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Abstract

We consider the problem of optimally allocating a limited budget to acquire relevance judgments when

constructing an information retrieval test collection. We assume that there is a large set of test queries,

for each of which a large number of documents need to be judged. However, the available budget only

permits to judge a subset of them.

We begin by developing a mathematical framework for query selection as a mechanism for reducing

the cost of constructing information retrieval test collections. The mathematical framework provides

valuable insights into properties of the optimal subset of queries. These are that the optimal subset

of queries should be least correlated with one another, but have a strong correlation with the rest of

queries. In contrast to previous work, which is mostly retrospective, our mathematical framework does

not assume that relevance judgments are available a priori, and hence is designed to work in practice.

The mathematical framework is then extended to accommodate both the query selection and docu-

ment selection approaches to arrive at a unified budget allocation method that prioritizes query-document

pairs and selects a subset of them with the highest priority scores to be judged. The unified budget al-

location is formulated as a convex optimization, thereby permitting efficient solution and providing a

flexible framework to incorporate various optimization constraints.

Once a subset of query-document pairs are selected, crowdsourcing can be used to collect associated

relevance judgments. While the labels provided by crowdsourcing are relatively inexpensive, they vary

in quality, introducing noise into the relevance judgments. To deal with noisy relevance judgments, mul-

tiple labels for a document are collected from different assessors. It is common practice in information

retrieval to use majority voting to aggregate multiple labels. In contrast, we develop a probabilistic model

that provides accurate relevance judgments with a smaller number of labels collected per document.

We demonstrate the effectiveness of our cost optimization approach on three experimental data,

namely: (i) various TREC tracks, (ii) a web test collection of an online search engine, and (iii) crowd-

sourced data collected for the INEX 2010 Book Search track.

Our approach should assist research institutes, e.g. National Institute and Standard Technology

(NIST), and commercial search engines, e.g. Google and Bing, to construct test collections where there

are large document collections and large query logs, but where economic constraints prohibit gathering

comprehensive relevance judgments.
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Chapter 1

Introduction

In information retrieval (IR) experiments an Ad-hoc test collection is used to evaluate the performance

of various retrieval systems. An Ad-hoc test collection consists of (i) a corpus of documents, (ii) a set

of queries (topics in TREC terminology), and (iii) a set of relevance judgments for each query. Rele-

vance judgments indicate which documents in the corpus are relevant to a particular query. In a typical

evaluation of a retrieval system, an effectiveness metric, e.g. Average Precision, receives associated rel-

evance judgments as input and measures the system’s performance for a query. The system’s average

performance is then measured based on its performance scores measured across a set of queries. Finally,

systems are ranked based on their average performance.

1.1 Low-Cost Test Collections
Starting from early Ad-hoc test collections, with a few thousands of documents and tens of queries,

information retrieval experiments have transitioned to test collections with billions of documents, and

aspire to systems evaluation over millions of queries. However, despite this increase in size, it still

remains necessary to manually acquire relevance judgments in order to calculate retrieval effectiveness

metrics. When the corpus and the number of queries were small, it was feasible to acquire relevance

judgments by employing a number of human assessors who compared every document or at least a

sufficiently large number of documents in the corpus to every query. However, when the corpus and the

number of queries are large, this is no longer feasible, due to both the economic cost and time involved.

The cost of gathering relevance judgments, in its simplest form, is a function of the number of

queries chosen to evaluate the retrieval systems, the number of documents judged per query, and the

human effort spent on judging a document. However, cost is not the only criterion. Reliability and

accuracy of conclusions drawn by using a test collection are also extremely important. Indeed, a robust

test collection has no inherent bias that might affect the evaluation of any retrieval systems.

In a common scenario of IR experiments, a large set of queries are initially compiled against which

we desire to measure the performance of a set of systems. Ideally, a system can be evaluated and

compared with other systems if we manually assess a significant portion of the document corpus or, at

least, a large number of documents retrieved by each individual system.1 However, the available budget

1This is the case when recall sensitive metrics like average precision and Recall are used to measure a system’s performance.
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prohibits gathering exhaustive relevance judgments by expert assessors. We can efficiently deal with the

budget constraint by:

• minimizing the number of queries for which relevance judgments are required. This approach is

known as query selection and motivated by the retrospective experiments conducted by Guiver et

al. [GMR09], showing that it is possible to reproduce the results of an exhaustive evaluation of

systems over many queries by using a much reduced set of queries that is representative of the full

set.

• minimizing the number of documents that need to be judged for a query. This approach is referred

to as document selection. There exists a rich body of related work on designing efficient document

selection methods, e.g. Carterette et al. [CAS06] and Aslam et al. [APY06], supported by metrics

designed for shallow relevance judgments, e.g. Carterette et al. [CAS06] and Yilmaz et al. [YA06].

• outsourcing the assessment task to a large group of assessors via crowdsourcing experiments in-

stead of assigning the task to a few experts. Web services like Amazon Mechanical Turk2 provide

facilities to temporarily hire a large number of crowd assessors to collect relevance judgments

with a minimum cost and in a short period of time. While still in the early stages, the practices of

outsourcing the relevance judgment tasks are evolving and the IR community is investigating the

benefits and the drawbacks of the crowdsourcing approach [Alo11].

Despite a large amount of study on the document selection problem, little literature is available on

the query selection problem. The characteristics that a subset of queries should hold to be representative

of the full set of queries is still unclear. Also, previous work did not address how the number of queries

can be effectively minimized when relevance labels are not available yet. In addition, an approach that

combines the various aspects of query selection and document selection and provides a unified optimiza-

tion framework has not been addressed yet. Finally, efficiently dealing with the noise in relevance labels,

provided by crowd assessors, is still one of the main challenges in crowdsourcing experiments.

1.2 Contributions
This work expands the existing research in three directions: (i) formulating the query selection problem

and designing a solution model that effectively performs in practice, (ii) modeling a unified optimization

framework that combines various aspects of document selection and query selection and provides cri-

teria for constructing robust test collections under the budget constraint, and (iii) modeling the noise in

crowdsourcing experiments to efficiently aggregate multiple noisy labels and construct relevance judg-

ments.

This work will be of significant benefit in constructing low-cost test collections for the IR com-

munity or the commercial search engines like Bing and Google, where there are very large document

collections and query logs, but budget constraints prohibit providing the comprehensive set of relevance

judgments.

2https://www.mturk.com/
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1.2.1 Query Selection

The query selection problem is essentially important when a large set of queries is initially compiled

against which we desire to measure the performance of a set of systems. However the available budget

only permits relevance judgments for a subset of queries. The goal of a query selection method is

to find a subset of queries that most closely approximates evaluation results that would be obtained if

one used the full set of queries. The common approach for selecting a subset of queries is random

sampling. However, Guiver et al. [GMR09] recently showed that query subsets vary in their accuracy

of predicting the systems’ average performance that is computed over the full set of queries. Their

results indicate that particular subsets of queries, known as representative subsets, are good predictors

of the systems’ average performance. However, it is still unclear what properties the representative

queries should contain, and how to select such a representative subset when relevance judgments are not

available yet.

We first assume relevance judgments are available for all the queries in a test collection, and de-

velop a mathematical framework for query selection (Chapter 4). The mathematical framework provides

valuable insights into the characteristics of the optimal subset of queries. These are that the optimal

subset of queries (i) are least correlated with one another, thereby maximizing the information we gain

from each, and (ii) should have strong correlation with the remaining queries, as without this correlation

there is no predictive capability.

We then relax the assumption that relevance judgments are available before selecting queries and

extend the mathematical framework (Chapter 6). In particular, our mathematical framework explicitly

models uncertainty in the retrieval effectiveness metrics that are introduced by the absence of relevance

judgments. Thus, in contrast to previous work which is retrospective and assumes some relevant judg-

ments are available for each query, e.g. Guiver et al. [GMR09] and Robertson [Rob11], our approach is

designed to work in practice and does not require the existence of prior relevance judgments.

Since the optimization model is computationally intractable, we devise an adaptive query selection

algorithm to provide an approximate solution. We demonstrate the effectiveness of the adaptive algo-

rithm using various test collections including a large scale dataset of a commercial search engine. The

experimental results prove that the adaptive method could reduce at least 35% of queries that are required

by the considered baseline methods to obtain 90% accuracy in ranking the retrieval systems. We also

investigate how the selected query subset generalizes to (i) new unseen systems and (ii) changes to the

evaluation metric. We show that the adaptive algorithm can be modified to improve generalizability in

both cases.

1.2.2 Reusability

Recent studies have concentrated on IR evaluations with large query sets, e.g. Carterette et al. [CPK+08],

aided by document selection methods that reduce the number of relevance judgments per query in order

to make relevance judgments feasible, e.g. Carterette et al. [CAS06], as well as introducing evaluation

metrics for partially judged result sets, e.g. Yilmaz et al. [YA06]. However, due to a small number of doc-

uments assessed per query, the reusability of such a test collection still remains questionable [CKPF10].
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New as yet unseen systems may return many documents that are previously unjudged. Thus, relying on

the current set of relevance judgments may cause high uncertainty in measuring the performance of the

new systems.

We show how a query selection approach can be used to maintain a test collection reusable (Chapter

5). We assume a fixed budget to build extra relevance judgments over documents that are solely retrieved

by the new systems. We extend our query selection framework to arrive at a budget-constrained opti-

mization. We use the budget-constrained optimization to select a representative subset of queries, and

allocate the budget to build relevance judgments only for the selected queries. We then estimate the

new systems’ average performance based on the selected queries. Our experimental results show that

spending the fixed budget on the subset of queries produces more accurate estimates of the average

performance of the new systems than spreading the budget uniformly across all the queries.

Such a scenario is particularly useful when the evaluation is being conducted by small groups of

researchers investigating their new retrieval systems by large scale test collections, e.g. TREC Million

Query track [ACA+07]. However, the initial set of relevance judgments may be insufficient to reliably

evaluate the new systems, and there is a limited budget to construct relevance judgments for a subset of

previously unjudged documents.

1.2.3 Unified Budget Allocation

The mathematical framework is extended to combine the query selection and the document selection

approaches to arrive at a unified optimization framework that selectively chooses a subset of query-

document pairs to build relevance judgment under a budget constraint (Chapter 7). The optimization

framework first assigns a priority score to each of the queries. Next, a set of documents retrieved in

response to a query are prioritized by using an efficient document selection method, e.g. Carterette et

al. [AP08]. The queries and documents are then combined to form the priority scores for the query-

document pairs. Finally a subset of query-document pairs with the highest priority scores are selected to

collect relevance judgments. We evaluate our budget allocation approach using various TREC test col-

lections. We demonstrate that our budget allocation is cost efficient and yields a significant improvement

over the considered baselines.

1.2.4 Crowdsourcing

Crowdsourcing experiments are used to collect relevance judgments by temporarily hiring a large number

of crowd assessors. While the labels provided by the assessors are relatively inexpensive, they vary in

quality, introducing noise into the relevance judgments, and consequently causing inaccuracies in the

system evaluation [KKKMF11]. In order to address the issue of noisy labels, it is common to collect

multiple labels from different assessors, in the hope that the consensus across multiple labels would lead

to more accurate relevance judgments. Common practices in information retrieval use the majority voting

to aggregate multiple labels and infer relevance of a document. Using the majority voting, sometimes a

large number of labels are required to truly predict the relevance of a document [AM09]. However, if the

number of labels required for a document is large, no benefit in cost is achieved against the traditional

methods that collect only one expensive label per document from an expert assessor.
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We develop a probabilistic model as an alternative to majority voting that needs fewer labels to

correctly infer a document’s relevance (Chapter 8). In contrast to previous work, we assume that no au-

thoritative relevance judgements are available, to be used as training data, and estimate both the accuracy

of the assessors and the document relevance from the noisy labels.

We run simulations and conduct experiments with crowdsourced data to investigate the accuracy

and robustness of the relevance judgments to the noisy labels. Our experimental results show that the

probabilistic model outperforms the majority voting method in terms of both the accuracy of relevance

assessments and the ranking of IR systems.

1.2.5 Example

To better understand how the techniques developed in this thesis can be used in practice consider a search

engine company that is seeking the best performing retrieval model among a set of candidate retrieval

models to be used in its commercial search engine. The company creates a large scale test collection

with a large number of queries, extracted from the search engine’s query log, and a large number of

documents.

To measure the performance of retrieval models, the company has to hire a set of human assessors

to create relevance judgments. However, gathering relevance judgments for all the queries and docu-

ments in the test collection is prohibitively expensive and time consuming. The company could use the

document selection techniques like the pooling mechanism or a recently developed document selection

method, e.g. Carterette et al. [CAS06] and Aslam et al. [APY06], to decrease the number of documents

judged per query, and hence to reduce the cost of evaluation. However, since there are a large number of

queries, still a large amount of budget is required to gather relevance judgments.

The company can alternatively use the unified budget allocation method developed in this thesis

which not only makes use of the document selection methods to reduce the number of documents judged

per query but also develops a query selection mechanism to minimize the number of queries used to cre-

ate relevance judgments. Hence, it minimizes the overall cost of creating a test collection by minimizing

the number of queries and documents.

1.3 Organization
This thesis is organized as bellow:

• Chapter 2 — Background: includes an overview of information retrieval and introduces termi-

nology that will be used in the rest of the thesis.

• Chapter 3 — Cost Effective IR Test Collections: represents the history of developments in

low-cost IR test collections, and defines the notion of cost and introduces related work.

• Chapter 4 — The Query Selection Problem: defines the query selection problem in details. It

is assumed that relevance judgments are available for the full set of queries. Query selection is

then formulated as an optimization problem. Finally, the characteristics of the optimal subset of

queries are investigated.
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• Chapter 5 — The Reusability of a Test Collection: defines the concept of reusability of a test

collection. It is shown how a query selection approach can be used to enhance the reusability of a

test collection under a budget constraint.

• Chapter 6 — Uncertainty-Aware Query Selection: relaxes the assumption made in Chapter 4

that relevance judgments are available before selecting queries. The mathematical framework,

formulating the query selection problem, is extended to model uncertainty that is due to absence

of relevance judgments. An adaptive query selection algorithm is then proposed to implement the

theoretical framework in practice.

• Chapter 7 — Unified Budget Allocation: a unified cost-optimization is proposed to combine

the query selection and document selection approach to arrive at a query-document pair selection

approach.

• Chapter 8 — Crowdsourcing Relevance Judgments: a probabilistic approach is proposed to

model the noise in relevance labels collected by crowdsourcing experiments, and integrate multiple

noisy labels to construct relevance judgments.

• Chapter 9 — Conclusion



Chapter 2

Background

The basic task of information retrieval (IR) is to find relevant information in response to a user need.

Consequently, IR systems are concerned with issues such as collecting, indexing, searching and display-

ing information. A well-known example of an IR system is a web search engine.

The broad definition of IR above will be further discussed in detail. However, before doing so, it is

useful to define some basic concepts and terminology.

Ad-hoc retrieval is the most standard task in IR and refers to the retrieval of files that match a user’s

need. The form of the files usually is text documents. The text of an email or a single web-page is an

example of a text document. Alternatively, the files could be images, audio, or videos. A text document

is composed of a set of terms where a term means:

• A word in the document.

• A stemmed word showing the stem of words with the same root but different forms.

• A phrase that is a group of words that together have a particular meaning, e.g. information re-

trieval.

The group of documents, to be searched, is called a collection. A collection could, for example, be a

personal collection of publications, emails, or a large collection of web-pages. Each document in the

collection is considered as relevant if it satisfies the user’s information need. Relevance is a subjective

concept which is highly dependent to users judgment. It is considered either a binary variable (relevant

or non-relevant) or a continuous variable showing the degree of relevance. The user’s need is formulated

by a query (topic) consisting of a set of words. Documents and the user query are the inputs to a retrieval

model. The retrieval model is the main component of ad-hoc retrieval and its main task is to assign a

score to each document indicating its potential relevance to the query.

There are alternatives to the ad-hoc retrieval task. For example, a question answering (QA) system

provides an answer in response to a user’s need. The user’s need is usually expressed by some question

sentences, and QA provides an answer to each question in turn. The form of answers is varied. Depending

on the question, sometimes the answer is only one sentence and sometimes it is expressed in several

paragraphs. As a another example, a Cross-language retrieval system finds documents that pertain to a

query regardless of the language in which the document is written.
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Figure 2.1: A term-document incidence matrix.

2.1 The Main Components of an Ad-hoc Retrieval Task
The key components of an ad-hoc retrieval are:

• representation

• retrieval model

• result set

• relevance feedback

2.1.1 Representation

The documents and query have to be represented in a comparable form so that the retrieval model is able

to compare each document to the query and estimate its relevance. The type of representation depends

on the retrieval model being used. The conversion of the query to the representation model occurs during

search time and just after being entered by the user, but documents are typically converted in advance.

A document is represented as a vector of terms. Each element of the vector represents a unique

term and is assigned a weight. There are several ways to define the weights. A weight can be a binary

variable showing absent or present of the corresponding term in the document, or it can be a continuous

variable measured by a weighting function. The weighting function assigns a value to each term which

corresponds to the degree to which the term characterizes the document. The term frequency-inverse

document frequency (tf-idf ) is a well-known weighting function consisting of two parts: the fist part is

term frequency (tf ) that denotes how often a term occurs in a document, and the second part is inverse

document frequency (idf ). The idf of a term is the inverse of the fraction of documents in the collection

that contain this term.

If we consider each document as a vector of terms, the collection can itself be represented as a

term-document matrix in which each row refers to a term and each column refers to a document. The

binary term-document incidence matrix is a representation in which the matrix element (t, d) is 1 if the

document in column d contains the term in row t, and is 0 otherwise. Figure 2.1 shows an example of

the binary term-document matrix.

The collection usually contains a large number of documents, and the number of documents that

contain a term is usually small. As a result, the corresponding matrix is extremely large and sparse, and

representing all the cells that contain zero is inefficient. A more efficient method for representing the

matrix is recording terms in a linked list. Each item in the linked list, referred to as a posting, points to
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Figure 2.2: An inverted index for a part of the matrix in Figure 2.1.

documents containing the term. This approach, called an inverted index, requires less space to store the

data. Figure 2.2 shows a part of the matrix in Figure 2.1 represented as an inverted index.

A user’s query is also represented as a vector of terms. After a user submits a query, it is converted

to the representation form, and sent to a retrieval model. In addition to the query, the retrieval model

accepts documents as the other input parameter. In the next section we introduce several retrieval models.

2.1.2 Retrieval Models

A retrieval model compares each document in the collection to the given query. Retrieval models are

divided in two categories. The first group of retrieval models only separate relevant from non-relevant

documents, whereas the second group measures the degree of relevance for each document. The models

in the second group have a scoring function that estimates each document’s relevance. In the following

some standard retrieval models are discussed in detail.

• Boolean Model: The Boolean model separates relevant documents from non-relevant ones. The

query is a Boolean expression. A Boolean expression is a combination of terms with Boolean

operators, e.g. AND, OR, and NOT. Initially, documents and the given query are represented as

vectors with binary values showing absence or present of the terms. In the next step, the Boolean

model runs a series of Boolean operations, and finally separates relevant from non-relevant docu-

ments via a binary string. A binary string is a sequence of bits. Each bit is either 0 or 1. If a bit is

1, it means the corresponding document is relevant. For example, in Figure 2.1, the query t1 AND

t2 AND NOT t4 is satisfied by the third and fifth documents, D3 and D5, since they contain both

the terms t1 and t2 and exclude t4. In order to find the relevant documents, the Boolean model

takes the rows of t1, t2 and t4, complements t4, and then does a bitwise AND:

101010 AND 111010 AND 011011 = 001010

• Vector Space Model: In this model a document is represented as a vector of weights. Each weight

indicates the significance of a term in the document measured by a weighting function. The query

is represented in the same way. The model estimates the degree of relevance of each document

by measuring the similarity between the query and document vectors. The similarity is measured

via a scoring function. In ad-hoc retrieval, the commonly used scoring function is the cosine dot

product. This measure is the cosine of the angle between the two vectors in the term space. For

example, in Figure 2.3 the term space is formed by two terms, t1 and t2. The angle between the

document vector
−→
d and query vector −→q is θ. The similarity is measured via the inner product of
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Figure 2.3: The vector space model.

the vectors divided by the product of their Euclidean lengths.

sim(d, q) =

−→
d .−→q

|
−→
d | × |−→q |

• Probabilistic Model: A probabilistic model ranks documents in order of their probability of rel-

evance to the user’s query. The main idea is known as Probability Ranking Principle (PRP), and

was first used by Maron and Kuhns [MK60] for literature indexing and searching in a mechanized

library system.

Robertson [Rob97] formulated the principle as a conditional probability. The conditional proba-

bility, P (R|d, q), represents the probability of relevance, R, conditioned on the given query q and

the document d, where the notion of relevance is regarded as a binary variable. Therefore, all doc-

uments are ranked in decreasing order of P (R|d, q) where the goal is to return the most relevant

documents. The PRP method provides an optimal ordering of documents if the probabilities of

relevance are precisely computed [MRS08]. In practice, the probability of relevance depends on

various factors including: (i) statistics factors, e.g. term frequencies and document lengths, (ii)

semantic factors, e.g. the correct meaning of vague terms, and (iii) user-dependent factors, e.g.

different users may have different judgments of the same query.

The Binary Independence Model (BIM) introduces some assumptions under which estimating the

probability P (R|d, q) becomes practical [MRS08]. Here, “binary” means documents and queries

are represented as binary term incidence vectors. That is, a document vector
−→
d is a column of

the binary term-document incidence matrix, and a query vector is represented in the same way,

i.e. −→q = (x1, ..., xN ) where xt = 1 if the term t is present in the query q, and xt = 0 if t is not

present. ”Independence” means that terms occur in the document independently. Therefore there

is no correlation between the terms. Although this assumption is far from correct, it often leads to

satisfactory results in practice.

• Language Model: The language model (LM) considers a probability model for each document,

called the document’s language model. The probability model expresses the distribution of terms

in the document. In order to measure the degree of relevance for a document, the language

model approach estimates the probability that the query is generated by the corresponding lan-

guage model. The reasoning behind the language model approach is that the user has a particular
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document in mind and formulates a query from this document. The idea of the language model

to ranking documents is different from the probabilistic model. Instead of modeling the proba-

bility P (R = 1|d, q), the language model first computes a probability distribution Md for each

document d. Then it ranks the document based on the probability P (q|Md). This approach has

provided a novel way of thinking to ad-hoc retrieval, and many extensions have been developed.

After a retrieval model compares the query to each document, it provides a list of relevant documents,

called the result set. Depending on the retrieval model, an arbitary/ordered list of the documents is

displayed to the user.

2.1.3 Result Set

The result set is a list of documents that are determined as relevant to the user’s query. Depending on

the retrieval model the documents are either in an arbitrary or ordered list. For example, the Boolean

retrieval model only separates relevant documents from non-relevant documents. The other retrieval

models rank documents with regard to their relevance scores. Clearly documents with higher scores get

higher positions in the ranked list. For example, the vector space model ranks documents based on their

similarity with the query. A subset of the retrieved results are returned to the user in the form of a display

set. The size of the display set is adjusted by constraints such as physical size of the display and user

preference. The display set is usually constructed by picking the top k ranked documents.

2.1.4 Relevance Feedback

The result set usually contains a combination of relevant and non-relevant documents. Sometimes, the

user cannot find a satisfactory answer to her need, and continues to search by modifying the query.

Relevance feedback helps users reformulate the query in order to get better results. The basic procedure

is [MRS08]:

1. The user issues a query.

2. The retrieval system1 returns an initial set of the result set.

3. The user marks some documents as relevant.

4. The system computes a better representation of the information need based on the user feedback.

5. The system displays a revised set of the results.

Sometimes, the process continues for several iterations, and the user will terminate the interaction with

either a successful search or failure to find the answer.2

2.2 Evaluation
Evaluation aims to either (i) measure the absolute performance of an IR system, or (ii) the relative

performance of several systems. The latter is known as comparative evaluation and commonly used in

1A retrieval system refers to a retrieval model. Throughout this thesis retrieval model and retrieval system are interchangeably
used.

2Relevance feedback is outside of the scope of this thesis and is not discussed further.
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Figure 2.4: Different components of ad-hoc IR evaluation.

information retrieval experiments. A comparative evaluation aims to compare different systems in order

to rank their performance or find the best performing system.

The two main aspects of performance are efficiency and effectiveness. Efficiency is concerned with

time and space resources required for indexing, searching and ranking documents. Effectiveness is

concerned with how well an IR system meets a user’s information need, which is expressed by a query.

In this thesis, we focus on effectiveness issues and hereafter the performance refers to the effectiveness

aspect of evaluation.3 In this section, we explain the common experimental design used in Ad-hoc

information retrieval task to assess a system’s effectiveness.

2.2.1 Experimental Design

In an ad-hoc retrieval task the effectiveness of a system is assessed by an information retrieval test col-

lection used in conjunction with evaluation metrics. A test collection consists of a set of test queries

and a collection of documents. Figure 2.4 shows the process of evaluation in an ad-hoc information

retrieval task. Each query in a query set is sent to the retrieval system. The retrieval system searches

the document collection and returns a set of documents as a result list. Human assessors judge the rele-

vance of the retrieved documents and create relevance judgments. In the simplest case, when relevance

is binary, relevance judgments indicate which documents are relevant to the query. The system’s ef-

fectiveness is computed by using an evaluation metric. The evaluation metric measures how well the

result set corresponds to the associated relevance judgments. After evaluating the result sets of all the

queries, a statistical analysis (will be shortly discussed in details) is run to investigate the system’s overall

effectiveness.

2.2.2 Test Collections

Standard experiments in information retrieval are based on the Cranfield paradigm of using test collec-

tions consisting of documents, topics (search queries), and relevance judgments. The Cranfield paradigm

was introduced by Cleverson and his colleagues via the Cranfield 2 experiments [CM97] in the 1960s. It

has been improved and extended over the years. The text retrieval conference (TREC), co-sponsored by

the National Institute of Standards and Technology (NIST) and U.S. Department of Defense, was started

3Performance and effectiveness are used interchangeably throughout the thesis.
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in 1992 as a part of the TIPSTER text program. TREC has become the main workshop series designed

to foster research in text retrieval. It provides the infrastructure needed for large-scale evaluation of

retrieval systems [Voo02]. TREC is currently regarded as the standard resource for IR experiments.

TREC consists of a set of tracks. For each track, a set of particular retrieval tasks are defined. NIST

provides an appropriate test collection for a track. Participants run their retrieval systems on the data, and

return to NIST a list of top-ranked documents, e.g. 1000 documents per query. The retrieval systems of

a participant are usually different configurations of a retrieval model. NIST pools the individual results,

judges the pooled documents for correctness, and evaluates the results. The TREC procedure ends with

a workshop for participants each year to share their experiences and discuss the relevant issues.

There are also other communities providing test collections. The cross-language evaluation forum

(CLEF) provides test collections for cross-language information retrieval (CLIR) where documents are

written in a language which is different from the query’s language. The Initiative for the Evaluation

of XML retrieval (INEX) is another forum that provides test collections for XML information retrieval

where the content of documents is a mixture of text, multimedia and meta data.

2.2.3 Effectiveness Metrics

The main task of an effectiveness metric is to measure the relevance of documents retrieved for a query.

Two early effectiveness metrics, recall and precision, were introduced in the Cranfield studies to sum-

marize and compare the search results of different retrieval models. Recall measures how well a retrieval

model finds all relevant documents in document collection for a query. It computes the proportion of

relevant documents that are retrieved:

Recall =
number of retrieved relevant documents
the total number of relevant documents

The definition of recall assumes that for a given query the exact number of relevant documents is known.

Precision measures how well the retrieval model avoids retrieving non-relevant documents. It com-

putes the proportion of retrieved documents that are relevant.

Precision =
number of retrieved relevant documents
the total number of retrieved documents

In both metrics relevance is regarded as a binary variable. In addition, both are set-based metrics.

That means, the positions of relevant documents in the ranked list do not have any influence on the mea-

surements. Several evaluation metrics have been proposed on the basis of precision and recall for ordered

result sets. Precision at rank n, P@n, is a rank sensitive metric. It is a form of precision calculated up to

the nth rank position. Average Precision (AP) is another rank sensitive metric which is widely used in

IR experiments. Calculation of AP involves considering the rank positions at which relevant documents

occur, measuring precision at each of the selected rank positions, and finally averaging precision scores.

Indeed, AP considers the criteria of precision and recall together for an ordered result set. It is calculated

as:
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AveragePrecision =
1

|R|
∑
i∈R

P@i

where R represents the list of rank position of relevant documents, and |R| is the number of relevant

documents. The definition of AP regards relevance as a binary variable.

Normalized Discounted Cumulative Gain (nDCG) [JK02] is a graded evaluation metric that is used

when the relevance of a document is calibrated into several grades, e.g. {0, 1 and 2} where 0 means non-

relevant, 1 means relevant and 2 means highly relevant. The nDCG metric considers the two following

assumptions. First, highly relevant documents are more useful than marginally relevant documents.

Therefore, having or missing highly relevant documents has to impact more on the measurement than

less relevant ones. Second, the lower the ranked position of a relevant document is, the less important

the document is as it is less likely to be visited by users. These two assumptions lead to an evaluation

metric that uses graded relevance as a measure of usefulness or gain from examining a document. The

gain is accumulated starting at the top of the ranked list and discounted at lower rank positions. If the

accumulated gain is divided by the gain that would be obtained by the ideal ordering of documents, it

will result the normalized discounted cumulative gain. The nDCG metric is formulated as

nDCG = Zk

k∑
m=1

2R(m) − 1

log2(1 +m)

where Zk is the factor normalizing the cumulated gain by the ideal gain that would be obtained at

top k retrieved documents. R(m) is the relevance grade of the mth document in the ranked list that is

captured from the associated set of relevance judgments.

The Reciprocal Rank (RR) is another rank sensitive metric that is concerned with the rank position

of the first relevant document. Thus, it is defined as the reciprocal of the rank position at which the first

relevant document is retrieved. Considering a rank threshold (cut off), the provided score is 0 if there is

no relevant document at positions below the threshold. The Reciprocal Rank is formulated as

RR =
1

Rankf

where Rankf is the rank position of the first relevant document retrieved.

Cooper [Coo68] also introduced the Expected Search Length metric (ESL), which is the average

number of documents that must be examined to retrieve a specified number of relevant documents. An-

other rank sensitive metric that was recently introduced is Rank-biased Precision proposed by Alistair

Moffat and Justin Zobel [MZ08]. The main aim of the Rank-biased Precision is to overcome a short-

coming of the Recall and Average precision metric caused by incomplete relevance judgement. Indeed,

the problem is an assumption of the Recall metric. The assumption is that the total number of relevant

documents for each query is known. However, this assumption is usually not true in practice. In IR ex-

periments, the document collection size usually exceeds millions of documents. In order to find the total

number of relevant documents to a query, the relevance of all the documents in a document collection
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have to be judged which is economically impossible.

2.2.4 Summarizing Evaluation Results

Once a system’s performance is measured across a set of queries, we summarize the results by taking

the average of the effectiveness scores. For example, when the effectiveness metric is AP, the arithmetic

average of the AP scores measured across the queries is called Mean Average Precision and used as the

system’s average performance. For n queries MAP is calculated as:

MAP =
1

n

n∑
i=1

APi

MAP is commonly used in IR experiments to compare systems’ overall performance. In some experi-

ments, the geometric mean is used instead of the arithmetic mean to emphasize a system’s performance

one queries for which retrieving relevant documents is not an easy task [Rob06]. For instance, Geometric

Mean Average Precision (GMAP) is the geometric mean of the AP scores.

GMAP = exp
1

n

n∑
i=1

ln(APi)

Another way of summarizing evaluation results is a recall-precision graph. Such a graph provides

information about the effectiveness of a retrieval system at a set of recall levels. It summarizes effec-

tiveness over all queries by averaging precision scores at different recall levels. The precision values for

all queries at each recall level are averaged and shown as data points in the graph. The recall levels are

commonly between 0.0 and 1.0 in increments of 0.1.

As mentioned above, the average is the most common statistic used to summarize evaluation results

and compare different retrieval models. In addition, statistical significant tests are used to determine

whether a difference between two systems’ average performance is statistically significant. Statistical

tests that are used in IR experiments are discussed in the next section.

2.2.5 Statistical Significance Tests

The tests of statistical significance have been thoroughly discussed in IR literatures. A group of ef-

fectiveness scores measured by an evaluation metric, e.g. AP, across a set of queries is regarded as a

statistical sample drawn from a distribution. The distribution represents how effectiveness scores of the

population of queries from which a set of queries are chosen to evaluate systems are spread out. The

query population includes all possible queries that are issued by users.

In order to run a statistical test to assess a differen between the performance of two systems, a set

of queries is first chosen from the query population. Systems search for the chosen queries and return

relevant information. Next, the corresponding effectiveness scores are measured by an evaluation metric,

and a statistical inference method assesses evidences in favor or against a hypothesis on the distributions

from which the effectiveness scores are drawn. The common hypothesis in IR is that the mean value of

the two distributions are equal. The methods of inference used to support or reject the hypothesis are

known as tests of significance.
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Every significance test begins with a null hypothesis H0. In IR, H0 is the assumption that two

systems exhibit the same average performance, e.g. MAP. There is also an alternative hypothesis, Ha,

which indicates that the difference between the average performance of two systems is statistically sig-

nificant. The aim of a statistical test is to reject H0 in favor of Ha. If the test is successful, we can claim

that one of the two systems significantly outperforms the other one.

A statistical test provides a probability value called p-value. Assuming the two distributions have

the same mean, the p-value is the probability that the difference in the average scores occurs by chance.

A significance level, α, is considered as the threshold for the p-value to examine its significance. If the

measured p-value is smaller than the threshold α, the null hypothesis is rejected in favor of the alternative

hypothesis. Different significant tests calculate p-value in different ways.

Several significance tests are commonly used in IR evaluation, e.g. Student’s paired t-test, Wilcoxon

signed rank and the Sign test. The use of these tests is limited by some assumptions made on the data

distribution, which is thoroughly discussed in [Hul93]. Furthermore, there are some tests which do not

rely on any assumptions of the distribution’s form. Bootstrap shift method and Fisher’s randomization

are two methods proposed in IR [SAC07]. Both approaches test the hypotheses by re-sampling queries

from a query set. The bootstrap shift method is defined on a random sample and Fisher’s randomization

generates samples with permutation. Moreover, Sakai [Sak06] proposed the paired bootstrap hypothesis

test which is a combination of the bootstrap shift method and the student t-test.

2.3 Summary
The key components of an ad-hod information retrieval system are: representation, retrieval model, result

set and relevance feedback. Each component was discussed in detail. We then discussed the evaluation

process in information retrieval experiments. Common test collections, e.g. TREC test collection, are

used in IR experiment to assess the performance of different systems. Each test collection consists of a

document collection, a query set and a set of relevance judgments. Relevance judgments indicate which

documents in a collection are relevant to a query. An evaluation metric, e.g. average precision, is used to

measure the performance (effectiveness) of a system against a query. The performance of two systems

are compared based on the average of their performance scores measured across a set of queries. Finally,

statistical significant tests, e.g. student’s paired t-test, are used to assess whether a difference in the

average performance of two systems is statistically significant.

Relevance judgments of a test collection are manually created by a set of human assessors. The

common test collections in IR experiments contain a large number of documents and queries. As a

result, creating a test collection for information retrieval experiments is costly. In the next Chapter, we

discuss the practical methods used by IR community to construct cost-efficient test collections.



Chapter 3

Cost Effective IR Test Collections

Information retrieval test collections are used to evaluate the performance of an IR system. Common test

collections enable researchers to directly compare their retrieval model with other IR models, or examine

the impact of various parameters on the performance of their retrieval models.

A test collection consists of a document corpus, a query set and relevance judgements. Relevance

judgments map queries to relevant documents in the corpus. Relevance judgments are used by an IR

evaluation metric to measure a system performance against a query. Common IR evaluation metrics, e.g.

AP or nDCG, capture two complimentary abilities of an IR system (i) ranking relevant documents above

the non-relevant ones (“precision”), and (ii) identifying all the relevant documents to the given query

(“recall”). Hence, a reliable estimate of the performance of a retrieval system might depend on having

identified all the relevant documents for a query. This demands to judge all documents in the corpus for

a query which is referred to as “complete relevance judgments”.

Relevance judgments are manually constructed by a set of human assessors and hence costly. Even

for corpora of moderate sizes it is impractical to collect a complete set of relevance judgments for every

query in the test collection. In this chapter, we discuss three different methods, namely (i) document

selection, (ii) query selection, and (iii) crowdsourcing relevance judgments, that are used to construct an

IR test collection and evaluate IR systems under the cost constraints.

3.1 Document Selection
In a typical scenario of IR experiments, a candidate set of queries is compiled, representative of the uni-

verse of queries. In case of unlimited resources, we would obtain complete judgments on all documents

for every query in the query set. This would give us a gold standard evaluation of the participating sys-

tems, and hopefully give us reliable evaluations for future, as yet unseen systems. However, in practice,

gathering comprehensive relevance judgments is prohibitively expensive.

To deal with the cost of creating relevance judgments, Sparck-Jones and Van Rijsbergen [SJvR76]

suggested to select a particular subset of documents rather than the entire set of documents, in a document

corpus, to be judged. For a particular query, they suggested that assessors only judge the documents

retrieved at top k rank positions by a set of IR systems that participate in an IR experiment. That is, a set

of participating systems add into a pool their top-k, usually k=100, documents retrieved in response to
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Table 3.1: number of relevance judgments of TREC test collections [CA05].

TREC # Queries # Participating Systems (Runs) # Relevance Judgments # Relevant Documents
TREC-3 50 40 97,319 9,805
TREC-4 50 33 87,069 6,503
TREC-5 50 61 133,681 5,524
TREC-6 50 74 72,270 4,611
TREC-7 50 103 80,345 4,674
TREC-8 50 129 86,830 4,728

a query. The pooled document are then delivered to a set of assessors to build the associated relevance

judgments. This technique is referred to as pooling and widely used by NIST to construct TREC test

collections. Once the pooled documents are judged by human assessors, a system’s effectiveness score

is measured over its top-n (n > k), usually 1000, retrieved documents with this hope that many of the

documents ranked between k+1 and n by this system have been retrieved by other systems at lower rank

positions between 1 to k. Also, a retrieved document that was not among the pooled ones was assumed

to be non-relevant. The information of several TREC test collections that used the pooling method to

gather relevance judgments is shown in Table 3.1.

It has been shown that the number of pooled documents in early TREC experiments, the union

of top 100 documents retrieved by each participating system, is sufficient to properly rank the systems

performance [Zob98]. However, a considerable amount of relevant documents remain undiscovered.

Harman [Har95] built pools of documents ranked between 101-200 for systems in TREC-2 and TREC-

3. She reported that a further 11% of relevant documents were discovered in TREC-2 pools and further

21% in TREC-3. Zobel [Zob98] also examined the relationship between the number of identified relevant

documents, n, and the cut-off level (depth), p, that is used for the pooling technique. The cut-off level

of p determines the set of top p documents in a rank list. He found that the relationship follows a power

law distribution.

n = Cps − 1 (3.1)

where C and s are constants. He extrapolated the function for the cut-off level of 500 and concluded

that the number of relevant documents would be double that found in a pool of the cut-off level 100.

However, he showed that the pool of the cut-off level 100 would be sufficient to measure systems relative

performance and rank them correctly.

In early TREC experiments, several alternatives were suggested to build more efficient pools than

that was suggested by Sparck-Jones and Van Rijsbergen. Justin Zobel [Zob98] observed that good per-

forming systems that identify more relevant documents in the top-k than other systems receives less

benefit from the systems’ contribution to the pool, i.e. there is not much overlap between documents

retrieved by good systems at ranks above k and the documents retrieved by poor performing systems

at ranks between 1 and k. Hence, measuring the effectiveness of good systems at depth n (n > k) is

likely to underestimate the performance of good systems. Following this observation, he suggested that

instead of equally pooling the top-k documents of each system, systems with higher performance should

contribute more documents to a pool than lower performing systems.

Regarding the fact that the number of relevant documents varies across queries, Zobel also sug-
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gested to set the cut-off level with respect to the number of relevant documents for the given query. If it

has become likely that for a query no more documents will be identified, then continuing to judge more

documents for that query is a waste of resources.

Cormak et al. [CPC98] proposed a Move-to-Front pooling technique by using a variable number of

documents from each system to form a pool. Like Zoble [Zob98], they suggested that good performing

systems should contribute more than poor performing systems to the pool. They also proposed an inter-

active searching and judging (ISJ) method to construct a test collection with fewer judgements compared

to the pooling method. ISJ interactively selects a set of documents to build relevance judgments. That

is a human assessor submits a predefined query to a retrieval model and judge the relevance of a subset

of documents retrieved at the top rank positions. Next, the human assessor reformulates the original

query as she learns about the relevant documents and document corpus. The human assessor repeats the

process until a predefined number of relevant documents have been identified. Cormak et al. [CPC98]

found that with a few hours of work, human assessors could produce as many relevant documents as exist

in a document corpus. They suggested ISJ could be used by small research teams to develop effective

test collection using minimal resources.

Many of traditional TREC test collections contain only 50 queries. The main reason for not using

larger query sets was the cost required to build deep relevance judgments, between 1000 to 3000 doc-

uments, for each query. Such amount of judgments per query ensured that recall sensitive metrics, e.g.

average precision, are estimated accurately and a test collection provides reliable evaluation results for

systems that did not participate in pooling documents.

Voorhees and Buckley [VB02] examined the adequacy of 50 queries to evaluate retrieval systems

participating in a TREC experiment. They proposed a measure called “error rate” that quantifies a prob-

ability that different query sets of the same size would lead to different rankings of a pair of systems.

They empirically modeled the error rate as an exponential function of the absolute difference between

two systems’ average performances. Evaluating several TREC test collections, they observed that 50

queries would be sufficient to achieve a 5% or less error rate if there was an absolute difference of

approximately 0.05 in mean average precision (MAP ) scores. A 0.05 absolute difference in MAP cor-

responded to approximately 15% relative difference with regard to MAP of good performing systems

in TREC, which was larger than differences that had generally been observed with TREC experiments.

Later Lin and Hauptmann [LH05] investigated weather the empirical error rate function could be derived

from statistical principles. They showed that the error rate depends not only on absolute differences but

also on the variance of effectiveness scores measured across a query set for a system. They explained that

a successful experimental design depends on several factors including a sufficient number of queries, a

large enough absolute difference between systems’ average effectiveness, and a homogeneous distribu-

tion of per-query effectiveness scores, which reduces the variance of the score differences.

Sanderson and Zobel [SZ05] hypothesized that if NIST could evaluate systems by using a larger

set of queries, say n′, (n′ � 50) and lower cut-off levels, say k � 100, the assessors’ effort to build

relevance judgments would be greatly reduced without compromising the accuracy of evaluation. In ad-



33 3.1. Document Selection

Table 3.2: The Kendall-τ rank correlation between the ranking of systems induced by a shallow pool
and the ranking induced by a pool depth 100. The data set is TREC-6 and evaluation metric is average
precision [CA05].

pool depth kendall-τ # judgments # relevant
1 0.82 1747 460
5 0.899 6652 1216

10 0.93 12209 1747
20 0.964 22937 2477
50 0.981 52874 3575

dition, using many queries with shallow judgments finds more relevant documents than using 50 queries

and pools of depth 100. That is because the density of relevance documents at the top of rank lists is

higher than the density in lower ranks. Considering TRECs 2-10 test collections, they observed that the

number of relevant documents in a pool of depth 10 for a large set of queries is between 1.7 and 3.6 times

more than those found when using a smaller query set and a deeper pool. This hypothesis motivated a

further work on proposing a new generation of document selection techniques to carefully select a subset

of documents for assessments, as well as defining evaluation metrics for partially judged result sets. In

the following we introduce these approaches in details.

3.1.1 Incomplete Relevance Judgments and Effectiveness Metrics

Carterette and Alan [CA05] showed that despite measurement errors caused by reducing the pool length,

ranking systems based on shallow pools of depth 5, 10 or 20 produce high rank correlations to the ranking

of systems induced by a pool of depth 100. The effect of shallow judgments in ranking systems is shown

in Table 3.2 for TREC-6. Based on this observation, they proposed a greedy algorithm that incrementally

selects a minimal subset of documents that is most informative about the difference between two systems’

performance. The algorithm assigns a weight to a document based on a difference that would be provided

in effectiveness scores if we assessed this document. Documents are ordered based on their weights and

documents with high weights are selected to be judged. Later Carterette et al. [CAS06] proved the

validity of this algorithm.

Assessing a subset of documents retrieved by a system causes uncertainty in measuring the corre-

sponding effectiveness scores. Buckley and Voorhees [BV04b] observed that using effectiveness metrics

defined on precision and recall, e.g. average precision, to measure systems’ performance on incomplete

judgments would lead to large measurement errors. They proposed a metric, called bpref, and showed

that it is more reliable than average precision to measure effectiveness when only a subset of documents

are judged. Given a result set, the bpref metric computes a preference relation of whether judged relevant

documents are retrieved ahead of judged non-relevant documents. Thus, it is based on the relative ranks

of only judged documents. The bpref metric is defined as

bpref =
1

R

∑
r

1− number of judged non-relevant documents ranked above r
min(R,N)

(3.2)

where R is the number of judged relevant documents, N is the number of judged non-relevant doc-

uments, and r is a relevant retrieved document. The bpref metric is inversely related to the fraction
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of judged non-relevant documents that are retrieved before relevant documents. Although the quantity

measured by bpref was different from the quantity of AP , it produces a rank of systems’ effectiveness

that is highly correlated to the rank induced by AP when measured using the complete set of judgments.

Sakai [Sak07] alternatively suggested to construct the condensed list of documents by discarding

all unjudged documents from the original rank list. He applied standard metrics, e.g. AP and nDCG,

on the condensed lists and reported that it results in a better solution to incomplete relevance judgments

than using bpref. However, later Saki [Sak08] showed that using condensed rank lists leads to a bias in

favor of systems that did not participate in the pooling process.

Carterette et al. [CAS06] proposed estimators to accurately approximate standard metrics like p@k

and AP when only a subset of documents in a result set are judged. Instead of assuming that unjudged

documents are non-relevant as was assumed in traditional TREC experiments, they defined a probability

of relevance for each unjudged document. More precisely, they considered each document i to have a

distribution of relevance p(Xi). If the document has been given a judgment j = 0 or 1 (non-relevant or

relevant), then p(Xi = j) = 1, otherwise, p(Xi = 1) = pi and p(Xi = 0) = 1 − pi where pi is the

probability of relevance computed for an unjudged document. They considered an effectiveness metric

as a function of the relevance probability of documents in a result set. For example, the precision at rank

position k (p@k) was defined as the sum of the probability of relevance of documents ranked between 1

and k. They calculated the expected value and variance of p@k as:

E[prec@k] =
1

k

k∑
i=1

pi (3.3)

V ar[prec@k] =
1

k2

k∑
i=1

pi(1− pi) (3.4)

Also, based on the definition of p@k Carterette et al. [CAS06] defined the expected value and

variance for the AP metric as:

E[AP ] ≈ 1∑k
i=1 pi

(

k∑
i=1

aiipi +
∑
j>i

aijpipj) (3.5)

V ar[AP ] ≈ 1
(
∑k
i=1 pi)

2

(∑k
i=1 aiipi(1− pi) +

∑
j>i aijpipj(1− pipj) +

∑
j 6=i 2aiiaijpipj(1− pi) +

∑
k>j 6=i 2aiiaikpipjpk(1− pi)

)
(3.6)

where i,j and k index over a set of documents retrieved for a query, and if Ai was the rank of document

i, aij = 1/max{Ai, Aj}. Subsequently, they defined the expected value and variance of average per-

formance, e.g. MAP . Under the assumption that metrics are independent across queries, the mean and

variance of MAP , for example, is calculated as:

E[MAP ] =
1

n

n∑
i=1

E[APi] (3.7)
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V ar[MAP ] =
1

n2

n∑
i=1

V ar[APi] (3.8)

where n is the number of queries and APi is the average precision of query i. According to the cen-

tral limit theorem and assuming a large number of queries, the random variable of MAP is normally

distributed. Hence, the 100× (1− α)% confidence interval for MAP is computed as:

[
E[MAP ]± zα

2

√
V ar[MAP ]

]
(3.9)

where n is the number of queries and zα
2

is a value that satisfies P (Z ≤ z) = 1 − α
2 , where Z is

a standard normal distribution. Based on this formulation, it is easy to see that there are two ways to

reduce the size of the confidence interval.

In statistical terms, the average precision (AP ) of a system can be thought of as a mean of a dis-

tribution. The elements of the distribution are a set of relevant documents retrieved by the system and

the value of each element is the precision at the relevant document’s rank position. Yilmaz and Aslam

[YA06] assumed that the distribution is uniform, and randomly sampled a subset of ranked documents

to build relevance judgments. They also introduced an estimator, called InfAP, to approximate AP . In-

fAP is approximately an unbiased estimator of AP . However, since top retrieved documents are more

likely to be relevant than documents at low ranks, randomly sampling documents from a uniform dis-

tribution leads to a high variance in estimating InfAP. Aslam et. al. [APY06] defined a “non-uniform”

(biased) sampling distribution to select a subset of documents to build relevance judgments. This sam-

pling method was accurate and resulted in a small variance in estimations, but it was reported to be pro-

hibitively complex to be used in practice. Later Yilmaz et.al [YKA08] suggested partitioning retrieved

documents to several strata, and independently sampling a subset of documents from each stratum to

build relevance judgements and measure infAP. They showed that using stratified sampling is practical

and leads to a smaller difference between infAP and AP than using uniform sampling. Aslam and Pavlu

[AP08] designed a modular approach to evaluate systems on incomplete relevance judgments by separat-

ing the sampling from the evaluation module. The sampling module produces a sample of documents in

a specific format, e.g. random or stratified sampling, but does not assume a particular evaluation metric

is being used. The evaluation module only uses the sample of judged documents to measure a system’s

effectiveness without any assumption about the sampling distribution. Aslam and Pavlu [AP08] pro-

posed an estimator called statAP to approximate AP scores and that was independent of the sampling

strategy being used. Given a random sample S of judged documents along with inclusion probability,

πi, the probability that document i is included in sample S, the precision at rank position k is estimated

as:

prec@k =
1

k

∑
i∈S

rank(i)<k

rel(i)

πi
(3.10)
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where rel(i) = 1 if document i is relevant, otherwise rel(i) = 0. Consequently, statAP is defined as:

statAP =

∑
k∈S:rel(k)=1

prec@k
πk∑

k∈S:rel(k)=1
1
πk

(3.11)

The recent approaches to incomplete relevance judgments, e.g. Carterette et al. [CAS06], Yilmaz

et.al [YKA08], and Aslam and Pavlu [AP08], motivated NIST to develop a new series of test collections

called Million Query (MQ) track. In 2007, the first MQ test collection was constructed by gathering

relevance judgments for about 1800 queries. This was in contrast with traditional TREC test collections,

e.g. TREC-8, which usually contains 50 queries only. To deal with the cost of relevance judgments, two

document selection algorithms, proposed by Carterette et al. [CAS06] and Aslam and Pavlu [AP08],

were used to select a few number of documents per query. On average, 40 documents were selected and

judged per query which was considerably smaller than the number of documents that were judged in a

traditional TREC test collection. In TREC-8, for instance, on average 1734 documents were selected by

the pooling technique and judged per query.

The conclusion of the experiments run on the MQ 2007 test collection was that systems evaluation

over many queries with shallow relevance judgments is more cost effective and as reliable as systems

evaluation over few queries with deep judgments [CPK+08].

However, acquiring few documents for constructing relevance judgments degrades the reusability of

a test collection. A test collection is reusable if its relevance judgments would suffice to assess retrieval

systems that did not contribute to the document selection process. A new retrieval system may retrieve

relevant documents that are not already assessed, and its performance is likely to be misjudged.

In 2009, NIST ran the MQ track for the third time and the main goal was to verify the reusability

of large scale test collections where there were thousands queries for which only a few documents were

judged (50 per query on average). The main goal was to know whether such a test collection is usable

for new systems that did not contribute to the document selection process. The result of comprehensive

experiments was that when systems that contribute to the document selection and new systems are the

derivatives of the same retrieval model, the test collection is reusable. However, when new systems

are derived from retrieval models that are different from those used for participating systems, the test

collection is not reusable.

3.2 Query Selection
Query selection is a complementary approach to document selection that is used to reduce the cost of

creating relevance judgments. Given a set of queries against which we desire to measure a system’s

performance, the goal of a query selection approach is to select a subset of them to build relevance

judgments and evaluate systems.

Guiver et al. [GMR09] has recently shown that some subsets of queries, known as representative

subsets, are particularly good predictors of the systems average performance as measured over the full set

of queries. Mizzaro and Robertson [MR07] explored the characteristics of individual queries that were

beneficial for systems evaluation. They defined the notion of hubness for queries where a higher hubness
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score indicates that a query is better than others at distinguishing the systems retrieval effectiveness.

Robertson [Rob11] later showed that the query selection based on the hubness scores alone does not

necessarily result in a reliable prediction of the systems rankings. The work by Guiver et al. [GMR09]

shows that, indeed, representative query sets that are effective in approximating the systems ranking,

comprise of queries that range in their individual ability to predict the systems performance.

Thus, one of the main challenges of the query selection problem is to identify the characteristics

of the optimal subset of queries that provide a reliable evaluation of systems and closely approximate

the result that would be obtained if we use the full set of queries to evaluate systems. Although there

is an abundance of analysis on the document selection problem, little literature is available on how to

construct an optimal set of queries for standard test collections. The query selection problem is further

discussed in Chapter 4 of this thesis.

3.3 Using Crowdsourcing Experiments to Collect Relevance Judg-

ments

Recently, with the increased capabilities of web services such as Mechanical Turk provided by Ama-

zon1, it has become feasible to outsource the task of relevance judgments to a large number of people

(crowd assessors) rather than assigning the task to a few number of experts who are specifically trained

for gathering relevance judgments. This setting provides new opportunities for accomplishing the task

through a larger number of assessors which was previously impossible, as well as reducing the time and

cost involved in gathering relevance judgments.

Crowdsourcing, in our context, explains how to setup an experiment to gather relevance judgments

by using a large number of crowd workers. Using web services like Mechanical Turk, we can formulate

the relevance judgments task in terms of Human Intelligence Tasks (HITs). Each HIT contains a set of

documents that need to be judged in response to a query. The HITs are presented to the crowd in order

to recruit assessors who are willing to engage and provide relevance labels. The cost of the relevance

judgments is then captured in the fees paid to the crowd assessors through the micropayment facilities

that the crowdsourcing services provide [Alo11].

While still in the early stages, the practices of outsourcing the relevance judgment tasks are evolv-

ing and practitioners are investigating the benefits and the drawbacks of the crowdsourcing approach

[NR10]. Issues such as the assessors’ agreement among the highly skilled editorial staff are now ex-

panded to include a number of factors that are directly related to the unique crowdsourcing paradigm,

including the mechanism for qualifying workers, providing incentives, controlling behavior and label

quality, and designing and promoting tasks. While crowdsourcing holds the promise of achieving the

scale of relevance judgments in a considerably shorter period of time, the cost of engagement and qual-

ity assurance are key elements that need to be carefully planned and managed. We further discuss these

issues of crowdsourcing experiments in Chapter 8.

1www.mturk.com
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3.4 Summary and Directions
The increased size of document corpora and query sets has made the cost of relevance assessments one

of the main challenges in creating IR test collections. To deal with the cost of gathering relevance judg-

ments three approaches were introduced, namely (i) the document selection approach that minimizes the

number of documents that need to be judged per query, (ii) the query selection approach that minimizes

the number of queries used to evaluate system and (iii) the crowdsourcing experiments that outsource

the relevance judgment task to a large number of crowd assessors rather than assigning the task to a few

expert assessors.

Although there is a large body of literature on document selection approaches, little work is avail-

able on query selection and crowdsourcing relevance judgements is still on its early stages. We describe

the query selection problem in details in Chapter 4. Also, the issues related to the crowdsourcing exper-

iments are discussed in Chapter 8.



Chapter 4

The Query Selection Problem

Effective evaluation of information retrieval systems requires building test collections that contain a set

of queries and associated relevance judgments. Relevance judgments are manually constructed and can

be costly. In real world settings, the budget is constrained and imposes a limit on the number of relevance

judgments that can be acquired. Hence, algorithms that can be used to reduce the number of judgments

are needed.

We focus on query selection as a mechanism for reducing the cost of building test collections. We

develop a theoretical framework for query selection. We assume that relevance judgments are available

for all the queries under consideration and show how the query selection can be formulated as an opti-

mization problem. The mathematical formulation provides valuable insights into the characteristics that

the optimal subset of queries holds. Since the optimization problem is computationally intractable, we

introduce two algorithms that provide approximate solutions. We demonstrate the effectiveness of the

two query selection algorithms by using two TREC test collections, namely TREC-8 Ad-hoc and TREC

2004 Robust tracks.

4.1 Introduction
Modern test collections are large, comprising billions of documents and thousands of queries that require

relevance judgments in order to calculate retrieval effectiveness metrics. One of the main problems of

such a test collection is the cost of building associated relevance judgments. Much recent work has been

devoted to constructing cost-efficient test collections with the primary focus on reducing the number of

documents to be judged per query, e.g. [CAS06, YA06, AP08]. This approach is known as document

selection which was widely discussed in Chapter 3. We, on the other hand, focus on minimizing the

number of queries that are required to reliably evaluate the performance of a set of systems, which is

known as query selection.

Finding the minimum number of queries that are required to reliably evaluate the performance of a

set of systems has been one of the main challenges since early TREC experiments, e.g. [VB02, SZ05].

Previous work, e.g. [CS07, WMZ08b], considered this problem purely as a statistical sampling question.

Under the assumption that queries are randomly selected the goal was to run power analysis [Bil95] to

investigate the minimal sample size of a random subset to obtain a statistically robust evaluation result
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Figure 4.1: Pearson linear correlation of the best, median and worst subsets of various sizes, chosen from
1000 random subsets, on TREC-8 test collection.

with a certain confidence. Though there is an abundance of analysis on various aspects of random

sampling, little literature is available on alternative approaches that require smaller number of queries

without compromising the accuracy of evaluation results.

Recently, Guiver et al. [GMR09] showed that query subsets of a particular size vary in predicting

systems overall performance that is measured using the full set of queries. They also showed that there

is a particular subset of queries that enables a precise prediction of systems’ overall performance. The

size of the subset was about 1
3 the size of a random sample of queries to achieve the same accuracy

in evaluation. We repeated one of their experiments using TREC-8 test collection that comprises 50

queries. For each subset size between 2 and 49 we randomly selected 1000 subsets of the 50 queries.

For each chosen subset we computed the mean average precision (MAP ) of each system in TREC-8.

To measure prediction accuracy of a subset we computed Pearson linear correlation between the set of

MAP scores computed using the chosen subset and the MAP scores that were computed using the full

set of queries.

Figure 4.1 represents the resulted Pearson correlation versus the subset size for three types of sub-

sets: (i) the best subsets that exhibit the maximum Pearson correlation, (ii) the median subsets that

achieve the median Pearson correlation among the 1000 subsets, and (iii) the worst subsets that exhibit

the minimum Pearson correlation. The best subset of size 6 achieved over 0.95 Pearson correlation.

However, the median and worst subsets needed at least 20 and 31 queries to obtain the same Pearson

correlation. Figure 4.2 represents almost similar results for Kendall-τ correlation that was used to com-

pute the closeness between the two systems’ ranking induced by a subset of queries and the full set of

queries.

This experiment and those conducted by Guiver et al. [GMR09] validate the hypothesis that some

queries or query subsets are better than others at predicting systems’ overall performance, and that with

the right choice of queries, accurate predictions is obtainable by using a subset of queries. Therefore, it

is possible to reproduce the results of exhaustive evaluation of systems over many queries with a smaller
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Figure 4.2: Kendall-τ correlation of the best, median and worst subsets of various sizes, chosen from
1000 random subsets, on TREC-8 test collection.

set of queries. However, the characteristics of chosen queries that make them representative of the full set

are still unclear. Also, how the query selection is implemented in practice was not addressed in previous

work.

We first define the query selection as an optimization problem. We assume that relevance judgments

are available for all the queries and develop a theoretical framework for the query selection problem. The

mathematical formulation implies that the best subset of queries should satisfy two properties. These are

that (i) the selected queries are least correlated with one another, and (ii) the selected queries should have

strong correlation with the remaining queries. We briefly remark that correlation between two queries

refers to their similarity in evaluating systems, not in the statistical or semantic correlation between their

terms.

Since selecting the optimal subset of queries is a computationally intractable problem, we approx-

imate the solution by using two various algorithms. We evaluate the two algorithms by comparing the

systems’ ranking for the subset of queries with the ranking over the full set of queries. We report the re-

sults in terms of Kendall-τ and Pearson correlation coefficients and by using two TREC test collections,

namely (i) TREC-8 consisting of 50 queries, and (ii) TREC 2004 Robust track consisting of 249 queries.

4.2 A Framework for Query Selection
Let Q be the population of queries, and S be the space of all search systems.1 We assume that for each

of the queries in Q we have an associated effectiveness score, measured by a metric e.g. AP , for each

system in S. By averaging the effectiveness scores across queries, we compute the average (expected)

performance of a system.

In practice, both the number of queries and the number of systems are finite. Consider Qn ⊂ Q

with n known queries together with a set of l known systems, Sl ⊂ S. We can consider Qn and Sl to

represent the queries and participating systems in our test collection. We remark that the l participating

1That is, not only systems that participated in pooling documents to build relevance judgments, but also systems that did not
participate to the pooling process.
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Figure 4.3: The matrix X representing the performance metric of a set of systems S against a set of
queries Q.

systems contribute to the pooling process and a system that is not in Sl is referred to as a new system,

or a previously unseen system. The combination of the l systems and n queries forms a l × n matrix

X ∈ Rl×n. Each row represents a system, and each column a query. An entry, xij , in X denotes the

performance of system i on query j. We refer to any column of the matrix X as a query-systems vector,

the values of which represent the performance of each system for a specific query. We also define a

column vector M ∈ Rl×1, which represents the average of all query-systems vectors, as seen in Figure

4.3. The values of M indicate the average performance of individual systems over all queries. Thus, if

the individual elements, xij(1 ≤ i ≤ l and 1 ≤ j ≤ n), measure average precision (AP ), the elements

of M , µi(1 ≤ i ≤ l), represent mean average precision (MAP ).

Now, let Φ = {j1, ..., jm} be a subset of {1, 2, ..., n}with 1 ≤ m ≤ n andQΦ be the corresponding

query subset. We define MΦ ∈ Rl×1 as the column vector comprising the average performance of

systems for the subset of queries, QΦ. The aim of a query selection method is to find a subset of queries

of a particular size, m, such that the corresponding column vector MΦ closely approximates the vector

M .

The approximation can be quantified using the mean squared errors between the elements of M

and MΦ, if the similarities in the absolute values of performance scores are of interest. Alternatively, we

can use Kendall-τ correlation if the similarity in the ranking of systems is of interest, or Pearson linear

correlation if the similarities in the relative performance scores are of interest.2

In common experiments in IR, we are usually interested in relative comparisons of the performance

of IR systems and use Pearson linear or Kendall-τ correlation as our evaluation measure. We also focus

on the correlation measures when modeling the query selection problem.

4.3 A Formal Model for the Query Selection Problem
We develop an optimization model for the query selection problem using Pearson Linear correlation as

it is amenable to mathematical optimization. However, we use both Kendall-τ and Pearson correlation

2The mathematical definition of the three measurement is give in Appendix D.
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as our final evaluation measures for comparing the evaluation results produced by the full and a subset

of queries.

The Pearson correlation between the column vectors M and MΦ is

ρΦ =
cov(M,MΦ)

{var(M)var(MΦ)} 1
2

(4.1)

To compute the Pearson correlation, ρΦ, we need to compute the variances and covariance ofM andMΦ.

Let Σ denote the n × n covariance matrix of performance matrix X . Also, let σij denote the (i, j)th

element of Σ and be the covariance between the ith and jth query-systems vectors. Consequently, σii

denote the variance of the ith query-systems vector. Remember that a query-systems vector is a column

of matrix X , and is therefore the vector of effectiveness scores across systems for a single query. The

variance of M can be computed in terms of the covariance matrix Σ as

var(M) = n−2eTΣe

where e ∈ {1}n×1 is a column vector of n ones. Similarly, the variance of MΦ is computed as

var(MΦ) = m−2dTΣd

where d ∈ {0 or 1}n×1 is a binary vector that indicate the set of m selected queries. Therefore, if query

j is selected dj = 1, otherwise dj = 0, also
∑n
j=1 dj = m.

To compute the covariance between M and MΦ we consider an unknown system that is randomly

sampled and denote x ∈ R1×n as the associated row performance vector in X . The system’s average

performance computed based on x and the full set of queries is

µ = n−1xe

Also the systems’ average performance based on the subset of m queries, QΦ, and x is

µΦ = m−1xd (4.2)

The covariance between M̂Φ and M is then

cov(MΦ,M) ≡ cov(µΦ, µ) = m−1n−1cov(xd, xe) =

m−1n−1dT cov(xT , x)e = m−1n−1dTΣe

where xd = dTxT and

cov(xT , x) = E
{(
x− α

)T (
x− α

)}
≡ Σ

where α ∈ R1×n is the mean row vector of matrix X , see Figure 4.3. The jth element of α is the mean
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of the jth query-systems vector.

Substituting for the variances and covariance of M and MΦ, the Pearson linear correlation is

ρΦ =
(dTΣe){

(eTΣe)(dTΣd)
} 1

2

(4.3)

Formally, we seek a subset of queries, QΦ, that maximizes ρΦ. Reordering the equation 4.3 for correla-

tion above we have

γΦ ≡ (eTΣe)
1
2 ρΦ =

eTΣd

(dTΣd)
1
2

(4.4)

Selecting queries for the subset Φ maximizing ρΦ is equivalent to selecting queries that maximizes

γΦ since (eTΣe)
1
2 is a constant. Suppose, for example, the query subsetQΦ only contains a single query

j, so that Φ = {j}. Then

γΦ =

∑n
i=1 σij

(σjj)
1
2

(4.5)

where
∑n
i=1 σij is the jth column total of Σ, and σij is the (i, j)th element of Σ, i.e., the covariance

between ith and jth query-systems vectors, and σ
1
2
jj is the standard deviation of the jth query-systems

vector. In general, the optimal subset QΦ of a particular size is the one with the maximum value of

max
Φ

γΦ =

∑
j∈Φ

∑n
i=1 σij

(
∑
i,j∈Φ σij)

1
2

(4.6)

Equation 4.6 provides valuable insight into the query selection problem. In order to maximize γΦ

we would like the denominator to be small and the numerator to be large.

Consider the denominator (dTΣd)
1
2 . Remember that the covariance matrix, Σ, is fixed and repre-

sents the covariance between the n query-systems vectors. An element, dj , of the binary vector, d, is

one if query j belongs to the subset. To minimize the denominator, we must choose the m queries that

are least correlated with one another. This is equivalent to maximizing the information we derive from

each query in the subset. Conversely, if the query-systems vectors are perfectly correlated, then all the

queries provide the same information and we may as well have a subset of size one.

Now consider the numerator, eTΣd. This is maximized if the subset of query-systems vectors has

high correlation with the rest of the queries. This is also intuitively clear. After all, if the subset of query-

systems vectors is completely uncorrelated with the remaining query-systems vectors, then this subset

can provide no prediction of how systems will perform on the remaining queries. Assuming that an

evaluation on the full set of query-systems vectors is a gold standard, the objective encodes a preference

for subsets that have a strong correlation with the full evaluation. Note that this correlation is between

query-systems vectors. It is not a statistical correlation between terms in queries, nor is it a semantic

correlation between queries. This is an important distinction. The queries “cat” and “dog” are neither

statistically nor semantically correlated. However, the query-systems vector for “cat” may be strongly

correlated with the query-systems vector for “dog”, and thus the query-systems vector for “cat” is able

to predict the corresponding performance for “dog”.
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4.4 Query Selection Algorithms
Finding the subset of queries that maximizes Equation 4.6 belongs to the family of subset selection

problems that are NP-hard [WEST03]. Brute-force options are available for small n but impractical

when n is large. We are seeking a method that takes as input a l×n effectiveness matrix X representing

the evaluation of l reference systems on n queries, and produces as output a subset of m queries. In

the subsections 4.4.2 and 4.4.3 we describe two algorithms that efficiently find approximate solutions.

However, before that we first explain the random query sampling method that is being widely used in IR

community, and hence is considered as the baseline in our experiments.

4.4.1 Random Query Sampling

The common way of selecting a subset of queries for IR test collections is random sampling [ACA+07].

In this method, there is no criterion for selecting a subset and all queries are given the same chance to be

selected.

4.4.2 Greedy Query Selection

A forward greedy algorithm can be used to approximately find the optimal subset. That is, when m=1,

the optimal subset is the query whose query-systems vector obtains the maximum value of the equation

4.5. For every m > 1 we use the best subset of size m-1 and select the mth query from the queries

indexed in Φc (the complement set of Φ) that maximizes the equation 4.6.

This greedy algorithm is fast and tractable but is not guaranteed to find the best subset since the

best subset of size m does not necessarily contain all the queries selected for the best subset of size m-1

[GMR09].

The greedy algorithm can accept any measures as its objective. Therefore, when the ranking of

systems is of interest, we can directly use Kendall-τ with the greedy algorithm. At each iteration, we

select a query that its combination with the previously selected queries results the maximum Kendall-τ

between M and MΦ.

4.4.3 Convex Optimization

An improvement of the query selection model proposed in Section 4.3 is to seek arbitrary linear com-

binations of effectiveness scores of a query subset, rather than just taking unweighted averages. The

average performance µi of system i in Sl can be expressed as a linear combination of the effectiveness

scores xij , associating a coefficient with each query j. Let β ∈ Rn×1 be a vector of n real values. Then

the linear combination is expressed as

µiβ =

n∑
j=1

βjxij = xiβ (4.7)

where xi is the ith row of matrix X .

We define MΦβ ∈ Rl×1 as the vector of the l systems’ average performance computed using a

linear combination of a query subset, QΦ. Thus, the goal of the query selection is to set the β so that the

correlation ρΦβ between M and the corresponding MΦβ is maximized. The correlation ρΦβ , expressed
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in terms of the covariance matrix Σ, is

ρΦβ =
(βTΣe){

(eTΣe)(βTΣβ)
} 1

2

(4.8)

Following the formulation in Section 4.3 the optimization function is expressed as

max
β

γΦβ =
eTΣβ

(βTΣβ)
1
2

subject to ‖ β ‖0≤ m (4.9)

where ‖ . ‖0 is the L0 norm constraint that simply counts the number of non-zero elements in β and

controls the size of the subset. Therefore, if a query j is selected, βj > 0; otherwise βj = 0. 3

Solving the optimization in Equation 4.9 is a subset selection problem as we need to test the β > 0

coefficients for any query subsets of size m. Thus, finding the optimal solution is NP-hard [WEST03].

We slightly change the optimization function in Equation 4.9 to form it as a convex optimization for

which computationally efficient solutions are available [BV04a].

The maximum value of Equation 4.9 is approximated by the minimization function that is expressed

in a quadratic form [MoWMMRCC67]

min
β

1

2
βTΣβ − eTΣβ subject to ‖ β ‖0≤ m (4.10)

To minimize Equation 4.10 we use convex relaxation that replaces the above minimization function with

a convex function that admits tractable algorithms. Note that the optimization function in Equation 4.10

is not convex because of the L0 norm constraint. We alter this constraint to convert Equation 4.10 to

a convex form. To do so, we replace L0 norm constraint by an L1 norm constraint that is the closest

convex form to L0. Choosing the optimal subset is now based on solving the following optimization

function

min
β

1

2
βTΣβ − eTΣβ subject to ‖ β ‖1≤ C (4.11)

where ‖ . ‖1 is the L1 norm that returns the sum of absolute values of the elements in β. Also, C

is a positive real value between 0 and +∞. The optimization in Equation 4.11 is convex and can be

efficiently solved by the quadratic programming algorithms [Mur88, SFR07] to generate the optimal

subsets of size {1, 2, ..., n} as C varies from 0 to +∞.

4.5 Estimations of Covariance Matrix

In practice, the values of the mean vector α and covariance matrix Σ are unknown to us because the

space of all systems S, including both participating and unseen systems, is unknown. Hence, the mean

row vector, α, and covariance matrix, Σ, are estimated using the sample of size l participating systems.

3The role of the β vector in Equation 4.9 is similar to the role of the binary vector d in Equation 4.4.
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4.5.1 Random Sampling of Systems

Considering the sample {x1, ..., xl} of multivariate scores the estimators of α and Σ are given by

α̂ ≡ x̄ = l−1
l∑
i=1

xi (4.12)

Σ̂ = (l − 1)−1
l∑
i=1

(xi − x̄)T (xi − x̄) (4.13)

The estimators above are unbiased if the set of l participating systems is uniformly sampled from the

population of systems S. In this case, if l is large and the sample of participating systems forms a diverse

set of retrieval systems, we obtain reliable estimations of α and Σ. The unbiased estimators ensure that

all the l participating systems contribute equally to select a subset of queries or estimate weight scores β.

Therefore, when a new system is randomly sampled from S, the unbiased estimators find a subset that

provides reliable evaluation results.

4.5.2 Non-random Sampling of Systems

In practice, new systems may not be randomly selected from S. They may, in fact, be variations and

extensions of the pervious systems with high performances. In this case, allowing all the participating

systems to contribute equally to selecting queries may not result in the best choice. Instead, better

performance may be achieved by selecting queries based on participating systems that are similar to the

new system.

We denote {p1, p2, ..., pl} as a set of weights assigned to the l participating systems such that∑l
i=1 pi = 1. The weight pi indicates the degree of contribution for the ith participating system in

selecting queries. The unbiased estimators of α and Σ are then

α̂ =

l∑
i=1

xipi

Σ̂ =
1

1−
∑l
i=1 p

2
i

l∑
i=1

(xi − α̂)T (xi − α̂)pi

For instance, if we assume that new systems will have high performance, we can weight the par-

ticipating systems such that higher performing participating systems contribute more to the selection of

queries. In this case, we use unbiased estimators of a weighted sample of systems to approximate α and

Σ.

In our experiment, we describe a simple selection method for weights pi and investigate the use of

the corresponding estimators in a real situation of IR experiments in which new systems are expected to

obtain high performance.
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4.6 Experiments
We evaluated the performance of the three query selection algorithms introduced in Section 4.4. We

selected subsets of varying size m, using each of the three query selection algorithms. The quality of a

selected subset was then assessed in terms of (i) accuracy and (ii) generalization. Accuracy is concerned

with how well a subset of queries can reproduce the relative performance of the participating systems

when measured against the full set of queries. Generalization is concerned with how well the selected

subset of queries can reliably evaluate a set of new systems, again compared to the whole set of queries.

Before proceedings, we first describe the experimental data.

4.6.1 Experimental Setup

Normally, organizations participating in TREC register as sites and submit a number of experimental

runs for evaluation. These runs often represent variations on the system’s settings. For our purposes

we should consider runs as IR systems, taking a special care when considering runs from the same site.

In our experiments, we used (i) the TREC-8 test collection and (ii) the Robust TREC 2004 track. The

TREC-8 test collection consists of 50 queries (topics), 39 sites with 129 runs of which 13 runs are manual

and 116 runs are automatic. Automatic runs automatically create queries but manual runs use queries

that are created by human experts. We use the TREC-8 test collection throughout the experiments to

create a heterogenous data set for the purpose of our generalization experiments as explained in Section

4.6.3. The Robust TREC 2004 track consists of 249 queries, and 14 sites with 110 automatic runs. The

query set of the Robust TREC 2004 track contains 49 new queries (a 50th was removed because no

relevant documents were found), also the 50 queries from the TREC 2003 Robust task, and 150 queries

from the TREC-6, TREC-7 and TREC-8 test collection. We use the TREC 2004 Robust test collection

in our experiments because it’s query set is a combination of five different query sets that makes it one of

the largest query sets among the TREC test collections, and hance suitable for the query selection task.

In TREC-8 and Robust tracks, between 1000 to 3000 documents were judged per query and metrics,

e.g. AP and P@10, were used to measure systems’ performance. In our experiments, we used AP to

measure systems’ performance.

To assess the accuracy and generalization of a query selection algorithm, we partitioned the set of

all systems in a TREC test collection, i.e. experimental runs, into ‘participating’ and ‘new’ (unseen)

systems. In order to ensure that new systems were truly different from the participating ones, we held

out as new systems not only individual runs but the entire set of runs from the same site. Furthermore,

during computation of performance metrics, we removed the documents that were uniquely retrieved by

the held-out (new) systems. The reduced pool was used to measure the performance of the participating

systems and to construct the associated performance matrix X .

We used a repeated random sub-sampling technique to split systems into participating and new sys-

tems. At each trial, we randomly selected 40% of sites, and labeled their runs as new systems. Choosing

40% of sites ensures us that a sufficiently large number of runs are set aside to test the generalization of a

query selection method. The remaining runs were treated as participating systems and used to build the

pool of judged documents for system evaluation. The performance of participating systems were mea-
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sured and used to construct the performance matrix X and associated covariance matrix Σ. Because the

new systems were selected by random sampling, we used the unbiased estimators, introduced in Section

4.5.1, to compute Σ. We then applied the three query selection algorithms, namely, random, greedy and

convex, to select a subset of queries. For the random query sampling method we reported the average of

1000 random trials.

We repeated the process of random partitioning over 50 trials and reported their average results. The

50 trials of sampling ensured that the runs of each site were at least assigned once to the participating

set and once to the new set. The K-fold cross validation [Koh95a] was another option for partitioning.

However, the advantage of the random sub-sampling over the K-fold cross validation was that the pro-

portion of the participating/new split was independent of the number of iterations (folds). Consequently,

a considerable subset of runs, 40% of the total runs in a TREC dataset, was set aside as new systems to

obtain robust evaluation results on generalization experiments.

4.6.2 Accuracy

For the full set of queries we constructed the associated document pools using the set of participating sys-

tems. We also provided the performance matrix X using AP metric, and the corresponding covariance

matrix Σ. Next, we selected a subset of queries of size m using one of the query selection algorithms,

and computed the corresponding vector MΦ. In order to measure the accuracy of the selected query

subset, we computed the Pearson linear correlation and Kendall-τ rank correlation between MΦ and the

corresponding vectorM . The elements of vectorM were the participating systems’ true MAP computed

using the full set of relevance judgments in the original test collection.

The accuracy of the three query selection algorithms on the TREC 2004 Robust track with 249

queries is shown in Figure 4.4 for Pearson linear correlation. The results are represented for the subset

sizes between 1 and 50. We reported the averages of 50 trials as the average results for the greedy and

the convex methods. The averages of 1000 random trials were also reported as the average results of the

random method. We also considered the 95% confidence interval of the averages to detect significant

differences between the query selection methods. For instance, for the subset of 10 queries the average

of 50 Pearson correlation scores obtained by the greedy method was 0.94 and the associated standard

deviation was 0.03. Thus the 95% confidence interval was
[
0.94±1.96× 0.03√

50

]
. The confidence intervals

in Figure 4.4 are shown by error bars around the averages. Thus, significant differences in performance

are detected if the error bars of two methods do not coincide. For all the subsets sizes, the accuracy

obtained by both the greedy and the convex methods significantly outperformed the accuracy of the

random sampling. Also, the accuracy of the convex method was superior to the accuracy of the greedy

method across subsets of various size.

We also repeated the experiment for the Kendall-τ rank correlation. The greedy algorithm computed

the Kendall-τ betweenM andMΦ to find the best subsets. The results are shown in Figure 4.5 for various

subsets between 1 and 50. Again both the greedy and the convex methods significantly outperformed the

random method. However, as opposed to the results observed in Figure 4.4 for Pearson correlation, the

greedy algorithm consistently outperformed the convex method across various subsets.
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Figure 4.4: Accuracy of the three query selection methods: random, greedy and convex, measured
by Pearson correlation on TREC 2004 Robust track with 249 queries. The greedy method used the
optimization function in Equation 4.6 to find the best subset of queries.
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Figure 4.5: Accuracy of the three query selection methods: random, greedy and convex, measured by
Kendall-τ rank correlation on TREC 2004 Robust track with 249 queries. The greedy method directly
used the Kendall-τ between M and MΦ to find the best subset of queries.
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Figure 4.6: Scatter plots of the systems’ MAP calculated for a query subset of size 5 and systems’ MAP
of the full set of queries. The systems are the participating systems in one of the random trials of our
experiment in Section 4.6.2
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Figure 4.7: Scatter plots of the systems’ ranking calculated for a query subset of size 5 and systems’
ranking of the full set of queries. The systems are the participating systems in one of the random trials
of our experiment in Section 4.6.2

According to the formulation in Section 4.4.3 the convex method is optimized for Pearson correla-

tion. Thus, the convex method may not be able to obtain the optimal results for Kendall-τ correlation.

In contrast, the greedy algorithm is directly optimized for Kendall-τ and is expected to obtain near to

optimal results for the participating systems.

Also, we randomly picked participating systems in one of the trials and drew, as an example, the

scatter plots of the systems’ MAP scores measured using the full set of queries versus the systems’ MAP

scores measured by a subset of 5 queries that is chosen by one of the three query selection methods. The

results are shown in Figure 4.6.

Similarly, Figure 4.7 represents the corresponding scatter plots of the systems’ ranking using the

full set of queries versus the systems’ ranking measured by a subset of 5 queries that is chosen by one of

the three query selection methods.

4.6.3 Generalization

The new systems’ performance were computed using the document pools that were constructed by the

participating systems. The corresponding vector MΦ was computed based on a query subset that was

chosen by one the three algorithms. To measure generalization of a query subset, we computed the

Pearson Linear correlation and Kendall-τ rank correlation between theMΦ and the corresponding vector

M . The elements of M represented the new systems’ true MAP computed the full set of relevance

judgments in the original TREC test collection. In the convex method the vector MΦ weighted each

query equally, i.e. the value of β coefficients, calculated as a part of the solution to Equation 4.11 were
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Figure 4.8: Generalization of the three query selection methods measured by Pearson correlation on
TREC 2004 Robust track with 249 queries.

ignored. We notice that we only used the β coefficients to select a subset of queries and discarded them

when computing the MΦ vector for the new systems. We do this because the sample mean of AP scores

of selected queries is an unbiased estimator of MAP of a new system calculated over the full set of

queries, and amongst all the unbiased estimators, it has the smallest variance [Hub74].

The generalization of the three query selection methods on TREC 2004 Robust dataset is shown

in Figure 4.8 for Pearson correlation and Figure 4.9 for Kendall-τ correlation. The subset size varies

between 1 and 50. The averages of 50 trials were reported as the average results of the greedy and

the convex methods. As seen in Figure 4.8, the Pearson correlation obtained by the convex method

significantly outperformed the Pearson correlation of the greedy method for all the subset sizes between

3 and 50. While the convex method consistently outperformed the random results, the greedy method

failed to perform better than the random method for subset sizes bigger than 20.

Almost similar results were obtained in Figure 4.9 for Kendall-τ correlation. We note the greedy

algorithm directly computed the Kendall-τ between MΦ and M to find the best subsets. As opposed

to the results in Figure 4.5, the convex method significantly outperformed the greedy method for all the

subsets between 5 and 50. For instance, the convex method obtained 0.9 Kendall-τ correlation after

selecting 35 queries. However, the greedy method required at least 76 queries to obtain 0.9 Kendall-τ

correlation.

Considering the results in Figure 4.8 and 4.9 as the size of the subset increased, the greedy method

over-fitted to precisely evaluating the participating systems and consequently lacked generalization. That

is to say that, as opposed to the convex method, the greedy method is unable to recover from choices it

made earlier on since it is committed to using a query in all sizes once it has been chosen at an initial

iteration. Comparing Figures 4.9 and 4.5, all the three query selection algorithms have lower Kendall-τ

correlations for generalization, indicating that evaluations of new systems are likely to be less accurate.
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Figure 4.9: Generalization of the three query selection methods measured by Kendall-τ correlation on
TREC 2004 Robust track with 249 queries.
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Figure 4.10: The performance of the greedy algorithm on evaluating the 13 manual runs in TREC-8
when: (i) the covariance matrix Σ is approximated based a uniform sample of automatic runs (QS1), and
(ii) Σ is approximated based on a weighted sample of the automatic runs (QS2).

In the next chapter, we show that how this issue can be at least partially alleviated by acquiring a few

additional judgments based on the documents that are solely retrieved by the new systems.

4.6.4 Evaluating a Non-Random Sample of New Systems

So far we assumed that the new systems were randomly selected from the space of all systems. We now

consider a more realistic scenario of IR experiments in which new systems are indeed not a random

sample and completely different from participating systems, known as heterogeneous systems in previ-

ous work, e.g. Robertson [Rob11]. To form a heterogenous data set we follow the previous work, e.g.

[Rob11], and use the TREC-8 test collection. The TREC-8 test collection consists of 129 runs (systems)

of which 116 runs are automatic and 13 runs are manual. Both the automatic and manual runs use the

same set of retrieval models. The only difference is that for the manual runs queries are formulated

by human experts while for the automatic runs queries are formulated by machine, and without human

intervention. In practice, manual runs usually outperform automatics ones. In TREC-8 the 11 best
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Figure 4.11: The performance of the convex query selection algorithm on evaluating the 13 manual runs
in TREC-8 when: (i) the covariance matrix Σ is approximated based a uniform sample of automatic runs
(QS1), and (ii) Σ is approximated based on a weighted sample of the automatic runs (QS2).

performing runs are all manual and their performance measured by MAP are statistically significantly

better than the remaining runs. For the purpose of our experiment, we considered the 13 manual runs

as new systems and the rest as participating systems. We considered two variants of the query selection

model namelyQS1 andQS2. TheQS1 method used the unbiased estimators, explained in Section 4.5.1,

to approximate the mean vector α and the covariance matrix Σ. The QS2 method used the unbiased es-

timators for a weighted sample of systems, as explained in Section 4.5.2. Thus, when using QS2, the

participating systems contributed non-uniformly in selecting queries. The intuition was that, since new

systems were likely to perform better than participating systems, we could achieve better generalization

of new systems, if we preferentially weighed highly performing participating systems.

We used a simple weighting function to weigh the participating systems for the QS2 method. After

pooling documents by using the full set of participating systems we selected a subset of k participating

systems with the highestMAP scores. If the ith system was among the selected ones, the corresponding

weight was pi = 1
k , otherwise pi = 0.

In our experiment, we set k = 30 because (i) the MAP s of the top 30 best performing participat-

ing systems were significantly larger than the MAP s of the remaining, and (ii) the set of 30 systems

comprised a sufficiently large sample of well performing systems.

The performance of QS1 and QS2 are shown in Figures 4.10a and 4.10b for Pearson correlation

and Kendall-τ correlation. We used the greedy query selection algorithm for both QS1 and QS2 to

iteratively select a subset of queries. As seen, the performance of QS2 is superior to the performance of

QS1 for both Pearson and Kendall-τ correlation across various subsets.

Similar results were obtained when the convex method was used as the query selection algorithm

for both QS1 and QS2. The results are shown in Figure 4.11a and 4.11b for Pearson and Kendall-τ

correlation. As seen, the weighted sampling of systems caused a better approximation of the covariance

matrix Σ for selecting a subset of queries that reliably evaluate the set of manual runs.
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4.7 Summary and Directions
We defined the query selection problem and showed how it is formulated as an optimization problem.

The mathematical formulation showed that an optimal subset satisfies two properties: (i) the selected

queries should be least correlated with one another, thereby maximizing the information we gain from

each, (ii) the selected queries should have strong correlation with the remaining queries, as without this

correlation there is no predictive capability.

Finding the globally optimum subset of queries is NP-hard and hence computationally expensive.

We introduced two algorithms, namely greedy and convex, that could be used in practice to approximate

the optimal solution. We compared the performance of the greedy and convex methods against the

random query selection based on accuracy and generalization. Accuracy was concerned with how well

a subset of queries can reproduce the relative performance of the participating systems. Generalization

was concerned with how well the selected subset of queries could provide reliable evaluation results for a

set of new systems. Our experimental results on two TREC test collections, namely TREC-8 and TREC

2004 Robust test collections, showed that the convex method is superior to the random selection and the

greedy method when Pearson correlation was used as the evaluation metric. When the evaluation metric

was Kendall-τ , the greedy algorithm outperformed the convex method in ranking participating systems.

However, the greedy algorithm laked generalization and was unable to reliably evaluate a set of new

systems.

So far, we have introduced a theoretical framework for query selection and discussed the properties

of the optimal subset. We also conducted some retrospective experiments to evaluate various query

selection algorithms. In the next two chapters, we will explore the applications of query selection and

show how it is used in practice to reduce the cost of IR test collections.



Chapter 5

The Reusability of a Test Collection

The state-of-the-art process for constructing test collections involves using a large number of queries

and selecting a set of documents, submitted by a group of participating systems, to be judged per query.

However, the initial set of judgments may be insufficient to reliably evaluate the performance of new

as yet unseen systems. We show how a query selection algorithm can be used as a budget-constrained

optimization method to expand the set of relevance judgments as new systems are being evaluated.

We assume that there is a limited budget to build additional relevance judgements. From the doc-

uments retrieved by the new systems we create a pool of unjudged documents. Rather than uniformly

distributing the budget across all queries, we first select a subset of queries that are effective in evaluating

systems and then uniformly allocate the budget only across these queries. Experimental results on TREC

2004 Robust dataset demonstrated the superiority of this budget allocation strategy.

5.1 Introduction
Gathering relevance assessments has an associated cost which, in its simplest form, depends on the

number of queries and the number of documents per query that need to be assessed. However, the cost

is not the only consideration when creating effective test collections. The accuracy and reusability of

the test collections are also very important. A test collection is accurate if the participating systems’

performance are precisely evaluated. In addition, a test collection is reusable if has no inherent bias that

might affect evaluation of new as yet unseen systems.

Following the belief that a larger query set is desirable, the Million Query track of TREC 2007

[ACA+07] was the first to include thousands of queries. The Million Query track used two document

selection algorithms, proposed by Carterette et al. [CAS06] and Aslam et al. [APY06], to acquire rel-

evance judgments for about 1,800 queries. The experiments on this test collection showed that a large

number of queries with a few judgements (i) resulted in an accurate evaluation of participating systems,

and (ii) was more cost-effective than evaluation conducted by fewer queries with more judgements.

However, due to the small number of documents assessed per query, the reusability of such a test collec-

tion still remains questionable. Indeed, Carterette et al. [CKPF10] demonstrated that the Million Query

track of TREC 2009 is not usable for assessing the performance of systems that did not participate in

pooling documents.
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In particular, a test collection may not be reusable if a new system, in response to queries in the

test set, retrieves many documents that are not in the document pool. In this situation, (i) the previously

unjudged documents must either be judged non-relevant [Voo02], (ii) the new documents are assigned

a probability of relevance and new systems’ performance are measured by using metrics designed for

incomplete relevance judgments, e.g. MTC [CAS06], or (iii) additional user relevance judgments must

be obtained for these documents. Assuming the documents are non-relevant potentially biases the test

collection. Only future systems that behave like the original participating systems will be evaluated accu-

rately [CKPF10]. Assigning a probability of relevance may cause a high uncertainty in evaluation when

there are a large number of unjudged documents for new systems [CGJM10], and acquiring additional

user judgments can be expensive.

We assume a limited budget is available to build additional relevance judgements for previously

unjudged documents retrieved by new systems. We examine whether it is better to uniformly allocate

the budget across all queries, or select a subset of queries and allocate the budget only to the selected

queries to get deeper judgments per query at the same cost. We report our experimental results on TREC

2004 Robust test collection and show the advantages of using the query selection approach in enhancing

the reusability of a test collection.

5.2 Expanding Relevance Judgements
We begin with the assumption that a system can be reliably evaluated and compared with other systems if

we manually assess a significant portion of the document corpus or, at least, a large number of documents

retrieved by each individual system. This assumption is valid when the recall sensitive metrics ,e.g. AP

and Recall, are used to measure a system’s performance.

Therefore, if new systems return many new (unjudged) documents, the current relevance judge-

ments are insufficient to reliably assess their performance. In this situation, we assume that there is a

limited budget to build relevance judgements for a subset of the new documents. How should we spend

the limited budget to acquire additional relevance judgments? We could consider all queries and use a

document selection algorithm to pool a few documents per query. Alternatively, we could select a repre-

sentative subset of queries that closely approximates systems’ overall performance, and allocate the bud-

get only to the selected queries. The final solution is likely to include elements of both these approaches.

The document selection problem has been widely discussed in previous work, e.g. [CAS06, AP08].

We assume the pooling method [SJvR76] is used to select documents at the query level and restrict our

attention to the effects of choosing queries.

Selection of the subset is strongly related to the query selection problem defined in Chapter 4.

Thus, ideally, we would identify a minimal subset of queries that still enables a reliable evaluation of the

existing and new systems. Furthermore, the gain from reducing the number of queries can be redirected

to increase the number of documents judged per query. Our hypothesis is that, given a fixed budget,

a smaller but representative set of queries with a greater number of judged documents per query will

increase the accuracy of ranking new systems.

In the next section, we show how the convex query selection is formulated as a budget-constrained
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optimization to select a subset of queries. The convex query selection method accepts the budget as a

constraint and adaptively selects a subset of queries. Thus, the number of selected queries depends on

the budget that is available for expanding relevance judgments.

5.3 Budget-Constrained Query Selection
We denote Ω as the cost of building relevance judgements for all previously unjudged documents that

are returned by new systems. Also B denotes the limited budget (0 ≤ B ≤ Ω) that is available to build

additional relevance judgements. We also define β ∈ [0, 1]N×1 which contains real values bounded

between 0 and 1 such that if jth query is selected, βj > 0, otherwise βj = 0. The budget constraint is

defined as a linear combination of β coefficients to control the number of selected queries:

N∑
j=1

βj ≤
B

Ω
(5.1)

We now consider the convex query selection formulated in Section 4.4.3. The L1 constraint is replaced

with the linear budget constraint (5.1) to form our budget-constrained optimization

min
β

1

2
βTΣβ − eTΣβ subject to

n∑
j=1

βj ≤
B

Ω
(5.2)

where Σ is the covariance matrix of a performance matrix X that contains the performance scores of l

systems against n queries. Also, e ∈ {1}n×1 is a vector of n ones.

To solve the budget-constrained convex optimization the quadratic programming algorithm [Mur88,

SFR07] can be used to generate the optimal subsets of size {1, 2, ..., n} as the budget B varies from 0

to Ω. Hence, we select all queries for which βj is non-zero, and by varying the budget B we control the

number of queries in the subset.

5.4 Experimental Evaluation
Our experimental investigations were performed using the TREC 2004 Robust dataset consisting of 249

topics (queries), and 14 sites with a total of 110 runs. We considered runs as search systems, taking

special care when considering runs from the same site.

For the purpose of our experiments, the set of all experimental runs were partitioned into partici-

pating and new systems. In addition, in order to ensure that new systems were truly different from the

participating ones, we held out as new systems not only individual runs but also the entire set of runs from

the same site. Furthermore, during computation of performance metrics, we removed the documents that

were uniquely retrieved by the new (held-out) systems from the pool.

5.4.1 Experimental Setup

We assumed a fixed budget is available to collect new relevance judgments. We examined two methods

for allocating the budget across queries. In the first method, the resources were equally spread across all

queries. For example, if the budget could cover only 200 new judgments and there were 100 queries,
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we judged two new documents per query. In the second method, we selected a subset of queries and

then allocated the budget equally across them. We used the budget-constrained query selection method,

introduced in Section 5.3, to select a representative subset of queries.

We first randomly selected a subset of sites and used their experimental runs as participating sys-

tems. We then analyzed the held-out sites and distinguished between those sites that performed similarly

to the held-in sites, i.e. there was considerable overlap in the documents retrieved by these sites and

the held-in sites, and those sites that were very different from the held-in sites. To do this we applied

the reusability measure proposed in [CGJM10] to measure the extent to which the corresponding pooled

documents covered the documents retrieved by the held-out systems. For each held-out system and each

query we considered the ranked list of documents and computed the average reuse (AR),

AR(q) =
1

judged(q)

∑
i

judged@i(q)

i

where judged@i(q) was the number of judged documents in the top-i results of the held-out system for

query q, and judged(q) was the total number of documents judged for query q. In addition, we defined

the mean average reuse (MAR) as the average of AR values for a system over the full set of queries.

We separated held-out sites into two groups based on the average of the MAR scores of their runs.

Those with high MAR across runs that could be evaluated using the existing relevance judgments, and

the second group with runs that had low MAR and thus required additional relevance judgments in

order to be evaluated. The first group of runs formed the auxiliary set of systems, and the others were

considered as new systems. The auxiliary set was added to the set of participating systems to form the

performance matrix X and aid the selection of queries. We also used the new systems to evaluate the

different resource allocation methods. The full experiment is as below:

1. Pick s1 sites at random. The runs of these sites are treated as participating systems.

2. For each query, construct the initial pool of top-k0 documents retrieved by participating systems

and build associated relevance judgments. Compute the performance matrix X for the participat-

ing systems and the full set of queries.

3. Compute the MAR for the runs that did not participate in the pooling. Average the MAR scores

across the runs from the same site and produce average reuse score for each site.

4. Pick s2 sites with the smallest scores and treat their runs as new systems. The remaining runs are

auxiliary systems that can be evaluated with the existing relevance judgments. Their performance

values are added to the performance matrix X . Note, however, that the auxiliary systems do not

contribute to the document pool.

5. Given a budget B, select a subset of m queries using the budget-constrained convex optimization

method.

6. Acquire additional relevance judgments in one of two ways:
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(a) Subset: For each of them selected queries assess an additional k1 documents contributed by

the new systems where k1 is adjusted based on B.

(b) Uniform: For each of the n queries1 assess an additional k2 documents contributed by the

new systems where m× k1 = n× k2.

7. Add the newly judged documents to the initial pool and compute the effectiveness scores for the

new systems.

5.4.2 Experimental Results

We applied the above steps across 10 trials. In each trial, we randomly chose a different set of participat-

ing sites, s1=1, 3 or 5. The runs of the remaining sites were partitioned into auxiliary and new systems

based on their reusability scores. We considered the s2 lowest scoring sites and chose their runs to be

new systems, where s2 = 3, 6 or 8. The auxiliary sets comprised 5, 6 or 7 sites. To construct the initial

pools we considered the top-k0 documents from each participating system, where k0 = 10 or k0 = 30.

Assuming a fixed budget, B = {1, 3 or 5}×104 and a performance matrix X composed of participating

and auxiliary systems, we used the convex optimization method to select a subset of queries. As B in-

creased, the number of selected queries also increased. In our experiments, the size of the subsets varied

between 14 to 237 with a median of 69.

Table 5.1 compares the performance statistics for the Robust 2004 track test collection before and

after acquiring new relevance judgments in 12 different experimental configurations. The values given

in the table are Kendall-τ scores – averaged over 10 trials – between the ranking of new systems induced

by the “initial pool” (containing top-k0 documents returned by participating systems) or one of the two

resource allocation methods (“uniform” and “subset”) and the ranking induced by MAP scores that

are measured over the full set of queries and by using the original pools (TREC qrels). Also, p+ counts

additional pairs of systems that are correctly ordered by the subset method when compared to the number

of pairs correctly ordered by the uniform method. In addition, Ω is the number of judgements needed to

build relevance judgements for all previously unjudged documents that are returned by new systems in a

pool of depth 100.

We note that if the difference in average performance scores of two systems is not statistically

significant, it is completely reasonable that they may be ordered differently when evaluated over a subset

of queries. Having such tied systems in a test set increases the probability of a swap and consequently

decreases Kendall-τ . This is because the Kendall-τ is not able to distinguish between pairs of systems

with and without significant differences. This is the case in Robust track test collection in which about

30% of pairs are ties, when measured by a paired t-test at significance level 0.05. In Table 5.1, the

Kendall-τ scores in parentheses are calculated by only considering the pairs of systems with a statistically

significant difference in MAP .

The positive effect of increasing the number of sites s1 that contribute to the document pool, can

be observed from the experiments 1, 7 and 10 for which s1 is varying from 1 to 5, with B = 1 × 104.

1The size of the full set of queries is denoted by n.
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Table 5.1: Results for TREC 2004 Robust runs evaluated by MAP . The first six columns report exper-
imental parameters. The next three columns report the Kendall-τ of ranking new systems in the basis
of the initial pool and each of the two budget allocation methods. The last column (p+) counts addi-
tional pairs of systems that are correctly ordered by the “subset” method against the “uniform” method.
The values in parentheses are measured by only considering pairs of new systems with a statistically
significant difference.

exp.# s1 s2 k0 Ω B B
Ω

Kendall-τ
p+

initial pool uniform subset
1

1 8 10 163,842
10,000 0.06

0.42 (0.49)
0.54 (0.63) 0.6 (0.66) 95 (50)

2 30,000 0.18 0.57 (0.66) 0.64 (0.70) 110 (63)
3 50,000 0.31 0.61 (0.69) 0.68 (0.74) 111 (79)
4

1 6 30 107,817
10,000 0.09

0.54 (0.61)
0.66 (0.74) 0.73 (0.79) 53 (44)

5 30,000 0.28 0.70 (0.77) 0.77 (0.81) 62 (42)
6 50,000 0.46 0.75 (0.80) 0.82 (0.85) 62 (46)
7

3 6 10 104,580
10,000 0.1

0.60 (0.65)
0.70 (0.76) 0.76 (0.83) 53 (51)

8 30,000 0.29 0.75 (0.81) 0.82 (0.87) 62 (53)
9 50,000 0.48 0.82 (0.80) 0.89 (0.89) 71 (79)

10
5 3 10 53,535

10,000 0.19
0.70 (0.77)

0.87 (0.91) 0.90 (0.95) 7 (11)
11 30,000 0.56 0.92 (0.94) 0.96 (0.98) 11 (8)
12 50,000 0.93 0.99 (1.0) 0.98 (1.0) -2 (0)

In addition, increasing s1 or k0 increases the average reuse scores of held-out sites and, consequently,

reduces the number of new systems and the amount of Ω. This can be seen from the experiments 1-

9. Diversifying the set of participating systems by increasing s1 while keeping k0 constant causes a

bigger improvement in Kendall-τ than the opposite, i.e., increasing k0 and keeping s1 constant. This is

demonstrated by the experiments 4 and 7 where s2 = 6 and B = 1× 104. This result is consistent with

observations by Carterette et al. [CGJM10] that a higher diversity of participating systems results in a

better ranking of new systems.

In experiments 1-9 where the total cost, Ω, is considerably bigger than the available budget, B, the

subset method significantly outperforms the uniform method. In practice, we usually prefer to obtain

Kendall-τ=0.9 by spending a minimum budget. Our subset allocation method obtains τ=9.0 in exper-

iment 10 where an additional B=10,000 budget is spent to gather relevance judgments. However, the

uniform method reaches τ=0.9 in experiment 11 where B=30,000 budget is required which is 20,000

documents more than the subset method. As B approaches Ω, the amount of improvement decreases

such that in the last experiment (s1 = 5 and B
Ω = 0.93) the Kendall-τ obtained by the uniform method

is bigger than the Kendall-τ for subset. We note that, as B approaches Ω, the number of selected queries

gets closer to the total number of queries in the test collection. Therefore, when Ω u B, the difference

between the performance of subset and uniform method is negligible.

5.5 Summary
We considered the problem of expanding the relevance judgements of a test collections in order to better

evaluate the performance of new systems. Given a fixed budget, we investigated whether it is better to

uniformly allocate the budget across all the queries in the test collection, or only to a subset of queries.

Our hypothesis was that a smaller but representative set of queries with a greater number of judged

documents per query increases the accuracy of ranking new systems.
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The hypothesis was tested using the TREC 2004 Robust track. For a fixed budget, we compared

how well new systems were ranked, based on a uniform allocation across (i) all queries and (ii) a subset

of representative queries. The subset of queries was selected by using the convex query selection method.

The budget constrained was added to the convex query selection method to control the number of selected

queries.

A variety of different experimental configurations were tested, which (i) varied the number of par-

ticipating sites (1, 3 or 5), (ii) the number of new sites (3, 6 or 8), (iii) the size of the top-k0 documents

contributing to the initial pool, and (iv) the budget available (B = {1, 3 or 5} × 104 additional rele-

vance judgments). When B was much smaller than the required budget, Ω, to build complete relevance

judgements, allocating the budget uniformly across a subset of queries performed better than uniform al-

location across all queries. As B approached Ω the difference between two methods became negligible.



Chapter 6

Uncertainty-Aware Query Selection

We extend the query selection framework introduced in Chapter 4 by relaxing the assumption that rele-

vance judgments are available before selecting queries. We show how the extended optimization frame-

work can be used in practice to reduce the cost of IR test collections. Since the query selection opti-

mization is computationally intractable, we devise an iterative query selection algorithm that provides

an approximate solution. Our method selects queries iteratively and assumes that no relevance judg-

ments are available for the query under consideration. Once a query is selected, the associated relevance

assessments are acquired and then used to aid the selection of subsequent queries.

We demonstrate the effectiveness of the algorithm on two TREC test collections as well as a test

collection of an online search engine with 1000 queries. Our experimental results show that the queries

chosen by our method produce a ranking of systems’ performance that is better correlated with the

actual ranking when compared to queries selected by the existing baselines. We also investigate how the

selected query subset generalizes to (i) new unseen systems and (ii) changes to the evaluation metric.

We show that our iterative algorithm can be modified to improve generalizability in both cases.

6.1 Introduction
The query selection problem was defined in Chapter 4 to reproduce the results of an exhaustive evaluation

of systems by using a representative subset of queries. A query selection framework was modeled based

on the assumption that relevance judgments are available for all queries under consideration and systems’

performance scores are known. However, reducing the cost of a test collection is possible only if we can

select queries before collecting relevance judgments.

We assume that a large set of queries have been initially compiled against which we desire to

measure the performance of a set of systems. However, the available budget only permits collecting

relevance judgments for a subset of queries. Our goal is to find a subset of queries that most closely

approximates the results that would be obtained if one provided relevance judgments for the full set of

queries.

We extend our query selection model by relaxing the assumption that relevance judgments are

available prior to selecting a query. In contrast to previous work which is mostly retrospective and

assumes some relevant judgments are available for each query, e.g. Guiver et al. [GMR09], Mizzaro and
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Robertson [MR07], Hauff et al. [HHdJA09] and Robertson [Rob11], our model is designed to work in

practice and does not require the existence of relevance judgments for a query that is not selected yet.

We explicitly model the uncertainty in the retrieval effectiveness metrics that are introduced by

the absence of relevance judgments. The mathematical formulation shows that an optimal subset should

satisfy a number of properties. These are that (i) selected queries have a low correlation with one another,

thereby maximizing the information we gain from each, (ii) selected queries have strong correlation

with the remaining queries, as without this correlation there is no predictive capability, and (iii) the total

uncertainty associated with the selected queries is small.

Since selecting the optimal subset of queries is a computationally intractable problem, we approx-

imate the solution by an iterative query selection process. The algorithm starts by selecting the first

query with no information about relevance judgments. However, once this query is selected, associated

relevance judgments are acquired and used to assist with the selection of subsequent queries.

Specifically, at each iteration we use previously selected queries and associated relevance judg-

ments to train a classification method that estimates the relevance of documents pooled for each of the

unselected queries. Using the classifier’s outputs we compute the relevance probability of pooled docu-

ments which in turn are used to estimate the values of a performance metric, e.g. average precision, and

corresponding approximation variance which we refer to as uncertainty.

We evaluate our method by comparing the systems ranking for the subset of queries with the ranking

over the full set of queries. We report the results in terms of Kendall-τ and Pearson correlation coef-

ficients and show that the query sets chosen by our models are significantly more effective than those

selected by considered baselines for ranking systems.

Query subset selection methods may exhibit poor performance when estimating the performance

of previously new (unseen) systems [Rob11]. We conduct experiments to investigate how our method

generalizes to new systems. We show that the iterative algorithm can be modified to improve general-

izability. Additionally, we consider the query selection problem for the use of multiple metrics. In our

experiment we show that a subset selected based on a particular metric may not provide a reliable eval-

uation result when another metric is used to measure systems’ performance. Thus we modify our query

selection algorithm to select a query subset that enables reliable evaluation across multiple metrics.

In summary, our contributions in this chapter are threefold. Namely, (i) we provide a theoretical

model for query selection that explicitly models uncertainty in retrieval effectiveness scores, (ii) we

develop an iterative algorithm that efficiently implements our theoretical model in practice, and (iii)

we modify the iterative algorithm to investigate how the selected query subset generalizes to (1) new

unseen systems and (2) changes to the evaluation metric. We show that the modified algorithm improves

generalizability in both cases.

6.2 Query Selection Principles and Notations
We consider a set of l system and n queries. When relevance judgments are available, the performance

of the l systems against the n queries are represented by a performance matrix X ∈ Rl×n, as shown

in Figure 6.1, where xsq shows the performance score, e.g. the average precision, of the sth system on
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q1 Queries (Q) M
s1 x1,1 x1,2 ... x1,n → µ1

Systems (S)

x2,1 x2,2 ... x2,n → µ2

...
...

...
...

...
...

x∗,1 x∗,2 ... x∗,n → µ∗
...

...
...

...
...

...

Figure 6.1: The true performance matrix X for a set of system systems and a set of queries. Each entry
indicates the system performance score based on the available relevance judgments.

the qth query. We also consider a column vector M ∈ Rl×1, as the average performance vector. The

elements of the vector M represent the average performances of individual systems across the set of

queries.

We define the index set Φ = {j1, ..., jm} to be a subset of {1, 2, ..., n} with 1 ≤ m ≤ n and QΦ

be the corresponding query subset. We define MΦ ∈ Rl×1 as the column vector comprising the average

performance of systems for the subset of queries, QΦ. Following the definition in Section 4.3 the aim

of a query selection method is to find a subset of queries of a particular size, m, such that the Pearson

Linear correlation, ρΦ, between the vectors MΦ and M is maximized.

ρΦ =
cov(M,MΦ)

{var(M)var(MΦ)} 1
2

(6.1)

such that

var(M) = n−2eTΣe

var(MΦ) = m−2dTΣd

cov(M,MΦ) = n−1m−1dTΣe

where e = {1}n×1 is the vector of n components, each equal to 1; d ∈ {0, 1}n×1 is a binary vector such

that dj = 1 if j ∈ Φ, and dj = 0 otherwise.

In addition, Σ = cov(X) is the n × n covariance matrix of the system-query performance scores.

The (ij)th element of Σ is the covariance between the ith and jth columns of matrix X . The optimum

subset maximizes the Pearson correlation ρΦ, where, substituting for the variances and covariance, we

have

ρΦ =
(dTΣe)

{(eTΣe)(dTΣd)} 1
2

(6.2)

This derivation assumes that the elements of theX matrix are true representatives of system performance

which is computed over the full set of relevance judgments. Of course, in practice this assumption

does not hold because of the absence of relevance judgments during query selection. In the following

section, we propose an extended model that uses performance predictors for approximating systems’ true

performance. We then extend the model to incorporate explicitly the noise in measurement of system

performance.
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q1 Queries (Q) M̂
s1 (x̂1,1, v1,1) (x̂1,2, v1,2) ... (x̂1,n, v1,n) → µ̂1

Systems (S)

(x̂2,1, v2,1) (x̂2,2, v2,2) ... (x̂2,n, v2,n) → µ̂2

...
...

...
...

...
...

(x̂∗,1, v∗,1) (x̂∗,2, v∗,2) ... (x̂∗,n, v∗,n) → µ̂∗
...

...
...

...
...

...

Figure 6.2: The approximated performance matrix X̂ , for a set of systems and a set of queries. Each pair
indicates the estimated performance and associated uncertainty.

6.3 Modeling Uncertainty in Query Selection

We assume that instead of containing the true performance values, each element, xsq , of X holds a

predicted performance estimate with a variance from the true value, to which we refer as uncertainty. We

shortly explain in Section 6.4 that how the predicted performance could be calculated in practice. Hence,

the noisy X̂ matrix can be represented as shown in Figure 6.2 where each of its elements represents a pair

of values: x̂sq and vsq = var(xsq). In addition, let M̂Φ ∈ Rl×1 be the vector of l average performance

scores computed based on the query subset, QΦ, and the performance matrix X̂ . Thus, in practice we

look for a subset that maximizes the Pearson correlation between M̂Φ and M . To compute the Pearson

correlation we need to compute the variances and covariance of M̂Φ and M .

The variance of M̂Φ is due to two sources (i) the variance across systems, and (ii) the variance

due to measurement noise. The first variance is expressed by var(MΦ) as calculated in Section 6.2.

To compute the second variance first note that each of the elements in M̂Φ has its own variance. If µ̂iΦ

denotes the performance of ith system in M̂Φ, then the associated variance is

var(µ̂iΦ) = m−2
∑
j∈Φ

vij

Following the law of total variance [Bil95], the variance of M̂Φ is given by

var(M̂Φ) = var(MΦ) + Es(var(µ̂
s
Φ)) = (6.3)

m−2dTΣd+m−2
∑
j∈Φ

E(vj) = m−2dT (Σ + U)d

where 1 ≤ s ≤ l and U = diag
(
E(v1), ..., E(vn)

)
is a diagonal matrix, referred to as the uncertainty

matrix, also E(vq) = l−1
∑l
i=1 var(xiq) is the average uncertainty for query q.

To compute the covariance between M̂Φ andM , let us consider an unknown system that is randomly

sampled, and let x and x̂ denote the associated performance row vectors in X and X̂ . The system’s

average performance computed based on X and the full set of queries is

µ = n−1xe
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Also the systems’ average performance based on the subset of m queries, QΦ, and X̂ is

µ̂Φ = m−1x̂d

where e ∈ {1}n×1 and d ∈ {0 or 1}n×1 are the column vectors as defined in Section 6.2. The covariance

between M̂Φ and M is then

cov(M̂Φ,M) ≡ cov(µ̂Φ, µ) = m−1n−1cov(x̂d, xe) =

m−1n−1dT cov(x̂T , x)e = m−1n−1dTΣe (6.4)

where x̂d = dT x̂T , and

cov(x̂T , x) = cov(xT + ε, x) =

E
{(
x− E(x)

)T (
x− E(x)

)}
≡ cov(X) = Σ

Note that, x̂T = xT + ε where ε ∈ R1×n is the vector of estimator’s noise.

Thus, the Pearson correlation between M̂Φ and M is given by

ρ̂Φ =
(dTΣe){(

eTΣe
)(
dT (Σ + U)d

)} 1
2

(6.5)

Formally, we seek a subset QΦ that maximizes ρ̂Φ. Reordering the correlation above we have

γΦ ≡ (eTΣe)
1
2 ρ̂Φ =

(eTΣd)(
dT (Σ + U)d

) 1
2

Selecting queries for the subset Φ that maximizes ρ̂Φ is equivalent to selecting a set of queries that

maximizes γΦ since (eTΣe)
1
2 is a constant. Let σij be the (i, j)th element of Σ and E(vj) be the jth

diagonal element of the uncertainty matrix U . Thus we can rewrite γΦ as

max
Φ

γΦ =

∑
1≤i≤n,j∈Φ(σij){∑

i,j∈Φ(σij) +
∑
j∈ΦE(vj)

} 1
2

(6.6)

Equation 6.6 provides valuable insight into the query selection problem. In order to maximize γΦ we

aim at a set of queries that minimizes the denominator and maximizes the numerator.

To minimize the denominator, we should choose the m queries that are least correlated with one

another. This is equivalent to maximizing the information we derive from each query in the subset. Con-

versely, if the columns of X̂ are perfectly correlated, then all the queries provide the same information

and we may as well have a subset of size one. Additionally, the sum of the expected variances, E(vj),

of the selected queries should be a minimum.

The numerator is maximized if the subset of query-systems has high correlation with the rest of the

queries. This is also intuitively clear. After all, if the subset of query-systems is completely uncorrelated
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with the remaining query-samples, then this subset can provide no prediction of how systems will per-

form on the remaining queries. Assuming that an evaluation on the full set of query-systems vectors is a

golden standard, the objective encodes a preference for subsets that have a strong correlation with the full

set of queries. In the next section, we describe how the theoretical uncertainty-aware model introduced

in this section can be applied in practice.

6.4 Adaptive Query Selection
So far, we introduced an uncertainty-aware query selection model that extended previous work by ex-

plicitly modeling uncertainty and allowing the elements of query-system matrix to be replaced with

predicted performance, rather than the actual performance values. Equation 6.6 shows how predicted

performance values can be incorporated in the optimization process, but does not indicate how they can

be computed in practice. In this section, we propose an adaptive method that iteratively selects queries

and refines the estimations in X̂ . This method exploits supervised prediction and uses the relevance

judgments of queries selected already, to train a model for selecting subsequent queries.

Our adaptive method iteratively selects a query, collects its associated relevance judgments, and

uses the relevance judgments of queries that are selected so far to predict the relevance judgments of

non-selected queries. It subsequently estimates the associated system-query performance scores and

produces the corresponding uncertainty, and updates the X̂ matrix by adding the systems’ performance

scores measured for the selected query, and those predicted for the non-selected queries. We repeat this

until we reach the maximum number of queries to be selected.

At each iteration, in order to predict the relevance of documents for queries that have not been

selected, we train a classifier using judged documents of previously selected queries as training data.

Each query-document pair is represented to the classifier as a vector of 7+l generic features where l

refers to the number of systems. These features are:

• The number of systems that retrieved the query-document pair (one feature).

• The average, minimum and maximum ranks given to the query-document pair by systems (three

features).

• For systems that retrieve the query-document pair, we calculate their corresponding past-

performance scores based on the subset of queries for which we have relevance judgments. For

example, if the metric is AP, we compute a system’s MAP based on its AP scores obtained for pre-

viously selected queries. We then determine the minimum, maximum and average across systems

(three features).

• The l relevance scores provided by l systems for the given query-document pair (l features). If a

system does not retrieve the document, the corresponding score is set to the minimum of the scores

of the other documents retrieved by that system.

We use a linear support vector machine (SVM) [CV95] as our classifier. For each query-document pair,

we then map the output of the classifier to a probability score using the calibration method proposed
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in [Pla00]. Briefly, let f ∈ [a, b] be the output of classifier. We use a sigmoid function to map f to a

posterior probability on [0,1]:

pi = P (ri = 1|fi) =
1

1 + exp(Afi + C)

where ri refers to the true relevance value of document i, pi is its probability of relevance, and A and

C are the parameters of sigmoid function that are fitted using maximum likelihood estimation from a

calibration set (ri, fi). The training data is the same as the training data used by the classifier. Thus, at

each iteration we retrain the classifier and fit the sigmoid function to exploit the increase in training data

from the new round of relevance judgments.

After each query-document pair is assigned a probability of relevance, we use these probabilities

in the family of estimators, referred to as MTC, proposed by Carterette et al. [CAS06] to provide new

estimates for the unknown values in the X̂ matrix. For example, when the metric of interest is P@k, the

expectation and variance are calculated as:

E[P@k] = 1
k

∑k
i=1 pi

var[P@k] = 1
k2

∑k
i=1 pi(1− pi)

where pi is the calibrated relevance probability of the document retrieved at rank i. The formulations of

other metrics, e.g. AP , can be found in [CAS06].

6.5 Evaluation Settings
Query selection methods are often evaluated according to the ranking they produce for systems, com-

pared with the ground-truth ranking that is computed based on all the queries and the full set of associ-

ated relevance judgments. As in most previous work in this area, such as [GMR09, Rob11], we also use

Kendall-τ and Pearson coefficient as our correlation metrics. Kendall-τ penalizes disordering of high-

performance and low-performance system pairs equally. However, in practice, distinguishing between

best performing systems is often more important. Therefore, we also report separate results specifically

on subsets of best performing systems in many of our experiments. We report separate results for average

precision (AP ) and precision at position 100 (P@100) as our system performance metric.

We run our experiments on (i) TREC 2004 Robust track comprising of 249 queries, 110 runs and

311,410 relevance judgments, and (ii) TREC-8 Ad-hoc track comprising of 50 queries, 129 runs and

86,830 relevance judgments. In our experiments, we consider runs as search systems, taking special

care when considering runs from the same site. We also create a web test collection based on the query

logs of a commercial search engine. This dataset comprises 1,000 queries, 50 runs of a learning to rank

system [Liu09] trained with different feature sets, and 30,000 relevance judgments.

We compare the performance of our query selection method against three baselines, namely: ran-

dom, oracle and IQP.

Random: randomly selects a subset of queries. We report the results averaged over 10,000 random
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trials and consider 95% confidence interval of the sample average.

Oracle: the associated results are provided with the full X matrix constructed from the full set

of queries and all the relevance judgments in the associated test collection. For a given subset size

m < 10 and m > (n − 10), we perform an exhaustive search to find the oracle subset. Exhaustive

search is computationally expensive for 10 < m < (n − 10). Therefore, we estimate the best subset of

size 10 < m < (n − 10) by randomly generating 10,000 query subsets from which the best subset is

selected.

Iterative Query Prioritization (IQP): to investigate the effect of incorporating uncertainty in query

selection we also consider a modified version of our query selection model in which uncertainty in

measurement is ignored. We call it iterative query prioritization (IQP). Similar to our adaptive query

selection IQP starts from zero relevance judgments and iteratively selects queries. However, IQP does

not consider the uncertainty in estimating the entries of the X matrix. Therefore, the elements of the

corresponding uncertainty matrix U is 0, and consequently omitted from the optimization in Equation

6.6. That is, IQP uses the same classifier, as in our adaptive method, but directly maps the output of the

classifier to 0 or 1, when the relevance judgments are binary, and regards them as the predicted absolute

relevance values. Therefore there is no calibration of relevance probabilities involved. As such, it does

not use the MTC estimators discussed in Section 6.4 and, instead, uses standard metrics, e.g. AP , to

measure systems’ performance.

6.6 Experimental Results
In the experiments with TREC test collections, we considered all the official retrieval runs. Each system

contributed 100 documents to the pool for each query. After selecting a query, the official TREC judg-

ments were collected and revealed. The Adaptive and IQP methods, then added these recently judged

documents to their training sets.

On each test collection, we report the results for three different groupings of systems: (i) all sys-

tems, (ii) top 30 best performing systems, and (iii) only pairs of systems with a statistically significant

performance difference, measured by the paired t-test at significance level 0.05.

Figure 6.3 shows the results on the Robust 2004 test collection with 249 queries. The systems

evaluation metric was AP . Pearson linear correlation was used to measure the correlation of a query

subset vector M̂Φ, and corresponding vector M , calculated using the full set of 249 queries. At the

initialization step of the Adaptive and IQP methods, the first query was randomly selected. To deal

with the variation of random sampling, we considered 50 trials. In each trial, we randomly selected

the first query and then ran the Adaptive and IQP methods to select subsequent queries. This process

was repeated 50 times, each time a new query was selected as the first choice. The average of 50 trials

was then reported as the average results for Adaptive and IQP . We also considered the 95% confidence

interval of the average performance to detect significant differences between the query selection methods.

For instance, when the subset covered 28% of the full query set, the average of the 50 Pearson correlation

scores obtained by the Adaptive method in 50 trails was 0.94 and the associated standard deviation was

0.07. Thus the 95% confidence interval was:
[
0.94± 1.96× 0.07√

50

]
. The confidence intervals are shown
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Figure 6.3: The Pearson linear correlation between M and MΦ. The query subsets are selected using (i)
Oracle, (ii) random, (iii) IQP, (iv) Adaptive query selection algorithm, for the Robust 2004 test collec-
tions with 249 queries. The first query is randomly selected. The results are averaged over 50 trials with
AP metric.

as error bars in Figure 6.3. In general, the difference between two methods is statistically significant at a

particular subset size, if the associated error bars do not overlap.

We also repeated the experiments with Kendall-τ rank correlation. Figure 6.4 shows the associated

results. As seen, in Figure 6.3 and 6.4, for both Pearson correlation and Kendall-τ , the Adaptive method

significantly outperformed the Random and IQP baselines across different subset sizes. As in Figure 6.4

the Adaptive method achieved a Kendall-τ correlation of 0.9 with a subset that covers 50% of the queries

(125 out of 249 queries). However, the Random and IQP methods required at least 70% of queries to

achieve the same Kendall-τ . Surprisingly, IQP performs no better than Random, and for initial subsets it

even performs worse than Random. This is because IQP relies on the predicted performance scores and

ignores uncertainty in estimations that may lead to the selection of inefficient queries.

Table 6.1 summarizes the Kendall-τ and Pearson correlation of the four different query selection

methods obtained for selecting {20, 40, 60}% of queries in Robust 2004 and TREC-8 test collections.

The columns labeled ‘all’ indicates the results of considering all the systems in a test collection

when measuring Pearson and Kendall-τ correlations. For both test collections and all subset sizes, {20,

40, 60}%, the Adaptive method significantly outperformed IQP and Random baselines in most cases.

The significance differences, marked by †, were calculated the same way as in Figure 6.3. For instance,

in the Robust test collection the adaptive method obtained {15, 10, 5}% improvements, on average,

in Kendall-τ correlations over Random and IQP for subsets of {20, 40, 60}% respectively. Similar

improvements were observed for the TREC-8 test collection.

The columns labeled ‘top’ indicates the results for considering only the top 30 best performing

systems, i.e. those that obtained the highest MAP scores in the original test collection. We do this

experiment to follow a common trend in IR experiments in which the precise estimate of top performing

systems is only of interest. When calculating Pearson and Kendall-τ correlations, the vectors M̂Φ andM

were constructed only based on the top 30 systems. Here, the remaining systems only contributed to the



72 6.6. Experimental Results

 0% 10% 20% 30% 40% 50% 60% 70% 80%
0.4

0.5

0.6

0.7

0.8

0.9

1

subset size

K
en

da
ll−

τ 
co

rr
el

at
io

n

 

 

IQP
Adaptive
Random
Oracle

Figure 6.4: The Kendall-τ linear correlation between M and MΦ. The query subsets are selected using
(i) Oracle, (ii) random, (iii) IQP, (iv) Adaptive query selection algorithm, for the Robust 2004 test col-
lections with 249 queries. The first query is randomly selected. The results are averaged over 50 trials
with AP metric.

Table 6.1: Comparisons of four query selection methods based on the AP metric and two TREC test
collections. The statistically significant improvements of Adaptive over IQP and Random are marked by
†.

Subset Method
Robust2004 TREC-8

Kendall-τ Pearson Kendall-τ Pearson
all top sig all top all top sig all top

20%

Random 0.68 0.45 0.75 0.83 0.68 0.72 0.45 0.88 0.92 0.77
IQP 0.67 0.47 0.78 0.86 0.70 0.74 0.53 0.92 0.93 0.81

Adaptive 0.77† 0.63† 0.85† 0.92† 0.79† 0.83† 0.69† 0.95† 0.95† 0.92†

Oracle 0.90 0.81 0.90 0.97 0.95 0.88 0.80 0.97 0.97 0.95

40%

Random 0.80 0.58 0.82 0.93 0.76 0.77 0.58 0.95 0.95 0.86
IQP 0.80 0.56 0.85 0.94 0.78 0.81 0.66 0.96 0.95 0.89

Adaptive 0.87† 0.69† 0.89† 0.98† 0.89† 0.90† 0.81† 0.99† 0.97† 0.95†

Oracle 0.92 0.86 0.95 0.99 0.96 0.93 0.85 1.0 0.98 0.97

60%

Random 0.85 0.71 0.88 0.97 0.90 0.87 0.70 0.97 0.97 0.90
IQP 0.88 0.73 0.90 0.96 0.91 0.88 0.80 0.99 0.98 0.92

Adaptive 0.91† 0.83† 0.95† 0.99† 0.96† 0.93† 0.85† 1.0 0.98 0.96†

Oracle 0.94 0.92 0.97 0.99 0.99 0.95 0.91 1.0 0.99 0.99
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Table 6.2: Comparisons of four query selection methods based on the P@100 metric and two TREC test
collections. The statistically significant improvements of Adaptive over IQP and Random are marked by
†.

Subset Method
Robust2004 TREC-8

Kendall-τ Pearson Kendall-τ Pearson
all top sig all top all top sig all top

20%

Random 0.64 0.43 0.69 0.78 0.67 0.67 0.43 0.86 0.88 0.74
IQP 0.65 0.45 0.74 0.84 0.69 0.76 0.50 0.90 0.91 0.80

Adaptive 0.73† 0.60† 0.79† 0.89† 0.75† 0.80† 0.68† 0.93† 0.95† 0.91†

Oracle 0.88 0.80 0.91 0.98 0.94 0.86 0.82 0.99 0.99 0.94

40%

Random 0.78 0.55 0.81 0.90 0.77 0.74 0.56 0.92 0.95 0.82
IQP 0.81 0.53 0.82 0.90 0.77 0.80 0.61 0.95 0.93 0.91

Adaptive 0.86† 0.70† 0.87† 0.96† 0.89† 0.91† 0.80† 0.98† 0.98† 0.96†

Oracle 0.92 0.85 0.94 0.98 0.95 0.94 0.83 0.99 0.99 0.97

60%

Random 0.84 0.73 0.87 0.95 0.91 0.85 0.72 0.98 0.94 0.91
IQP 0.86 0.74 0.89 0.94 0.92 0.87 0.81 0.99 0.98 0.93

Adaptive 0.90† 0.81† 0.93† 0.97† 0.95† 0.94† 0,82 1.0 0.97 0.94
Oracle 0.93 0.92 0.96 0.97 0.99 0.96 0.92 1.0 1.0 0.98

query selection process and were not used for evaluation. Once again, the Adaptive method significantly

outperformed the IQP and Random methods in most of the cases. Interestingly, the improvements were

even larger than the improvements obtained when evaluating the full set of systems. For instance, for the

Robust test collection, when evaluating the full set of systems the improvement in Kendall-τ was 10%

on average. However, when considering only top performing systems the average improvement rose

to 25%. Similarly, the average improvement in Pearson correlation rose from 7% to 14% on average.

Similar results were observed for TREC-8 test collection.

The columns labeled ‘sig’ indicates the results when only considering pairs of systems whose per-

formances difference is statistically significant. When a difference in average performance scores of two

systems is not statistically significant, it is reasonable that they may be ordered differently when evalu-

ated over a subset of queries. Such tied systems increase the probability of a swap in ordering systems

and may considerably decrease Kendall-τ . This is because the common formulation of Kendall-τ , which

is also used in our experiments, is not able to distinguish between pairs of systems with and without sig-

nificant differences. This is the case for the Robust and TREC-8 test collection where about 30% of

pairs of systems are tied, measured by paired t-test at significance level 0.05. Thus, we also measured

the Kendall-τ value obtained by the four query selection methods when only evaluating pairs of systems

with a significant difference inMAP . Again, the Adaptive method significantly outperformed IQP and

Random in most cases.

We repeated the experiments for P@100 metric, and observed similar results for both the test col-

lections. The associated result is summarized in Table 6.2.

6.6.1 Results of the Web Data

We also investigated the performance of the Adaptive method on a test collection comprising web search

results from a commercial search engine with 1,000 queries and 50 systems (see Appendix C). Various

rankers (runs) of a learning to rank system that were trained with different feature sets were considered



74 6.6. Experimental Results

Table 6.3: Comparisons of the random and adaptive methods using a web test collection of a commercial
search engine.

Method desired Kendall-τ
0.7 0.8 0.9

#queries Random 167 368 739
Adaptive 71 207 486

#relevance judgments Random 5010 10235 28804
Adaptive 2086 5803 15854

as participating systems. To generate a ranker we randomly sampled g = {5, 10, 20, 30 or 40} features

from a given feature set and optimized the ranker on a common training set. For each query, the top

5 web pages returned by the rankers were pooled for relevance assessment. The performance of each

ranker was measured according to precision at position 5 (P@5).

Table 6.3 reports (i) the number of queries, and (ii) the number of relevance judgments required to

reach Kendall-τ values of {0.7, 0.8, and 0.9} by (1) Adaptive, and (2) Random query selection method.

We focused on the comparisons between the Adaptive and Random. That was because the results ob-

tained by the IQP method was no better than the results of random sampling. Also, since the random

sampling is the common method used in IR community to select a set of queries, the comparison be-

tween Adaptive and Random provided estimates of the cost reduction caused by the adaptive method in

practice.

The results of the Adaptive method are the average of 10 trials. In each trial, at the initialization step

of the Adaptive method we selected a sample of 20 queries instead of randomly selecting one query. This

ensured a sufficiently large training set for the classifier at the first step without losing much efficiency

in the query selection performance.

As seen in Table 6.3, the required subset sizes for τ={0.7, 0.8, 0.9} are statistically significantly

smaller than those required for random sampling. For instance, the random method obtains τ = 0.9

by a subset of size 739 whereas the Adaptive method only requires 486 queries to reach the same τ .

This is equivalent to judging 12950 fewer documents than those required by the random method, and the

associated cost is correspondingly reduced. Similar results are observed for τ={0.7 and 0.8}.

6.6.2 Effects of Initialization

In the previous experiments, we randomly selected the first query at the initialization step. We now

consider the sensitivity of the Adaptive method to the selection of the first query. The choice of the first

query could possibly affect both (i) the quality of the queries selected in the subsequent stages and (ii)

the training data for the classifier. Our analysis only focuses on (i) as the effects on (ii) highly depend on

the classification method which is out of the scope of our work.

In order to isolate the effects on the quality of the subsequent queries, we assumed that the true

matrix X was available, i.e., that the estimator had access to all relevance judgments for computing

the true performance values in X . Using the TREC-8 data set, we randomly selected the first query.

Subsequent queries were iteratively selected based on the query selection model in Equation 6.6 but

using the true matrix X where the corresponding uncertainty matrix U was zero. Results are shown in
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Figure 6.5: Sensitivity of the query selection to the first query using TREC-8 comprising 50 queries. The
subset size varies between 1 and 45.

Figure 6.5 for 50 trials. Each trails contained a distinct query for the initialization. As seen, the subsets

from all the trials converged to the oracle’s result more quickly than the average of Random sampling.

The kendall-τ variation across trials decreased as more queries were selected. For the subset sizes greater

than 10 queries, performance was very similar across all the trials. This suggests that the query selection

model is robust to the selection of the first query. Thus, no matter what query is selected at the first step,

the subset chosen by the method quickly converges to the optimal subset if the estimator is noise free.

6.7 Generalization
We consider the generalizability problem of our query selection method. In section 6.7.1 we discuss

the generalizability of a query subset in terms of reliably evaluating a set of new systems that do not

contribute to the query selection process. As such a query subset is known generalizable if it leads to

reliable evaluation results of different sets of systems. In Section 6.7.2 we discuss the generalizability of

a query subset across multiple metrics. This is indeed important when query subsets are used to evaluate

systems by various metrics.

6.7.1 Evaluation of New Systems

Previous work [Rob11, HCMF+11] showed that queries selected by a particular set of systems may not

be able to provide reliable conclusions when used to evaluate a set of new previously unseen systems.

We also observed this with our Adaptive algorithm.

To avoid over-fitting the query subset to the systems used to select the queries we modify the

Adaptive algorithm. The modified version is referred to as ‘Adaptive+’. When selecting a query we

consider c(c > 1) random subsets of the l systems of size h(h < l). We allow overlaps between the

subsets and ensure that each system appears in at least one of the subsets. For each subset of systems

we choose a query that, in combination with already selected queries in Φ, maximizes γΦ. Finally, we

pick the query that is selected by most of the subsets of systems, and consider it for the next round of

relevance judgments.
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Figure 6.6: The generalizability test for query subsets selected by (i) Adaptive: our query selection
method ‘without’ a generalizability module, (ii) Adaptive+: our query selection method with a general-
izability module.

We tested the generalizability of a query subset using the two TREC test collections: TREC 2004

Robust and TREC-8 Ad-Hoc tracks. We first randomly selected 50% of systems in a TREC test col-

lection and treated them as new systems. The rest of systems were considered as participating. When

selecting new systems, we held out not only individual runs but the entire set of runs from the same par-

ticipant (site). Furthermore, during the computation of performance metrics for participating systems,

we removed documents that were uniquely retrieved by the new (held-out) systems. We then used par-

ticipating systems to select queries by a query selection method, and then assessed the generalizability

of the selected subset based on the evaluation of new systems.

The results of the generalizability test using the Robust test collection and Kendall-τ is shown in

Figure 6.6. We created c = 100 random subsets, each of size h = 0.2× l, where l refers to the number

of participating systems. Figure 6.6 clearly shows that the Adaptive algorithm performs no better and

sometimes worse than random. This is because of over-fitting to the participating systems. In contrast,

the Adaptive+ significantly outperforms the random sampling across the different subset sizes. The

significant differences are calculated as explained in Table 6.1.

The detailed results of generalizability experiments are shown in Table 6.4 for two test collections,

Robust and TREC-8, and two metrics,AP and P@100. In all cases the Kendall-τ obtained by Adaptive+

is significantly larger than the Kendall-τ of the Adaptive and Random algorithms.

6.7.2 Use of Alternative Performance Metrics

One of the goals of IR test collections is to enable the evaluation of systems in terms of various metrics.

As a result, the set of queries that are used for evaluation must be able to provide precise estimates of

systems’ performance for various metrics. In the following experiments, we show when the metric used

to select a subset of queries differ the metric used for evaluation, the query subset may not provide a

reliable summary of systems evaluation.

We modify the Adaptive algorithm to select a subset that is suitable for a set of metrics. The
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Table 6.4: Comparing the generalizability of a selected subset using two metrics: P@100 and AP .
Statistically significant differences are indicated by †.

Subset Method
kendall-τ

Robust 2004 TREC-8
P@100 AP P@100 AP

20%

Random 0.77 0.80 0.75 0.78
Adaptive 0.76 0.82 0.76 0.80

Adaptive+ 0.84† 0.87† 0.81† 0.85†

Oracle 0.91 0.95 0.86 0.89

40%

Random 0.82 0.87 0.84 0.85
Adaptive 0.80 0.85 0.84 0.86

Adaptive+ 0.89† 0.92† 0.90† 0.90†

Oracle 0.93 0.97 0.94 0.93

60%

Random 0.89 0.91 0.89 0.90
Adaptive 0.84 0.88 0.87 0.91

Adaptive+ 0.93† 0.96† 0.95† 0.95†

Oracle 0.96 0.98 0.97 0.97

modified version is referred to as ‘Adaptive*’. At each step of the query selection process, for each of

the metrics and each of the non-selected queries the Adaptive* computes the associated γΦ scores. It

then computes the average of a set of γΦ scores that a query obtains across the metrics. Finally it selects

the candidate query with the maximum average of γΦ scores. Thus, before selecting a query we consider

the γΦ scores it obtains across the metrics, and select a query with the maximum average of γΦ scores.

We consider four IR metrics: P@10, P@100, Recall and AP . We use each of the metrics and

select query subsets of various sizes and measure the associated Kendall-τ scores (T1). Also let T2

be the set of Kendall-τ scores for various subset sizes calculated when the metric used for measuring

systems performance (evaluation metric) is different from the metric used for query selection (selection

metric). Ideally we would like the Kendall-τ scores in T2 not to be considerably smaller than those in

T1. To measure the distances between T1 and T2 scores we measure
(
mean(T2) −mean(T1)

)
as the

average loss Kendall-τ .

Table 6.5 represents the results of our experiment using the Robust 2004 test collection. Each of

the four metrics were used both as selection metric, to form X̂ matrix and select a query subset, and

evaluation metric, to measure a system’s performance. For instance, the average Kendall-τ loss scores

of the four evaluation metrics are shown in the first row when P@10 is used as the selection metric to

choose the query subsets. Clearly, when the selection metric and the evaluation metric are the same, the

average loss is 0.

As seen in Table 6.5, when the Recall is the selection metric, the average loss of P@10 and P@100

are minimum. The average loss of AP , as an evaluation metric, is minimum when P@10 is the selection

metric. Also, when P@100 is the selection metric, the average loss of Recall is minimum. However,

there is not a unique selection metric that results a minimum loss for other metrics.

We also selected queries by using the Adaptive* method. As seen when using the Adaptive*

method, the average loss for all the metrics was considerably reduced. The last row of Table 6.5 also

represents the results of random sampling averaged over 1000 trials. To investigate whether the subsets

selected by a metric significantly outperform the random subsets the statistical significant differences in
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Table 6.5: The average Kendall-τ loss
(
mean(T2) - mean(T1)

)
for four various metrics using TREC

2004 Robust track. Given a metric α, T1 denote the set of Kendall-τ scores across various subset sizes
obtained when the metric α is used for both query selection and system evaluation; T2 denote the set
of Kendall-τ scores obtained when the metric α is used to measure systems performance on a subset of
queries that is selected by another metric.

Selection Metric Evaluation Metric
P@10 P@100 Recall AP

P@10 0.0 -0.082 -0.065 -0.051
P@100 -0.084 0.0 -0.042 -0.068
Recall -0.076 -0.063 0.0 -0.073

AP -0.089 -0.070 -0.062 0.0

Adaptive* -0.011† -0.012† -0.018† -0.014†

Random -0.114 -0.086 -0.056 -0.078

average Kendall-τ loss were measured using the paired t-test at significant level 0.05. Table 6.5 shows

that subsets selected by the Adaptive* lead to average Kendall-τ losses that are significantly smaller than

the average loss obtained by the random subset.

6.8 Summary
We assumed there is a set of compiled queries by which we intend to evaluate systems. However, budget

constraints only permitted collecting relevance judgments for a subset of queries. Thus, our goal was

to select a representative subset of queries that provided a close approximation of systems’ performance

computed when using the full set of queries. We provided a mathematical model for selecting queries.

Our model explicitly formulated the uncertainty in performance scores that were introduced by the ab-

sence of relevance judgments. The mathematical formulation showed that the optimal subset of queries

should be least correlated with each other but have the maximum correlation with the rest of queries.

Also, the total uncertainty associated with selected queries should be minimum.

We proposed an Adaptive algorithm in which queries were iteratively selected and relevance judg-

ments were obtained for each query immediately after it was added to the subset. These relevance judg-

ments were then used by a classifier to aid the selection of subsequent queries. Of course, in practice,

the result of the Adaptive method is sensitive to the accuracy of classifier. We used the SVM classi-

fier, that is reported as one of the strong text classifiers [CV95], in our experiment. We demonstrated

the effectiveness of our Adaptive algorithm using two TREC test collections and a web test collection

of a commercial search engine. For all the three test collections, the Adaptive algorithm significantly

outperformed the existing baselines.

Query subset selection methods have been criticized for not usually generalizing to previously un-

seen systems. Our Adaptive algorithm also exhibited this problem. However, we refined the algorithm

and showed that the extended algorithm does indeed generalize to new systems. We also modified the

Adaptive algorithm to select queries across multiple evaluation metrics. Our experiments on TREC data

demonstrated the ability of the algorithm to find a global subset that leads to reliable evaluation for

various metrics.



Chapter 7

Unified Budget Allocation

We consider the problem of optimally allocating a fixed budget to construct relevance judgments for an

information retrieval test collection, such that it can (i) accurately evaluate the relative performance of the

participating systems, and (ii) generalize to new, previously unseen systems. We address this problem by

integrating the query selection and the document selection approaches to form a unified budget allocation

approach.

The budget allocation is formulated as a convex optimization problem, thereby providing a flexible

framework to incorporate various constraints. We introduce a generalizability constraint and show how

it can increase the effectiveness of the test collection for comparative evaluation of new systems.

We devise an iterative algorithm to implement the budget allocation model in practice. Our iterative

algorithm apportions the budget between several steps. At each step, all the query-document pairs are

evaluated and a portion of budget is optimally allocated across a set of query-document pairs with the

highest priority scores. The associated relevance assessments are then acquired and used to aid the

allocation of budget in the next step.

We evaluate our unified budget allocation approach on two TREC test collections namely TREC-8

Ad-hoc track and TREC 2004 Robust track. We demonstrate that our allocation method is cost efficient

and yields a significant improvement in the generalization of the test collections.

7.1 Introduction
An IR test collection is typically constructed in conjunction with a set of participating IR systems. Each

participating system retrieves a set of documents in response to each test query and these sets are pooled

together. Relevance judgments are then obtained only for documents in the pool and specific metrics

are used to compare systems performance. While the number of relevance judgments needed is greatly

reduced, economic constraints may still prevent exhaustive judgments of all documents in the pool.

We consider how to prioritize query-document pairs for relevance judgments, when budget con-

straints preclude obtaining relevance judgments for all the pooled documents. We formulate the question

as an optimization problem in which, for a given budget, we seek to identify a set of query-document

pairs that most accurately evaluate the participating systems and provide the best generalization to yet

unseen systems. The latter refers to systems that have not contributed to the pool of evaluated documents.



80 7.2. The Budget Allocation Strategy

Our work is, in part, motivated by the recent developments in document selection approaches, e.g.

[CAS06, YA06, APY06], that enable accurate estimates of systems’ effectiveness at query level by only

judging a few number of documents. Furthermore, we showed in Chapter 4 that identifying a small

set of representative queries can lead to system evaluations that are equivalent in quality to those based

on much larger sets of queries. By connecting these aspects with the need to generalize the IR test

collections to new systems and explicitly manage the cost of relevance assessments, we provide a unified

budget allocation optimization for optimally collecting a set of relevance judgments.

The main contributions are (i) formulation of the budget allocation problem as a convex optimiza-

tion to provide a flexible framework to incorporate various constraints, (ii) the incorporation of a gener-

alization constraint based on the estimated number of unjudged relevant documents, and (iii) the imple-

mentation of the convex optimization through incremental acquisition of relevance judgments.

7.2 The Budget Allocation Strategy
Let S denote the population of all IR systems. Although the distribution of S is unknown, we assume that

all, past present and future, systems are drawn from this distribution. This is a simplifying assumption

but a good starting point for developing the mathematical model.

We are given a document corpus D and a set of n test queries {q1, q2, ..., qn}. We assume that there

is a set of l participating systems (Sl ⊂ S), each of which returns a number of retrieved documents

for each of the n queries. From the retrieved documents we create a common pool of documents to be

used for comparative evaluation of the systems. Let Ω denote the cost of building relevance judgments

over the pooled documents. For a given budget B, that is much smaller than Ω (B � Ω), we seek

to collect relevance judgments for a subset of query-document pairs in order to accurately evaluate the

performance of the participating systems and reliably estimate the performance of yet unseen systems.

We divide B in p portions, {B1, ..., Bp}(p ≥ 2), and propose an iterative process to allocate the limited

budget.

7.2.1 Initialization

In the first iteration, we allocate the first portion of budget, B1, to assess the relevance of some of

the documents in the common pool. Given that there is no prior information about the relevance of

documents, the simplest allocation strategy is to divide the budget equally among the n queries and, for

each query, select a fixed number of documents to be judged. In the common pooling technique, the

documents are ranked based on the query relevance. Thus one can choose a uniform pool depth across

queries to select documents to fit the available budget B1.

7.2.2 Selective Expansion

In iterations between 2 and p, we utilize the associated budget Bk, (2 ≤ k ≤ p), to extend the set of

relevance judgments from the previous step. Query-document pairs are prioritized and a subset of them

are selected to be judged. The prioritization process is based on a convex optimization of a cost function

that seeks to (i) achieve maximum agreement with the evaluation of Sl systems using the full set of

pooled documents and ideal budget Ω, and (ii) generalize to new, unseen systems.
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q1 Queries (Q) M
s1 x1,1 x1,2 ... x1,n → µ1

Systems (S)

x2,1 x2,2 ... x2,n → µ2

...
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...
...

x∗,1 x∗,2 ... x∗,n → µ∗
...

...
...

...
...

...

Figure 7.1: The true performance matrix X for a set of system systems and a set of queries. Each entry
indicates the system performance score based on the available relevance judgments.

7.3 A Framework for Budget Allocation
When relevance judgments are available for the full set of pooled documents, we observe the retrieval

performance of each of the l participating systems over a finite set of n queries. The performance

measurements are represented in the form of a performance matrix X as shown in Figure 7.1. Each row

corresponds to a system and each column to a query . An entry xs,q in X denotes the performance score,

e.g. AP , of the sth system on the qth query. The systems’ average performance, e.g. MAP , can also be

represented by a column vector M ∈ Rl×1.

In practice, X matrix and the associated M vector are unobservable because of the absence of rele-

vance judgments for all or some of the pooled documents. Instead, X is approximated by a performance

matrix X̂ ∈ Rl×n, each element contains a predicted performance estimate, x̂s,q , with a variance from

the true value, vs,q = var(xs,q), referred to as uncertainty (Figure 7.2).1

In addition, the average performance of a system can be approximated by the average of the corre-

sponding row vector in X̂ . In a more general case, the average performance of a system can be expressed

as a linear combination of the approximated effectiveness scores, xs,q , associating a priority score with

each query. We define β ∈ [0, 1]n×1 be a the column vector with real values in [0,1]. Also let M̂ ∈ Rl×1

denote a column vector of systems’ average performance which are approximated based on X̂ and β:

M̂ = X̂β

At each iteration, a portion of budget, Bk(1 ≤ k ≤ p), is used to expand the set of relevance

judgments. Subsequently, the elements of X̂ are updated and used to estimate the elements of β vector

as priority scores of queries in order to construct relevance judgments in the next iteration.

The goal is to set the priority scores of representative queries to be higher than the other queries. To

do so, the value of β coefficients are chosen such that the M̂ vector closely approximates M vector. We

use Pearson linear correlation, as in Chapter 6, to measure the closeness between M̂ and M .

The Pearson linear correlation between M̂ and M is given by

ρβ =
cov(M, M̂)

{var(M)var(M̂)} 1
2

(7.1)

1When there is no relevance judgments, we can use a query performance predictor, e.g. [SNC01], to approximate X̂ matrix.
In addition, when an initial set of relevance judgments is already collected, we can use the metrics designed for partial relevance
judgments, e.g. [CAS06, YA06, AP08], to measure xs,q scores and associated variances. This can the be used to assign further
relevance judgments given a set of initial judgments.
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q1 Queries (Q) M̂
s1 (x̂1,1, v1,1) (x̂1,2, v1,2) ... (x̂1,n, v1,n) → µ̂1

Systems (S)

(x̂2,1, v2,1) (x̂2,2, v2,2) ... (x̂2,n, v2,n) → µ̂2

...
...

...
...
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(x̂∗,1, v∗,1) (x̂∗,2, v∗,2) ... (x̂∗,n, v∗,n) → µ̂∗
...
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Figure 7.2: The approximated performance matrix X̂ , for a set of systems and a set of queries. Each pair
indicates the estimated performance and associated uncertainty.

such that

var(M) = n−2eTΣe

var(M̂) = βT (Σ + U)β

cov(M,MΦ) = n−1βTΣe

where e = {1}n×1 is the vector of n components, each equal to 1, and Σ = cov(X) is a n×n covariance

matrix. The (i, j)th element of Σ is the covariance between the ith and jth columns of matrix X . In

addition, U = diag
(
E(v1), ..., E(vn)

)
is a diagonal matrix, referred to as the uncertainty matrix, also

E(vq) = l−1
∑l
i=1 vi,q is the average uncertainty for query q.

Substituting for the variances and covariance, we have

ρβ =
βTΣe

{(eTΣe)(βT (Σ + U)β)} 1
2

(7.2)

In addition, reordering Equation 7.2 gives

γβ ≡ (eTΣe)
1
2 ρβ =

eTΣβ

{βT (Σ + U)β} 1
2

(7.3)

Maximizing ρβ is equivalent to maximizing γβ since (eTΣe)1/2 is a constant. The maximum value of

Equation 7.3 can be approximated by the minimization problem that is expressed in a quadratic pro-

gramming form 2 [MoWMMRCC67]:

min
β

1

2
βT (Σ + U)β − eTΣβ (7.4)

where the elements of Σ are approximated based on the available relevance judgments. In addition, the

impact of uncertainty in approximating the covariance matrix Σ is captured by U matrix.

In the following section, we add the generalization constraint to the optimization in Equation 7.4

that enhances effective evaluation of new, previously unseen systems. We note that other constraints

could easily be incorporated into this framework.

2The optimization form in Equation 7.3 is in convex-fractional form and is optimized by transferring it to quadratic program-
ming form
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7.3.1 Generalization Constraint

If all the relevant documents for each query in the test collection are identified, then the test collection

generalizes to any system. Unfortunately, we can guarantee to identify all relevant documents only if we

judge all the documents in the collection, which is prohibitively costly. Pooling documents significantly

reduces the number of documents we need to judge, as discussed earlier. However, pooling does not

guarantee that all the relevant documents have been identified. Clearly, the fewer unidentified relevant

documents in the test collection, the more generalizable the test collection is. Thus, we define an opti-

mization function that not only minimizes the difference between M̂ and M vectors, but also minimizes

the number of un-judged relevant documents.

We define r ∈ Rn×1 to hold the expected number of un-judged relevant documents for each of

the n queries. Thus, rj denotes the expected number of un-judged relevant documents for query qj .

At iteration k we allocate a part of the budget Bk to the jth query that is proportional to βj . Also, the

number of newly judged relevant documents will be proportional to βj×rj . The total number of relevant

documents judged in the kth stage is proportional to βT r, ignoring the constant of proportionality. The

linear function βT r is treated as a generalization constraint in our optimization. Clearly, we want to

maximize the total number of relevant documents in order to achieve maximum generalizability. Using

a Lagrange multiplier, λ ≥ 0, we combine the constraint and the optimization function, defined in

Equation 7.4, to obtain

min
β

[1
2
βT (Σ + U)β − eTΣβ − λβT r

]
(7.5)

The optimization in Equation 7.5 is convex and can be solved by using a sequential quadratic pro-

gramming algorithm [Mur88]. Section 7.4.4 discusses how to estimate the expected number of relevant

documents rj in practice.

7.4 Implementation Details
Before describing the experiments, we discuss a number of implementation issues. Note, however, that

the setting of λ is discussed in Section 7.5.

7.4.1 Prioritizing Query-Document Pairs

The set of β coefficients that minimize the Equation 7.4 are considered as query priority scores for the

next round of relevance judgments. In addition, a document selection method can be used to prioritize

a set of documents that are returned in response to a query. In the simplest case, the prioritization of

documents is determined by the pool depth and is adjusted according to the available budget. Thus, the

document priority score is 1 if a document is in the pool and 0 otherwise.

However, several document selection techniques, e.g. [CAS06, AP08, YA06] have been recently

proposed that enable more efficient prioritization of documents. For instance, Javed Aslam et al. [AP08]

define a sampling distribution over documents based on their rank in a result list. Documents with higher

rank are given higher probability to be selected. To prioritize documents, we use the same method as

it is reported to be among the best available document selection approaches. Hence, a subset of docu-
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ments are selected based on the sampling strategy and their priority scores are set to the corresponding

probabilities. Also, the priority scores of non-selected queries are set to 0.

Thus, we define query-document priority scores as wqd = wq × wd where wq refers to the qth

element in β vector and wd is the document priority score that is calculated by a document selection

algorithm. Once the query-document priority scores are calculated, we select a subset of them with the

highest priority scores that fit the available budget.

7.4.2 Estimating Covariance Matrix

At the kth stage of the iterative process, the relevance judgments collected so far are used with the

performance estimator proposed by Javed Aslam et al. [AP08] to approximate systems’ effectiveness

and form X̂ . The performance matrix X̂ is then used to compute the covariance matrix Σ. If the set of l

participating systems is known as a random sample of systems’ space, we use the formulation explained

in Section 4.5.1 to compute Σ. Alternatively, if there are some prior information about similarity between

the participating systems and unseen systems, the formulation explained in Section 4.5.2 is used to

compute Σ.

7.4.3 Estimating Uncertainty Matrix

The performance estimator proposed by Javed Aslam et al. [AP08] provides the variance of estimation

that is due to unjudged documents in a rank list. We use the same variance measure to compute vsq

scores and form the uncertainty matrix U .

7.4.4 Estimating Unseen Relevant Documents

It is difficult to determine whether or not all relevant documents for a query have been judged. However,

the prior work of Zobel [Zob98] suggests that some degree of estimation is possible, given an initial set

of relevance judgments. He fitted the set of the relevance scores of the initial judgments with a power law

distribution. Experimental results in [Zob98] demonstrated high prediction accuracy when estimating the

total number of unseen relevant documents retrieved for all queries in a test collection.However, when

predicting relevant documents for a single query, there was a large uncertainty in the estimates.

Alternatively, given a set of initially judged documents as a training set, we use a support vector

machine (SVM) classifier [CV95] to partition unjudged documents into relevant and non-relevant cate-

gories. We use SVM because it is reported among the best performing classifiers in information retrieval

experiments [BCYS07].

In order to train the classifier, we first extract features from each of the judged documents. The

features are a set of relevance scores provided by the l participating systems. If a document is not

retrieved by a participating systems, the associated relevance score is set to the minimum relevance

score provided by that system for a retrieved document.

7.5 Evaluation Settings
Evaluations are conducted by comparing the performance of a set of IR systems based on the full set

of queries and the full set of relevance judgments, with the systems’ performance based on a limited
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number of relevance judgments supplied by our budget allocation method.

We focus on incrementally building relevance judgments for the commonly pooled set of docu-

ments. The budgets for the initial and the refinement phases are allocated during the construction of the

test collection and only documents are considered for constructing relevance judgments that have been

retrieved by the participating systems.

In the evaluation of our approach, we consider both the accuracy of evaluating the performance

of participating systems with additional relevance judgments and generalization to unseen systems.

When evaluating the generalization of the budget allocation method, we define the criteria for identi-

fying markedly different systems. We use the mean average reuse (MAR) [CGJM10] to characterize

individual systems and select those with low MAR as new, yet unseen systems.

7.5.1 Baseline Methods

We consider three baseline methods for resource allocation in comparison with our resource optimization

method which is referred to as Query-Document Prioritization (QDP):

• Uniform Allocation (UN), in which the available budget is uniformly allocated across queries. For

example, if the budget can cover only 200 new judgments and there are 100 queries, we judge two

new documents per query.

• Random Allocation (RA), in which a random set of n queries is selected and the budget B2 is

uniformly allocated across the selected queries. In our experiments we use n that corresponds to

the number of queries selected by our optimization method. We repeat the random query sampling

for 1000 trials and report the average of the corresponding results.

• Subset Allocation (SA), in which a subset of queries is selected based on the budget-constrained

convex optimization introduced in Section 5.3. Similar to the QDP method, the subset allocation

method uses an iterative process to collect relevance judgments. However, at each iteration, it

selects a subset of queries based on the convex optimization in Equation 5.2, and then equally

allocates the available budget across the selected queries.

7.5.2 Data Sets and Parameter Settings

Our experimental investigations were performed using two test collections: (i) the TREC 2004 Robust

track consisting of 249 queries, 14 sites with a total of 110 automatic runs, and 311,410 relevance

judgments, and (ii) the TREC-8 Ad-Hoc test collection consisting of 50 queries, 39 sites with 13 manual

runs and 116 automatic runs, and 86,830 relevance judgments. Both test collections use TREC Disks 4

& 5, excluding the Congressional Record sub-collection.

For our purposes we consider each run as an individual IR system but take special care when con-

sidering IR systems from the same site. In particular, when experiments require that we exclude some of

the systems in order to treat them as new, yet unseen systems, we hold out not only individual runs but

the entire set of runs from the same site. Furthermore, during the computation of performance metrics,

we remove documents that are uniquely retrieved by the held-out systems when that is required.
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Automatic runs use automatic query formulation, while manual runs allow human to formulate

queries. The latter runs typically perform better. Since all the runs in Robust track are automatic runs,

we treat them as a homogeneous set of systems. Also, we treat the runs in TREC-8 as a heterogeneous

set of systems because of the existence of both automatic and manual runs.

7.5.3 Experimental Setup

In order to test the generalization and robustness of a budget allocation method to evaluate new systems,

we first divide the TREC runs into participating systems and new, still unseen systems that contribute

new search results. To collect relevance judgments, we randomly select a few sites and use their corre-

sponding runs as participating IR systems. Using the document selection technique proposed by Javed

Aslam et al. [AP08] we select and evaluate the set of documents pooled by these participating systems.3

The number of selected documents is adjusted to fit the budget allocated to the initialization step.

We split the held-out systems into two groups. For each held-out system, and each query, we

compute the average reuse (AR) [CGJM10]. This measures the overlap between the documents retrieved

by a held-out system and the judged documents. We then define the mean average reuse (MAR) for a

held-out system as the average of AR values over the full set of queries.

Based on the MAR values, we split the held-out systems into two groups. The first group consists

of systems with high MAR across runs. These systems can be evaluated using the existing relevance

judgments. The second group, referred to as the new set, consists of runs that have low MAR. These

systems require additional relevance judgments in order to be evaluated.

The budget B is divided in p ≥ 2 portions {B1, ..., Bp}. The portions of budget are spent to collect

relevance judgments through an iterative process. The full experiment comprises the following steps:

• Initialization Phase:

1. Pick s1 percent of sites at random, these are the held-in sites.

2. For each query, select a subset of documents retrieved by the held-in runs using the docu-

ment selection approach and collect the associated relevance judgments. Compute the per-

formance matrix X̂ . The number of selected documents is determined based on the budget

allocated to the initialization stage, B1. The budget is uniformly distributed across queries.

3. Compute the MAR for the held-out runs. Average the MAR scores across runs from the

same site and produce average reuse score for each site.

4. Pick s2 percent of sites with low MAR scores and treat their runs as new systems. The

remaining runs are evaluated with the existing relevance judgments and their performance

values are added to the matrix X̂ . Note, however, that the remaining runs do not contribute

to the document pool.

• Expansion Phase: for k between 2 and p repeat the following steps.

3 We used simple random sampling without replacement (SRSWO) as the sampling method to select a subset of documents.
Also, the Horvitz-Thompson-type estimators [DGH52] was used to provide approximately unbiased estimates of xsq performance
scores.
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– given the budget Bk, acquire additional relevance judgments for a subset of documents

pooled by participating systems in one of the four ways:

1. Uniform (UN): for each of the n queries, acquire relevance judgments for an additional

k1 documents, where k1 is adjusted based on Bk.

2. Subset Allocation (SA): select a subset of m queries by using the budget-constrained

query selection optimization in Equation 5.2 and the available budget Bk, and acquire

relevance judgments for additional k2 documents per query, where m× k2 = n× k1.

3. Random Allocation (RA): for a random sample of m queries acquire relevance judg-

ments for additional k2 documents per query, where m× k2 = n× k1.

4. Query-Document Optimization (QDP): prioritize query-document pairs based on the

method explained in Section 7.3. Order the query-document pairs and acquire relevance

judgments for a subset of them that fit the budget Bk.

7.5.4 Lagrange Multiplier

The QDP formulation of the budget optimization in Equation 7.5 requires the computation of the La-

grange multiplier λ ≥ 0. We determine λ empirically by systematic exploration of the range of values

for 0 ≤ λ ≤ 10. This is iteratively performed when expanding relevance judgments in stages between 2

and p.

During stage k ≥ 2, we have allocated budgets B(1:k) =
∑k
i=1Bi and acquired relevance judg-

ments across queries. We then simulate the steps of the experiment listed in the previous section, where

we split the budget B(1:k) into two parts B(1)
(1:k) and B(2)

(1:k) in the same proportion as true budget alloca-

tionB(1:k) andBk+1.4 During this simulation the estimated number of un-judged relevant documents,rj ,

for a query qj is set to the number of relevant documents identified during the stages between 1 and k,

using the budget B(1:k) for query qj . This ensures that at the expansion phase of the simulation to de-

termine λ, no selected query requires more assessments than we have acquired so far. Thus, we have all

the relevance judgments needed to evaluate the performance of the simulation.

For a particular value of λwithin the range 0 ≤ λ ≤ 1 we apply a 10-fold cross-validation technique

[Koh95b]. In each of the 10 iterations, 10% of participating systems are held out (these become our

simulated new systems). Relevant documents that are in the initial document pool but solely retrieved by

the held-out systems are removed from the pool. The QDP method, using the reduced set of judgements,

produces a set of query-document pairs. In our experiments, we separately optimize the value of λ for

evaluating (i) participating systems and (ii) new systems. Thus, when evaluating participating systems,

we assess λ by computing the Kendall-τ of the held-in systems’ ranking with the corresponding ranking

induced by using all the relevance judgments acquired using budget B(1:k). Also, when evaluating new

systems, the Kendall-τ of ranking held-out systems is computed. For each experiment, we record the

average Kendall-τ for the 10 trials. Finally, we choose the λ value with the highest average Kendall-τ .

4The budget B(1:k) is split between B(1)
(1:k)

and B(2)
(1:k)

such that
B(1:k)

Bk+1
=

B
(1)
(1:k)

B
(2)
(1:k)
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Table 7.1: Result for Robust TREC 2004 runs evaluated by MAP. The first two columns report ex-
perimental parameters. The next columns report the Kendall-τ of (i) participating systems, and (ii)
previously unseen systems for each resource allocation.

# (s1, s2)% (B1, B(2:3)) × 103

Kendall-τ
participating systems new systems

UN RA SA QDP UN RA SA QDP
1

(10,50)
(2,8)

0.63
0.58 0.65 0.68

0.54
0.51 0.59 0.58

2 (5,5) 0.61 0.70 0.78 0.52 0.66 0.71
3 (8,2) 0.63 0.67 0.79 0.52 0.63 0.74
4

(10,40)
(4,16)

0.72
0.66 0.76 0.90

0.68
0.62 0.70 0.76

5 (10,10) 0.68 0.79 0.89 0.65 0.77 0.81
6 (16,4) 0.74 0.81 0.91 0.67 0.74 0.83
7

(20,40)
(4,16)

0.79
0.69 0.83 0.91

0.80
0.66 0.74 0.84

8 (10,10) 0.75 0.82 0.89 0.67 0.80 0.90
9 (16,4) 0.77 0.83 0.91 0.70 0.81 0.91

7.6 Experimental Results
Our experimental results are divided into two parts, following the separate treatment of the homogenous

and heterogeneous sets of IR systems. Thus, in Section 7.6.1 the homogeneous collection of Robust

TREC is considered and the unbiased estimator explained in Section 4.5.1 are used to approximate Σ.

For the Robust TREC test collection we report experiments using a total budget that covers either 10,000

or 20,000 relevance judgments.

In Section 7.6.2 we present experiments with the heterogeneous collection of TREC-8 and use

manual runs as new systems. For the TREC-8 test collection we report results using a total budget that

covers either 2,000 or 4,000 relevance judgments. This is less than 5% of the budget that covers 86,830

relevance judgments for the collection. In the implementation of QDP we use the unbiased estimator to

approximate Σ for a weighted sample of systems introduced in Section 4.5.2.

7.6.1 Homogeneous Systems

We applied the steps explained in Section 7.5.3 across 10 trials and, in each trial we randomly chose

s1% of sites and associated runs as participating systems. We set s1 = 10% or 20% that was equivalent

to select between 15 to 30 runs as participating systems which was sufficiently large for the propose of

our experiment. The remaining runs were evaluated for MAR and the s2% of sites with the lowest MAR

scores were chosen to be new systems. Depending on the average MAR scores, s2 varies between 50%

and 40% of the total number of sites. We reported averages over the 10 trials.

We repeated the experiment for 3 different values of s1 and s2, and 3 different budget allocations.

The available budget was first divided in two portions. The first portion was used as B1 at the initializa-

tion step. The second portion, denoted as B(2:3), was equally divided in two parts. Each part was used

in an iteration of the expansion phase.5 Table 7.1 summarizes the results.

We report the Kendall-τ statistic between the ranking of the systems induced by a resource alloca-

tion method, and the ranking scores of the systems over the full set of queries and the full set of relevance

5We also repeated the experiments with dividing the second part of the budget into smaller portions to increase the number of
iterations of the expansion phase. However, no improvement was obtained over the case with only two iterations. It is also worth
to try some complex allocation, e.g. using an exponential distribution across the iteration. This will remain as future work.
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judgments in the original test collection. We report separate Kendall-τ statistics for participating systems

and for new systems, which is common in the literature and permits us to separately discuss the accuracy

and generalization of the methods.

We observe that for all 9 experimental configurations, the Kendall-τ scores of the QDP method

outperform the other three budget allocation methods. The uniform allocation strategy is comparable

and often better than the random allocation strategy for both participating and new systems. The subset

allocation (SA) method outperforms the uniform allocation when s1 = 10% (rows 1 through 6). How-

ever, for s1 = 20% the SA method performs no better than a uniform allocation for new systems, but

remains better for participating systems. In contrast, the QDP method is superior in all cases except for

configuration 1 in which the initial budget B1 is only 2000 relevance judgments. We believe this is due

to the small value of B1 which only covers 0.6% of the total assessor judgments.

It is important to note that the QDP method has significantly better Kendall-τ scores than the ran-

dom allocation method, for both participating and new systems, indication that the optimization achieved

both accuracy and generalizability.

Increasing the number of participating systems s1 with the same budgets B1 and B(2:3) leads to a

larger improvement in Kendall-τ of new systems’ ranking than increasing the budgets and keeping the

number of participating systems s1 constant. This can be seen by comparing experimental configurations

5 & 8 or 6 & 9. As a result, a higher diversity of participating systems results in a better ranking of new

systems.

When prioritizing queries by the QDP method, we separately optimized λ for evaluating participat-

ing systems and new systems as discussed in Section 7.5.4. Figure 7.3 shows the optimal value of λ,

computed after the initialization step and before spending B2, across the various configurations of B1.

In all the configurations, the optimal λ for ranking participating systems was smaller than the optimal λ

obtained for ranking new systems. This is intuitively clear, as larger values of λ let the generalization

constraint contributes more in the optimization process and causes a better ranking of new systems.

Before running the experiments, we anticipated that the optimal λ for participating systems is 0,

meaning no contribution of the generalization constraint to the optimization process. Thus, the opti-

mization is concentrated on the first part that maximizes the accuracy of ranking participating systems.

However, the optimal λ for participating systems was bigger than zero for various B1. However, as B1

increased the optimal λ decreased toward 0. This suggests that when the initial budget is very small, the

generalization constraint effectively improves not only the ranking of new systems but also the ranking

of participating systems.

In the experiments conducted in this section, the set of participating and new systems were randomly

chosen. We therefore used unbiased estimator of matrix Σ, as explained in Section 4.5.1. In the next

section, we consider the scenario in which participating and new systems are not randomly chosen.

Rather, we consider a set of highly performing systems as new systems and use the appropriate unbiased

estimators discussed in Section 4.5.2.
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Figure 7.3: The optimum value of lagrangian multiplier, λ, obtained for various B1. The optimum λ is
adjusted as discussed in Section 7.5.4.

7.6.2 Heterogeneous Systems

The TREC-8 test collection consists of 129 runs of which 13 runs are manually tuned and outperform the

automatic runs. The 11 best performing runs are all manual and their performance measured by MAP is

statistically significantly better than the remaining runs. We consider the 13 manual runs as new (unseen)

systems and the rest as participating systems. We consider two variants of the QDP method. The first

variant is as same as the QDP method used in previous section for which the unbiased estimator of a

random sample of systems, as introduced in Section 4.5.1, is used to compute the covariance matrix Σ.

The second method, denoted as QDP*, uses the unbiased estimator of a weighted sample of systems, as

explained in Section 4.5.2, to compute Σ. Thus, in contrast to QDP, the participating systems contribute

non-uniformly in prioritizing queries in QDP*. The intuition is that, since the new systems are likely

to perform better than participating systems, we may achieve better generalization, if we preferentially

weigh highly performing participating systems.

At the initialization stage of QDP* method, all the automatic systems equally contribute to select

a subset of documents for constructing associated relevance judgments. Next, k participating systems

with the highest average performance scores are selected. If the ith system is among the selected ones,

the corresponding weight is pi = 1
k , otherwise pi = 0. Further, only documents retrieved by the systems

with p > 0 are considered for query-document prioritization at the expansion phase.

We set k = 30 since (i) it was sufficiently large to approximate Σ matrix, and (ii) considering only

30 top performing out of 116 runs ensures that the sample of participating systems have relatively good

performance. We repeated the experiment for 6 different budget configurations. The results are shown

in Table 7.2.

For all budget configurations, the QDP method obtains the best Kendall-τ for ranking participating

systems. However, QDP* outperforms the QDP and the other budget allocation method for ranking the

new systems. Also, the SA method outperforms the UN and RA methods for the first three configura-

tions. However, for budget configurations 4-6, UN method outperforms both RA and SA.
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Table 7.2: Accuracy and Generalization of ranking systems in TREC-8 by Kendall-τ correlation. The
13 manual runs are treated as new (unseen) systems and 116 automatic runs are treated as participating
systems. The QDP* is the extension of QDP method in which the unbiased estimators of a weighted
sampling of systems are used to approximate covariance matrix Σ.

# (B1, B(2:3)) × 103

Kendall-τ
participating systems new systems

UN RA SA QDP QDP* UN RA SA QDP QDP*
1 ( 1

2
, 3

2
)

0.61
0.55 0.71 80 0.78

0.34
0.20 0.30 0.32 0.54

2 (1,1) 0.57 0.75 0.81 0.80 0.27 0.44 0.39 0.63
3 ( 3

2
, 1

2
) 0.6 0.76 0.83 0.82 0.28 0.39 0.39 0.67

4 (1,3)
0.86

0.65 0.84 0.92 0.90
0.69

0.48 0.47 0.50 0.78
5 (2,2) 0.69 0.83 0.91 0.89 0.49 0.62 0.68 0.87
6 (3,1) 0.75 0.84 0.92 0.90 0.51 0.66 0.69 0.91

Table 7.3: Root Mean Squared Error (RMSE) results for TREC-8 test collection. The 13 manual runs
are treated as new (unseen) systems and 116 automatic runs are treated as participating systems. QDP*
is the extension of QDP in which the unbiased estimators of a weighted sampling of systems are used to
approximate covariance matrix Σ.

# (B1, B(2:3)) × 103

RMSE
participating systems new systems

UN RA SA QDP QDP* UN RA SA QDP QDP*
1 ( 1

2
, 3

2
)

0.17
0.22 0.14 0.09 0.1

0.46
0.48 0.45 0.47 0.3

2 (1,1) 0.19 0.11 0.07 0.09 0.46 0.39 0.40 0.27
3 ( 3

2
, 1

2
) 0.18 0.12 0.07 0.08 0.42 0.41 0.40 0.24

4 (1,3)
0.14

0.17 0.10 0.06 0.08
0.34

0.38 0.30 0.27 0.20
5 (2,2) 0.14 0.09 0.05 0.09 0.35 0.26 0.25 0.16
6 (3,1) 0.16 0.08 0.06 0.06 0.36 0.27 0.24 0.16

We also report root mean squared error (RMSE) between the MAP scores of the systems estimated

based on a budget allocation method and the true MAP scores measured over the full set of relevance

judgments in TREC-8. Once again, separate scores are provided for participating and new systems. As

shown in Table 7.3 similar observations hold true for RMSE.

However, the RMSE scores obtained for new systems are considerably larger than the RMSE scores

obtained for the participating systems. This is because the manual runs retrieve 24% of the unique rele-

vant documents that were judged in the original document pools. This means many relevant documents,

retrieved by the manual runs, are absent from the document pools. Thus, it is impossible to accurately

measure the absolute performance of the manual systems even after judging all the documents pooled by

the participating systems.

Clearly, if new systems are retrieving a substantial number of unique relevant documents, we cannot

expect to approximate their absolute performance well, unless we can afford to acquire additional rele-

vance judgments for previously unseen documents that are retrieved by the new systems. This scenario

was already considered in Chapter 5.

7.7 Summary
We considered the problem of prioritizing query-document pairs for relevance assessments given a bud-

get constraint, in order to (i) improve the accuracy of evaluating participating systems, and (ii) ensure
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that the test collection generalizes to new, previously unseen systems. We proposed an iterative proce-

dure for collecting relevance judgments. In the initialization phase, we allocated a budget B1 uniformly

across all queries, acquiring a corresponding set of relevance judgments. In the expansion phase, we

iteratively used an optimization framework to prioritize query-document pairs and optimally allocate the

remaining budget.

The novelty of the method was in (i) combing the query selection and document selection ap-

proaches to form a unified budget allocation through explicit cost optimization, and (ii) formulating the

problem as a convex optimization for which computationally efficient algorithms exist. Our experiments

compared the QDP method with, uniform, random sampling and subset allocation methods. They pro-

vided strong evidence that the QDP method is superior to the selected baseline methods in (i) measuring

the performance of participating systems, and (ii) generalizing to new, as yet unseen systems.



Chapter 8

Crowdsourcing Relevance Judgments

We consider the problem of acquiring relevance judgements for information retrieval test collections

through crowdsourcing experiments. We collect multiple, possibly noisy relevance labels per document

from workers of unknown labeling accuracy. We use these labels to infer the document relevance based

on two methods. The first method is the commonly used majority voting (MV) which determines the

document relevance based on the label that received the most votes, treating all the workers equally.

The second is a probabilistic model that concurrently estimates the document relevance and the workers

accuracy using the expectation maximization (EM). We run simulations and conduct experiments with

crowdsourced relevance labels from the INEX 2010 Book Search track to investigate the accuracy and

robustness of the relevance assessments to the noisy labels. We also observe the effect of the derived

relevance judgments on the ranking of the search systems. Our experimental results show that the EM

method outperforms the MV method in the accuracy of relevance assessments and IR systems ranking.

The performance improvements are especially noticeable when the number of labels per document is

small and the labels are of varied quality.

8.1 Introduction
Relevance judgments are manually constructed by a set of human assessors. Traditionally, the assessors

are trained experts. However, as the corpus and the number of queries grow, the cost of acquiring rele-

vance judgments from expert assessors for a sufficiently large number of documents becomes prohibitive.

In response to this problem, the IR community has recently been exploring the use of crowdsourcing ser-

vices to obtain relevance judgments at scale.

Web services, such as Amazon Mechanical Turk 1, facilitate the collection of relevance judgments

by temporarily hiring thousands of crowd workers. While the labels provided by the workers are rela-

tively inexpensive to acquire, they vary in quality, introducing noise into the relevance judgments and,

consequently, causing inaccuracies in the system evaluation [KKKMF11]. In order to address the issue

of noisy assessments, it is common to collect multiple labels per document from different workers, in

the hope that the consensus across multiple labels would lead to more accurate relevance judgments.

We assume that a set of labels is collected for each document from multiple crowd workers and

1 www.mturk.com
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that the accuracy of each worker is unknown, as is the true relevance of the documents. A probabilistic

model is suggested for estimating both the relevance of the documents and the workers accuracy. We

implement the probabilistic model by using the expectation maximization algorithm (EM) as in [DS79].

The performance of the probabilistic model (EM) is particularly compared with the performance of the

majority voting (MV) that has been frequently used for label aggregation in IR, e.g. [KKKMF11, AM09,

SJ11b].

The experiments are conducted based on the crowdsourced labels from the INEX 2010 Book Search

track to compare the MV and EM methods. We consider crowdsourced labels from two task designs that

lead to different level of noise and observe their effect on estimating relevance judgments and systems

ranking. Our empirical evidence shows that the EM method offers more reliable relevance estimations

and systems ranking than the MV method, especially when labels collected for a document are few or

varied in quality.

8.2 Assessment Errors
Relevance assessment errors in IR test collections have been considered by the IR community since

the early Cranfield experiments [CK67]. Voorhees [Voo98] studied the effects of variability in rele-

vance judgments on the stability of the comparative IR systems evaluation. She considered three sets of

relevance judgments provided by three different sets of assessors for the TREC-4 test collection. She

observed that there are about 30% disagreements between the labels provided by assessors of different

groups. She also explored the effects of the judgments inconsistency on the ranking of the systems that

participated in TREC-4 and observed no significant changes in the systems ranking. This was attributed

to the stability of the average precision (AP) metric [BV00] that was used to evaluate the systems per-

formance. Indeed, AP is calculated based on deep pools of documents obtained from the participating

systems. Thus, some incorrect judgments in a ranked list do not significantly affect the values of AP

and, therefore, do not perturb the ordering of the systems. In our experiments in Section 8.4, we confirm

that a deep pool of judged documents can reduce the effect of noisy crowdsourced labels in the systems

evaluation.

Recent trends in IR evaluations involve the use of large numbers of queries to enhance the reliability

of the evaluation [CPK+08] while reducing the pool depths and, with that, the cost of acquiring relevance

judgments [CAS06]. However, the use of recall-sensitive metrics, e.g. AP, with shallow document pools

becomes more sensitive to assessment errors and leads to significant changes in systems rankings [CS10].

This has motivated studies of the factors that cause assessment errors such as the level of assessors

expertise [BCS+08], the presentation of the documents for assessment, such as the sequence in which

the documents are shown to the assessors e.g. [KKKMF11, STS11], and the assessors behavior [CS10].

Awareness of the assessment errors has further increased with the use of crowdsourcing services

to supplement or replace the traditional ways of collecting relevance judgments. In crowdsourcing, the

relevance assessment task is expressed in terms of a human intelligence task (HIT) that is presented to

crowd workers through a crowdsourcing platform to solicit their engagement, typically for a specified

fee. The effectiveness of the crowdsourcing approach has been investigated in terms of various factors,



95 8.3. Aggregating Multiple Labels

including (i) the agreement with relevance judgments from trusted assessors [SJ11b], (ii) quality assur-

ance techniques for detecting and removing unreliable workers [KKKMF11], and (iii) the cost incurred

due to redundant relevance assessments that are needed for quality assurance, e.g. [MW10, SOJN08].

The use of multiple labels per document to improve the quality of relevance judgments involves

label aggregation across the assessors, e.g. by arriving at a consensus through majority voting [AM09,

SJ11a]. The effectiveness of the consensus approach has been assessed by Kazai et al. [KKKMF11]

for IR tasks involving TREC and INEX test collections. Kumar and Lease [KL11] investigated the

relationship between the document relevance and the workers accuracy by using a set of documents with

known relevance as training data for a naı̈ve Bayes method. The trained model estimated the relevance

of new documents by aggregating labels based on worker accuracy.

8.3 Aggregating Multiple Labels
Consider a set of v documents and a set of w workers that provide relevance labels for the documents.

We assume that the relevance of a document is a discrete variable with values in {0, 1, ..., G}. If the

relevance value of ith document is k (k ∈ {0, 1, ..., G}), then itsG+1 dimensional vectorRi is a binary

vector with kth component 1 and the rest 0, i.e. Rik = 1 andRij = 0, (∀j 6= k). We now define a matrix

R ∈ {0, 1, , G}v×(G+1) of all the relevance vectors, comprising v binary Ri vectors.

Now consider a set of w workers with the corresponding accuracies A = {a1, a2, ..., aw}, where aj

represents the accuracy of jth worker. Both the document relevance R and the workers accuracy A are

unknown to us. Instead, we have a set of relevance labels provided by the workers, i.e. lij ∈ {0, 1, ..., G}

is a relevance assessment of the document i by the worker j. A worker may provide relevance labels for

some or all the documents. The goal is to estimate the true relevance value of the documents and the

workers accuracy from a given set of labels. We assume that each document receives at least one label

and the accuracy of the labels is unknown. Thus, in contrast to Kumar and Lease [KL11], we assume no

initial information regarding the workers accuracy or the relevance of the documents.

8.3.1 Majority Voting

Consider a document iwith the corresponding labels provided by a set of workers. Let nig be the number

of times the document i is labeled as g ∈ {0, 1, ..., G} by a set of workers. The majority voting assigns

g as the document’s true relevance label if nig is maximum.

8.3.2 Concurrent Estimation of Relevance and Accuracy

As an alternative to MV we consider the EM method for concurrent estimation of the document relevance

and the workers accuracy. In this method the document relevance R and the workers accuracy A are

unknown variables and the labels L provided by the workers are the observed data.

We take the same approach as [DS79] and consider the label aggregation model that assigns to each

worker a (G + 1) × (G + 1) latent confusion matrix [Hub74] where G + 1 is the number of relevance

grades. Each row refers to the true relevance value and each column refers to a relevance value assigned

by a worker. Once the confusion matrix is calculated, we can determine the worker expertise based on

metrics such as accuracy, the true positive ratio and the true negative ratio [SJ11a].
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Let πjgy , (∀g&l ∈ {0, ..., G}) be the probability that the worker j provides a label y given that

g is the true relevance value of an arbitrary document. The probability πjgy is computed based on the

confusion matrix for the worker j. One estimator of πjgy is:

πjgy =
number of times worker j provides label y while the correct label is g
number of labels provided by worker j for documents of relevance g

(8.1)

where

G∑
y=0

πjgy = 1 (∀g ∈ {0, ..., G}), and j ∈ {1, ..., w}

Of course, the calculation of πjgy assumes that R is known. In the following we show how πjgy and R

can be simultaneously estimated.

Let pg be the probability that a document drawn at random has a true relevance grade of g (pg =

Pr[Rig = 1]; i ∈ {1, ..., v}). Now let njiy be the number of times worker j provides label y for document

i; for our purpose njiy is binary, so if a worker labels the document njiy = 1, otherwise njiy = 0. If g is

the true relevance grade of document i, Rig = 1, then the probability of the worker j giving a grade y

is πjgy and the probability of doing so njiy times is (πjgy)(njiy). Thus, the number of labels of each grade

{0, 1, ..., G} provided by worker j is distributed according to a multinomial distribution [EHP00] and its

likelihood is proportional to

Pr(nji0, ..., n
j
iG;πjg0, ..., π

j
gG|Rig = 1) ∝

G∏
y=0

(πjgy)n
j
iy (8.2)

Under the assumption that w workers independently label documents, the likelihood of labels provided

for document i when Rig = 1 is also proportional to

w∏
j=1

Pr(nji0, ..., n
j
iG;πjg0, ..., π

j
gG|Rig = 1) ∝

w∏
j=1

G∏
y=0

(πjgy)n
j
iy

Since the value of g is unknown, we compute the expectation of Pr(nji0, ..., n
j
iG;πjg0, ..., π

j
gG|Rig = 1)

over all possible values of g, i.e. we compute the marginal probability over all possible values of g:

G∑
k=0

pk

w∏
j=1

G∏
y=0

(πjky)n
j
iy (8.3)

Also as the data from all documents are assumed to be independent, the joint probability distribution

over all the v documents is
v∏
i=1

( G∑
k=0

pk

w∏
j=1

G∏
y=0

(πjky)n
j
iy

)
(8.4)

Equation 8.4 comprises mixtures of multinomial distributions. In order to estimate the quantities of

interest, pk, π
j
ky and Rig , we apply expectation maximization (EM) [DS79]. In the EM algorithm we
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treat πjky and pk as model parameters and Rik as missing data. The EM algorithm then involves the

following steps:

• Initialize Rik values, e.g. randomly choose g and set Rig = 1, and Rik = 0 (∀k 6= g).

• Given the current estimate of Rik, compute the maximum likelihood estimates of πjky and pk, as

π̂jky =

∑v
i=1Rikn

j
iy∑G

y=0

∑v
i=1Rikn

iy
j

; p̂k =

∑v
i=1Rik
v

. (8.5)

• Calculate the new estimate of Rig(∀g ∈ {1, ..., G}) based on π̂jky and p̂k, as

Pr(Rig = 1|n∀ji0 , ..., n
∀j
iG;π∀jg0 , ..., π

∀j
gG) =

pg
∏w
j=1

∏G
y=0(πjgy)n

j
iy∑G

k=0 pk
∏w
j=1

∏G
y=0(πjky)n

j
iy

(8.6)

• Repeat steps 2 and 3 until the results converge.

• Finally, for each document i, set Rig = 1 for the g with the maximum probability as calculated in

equation 8.6, and Rik = 0(∀k 6= g).

Note that by combining πjky values we can compute the accuracy of the worker j or other statistics of

interest, e.g. the true positive ratio. Accuracy is estimated as âj =
∑G
y=0 π̂

j
yy∑

y,k π̂
j
yk

.

8.4 Experiments
In this section we describe a set of experiments that compare the aggregation of relevance labels based

on the MV and EM methods and the implications for the IR systems evaluation. The experiments are

based on both synthetic and crowdsourcing data collected for INEX 2010 Book Search evaluation track.2

In the first experiment we use synthetic data and simulate the characteristics of the MV and EM

methods. In the second experiment we assess the performance of the two methods based on crowd-

sourcing data. We then assess the accuracy of the MV and EM relevance assessments relative to the

INEX official judgments. In the third experiment we investigate the impact of MV and EM relevance

judgments on the system ranking using several performance metrics.

8.4.1 Experimental Data

In our experiments, we use the test collection and crowdsourced relevance data from the INEX 2010

Book Search evaluation track [KKKMF11]. The test collection comprises 50,239 books containing over

17 million scanned pages and 21 test queries (topics) with 169 judged pages per query, on average. This

amounts to 3,557 judged pages that serve as a gold standard set for IR systems evaluation. Each page is

assigned a relevance judgment based on four grades {0, 1, 2, 3}.

8.4.2 Crowdsourcing Experiments

Crowdsourced labels were collected for INEX 2010 Book Track Search task by using Mechanical Turk

platform. For a given query, the user had to confirm whether the presented book page contains an answer
2http://www.inex.otago.ac.nz/tracks/books/books.asp
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to the search query. A search query and corresponding pages were presented to the crowd workers for

relevance judgments in the form of Human Intelligence Tasks (HITs). Each HIT consisted of 10 pages

including up to 3 pages judged as relevant by the INEX assessors. Two HIT designs, referred to as

‘simple’ HIT and ‘full’ HIT design, were used to control the workers behavior and with that the label

accuracy.

The simple HIT design included a minimal quality control using a single test question to capture

random assignment of relevance labels by a worker. Furthermore, all the HITs were presented to a

worker in a single batch, using the same generic HIT title, description, and keyword.

The full HIT design included several quality controls and qualified workers at different stages of

the task. Since the HIT titles have an effect on the workers recruitment, the full HITs were grouped into

21 query-specific batches and included query details in the title, description, and keywords. This was

likely to encourage workers who were interested in and knowledgeable about a particular query. Each

HIT included two test questions to detect sloppy behavior: (i) ‘please tick here if you did NOT read the

instructions’ at the top of the HIT form, and (ii) ‘I did not pay attention’ as a relevance label option.

Furthermore, to enforce the requirement that the workers needed to read a page before deciding about its

relevance, a captcha3 was included asking them to enter the first word of the sentence that confirmed or

refuted the relevance of the page.

On average, 6 labels from distinct workers were collected per document, 3 labels by the simple HIT

and 3 labels by the full HIT. That amounts to 2179 labels for 727 query-document pairs from the simple

HIT and 2060 labels for 683 query-document pairs from the full HIT. Also, 98% of query-document

pairs labeled in the full HIT were among those labeled in the simple HIT. The workers were paid $0.25

to complete a simple HIT task and $0.50 for a full HIT task.

For evaluation of the relevance labels obtained by the MV and EM methods we consider three com-

monly used measures [SJ11b]: (i) the accuracy: the proportion of judged documents that are assigned

the correct relevance label, (ii) the true positive ratio (TPR): the proportion of judged relevant documents

that are correctly assigned the ‘relevant’ label, and (iii) the true negative ratio (TNR): the proportion of

judged non-relevant documents that are correctly assigned the ‘non-relevant’ label.

8.4.3 Simulation

We conduct simulations of multiple labels aggregation to investigate the effects of (i) the number of

labels collected for a document, and (ii) workers expertise on the performance of the MV and EM

methods. We consider a set of 1,000 hypothetical documents with associated true relevance judgments.

We also consider a set of 100 hypothetical workers, each with a particular level of expertise. We define

workers expertise as their accuracy of labeling a randomly chosen document. Similarly to Carterette

and Soboroff [CS10], we randomly sample the workers expertise from a Beta distribution and randomly

assign documents to workers. We then apply the MV and EM methods to the collected labels in order

to estimate the relevance of the documents. We use the measures defined in Section 8.4.1 to assess the

performance of the two methods.

3http://www.captcha.net/
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Figure 8.1: Comparisons of the accuracy of majority voting (MV) and expectation maximization (EM)
for various numbers of labels collected per documents and different levels of assessors expertise (relia-
bility).
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Figure 8.2: Kendall-τ correlation between the ranking of assessors true and estimated level of expertise.

We repeat the simulations by varying (i) the mean m(a) of the Beta distribution from which a

worker expertise is drawn, and (ii) the average number of labels collected per document. The results

are shown in Figure 8.1 where the workers mean expertise varies between 0.5 and 0.9 and the average

number of labels varies between 1 and 10.

When the workers average expertise is nearly random, m(a)=0.5, and the average number of labels

per document is only 2, both methods exhibit poor accuracy. As the number of labels or the level of

expertise increases, the performance of both methods improve. When the number of labels per document

is small, e.g. 2 or 4 labels, but the workers average expertise is increased to 0.6 or higher, the EM method

outperforms the MV. Finally, as the number of labels approaches 10 and the workers average expertise

increases to 1, both methods obtain perfect accuracy. The simulations clearly show that the EM approach

generally performs the same or better than MV.

We also assessed the performance of the MV and EM methods in estimating the workers accuracy.

We use the gold standard set to determine the workers true accuracy and compare with the estimated
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Table 8.1: Comparison of MV and EM relevance judgments based on (i) accuracy, (ii) true positive ratio
(TPR) and (iii) true negative ratio (TNR). INEX 2010 relevance judgements are used as the gold standard
set. Statistically significant differences are marked by †.

HIT # Labels accuracy TPR TNR
MV EM MV EM MV EM

Simple
1000 0.57 0.65† 0.52 0.67† 0.60 0.64†

2000 0.60 0.68† 0.54 0.76† 0.65 0.68†

3000 0.67 0.77† 0.58 0.79† 0.70 0.74†

Full
1000 0.66 0.69† 0.72 0.88† 0.71 0.72
2000 0.71 0.78† 0.78 0.90† 0.76 0.78†

3000 0.80 0.85† 0.86 0.93† 0.84 0.82

Simple+Full
1000 0.66 0.79† 0.61 0.85† 0.62 0.67†

2000 0.72 0.80† 0.66 0.88† 0.79 0.74†

3000 0.76 0.85† 0.69 0.91† 0.75 0.79†

accuracies based on the relevance labels from the MV and EM methods. We compute Kendall-τ between

the workers ranking induced by the EM or MV relevance judgments and the ranking based on the gold

standard set. Figure 8.2 shows that for the set of workers with m(a)=0.7, EM outperforms MV for a

range of labels per document. Similar results were also observed for m(a)=0.6, 0.8, and 0.9.

8.4.4 Relevance Agreement with INEX Judgments

We apply MV and EM to the labels collected from the two crowdsourcing experiments and compare

the derived relevance judgments with the INEX gold standard set. We provide results for three sets of

relevance judgments derived by: (i) the labels from the simple HIT, (ii) the labels from the full HIT, and

(iii) the commentation of the both HIT. For each of the sets we use samples of 1000, 1500, or 2000 labels

to estimate the document relevance. The samples are randomly selected but guaranteed that at least one

label per document is included. To deal with sampling variance we report average performance of the

methods over 10 random trials.

The experimental results are shown in Table 8.1 for each of the three evaluation measures, the

accuracy, TPR, and TNR. In order to calculate TPR and TNR we assume that relevance judgments are

binary and collapse labels {1, 2, 3} into label 1. Statistically significant differences in the performance of

the two methods are identified using a two-proportion z-test [SSR06] at the significance level of p=0.05.4

As seen in Table 8.1, for the labels from the simple HIT task, the EM method significantly outper-

forms MV across all the samples and evaluation measures. The average improvement of EM over MV

is 0.06 in accuracy, 0.19 in TPR, and 0.04 in TNR. For the full HIT labels, the performance improve-

ment of EM over MV is significant for most of the measures across the three samples. We do not get

statistically significant difference only in two instances. The average performance improvement of EM

across the three configurations is 0.04 in accuracy, 0.12 in TPR, and 0.003 in TNR. As seen, the average

improvements obtained for the full HIT are relatively smaller than the average improvements obtained

in the simple HIT. This is expected since the labels from the full HIT are of higher quality due to more

elaborate quality assurances tests. Indeed, there is 70% agreement between the full HIT labels and the

INEX official judgments compared to 55% for the labels from the simple HITs.

4Two-proportion z-test is a hypothesis test that determines whether the difference between two proportions is statistically
significant.
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Table 8.2: Kendall-τ scores for MV and EM rankings of 10 systems from the INEX 2010 Book Search
track by using the precision at 5 different rank positions.

HIT P@10 P@20 P@30 P@50 P@100
MV EM MV EM MV EM MV EM MV EM

Simple 0.45 0.62 0.55 0.71 0.77 0.89 0.91 0.98 0.90 0.99
Full 0.68 0.76 0.71 0.80 0.88 0.93 1.00 1.00 0.99 0.99

Table 8.3: Kendall-τ scores for MV and EM rankings of 10 runs from the INEX 2010 Book Search track.
The mean average precision (MAP) is calculated over all available judgments; stat-MAP is calculated
for the subsets of documents using corresponding relevance judgments.

HIT
statMAP MAP10% 30% 50%

MV EM MV EM MV EM MV EM
Simple 0.58 0.67 0.64 0.77 0.91 0.91 0.84 0.91

Full 0.66 0.72 0.67 0.79 0.80 0.89 0.79 0.87

This observation is consistent with the simulation results in Section 8.4.3. That is, when the labels

are provided by quality workers and the number of labels is large, both MV and EM perform well. This

can be seen for the accuracy scores of the full HIT in Table 8.1. When the number of labels is 1000 or

1500, the accuracy of EM is significantly higher than that of MV. However, for a larger sample of 2000

labels there is no significant difference between the accuracy scores.

Finally, we consider the combination of labels from the simple and the full HIT. For each sample

size 50% of labels are randomly selected from the simple HIT labels and 50% from the full HIT labels.

For all three samples and performance measures, the EM method shows statistically significant improve-

ments over MV. The average improvement across the sample sizes is 0.09 in accuracy, 0.22 in TPR, and

0.05 in TNR, which are larger than the improvements for the simple HIT labels.

8.4.5 Impacts on Systems Ranking

We observe the effect of MV and EM relevance judgments on the system ranking. For the crowdsourced

labels collected from the simple and the full HIT we apply MV and EM methods to create two sets of

relevance judgments. Each set of relevance judgments are then used to measure the systems performance

by an evaluation metric, e.g. average precision, and rank the average performance, e.g. mean average

precision, of 10 retrieval systems that participated in the INEX 2010 prove it task. We compare the

systems based on the precision metric at the rank position {10, 20, 30, 50 and 100}.

Table 8.2 summarizes the Kendall-τ correlations between the ranking of systems based on the INEX

official judgments and the ranking that is based on the relevance judgments inferred by MV or EM. For

all the rank positions, the rank correlation is higher for EM than for MV. The average improvement for

EM across the five rank positions is 0.12 for simple HIT and 0.04 for the full HIT labels.

Generally, we see a considerable effect of the cut-off level (rank position) on Kendall-τ . This is

expected since when the cut-off level is small, e.g. p@10, even a few misjudged documents represents a

high percentage of error and therefore significantly affects the ranking. As the cut-off level increases, for

the same number of misjudged documents the percentage of error is relatively smaller and the ranking is

not considerably affected.
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We also explore the impacts of MV and EM on systems ranking when the average precision (AP)

is used to evaluate the systems performance. The result is shown in Table 8.3. Once again EM outper-

forms MV for both the simple HIT and the full HIT labels. We investigate the effects of MV and EM

on measuring AP with an incomplete set of relevance judgments, which is a common scenario in IR ex-

periments [ACA+07]. We use the sampling technique used in [AP08] to select subsets of 10%, 30% or

50% of documents labeled by the crowd workers. We then apply MV and EM to the selected labels and

use the statAP metric to estimate the AP scores. For each sample size we calculate statAP based on the

corresponding INEX judgments, MV judgments, and EM judgments and obtain the system rankings. In

Table 8.3 we show the rank correlations between the system ranking induced by the INEX official judg-

ments and the system rankings induced by MV or EM. As seen, the EM method outperforms MV across

the different sample size. As the sample size increases from 10% to 50%, the Kendall-τ scores increase

correspondingly. The last column also represents the result of using the full set of labeled documents

and the AP metric.

8.5 Summary
We considered the problem of creating relevance judgments using crowdsourcing experiments to collect

multiple, possibly noisy, relevance labels for documents. We assumed that the workers’ labels are varied

in quality and of unknown accuracy. We also assumed that the true relevance judgments for documents

are not available. We compared two methods for inferring document relevance from multiple noisy

labels. The MV method treats all the workers equally and assigns the relevance label that has received

the most votes. The EM method simultaneously infers document relevance and workers accuracy. We

conducted a series of simulations with synthetic data and experiments with crowdsourced labels from the

INEX 2010 Book Search track. Our experiments showed that the relevance judgments inferred by the

EM method were the better estimations of true document relevance and lead to more accurate systems

ranking. The EM performance improvements over MV were particularly noticeable when judgments

were noisy and the number of relevance labels was small.

This work can be extended in several directions. In practice, some documents are easier than other

documents to be labeled. Therefore, it will be interesting to take into account the document’s difficulty

when modeling a worker’s accuracy. In the evaluation of systems performance we exploited the aggrega-

tion of noisy labels. However, the EM method provides estimation of the workers accuracy which can be

used to grade workers and optimize the quality of additional labels by flittering the sloppy crowd workers

from the pool of assessors. Furthermore, it can be used to compute workers pay based on the quality

of their work. Finally, the full potential of the EM method could be realized through an iterative model

of selecting workers and collecting relevance labels. Thus, it is beneficial to extend the crowdsourcing

experiments and evaluate the dynamic and real time collection of relevance judgments.
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Conclusion

This dissertation explored three specific issues in order to construct cost-efficient test collections for

information retrieval experiments. These are:

• Selection of a representative subset of queries to create relevance judgments and evaluate systems

under budget constraints.

• Combination of the query selection and document selection approaches to efficiently create rele-

vance judgments for a subset of query-document pairs.

• Integration of multiple noisy labels, collected by crowdsourcing experiments, to infer the relevance

of a document.

This final chapter summarizes the results presented in earlier chapters of this dissertation, before consid-

ering possible future directions.

9.1 Results Summary
Chapter 4 assumed relevance judgments are available for all the queries in a test collection, and devel-

oped a theoretical framework for query selection. From the mathematical formulation it is implied that

the optimal subset of queries should be least correlated with one another, but should have a strong corre-

lation with the rest of queries. Finding the optimal subset of queries, even when relevance judgments are

available and system’s performance scores are known, is computationally intractable. Three query se-

lection algorithms were discussed to implement the proposed query selection model in practice, namely:

random sampling, the greedy algorithm, and convex optimization.

The quality of subsets selected by each of the three query selection algorithms were assessed in

terms of (i) accuracy and (ii) generalization. Accuracy is concerned with how well a subset of queries

can reproduce the relative performance of the participating systems when measured against the full set of

queries. Generalization is concerned with how well the selected subset of queries can reliably evaluate

a set of new systems, again compared to the full set of queries. The experiments were conducted using

two TREC test collections, namely TREC-8 Ad-hoc track, and TREC 2004 Robust track.

We observed that both greedy and convex significantly outperformed the random sampling method

in accuracy experiments. However, in generalization experiments, while the greedy method failed to
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perform better than random sampling, the convex optimization consistently outperformed both greedy

and random.

Chapter 5 showed that how the query selection approach can be used to enhance the reusability

of a test collection. It was assumed that the initial set of relevance judgments is insufficient to reliably

evaluate a set of new systems that did not contribute to pooling documents. A fixed budget was used to

build some additional relevance judgments for the previously unjudged document retrieved by the new

systems. The query selection approach was used to select a representative subset of queries, and then the

budget was used to expand relevance judgments only for the selected queries. The experiment results

on TREC 2004 Robust track showed that allocating the budget across a representative subset of queries

leads to a better evaluation of new systems than uniformly allocating the budget across all the queries in

a test collection.

Such a scenario should assist small groups of researcher investigating their new retrieval systems

using large scale test collections, e.g. TREC Million Query track [ACA+07], where the initial set of

relevance judgments is insufficient to reliably evaluate the new systems, and there is a limited budget to

expand relevance judgments.

Chapter 6 relaxed the assumption that relevance judgments are available a priori, and extended the

query selection framework to model uncertainty in the retrieval effectiveness metrics that are introduced

by the absence of relevance judgments. Since the optimization was computationally intractable, an adap-

tive query selection algorithm was devised to provide an approximate solution. The effectiveness of the

adaptive algorithm was demonstrated using various test collections, including a dataset of a commercial

search engine with 1,000 queries and 30,000 relevance judgments. The experimental results showed that

the adaptive method could reduce at least 35% of queries that were required by the considered baseline

methods to obtain 90% accuracy in ranking the retrieval systems.

Chapter 7 extended the mathematical framework to combine the query selection and the document

selection approaches, and devised a unified optimization framework. The unified optimization frame-

work assigned a priority score to each candidate query-document pair and selected a subset of them

to construct the associated relevance judgments under a budget constraint. The optimization frame-

work assigned high priority scores to query-document pairs that could (i) accurately evaluate the relative

performance of the participating systems, and (ii) generalize to new, previously unseen systems. We

evaluated our optimization framework on two TREC test collections, namely TREC-8 Ad-hoc track and

TREC 2004 Robust track. The experimental results showed that the optimization framework is cost

efficient and yields a significant improvement in the generalization of the test collections.

Finally, Chapter 8 used crowdsourcing experiments to outsource the judgements task to a large

number of assessors that are temporarily hired by using crowdsourcing, rather than assigning the task to

a few well-trained experts. While the labels provided by crowdsourcing are relatively inexpensive, they

vary in quality, introducing noise into the relevance judgments. To cope with noisy labels, it is common

practice in information retrieval to collect multiple labels from different assessors and use majority voting

to aggregate the labels. In contrast, we devised a probabilistic model that provided accurate relevance
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judgments with a smaller number of labels collected per document. The effectiveness of the probabilistic

method was assessed by using crowdsourced date collected for INEX 2010 book track.

9.2 Future Directions
While a large body of IR literature has studied the cost of test collections from various aspects, including

this dissertation, there is still a lot to be done. We discuss the future directions in three lines:

• Formulating the mathematical framework with new objectives.

• Adding new optimization constraints to the optimization framework.

• Dynamic budget allocation in crowdsourcing experiments.

9.2.1 Objective Functions

Identifying characteristics of a representative subset of queries has surprisingly received little attention

in IR literature. In this dissertation we focused on measuring the relative performance of systems and

identified the properties of the representative subset by using Pearson linear correlation as the objective

of our optimization framework (Chapter 4). Alternatively, we could investigate the properties of the

representative subset of queries in terms of other objective functions.

For instance, the mean squared error (MSE) function could be used to assess systems in terms of

their absolute performance. This is particularly important when our goal is to accurately measure a

system’s average performance rather than ranking a set of systems. Since the MSE function is quadratic,

we can replace Pearson correlation with MSE as the objective for query selection, without violating the

convexity requirements of the optimization framework. Thus, it is worth identifying the properties of the

optimal subset of queries when the target of the query selection problem is defined as to minimize MSE.

9.2.2 Optimization Constraints

One of the main advantages of the convex optimization framework, used in Chapter 5 and Chapter 7, is

its extensibility to accommodate various constraints. In Chapter 7 we defined a generalization constraint

to reduce the probability that future as yet unseen systems return previously unjudged documents. Ad-

ditionally, we can leverage research on identifying query characteristics that make queries better suited

for use in systems evaluation and formulate new constraints within the optimization framework. By

encoding such desirable constraints within our optimization framework, the method to identify a set of

query-document pairs that embodies our requirements is a simple process. In the future, it is worth in-

vestigating a richer set of such heuristics, aiming to produce methods for test collection construction that

are efficient, in terms of required resources for relevance assessments, and effective, in terms of accuracy

of systems evaluations.

9.2.3 Dynamic Budget Allocation

The experimental set up can be expanded to examine the sensitivity of the optimization framework to

errors in estimating the number of unjudged relevant documents as well as investigating the effects of
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uncertainty that is due to (i) queries with no relevance judgements (Chapter 6), (ii) missing judgements

(Chapter 5), or (iii) assessments’ errors (Chapter 8).

Finally, the full potential of the method would be realized through an effective iterative model of

relevance assessments in dynamic experiments. Thus, it is interesting to extend and evaluate the real-

time applications of the cost optimization in the context of commercial search engines, e.g. Google and

Bing, where queries and documents dynamically change over time.
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List of Symbols

Capital letters (e.g. X and M ) represent a matrix, or a vector. Lowercase letters (e.g. n) represent a

scaler. Uppercase letters (e.g. X l×n) represent a dimension, and lowercase letters (e.g. µi) represent an

index. Lowercase Greek letters (e.g. β) represent a parameter of a function. Uppercase Greek letters

(e.g. Φ and Σ) represent a set or a matrix. However, if necessary, these rules may be violated.

S The systems’ population.

Q The queries’ population.

n The number of queries.

l The number of participating systems.

m The number of selected queries.

Φ The index set of selected queries.

QΦ The subset of queries indexed in Φ.

X ∈ Rl×n A l × n system-query performance matrix.

xi,j The (i, j)th element of X matrix.

xi The ith row of X matrix.

M ∈ Rl×1 The average performance column vector. The ith element of M is the

average of the corresponding row in X .

MΦ The average performance column vector calculated using the queries in

QΦ.

α ∈ R1×n The mean vector of X matrix. The jth element of α is the mean of the

column j in X .

Σ The covariance matrix of X matrix.

σi,j The (i, j)th element of Σ representing the covariance between columns

i and j of X .

ρΦ The Pearson linear correlation between M and Mφ vectors.

γΦ The value of the optimization function that is maximized by selecting

the optimal subset of queries.
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µ The average performance of a randomly chose system computed over

the full set of queries.

µΦ The average performance of a randomly chose system computed using

QΦ query subset.

e ∈ Rn×1 A column vector of n ones.

d ∈ {0, 1}n×1 A binary column vector that indicates the selected queries. If query i is

selected, di = 1, otherwise, di = 0.

β ∈ Rn×1 A column vector of n real values indicating the priority scores for the n

queries.

‖ . ‖0 The L0 norm constraint that counts the number of non-zero elements in

β or d and controls the size of the subset.

‖ . ‖1 The L1 norm that returns the sum of absolute values of the elements in

β.

Ω The cost of creating the complete set of relevance judgments.

B The budget available for creating relevance judgments (B � Ω).

Bi The budget allocated to the stage i of an iterative budget allocation pro-

cess.

α̂ An approximation of α computed based on a set of l participating sys-

tems.

Σ̂ An approximation of Σ computed based on a set of l participating sys-

tems.

X̂ An approximation of performance matrix X .

x̂i,j An approximation of the performance score xi,j .

vi,j The approximation variance of xi,j .

U ∈ Rn×n A diagonal matrix, referred to as the uncertainty matrix. The (i, i)th

element of U is the variances of systems’ performance score calculated

for query i.

f The output of a classifier.

λ ≥ 0 The Lagrangian multiplier that combines the quadratic component and

a linear constraint of the optimization function.

w The number of crowd assessors.

Rv×(G+1) A relevance matrix. In each row only one element is 1 indicating the

relevance grade of the corresponding documents, and the rest are zero.

ai The accuracy of assessor i.

g A relevance grade in {0, 1, ..., G}.
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pg The probability that a document drawn at random has a true relevance

grade of g.

πjgy The probability that the worker j provides a label y given that g is the

true relevance value of an arbitrary document.

njiy The number of times worker j provides label y for document i.
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List of Acronyms

Leif Azzopardi: Include a list of Acronyms

AP Average Precision

AR Average Reusability

EM Expectation Maximization

IQP Iterative Query Prioritization

IR Information Retrieval

MAP Mean Average Precision

MAR Mean Average Reusability

MV Majority Voting

QDP Query-Document Prioritization

QP Query Prioritization

QS Query Selection

RA Random Allocation

SA Score Adjustment
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Mathematical Background

* Matrix

A matrix is a rectangular array of numbers, symbols or expression that is defined in terms of rows and

columns. The individual items in a matrix are called elements.

* Column Vector

A column vector is a n× 1 matrix, i.e. a matrix consisting of a single column.

* Row Vector

A row vector is a 1× n matrix, i.e. a matrix consisting of a single row.

* The Mean of a Vector

The mean of a vector is the average of its elements. The mean of X vector with n elements is:

X̄ =
1

n

n∑
i=1

(Xi)

where Xi is the ith element of X vector.

* The Variance of a Vector

The variance of a vector is a measure of how the elements of the vector are spread around its mean. The

variance of X vector is calculated as:

σ2
X =

1

n

n∑
i=1

(Xi − X̄)2

If only m out of n elements of X are known, the sample variance is calculated as:

s2
X =

1

m− 1

m∑
i=1

(Xi − X̄)2
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* The Standard Deviation of a Vector
The standard deviation of a vector is the square root of its variance.

σX =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2

* The Covariance of two Vectors
Covariance measures how much the elements of two vectors correspond with each other. The covariance

between X and Y vector of the same dimension is

σ(X,Y ) =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

If only m out of n elements of X are known, the sample covariance is calculated as:

s(X,Y ) =
1

m− 1

m∑
i=1

(Xi − X̄)(Yi − Ȳ )

* Mean Squared Error
The mean squared error is the mean of squared difference between the elements of two vectors of the

same dimension. The mean squared error between X and Y is defined as:

MSE(X,Y ) =
1

n

n∑
i=1

(Xi − Yi)2

* Pearson Linear Correlation
Pearson Linear correlation measure the dependence between the elements of two vectors. It is calcu-

lated by dividing the covariance of two vectors by the product of their standard deviation. The Pearson

correlation between X and Y is defined as:

ρ(X,Y ) =
cov(X,Y )√

var(X)× var(Y )

If only m out of n elements of X and Y are known, the sample correlation coefficient is calculated as:

r(X,Y ) =

∑m
i=1 (Xi − X̄)(Yi − Ȳ )√∑m

i=1 (Xi − X̄)2
∑m
i=1 (Yi − Ȳ )2

* Kendall-τ Rank Correlation
Kendall-τ rank correlation measures the degree of correspondence between two rankings. Let RY and

RY be the rank of elements in X and Y respectively. If X has n elements, there are n(n−1)
2 pairs of

elements in total. Let nc be the number of pairs that are in the same order in both RX and RY . Also let

nd be the number of pairs that are in apposite order in RX and RY . The Kendall-τ correlation between
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RX and RY is calculated as:

τ(RX ,RY ) =
2(nc − nd)
n(n− 1)



Appendix D

Mathematical Background

* Matrix

A matrix is a rectangular array of numbers, symbols or expression that is defined in terms of rows and

columns. The individual items in a matrix are called elements.

* Column Vector

A column vector is a n× 1 matrix, i.e. a matrix consisting of a single column.

* Row Vector

A row vector is a 1× n matrix, i.e. a matrix consisting of a single row.

* The Mean of a Vector

The mean of a vector is the average of its elements. The mean of X vector with n elements is:

X̄ =
1

n

n∑
i=1

(Xi)

where Xi is the ith element of X vector.

* The Variance of a Vector

The variance of a vector is a measure of how the elements of the vector are spread around its mean. The

variance of X vector is calculated as:

σ2
X =

1

n

n∑
i=1

(Xi − X̄)2

If only m out of n elements of X are known, the sample variance is calculated as:

s2
X =

1

m− 1

m∑
i=1

(Xi − X̄)2



115

* The Standard Deviation of a Vector
The standard deviation of a vector is the square root of its variance.

σX =

√√√√ 1

n

n∑
i=1

(Xi − X̄)2

* The Covariance of two Vectors
Covariance measures how much the elements of two vectors correspond with each other. The covariance

between X and Y vector of the same dimension is

σ(X,Y ) =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

If only m out of n elements of X are known, the sample covariance is calculated as:

s(X,Y ) =
1

m− 1

m∑
i=1

(Xi − X̄)(Yi − Ȳ )

* Mean Squared Error
The mean squared error is the mean of squared difference between the elements of two vectors of the

same dimension. The mean squared error between X and Y is defined as:

MSE(X,Y ) =
1

n

n∑
i=1

(Xi − Yi)2

* Pearson Linear Correlation
Pearson Linear correlation measure the dependence between the elements of two vectors. It is calcu-

lated by dividing the covariance of two vectors by the product of their standard deviation. The Pearson

correlation between X and Y is defined as:

ρ(X,Y ) =
cov(X,Y )√

var(X)× var(Y )

If only m out of n elements of X and Y are known, the sample correlation coefficient is calculated as:

r(X,Y ) =

∑m
i=1 (Xi − X̄)(Yi − Ȳ )√∑m

i=1 (Xi − X̄)2
∑m
i=1 (Yi − Ȳ )2

* Kendall-τ Rank Correlation
Kendall-τ rank correlation measures the degree of correspondence between two rankings. Let RY and

RY be the rank of elements in X and Y respectively. If X has n elements, there are n(n−1)
2 pairs of

elements in total. Let nc be the number of pairs that are in the same order in both RX and RY . Also let

nd be the number of pairs that are in apposite order in RX and RY . The Kendall-τ correlation between
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RX and RY is calculated as:

τ(RX ,RY ) =
2(nc − nd)
n(n− 1)
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Experimental Data

Experiments were conducted on three experimental data: namely (i) TREC tracks, (ii) the INEX Books

Search track, and (iii) a Web dataset. We explain each test collection in details.

TREC Tracks
National Institutes of Technology (NIST) organizes a TREC workshop every year. A TREC workshop

consists of a set of tracks. Each track focuses on a particular retrieval task, e.g. the Ad-hod retrieval

task. The track organizers define the task based on recent challenges in IR community and design an

evaluation methodology to support research on the task. Several research groups participate in the track

to accomplish the task. The research groups are given a document collection and a set of queries (topics

in TREC terminology) created by a set of hired assessors. They index the corpus and run the queries

through their retrieval systems, producing sets of result sets that are returned to track organizers. The

track organizers use the pooling technique to select a subset of documents to be judged by the assessors

who create the queries. The assessors judge the pooled documents and create relevance judgments.

Finally, the track organizers assess the performance of participating systems and provide a summary of

the evaluation results.

The track organizers later release the document corpus and the query set along with the associated

relevance judgments as a new test collection. Also, the summary of evaluation results becomes publicly

available which can be used as a set of baseline results by other researchers who intend to evaluate their

retrieval model by using the same test collection.

We used two TREC tracks in this thesis, namely (i) TREC-8 Ad-hod track, (ii) TREC 2004 Robust

track, which will be explained in the following.

TREC-8 Ad-hoc Track

The Ad-hoc retrieval task assesses the performance of a retrieval system that searches a document corpus

using a set of queries. Participants use their retrieval systems to run the queries against the document

corpus and return top 1000 documents, retrieved for each query, to NIST to build associated relevance

judgments. Participants are free to use any retrieval model to search for the queries. Also, they are

allowed to have several runs of their system, each run with a specific setting. Participant can also use

any techniques to formulate the queries, e.g. query expansion techniques.
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However, the track organizers distinguish among two major categories of query formulation tech-

niques, automatic methods and manual methods. An automatic method is a means of formulating a

query with no manual intervention, but a manual method can use human experts to formulate a query.

Since manual method require considerably different amount of human effort, care has to be taken when

comparing results derived by manual method to the results of automatic ones.

Fifty queries (topics 401-450) were created for the TREC-8 Ad-hod task and the document col-

lection used in this task was the TREC Disks 4 and 5 corpus, excluding the Congressional Record

sub-collection.

TREC 2004 Robust Track

The robust retrieval track explores the performance of various retrieval methods by focusing on a par-

ticular set of queries known as “poorly performing queries”. A query is known as poorly performing if

it is not easy for retrieval systems to return its relevant documents. As such, systems’ performance on

poorly performing queries are usually lower than systems’ performance on other queries. The retrieval

task in the track is the Ad-hoc retrieval task where the evaluation methodology emphasizes a system’s

performance on poorly performing queries.

This track uses TREC disks 4 and 5, minus the Congressional Record as the document corpus. Also

the query set consists of 49 queries newly created for the task (the 50th was dropped because no relevant

documents were found), but also the 50 queries from the TREC 2003 Robust track, and 150 queries

from the Ad-hoc tracks of TREC-6 through TREC-8 (1997, 1998, and 1999). Relevance judgments are

created for the new queries. Also, relevance judgments created in the earlier tracks are reused for the

other queries. Finally, a variant of the mean average precision (MAP) measure, called GMAP [Rob06]

that uses a geometric mean rather than an arithmetic mean, is used to measure the systems’ average

performance by emphasizing on poorly performing queries.

INEX Tracks
Similar to TREC, INEX is a workshop that provides test collections for IR community. The main goal of

INEX is to promote the evaluation of focused retrieval by providing large test collections of structured

documents, standard evaluation metrics, and a forum for organizations to compare their retrieval systems.

Focused Retrieval consists of several tasks including Element Retrieval from an XML document, Page

Retrieval from books, as well as Question Answering.1 INEX organizers usually use the same evaluate

methodology, including the same pooling techniques and the rather same evaluate metrics, as being used

in TREC community.

INEX Books Search Track

The goal of the Books Search track is to investigate retrieval methods to support users in searching and

navigating the full texts of digitized books. The Book Search track in 2010 focused on the following

subtasks:2

1https://inex.mmci.uni-saarland.de/about.html
2http://www.inex.otago.ac.nz/tracks/books/books.asp
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• Prove It task: the task was to find evidence in books to confirm or refute a fact expressed as a

query. Participating systems had to search a collection of 50,00 digitalized books that contain

evidence regarding the query’s statement.

• Best Books for Reference task: the task was to find the most relevant books on the subject of a

given query.

• Active Reading task: the goal of this task was to conduct user studies into active reading, i.e.

exploring how and why readers use digitalized books in specific scenarios with a focus on eBook

usability.

• Structure Extraction task: the task was to build navigation tools for digitized books by constructing

a hyperlinked table of contents from OCR text and layout information for a sample of 1,000 books.

A Web Test Collection
A web test collection of a commercial search engine was used in Chapter 6 to assess the performance

of the adaptive query selection. The test collection used the whole web as the document collection. The

query set comprised a set of 1,000 queries randomly sampled from the search engine’s query log. Fifty

various runs of a learning to rank system [Liu09], trained with different feature sets, were considered as

participating systems (the details of the training phase is out of the scope of this work). For each run, a

random sample of g = {5, 10, 20, 30 or 40} features was selected from a given feature set. The run was

then optimized by using the common training set. For each query, the top 5 web pages returned by the

runs were pooled for relevance assessment. A set of assessors hired by the search engine company were

asked to create relevance judgments for each of the 1,000 queries. In total, 30,000 relevance judgments

were collected. Finally, the performance of each run was measured according to precision at position 5

(P@5).
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Measuring the Variability in Effectiveness

A typical evaluation of a retrieval system involves computing an evaluation metric, e.g. average pre-

cision, for each query of a test collection and then using the average of the metric, e.g. mean average

precision, to express the overall effectiveness. However, averages do not capture all the important aspects

of effectiveness and, used alone, may not be an informative measure of systems’ effectiveness. Indeed,

in addition to the average, we need to consider the variation of effectiveness across queries. We refer

to this variation as the variability in effectiveness. We explore how the variance of a metric can be used

as a measure of variability. We define a variability metric, and illustrate how the metric can be used in

practice.

Introduction
A common practice in a comparative evaluation of IR systems is to create a test collection comprising

a document collection, a set of queries and associated relevance judgments, and to then measure ef-

fectiveness of retrieval systems. A typical evaluation of a system involves computing an effectiveness

metric, e.g. average precision (AP), and then averaging across queries, e.g. computing the mean average

precision (MAP), to characterize the overall system effectiveness. However, when used alone, averages

do not capture all the important aspects of effectiveness. For example, averages may not reveal possibly

large variations in effectiveness across queries. We maintain that, in addition to average effectiveness,

one needs to consider the variation in effectiveness across queries. In particular, when two systems are

not distinguishable based on their average, we can use the variations to contrast them. We refer to the

cross-query variation as the variability in effectiveness.

There are various ways in which variability could be measured. We explore how the variance of

IR metrics, in particular, the variance in AP scores, can be used for this purpose. The IR community is,

of course, familiar with variance, and uses it routinely to assess whether the difference in the averages

of two systems’ effectiveness is significant or not. However, our use of variance is different, and we

illustrate this next.

Consider a scenario illustrated in Figure F.1a, in which we have two systems, A and B, each of

which exhibits the same MAP score, but the variance of AP scores for System A is much larger than

for System B. If the two systems are compared based on MAP alone, then a paired student t-test will
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Figure F.1: Two IR systems with (a) equal MAP which is larger than a threshold needed to satisfy a user,
and (b) two IR systems with equal MAP smaller than the threshold.

conclude that the two systems are equivalent. However, in practice, users may observe a significant

difference between the two systems. Qualitatively, Figure F.1a shows that System A either gives very

good or very poor responses to a query. In contrast, System B gives ”satisfactory” responses to all

queries, i.e. the responses of System B are neither very good nor very bad. Which system would a user

prefer? The answer to this question is not entirely straightforward.

Consider a scenario in which users require AP scores to exceed a minimum threshold in order to be

satisfied with the response of the system. This is depicted by the horizontal line in Figure F.1a. In this

case, System B always satisfies users, while half the time, System A fails to satisfy users, despite the

fact that both systems have the same MAP. In this case, the system with lower variability is preferred.

Now consider Figure F.1b, in which we again have two systems, C and D, with the same MAP score.

However, in this scenario, the MAP is lower than the threshold needed to satisfy users. In this case,

the system with lower variance, D, never satisfies users. In contrast, System C, with high variance does

satisfy users for some queries. Thus, the system with higher variability is preferred.

This example highlights three important points. First, the average of a metric does not always

provide sufficient information with which to judge a system. Second, variability can be used not just

for significance testing, but also to characterize systems with similar average performance. Third, a

preference for systems with high or low performance variability depends on the relative performance of

systems in comparison with a user’s satisfaction threshold.

Of course, this is an artificial example. However it is common for real systems to exhibit statistically

identical mean performance, yet exhibit different levels of variance. For example, TableF.1 shows two

experimental runs from the Robust track of TREC 2004 [Voo05]. For each of them we compute MAP

across 199 queries (351-450 and 600-700), removing one query that had no relevant documents in the

collection. We also calculate the standard deviation of AP scores as our measure of variability. The two

runs have the same MAP value but different standard deviations. Using the paired t-test reveals that there

is no significant difference in the MAP values while applying a statistical test to assess the equality of

standard deviation confirms that the difference in the standard deviations is statistically significant.
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Table F.1: Two experimental runs from the robust track of TREC 2004. The corresponding MAP values
and standard deviations of AP scores, SD (AP), are measured over 199 queries.

Runs MAP SD(AP) Paired t-test Levene’s test
uogRobSWR5 0.304 0.24

p = 0.96� 0.05 p = 0.007� 0.05NLPR04clus10 0.304 0.20

Background
We first briefly discuss related work and then introduce two statistical significant tests used to compare

variabilities in systems’ effectiveness.

Related Work

The topic of variability in effectiveness has received little attention in IR research. Perhaps, the most

of prior work related to variability is to do query expansion. Query expansion methods typically yield

good improvements in mean average precision but are unstable and have high variance across queries

[CTC07]. Collins-Thompson [CT09] proposed a model of evaluating effectiveness of query expansion

methods by using a risk-reward tradeoff where reward was defined as the percentage gain for MAP

relative to the original, un-expanded query, and the risk reflected the number of relevant documents

that were lost due to the expansion. Such a risk measurement is solely based on the number of relevant

documents. In contrast, the percentage MAP gain depends on not only the number of relevant documents

retrieved but also the ranks of them. Perhaps the variability in effectiveness can be an alternative measure

of risk where both number of relevant documents and corresponding ranks are taken into account.

C.T. Lee et al. [LVMR+09] proposed a novel weighted average (generalized adaptive-weight mean)

to rank systems’ effectiveness where the weights reflected the ability of the test topics to differentiate

among the retrieval systems. The variance of the AP scores was indirectly incorporated into measuring

systems’ effectiveness. In particular, they used the Euclidean distance to characterize the dispersion of

AP scores. However, effectiveness of their system ranking and comparison was not evaluated in detail.

We observe that the performance scores (AP values) are bounded in [0, 1] and expect that the approach

will be affected by the boundary conditions, 0 and 1. We propose a way to overcome the issues of a

bounded score distribution and its effect on the variance.

Statistical Significance Tests

Tests of statistical significance have been thoroughly discussed in the IR literature. The common statis-

tical significance tests used in IR experiments are student’s paired t-test, wilcoxon signed rank, and sign

test. The assumptions which these tests are based on were discussed in [Hul93]. In addition, the use

of two sampling-based tests, bootstrap shift method and fisher’s randomization, in IR was discussed in

[SAC07]. Sakai [Sak06] also discussed the use of paired bootstrap test in IR which was a combination

of the bootstrap shift method and student’s t-test.

These tests, for example, make use of the variance of AP scores to determine whether the difference

in two MAP scores is statistically significant. Here, we are interested in determining whether the dif-

ference in variabilities, as measured by variance or standard deviation, of two systems’ effectiveness is
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statistically significant. The statistical community has, of course, addressed this and we briefly describe

two tests, the F-test and Levene’s test.

F-test

This test first defines a ratio of the standard deviations of two systems’ effectiveness measured across a

set of queries. Therefore, if σA and σB are the standard deviations of AP scores of systems A and B, the

ratio is calculated as:

F =
σA
σB

(F.1)

In the F-test the null hypothesis and the alternative hypothesis is defined as below:

H0 : σA = σB (the null hypothesis)

H1 : σA 6= σB (the alternative hypothesis)

The more the ratio deviates from 1, the stronger the evidence for unequal variances. The null hypothesis

is rejected if the ratio was larger than a critical value. The critical value is adjusted based on a significance

level, e.g. α = 0.05 or α = 0.01.

There is a limiting condition in F-test assuming that the distribution of AP scores is normal. How-

ever, this assumption may not be true in practice. In order to deal with this restriction, we also consider

the Levene’s test which does not have such an assumption.

Levene’s Test

Levene’s test is used to assess whether k sample groups have the same standard deviation [Lev60].

Levene’s test does not have the normality assumption. The statistic is obtained from one-way analysis

of variance (ANOVA), where each observation, in our case each AP score, is replaced with its absolute

deviation from the associated group’s mean. In our case the group mean is the MAP value. Let zij =

|APij −MAPi|, where APij is the measured AP value of the ith system on the jth query. Levene’s test

defines a ratio as:

W0 =

∑
i ni(z̄i − z̄)2 ×

∑
i (ni − 1)

(g − 1)× (
∑
i

∑
j (zij − z̄i)2)

(F.2)

where g is the number of sample groups which in our case is 2 indicating the number of systems, and ni

is the number of observations in the ith group (in our case it is equal to the number of queries):

z̄i =

∑
zij
ni

and z̄ =

∑∑
zij∑
ni

The null hypothesis is rejected if W0 was larger than a critical value that is adjusted with regard to a

significance level. Replacing the group mean, MAPij , with the median of observations, median(AP), in

forming zij defines W50. We use W50 instead of W0 when the AP distributions suffer from skewness.
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Figure F.2: The standard deviation of AP values (SD (AP)) versus MAP. The standard deviation is
bounded in a semicircle with center (0.5, 0.0) and radius 0.5.

Experiments
We examine the performance of various systems involved in the Web and Terabyte tracks of TREC 2004.

This study reveals a curious phenomenon - systems with average performances, measured by a bounded

IR metric, e.g. MAP, near to 0.5 have larger variances than systems with average performances near to

each of the two boundaries, 0 and 1. This phenomenon is an artifact of the fact that the metric’s scores

are bounded in [0,1].

We proposes two transformations of the metric’s scores in order to eliminate this artifact. We then

considers all pairs of systems participating in two test collections of TREC 2004: the Web and Robust

tracks. Student t-tests show that 26% and 28% of pairs, respectively, are ties, i.e. there is no statistically

significant difference in the averages of transformed AP scores. If the variability in effectiveness of these

ties is examined, then the F-test shows that 33% and 34% of ties have statistically significant differences

in variance. When Levene’s test is used, 47% and 38% of ties have statistically significant differences in

variance. Finally, We explore the effect that the size of a query set has on the system comparison using

variability in effectiveness. We observe that one needs to consider a sample of 90 queries to obtain an

error rate smaller than 0.05.

The Variance of a Bounded Metric

Figure F.2 plots the standard deviation in AP scores as a function of MAP, for systems participating in

the Web and Terabyte tracks of TREC 2004. The Web track involves 74 systems and 225 queries. The

Terabyte track involves 70 systems and 49 queries.

We note that some systems have similar MAP values. Thus, it would be beneficial to use additional

criteria, e.g., variability in effectiveness, to differentiate their performance. This is discussed shortly.

However, the most striking feature in Figure F.2 is an unexpected trend: the monotonic relationship

between standard deviation and MAP, i.e. the larger the MAP value, the larger the variance in AP scores.

We believe this relationship is due to the bounded nature of AP metric, i.e. the fact that the metric’s

values fall within [0,1]. This bounds the standard deviation of AP scores to a semicircle as shown in
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Figure F.2 and proven as below.

Lemma: For all data sets like X = {x1, x2, ..., xN} where 0 ≤ xi ≤ 1, the corresponding mean-

standard deviation values, (X̄, Sx), are confined within a semicircle with center (0.5, 0) and radius

r=0.5:

(X̄ − 1

2
)2 + S2

x ≤ (
1

2
)2;

X̄2 + S2
x ≤ X̄ (F.3)

Proof: with reference to the mean and variance:

X̄ =
1

N

N∑
i=1

xi (F.4)

S2
x =

1

N

N∑
i=1

(xi − X̄)2 =
1

N

N∑
i=1

x2
i − 2× X̄(

1

N

N∑
i=1

xi) + X̄2 =
1

N

N∑
i=1

x2
i − X̄2

therefore:

X̄2 + S2
x =

1

N

N∑
i=1

x2
i (F.5)

x2
i ≤ xi because 0 ≤ xi ≤ 1; therefore:

1

N

N∑
i=1

x2
i ≤

1

N

N∑
i=1

xi = X̄ (F.6)

considering (F.5) and (F.6) together:

X̄2 + S2
x =

1

N

N∑
i=1

x2
i ≤

1

N

N∑
i=1

xi = X̄

then we reach to (F.3):

X̄2 + S2
x ≤ X̄

Therefore, the retrieval system with MAP close to one of the boundaries, 0 or 1, are more likely to

have a smaller variance than those with MAP near to the center, 0.5. For this reason using the standard

deviation of the raw AP scores is not a reliable measure of variability. In fact, this is true for any other

bounded IR metrics, e.g. the reciprocal rank, as shown in Figure F.3. The figure shows how the variance

decreases as the MRR increases above 0.5. Again, this is expected since now the variation above the

mean is limited by the upper bound of one on reciprocal rank.

In order to overcome this issue, we consider functions that map values from [0,1] to (−∞,+∞).

We favor mappings that produce a symmetric distribution in the transformed space, akin to the nor-

mal distribution, if possible. We can then define the variability in effectiveness as the variance of the

transformed values of a metric.
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Figure F.3: MRR versus the standard deviation of RR values from: (a) runs participating in the Web
track 2004, (b) runs participating in the Terabyte track 2004.

The Variability of Transformed Scores

We illustrate our approach by considering two transformations that have been used in IR and observe

the properties of the transformed scores. The first is the logit function used by Cormak and Lynam

[CL06] as a parametric estimate to deal with the asymmetric AP distribution. The logit is defined as:

logit(x) = log( x
1−x ) for x in (0,1). The boundary points, 0 and 1, are replaced by ε and 1−ε respectively,

for a small value of ε > 0, and then transformed, letting ε→ 0.

The second transformation is the standardized score or z-score whose use in IR was motivated by

Webber et al. [WMZ08a]. It is defined as z = (x−x̄)
σ , where x is a metric’s score, e.g. an AP score.

In addition, x̄ and σ are the average and standard deviation of a set of scores measured across a set of

retrieval systems on a fixed query. Hence, for a particular query it is defined as

z =
(AP −Mean(AP )systems)

SD(AP )systems
(F.7)

In the following, we observe several properties of the logit(AP) and the standardized z-scores.

Boundary Values and Score Distributions

Figure F.4 shows three runs of the Web track collection: (a) with a low MAP value, (b) with a medium

MAP value, and (c) with a high MAP value. The distributions of the AP scores before and after both the

logit and z-score transformations are presented as frequency histograms. The logit and z-score transfor-

mations differ significantly in the way they handle boundary values. The logit transformation transforms

the boundaries to extreme values in the transformed space. This is observed by the extreme values at

each end of the distributions in the middle column. In contrast, the z-score transformation disperses

the boundaries smoothly as illustrated in the right column. In addition, the z-score transformation helps

eliminate the source of variance coming from query difficulty1 before measuring the variability of system

effectiveness itself.

We now consider the variability in a system’s effectiveness as the standard deviation of the trans-

formed AP values. Let MLAP refer to the mean of the logit-transformed AP values and let MSAP refer

to the mean of the standardized z-transformed AP values. Figure F.5 shows the scatterplots of the stan-

1A query is regarded as difficult if the range of effectiveness scores measured across a set of systems is small and near to zero.
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Figure F.4: The frequency distributions before and after transformation of three runs in Web track. (a) a
run with a low MAP, (b) a run with a medium MAP, (c) a run with a high MAP.

dard deviations in transformed AP values as a function of their mean values, MLAP and MSAP. As seen

in the figure, the logit and z-score transform the scores in different ranges. In addition, there is no longer

a monotonic relationship between the values of mean and variability.

Variability as a Tie Breaker

We consider all pairs of the top 75% (ordered by MAP) of systems participating in either the Robust or

Web track of TREC 2004. We compare systems based on the mean of the standardized z-scores (MSAP).

We use the paired t-test to measure the significance of MSAP differences. We set the significance level

to 0.05. For all the ties we use the F-test and Levene’s test to investigate the proportion of ties for which

the variabilities in effectiveness’s scores are significantly different.

Figure F.5: Variability in effectiveness versus mean of transformed AP values: logit (a) and the z-score
transformation (b).
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Table F.2: The variability in effectiveness as a tie breaker: number of pairs, ties and broken ties in two
tracks of TREC 2004.

Collections Pairs Status Ties Broken ties
F-test Levene

Robust 3321 before transformation 997 (30%) 0 (0%) 106 (11%)
after transformation 857 (26%) 280 (33%) 404 (47%)

Web 1485 before transformation 469 (31%) 1 (0.002%) 21 (0.04%)
after transformation 415 (28%) 140 (34%) 158 (38%)

foreach query set size c from 10, 20, 30, ... , 100 {
set the counters to 0;
foreach TREC test collection t {
foreach pair of systems A and B from track t {

foreach trial from 1 to 50
select two disjoint sets of queries X and Y of size c from t;
if ( the difference between the variabilities is significant){

d_X=SD(A,X)-SD(B,X);
d_Y=SD(A,Y)-SD(B,Y);
increment counter;
if(d_X * d_Y < 0) {

increment swap counter; } } }}
error-rate (c) =swap counter /counter;}

Figure F.6: Calculating error rates. SD(A, X) is the standard deviation of AP scores of system A mea-
sured on the query Set X.

As seen in Table F.2 for the Robust track, 30% of pairs are considered ties, when using AP score, and

26% are considered ties in the transformed space. Interestingly, before transformation, the F-test cannot

distinguish any statistical difference in variability, and the Levene’s test can only break 11% of the ties.

In contrast, after transformation into the z-space, the F-test can distinguish between 33% and Levene’s

test can distinguish between 47% of the tied pairs. A similar effect before and after transformation is

observed for the Web track.

The Effect of Query Set Size on Measuring Variability in Effectiveness

If we are to use variability to characterize systems, it will be useful to know how many queries are needed

to reliably compare two systems in terms of variability in effectiveness. Indeed, we will need to know

how likely a decision would change if we compare systems using a different query set. This performance

variation across query sets has previously been studied in the context of average performance [VB02].

We perform the same experiment to compare variabilities in systems’ effectiveness.

In our experiment, we first fix the query set size, and then compute the variabilities in effectiveness

of a pair of systems, A and B. Let us assume that System A is less volatile than System B based on

this measurement. We then estimate the probability of a changed decision, i.e. finding System B to be

less volatile than System A. We estimate this probability by comparing the two systems across several

trials that use different query sets and then counting how many times the preference decision changes.

Finally, to estimate the average probability of changing a decision, we repeat the process on different

pairs of systems. This average probability (across systems) is called the error rate. The whole process
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Figure F.7: Error rate versus query set size using two TREC test collections: web track and robust track
of TREC 2004.

is repeated for different sizes of query sets.

The algorithm for computing the error rate is shown in Figure F.6. It is based on the algorithm

described in [VB02]. In our experiment, we compute the error rate for all the pairs regardless of their

absolute differences. We run 50 different trials using different combinations of queries in the two dis-

joint query sets. Furthermore, as Sanderson and Zobel [SZ05] suggested, we only consider pairs with

statistically significant differences in variability, as measured by Levene’s test with a significance level

of 0.05.

Once again we use the runs participating in the Robust track of TREC 2004 using queries 351-450

and 601-700 (199 queries), and the runs participating in the Web track (225 queries). In this experiment,

only the top 75% of systems (ranked by MAP) are considered to prevent the poorly performing runs from

having an effect on our conclusion [VB02]. Thus, our data collection consists of 135 runs and 4806 pairs

of runs. Note that we transform AP scores using the z-score before measuring variability. The resulting

error rate is shown in Figure F.7. As expected, the curve shows that the error rate decreases as the query

set size increases. The experiment indicates that 90 queries are required to obtain an error rate less than

0.05. With 80 queries the measured error rate is 0.052 and with 90 queries it is 0.038.

Conclusion
The average of effectiveness, measured across a query set, does not capture all the important aspects

of effectiveness and, used alone, may not be an informative measure of a system’s effectiveness. We

defined variability in effectiveness as the standard deviation of effectiveness scores measured across

a set of queries. We proposed that a mean-variance graph helps demonstrate effectiveness in a two-

dimensional space rather than ranking systems based on their average effectiveness. Our investigation

revealed that the bounded values of a metric yield a curious phenomenon where values of average around

0.5 are accompanied with higher variances. We attributed this to the fact that the metric values fall

within [0, 1]. This bounds the standard deviation of the scores to a semicircle. Hence, retrieval systems
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with average effectiveness close to each of the two boundaries have smaller variances than those with

average away from the boundaries. However, there might be also other reasons. For example, when

the distribution is not symmetric, standard deviation cannot explain the dispersion properly. In Figure

F.3 it was shown that the distributions of AP scores were skewed toward the upper boundary, 1, and was

completely asymmetric. We used two transformation methods to deal with this problem and showed how

they differentiate systems effectiveness with the same average score. We finally discussed the minimum

sample size required to estimate the variability in effectiveness. In our experiments we observed that 90

queries were required to obtain an error rate less than 0.05.

We only considered standard deviation as the measure of variability while it would be interesting

to consider other measures, e.g. interquartile range and median absolute deviation. In addition, there are

several ways to transform scores in a more symmetric space. For example, one might consider both logit

and z-score transformation together. That is, the AP scores are first transformed by logit to (-∞ , +∞)

and then z-score is used to deal with extreme values. As truly shown by Lin and Hauptmann [LH05],

the minimum sample size varies across pairs of systems, and it depends on the difference between two

systems’ average effectiveness scores and corresponding variances.

Mean and variability can be used to evaluate retrieval systems. One may define a new metric as

a function of both mean and variability. Such a metric helps rank systems’ effectiveness in a one-

dimensional space by considering both mean and variability in effectiveness. In addition, by a hypothet-

ical scenario we showed that how a threshold of user satisfaction helps make preference between volatile

and stable systems. However, we need to at least deal with two issues here. Firstly, in order to measure

users’ satisfaction we need to evaluate systems from users’ perspective, i.e. directly asking users to ex-

press the amount of satisfaction. Such a user-oriented evaluation method provides accurate results but

it is extremely expensive and difficult to do correctly. We can also model users’ satisfaction by using

implicit feedbacks of users, e.g. click-through data in a search engine query log. This method is less

expensive but inaccurate. Secondly, users’ satisfaction threshold may vary across queries. Indeed, the

scenario described in the introduction section was simplified by considering the threshold as a constant

value. However, in practice, the threshold varies across queries since it is highly depended on users’

information needs and their expectation of the result set. We will consider these issues for future work.
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Nataša Milic-Frayling, and Aleksandar Ignjatovic. Measuring system performance

and topic discernment using generalized adaptive-weight mean. In CIKM ’09: Pro-

ceeding of the 18th ACM conference on Information and knowledge management,

pages 2033–2036, New York, NY, USA, 2009. ACM.

[MK60] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and information

retrieval. J. ACM, 7(3):216–244, 1960.

[MoWMMRCC67] O.L. Mangasarian, University of Wisconsin-Madison. Mathematics Research Cen-

ter, and WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CEN-

TER. Nonlinear Fractional Programming. MRC technical summary report. Math-

ematics Research Center, University of Wisconsin, 1967.

[MR07] Stefano Mizzaro and Stephen Robertson. Hits hits TREC: exploring IR evaluation

results with network analysis. In Proceedings of the 30th annual international ACM

SIGIR conference on Research and development in information retrieval, SIGIR

’07, pages 479–486, New York, NY, USA, 2007. ACM.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA, 2008.

[Mur88] K.G. Murty. Linear complementarity, linear and nonlinear programming. Sigma

series in applied mathematics. Heldermann, 1988.



137 Bibliography

[MW10] Winter Mason and Duncan J. Watts. Financial incentives and the ”performance of

crowds”. SIGKDD Explor. Newsl., 11(2):100–108, May 2010.

[MZ08] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of re-

trieval effectiveness. ACM Trans. Inf. Syst., 27(1):1–27, 2008.
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