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ABSTRACT
We have developed the initial version of a new particle-by-particle adaptation of the made-to-
measure (M2M) method, aiming to model the Galactic disc from upcoming Galactic stellar
survey data. In our new particle-by-particle M2M, the observables of the target system are
compared with those of the model galaxy at the position of the target stars (i.e. particles).
The weights of the model particles are changed to reproduce the observables of the target
system, and the gravitational potential is automatically adjusted by the changing weights of
the particles. This paper demonstrates, as the initial work, that the particle-by-particle M2M
can recreate a target disc system created by an N-body simulation in a known dark matter
potential, with no error in the observables. The radial profiles of the surface density, velocity
dispersion in the radial and perpendicular directions, and the rotational velocity of the target
disc are all well reproduced from the initial disc model, whose scalelength is different from
that of the target disc. We also demonstrate that our M2M can be applied to an incomplete
data set and recreate the target disc reasonably well when the observables are restricted to a
part of the disc. We discuss our calibration of the model parameters and the importance of
regularization.
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1 IN T RO D U C T I O N

There is still a gulf between our theoretical galaxy models and the
observational data, that must be bridged before we can have a fully
dynamical model of the Milky Way which is consistent with its
observed properties. The major developments have been localized
to certain regions of the Milky Way and the structure of many other
regions of the Milky Way remains largely uncertain.

For the last two decades, Galactic astronomy has been relying
on Hipparcos data (e.g. Perryman et al. 1997). However, new
space-based astrometry missions are going ahead in the near fu-
ture, and ground-based surveys, e.g. PanStaars, (e.g. Kaiser et al.
2010), VISTA (Visible and Infrared Survey Telescope for Astron-
omy; e.g. Minniti et al. 2009), LSST (Large Synoptic Survey
Telescope; e.g. Ivezić et al. 2008), SEGUE (Sloan Extension for
Galactic Understanding and Exploration; e.g. Yanny et al. 2009),
APOGEE (Apache Point Observatory Galactic Evolution Experi-
ment; e.g. Allende Prieto et al. 2008) and RAVE (e.g. Steinmetz
et al. 2006), will add significant value to these missions, which
will expand our knowledge of the Milky Way. The next space-
based surveys are Nano-JASMINE and European Space Agency’s
cornerstone mission, Gaia. Nano-JASMINE is a demonstration
mission, but it will likely improve on Hipparcos’ proper mo-
tions. Gaia is expected to launch in 2013 and will operate for
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five years, with a possible one or two year extension. Gaia will
provide an unprecedentedly large amount of information with which
to build a more accurate model of the Milky Way.

Constructing accurate models of the Milky Way is important for
allowing us to understand and compensate for observational bias,
which are present in all existing Galactic surveys due to dust, gas
and our location within the disc. They also allow us to tie together
data from different surveys, assembling them into a single model.
There are three different types of galaxy model. Mass models only
describe the density distribution and the galactic potential (e.g.
Klypin, Zhao & Somerville 2002). Kinematic models specify the
density and velocity distributions, but lack the constraint that the
model must be in a steady state in the galactic potential (e.g. Robin
et al. 2004). A model which also satisfies this criterion is known as
a dynamical model (e.g. Widrow, Pym & Dubinski 2008). There are
arguably five different types of dynamical galaxy model, although
sometimes where the line of distinction is drawn can be ambiguous.

Moment-based methods find solutions of the Jeans equation that
best fit the observed moments and minimize χ2 (e.g. Young 1980;
Binney, Davies & Illingworth 1990; Magorrian & Binney 1994;
Magorrian 1995; Cappellari 2008; Cappellari et al. 2009). The main
drawback of this method is that there is no guarantee that there will
be a positive distribution function with the required velocity mo-
ments. It is also usually restricted to spherically symmetric models
as the symmetry allows simplified assumptions to be made. Distri-
bution function based methods fit the distribution function f (r, v) to
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the data directly. The methods have been applied to spherical or in-
tegrable systems (e.g. Dejonghe 1984; Bishop 1987; Gerhard 1991;
Hunter & Qian 1993; Merritt & Tremblay 1994; Kuijken 1995;
Merritt 1996; De Bruyne, Leeuwin & Dejonghe 2000). Perturbation
theory can be used to extend the method to near integrable poten-
tials (e.g. Matthias & Gerhard 1999; Binney 2010). Schwarzschild’s
method works by computing a large number of orbits evolved over
many orbital periods in a fixed potential. Information is collected
in an orbit library, and it is weighted to produce the best fit to the
target model (e.g. Schwarzschild 1979, 1993; Cretton et al. 1999;
Gebhardt et al. 2003; Krajnović et al. 2005; Cappellari et al. 2006;
Thomas et al. 2009). This method has the advantage of not requir-
ing the distribution function or the other integrals of motion, and
rarely, the distribution function may even be recovered (Häfner et al.
2000). This method is not restricted by symmetry, but due to com-
plexity it is usually only used for axisymmetric models. Recently,
van den Bosch et al. (2008) have developed a triaxial Schwarzschild
method and applied it to NGC 4365. Torus methods are very simi-
lar to orbit-based methods, and are often labelled within the same
category. The key difference between torus modelling and orbit-
based modelling is that while in orbit-based modelling, the orbits
are time series of phase space points, in torus modelling, these are
replaced by orbital tori (e.g. Binney 2012a,b; McMillan & Binney
2012). For a more detailed explanation and a list of advantages of
torus methods over orbit methods, see Binney & McMillan (2011).
Finally N-body models, which are the simplest to construct, are
based on gravitational attraction between ‘N’ bodies and can be
collisional or collisionless. The key assumption of stellar dynamics
in the Galaxy is that these stellar systems are collisionless; hence,
collisionless N-body models are good approximations for galactic
dynamics (e.g. Dehnen & Read 2011).

We will demonstrate an N-body method that allows us to recover
a model of the desired galaxy, with some flexibility on the initial
conditions. Our method is based upon the original made-to-measure
(M2M) method by Syer & Tremaine (1996), which is capable of
constructing N-body equilibrium systems by maximizing a linear
combination of the entropy, and minimizing χ2, the mean-square
deviation between the observables and the model. The M2M algo-
rithm has been improved upon by de Lorenzi et al. (2007), Dehnen
(2009), Long & Mao (2010) and Morganti & Gerhard (2012) and
has been used for a variety of tasks, as detailed below. Bissantz,
Debattista & Gerhard (2004) apply the M2M algorithm from Syer
& Tremaine (1996) to the Milky Way for the first time, and create
a stellar dynamical model of the Milky Way’s barred bulge. The
model is constrained however by a previously constructed model of
the Milky Way from Bissantz & Gerhard (2002), so this new model
will be biased towards any inaccuracies from this previous model.
The next generation of Milky Way model should be built directly
from observational data of the Milky Way, and flexible enough for
fitting heterogeneous data.

NMAGIC, developed by de Lorenzi et al. (2007), is the first algo-
rithm to improve upon the initial M2M algorithm by adding the
ability to include observational errors in the constraints. This is an
important step forward as it allows real observational data to be
used as constraints. NMAGIC was also the first M2M algorithm to
use velocity constraints, in the form of line-of-sight spectra. NMAGIC

has now been applied to several observed galaxies (e.g. de Lorenzi
et al. 2008, 2009; Das et al. 2011). Morganti & Gerhard (2012) also
made a recent improvement to the field of M2M modelling, by de-
veloping moving prior regularization (MPR) which can replace the
global weight entropy regularization. Morganti & Gerhard (2012)
show that MPR is beneficial to accuracy and smoothness in phase

space distributions, and in some circumstances can converge to
a unique solution, independent of the choice of the initial model.
To examine M2M’s performance against previous methods, Long &
Mao (2012) have performed a direct comparison between M2M and
the better known Schwarzchild method with regard to calculating
the mass-to-light ratios of several elliptical and lenticular galaxies.

These previous M2M algorithms use a distribution function or
binned density distribution. However, the data that Gaia and the
related surveys return will be in the form of individual stellar data.
Therefore, we have designed a particle-by-particle M2M algorithm
that compares the observables at the location of each star (or the
target particle) with the model observables at the same locations,
and adjusts the weights in the same fashion as the original algorithm
from Syer & Tremaine (1996). In this paper, we present proof of
concept of the particle-by-particle M2M by recreating disc galax-
ies, generated with a Tree N-Body code, GCD+ (Kawata & Gibson
2003). Our algorithm uses a self-consistent potential, which evolves
over time along with the particle weights. We also show a model
constructed from a partial target data set, demonstrating that the
observables of the target galaxy do not have to cover the whole
galaxy for M2M to work. This is the first step towards the real ob-
servational data from Galactic surveys, where the information will
be provided for a limited region of the sky, with a more complicated
selection function due to the dust extinction, crowding and stellar
populations. The paper is organized as follows. Section 2 describes
the traditional M2M method and Section 3 describes the methods
behind our particle-based adaptation. Section 4 shows the perfor-
mance of the particle-by-particle M2M for recreating the target disc
system. In Section 5 we discuss the accomplishments of this paper,
and describe the next stages of our work.

2 TH E M 2 M A L G O R I T H M

In this section, we will give a brief description of the M2M algorithm
as detailed in Syer & Tremaine (1996), de Lorenzi et al. (2007) and
Long & Mao (2010), which forms the base for our work. The M2M
algorithm works by calculating observable properties (observables
hereafter) from the model and the target, and then adapting particle
weights such that the properties of the model reproduce those of the
target. The target can be in the form of a distribution function, an
existing simulation or real observational data. The model is always
an N-body system.

The observables of the target system are described by

Yj =
∫

Kj (z)f (z) d6 z, (1)

where j represents each individual observable, z = (r, v) are the
phase space coordinates, f (z) is the distribution function of the tar-
get galaxy and Kj is a known kernel. Observables can come in many
forms, including surface or volume densities, surface brightness
and line-of-sight kinematics. The corresponding observable for the
model takes the form

yj =
N∑

i=1

wiKj [zi(t)], (2)

where wi are the particle weights and zi are the phase space coor-
dinates of the model’s ith particle. We then calculate the difference
in the observables of the target and the model,

�j = yj (t) − Yj

Yj

. (3)
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We then use this �j to determine the so called force of change with
the equation

d

dt
wi(t) = −εwi(t)

∑
j

Kj [zi(t)]

Zj

�j (t), (4)

where Zj so far is an arbitrary constant, and the factor Ki/Zj can
be thought of as the degree to which the ith particle contributes to
the jth observable. ε is a parameter enabling us to control the rate
of change. The linear dependence of equation (4) upon wi, coupled
with the provision that a small enough ε is used, ensures that the
weights do not become negative. Syer & Tremaine (1996) show
a proof of convergence for equation (4) providing that the system
starts close to the target.

If N > J, i.e. the number of the model particles, N, greatly exceeds
the quantity of available constraints, J, the differential equation (4)
is ill conditioned. Syer & Tremaine (1996) suggest removing this ill
conditioning by introducing entropy, by maximizing the function

F = μS − 1

2
χ2, (5)

where

χ2 =
∑

j

�2
j , (6)

and μ is a parameter to control the regularization. The entropy is
given by

S = −
∑

i

wi ln

(
wi

ŵi

)
, (7)

where ŵi are the priors, a pre-determined set of weights, normally
identical to each other such that ŵi = M/N , where M is the total
mass of the system and N is the number of particles. The system
can be normalized (de Lorenzi et al. 2007) such that

N∑
i=1

wi = 1. (8)

This is useful if the total mass of the target system is one of the
constraints. We do not impose this restriction as we wish to be able
to create a system with a different total mass from the initial model.

Once the new entropy term is introduced to the force of change,
equation (4) is replaced by

d

dt
wi(t) = −εwi(t)

⎡
⎣∑

j

Kj [zi(t)]

Yj

�j (t) − μ
δS

δwi

(t)

⎤
⎦ , (9)

or

d

dt
wi(t) = − εwi(t)

⎡
⎣∑

j

Kj [zi(t)]

Yj

�j (t)

+ μ

(
ln

(
wi(t)

ŵi

)
+ 1

)⎤
⎦, (10)

for the most complete form. Note that Zj has been replaced by Yj

due to the maximization of equation (5).
It is shown in Syer & Tremaine (1996) and de Lorenzi et al.

(2007) that fluctuations in equation (3) may be reduced by employ-
ing temporal smoothing, effectively boosting N without drastically
increasing computation time. This is achieved by replacing �j(t) in
equation (4) with �̃j (t), where

�̃j (t) = α

∫ ∞

0
�j (t − τ )e−ατ dτ, (11)

with α being small and positive. This �̃j (t) can be calculated from
the differential equation

d�̃(t)

dt
= α(� − �̃). (12)

This temporal smoothing effectively increases the number of parti-
cles from N to

Neff = N
t 1

2

�t
, (13)

where �t is the length of the time step and t1/2 = (ln2)/α is the
half life of the ghost particles. Syer & Tremaine (1996) show that
excessive temporal smoothing is undesirable, and should be limited
to α ≥ 2ε.

The parameters ε, μ and α must be determined via param-
eter search. We will discuss our choice of these parameters in
Section 3.4.

3 PARTI CLE-BY-PARTI CLE M2M

This section describes our original adaptation to the M2M algo-
rithm. The majority of the methodology remains the same as de-
scribed in Section 2, with the most substantial difference involving
the smoothed particle hydrodynamics (SPH) kernel (e.g. Gingold
& Monaghan 1977; Lucy 1977), which will be described in Sec-
tion 3.1. Syer & Tremaine (1996) used a kernel where they divide
the coordinate space into bins. For example, for the density at the
jth bin with volume Vj, the kernel, Kj (r i), is set to be Mtot/Vj if
r i is within the jth bin, where Mtot is the total mass of the system
and equation (8) is satisfied. If r i is outside the jth bin, Kj (r i) = 0.
Because Kj (r1) and Kj (r2) are the same if r1 and r2 are in the
same bin, this limits the resolution to the bin size. However, as
mentioned in Section 1, our ultimate target is the Milky Way, and
the observables are not binned data, but the position and velocity of
the individual stars which are distributed rather randomly. To max-
imize the available constraints, we evaluate the observables at the
position of each star and compare them with the N-body model, i.e.
in a particle-by-particle fashion. To this end, we introduce a kernel
often used in SPH, W(r, h), which is a spherically symmetric spline
function given by

W (r, h) = 8

πh3

×

⎧⎪⎪⎨
⎪⎪⎩

1 − 6(r/h)2 + 6(r/h)3 if 0 ≤ r/h ≤ 1/2,

2[1 − (r/h)]3 if 1/2 ≤ r/h ≤ 1,

0 otherwise

(14)

as shown in Monaghan & Lattanzio (1985), where r =| r i − rj |.
Note that in our particle-by-particle M2M the kernel, W(r, h), does
not explicitly include the total mass, Mtot, because we wish to
eventually apply it to the Milky Way, whose mass is unknown.
Therefore, the SPH kernel in equation (14) is not equivalent to the
M2M kernel, Kj, in Section 2.

Below, we describe our particle-by-particle M2M, considering
that the target system is an N-body system whose particle position
and velocity are known without any error. Of course in the real
data of the Galaxy, there are complicated observational errors and
selection functions, which often depend on stellar population and
dust extinction. In this paper, we ignore these and consider an
idealized system for a target. As described in Section 1, the aim
of this paper is to demonstrate how our new M2M works and the

 at U
niversity C

ollege L
ondon on O

ctober 6, 2014
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


A Particle-By-Particle M2M algorithm 1931

potential of future application to the Galactic disc. We below assume
that the target system consists of a single population, which we shall
refer to as particles, and whose position and velocity are known
without errors.

3.1 Method

We use the kernel of equation (14) to calculate the density at the
target particle locations, rj , of both the target and the M2M model.
Hereafter, we replace the particle weights, wi, with their masses mi

due to our adoption of self-gravity in the particle-by-particle M2M.
For example, the density of the target at rj is evaluated by

ρt,j =
N∑

k=1

mt,kW (rkj , hj ), (15)

where mt, k is the mass of the target particle, rkj =| rk − rj | and hj

is the smoothing length determined by

hj = η

(
mt,j

ρt,j

)1/3

, (16)

where η is a parameter and we have set η = 3. In SPH simulations,
a value of η between 2 and 3 is often used, and we employ the
relatively higher value to maximize the smoothness. The solution
of equation (16) is calculated iteratively until the relative change
between two iterations is smaller than 10−3 (Price & Monaghan
2007). Similarly,

ρj =
N∑

i=1

miW (rij , hj ), (17)

from the model particles. The target density ρ t, j is calculated only
once at the beginning of the M2M simulation, and the model density
ρ j is recalculated at every time step.

For velocity constraints, we define the following form of the
observables, using the same kernel. For example for radial velocity

δvt,r,j =
N∑

k=1

(vt,r,k − vt,r,j )mt,kW (rkj , hj ), (18)

where vt, r, k is the radial velocity of the kth target particle and
vt,r,j = (vt,x,j xt,j + vt,y,j yt,j )/(x2

t,j + y2
t,j )1/2 is the radial velocity

of the target system. Equation (18) represents the weighted mean of
the relative velocities of the target particles within hj of the target
particle j.

δvr,j =
N∑

i=1

(vr,i − vt,r,j )miW (rij , hj ) (19)

is similarly calculated from the model particles. The same format
is applied for the vertical and rotational velocities.

We then describe the difference in the observables, i.e. equation
(3). For density

�ρj
= ρj (t) − ρt,j

ρt,j

. (20)

For velocity, we normalized them by the target density because of
the density dependence introduced in equations (18) and (19), and
therefore for the radial case

�v = δvr,j (t) − δvt,r,j

σvr ρt,j

. (21)

Note that σ is not an observational error, but just a normaliza-
tion constant which we have arbitrarily set to σvr = σvz = σvrot =
10 km s−1 in our demonstration in Section 4.

Because �ρj
and �vj

are normalized differently, we modified
their contribution to the force of change by introducing a new pa-
rameter ζ such that for our simulations, equation (10) becomes,
with smoothed �̃ by equation (12),

d

dt
mi(t) = − εmi(t)

⎡
⎣M

∑
j

W (rij , hj )

ρt,j

�̃j,ρ(t)

+ ζM

⎛
⎝ξr

∑
j

W (rij , hj )

σvr ρt,j

(vr,i − vt,r,j )�̃vr,j
(t)

+ ξz

∑
j

W (rij , hj )

σvzρt,j

(vz,i − vt,z,j )�̃vz,j
(t)

+ ξrot

∑
j

W (rij , hj )

σvrot ρt,j

(vrot,i − vt,rot,j )�̃vrot,j
(t)

⎞
⎠

+ μ

(
ln

(
mi(t)

m̂i

)
+ 1

)⎤
⎦, (22)

where M is an arbitrary constant mass, which we set as M = 1012 M�
for this paper. Note that in equation (22) the corresponding M2M
kernel is Kj = MW(r, hj), e.g. for density, which is inconsistent
with the one used to obtain the observables in equation (17), where
Kj = Mm,totW (r, hj ) and Mm,tot is the total mass of the model
particles. However, we accept this inconsistency to apply the method
to a system whose total mass is unknown and we allow Mm,tot(t) =∑

i mi(t) to freely evolve. Therefore, we introduce the arbitrary
constant M in equation (22), and as a result the parameters, such as
ε, μ and ζ , must be calibrated for the specific system. Fortunately,
our ultimate target is only one system, the Milky Way. We hope
that we can calibrate the parameters by modelling simulated data
before applying the method to the real data. Hence, note that the
parameters presented in this paper are specific to the target system
in this paper. In future works, we will calibrate the parameters and
refine the methods by applying more realistic simulation data.

We use the additional individual parameters ξ r, ξ z, ξrot for the
different velocity observables, to allow us to fine tune their contri-
butions to the force of change even further. Similar in spirit to de
Lorenzi et al. (2007), we write ε as ε = ε′ε′ ′ where ε′ ′ is given by

ε′′ = 10

maxi

(
M

∑
j

W (rij ,hj )
ρj,t

�̃ρj
(t)

) (23)

for the density observable only.
In the previous works (e.g. Syer & Tremaine 1996; Dehnen 2009;

Long & Mao 2010; Morganti & Gerhard 2012), the M2M method
is applied to a system in a known fixed potential, i.e. using test
particles. de Lorenzi et al. (2007) demonstrate that M2M works with
a partially self-consistent potential, in that the potential is calculated
every 25 time steps, setting the particle mass mi = wiMtot. However,
this repeated sudden change of the potential could come with some
problems that will be discussed later.

We intend to apply our algorithm to the Milky Way, whose mass
distribution is poorly known (e.g. McMillan 2011), and one of
the aims of applying the dynamical model is to reconstruct the
mass distribution. Therefore, we use a self-consistent disc potential,
setting the particle weight, wi, to the mass, mi, allowing the disc
potential to change along with the model observables and allowing
us to recover simultaneously the disc potential along with the mass
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and velocity profiles. In this paper, we focus on the disc. We ignore
the bulge or halo stars, and assume that the dark matter potential is
known for this initial demonstration. Note that the previous studies
are mainly focused on elliptical galaxies, i.e. systems dominated by
velocity dispersion, but not strongly rotation supported. Recreating
a disc galaxy with a self-consistent potential has been attempted
once earlier by Deg (2010), who highlights some difficulties with an
M2M method that employs self-gravity. He uses a grid to calculate
the observables, which makes his method different from ours.

One of the problems arising from using a self-consistent poten-
tial as mentioned by Deg (2010) is that the temporal smoothing,
which worked well in fixed potential M2M methods, is problem-
atic when used with self-gravity. The temporal smoothing reduces
shot noise by averaging �j back along their orbits, which is fine
with test particles in a fixed potential because the orbits are fixed.
However, in a self-consistent potential, the potential and therefore
particle orbits change with time, and thus the temporal smoothing
breaks the self-consistency. Therefore, we should be aware that self-
gravity M2M models are very sensitive to instabilities, and we see
substantial disruption when the smoothing is first turned on. A way
to mitigate this damage due to the temporal smoothing is described
in Section 3.2. In light of this, we investigated the possibility of
running models without temporal smoothing. However, all models
had to be substantially underregularized to recover the velocity pro-
files shown in Section 4, which leads to the continuous fluctuation
of the weights, similar to the problems of the underregularization
discussed in Section 4.2.

We use a standard Euler method for the integration of the weight
change equation and a leapfrog time integrator for advancing the
particles. We also use individual time steps for the particles, and
only update the masses of particles whose position and velocity
are updated within the individual time step. The time step for each
particle is determined by

dti = CDYN

(
0.5hi

|dvi/dt |
) 1

2

, (24)

with CDYN = 0.2.

3.2 Target system setup

Our simulated target galaxy consists of a pure stellar disc with no
bulge and a static dark matter halo, set up using the method described
in Grand, Kawata & Cropper (2012). The dark matter halo density
profile is taken from a truncated NFW profile (Navarro, Frenk &
White 1997; Rodionov et al. 2009)

ρdm = 3H 2
0

8πG

δc

cx(1 + cx)2
e(−x2), (25)

where δc is the characteristic density described by Navarro et al.
(1997). The truncation term is introduced in our initial condition
generator for a live halo simulation. Although we use a static dark
matter halo in this paper, we use the profile of equation (26). Note
that the truncation term leads to very little change in the dark matter
density profile in the inner region focused on in this paper. The
concentration parameter c = r200/rs and x = r/r200, where r200 is
the radius inside which the mean density of the dark matter sphere
is equal to 200ρcrit and given by

r200 = 1.63 × 10−2

(
M200

h−1M�

) 1
3

h−1kpc. (26)

We use M200 = 1.75 × 1012 M�, c = 20 and H0 = 71 km s−1Mpc−1.

Figure 1. The end result (t = 2 Gyr) of an N-body disc galaxy simulation.
It had a scalelength of 3 kpc initially. This will be used as the target system
as shown in the Section 4. The left- and right-hand panels show the face-on
and end-on views, respectively.

The stellar disc is assumed to follow an exponential surface den-
sity profile

ρd = Md

4πzdR
2
d

sech2

(
z

zd

)
e−R/Rd , (27)

where zd is the scale height of the disc and Rd is the scalelength.
Our target disc has zd = 0.35 kpc and Rd = 3.0 kpc. The disc has
a mass of Md = 3.0 × 1010 M� and consists of 105 particles, with
each particle having a mass of 3.0 × 105 M�. We use the kernel
softening suggested by Price & Monaghan (2007). Although Price
& Monaghan (2007) suggested adaptive softening length, we use a
fixed softening for these simulations for simplicity. Our definition
of the softening length ε = 1.05 kpc is about three times larger
than the equivalent Plummer softening length. We also use this for
the M2M modelling runs. The velocity dispersion for each three-
dimensional position of the disc is computed following Springel,
Di Matteo & Hernquist (2005) to construct an almost equilibrium
condition. We use a high value of the free parameter fR = σ R/σ z =
3, which controls the ratio between the radial and vertical velocity
dispersions, to deliberately suppress structure formation and create
a smooth, almost axisymmetric disc for this initial test. Our target
system is a relatively smooth disc galaxy evolved over 2 Gyr, as
shown in Fig. 1, and it is used for all models in Section 4.

We set up the initial conditions of the model disc with the same
parameters and method, but use a different scalelength from that of
the target galaxy.

3.3 Procedure

The sudden change in potential caused by the changing particle
weights induces instabilities and potentially unwanted structure
formation. This effect can be reduced by dividing the modelling
process into a series of stages, each with a slightly different level
of M2M algorithm. This reduces the magnitude of the change in
potential at any time. We also set a limit on the maximum change in
mass any particle can experience in one time step. We set this limit
to 10 percent of that particles mass.

Initially, the model is allowed to relax in a pure self-gravity envi-
ronment with no M2M constraints for 0.471 Gyr (our N-body code
time unit). This relaxation period is important, as applying the M2M
algorithm before the model has settled generates the aforementioned
instabilities. Although our M2M algorithm was still capable of re-
covering the desired profile, the time-scale needed was drastically
increased because the model had to smooth out again before con-
vergence took place if we turned on the M2M without the relaxation
period.
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Table 1. M2M model parameters.

Model Rd,ini (kpc) ε′ μ α ζ χ2
ρ χ2

vr
χ2

vz
χ2

vrot
Notes

A 2.0 0.1 5 × 105 0.2 0.05 0.0846 7.291 0.918 6.502 Fiducial
B 2.0 0.1 104 0.2 0 0.0831 9.599 1.074 10.873 No velocity
C 2.0 0.1 104 0.2 0.05 0.0912 8.275 1.069 7.464
D 2.0 0.1 105 0.2 0.05 0.0875 7.914 1.005 7.087
E 2.0 0.1 106 0.2 0.05 0.0894 7.099 0.893 6.440
F 2.0 0.1 107 0.2 0.05 0.223 9.395 1.130 9.960
G 2.0 0.1 108 0.2 0.05 0.407 17.291 2.107 17.701
H 5.0 0.1 5 × 105 0.2 0.05 0.100 10.839 1.414 10.394
I 6.0 0.1 5 × 105 0.2 0.05 0.111 12.381 1.604 12.094
J 1.5 0.1 5 × 105 0.2 0.05 0.101 7.849 0.972 6.896
K 2.0 0.1 5 × 105 0.2 0.05 0.0924 7.309 0.911 6.509 Partial data

After this period of relaxation, the M2M algorithm is activated
and runs without temporal smoothing for a further 1.413 Gyr, which
allows the density and velocity profiles to converge quickly. During
this time, the contribution of the velocity constraint is increased lin-
early from 0 up until our desired ζ . This allows the density profile to
converge first. We found this slow increase in the velocity constraints
to be important, because if the velocity constraints were introduced
simultaneously at full strength, we find the large weight changes in-
duce the sudden potential change mentioned earlier, which is strong
enough to disrupt the disc.

Then, after 1.884 Gyr, the temporal smoothing is turned on.
When the M2M modelling was run with temporal smoothing from
the beginning, the mass profile experienced large oscillations. The
modelling then continues in this state for as long as is desired. Our
M2M models are run for a period of 10 Gyr.

3.4 Parameter calibration

As discussed in Syer & Tremaine (1996), de Lorenzi et al. (2007),
Long & Mao (2010) and Morganti & Gerhard (2012), the choice
of parameters is crucial for the success of M2M modelling. In this
section, we will discuss our choice of the parameters: ε, α, ζ and μ,
and how we calibrate these values. Note that these parameters are
calibrated for this specific target system. It is likely that we need
different calibration for different targets. However, what we learned
from the parameter search should be useful for future applications
and developments of the improved version.

ε provides the balance between the speed of convergence, and
the smoothness of the process. In this case, we find that when
ε′ > 0.1, the weights change too rapidly, which induces the sudden
potential changes and therefore more instabilities. This leads to a
general decrease in the final level of accuracy of both density and
velocity profiles. If ε′ ≤ 0.1, convergence can be achieved and the
particle weights experience a much smoother evolution. However, if
ε′ is too small, the oscillations generated by the temporal smoothing
take too long to damp down, which drastically increases the length
of the simulation. In the end, we have chosen ε′ = 0.1 as a balance
between accuracy and simulation time. With more computing power
available to us we would consider running a lower value of ε.
However, if ε′ � 0.1, it is possible that the model will not show any
signs of convergence as the weight change is too slow.

The choice of α, which controls the strength of the temporal
smoothing, should depend upon the choice of ε (α ≥ 2ε). Note
that ε = ε′ε′ ′ and ε′ ′ is defined by equation (23). We find that our
modelling is not sensitive to α and we set α = 0.2 in this paper.

ζ (and individual ξ ) controls the level of the velocity constraints.
It is important to strike a balance between the density and velocity

constraints, because if the level of constraints are unbalanced one
will dominate in the change of weight and the other observables
will not converge. We can choose a suitable ζ (and/or ξ r, ξ z and
ξrot) by comparing the magnitudes of the individual terms of the
right-hand side of equation (22). We set ζ such that the contribution
of the velocity constraint to the force of change equation is of the
same magnitude as, or slightly less than, the density constraints.
The individual velocity components may then be fine tuned with ξ j.
For our simulations, we find that the following parameter set works
well: ζ = 0.05, ξ r = 1, ξ z = 10 and ξ rot = 1.

μ controls the strength of the regularization. We discuss the
importance of μ in greater detail in Section 4.2. In our fiducial
model shown in Section 4 we adopt μ = 5 × 105.

4 PARTI CLE-BY-PARTI CLE M2M RESULTS

In this section, we present the results from our modelling of our tar-
get disc galaxy. We will first show the results for our fiducial model,
and then compare it with a model using only density constraints. We
ran multiple M2M models with different parameters, which can be
seen in Table 1, where Rd,ini is the initial scalelength of the model
disc. We only use the observables within the radius of 10 kpc.

4.1 Fiducial model

In this section, we present Model A, our fiducial model constructed
with the parameters described in Section 3.4 and shown in Table 1.
We start from an N-body disc with a scalelength of 2 kpc, recreating
the target disc (Rd = 3 kpc) with our particle-by-particle M2M,
evolving the model for 10 Gyr. Fig. 2 shows the radial profiles of
the surface density, radial and tangential velocity dispersion, and the
mean rotational velocity. The final profiles of Model A reproduce the
profiles of the target system remarkably well. Note that these radial
profiles are not direct constraints of the particle-by-particle M2M.
Especially, it is rather surprising that the velocity dispersion profiles
are recovered. We think that this is because the particle-by-particle
M2M forces the model particles to follow the velocity distribution
of the target particles. We also have no constraints on the total mass
of the disc. Note also that the assumed velocity constant is 10 km s−1

in equation (21) yet the velocity profiles are reproduced at a level
much less than 10 km s−1. This is not surprising, however, because
we have different normalizations for density and velocity, and adjust
ζ and ξ to balance their contributions in equation (22) making the
choice of σ arbitrary. Therefore, σvr ,t is not indicating an error, but
is merely a constant value for normalization. In this paper, we do
not include any error. We plan to add more realistic errors in future
works. Fig. 3 shows the weight evolution for a selection of particles
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Figure 2. Initial (red dotted), final (green dashed) and target (black solid),
density profile (upper), radial velocity dispersion (upper middle), vertical
velocity dispersion (lower middle) and rotational velocity (lower) for Model
A. The initial model has a scalelength of 2 kpc, the target model has a
scalelength of 3 kpc.

Figure 3. The weight evolution for a selection of particles from Model A.

Figure 4. Time evolution of χ2 for density (upper), radial velocity (upper
middle), vertical velocity (lower middle) and rotational velocity (lower) for
Model A.

from Model A. Weight convergence is adequate, however, it is not
as smooth as desired. We find that the particle weight evolution
is less smooth for the case where velocity observables have been
added. Fig. 4 shows the χ2 evolution for each of the observables.
For all observables we use

χ2
X =

∑
�2

X

Nr

, (28)

where �X is equivalent to equations (20), i.e. X = ρ, and (21), i.e.
X = v. This is a slightly unusual definition of χ2 for the velocity
observables. Note that we include only particles within 10 kpc and
Nr is the number of target particles satisfying this criteria. In Model
A, χ2 values rapidly decrease until 2 Gyr, from which point there
is almost no improvement. The final values of χ2 are also shown in
Table 1.

In comparison we show Model B, with the same initial conditions
and target with the velocity constraints turned off. We find that μ =
5 × 105 cause overregularization for this case, and has to be reduced
in compensation to μ = 104. Fig. 5 shows the density and velocity
profiles for Model B. The final model-density profile resembles the
target. Due to the lack of velocity constraints, while the velocity
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Figure 5. Same as Fig. 2, but for Model B which uses only the density
observable as a constraint.

profiles do improve, they do not resemble the target. A comparison
between Figs 2 and 5 demonstrates how the velocity constraints
improve our reproduction of the dynamical properties of the target.

4.2 Effect of regularization

Similar to the previous studies (e.g. Syer & Tremaine 1996;
de Lorenzi et al. 2007; Long & Mao 2010), we also find that careful
choice of the value of μ is key to obtain convergence to a good
model, and reproduce the given observables. Therefore, we discuss
in this section how μ affects the modelling. We performed multiple
models with the same initial conditions and parameters as Model
A, except the value of μ (see Models C–G in Table 1). Fig. 6 shows
the χ2 for the density and velocity at the final time (t = 10 Gyr).
The figure demonstrates a slow improvement for the three velocity
observables with an increasing μ up until a value of approximately
μ = 106, above which goodness of fit drops off again. The density
observable appreciates a slightly lower value of μ.

Although there is not a vast difference between the final values
of χ2 for μ = 104, 105, 106, Model C with μ = 104 is found to
be an inappropriate model because of its poor convergence. Fig 7
shows the time evolution of χ2 in Model C. Fig. 7 shows oscilla-

Figure 6. Accuracy of our final M2M model dependent on μ as determined
by χ2 for density (upper), radial velocity (upper middle), vertical velocity
(lower middle) and rotational velocity (lower).

tory behaviour. Fig. 8 shows the time evolution of the weight for
the particles selected in Fig. 3. Comparison between Figs 3 and 8
demonstrates that μ = 104 is too low to suppress the large ampli-
tude of the fluctuations in the particle weights. The weights of the
particles keep changing and do not converge. Therefore, we judge
that μ = 104 is unacceptable for recreating the target system.

Fig. 9 displays the distribution of particle weights at the final time
for Models A and C. The histogram shows a wider tail, and lower
peak for the underregularized Model C compared to our fiducial
Model A. This is expected because a higher μ restricts particles
from moving far from the initial mass used as a prior. As a result,
Model A shows a narrower distribution and thus a higher peak close
to the initial value of wi. Fig. 9 also demonstrates that μ = 104 is
less favourable.

If we examine substantial overregularization, i.e. a higher value
of μ, it is easy to see the damaging effect on the density and velocity
profiles. Fig. 10 shows the profiles from Model G, with μ = 108,
which shows the significant discrepancy in the density and rotational
velocity profiles between the final profiles and the target profiles.
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Figure 7. Same as Fig. 4, but for Model C, with μ = 104.

Figure 8. Same as Fig, 3, but for Model C, with μ = 104.

Figure 9. Distribution of particle weights for Model A (solid) and Model
C (dotted) at the final time, t = 10 Gyr. w0 indicates the initial particle
weights.

The discrepancy in the other two velocity observables is not as
substantial. However, it is clearly worse when compared with Fig. 2.

In summary, we found that we required regularization of around
μ = 105−106 as a compromise between the goodness of fit, and
the smoothness of the χ2 and particle weight evolution. Both μ

= 107 and 108 show overregularization and the density profiles
associated with those values converge to an incorrect profile. μ

= 104 shows large oscillations in both χ2 and particle weights,
and convergence is not reached. Anything in the range of μ =
105−106 appears appropriate and hence our fiducial model adopts
μ = 5 × 105. As can be seen from Table 1, we find underregulariza-
tion is preferable to overregularization. This is also the case in the
previous literature (e.g. de Lorenzi et al. 2008; Morganti & Gerhard
2012) implying this is a generic feature of M2M and not intrinsic
to any specific algorithm.

4.3 Different initial conditions

We also tested the algorithm on the same target, using initial discs
with a different scalelength, but with the same parameters as Model
A. We have already discussed the benefits of tailoring μ to the
model, so we were not expecting that these models (Models H
and I in Table 1) would recreate their target systems to the same
level as Model A. However, for demonstration purposes, we show
how the parameter set in Model A works if the initial conditions
are different. When we started from a higher initial scalelength
(Model H with Rd,ini = 5 kpc and Model I with Rd,ini = 6 kpc) we
attained a reasonable reproduction of the target. However, the final
χ2 is systematically higher than Model A (see Table 1). Fig. 11
shows the profiles from Model H, which slightly disagree with the
targets. This seems to be due to overregularization, and we would
need to adjust μ in order to obtain a better model. On the other
hand, when we started from a lower initial scalelength (Model J
with Rd,ini = 1.5 kpc, the profiles are shown in Fig. 12), χ2 was
only fractionally worse than the fiducial case Model A (see Table
1). This demonstrates that it is better to set the initial disc with a
smaller scalelength. In the application to the real observational data
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Figure 10. Same as Fig. 2 but for Model G, with μ = 108.

of the Milky Way, we do not know the right shape of ‘the target
model’. However, we hope that the further studies with these target
galaxies would help us to understand more about how the M2M
modelling behaves in different cases, and how we should calibrate
the parameters.

4.4 The partial data case

Because our goal is to eventually use our method with Gaia data, and
Gaia will only survey a section of the Galactic disc, it is important to
test our algorithm on an incomplete data set (Model K in Table 1). In
this paper, a simple selection function is applied for the purpose of
demonstration. Remember that our models in the previous sections
have used only the data within the radius of 10 kpc from the centre.
In this section, we additionally restricted the observables within a
10 kpc sphere around a point in the plane, 8 kpc away from the
Galactic Centre.

Fig. 13 shows the final profiles for Model K, which reproduces
the target profiles reasonably well. Compared with Fig. 2, Fig. 13
shows only a minor discrepancy to the target profiles, mainly in the
outer region. Worse performance in the outer region is unsurprising,
as the larger the radii, the smaller percentage of the particles orbits

Figure 11. Same as Fig. 2, but for Model H, where Rd,ini = 5.0 kpc.

are spent within the sampled area. Table 1 shows the final values of
χ2, which displays a better value of χ2 than overregularized models,
and similar levels of the goodness of fit to underregularized ones,
without the excessive weight oscillations. Model K demonstrates
that it is possible to apply our particle-by-particle M2M to a disc
galaxy with only a limited selection of data.

5 SU M M A RY A N D F U RTH E R WO R K

We have developed the initial version of our new particle-by-particle
M2M, where the observables are compared at the position of the
target particles, and the gravitational potential is automatically ad-
justed by the weight change of the particles. This paper demon-
strates that the particle-by-particle M2M can recreate a target disc
system in a known dark matter potential. The radial profiles of the
surface density, velocity dispersion in the radial and perpendicu-
lar directions, and the rotational velocity of the target disc are all
well reproduced from the initial disc model whose scalelength is
different from that of the target disc. We find that the regularization
parameter, μ, is key to obtaining a reasonable convergence to a sat-
isfactory model. We also demonstrate that our M2M can be applied
to an incomplete data set and recreate the target disc reasonably
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Figure 12. Same as Fig. 2, but for Model J, where Rd,ini = 1.5 kpc.

well when the observables are restricted to within a sphere of radius
10 kpc around a point in the disc plane 8 kpc from the centre.

Admittedly, these applications are simplified cases. Our ultimate
goal is to develop the M2M to be applicable to the observational data
that Gaia and other related Galactic surveys will provide. As dis-
cussed above, Gaia will produce an unprecedentedly large amount
of data of the order of a billion stars, with many dimensions of
information. The accuracy of each dimension of information could
be quite inhomogeneous, depending on distance, stellar population,
and location in the sky due to dust extinction, crowding etc. mean-
ing that the observational selection function is quite complex. There
are many challenges before us to develop the M2M for Gaia-type
data.

We believe that as shown in this paper, it is a good practice for
galaxy modelling to attempt to reconstruct galaxy models created
by N-body simulations, where the full dimensions of the properties
are known. Although as an initial attempt, we have taken a disc
without any non-axisymmetric structure, and we are trying to ap-
ply the method to N-body discs with spiral arms and a bar. In the
future, we will add more realistic errors and selection functions,
to account for dust extinction and crowding. We must then take
into account the expected Gaia performances, the stellar population

Figure 13. Same as Fig. 2, but for Model K, where the observables are
calculated only in a sphere of 10 kpc around a point in the plane 8 kpc from
the galactic centre.

(e.g. Sharma et al. 2011; Pasetto, Chiosi & Kawata 2012) and the
three-dimensional dust extinction models (e.g. Drimmel & Spergel
2001; Marshall et al. 2006). We realize that the observables used
in this paper are not ideal for such complicated data. We are also
investigating other forms of observable and their associated contri-
bution to the force of change, such as the maximum likelihood as
applied in de Lorenzi et al. (2008). In this paper, we assume that
the dark matter halo potential is known and spherical for simplicity.
However, of course we do not know the shape of the dark matter of
the Milky Way, and in reality we have to simultaneously explore the
different dark matter potential. Another important question is the
uniqueness of our M2M solution. Even if the M2M model explains
all the observables similarly well. The question remains, what are
the ‘real’ dynamical models for the Milky Way? We hope that many
exercises with these ‘fake’ targets created by N-body simulations
will be useful to identify the uniqueness of the obtained dynamical
model and possible systematic biases.

Encouraged by the success of this paper, we are further improv-
ing our particle-by-particle M2M to apply them to the upcoming
Galactic observational data, and ultimately construct a dynamical
model of the Milky Way.
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