doi:10.1371/journal.pone.0026768.g003

Nanocomplexes for Gene Delivery to the Airways

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e26768



In this study we have demonstrated that RTN formulations in

water can be nebulised with optimal efficiency levels by

AeroEclipse II BAN jet nebuliser. The nebulised aerosol

containing the nanocomplexes was collected in the cups of a

NGI and showed to have an aerodynamic size in the range of

approximately 2–8 mm. Aerosol particles of this size would be

compatible with deposition in the upper part of the lower

respiratory tract rather than deeper in the lung, which correlates

with the region of highest CFTR expression in the lung and so is

the required target site for delivery of CF gene therapy [45].

Nebulised nanocomplexes retained their biophysical properties,

and pDNA extracted from the nanocomplexes was present as

intact circular molecules. In vitro transfection experiments

demonstrated that the nebulised nanocomplexes and pDNA

retained their functionality for gene expression in transfected

cultures of bronchial epithelial cells. In vivo delivery of RTNs by

whole body nebulisation with the AeroEclipse II BAN nebuliser,

led to the successful transfection of murine lungs, which was

particularly evident in ciliated cells of the upper airways. Further

studies are needed to assess the delivery of the corrective gene in

vivo, and efficacy after repeated dosing.

Our findings may foster new opportunities for the therapeutic

intervention of cystic fibrosis. The dynamic airway plasticity

requires repeated applications and the receptor-targeted nano-

complexes presented in the current work may offer an advantage

for clinical translation.

Materials and Methods

RTN formulation
Receptor-targeted nanocomplexes (RTN) were prepared as

described elsewhere [15]. Briefly, liposomes formulated with

Figure 4. Transfection efficiencies mediated by RTNs carrying pEGFP plasmid and assessed by flow cytometry. RTNs were formed
using pEGFP-N1 plasmid DNA. Aliquots of nanocomplexes nebulised through the NGI (as in Figure 2A and 3) were used to perform transfections.
After 48 h incubation, cells were harvested and analysed by flow cytometry to determine the level of expression of enhanced green fluorescent
protein (EGFP) in the samples collected from each NGI stage. A representative experiment carried out in normal human bronchial epithelial cell-line
16HBE14o- is shown (cumulative experiments are summarised in Table 2). The dot-plot profile of untransfected cells (ctrl) represents the population
selected as alive whereas the 1st panel of histogram profile shows where the markers to discriminate the EGFP positive from negative population
were set. On each panel the percentage of EGFP negative (left) and EGFP positive (right) cells is indicated. PN = represent cells transfected with pre-
nebulisation RTN suspension; LO = cells treated with leftover nanocomplexes in the nebuliser chamber after nebulisation, Thr = throat, and S1–S8 cells
transfected with samples from the different NGI stages, respectively.
doi:10.1371/journal.pone.0026768.g004
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DHDTMA/DOPE were mixed with the peptide E (K16GAC-

SERSMNFCG) and plasmid DNA, all dissolved in water (Baxter

S.A., Lessines, Belgium), at the weight ratio of 1.5:4:1 (L:P:D).

Complexes were then left to assemble for at least 1 h at room

temperature before being used either for transfections or for

nebulisation experiments.

DHDTMA chloride [1-propanaminium, N,N,N-trimethyl-2,3-

bis(11Z)-hexadecenyloxy)-chloride) [46] and DOPE (1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine), liposomes were prepared at

1:1 molar ratio as described previously [32], or purchased from

Avanti Polar Lipids Inc. (Alabaster, AL, USA). Peptide E was

synthesised by Zinsser Analytic (Maidenhead, UK). Plasmid DNA

encoding for enhanced green fluorescent protein (pEGFP-N1) was

from Clontech (Clontech-Takara Bio Europe, Saint-Germain-en-

Laye, France), whereas plasmid pCILuc consists of pCI (Promega,

Southampton, UK) carrying a luciferase gene driven by the CMV

promoter-enhancer [16]. The pCpG-free lacZ plasmid (Invivogen,

San Diego, CA, USA) encodes for b-galactosidase under the EF1a
promoter, but is devoid of CpG dinucleotides.

Cell transfections
The normal bronchial (16HBE14o-) and the CF (CFBE41o-)

cell-line, kindly provided by Dieter Gruenert (California Pacific

Medical Center Research Institute, San Francisco, CA, USA),

were maintained in Minimum Essential Medium Eagle’s modifi-

cation (Sigma, Poole, UK) at 37uC in a humidified atmosphere

with 5% CO2. Tissue culture medium was supplemented with

10% heat-inactivated foetal bovine serum (FBS, Invitrogen,

Paisley, UK), 2 mM L-glutamine (Invitrogen) and 0.1 mM non-

essential amino acids (Sigma).

LacZ expression was measured in cell extracts with a b-glo assay

(Promega Corporation Madison, WI, USA) using a FLUOstar

Optima luminometer (BMG Labtech, Aylesbury, UK), according

to the instructions of the manufacturer. The results were

standardised for protein content using a Bradford protein assay

(Bio-Rad Laboratories, Hercules, CA, USA). Luminescence was

expressed as relative light units (RLU) per milligram of protein.

Nebulisations and Next Pharmaceutical Generation
Impactor (NGI)

The nebuliser AeroEclipse II BAN was a kind gift of Trudell

Medical International Europe Ltd (Manchester, UK), PARI-LC

Plus was purchased from PARI Medical Ltd (West Byfleet,

UK), while AeronebH Pro was kindly provided by Aerogen Ltd

(Galway, Ireland). For the nebulisation studies, 3 ml of nano-

complexes (unless stated otherwise), prepared in H2O, were

added to the sample chamber of the device. The nebuliser was

then connected to the compressor and to the throat of the NGI

(Copley Scientific Ltd, Nottingham, UK). The nebulisation was

performed for 10 min. The NGI was operated at a flow rate of

15 L/min, after cooling at 4uC for at least 1 h. The AeroEclipse

was set on continuous operational mode, thus providing a near

constant delivery rate independent from respiratory activity.

After nebulisation, the residual amount of nanocomplex suspen-

sion was measured and collected. All the NGI stages and

the throat were carefully rinsed with 1 ml of clinical grade H2O

(Baxter). Aliquots of the recovered material were used for

cell transfections, particle sizing and for DNA quantification

experiments.

Flow cytometry
RTN formulations containing the pEGFP-N1 plasmid (Clon-

tech-Takara Bio Europe) were nebulised through the NGI.
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Pre-nebulisation samples (PN), the leftover (LO) in the nebuliser

reservoir upon completion of the nebulisation and the aerosolised

samples, collected from the throat and the different stages of the

NGI and diluted with 1 ml of clinical grade H2O, were used for

transfections. 30 ml of each sample was added to 500 ml OptiMEM

(Invitrogen) and then to cells seeded in 24-well plates, grown at

80% confluence. After 48 h incubation, the cells were trypsinised

and filtered with a cell strainer (Ø 70 mm). Cells of duplicate wells

were pooled together in PBS containing 3% FBS, before analysing

EGFP expression by flow cytometry (LSRII, DB Bioscience

Europe, Oxford, UK). Cell viability was determined by propidium

iodide staining (Sigma) and at least 10,000 live cells were acquired.

Quantification of DNA released on agarose gel
RTN formulations were nebulised as described above. All the

samples pre- and post-nebulisation, and from the different NGI

stages were collected. The DNA was released from the

nanocomplexes as described previously [47]. Briefly, 100 ml of

Figure 5. In vivo transfection efficiency after a single dose nebulisation in CD1 mice. RTN suspension (6 ml), at a concentration of 160 mg/
ml of DNA, was nebulised using the AeroEclipse II BAN in a plexiglass box containing 6 CD1 mice. After 48 h following the nebulisation, the animals
were culled and the lungs and the tracheas removed. In the harvested tissues, the levels of b-galactosidase were measured by quantifying the
enzymatic activity and by immunodetecting the protein. Control animals were nebulised with the same clinical grade H2O in which nanocomplexes
were made. A and B Determination of b-galactosidase enzymatic activity: The b-galactosidase activity was measured by CPRG assay in both
whole lung lysates (A) and in those from the tracheas (B). The activity of enzyme (mU) in the lysates was calculated against the b-galactosidase
activity of Escherichia coli and normalised for the total protein content. (*) in panel B (tracheas) indicates statistically significant difference (Mann-
Whitney test) at 0.05 level (p,0.05). No difference was found in panel A, although there the protein activity showed a similar trend. C and D
Detection of b-galactosidase protein: The lysates from the whole lungs (C) and the trachea (D) from each mouse were spotted onto PVDF
membranes. Dot blots were first probed with goat polyclonal anti-b-galactosidase antibody and then with horseradish peroxidase-labelled rabbit
polyclonal anti-goat immunoglobulin. The quantification of duplicate dots per each mouse is shown. The difference between the control group
(nebulised with water) and the cohort which received RTNs formed using pCpG-free lacZ reporter gene, was statistically significant at the Mann-
Whitney test (*, p,0.05).
doi:10.1371/journal.pone.0026768.g005
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samples were mixed with the same volume of 26 DNA release

buffer (20 mM Tris-Cl, pH 8.0, 200 mM NaCl, 50 mM EDTA

and 1% SDS) and incubated at 50uC for 35 min. The DNA was

then purified with the WizardH DNA Clean-Up System (Promega)

according to the instructions of the manufacturer. 25 ml of each

sample was loaded and run onto 1% agarose gel. The gels were

visualised under UV light and the images were used for DNA

quantification. The band densities, following the rolling ball

background subtraction set at 20, were analysed on ImageJ

programme (http://www.NIH.gov) and the yield of the recovered

DNA was calculated.

The yield was expressed as percentage of the sum of the density

of DNA (r) in each lane corrected for the volume of the sample

collected (V), divided by the density of DNA of the starting

nanocomplex suspension (rPreNeb) also corrected by the volume

(VPreNeb).

yield(%)~
P
½(rLO|VLO)z(rThr|VThr)z(rS1|VS1)z::::::z(rS8|VS8)�

(rPr eNeb|VPr eNeb)
|100

Size and f potential of the RTN complexes
RTN complexes, freshly prepared by using 160 mg/ml of either

pCILuc or pCpG-free lacZ plasmid, or the samples collected from

the NGI cups were diluted 100-fold in DNAse- and RNAse-free

water (Invitrogen) to a final volume of 500 ml.

Nanocomplex sizes and f potentials were determined by

dynamic light scattering and by laser Doppler anemometry,

respectively, using a Nano ZS Zetasizer (Malvern Instruments,

Malvern, UK) with the following specifications: automatic

sampling time of 10 measurements/sample, refractive index of

1.330, dielectric constant 78.5, viscosity 0.8872 cP and temper-

ature of 25uC. f potential settings were calibrated against the

standard (268 mV66.8 mV). A total of three measurements per

each sample were automatically performed.

In vivo nebulisation
All animals were handled in strict accordance with good animal

practice as defined by the UK Home Office Animal Welfare

Legislation, and all animal work was approved by the Institutional

Research Ethics Committee (Institute of Child Health, University

College London, UK) and performed under Home Office project

license number 70/7073.

To determine the effectiveness of the different nebulisers, 2

cohorts of 9 female mice of C57BL6 strain (Charles River, UK),

were restrained in the Plexiglas box, with 2 apertures, one of which

was connected to the nebuliser, while in the second outlet a filter

was installed. Once acclimatised, the mice were nebulised with

2 ml of RTN suspension, containing 160 mg/ml pCILuc DNA,

over maximum 30 min. The aim of this procedure was to allow

comparison of in vivo delivery with the AeroEclipse II BAN and

AeronebH Pro. All the nebulisers produced an aerosol mist, which

filled the air within the cage, though the AeronebH Pro blocked

frequently. Mice were sacrificed at 24 h, the lungs were perfused,

resected and 7 were stored at 280uC, while 2 were fixed for

immunohistochemistry. Tissues were defrosted in ice, submerged

in reporter gene assay lysis buffer (RLB, Roche, Basel, Switzer-

land), homogenised with an IKA homogeniser (IKA, Staufen,

Germany) and centrifuged at 18,8906 g for 10 min at 4uC. The

supernatants were removed and centrifuged at 18,8906 g for a

further 10 min at 4uC before measuring the luciferase activity.

To assess the vector delivery using pCpG-free lacZ reporter

gene, CD-1 female mice of 6–8 weeks of age (Charles River, UK),

weighing 28–30 g, were confined in the same Plexiglas box

mentioned above. The AeroEclipse nebuliser was filled with 6 ml

of RTN suspension and set on continuous operational mode. All

animals were exposed to the aerosol mist containing pCpG-free

lacZ DNA at a concentration of 160 mg/ml, or H2O as control, for

about 30 min, respectively. 48 h after nebulisation, all the 6

animals of each cohort were sacrificed. The lungs and tracheas

were collected and stored at 280uC. Tissues were then defrosted

on ice, added into RLB (Roche), subjected to hard tissue

homogenisation with Precellys 24 (Bertin Technologies, France)

and centrifuged at 18,8906 g for 3 min at 4uC. The supernatant

was collected and centrifuged at 18,8906g for 10 min at 4uC. The

samples were then stored at 220uC before biochemical analysis

for the expression of b-galactosidase.

Luciferase activity detection
Luciferase activity in the tissue lysates was measured over 30 s

using the Luciferase Assay System (Promega) in a FLUOstar

Optima luminometer (BMG Labtech). The amount of protein

present in each transfection lysate was determined with the Bio-

Rad protein assay reagent (Bio-Rad Laboratories). Luciferase

activity was expressed as relative light units (RLU) per milligram of

protein. Two million RLU/30 s corresponds to 1 ng of luciferase.

Two of C57BL6 mice nebulised with 2 ml of RTN formulations

containing pCILuc were used for luciferase immunohistochemis-

try. After killing, the lungs and tracheas were fixed in 4%

paraformaldehyde. Sections were analysed for firefly luciferase

expression, 5 mm thick sections were dewaxed, rehydrated, and

blocked with hydrogen peroxide and normal rabbit serum and

then processed as described previously [34].

Biochemical measurement of b-galactosidase activity
The b-galactosidase enzymatic activity was assessed by CPRG

(chloro-phenol-red-b-D-galactopyranoside) assay [48,49]. 50 ml of

tissue lysate was added to 150 ml of 1 mg/ml CPRG solution

(60 mM NaH2PO4, 1 mM MgSO4, 10 mM KCl, 50 mM b-

mercaptoethanol). The b-galactosidase standard curve was

prepared with a 2-fold dilution of b-galactosidase enzyme (Sigma)

in 100 mM phosphate buffer, pH 7.3, 10 mM MgCl2, and

10 mM b-mercaptoethanol, starting from 100 mU. The 96-well

plates were incubated at 37uC to allow the development of the

colour, before stopping the reaction with 50 ml of 1 M NaCO3.

The absorbance was read at 595 nm. The enzymatic activity was

normalised to total protein concentration as described above.

For the dot blot assay, 5 ml of samples (in duplicate) were

added to PVDF membrane (Ø45 mm, Immunobilon P, Millipore

UK Ltd. Watford, UK) and a further 25 ml of RLB (Roche) was

added. The vacuum was kept on for 1 h until the dots were

completely dried. The membrane was left overnight in PBS-1%

BSA, washed twice with PBS containing 0.05% Tween 20

(Sigma; PBS-Tw), then incubated for 90 min with goat polyclonal

anti-b-galactosidase antibody (10 mg/ml in PBS-Tw, AbD

Serotec, Kidlington, UK). After 3 washes with PBS-Tw, the dot

blot membrane was incubated overnight at 4uC with horseradish

peroxidase-labelled rabbit polyclonal anti-goat immunoglobulin

(50 ng/ml in PBS-Tw; Dako UK Ltd., Ely, UK). Following

further washing, the membrane was developed with ECL (Pierce,

Thermo Fisher Scientific - Rockford, IL, USA). Following the

rolling ball background subtraction set at 50, the densities of the

dots were analysed on ImageJ programme (http://www.NIH.

gov).
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Statistics
Data were analysed using GraphPad 5.0 InStat (GraphPad

Software, Inc., La Jolla, CA) and are expressed as mean 6 SEM,

unless otherwise indicated. Population medians were interpreted

using a non-parametric (Mann-Whitney) test. Differences were

considered to be statistically significant for at least p,0.05.
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